
Federated Machine Learning
in Edge Computing

Jed Mills
College of Engineering, Mathematics and Physical Sciences

University of Exeter

Submitted by Jed Mills to the University of Exeter as a thesis for the
degree of Doctor of Philosophy in Computer Science.

This thesis is available for Library use on the understanding that it
is copyright material and that no quotation from this thesis may be
published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has
been identified and that any material that has previously been sub-
mitted and approved for the award of a degree by this or any other
University has been acknowledged.

Department of Computer Science August 2022



Acknowledgements

I’d like to thank everyone who supported and encouraged me over the years at uni-
versity and throughout the PhD.

My supervisor and friend Jia for his reassuring guidance, helping me to learn the
art and science of academic research and publishing.

The friends and collaborators from A1 for showing me the ropes and providing a
relaxing working environment: Dongya, Haozhe, Jin, Rui, Siewei, Zhengxin.

All of the housemates who made living in Exeter a joy for the last seven years:
Martha, James, Hannah, Inga, Jamie.

Josh, Rafe and Tom for being fantastic comrades with the ability to find the humour
in any situation.

Finally, my love and gratitude to Emy, Dad and my wonderful Mum.

1



List of Publications

J. Mills, J. Hu, G. Min. “Communication-Efficient Federated Learning for Wire-
less Edge Intelligence in IoT”, IEEE Internet of Things Journal, vol. 7, no. 7, pp.
5986-5994, 2020.

J. Mills, J. Hu, G. Min. “Multi-Task Federated Learning for Personalised Deep
Neural Networks in Edge Computing”, IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 33, no. 3, pp. 630-641, 2022.

J. Mills, J. Hu, G. Min. “Client-Side Optimisation Strategies for Communication-
Efficient Federated Learning”, IEEE Communications Magazine, vol. 60, no. 7, pp.
60-66, 2022.

J. Mills, J. Hu, G. Min, R. Jin, S. Zheng, J. Wang. “Accelerating Federated Learn-
ing with a Global Biased Optimiser”, IEEE Transactions on Computers (accepted).

J. Mills, J. Hu, G. Min. “Faster Federated Learning with Decaying Number of
Local SGD Steps”, IEEE Transactions on Parallel and Distributed Systems (under
2nd round of review).

Z. Yu, J. Hu, G. Min, H. Xu, J. Mills. “Proactive Content Caching for Internet-of-
Vehicles based on Peer-to-Peer Federated Learning”, IEEE International Conference
on Parallel and Distributed Systems, pp. 601-608, 2020 (invited paper).

R. Jin, J. Hu, G. Min, J. Mills. “Lightweight Blockchain-empowered Secure and
Efficient Federated Learning at the Wireless Edge”, IEEE Transactions on Com-
puters (under review).

J. Wang, J. Hu, J. Mills, G. Min. “Federated Ensemble Model-based Reinforce-
ment Learning”, IEEE Transactions on Parallel and Distributed Systems (under
review).

2



Abstract

Machine Learning (ML) is transforming the way that computers are used to solve
problems in computer vision, natural language processing, scientific modelling, and
much more. The rising number of devices connected to the Internet generate huge
quantities of data that can be used for ML purposes.

Traditionally, organisations require user data to be uploaded to a single location
(i.e., cloud datacentre) for centralised ML. However, public concerns regarding data-
privacy are growing, and in some domains such as healthcare, there exist strict laws
governing the access of data. The computational power and connectivity of devices
at the network edge is also increasing: edge computing is a paradigm designed to
move computation from the cloud to the edge to reduce latency and traffic.

Federated Learning (FL) is a new and swiftly-developing field that has huge
potential for privacy-preserving ML. In FL, edge devices collaboratively train a
model without users sharing their personal data with any other party. However,
there exist multiple challenges for designing useful FL algorithms, including: the
heterogeneity of data across participating clients; the low computing power, inter-
mittent connectivity and unreliability of clients at the network edge compared to
the datacentre; and the difficulty of limiting information leakage whilst still training
high-performance models.

This thesis proposes new methods for improving the process of FL in edge com-
puting and hence making it more practical for real-world deployments. First, a
novel approach is designed that accelerates the convergence of the FL model through
adaptive optimisation, reducing the time taken to train a model, whilst lowering the
total quantity of information uploaded from edge clients to the coordinating server
through two new compression strategies. Next, a Multi-Task FL framework is pro-
posed that allows participating clients to train unique models that are tailored to
their own heterogeneous datasets whilst still benefiting from FL, improving model
convergence speed and generalisation performance across clients. Then, the principle
of decreasing the total work that clients perform during the FL process is explored.
A theoretical analysis (and subsequent experimental evaluation) suggests that this
approach can reduce the time taken to reach a desired training error whilst lowering
the total computational cost of FL and improving communication-efficiency. Lastly,
an algorithm is designed that applies adaptive optimisation to FL in a novel way,
through the use of a statistically-biased optimiser whose values are kept fixed on
clients. This algorithm can leverage the convergence guarantees of centralised algo-
rithms, with the addition of FL-related error-terms. Furthermore, it shows excellent
performance on benchmark FL datasets whilst possessing lower computation and
upload costs compared to competing adaptive-FL algorithms.
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Chapter 1

Introduction

Computers can be used to perform a huge range of complex and useful tasks. Pro-
grams can be written that allow people to connect over the Internet, manage huge
quantities of information in databases, simulate and gain novel insights within sci-
ence, engineering and medicine, control and record industrial machinery, and even
beat expert human players in games such as chess. Nonetheless, the behaviour of
these programs relies solely on the ingenuity of their designers.

Machine Learning (ML) is currently revolutionising many areas of science, engi-
neering, business and society. It is concerned with building models that ‘learn’ from
data to have good performance on an objective, rather than following pre-specified
logic. ML systems require access to greater and greater quantities of data in order
to improve their ability to generalise for previously-unseen inputs.

There are many sources of data with which to train ML models in the mod-
ern world. However increasing concern regarding the ownership and privacy of
data motivates approaches for privacy-preserving ML. Alongside this, the power,
connectivity and total number of devices on the Internet is increasing rapidly, pro-
viding opportunities to move expensive computation from the network core to the
edge. The subject of this thesis is Federated Learning (FL): an exciting and recent
paradigm for collaborative, distributed ML that takes place over the Internet in
order to preserve the data privacy of users.

1.1 Machine Learning

Traditionally, computer programs take inputs and execute sets of precise formal
instructions (written by programmers and engineers) to complete a predefined task,
providing outputs for people and other machines. However for many interesting
and useful tasks it is infeasible to define the logic to carry them out. Furthermore,
scientists and engineers wish to gain novel insights into data so do not wish to
explicitly specify program logic.

Machine Learning (ML) is a discipline within the broader field of Artificial In-
telligence that builds models from data. These models ‘learn’ to improve their
performance on an objective. This way, the precise relationship between program
inputs and outputs do not need to be predefined, but rather emerge from the train-
ing dataset that is fed into the model. After training, the model is used for inference:
processing new, unseen inputs to complete the desired task. The ability of the model
to perform well on new examples is its generalisation ability. ML is an exciting and
rapidly growing field with a huge range of applications, by no means limited to:
reliably recognising elements within images and speech, making medical predictions
with better efficacy than human experts, autonomously driving vehicles with greater

10
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safety compared to human drivers, discovering new relationships within the social
and natural sciences, and optimising resources within business and industry.

Due to state-of-the-art performance on a variety of tasks, a diverse range of
prospective applications, and huge commercial potential, ML is experiencing inten-
sive research efforts, with the total number of ML publications increasing by more
than four times in the last 10 years [1]. ML is often categorised into the following
broad sub-fields based on the kind of task to be solved. Supervised Learning predicts
an output for a given input, requiring a set of existing input-output pairs, with ex-
amples include image classification and translation. Unsupervised Learning derives
novel relationships within data and requires only inputs, with examples including
data clustering and dimensionality reduction. Reinforcement Learning systems in-
teract with a dynamic environment to maximise a reward, with examples including
game-playing and robot control.

Alongside developments within ML domains and applications, there have been
huge advances in the variety and complexity of the model used. Nonparametric mod-
els have a computational complexity that scales with the number of samples in the
dataset, and include classic algorithms such as K-Nearest Neighbours and Gaussian
Processes. Parametric models have a fixed number of parameters and computational
complexity independent of dataset size, and include algorithms such as Logistic Re-
gression and Linear Discriminant Analysis. Within the already rapidly-advancing
field of ML, parametric Deep Neural Networks (DNNs) are receiving exceptionally
intense research efforts. This is largely due to their ability to learn high-level fea-
tures from raw datasets, reducing the need for feature engineering and leading to
world-leading performance on a wide variety of tasks.

Figure 1.1: Conceptual relationship between Federated Learning and other fields
within Artificial Intelligence.

Federated Learning (FL) is a recent development within ML for training models
using datasets that are split across a large number of clients, without requiring
those clients to share their data to any other party. It is a general framework
that has been successfully applied to the different ML sub-fields, nonparametric and
parametric models, with particular interest in supervised learning of large DNNs.
Section 1.3 gives further details on FL, and Figure 1.1 conceptually places FL in
relation to other disciplines within AI.



12 Chapter 1 – Introduction

1.2 Edge Computing

Alongside developments in applications, computer hardware continues to see re-
markable evolution. Due to miniaturisation, cost reduction, and improvements in
speed, efficiency and connectivity, computers are becoming ever more ubiquitous
and transforming every aspect of people’s lives. One of the major uses of modern
computers is to send and receive data over the Internet.

The number of devices connected to the Internet is therefore rapidly expanding,
reaching over 12 billion as of 2022 [2]. User devices can range from increasingly
powerful personal computers and smartphones to small, low-powered Internet of
Things (IoT) devices and embedded controllers. The way that these devices are
connected to the Internet also varies hugely: from super-fast fibre-optics and short-
distance wireless protocols such as Wi-Fi to low-bandwidth long-distance networks
like the Long-Term Evolution (LTE) standard. Subsequently, the computing and
communications properties of user devices varies hugely.

Alongside the number of user devices, the quantity of data generated by them
is also growing. By 2025, it is expected that the data stored by all Internet de-
vices will reach 175 zettabytes [3]. The sources of this data are diverse, including
but not limited to network traffic files, consumer media-content, social networking
information, medical records, and sensor logs generated by the IoT.

Figure 1.2: Edge Computing architecture.

User devices are connected to the Internet via the network edge, which includes
wireless base stations and corporate network-entry points. The network edge in
turn is connected to the Internet core, which interconnects large networks together,
such as between countries. Figure 1.2 shows the basic architecture of the network
edge. Cloud Computing (CC) is a paradigm for providing services such as compute
and storage over the Internet. Powerful servers located near the network core carry
out data storage, retrieval and expensive computation, and send the requested data
to user devices. This means that even low-powered user devices with limited stor-
age can operate as if they have access to almost unlimited storage and compute.
Despite these benefits, CC has substantial drawbacks including high latency, poor
performance when user bandwidth is low, high levels of network traffic as content is
sent between from the cloud to the edge, and privacy concerns due to data storage
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in remote locations.
Edge Computing (EC) aims to move this expensive computation and storage

from the network core to the edge. These operations therefore take place close to
the source of the data, alleviating the communication load within the Internet and
improving latency whilst reducing the burden on the relatively small number of cloud
servers [4]. Alongside the performance advantages of such a strategy, removing the
need for data to be uploaded from the edge to the cloud provides enhanced privacy
benefits to the data owners. Federated Learning is a recent distributed computing
paradigm that moves Machine Learning from the cloud to the network edge and
user devices.

1.3 Federated Learning

The generalisation ability of ML models benefits greatly from access to larger quan-
tities of data. The huge amount of data generated by user devices therefore provides
great opportunity for a range of ML applications. However, increasing public con-
cern regarding data privacy and the establishment of landmark legislation such as
the General Data Protection Regulation means that Internet users are increasingly
unwilling or unable to share their data with parties that wish to train a model.

Traditionally, when organisations wish to train an ML model from user data, the
data is uploaded by users and stored together in a datacentre. Training the model
is then performed in the datacentre, using multiple high-powered compute nodes
with high-bandwidth connections. The resulting model can then be used centrally,
or shipped to edge servers or to user devices for inference. Large literatures exist
both for datacentre-based training and for model inference at the edge [5], however
Federated Learning (FL) is an emerging computing paradigm for distributed training
of models at the network edge or user level whilst preserving data-privacy [6]. Each
device that participates in FL (be it a wireless base-station equipped with compute
and storage capabilities or a user’s smartphone) is known as an FL client.

Despite the ever-growing quantity of data produced by users, the total data re-
quired to achieve good generalisation performance for state-of-the-art ML models
(particularly DNNs) is typically much larger than that stored on any one client.
Therefore the model produced by the federation of clients will in principle have su-
perior generalisation performance than individual clients could achieve, as federated
pool of data will be extremely large. FL performs additional processing on clients
compared to simply uploading their data. The result of this processing is consid-
ered to be less privacy-sensitive than the underlying data, and further methods can
be used to enhance and provide formal guarantees of level of privacy [7]. Figure
1.3 demonstrates the difference between the traditional cloud-based ML and FL
approaches.

FL thus represents a marriage between ML and EC. It covers a range of scenarios
characterised by the computing power, communications capabilities, total number,
reliability, and amount of data owned by the participating clients. Broadly, in ‘cross-
device’ scenarios a huge number of unreliable low-powered clients, each possessing
a small quantity of data, collaborate to train the FL model. Alternatively, ‘cross-
silo’ scenarios employ a smaller number of more reliable, more powerful clients each
possessing larger quantities of data.

Real-world examples of cross-device deployments include millions of smartphones
creating a next-work predictor [8], digital assistants jointly training a wake-word de-
tector [9], and personal computers optimising Internet browser settings [10]. Exam-



14 Chapter 1 – Introduction

Figure 1.3: Cloud-based ML vs FL paradigms: (a) 1. clients upload their data to
the cloud, 2. the cloud server performs ML centrally; (b) 1. clients perform local
computation on their data, 2. clients upload the product of this data to the server,
3. the server aggregates the received information to produce an FL model.

ple of cross-silo deployments include hospitals jointly training a disease-prediction
model [11], detection of money-laundering across financial institutions [12], and
anomaly flagging in smart manufacturing plants [13]. A thorough overview of the
FL scenario, its developments and its applications is given in [7]. Although FL can
be deployed for a wide range of applications in many different environments, the
following key features distinguish the FL scenario.

� Distributed parallel computing: there are a large number of clients collaboratively
training a model, with high-latency and low-bandwidth connections compared to
training in a datacentre, leading to long training times. FL clients are coordi-
nated by a central server. The connections to the server are unreliable due to
user behaviour and connectivity, and the compute and communication abilities of
clients can be very non-uniform. These characteristics present significant systems
and protocol challenges for reliable FL algorithms.

� Strict data privacy: the data stored on each client cannot be sent to any other
client or the coordinating server. Furthermore, minimal information about the
data distribution on each client should be shared during the FL process in order
to maximise data privacy. Ideally, the information sent to the server by any client
should not uniquely identify it. Reducing information and privacy leakage is a
significant challenge whilst still training an FL model with good performance.

� Heterogeneous client data: as the client devices and their owners have different
behaviour and environments, the data generated by clients is highly heterogeneous
and non-Independent and Identically Distributed (non-IID). Furthermore, the
distribution of data on clients can change over time as user behaviour changes.
Non-IID client data significantly increases the difficultly with which a high-quality
FL model can be trained.

1.4 Research Challenges & Objectives

Despite similarities to distributed parallel computing in the datacentre, the unique
privacy-related and EC features of FL present a novel and challenging field for
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researchers. New algorithms and systems must be designed that: exhibit good
generalisation performance across clients with heterogeneous data, display fast con-
vergence due to the slow communication and computation properties of the network
edge compared to the datacentre, have low compute and communication overheads
due to client device limitations, and are resilient to unpredictable or even malicious
clients.

All of these goals must be achieved whilst adhering to FL’s strict data-privacy
requirements. FL has the potential to drastically change how organisations train
models from user data, opening new directions for innovative privacy-focussed and
ethical applications which improve users’ trust in the systems that utilise their data.

The aim of this thesis is to develop novel techniques and algorithms for improving
the FL process and making it more practicable for real-world deployments. Namely,
these contributions are designed to achieve the following broad objectives:

1. To reduce FL’s communication and computation overheads in order to meet the
unique hardware constraints of the EC environment.

2. To improve the generalisation performance of FL models given across heteroge-
neous client datasets and hence make participation more attractive to users.

3. To accelerate the convergence rate of the FL model and hence reduce the time
taken to complete an FL deployment, making it more practical for real-world use.

1.5 Contributions & Organisation of Thesis

To achieve the research objectives set out in Section 1.4, the remaining chapters of
this thesis make the following original contributions.

Chapter 2 provides a detailed and formal description of the FL process, and sur-
veys important developments within FL that are built upon in the other chapters.
It also overviews works in the topics of EC and datacentre-based training that are
relevant to this thesis. Current challenges to the state-of-the art are also presented.

Chapter 3 develops methods for improving FL’s communication-efficiency. This
is achieved through the novel application of adaptive optimisation in combination
with two new techniques for compressing the information uploaded by FL clients to
the coordinating server. These approaches significantly reduce the total quantity of
data communicated and total time taken for an FL model to reach a target accuracy.

Chapter 4 proposes a new personalisation strategy to boost model performance
on heterogeneous client data. Personalised models that are tailored to each non-
IID client dataset are trained whilst still benefiting from FL through the use of a
mixture of private and federated DNN layers. Different combinations of private and
federated elements are thoroughly investigated and show excellent improvements in
convergence rate and generalisation.

Chapter 5 explores the principle of decreasing the amount of local work that clients
perform during the training process, which can heavily improve FL’s computational
efficiency. A theoretical analysis suggests that this approach can drastically reduce
the amount of time taken for the model to reach a given error, and motivates three
ways in which the amount of local computation can be decayed during training.
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Chapter 6 presents a novel algorithm for applying adaptive optimisation to FL.
By utilising a statistically-biased adaptive optimiser that is applied globally on all
clients, the convergence rate, generalisation performance, computational cost and
communication overheads of FL are substantially reduced when compared to simi-
lar algorithms.

Chapter 7 concludes the thesis. After reviewing the technical contributions made
in the previous chapters, current challenges to the state-of-the-art and future direc-
tions within the field of FL are discussed.



Chapter 2

Background & Related Work

This chapter provides a thorough background on FL as an ML optimisation prob-
lem and describes the working environment from a computer-systems perspective. It
then presents the important Federated Averaging algorithm and explores the learn-
ing challenges related to it. Works from the FL and distributed learning literature
related to the subsequent chapters are then surveyed.

2.1 The Federated Learning Objective

Organisations use FL to create a model from client data without accessing the
training data, in order to preserve user privacy. After it is trained, the FL model
may be used for inference in the cloud or shipped to devices at the edge [7].

In parametric ML, the objective is to minimise the loss of a model x ∈ Rd over
the whole distribution of data that it will be applied to (the true risk). However, ML
models only have access to a limited number of examples from the true distribution
(the training samples). Therefore only the empirical risk (error on training set)
can be minimised, and it is assumed that the empirical risk corresponds to the
true risk. The performance of a model on unseen examples is its generalisation
performance, and the difference between the training and generalisation performance
is the generalisation gap. The generalisation gap can usually be reduced by using a
larger training dataset.

There are a large number of clients connected to the Internet, each possessing
a small amount of training data. It is this data that cannot be accessed by the FL
organiser, in order to preserve data privacy. However, some kind of information must
be uploaded by clients to collectively train a model. This leads to a trade-off between
utility and privacy. If all clients were to upload their data to a server for centralised
training, the generalisation gap of the resulting model would likely be very small due
to a huge data pool, but there would be little privacy guarantee. Alternatively, if all
clients trained ML models independently (which would guarantee data-privacy), the
generalisation performance of the individual models would be poor. FL therefore
represents a ‘good solution’ in this privacy-utility tradeoff.

The FL objective is to train a global model. This model should minimise the
global loss function F , which is the expected loss over client objectives, namely:

F (x) = E
i

[
fi(x) =

1

ni

ni∑
j=1

f(x; ξi,j)

]
, (2.1)

where fi, ni, and {ξi,j, · · · , ξi,ni
} denote the average loss, total number of samples,

and individual training samples on client i, respectively. f is the loss function that

17
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clients use to train x. Intuitively F is the expected loss over all samples and all
clients. The individual losses fi are presented as a sum and the global loss F as
an expectation to emphasise that in FL there are a large number of clients, each
possessing a small number of local samples. This objective is analogous to that
used when training a centralised model on pooled data (as in the datacentre). As
such, the distributed ML literature has some overlap with the FL literature and is
surveyed below.

If the client loss functions are convex, the local minimiser f ∗
i of each client is

defined as the point on the objective landscape such that:

f ∗
i ≤ fi(x), ∀x ∈ Rd. (2.2)

Due to different user behaviour and environments, client devices are assumed to
have heterogeneous data distributions. The samples ξi on to each client also cannot
be shared with any other client in order to preserve data-privacy. Therefore, the
local minimiser for any two clients i and j are not necessarily the same: f ∗

i ̸= f ∗
j .

If all the data across all clients is considered as the total federated dataset, then
it is non-Independently and Identically Distributed (non-IID) across the clients.
Non-IID data is one of the major obstacles for FL because it usually harms the final
performance of the trained model, but is one of the distinguishing features of FL.
For supervised learning problems (the focus of many FL works), there are many
ways in which client data can be heterogeneous: non-IID features or labels, different
underlying mapping between features and labels, non-uniform numbers of samples,
and more [14]. For highly nonconvex loss surfaces such as those of DNNs (likely the
most popular type of model used in FL), the landscapes and minimum points are
also non-identical due to heterogeneous client data and the definition of the local
loss (2.1).

Parametric models are typically trained using variants of Gradient Descent (GD).
GD requires a loss function that is differentiable with respect to the parameters of
the model (x). With a loss defined over training samples as in (2.1), the gradient
of the loss can be evaluated iteratively and the parameters of the model updated by
a small value. Thus, the trained model descends to a low point on the loss surface.
Traditional parametric models such as Linear Regression typically have convex loss
surfaces, whereas modern DNNs have highly nonconvex surfaces [15], making the
optimisation problem more difficult.

For a given starting model x0 ∈ Rd and loss function f , the recurrence relation
for GD is given by:

xt+1 = xt − η∇f(xt), (2.3)

where η is the learning rate. GD is performed in steps until the model error f(xt)
reaches a desired value.

As the loss is defined over the whole training dataset (2.1), computing ∇f(x)
at every iteration is prohibitively costly. A stochastic estimate of the gradient at xt

can instead be computing using only a single sample:

xt+1 = xt − η∇f(xt; ξt), (2.4)

The stochastic gradient in (2.4) is equal to true gradient in expectation: E
i
[∇f(x; ξi)] =

∇f(x), but the estimate usually has high variance (increasing with the size of the
dataset). This variance can slow convergence substantially. For smooth convex ob-
jectives and appropriately η, the error of GD after t iterations is bounded by O(1/t),
compared to O(1/√t) when Stochastic Gradient Descent (SGD) [16].
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A compromise between variance and per-iteration cost can be found by comput-
ing the stochastic gradient over a minibatch of samples (typically tens to hundreds):

xt+1 = xt − η
1

B

B∑
b=1

∇f(xt; ξt,b), (2.5)

where B is size of the minibatch. In practice, variants of minibatch SGD are usually
used for training state-of-the-art parametric models like DNNs [17, Chapter 8].

In the datacentre, Distributed-SGD (dSGD) is one of the most popular algo-
rithms for training large models in a distributed fashion. At each step of dSGD,
compute-nodes calculate a small minibatch gradient independently and sends these
gradients to a parameter-server. The parameter-server averages these to produce a
larger-batch gradient and applies it to the model. This new model is sent to the
compute-nodes for the next iteration.

Despite the similarities of FL to distributed datacentre training (in that a num-
ber of nodes/clients train a model together), the design of dSGD makes it unsuitable
for the FL scenario. Given a total number of model parameters d and clients c, the
data communicated by dSGD over t iterations is O(2cdt). Contemporary models
typically require millions of dSGD iterations to converge to a desired error. Commu-
nicating this much data over the Internet would be a large burden. Furthermore, FL
clients are assumed to have low-bandwidth connections to the coordinating server
(particularly for upload, given the architecture of the network edge) [18]. Thus the
time taken for each iteration of dSGD in FL would be large and the total runtime
inordinately long. It is also infeasible to require all FL clients to participate at each
step: for real-world cross-device deployments, the fraction of clients available for
training at any point in time can be as low as 0.2% [8]. These factors motivate
algorithms that can converge in fewer rounds of communication and are robust to
low client participation rate, as discussed below.

2.2 Constraints of the Network Edge

In the datacentre, compute-nodes have high-bandwidth interconnects are used to
train large-scale models, particularly DNNs. To further accelerate training, nodes
are usually equipped with powerful Graphics Processing Units (GPUs). GPUs have a
highly-parallel architecture that allows them to perform the same operation on large
blocks on memory concurrently. Large matrix multiplications and other parallel
operations are required to propagate values through DNNs, so GPUs show significant
speedup compared to traditional Central Processing Units (CPUs) for this task.
Furthermore, the next generation of datacentre-based ML is likely to include Tensor
Processing Units (TPUs), which are accelerators even further specialised for DNN
training [19].

However the environment of the network edge is far more constrained. User
devices are connected to the edge using a variety of connection types, ranging from
coaxial cable and fibre-optics, to Wireless Local Area Networks (WLAN) and cellular
networks. Despite improvements in wireless cellular networks (from 1G to 5G) for
greater and greater bandwidth in order to support multimedia-content delivery, the
bandwidth of even the latest 5G networks is a small fraction of the bandwidth
that compute-nodes have between each other in the datacentre [18]. Due to the
huge number of users connected to the Internet, it is impossible to enforce a single
communications technology amongst all devices, and it takes decades to shift the
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predominant technology in use [20]. Furthermore, due to the architecture of the
network edge the upload bandwidth of user and edge devices is typically much lower
than the download bandwidth. This asymmetry poses a challenge for many FL
algorithms, which typically require uploading and downloading large quantities of
data between the clients and coordinating server many times.

Alongside the constraints on communications, client hardware is very diverse
but generally of much lower power compared to the datacentre. In some FL deploy-
ments, IoT devices connect to and store their data on local edge servers. These EC
servers can have a range of computing and storage hardware, with some modern
servers equipped with GPUs [21]. In others, the client-base includes EC servers and
individual devices at the user devices (see Figure 1.3). Some FL researchers have
even proposed performing local computation on embedded IoT devices themselves
[22]. Clients are also unreliable and can join and leave the federation arbitrarily.
For example, in previous deployments smartphone clients could only participate in
the training when charging and connected to an unmetered wireless network [8].

These factors generally mean that FL algorithms should attempt to minimise the
computational and communication costs of training. It is usually assumed in FL that
the time spent waiting for straggling (slow) clients and the time spent uploading the
FL data dominate the runtime. Compression and other communication-reduction
strategies are an active research topic within FL [7], and strategies for lowering the
local computation cost are also emerging.

2.3 Federated Averaging

To better utilise resources and decrease the runtime of dSGD in the datacentre,
multiple steps of SGD can be performed on compute-nodes between communications.
Instead of sending model gradients to the parameter server, nodes perform several
steps of SGD and send the resultant models to the parameter server. The server
averages the nodes’ models to produce the next iteration’s model. This approach is
usually termed local-SGD [23]. Despite reducing the communication overheads of
distributed training, local-SGD is still unsuitable for the FL scenario as it requires
all nodes to participate in every round of communication. Theoretical analyses of
local-SGD also typically assume that the number of samples per node is much larger
than the number of nodes, which is not the case in FL (2.1).

Algorithm 1: Federated Averaging (FedAvg) [24]

1 input: initial global model x0

2 for round r = 1 to R do
3 select round clients Cr
4 for client c ∈ Cr in parallel do
5 download global model xr

6 for local SGD step k = 1 to K do

7 xc
r,k ← xr − η 1

B

∑B
b=1∇f(xc

k, ξ
c
k,b)

8 end
9 upload local model xc

r,Kr
to server

10 end
11 update global model xr+1 ← 1

|Cr|
∑

c∈Cr
xc
r,Kr

12 end
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Figure 2.1: The effect of increasing the number of local SGD steps (K) performed
during FedAvg when training a Convolutional Neural Network on the CIFAR100
dataset. Data is either IID (left) or non-IID (right) across 500 clients, with 5 clients
participating per round. Curves and shaded regions represent mean and 95% confi-
dence intervals for the validation accuracy over 10 random trials.

The Federated Averaging (FedAvg) algorithm was designed to alleviate the need for
all clients to participate in every round of communication [24]. As the seminal FL
algorithm, FedAvg is highly influential (being the basis of myriad extensions and
improvements), and is likely the algorithm that is most used in current real-world
deployments.

As such, FedAvg is presented in Algorithm 1. In each communication round, a
subset of all clients at the network edge download the global model from the cloud-
based coordinating server (line 5), perform K steps of minibatch SGD on their local
datasets (lines 6-8), and upload their models to the server (line 9). The server
then averages the received models to create the next round’s global model (line 11).
Typically, FedAvg is run for a given number of communication rounds or a pre-
specified time budget, which can be up to weeks in reality [8]. When algorithmically
described and theoretically analysed, in each round of FedAvg a subset of all clients
are selected uniformly at random to participate (line 3). However in reality, in each
round the server waits until a given number of clients upload their models before
starting a new round. Also, the amount of work each client performs is sometimes
allowed to vary depending on the size of their local dataset [24].

Whilst not providing any formal guarantee of the level of privacy provided, Fe-
dAvg does not require clients to share their training data with any other party.
Further techniques such as differential privacy and homomorphic encryption can be
used to enhance the level of privacy of FedAvg [7].

FedAvg’s communication-efficiency is the number of communication rounds re-
quired to reach a target model error (or generalisation performance). This is different
to its iteration complexity : the total number of SGD iterations. For a fixed number
of local steps K and communication rounds R, the total number of iterations (dis-
regarding the parallel work performed by clients) is given by T = KR. FedAvg’s
communication-efficiency can be improved by increasing the amount of local work
performed by clients.

Figure 2.1 shows the validation performance of a Convolutional Neural Network
(CNN) trained using FedAvg on the CIFAR100 dataset. In Figure 2.1 (a), the data
is IID amongst 500 total clients. In Figure 2.1 (b), the data is partitioned in a
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Figure 2.2: Demonstration of client-drift with two non-IID clients. Each client has
a local loss function (contour plots), with the global loss being the average of client
losses. The global model at the start of the round is represented by the circle.
During local training, the clients’ models move towards their minima (stars). The
next round’s global model (diamond) is the average of client models. Note that the
average of client minimisers is not the same as the minimiser of average client losses
(star on global loss surface).

non-IID fashion using the class labels, mimicking heterogeneous real-world clients
[25]. In each communication round, 5 of the clients are selected to participate
uniformly at random. For both data partitions, increasing the number of local SGD
steps K increases the initial rate of convergence. However for large values of K,
the final performance of the model is harmed. Furthermore, large values of K give
diminishing returns even for improving the initial convergence rate.

The convergence of the global model is slower and reaches a lower final validation
accuracy in Figure 2.1 (b). Inspecting the training curves, the variance in validation
accuracy between rounds is higher for non-IID clients (resulting in noisier curves).
The reason behind this is the heterogeneous data across clients leading to client-
drift [26]. When data is non-IID, the surfaces of the client losses (fi) have different
shapes and minimum points. Figure 2.2 shows an example 2-dimensional nonconvex
loss surface for two FL clients (corresponding to a model with 2 parameters). Lower
loss is shown as dark blue, with orange stars representing the minimum points. The
global loss surface is defined as the expectation over client losses as per (2.1).

The orange circles represent the starting point of a round of FedAvg. This point
is far from each client’s local minimum and from the global minimum. During
K = 4 steps of local gradient descent the client models move (drift) towards their
minimisers (orange arrows on client surfaces), which are not identical due to non-IID
data. The next round’s global model is the average of the two client models (orange
diamond); the average of the client minimisers is not the same as the minimiser of
the expected loss.

This simple 2-dimensional example serves to illustrate the challenge posed by
client-drift. For extremely high-dimensional models such as DNNs, where clients
perform a few steps of SGD (but not enough to converge to a local minima within
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a single local update), client-drift harms the global convergence rate and best per-
formance that the model can reach, as demonstrated by Figure 2.1. Previous works
have derived bounds on the extent of client-drift, showing that it is a function of
client data heterogeneity, the learning rate η and number of local stepsK [25, 26, 27].

Client-drift is an important challenge to address within FL to allow algorithms
performing multiple local steps to become more communication-efficient. Many of
the related works surveyed below make strides towards counteracting client-drift.

2.4 Related Work

Due to FL’s huge potential for privacy-preserving ML, there has been an intense
research effort to solve many related problems since its inception in 2016. In this
section, many of the major works relevant to the subsequent chapters are surveyed.

2.4.1 Theoretical Analysis of FedAvg

There has been significant work towards improving the theoretical understanding
of FedAvg and related algorithms. Proving the theoretical properties of FedAvg is
an important steps towards understanding its true behaviour and motivating new
algorithms that leverage the theoretical properties.

In the first analysis of FedAvg for non-IID clients with partial participation, Li
et al. [28] proved an iteration complexity of O(1/t) for smooth and strongly-convex
client objective functions. Their analysis suggested that an optimal number of local
steps K exists to maximise communication-efficiency, and the need to decrease the
learning rate η during training to reach arbitrarily low error. Dominant convergence
of FedAvg (in terms of iteration complexity) compared to dSGD is an open research
problem for all but quadratic objectives. Karimireddy et al. [26] added a server
learning rate to FedAvg to prove its convergence on nonconvex objectives, which
has been later shown to improve FedAvg’s iteration complexity [29]. Analysing
FedAvg using quadratic objective functions has been beneficial for gaining gain
insights into the trade-off between convergence rate and final model error [30], and
for determining the influence of client gradient-dissimilarity on convergence [31].

Malinovsky et al. [32] generalised local-SGD methods to generic fixed-point
functions (i.e., any process that converges to a stationary point, including SGD) to
analyse the effect of K on the ϵ-accuracy. As with FedAvg, using larger K means
that local-SGD cannot reach as cannot descend as close to the global minima. Linear
speedup (in terms of the number of participating clients) of the iteration complexity
for convex and nonconvex objectives have also been achieved [33, 34].

Chapter 5 of this thesis extends previous analyses to theoretically study the
convergence of FedAvg when using a decaying value of K. This approach can reduce
the total amount of real-time taken to reach a given model error and reduces the
total computational cost of FedAvg, which beneficial for energy-efficiency [35].

2.4.2 Novel Optimisation Strategies

Several approaches have been proposed to accelerate the convergence rate of FedAvg
and reduce client-drift. This is useful both for reducing FedAvg’s runtime and
improving the final performance of the FL model.

Proximal-based methods reduce client-drift by adding a term to the client loss
functions discouraging client models from moving too far from the current global
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model. The authors of FedProx [36] proved the intuition that the proximal coefficient
should be increased as client data becomes more non-IID. FedSplit [37] extended
FedProx by splitting the local proximal update into a two-step procedure, proving
that the minimum points of the client objectives are the same as the global minimum
point for convex objectives.

The global model updates during FedAvg can have high variance due to the
minibatch-SGD used on clients and from sampling only a very small fraction of the
non-IID clients per round. SCAFFOLD [26] uses control variates to add Stochastic
Variance-Reduced Gradients (SVRG) at both the global and client level to mitigate
the impact of client-drift and reduce variance. Control variates have been subse-
quently applied in multiple other algorithms [27, 38].

Adaptive optimisation strategies have long been used to accelerate training in
convex and nonconvex optimisation, especially for large DNN models where comput-
ing higher-order statistics of the gradient is prohibitively costly [17, Chapter 8]. Pre-
vious authors have applied adaptive optimisation during the server step of FedAvg
(Algorithm 1, line 11) [9, 25], which can accelerate FedAvg without increasing the
per-round communication or computation cost for clients. Alternatively, adaptive
optimisation can be applied during the client update, with the adaptive optimisers
averaged alongside the client models at the each of each round [39, 40], or reset at
the beginning of each round [41], or incorporated with adaptive server optimisation
[42]. Another approach is to keep a set of global optimiser statistics that are kept
fixed during the client loop and updated at the end of each round [27].

In this thesis, Chapters 3 and 5 both propose novel optimisation methods for
FL. These methods accelerate the convergence rate of FedAvg, thus improving its
communication-efficiency and reducing its computational cost and runtime.

2.4.3 Communication-Reduction in FL

As the FL process can occur over slow wireless connections and place a large bur-
den on edge and backhaul links due to a huge number of clients, many works have
also proposed reducing the per-round communication cost of FL. Communication-
reduction is particularly important when large DNNs (with up to billions of param-
eters for state-of-the-art models) are trained.

There is a significant literature for compressing the models uploaded by clients
during FedAvg, which is particularly important due to the asymmetric bandwidths
of the network edge. An early work [43] empirically studied different approaches for
dropping predetermined values from the uploaded models. There are also multiple
works using sparsification (dropping all weights updates with small magnitudes)
and quantisation (representing weight updates with fewer bits than standard 32-
bit floating-point) [44, 45, 46, 47]. These compression strategies can achieve huge
compression ratios without breaking the training procedure.

Models can also be uploaded with novel communication schemes. One approach
is aggregating some layers of a federated DNN less frequently based on their position
within the model [48]. Another is hierarchical FL, where clients aggregate with edge
servers with a higher frequency than the cloud server [49, 50, 51].

Some works consider communication reduction for the physical layer. Over-the-
Air computation allocates several clients to the same wireless channel to allow their
models to additively interfere. This reduces the number of wireless channels needed
to support a large number of clients, and is an emerging sub-field of FL [52, 53, 54].

As part of an algorithm that improves the communication-efficiency of FedAvg
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through adaptive optimisation, Chapter 3 of this thesis proposes two novel strategies
for compressing the model and optimiser values uploaded to the cloud server.

2.4.4 Personalised FL

FedAvg trains a single global model by performing rounds of SGD on clients followed
by model averaging. However a core challenge within FL are clients with heteroge-
neous data. Therefore if the global model is distributed to clients after the training
is complete, it will have non-uniform performance across them. Personalised FL
methods are designed to improve the performance of the model(s) trained across
non-IID clients [55].

A simple approach for personalisation is fine-tuning: clients download the final
global model trained by FedAvg and perform a few steps of SGD on their data before
local inference. Fine-tuning has been shown to improve the average generalisation
performance across clients [56, 57]. Some works have extended this idea by applying
Model-Agnostic Meta Learning (MAML) to FL, which alters the client objective
functions to make the global model more easily adapted post-FedAvg [58, 59, 60].
However, there is debate regarding the true benefit of these more complex approaches
compared to simple fine-tuning [61].

Another strategy is to train a mixture of global and local models during FL. This
can be achieved by expressly designing the mixture in the optimisation problem [62],
by reformulating FedAvg using Moreau envelopes [63], or by regularising between
an explicit global and local objective [64].

FL can also be re-framed as a Multi-Task Learning (MTL) problem, where the
heterogeneous clients represent a similar learning task to be jointly optimised. This
has allowed authors to propose a primal-dual framework to optimise convex objec-
tive functions [65], formulate clients’ non-IID data as mixtures of underlying global
distributions [66], or by clustering users with similar (inferred) datasets [67].

Chapter 4 of this thesis proposes a new algorithm for training DNNs in feder-
ated MTL through the use of a mixture of private and global layers. The superior
generalisation performance for non-IID clients is demonstrated against several other
state-of-the-art algorithms [60, 63].

2.4.5 FL in Dynamic Edge Environments

Many works consider varying the amount of computation performed by clients de-
pending on their available resources such as wireless bandwidth, battery power, CPU
speed and current utilisation. These approaches variously improve FL’s communication-
efficiency, runtime, total energy or total data cost.

Scheduling of wireless clients is of strong interest in FL. In [38] the authors mod-
elled the convergence of their algorithm in a time-sharing wireless-edge environment,
incorporating factors such as client bandwidth, transmission power and CPU fre-
quency to jointly minimise energy consumption and training time. [68] analysed
scheduling policies factoring in the Signal-to-Noise ratio of wireless channels. Sev-
eral works also schedule the amount of work clients perform based on their wireless
bandwidth [69, 70, 71, 72], and it is common practice when using smartphone clients
to limit participation to those that are connected to an unmetered network, charging
and idle [8].

Asynchronous algorithms can be used to improve resource utilisation in the fed-
eration. These algorithms allows clients to download and upload their models at
arbitrary times, removing the constraint of waiting for a sufficient number of clients
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to complete each round. While alleviating the effect of stragglers, the performance
of the global models produced by asynchronous FL algorithms is usually lower than
synchronous ones (such as FedAvg). Asynchronous algorithms are also have worse
theoretical guarantees [73, 74, 75].

The algorithms and techniques proposed in this thesis target a variety of domains
and client hardware. In Chapters 3 and 4, experiments using wireless FL testbeds
evaluate the performance of the proposed algorithms under realistic EC conditions.
Furthermore, the asymmetric communications properties of the wireless edge are
incorporated into the algorithm design in Chapters 3 and 6.

2.4.6 Datacentre-Based Developments

Distributed training in the datacentre shares similarities with the FL scenario in that
there are multiple clients (nodes) collaboratively training a model. Therefore, some
recent developments within this field are relevant to the chapters of this thesis.
dSGD and local-SGD methods are commonly used in the datacentre due to the
reliability and power of the compute nodes.

Woodworth et al. [76] proved for quadratic objectives that the iteration complex-
ity of local-SGD dominates that of dSGD for quadratic objectives. However, even
for more general convex problems local-SGD does not dominate. Similarly, Wang et
al. [77] unified the analysis of various algorithms related to local-SGD with different
communication topologies and achieved state-of-the-art results for some settings.
Empirical studies have shown that generalisation performance can be improved by
switching from dSGD to local-SGD in the later stages of training [78] or through
the use of extra-gradient methods that compute gradients after a step of SGD on
nodes [79]. Topics such as Transfer Learning [80] and MTL [81] typically studied in
the datacentre setting have also been applied to FL [82, 65].

Furthermore, there have been communication-reduction strategies tailored to
the datacentre that can be applied to FL. Frameworks that accumulate gradients
dropped using gradient sparsification [44] have been extended to the FL scenario [45].
Similarly, model pruning [83] is a popular method developed for model sparsification
in the datacentre that has inspired works for communication-reduction in FL [84,
85, 86].

Developments in the distributed-training literature can therefore be relevant for
and influence progress within FL. The methods developed in Chapter 5 and Chapter
6 of this thesis could in turn be used in datacentre settings due to their broad
applicability.

2.5 Chapter Summary

This chapter provided a primer on the FL optimisation problem and the physical
characteristics of the FL environment. The primary algorithm for training para-
metric models in FL was described alongside its behaviour when deployed on het-
erogeneous clients. To place the contributions of this thesis within the wider FL
literature, a broad survey of related sub-topics was then presented. The subsequent
chapters make technical contributions that build and improve upon this existing
body of work.



Chapter 3

Communication-Efficient
Federated Learning for Wireless
Edge Computing in IoT

This chapter proposes a new algorithm, Communication-Efficient Federated Aver-
aging (CE-FedAvg), designed for the EC scenario where edge servers store data
from nearby IoT devices. The huge number of IoT devices worldwide provide much
opportunity for FL using their data. Although FedAvg [24] is commonly used for
FL, it can suffer from a large number of rounds to convergence when client datasets
are non-IID and high communication costs per round stemming from the need to
transmit entire models between clients and server (see Section 2.3). FL is typically
used to train large DNN models which can have up to billions of parameters, mean-
ing that communication can present a significant bottleneck for FedAvg. This is
especially true for model upload, considering the asymmetric upload and download
bandwidths of the network edge. CE-FedAvg uses distributed Adam optimisation
[87] to greatly reduce the number of rounds required for the global model to con-
verge, along with two novel compression techniques utilising sparsification (dropping
low-magnitude weight deltas), quantization (representing weight deltas as 8-bit inte-
gers rather than 32-bit floats), and Golomb encoding [88] (to represent weight delta
indexes with fewer bits), that are designed to reduce the per-round upload cost.
Extensive experiments are performed with the MNIST and CIFAR-10 datasets, IID
and non-IID client data, varying numbers of clients and client participation, and
compression rates. These show that CE-FedAvg can converge to a target accuracy
in up to 6× fewer rounds compared to similarly-compressed FedAvg while uploading
up to 3× less data, and is more robust to aggressive compression. Experiments on
an edge-computing testbed using Raspberry Pi clients also show CE-FedAvg is able
to reach a target accuracy in up to 1.7× less real time than FedAvg.

3.1 CE-FedAvg

The FedAvg algorithm has a single master model that is an aggregate of client
models. For each round of communication, the server selects a subset of clients and
pushes the master model to these clients. Each client then performs a predetermined
number of rounds of gradient descent using the client’s local data, pushes their model
weight deltas to the server, and the server then averages these updates to become
the new master model.

FedAvg features a fixed learning rate across devices as per normal minibatch-
SGD. As shown below, this can result in a very large number of rounds required to

27
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Figure 3.1: One communication round of CE-FedAvg: 1. Clients download the
global model weights, 1st and 2nd moments (ω,m, v); 2. Clients perform training
on their IoT-derived datasets; 3. Clients compress their models; 4. Clients upload
their compressed parameters and indexes (ω′,m′, v′, i); 5. The server decompresses
the model weights and moments; 6. The server aggregates all client models before
starting a new round of training.

converge to a given accuracy. minibatch-SGD can result in low convergence rates in
later rounds of training because some weights need finer ‘tuning’ than others. Adam
optimization is a popular addition to standard minibatch-SGD [87]. It stores two
values for each model weight: m (the 1st moment) and v (the 2nd moment), which
are used along with gradients computed by backpropagation and global decaying
learning rates to update model weights for each minibatch. Adam reduces both the
problems of weights requiring different degrees of tuning (having adaptive rates for
each weight), and local minima (via momentum).

Alongside this, in FedAvg, the entire DNN model is sent from clients to server
each round. Modern DNNs have a huge number of weights, and the upload band-
width of edge clients is typically far lower than the download bandwidth. Therefore,
uploading models to the server is a significant potential bottleneck of the system.
Previous works have shown that these uploaded weight tensors can be compressed
without significantly harming the performance of the model [43, 44, 89] [45]. How-
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ever, these schemes typically increase the number of rounds FedAvg takes to con-
verge, albeit with lower total data uploaded by clients.

To address the above problems, CE-FedAvg is proposed: a scheme that both
reduces the number of rounds taken to converge to a given accuracy and decreases
the total data uploaded during training over FedAvg. Algorithm 2 shows the de-
tails of CE-FedAvg. The UniQ, UniDQ, ExpQ and ExpDQ functions are shown in
Algorithms 3 and 4.

Algorithm 2: Communication-Efficient FedAvg (CE-
FedAvg)

1 server Executes:
2 input: initial global model x0

3 for round r = 1 to R do
4 select round clients Cr
5 for client c ∈ Cr in parallel do
6 (ωq,mq,vq, g, b

∗, lzmin, lzmax, gzmin,
7 gzmax, bm, bv)← ClientUpdatek(ω,m,v)

8 decompress model and optimiser deltas
9 ∆ωk,∆mk,∆vk ← 0

10 idxs← GDecode(g, b∗)
11 ∆ωk,idxs ← UniDQ(ωq, lzmin, lzmax, gzmin, gzmax)
12 ∆mk,idxs ← ExpDQ(mk, bm)
13 ∆vk,idxs ← ExpDQ(vk, bv)

14 update global values

15 ω←ω+
∑K

k=1
nk

n
∆ωk

16 m←m+
∑K

k=1
nk

n
∆mk

17 v← v +
∑K

k=1
nk

n
∆vk

18 end

19 end

20 function ClientUpdatek(ω, m, v)
21 download values ωk ←ω; mk ←m; vk ← v
22 for epoch ← 1 to E do
23 batches ← (data Pk in batches of size B)
24 for batch b ∈ batches do
25 ωk,mk,vk ← AdamSGD(ωk,mk,vk)
26 end

27 end

28 compress ωk, mk, vk deltas and indexes
29 ωs, idxs← Sparsify(ωk −ω)
30 g, b∗ ← GEncode(idxs)
31 ωq, lzmin, lzmax, gzmin, gzmax ← UniQ(ωs)
32 mq, bm ← ExpQ(mk −m)
33 vq, bv ← ExpQ(vk − v)

34 return (ωq,mq,vq, g, b
∗, lzmin, lzmax,

35 gzmin, gzmax, bm, bv) to server

In CE-FedAvg, the server first initialises the global model with random weights and
0 values for the 1st and 2nd Adam moments (line 3). Each communication round, the
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server selects a subset of clients (line 5) and sends the weights and moments to them.
Algorithm 2 are selects clients uniformly at random, but in reality clients would be
selected based on their power/communication properties at the time as in [8]. These
clients then perform their local Adam SGD (lines 7-8), and upload their data to the
server. The server dequantizes and reconstructs the sparse updates from the clients
(lines 10-17), averages the updates (lines 20-22) and starts the next round. Each
client updates by replacing their current model with the downloaded global weights
and moments (line 27), performing E epochs of Adam SGD (lines 28-34), sparsifying
and then quantizing the model deltas and sparse indexes (lines 36-40) and uploading
the model to the server. Barring compression, CE-FedAvg would communicate 3×
the data as FedAvg (the shapes of m and v are the same as ω). However, as shown
later, ω, m and v can be aggressively compressed in CE-FedAvg while still taking
less rounds to converge than FedAvg.

CE-FedAvg provides other practical benefits over FedAvg. Due to the adaptive
learning rates inherited from Adam, CE-FedAdam works well with the default Adam
parameters. FedAvg, on the other hand, requires finding learning rates for each
specific dataset and scenario [24]. Not only is this time-consuming and costly, but in
the FL setting, the server does not have access to client datasets, so it is unclear how
this would be done in reality. Also, as CE-FedAvg reduces the number of rounds of
communication to reach a target accuracy, the total amount of computation required
of clients is also reduced: the extra cost of performing one round of CE-FedAvg over
FedAvg is outweighed by reduced rounds of learning.

3.2 Compression Strategies

Previous work compressing the models uploaded by clients typically rely on sparsi-
fication of weights and/or quantization of weights from typical 32-bit floats.

Algorithm 3: Uniform Quantization (UniQ)
and Dequantization (UniDQ)

1 function UniQ(a)
2 lzmin ← min(a−)
3 lzmax ← max(a−)
4 gzmin ← min(a+)
5 gzmax ← max(a+)
6 initialise as type 8-bit int q← 0|a|
7 qa<0 ← ⌊ 127

lzmax−lzmin
(aa<0 − lzmin)⌋

8 qa>0 ← 128 + ⌊ 127
gzmax−gzmin

(aa>0 − gzmin)⌋
9 return q, lzmin, lzmax, gzmin, gzmax

10 function UniDQ(q, lzmin, lzmax, gzmin, gzmax)
11 initialise as type 32-bit float d← 0|q|

12 dq<128 ← ( lzmax−lzmin

127
qq<128) + lzmin

13 dq≥128 ← (gzmax−gzmin

127
(qq≥128−128))+gzmin

14 return d

The proposed techniques are comprised of sparsification followed by quantization.
To sparsify gradients, for each tensor, the top (s − 1)% of deltas with the largest
absolute value are chosen, and they are extracted along with their (flattened) in-
dexes. In CE-FedAvg, the corresponding m and v deltas are also sent along with the
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weight deltas, using the same indexes. If non-corresponding m and v values are sent
(i.e. the m and v tensors are sparsified independently, in the same manner as the
weight tensors) this quickly produces exploding gradients at the clients in practice,
likely due to stale m and v values producing problems in the Adam optimization
algorithm.

After sparsification, the weight deltas, m and v are quantized from 32-bit floats
to 8-bit unsigned integers. The weight deltas contain positive and negative values
with the greatest (s − 1)% of magnitudes, and are quantized as per the Uniform
Quantization scheme shown in Algorithm 3. To quantize using Uniform Quantiza-
tion, the values with the greatest positive and greatest negative, and lowest positive
and lowest negative are chosen (lines 2-5). These are used to map all values lower
than zero to the integers 0-127 (line 7) and values greater than zero to 128-255 (line
9). To dequantize, the reverse functions are applied (lines 14-15) to return a vector
of floats.

Analysis of m and v values produced by Adam show that there is a large range in
the scale of these values: usually values with exponents ranging from 10−1 to 10−35.
Attempts to quantize m and v deltas show that they are very sensitive to errors in
their exponent, and quantizing them using Uniform Quantization or schemes from
other works results in exploding gradients within a few rounds. Therefore a different
method is proposed for these deltas: Exponential Quantization.

Algorithm 4: Exponential Quantization (ExpQ)
and Dequantization (ExpDQ)

1 function ExpQ(a)

2 b← min(abs(a))
1

127

3 initialise as type 8-bit int q← 0|a|
4 p← ⌊ 1

log(b)
log(abs(a))⌋

5 qa<0 ← abs(pa<0)
6 qa>0 ← 128 + abs(pa>0)
7 return q, b

8 function ExpQ(q, b)
9 initialise as type 32-bit float d← 0|q|

10 d0<q<128 ← −b−q0<q<128

11 dq≥128 ← b128−qq≥128

12 return d

In Exponential Quantization, negative values are again mapped to the range 0-127,
and positive to 128-255. Algorithm 4 shows the procedure. To quantize a tensor,
the smallest absolute value, δ, is found, and b = δ−1/127 is computed (line 2). This
provides the base for quantization: the minimum base with exponent of 127 able to
represent the value with the smallest magnitude in the tensor. Using the minimum
possible base provides the highest resolution for the quantized values. The logarithm
with base b for all values in the tensor is then found and rounded to the nearest
integer (line 4), with 128 added to positive values to map them to 128-255 (line 6).
To dequantize, b is simply raised to the power of q for each value, times by −1 for
q < 128 (lines 12-13).

The last item to be compressed are the indexes of the values in the sparse arrays
sent from clients to server. For these values, lossless Golomb Encoding is used [88].

Using these techniques, compressed FedAvg therefore uploads for each weight
tensor: the weight deltas (8-bit integers); the four min/max values from Uniform
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Quantization (4 × 32 bits); their indexes (Golomb encoded); and b∗ (a 32-bit float
used for Golomb encoding). CE-FedAvg must communicate all of these, plus the m
and v deltas (both 8-bit integers) and the base, b for both of these from Exponential
Quantization (32-bit floats). The total number of uploaded bits after compression,
per client per round, is therefore:

FedAvg: bitsup = 160|W |+ (1− s)(8 + gs)
∑
ω∈Ω

|ω| (3.1)

CE-FedAvg: bitsup = 224|W |+ (1− s)(24 + gs)
∑
ω∈Ω

|ω| (3.2)

where s is the sparsity, Ω is the set of weight tensors comprising the network, and
gs is the expected number of bits needed to Golomb encode one index value for a
given sparsity.

Figure 3.2: Left: expected number of bits per value, gs, using Golomb Encoding
versus sparsity. Right: compression ratio of CE-FedAvg and FedAvg, and CE-
FedAvg:FedAvg uploaded data ratio versus sparsity.

The implementation of Golomb Encoding (GE) [88] is the same as used in [45]. The
expected number of bits per value for a given sparsity, gs, is given as:

gs = b∗ +
1

1− s2b
∗ (3.3)

b∗ = 1 + ⌊log2(
ϕ− 1

s
)⌋ (3.4)

where ϕ =
√
5+1
2
≈ 1.62 is the golden ratio. The value of b∗ is sent from client to

server to convert the GE bit string back to integer values.

Plotting gs (Figure 3.2, left), the second terms of the above equations, and the
nominal (without |W | terms) ratio of CE-FedAvg to FedAvg uploaded data with
different s (Figure 3.2, right) shows that CE-FedAvg compresses more than FedAvg
using this scheme. This means the total amount of data uploaded by a CE-FedAvg
client in a single round is between 2.6 − 2× that of FedAvg for 0.5 ≤ s < 1.0,
as opposed to 3× if there was no compression. However, despite communicating
2 − 2.6× more data than FedAvg per client per round, due to the reduction in
rounds achieved by CE-FedAvg, clients still upload less total data than FedAvg in
many cases.
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3.3 Experimental Evaluation

In this section, simulated and testbed experiments are performed to compare the
performance of CE-FedAvg against FedAvg in terms of the number of rounds to
reach a target average test accuracy (communication-efficiency), total communicated
data, and runtime.

3.3.1 Simulation Setup

Simulated experiments were conducted on image classification tasks using the MNIST
[90] and CIFAR10 [91] datasets to demonstrate the benefit of CE-FedAvg in terms
of communication-efficiency. DNN models were implemented using Tensorflow [92].

MNIST : 28× 28 greyscale images of handwritten digits in 10 classes. Two
models were trained on this dataset. The first (MNIST-2NN) had two fully
connected layers of 200 neurons with ReLU activation, and a softmax output
layer. The second (MNIST-CNN) was a convolutional network consisting of:
two 5× 5 convolutional layers with 32 and 64 output neurons, respectively,
each followed by 2× 2 max pooling and ReLU activation; a fully connected
layer with 512 neurons and ReLU activation; and a softmax output layer.

CIFAR10 : 32 × 32 colour images of objects in 10 classes. One network
(CIFAR-CNN) was trained on this dataset with: two 3 × 3 convolutional
layers with 32 output neurons, L2 regularization and each followed by batch
normalization; a dropout layer with d = 0.2, two 3× 3 convolutional layers
with 64 output neurons, L2 regularization, and batch normalization; a sec-
ond dropout layer with d = 0.3; two final 3× 3 convolutional layers with L2
regularization and batch normalization; a final d = 0.4 dropout layer; and
a softmax output layer.

The networks were trained on the datasets using differing numbers of clients, classes
per client, client participation rate, compression rates, and either FedAvg or CE-
FedAvg until a given target accuracy was achieved. The models had the following
target accuracies: MNIST-2NN, 97%; MNIST-CNN, 99%; CIFAR-CNN, 60%. For
each setting, values of E were tested to find the best for that setting, and when
using FedAvg, different learning rates were also tested.

The entire dataset was split across all clients in each case. Therefore, increasing
numbers of clients resulted in less samples per worker. To produce IID data (Y =
10), the datasets were shuffled and each client given an equal portion of the data.
For non-IID data (Y = 2), the datasets was sorted by class, divided into slices, and
each client was either given two slices. This resulted in most clients having data
from only two classes. The test data for each dataset was taken from the official
test-sets.

3.3.2 Simulation Results

The following tables show the average number of rounds to reach a given target
accuracy for the best parameter setup in each case. ‘NC’ is used where no set of
parameters could be found to get the algorithm to converge to the target. Sparsity
rates of s = {0.6, 0.9, 0.95} provides approximately {7, 25, 53}× compression for
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FedAvg, and approximately {9, 33, 68}× compression for CE-FedAvg, respectively,
resulting in a FedAvg:CE-FedAvg uploaded data ratio per round of ≈ 1 : 2.3. For
FedAvg, multiple global learning rates were also trialled for each scenario.

Table 3.1: Rounds required to reach target test accuracies for FedAvg (grey) and
CE-FedAvg (white), with upload sparsity s = 0.6.

MNIST-2NN

Y
W = 10 20 40

C = 0.5 1.0 0.5 1.0 0.5 1.0

10
2.0 2.0 3.8 4.0 7.2 7.2
2.8 2.0 4.2 4.0 8.2 7.4

2
134.8 118.0 143.8 117.2 171.6 152.4
79.4 56.2 77.6 60.8 81.6 60.8

MNIST-CNN

10
3.2 3.0 7.2 4.4 10.0 9.6
3.0 3.0 4.2 4.0 8.6 8.4

2
143.2 121.4 146.6 119.4 190.2 230.0
56.4 36.2 54.0 41.0 58.8 43.0

CIFAR-CNN

10
3.0 3.0 5.2 5.0 10.6 9.8
2.8 3.0 3.0 3.0 5.2 5.4

2
111.2 99.2 159.2 138.2 225.2 241.0
80.2 82.8 58.6 75.4 53.8 92.7

Table I shows that more rounds are required to converge in non-IID scenarios than
IID, as is consistent with other FL works. As clients’ distributions are very different
in non-IID scenarios, their models diverge more between aggregations, harming the
global model. Table I also shows that with moderate compression, CE-FedAvg
was able to reach the target in significantly fewer rounds in non-IID scenarios.
This may be because of CE-FedAvg’s adaptive learning rates: Adam was able to
make more fine-tuned changes to the worker models between aggregations so these
models did not diverge as much. CE-FedAvg did comparatively better with more
workers/decreasing dataset size per worker. CE-FedAvg reduced the rounds taken
by ≥ 2.3× in 10 cases, including all the MNIST-CNN non-IID cases. In the MNIST-
CNN, W = 40, C = 0.5, Y = 2 case, CE-FedAvg reduced the number of rounds by
5.3× over FedAvg.

Tables II and III show that higher compression rates increase the number of
rounds to reach the target, especially in non-IID cases. Again, in all non-IID cases,
CE-FedAvg is able to reach the target far faster than FedAvg. For s = 0.9, CE-
FedAvg reached the target in ≥ 2.3× less rounds in 7 cases. For s = 0.95, CE-
FedAvg took ≥ 2.3× less rounds in 5 cases. Taking the same MNIST-CNN case,
with s = 0.9, CE-FedAvg reaches the target in 6× fewer rounds, and 4.3× fewer for
s = 0.95.

For all non-IID CIFAR-10 s = 0.9, 0.95 cases, compressed FedAvg could not
converge within 1000 rounds. The CIFAR-10 problem is much more complex than
MNIST. It is likely FedAvg could not converge due to its fixed learning rate. CE-
FedAvg, on the other hand, could reliably converge even in these extreme settings.



Section 3.3 – Experimental Evaluation 35

Table 3.2: Rounds required to reach target test accuracies for FedAvg (grey) and
CE-FedAvg (white), with upload sparsity s = 0.9. ‘NC’ denotes cases unable to
converge.

MNIST-2NN

Y
W = 10 20 40

C = 0.5 1.0 0.5 1.0 0.5 1.0

10
3.0 2.8 4.8 4.8 9.6 9.6
4.2 4.0 7.0 6.0 13.0 11.6

2
210.2 192.0 212.2 185.6 271.8 258.4
114.8 86.4 104.6 86.4 138.4 96.8

MNIST-CNN

10
4.4 3.8 7.4 6.4 14.2 13.4
4.8 4.8 7.8 7.4 13.6 12.4

2
256.8 184.4 216.6 462.8 495.6 447.6
85.8 50.2 78.0 56.0 79.2 74.8

CIFAR-CNN

10
4.4 4.0 8.2 7.0 14.0 14.2
5.2 5.6 6.0 6.0 9.2 9.4

2
NC NC NC NC NC NC
83.2 60.4 74.2 68.2 75.8 71.4

Not considering these cases, CE-FedAvg was less likely to diverge during train-
ing than FedAvg. Over the total 962 FedAvg and 1034 CE-FedAvg experiments
conducted (after finding suitable E values, and learning rates for FedAvg, and not
including the ‘NC’ FedAvg cases), FedAvg diverged before reaching the target in 2%
of the experiments, whereas CE-FedAvg diverged in 0.1% of cases (a single case).
This reliability is likely due to Adam’s adaptive updates: discrepancies between
the model weights downloaded from the server and what is suitable for the specific
client’s optimisation are more easily overcome with adaptive learning rates.

While also being more reliable than FedAvg, CE-FedAvg was able to achieve this
using the default parameters for Adam optimization in every case. This resulted in
much faster experiment set times for CE-FedAvg, as multiple learning rates did not
have to be trialled. Tuning the Adam parameters may have achieved even better
results than those listed above. FL considers machine learning where a central server
does not have access to training data due to client privacy. Therefore, this presents
a major advantage over FedAvg: without a central test/validation set of data, it
would be infeasible to test multiple learning rates for FedAvg before conducting the
actual FL, whereas CE-FedAdam, for all of the above experiments, worked out of
the box with no parameter tuning.

Figure 3 shows the compressed size of the MNIST-CNN updates for FedAvg and
CE-FedAvg, including an uncompressed case (s = 0). It is interesting to see that
while CE-FedAvg uploads more data per client per round (due to the extra variables
from Adam) in all cases, the total data uploaded by CE-FedAvg is far lower than
FedAvg in all cases. This is due to the large decrease in rounds to convergence
CE-FedAvg gives.
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Table 3.3: Rounds required to reach target test accuracies for FedAvg (grey) and
CE-FedAvg (white), with upload sparsity s = 0.95. ‘NC’ denotes cases unable to
converge.

MNIST-2NN

Y
W = 10 20 40

C = 0.5 1.0 0.5 1.0 0.5 1.0

10
3.8 3.3 6.3 6.0 13.0 12.5
6.0 6.0 10.0 9.8 19.3 17.8

2
397.0 290.4 338.0 293.2 308.8 362.8
173.8 130.6 156.0 139.2 211.4 169.2

MNIST-CNN

10
4.6 4.6 9.6 9.0 21.0 19.4
7.8 7.0 13.0 11.5 21.0 19.0

2
264.2 282.3 400.3 421.5 585.3 698.3
133.8 94.3 126.3 107.8 160.8 161.8

CIFAR-CNN

10
5.6 5.0 9.6 8.6 20.2 18.0
10.0 10.6 10.2 9.6 14.2 13.8

2
NC NC NC NC NC NC
173.6 126.6 148.6 112.4 306.0 186.8

3.3.3 Testbed Setup

To test the real-time convergence of CE-FedAvg over FedAvg, an Raspberry-Pi
(RPi) testbed was used to simulate a heterogeneous low-powered edge-computing
scenario. The testbed consisted of 5 Raspberry Pi 2Bs and 5 Raspberry Pi 3Bs.
A desktop acted as the server over a wireless network to emulate lower-bandwidth
networking. The work of the server in these experiments was small: receiving and
decompressing, aggregating and resending models to clients. Therefore, the server
had a small impact on the time experiments took to run, and the vast majority of
time taken in the FedAvg/CE-FedAvg algorithm was on the RPi clients. The RPi
clients ran Raspbian OS and software was written with Python using Tensorflow
1.12.

Experiments with 10 workers, the MNIST-2NN and MNIST-CNN models, and
sparsity rate s = 0.6 were performed to evaluate the runtime of CE-FedAvg and
FedAvg. Round times were taken and averaged, and then used with the total-
rounds from the relevant parts of Table I to determine the total time that experiment
would take on the testbed. Time taken to complete rounds was very consistent on
the testbed, making this a reliable estimator of total time.

3.3.4 Testbed Results

Experiments were performed to obtain the estimated real time on a RPi testbed for
a set of 4 experiments to reach given target accuracies. The results of this are shown
in Figure 3.4.

The times in Figure 4 show that CE-FedAvg is able to converge to a given target
accuracy in less real time than FedAvg with similar compression. Although the
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Figure 3.3: Left: Compressed uploaded data per client per round for FedAvg and
CE-FedAvg with different sparsities, for the MNIST-CNN W = 40, C = 1.0, Y = 2
scenario. Right: Total uploaded data during training for the same scenario.

Figure 3.4: Estimated time on Raspberry Pi testbed of different FL scenarios.

time taken per round is greater for CE-FedAvg than FedAvg (due in small extra
computation required from Adam, but mostly due to the increased communication
per round compared to similarly compressed FedAvg), the number of rounds taken
to converge, as per Table I, was lower in all the given experiments. Figure 4 shows
CE-FedAvg was able to converge 1.2− 1.7× faster than FedAvg.

3.4 Chapter Summary

Federated Learning (FL) can allow distributed Machine Learning to be performed
on the network edge using data generated by IoT devices. In this chapter, Adam
optimisation and novel compression techniques were added to FedAvg to produce
Communication-Efficient FedAvg (CE-FedAvg), which reduces the total uploaded
data and rounds required to reach a given model accuracy, compared to similarly-
compressed FedAvg. Extensive experiments on the MNIST and CIFAR-10 datasets
showed CE-FedAvg was generally able to reach a target accuracy in far fewer com-
munication rounds than FedAvg in non-IID settings (up to 6× fewer). These ex-
periments showed CE-FedAvg is also far more robust to aggressive compression of
uploaded data, and able to converge with up to 3× less total uploaded data per
client. Further experiments using a Raspberry-Pi testbed showed CE-FedAdam
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could converge in up to 1.7× less real-time. CE-FedAvg therefore presents the ben-
efits of being able to train a model in less communication rounds (reducing the
overall data and computing cost of training), less real-time, and with less uploaded
data than uncompressed FedAvg, a unique result considering most schemes using
compression reduce uploaded data at the cost of more total communication rounds.
Future work in this area could investigate other SGD-type algorithms applied to
FL, and in compressing the models downloaded by clients from the server.



Chapter 4

Multi-Task Federated Learning for
Personalised Deep Neural
Networks in Edge Computing

Previous chapters have shown that non-Independent and Identically Distributed
(non-IID) user data is central to the FL scenario, but harms the convergence speed
of FedAvg and related algorithms [14]. Furthermore, most existing FL works mea-
sure the performance of the trained global model, but in many cases such as user
content-recommendation, improving individual User model Accuracy (UA) on their
private data is the real objective. When using a single global model, UA will be
non-uniform across clients due to their non-IID data. To address these issues, this
chapter proposes a Multi-Task FL (MTFL) algorithm that introduces non-federated
Batch-Normalization (BN) layers into the federated DNN. These weights in these
layers are not averaged with the rest of the model parameters but kept private.
MTFL benefits UA and convergence speed by allowing users to train models per-
sonalised to their own data, and is compatible with iterative FL algorithms such as
FedAvg. This chapter also shows empirically that a distributed form of Adam [87]
optimisation (FedAvg-Adam) benefits convergence speed even further when used as
the optimisation strategy within MTFL. Experiments using MNIST and CIFAR10
demonstrate that MTFL is able to significantly reduce the number of rounds re-
quired to reach a target UA, by up to 5× when using existing FL optimisation
strategies, and with a further 3× improvement when using FedAvg-Adam. MTFL
is compared with existing personalised-FL algorithms, showing that it is able to
achieve the best UA for MNIST and CIFAR10 in all considered scenarios. Finally,
MTFL with FedAvg-Adam is evaluated on an edge-computing testbed, showing that
its convergence and UA benefits outweigh its overhead.

4.1 Multi-Task Federated Learning (MTFL)

Figure 4.1 shows a high-level overview of MTFL operation in the edge-computing
environment. More detailed descriptions of the use of BN patches in MTFL and
optimisation on clients is given in the later subsections.

The MTFL algorithm is based on the client-server framework, however rounds
are initiated by the server, as shown in Figure 4.1. First, the server selects all, or a
subset of all, known clients from its database and asks them to participate in the FL
round (Step 1), and sends a Work Request message to them. Clients will accept a
Work Request depending on user preferences (for example, users can set their device
to only participate in FL if charging and connected to Wi-Fi). All accepting clients
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then send an Accept message to the server (Step 2). The server sends the global
model (and any associated optimization parameters) to all accepting clients, who
augment their copy of the global model with private patches (Step 3). Clients then
perform local training using their own data, creating a different model. Clients save
the patch layers from their new model locally, and upload their non-private model
parameters to the server (Step 4).

The server waits for clients to finish training and upload their models (Step
5). It can either wait for a maximum time limit, or for a given fraction of clients
to upload before continuing, depending on the server preferences. After this, the
server will aggregate all received models to produce a single global model (Step 6)
which is saved on the server, before starting a new round.

MTFL therefore offloads the vast majority of computation to client devices, who
perform the actual model training. It preserves users’ data-privacy more strongly
than FedAvg and other personalised-FL algorithms: not only is user data not up-
loaded, but key parts of their local models are not uploaded. The framework also
accounts for client stragglers with its round time/uploading client fraction limit.
Moreover, MTFL utilises patch layers to improve local model performance on indi-
vidual users’ non-IID datasets, making MTFL more personalised.

Figure 4.1: Operation of the MTFL algorithm in Edge Computing. Training is
performed in rounds until a termination condition is met. Step 1: the server selects
a subset of clients from its database to participate in the round, and sends a work
request to them. Step 2: clients reply with an accept message depending on physical
state and local preferences. Step 3: clients download the global model (and any
optimisation parameters) from the server, and update their copy of the global model
with private patches (in this work, we use BN layers as patches). Step 4: clients
perform local training, before saving their personal patches for the next round. Step
5: the server waits for C fraction of clients to upload their non-private model and
optimiser values, or until a time limit. Step 6: the server averages all models, saves
the aggregate, and starts a new round.
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4.1.1 User Model Accuracy and MTFL

In many FL works, such as the original FedAvg paper [24], the authors use a central
IID test-set to measure FL performance. Depending on the FL scenario, this metric
may or may not be desirable. If the intention is to create a single model that has
good performance on IID data, then this method would be suitable. However, in
many FL scenarios, the desire is to create a model that has good performance on
individual user devices. For example, Google have used FedAvg for their GBoard
next-word-prediction software [8]. The objective was to improve the prediction score
for individual users. As users do not typically have non-IID data, a single global
model may display good performance for some users, and worse performance for
others.

Figure 4.2: Example composition of a DNN model used in MTFL. Each client’s
model consists of shared global parameters (Ω1−Ω4) for Convolutional (Conv) and
Fully-Connected (FC) layers, and private Batch-Normalization (BN) patch layers
(Pk1 , Pk2 , Pk3).

Instead, User model Accuracy (UA) can be used as an alternative metric of FL
performance. UA is the accuracy on a client using a local test-set. This test-set
for each client should be drawn from a similar distribution as its training data. In
this chapter experiments are performed on classification problems, but UA could be
altered for different metrics (e.g. error, recall).

In FL, user data is often non-IID, so users could be considered as having different
but related learning tasks. It is possible for an FL scheme to achieve good global-
model accuracy, but poor UA, as the aggregate model may perform poorly on some
clients’ datasets (especially if they have a small number of local samples, so are
weighted less in the FedAvg averaging step). The MTFL algorithm that allows
clients to build different models while still benefiting from FL, in order to improve
the average UA. Mudrakarta et al. [93] previously shown that adding small per-task
‘patch’ layers to DNNs improved their performance in MTL scenarios. Patches are
therefore a good candidate for training personalised models for clients.

In FL, the aim is to minimise the following objective function:
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FFL =
K∑
k=1

nk

n
ℓk(Ω), (4.1)

where K is the total number of clients, nk is the number of samples on client k, n
is the total number of samples across all clients, ℓk is the loss function on client k,
and Ω is the set of global model parameters. Adding unique client patches to the
FL model changes the objective function of MTFL to:

FMTFL =
K∑
k=1

nk

n
ℓk(Mk), (4.2)

Mk = (Ω1 · · ·Ωi1 , Pk1 ,Ωi1+1 · · ·Ωim , Pkm ,Ωim+1 · · ·Ωj), (4.3)

whereMk is the patched model on client k, composed of Federated model parame-
ters Ω1 · · ·Ωj (j being the total number of Federated layers) and patch parameters
Pk1 · · ·Pkm (m being the total number of local patches, {i} being the set of indexes
of the patch parameters) unique to client k. Fig. 2 shows an example composition
of a DNN model used in MTFL.

MTFL is a general algorithm for incorporating MTL into FL. Different optimi-
sation strategies (including FedAvg-Adam as described in Section 4.1.3) can be used
within MTFL, and this chapter later shows that MTFL can substantially reduce the
number of rounds to reach a target UA regardless of the optimisation strategy used.

Algorithm 5: Multi-Task Federated Learning (MTFL)

1 input: initial global model Ω and optimiser V , patchIdxs
2 for round r = 1 to R do
3 select round clients Cr
4 for client c ∈ Cr in parallel do
5 download global modelMk ← Ω
6 download optimiser values VK ← V
7 for i ∈ patchIdxs do
8 apply local patchMk,i ← Pk,i, Vk,i ← Wk,i

9 end
10 for batch b drawn from local data Dk do
11 Mk, Vk ← LocalUpdate(Mk, Vk, b)
12 end
13 for i ∈ patchIdxs do
14 save local patch Pk,i ←Mk,i,Wk,i ← Vk,i

15 end
16 for i /∈ patchIdxs do
17 uploadMk,i, Vk,i to server
18 end

19 end

20 for i /∈ patchIdxs do
21 Ωi ← GlobalModelUpdate(Ωi, {Mk,i}k∈Sr)
22 Vi ← GlobalOptimUpdate(Vi, {Vk,i}k∈Sr)

23 end

24 end

As shown in Algorithm 5, MTFL runs rounds of communication until a given termi-
nation criteria (such as number of rounds R or target UA) is met (Line 2). At each
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round, a subset Cr of clients are selected to participate from the set of all clients
(Line 3). These clients download the global model Ω, which is a tuple of model
parameters, and the global optimiser V , if used (Lines 5-6). The clients then update
their copy of the global model and optimiser with their private patch layers (Lines
7-9), where the ‘patchIdxs’ variable contains the indexes of patch layer placement in
the DNN. Clients perform training using their now-personalised copy of the global
model and optimiser on their local data (Line 10). Depending on the choice of op-
timisation strategy to be used within MTFL, the LocalUpdate function represents
local training of the model. For FedAvg, LocalUpdate is simply minibatch-SGD.
We discuss this, and the proposed FedAvg-Adam optimisation strategy, in Section
4.1.3. After local training, the updated client patches are saved (Lines 11-13), and
the non-patch layers and optimiser values are uploaded to the server (Lines 14-16).

At the end of the round, the server makes a new global model and optimiser
according to the GlobalModelUpdate and GlobalOptimUpdate functions (Lines 18-
20). These functions are again dependent on the optimisation strategy used, and
are discussed further in Section 4.1.3. FedAvg for example uses a weighted average
of client models for GlobalModelUpdate. The updated global model marks the end
of the round and a new round is begun.

The total per-round computation complexity of MTFL scales withO(|Cr|), where
O(|Cr|) is the number of clients participating per round. The computation performed
by each client is independent of the total number of clients. As clients perform local
computation in parallel, MTFL (like FedAvg) is eminently scalable. Scalability is
important in FL as real-world deployments are expected to have huge numbers of
low-powered clients [94, 8]. The global model and optimiser updates (Lines 20-
23 in Algorithm 1) depend on the optimisation strategy used. For FedAvg and
FedAvg-Adam, GlobalModelUpdate is essentially map-reduce (averaging after local
training) - also O(|Cr|). For FedAdam, the Adam step following the map-reduce in
GlobalOptimUpdate is not dependent on the number of clients (only on the DNN
architecture).

There are numerous works investigating FL in the Peer-To-Peer (p2p) setting
[95], which is beyond the scope of this chapter. Simple p2p FL algorithms involve
sending all client models to all participating peers for decentralised aggregation. Ex-
tension of MTFL to these schemes is trivial: peers would simply just send/aggregate
the non-private layers. More sophisticated p2p FL algorithms may require more
complex ways of incorporating private layers – an interesting direction we leave for
future works.

Mudrakarta et al. [93] showed that Batch Normalisation (BN) layers [96] can act
as model patches for MTL in the centralised setting. We show later that BN layers
work well as patches in MTFL, considering that they are very lightweight in terms
of number of parameters. BN layers are given by:

x̂i =
zi − E(zi)√
Var(zi) + ϵ

,

BN(x̂i) = γix̂i + βi,

(4.4)

where E(zi) and Var(zi) are the mean and variance of a neuron’s activations (zi,
post-nonlinearity) across a minibatch, and γi and βi are parameters learned during
training. BN layers track a weighted moving average of E(zi) and Var(zi) during
training: µi and σ2

i , for use at inference time. Section 4.2.2 investigates the benefit
of keeping statistics µ, σ and/or trainable parameters γ, β as part of private patch
layers.
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BN layers are suitable for personalisation within MTFL because: 1) they show
excellent personalisation performance and 2) the storage cost of BN parameters is
very small (< 1% of total model size for the tested model architectures). Mudrakarta
et al. [93] also investigated using depthwise-convolutional patches for centralised
MTL. Any model layers could in principle be kept private during MTFL, however,
there is an inherent trade-off between the number of parameters kept private and
the ability of the global model to converge.

4.1.2 Effect of BN Patches on Inference

Figure 4.3: Left: Federated Learning (FL) results in an accuracy curve where the
UA decreases after aggregations and increases during local training, compared with
the smoother accuracy curve when training independently (Ind). Right: Patch BN-
layers help bring the distribution in outputs for neuron i closer to the pre-aggregation
distributions.

To understand the impact that BN-patch layers have on UA, the change in internal
DNN activations over a client’s local test-set immediately before and immediately
after the FL aggregation step is considered.

As illustrated in Figure 4.3 (left), UA typically drops after the aggregation step
in during FedAvg. This is because the model has been tuned on the local training
set for several epochs, and suddenly has its model weights replaced by the Federated
weights, which are unlikely to have better test performance than the pre-aggregation
model. This idea is further examined in [56] and demonstrated later experimentally
in Section 4.2.3. Consider a simple DNN consisting of dense layers followed by BN
and then nonlinearities. The vector of first-layer neuron activations over the client’s
test-set (X) from applying weights and biases (W0, b0), can be modelled as a normal
distribution:

zi ≜ [W0X + b0]i,

zi ∼ N(E[zi], V ar[zi]),
(4.5)

During local training, the client’s model has been adapted to the local dataset, and
the BN-layer statistics used for inference (µ, σ2) have been updated from the layer
activations. Assuming, after local training (and before aggregation), µi ≈ E[zi], and
σ2
i ≈ V ar[zi], then the BN-layer (ignoring ϵ) computes:
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x̂i ≜
zi − µi

σi

,

x̂i ∼ N(0, 1),

BN(x̂i) ∼ N(βi, γ
2
i ),

(4.6)

where βi, γ
2
i are the learned BN parameters. If the client is participating in FL or

MTFL, then the model parameters W0, b0 are updated after downloading the global
model with federated values: W 0, b0. The activations of the first layer are then:

zi ≜ [W 0X + b0]i,

zi ∼ N(E[zi],Var[zi]),
(4.7)

Defining the difference in mean and variance between pre- and post-aggregation
activations, ∆µi = E[zi] − E[zi] and ∆σ2

i = Var[zi] − Var[zi], the output from a
BN-patch layer as part of MTFL (which maintains µ, σ, β, γ after aggregation) is:

ˆ̄xi ∼ N

(
∆µi

σi

, 1 +
∆σ2

i

σ2
i

)
,

BN(ˆ̄xi) ∼ N

(
γ
∆µi

σi

+ βi, γ
2
i

(
1 +

∆σ2
i

σ2
i

))
.

(4.8)

If the BN layer is not a patch layer (i.e., the client is participating in FL, with
federated BN values µ̄, σ̄, β̄, γ̄), the output of the BN layer is:

ˆ̄xi ∼ N

(
µi +∆µi − µ̄i

σ̄i

,
σ2
i +∆σ2

i

σ̄2
i

)
,

BN(ˆ̄xi) ∼ N

(
γ̄
µi +∆µi − µ̄i

σ̄i

+ β̄i, γ̄
2
i

σ2
i +∆σ2

i

σ̄2
i

)
.

(4.9)

It can be posited that using BN-patch layers in MTFL constrains neuron activations
to be closer to what they were before the aggregation step, compared to non-patch
BN layers as part of FL, as illustrated in Figure 4.3 (right). I.e., the difference in
means and variances pre- and post-aggregation using MTFL is smaller than when
using FL: ∣∣∣∣γ∆µi

σi

∣∣∣∣ < ∣∣∣∣βi − γ̄
µi +∆µi − µ̄i

σ̄i

− β̄i

∣∣∣∣ ,∣∣∣∣γ2
i

∆σ2
i

σ2
i

∣∣∣∣ < ∣∣∣∣γ2
i − γ̄2

i

σ2
i +∆σ2

i

σ̄2
i

∣∣∣∣ . (4.10)

Assuming the above inequality holds, it is easy to see how the values propagated
through the network after the first layer are closer to the pre-aggregation values
when using BN-patches as opposed to federated BN layers. If BN-patches are added
throughout the network, the intermediate DNN values will be regularly ‘constrained’
to be closer to the pre-aggregation values, resulting ultimately in network outputs
closer to the pre-aggregation outputs.

Inspecting (4.8), if ∆µi and ∆σ2
i for neuron i are large, then the output dis-

tribution of the neuron after the BN-patch layer (BN(ˆ̄x)i) over the test-set will be
quite different than BN(x̂)i. The BN-patch layer will therefore provide little benefit
over a federated BN layer, as the left hand sides of the inequalities in (4.10) are
unlikely to be much smaller than the right hand sides. Large differences in pre-
and post-aggregated model parameters are seen during the early stages of training,
when gradients are large and client models diverge more during local training. This
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therefore implies that MTFL has less benefit during the early stages of training, and
its benefit increases during training as gradient magnitudes decrease (as shown in
Figure 4.4).

4.1.3 Federated Optimisation within MTFL

As shown in Algorithm 5, MTFL applies private patch layers for each client, and
trains them alongside the federated (non-private) layers during LocalUpdate. At the
end of each round, the server aggregates the uploaded federated layers from clients
(and any distributed optimiser values used), producing a new global model using
the GlobalModelUpdate function. If distributed adaptive-optimisation is used, then
the GlobalOptimUpdate function will also be called. Table 4.1 details different FL
training algorithms as characterised by their implementations of these functions.

In FedAvg, LocalUpdate is simply minibatch-SGD, and GlobalModelUpdate pro-
duces the new global model as a weighted (by number of local samples) average of
uploaded client models. FedAvg uses no adaptive optimisation, so the variable V in
Algorithm 5 is empty, and GlobalOptimUpdate performs no function. For FedAdam
[9, 25], clients also perform SGD during LocalUpdate. However, during GlobalMod-
elUpdate, the server takes the difference (∆r) between the previous global model
and the average uploaded client model. The server treats ∆r as a ‘psuedogradient’,
and uses a set of 1st and 2nd moment values stored on the server to update the global
model using an Adam-like update step. Clients do not use distributed adaptive opti-
misation in FedAdam, so V is also a tuple of empty values and GlobalOptimUpdate
performs no function.

This chapter proposes using adaptive optimisation (namely, Adam) as the dis-
tributed optimisation strategy. This strategy is denoted as FedAvg-Adam. In
FedAvg-Adam, clients share a global set of Adam 1st and 2nd moments, stored
in the V variable in Algorithm 5. Clients store private optimiser values in their
patch layers (Wk), as convergence performance is better when keeping private op-
timiser values for patches. During LocalUpdate clients perform Adam SGD, and
the federated model layers and Adam values are uploaded by clients at the end of
the round. To produce a new global model, the server averages the client models
in GlobalModelUpdate and averages the Adam moments in GlobalOptimUpdate.
FedAvg-Adam therefore has a 3× communication cost per round compared to Fe-
dAvg or FedAdam. However, in many FL scenarios, the major concern is reducing
the number of communication rounds required for the model to converge. Section
4.2.2 shows that FedAvg-Adam considerably improves the convergence speed of FL
and MTFL.

Table 4.1: LocalUpdate, GlobalModelUpdate and GlobalOptimUpdate used by the
FedAvg [24], FedAdam [9] [25] and FedAvg-Adam FL training strategies. All of
these strategies can be used within MTFL.

Optimisation
LocalUpdate

GlobalModel GlobalOptim
Strategy Update Update

FedAvg SGD Average -
FedAdam SGD Adam -

FedAvg-Adam Adam Average Average

For the rest of this chapter, iterative FL schemes that do not keep any private model
patches as are referred to as ‘FL’, with the optimisation strategy in brackets, e.g.
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FL(FedAvg). If clients keep private model patches, the scheme is referred to as
‘MTFL’, again with the optimisation strategy in brackets, e.g. MTFL(FedAvg).

4.2 Experiments

This section first gives details of the datasets, models and data partitioning schemes
used for all the experiments. It then presents extensive experiments analysing the
impact that MTFL has on the number of rounds taken to reach a target UA. These
experiments also examine which BN values, when kept private, give the best per-
formance, and compare FL and MTFL with different optimisation strategies. After
that, the reason behind why different private BN values have different impacts on
training is examined, and MTFL is compared against other state-of-the-art person-
alised FL algorithms. Finally, the runtime of MTFL(FedAvg-Adam) is evaluated
on an MEC-like testbed.

4.2.1 Datasets and Models

Experiments are conducted using two image-classification datasets: MNIST [90] and
CIFAR10 [91], and two DNN architectures. The 2NN and CNN models used are the
same as those described in Section 3.3.1.

Different numbers of clients W , client participation rates C and optimisation
strategies, are tested for non-IID clients. To produce non-IID client data, the pop-
ular approach from [24] is used: order the training and testing data by label, split
each into 2W shards, and assign each client two shards at random. Using the same
assignment indexes for the testing data means that the classes in each client’s train-
ing set are the same as those in their test set. This splitting produces a strongly
non-IID distribution across clients. All results are an average over 5 trials with
different random seeds.

4.2.2 Patch Layers in FL

Setup - First, the number of rounds needed to reach a target average UA (97%
for MNIST, 65% for CIFAR10) for MTFL and FL are measured. In FL, no model
parameters are kept private (i.e. there are no patches), whereas in MTFL, some
model parameters are kept private. For the MTFL columns in Tables 2 and 3, the
BN-layer statistics (µ, σ) and/or trainable parameters (γ, β) private as part of the
patch layers.

For these results, the number of local epochs used was E = 1 and the learning
rate for every scenario was tuned such that the target was reached in the fewest
rounds. For FedAvg and FedAvg-Adam, only one hyperparameter was tuned for
each scenario, but FedAdam requires tuning both client and server learning rates.
Entries with ‘X’ in Tables 2 and 3 denote cases that could not reach the target
within 500 communication rounds.

In Table 4.3, the robustness of MTFL to clients with noisy training data is
demonstrated. Here, 20% of the clients at random had 0-mean Gaussian noise
added to their training data. The average UA taken for Table 3 was for the non-
noisy clients only, to test how MTFL helps to mitigate the effect of noisy clients
on non-noisy clients. Gaussian noise with standard deviation 3 for MNIST and 0.2
for CIFAR10 was applied (MNIST is a much simpler image classification task than
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CIFAR10, so required more noise to significantly hinder training).

Table 4.2: Communication rounds required to reach target average user accuracies
for different tasks using FL and MTFL (with private statistics µ, σ and/or trained
parameters γ, β), for different numbers of total clients W , client participation rates
C, and optimisation strategies. Cases unable to reach the target UA within 500
rounds are denoted by X. Best results for each scenario (combination of W and C)
given in bold.

MNIST - 2NN

FL MTFL
Private values = None µ, σ, γ, β µ, σ γ, β

Optimisation W = 200 400 200 400 200 400 200 400
Strategy C = 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

FedAvg 99 102 107 110 85 58 101 68 X X X X 29 21 34 26
FedAdam 85 69 88 65 56 37 75 77 109 90 194 262 31 25 31 27

FedAvg-Adam 44 49 40 50 17 41 19 32 131 151 170 198 9 9 10 9

CIFAR10 - CNN

FedAvg 139 138 171 164 49 33 55 36 231 280 258 266 37 24 45 30
FedAdam 105 90 83 80 21 14 22 16 67 45 48 38 24 14 25 16

FedAvg-Adam 57 43 36 31 11 9 14 8 82 79 62 63 10 7 11 8

Results - Table 4.2 shows that for MTFL, when all BN-layer values (µ, σ, γ, β) are
kept private, the number of rounds to reach a target average UA is substantially
lower in almost all scenarios when compared to FL. For example for the CIFAR10
W = 400, C = 1.0 scenario, FL(FedAvg) took 164 rounds to reach the target
average UA, whereas MTFL(FedAvg) with private (µ, σ, γ, β) took only 36 rounds.
However, Tables 2 and 3 show that when keeping only the tracked statistics of
BN patches private, UA is actually harmed. Conversely, MTFL with only private
trainable parameters took even fewer rounds than MTFL will all-private (µ, σ, γ, β).
For the same scenario, MTFL(FedAvg) with private (µ, σ) took 266 rounds, whereas
MTFL(FedAvg) with private (γ, β) took just 30 rounds. The reason behind these
differences is investigated in Section 4.2.3.

MTFL naturally increases the variance of UAs during training, as non-identical
client models to the variance of UAs. However in these experiments, the difference
between the variance difference for FL and MTFL is small: usually less than 1%.

Table 4.3 shows that MTFL also helped to mitigate the impact of noisy clients on
non-noisy clients. With FL, noisy clients prevented the average non-noisy UA from
reaching the target in many scenarios. However, in most cases, MTFL allowed the
non-noisy clients to reach the target average UA in a similar number of rounds than
the corresponding non-noisy scenarios in Table 4.2. For example, for the CIFAR10
W = 400, C = 1.0 scenario, FL(FedAvg) took 250 rounds to reach the target,
however MTFL(FedAvg) with private (γ, β) parameters, took just 28 rounds.

As Table 4.3 displays the rounds required for the non-noisy clients to reach the
target average UA, the improvements shown when using MTFL may be due to the
non-noisy clients being more ‘decoupled’ from the noisy ones. As they do not share
all model parameters, the harmful effect of receiving a global model that has been
harmed by the participation of noisy clients has been reduced, allowing them to
reach higher accuracies, faster.
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In most scenarios, the FedAvg-Adam optimisation strategy reached the target
average UA in the fewest rounds, regardless of whether FL or MTFL is used. Taking
the same CIFAR10 scenario in Table 2, FL(FedAvg) took 164 rounds, FL(FedAdam)
80 rounds, and FL(FedAvg-Adam) only 31 rounds to reach the target. Similarly,
MTFL(FedAvg) took 36 rounds, MTFL(FedAdam) 16 rounds and MTFL(FedAvg-
Adam) just 8 rounds with private (µ, σ, γ, β).

Table 4.3: Communication rounds required to reach target average user accuracies
(of non-noisy clients) for different tasks using FL and MTFL (with private statistics
µ, σ and/or trained parameters γ, β), when 20% of clients have noisy training data,
for different numbers of total clients W , client participation rates C, and optimisa-
tion strategies. Cases unable to reach the target UA within 500 rounds are denoted
by X. Best results for each scenario (combination of W and C) given in bold.

MNIST - 2NN

FL MTFL
Private values = None µ, σ, γ, β µ, σ γ, β

Optimisation W = 200 400 200 400 200 400 200 400
Strategy C = 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

FedAvg 276 X 290 X 115 76 144 144 85 58 102 68 50 36 65 48
FedAdam X X X X 76 47 110 89 56 37 75 77 43 33 46 53

FedAvg-Adam 133 260 191 X 20 16 24 27 17 41 19 32 12 8 15 40

CIFAR10 - CNN

FedAvg 148 208 202 250 47 32 52 35 239 186 260 88 36 24 43 28
FedAdam 159 91 92 93 21 14 21 15 74 49 51 42 34 16 21 14

FedAvg-Adam 193 X X X 14 10 16 9 103 111 67 74 12 8 13 9

4.2.3 Training and Testing Results Using MTFL

Setup - To investigate why MTFL with BN patches using private (µ, σ) and/or
private (γ, β) give such different results (as shown in Tables 4.2 and 4.3), we plotted
training and testing UA during one scenario from Table 4.2: namely MNIST with
W = 200, C = 1.0 for FL(FedAvg) and MTFL(FedAvg). The algorithms were run
for 600 communication rounds, where clients performed 10 steps of local training
each round, and the average training and testing UA is calculated for every local
step. The graphs therefore present 600 × 10 = 6000 total steps. Measuring in this
allows the train/test accuracy relationship, the impact that averaging has during
training, and the effect on training and testing with different private BN values to
be presented together.

Results - Figure 4.4 shows the (smoothed) training and testing UAs of the different
combinations of BN layer statistics/parameters for the MNIST problem. Note that
because the lines are smoothed for presentation, the steps where the curves reach the
target accuracies may not correspond to the values in Table 4.2. In Figure 4.4 (a),
the training curves for FL(FedAvg) and MTFL(FedAvg) with private (µ, σ) are the
same: this is because the BN statistics are only used at test-time and do not influence
training. The test accuracy for private (µ, σ) is lower than FedAvg, mirroring the
results in Tables 4.2 and 4.3. The lower test accuracy may be due to mismatch
in BN values: γ and β have been averaged, so output a different distribution than
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these private statistics have been tracking, thus harming the ability of the model.
This seems to be supported by Figure 4.4 (c). When keeping both private (µ, σ)
and (γ, β) there is no substantial performance drop when compared to Figure 4.4
(b), when only (γ, β) are kept private.

Figure 4.4: Average training (faint) and testing (solid) User Accuracy (UA) curves
for every step of local SGD on the MNIST, W = 200, C = 1.0 scenario, using
FL(FedAvg) (red), and MTFL(FedAvg) (blue). Each plot compares keeping dif-
ferent values within the BN layers of MTFL private: either statistics (µ, σ) and/or
trainable parameters (γ, β), to FL. All curves have been smoothed with an averaging
kernel for presentation, except the inset of plot (b), which shows the cyclic drops in
accuracy due to model averaging characteristic of FL.

The results also show that keeping private (µ, σ) significantly increases the rate at
which the training accuracy can improve - see faint lines in Figures 4.4 (b) and (c).
Previous authors [24] have commented that FedAvg can work as a kind of regu-
larisation for client models. When clients have small local datasets, their training
error would quickly reach near-0 as it is easy for independently-trained models to
overfit. However, they would have poor generalisation performance (which is the
motivation behind FL). Keeping some model parameters private (here µ and σ from
the BN layers) seems to strike a balance between fast convergence (which would be
achieved by a fully-private model) and regularisation due to FL (which is achieved
by averaging client model parameters).

4.2.4 Personalised FL Comparison

Setup - The personalisation performance of MTFL(FedAvg) is now compared with
two other state-of-the-art Personalised FL algorithms: Per-FedAvg [60] and pFedMe
[63], and FL(FedAvg) (where no model layers are private) [24]. The hyperparam-
eters of each algorithm were tuned to achieve the maximum average UA within
200 communication rounds. MTFL(FedAvg) with private (γ, β) is presented rather
than MTFL(FedAvg-Adam), as the personalisation algorithms should be compared,
not the benefit of local adaptive optimisation. The amount of local computation is
fixed to be roughly constant across the algorithms: E = 1 epoch of local train-
ing is performed for MTFL(FedAvg) and FL(FedAvg). For MNIST, using a batch
size of 20, this is equivalent to 15 and 8 steps of local SGD for W = 200 and
W = 400, respectively. For CIFAR10, this is equivalent to 13 and 7 steps of local
SGD for W = 200 and W = 400, respectively. Per-FedAvg uses the value K for
local iterations, so this is fixed to the same number of steps for FL and MTFL.
pFedMe has two inner-loops; the number of outer-loops R is set to the same value
as K from Per-FedAvg, and the number of inner-loops is fixed to 1 for all scenarios.
This setup results in the same number of local steps performed for each algorithm,
however the cost per local step of Per-FedAvg and pFedMe is considerably higher
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than FL(FedAvg) and MTFL(FedAvg) (due to different optimisation objectives).
Note also that MTFL(FedAvg) and FL(FedAvg) have only one hyperparameter, η
to tune, whereas Per-FedAvg and pFedMe both have two. This makes the hyperpa-
rameter search for Per-FedAvg and pFedMe considerably more costly.

Figure 4.5: Per-round testing User Accuracy (UA) of four FL algorithms:
FL(FedAvg) [24], MTFL(FedAvg) (using private γ, β), pFedMe [63] and Per-FedAvg
[60]. Experiments are conducted on MNIST and CIFAR10, with data divided in a
non-IID fashion between W = 200 or 400 clients, and C = 0.5 or 1.0 fraction of
users participating per round. Shaded regions show 95% confidence intervals per
round over 5 trials with different random seeds.

Results - The plots in Figure 4.5 show that MTFL(FedAvg) was able to achieve a
higher UA compared to the other schemes in all tested scenarios. Per-FedAvg and
pFedMe were able to reach a higher UA than FL(FedAvg) in the W = 200 cases for
MNIST, but were actually slower in the W = 400 cases. All the personalised-FL
schemes were able to achieve good UA faster than FL(FedAvg) for the CIFAR10
experiments, however. This is likely due to the CIFAR10 task being a much harder
one than MNIST. It is interesting to note that Per-FedAvg appeared to overfit
quickly on this task. Also worthy of note is the fact that MTFL(FedAvg) was
able to beat Per-FedAvg and pFedMe whilst also having one less hyperparameter
to tune, and being computationally cheaper. MTFL provides the extra benefit to
privacy of keeping some model parameters private (pFedMe and Per-FedAvg both
upload entire models).

4.2.5 Testbed Results

Setup - To test MTFL in a more realistic MEC environment, a testbed was set up
consisting of 10 clients: 5 Raspberry Pi (RPi) 2B’s and 5 RPi 3B’s, connected over
Wi-Fi to a server, in order to emulate a low-powered, heterogeneous set of clients.
The RPi’s used Tensorflow to perform local training. The server did not perform
any model testing, only receiving, averaging and distributing models. The average
time over 10 rounds was taken, along with the percentage of time spent per round
in downloading models from the server, local training, uploading models and work
performed on the server.

Results - Table 4.4 shows the average time taken per round for FL(FedAvg),
MTFL(FedAvg-Adam), and Independent learning, when one local epoch of training
is performed. Each round is also split by time spent for each task within the round.
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As would be expected, Independent learning took the least time per round as clients
did not have to download or upload any models. FL(FedAvg) took longer per round
due to uploading and downloading, and MTFL(FedAvg-Adam) took the longest per
round due to the increased number of weights that FedAvg-Adam communicates
over FedAvg, indicated by the higher percentage of round time spent downloading
and uploading models. However, the increase in communication time is likely to be
outweighed in most cases by the far fewer rounds required to reach a target average
UA (see Tables 2-3).

The majority of the round times were spent in local training rather than in
communication for FL or MTFL. This is due to the low computing power of the
RPi’s and the high computational cost of training DNN models. In real-world FL
scenarios, the round times are influenced by the compute abilities of client devices,
the computational cost of the models used, and the communication conditions.

Table 4.4: Average time per round of different learning schemes on the MNIST and
CIFAR10 datasets, and percentage of time spent downloading the model (Down),
training the model (Client), uploading the model (Up), and model aggregation and
distribution on the server (Server) took.

MNIST - 2NN
Learning Round Percentage of Round Time (%)
Scheme Time (s) Down Client Up Server

FL(FedAvg) 30 5 88 6 1
MTFL(FedAvg-Adam) 38 11 76 12 1

Independent 29 0 100 0 0

CIFAR10 - CNN

FL(FedAvg) 108 5 86 5 4
MTFL(FedAvg-Adam) 136 11 74 12 3

Independent 100 0 100 0 0

4.3 Chapter Summary

A Multi-Task Federated Learning (MTFL) algorithm was proposed that builds on
iterative FL algorithms by introducing private patch layers into the global model.
Private layers allow users to have personalised models and significantly improves
average User model Accuracy (UA). The use of BN layers as patches in MTFL
was analysed, providing insight into the source of their benefit. MTFL is a general
framework that requires a specific FL optimisation strategy, and the FedAvg-Adam
optimisation scheme (which uses Adam on clients) was also proposed. Experiments
using MNIST and CIFAR10 showed that MTFL with FedAvg significantly reduces
the number of rounds to reach a target average UA compared to FL, by up to 5×.
Further experiments show that MTFL with FedAvg-Adam reduces this number
even further, by up to 3×. These experiments also indicate that using private
BN trainable parameters (γ, β) instead of statistics (µ, σ) in model patches gives
better convergence speed. Comparison to other state-of-the-art personalised FL
algorithms show that MTFL is able to achieve the highest average UA given limited
communication rounds. Lastly, experiments using a MEC-like testbed showed that
the communication overhead of MTFL with FedAvg-Adam is outweighed by its
significant benefits over FL with FedAvg in terms of UA and convergence speed.



Chapter 5

Faster Federated Learning with
Decaying Number of Local SGD
Steps

As shown in Chapter 2, FedAvg can improve its communication-efficiency by per-
forming more steps of SGD on clients between rounds of model averaging [24]. Im-
proving the communication-efficiency of FL is highly important due to the low-
bandwidth connections of devices at the network edge, leading to very long training
times. However real-world client data is highly heterogeneous, which has been ex-
tensively shown to slow model convergence. Furthermore, when K > 1 steps of
SGD are performed on clients per round the final performance of the FL model is
harmed due to client-drift [26], and the influence of local compute time on the total
training time becomes more significant [97]. This chapter proposes decaying K as
training progresses, which can jointly improve the final performance of the global
model whilst reducing the wall-clock time to reach a given model error and the total
computational cost of training, compared to using a fixed value of K throughout.
FedAvg’s convergence on strongly-convex objectives is analysed with a decaying
value of K, providing novel insights into the convergence properties of this scheme,
and motivating three practical decay schedules for K based respectively on the com-
munication round number, the relative model error, and the validation performance.
Thorough experiments are then performed on four benchmark FL datasets (FEM-
NIST, CIFAR100, Sentiment140, Shakespeare) using realistic edge bandwidth and
computation-time values, which show the benefits of the K-decay schedules in terms
of convergence time, computational cost, and generalisation performance.

5.1 FedAvg with Decaying Local Steps

This section formally describes the FL optimisation problem, theoretically analyses
the convergence of FedAvg with a decaying number of local SGD steps, and present
theoretically-motivated schedules based upon the analysis.

5.1.1 Problem Setup

In FL there are a large number of clients that each possess a small number of local
samples. The objective is to train model x to minimise the expected loss over all

53
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samples and over all clients, namely:

F (x) =
C∑
c=1

pcfc(x) =
C∑
c=1

pc

[
nc∑
n=1

f(x, ξc,n)

]
, (5.1)

where C is the total number of FL clients, pc is the fraction of all samples owned
by client c (such that

∑C
c=1 pc = 1), f is the loss function used on clients, and

{ξc,1, · · · , ξc,nc} represent the training samples owned by client c.
To minimise F (x) in a communication-efficient manner as discussed in Section

2.3, FedAvg (presented in Algorithm 1) performs multiple steps of SGD on each
client between model averaging, as discussed in Section 2.3. The updates to clients
models within the FedAvg process can be viewed from the perspective of communi-
cation rounds (as shown in most FL works and presented in Algorithm 1), but can
also be reformulated in terms of a continuous sequence of SGD steps on each client,
with updates periodically being replaced by averaging. Suppose the client model it-
erations are reindexed from xc

r,k to xc
t where t is the global iteration, t ∈ {1, · · · , T}.

Note that
∑

r{Kr} = T . For a given FL client i and local SGD step t the update
to the local model xi

t can be given as:

yi
t+1 = xi

t − ηt∇f(xi
t, ξ

i
t),

xi
t+1 =

{∑
c∈Ct pcy

c
t+1 if t ∈ I,

yi
t+1 otherwise,

(5.2)

where I is the set of indexes denoting the iterations at which model communication
occurs (which will be equal to the cumulative sum of {Kr}). This formulation states
that clients not participating in the current round compute and then discard some
local updates, which is not true in reality but makes analysis more amenable and is
theoretically equivalent to FedAvg as presented in Algorithm 1. The average client
model at any given iteration t using (2) is defined as: x̄t =

∑C
c=1 pcx

t
c.

5.1.2 Runtime Model of FedAvg

Inspecting Algorithm 1 shows that the nominal wall-clock time for each client c to
complete a communication round r is:

W c
r =
|x|
Dc

+Krβ
c +
|x|
U c

, (5.3)

where |x| is the size of the FL model (in megabits), U c and Dc are the upload and
download bandwidth of client c in megabits per second, and βc is the per-minibatch
computation time of client c. The nominal time to complete a round for client c is
therefore the sum of the download, local compute, and upload times. Furthermore,
as FL clients are usually connected wirelessly at the network edge and geographically
dispersed, the runtime model assumes that U c and Dc are independent of the total
number of participating clients. For wireless connections, typically Dc >> U c [18].

For a single round, the server must wait for the slowest client (straggler) to send
its update. Therefore the time taken to complete a single round Wr is:

Wr = max
c∈Cr
{W c

r } . (5.4)

To simplify the FedAvg runtime model, the runtime model assumes that all clients
have the same upload bandwidth, download bandwidth, and per-minibatch compute
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time. That is, U c = U , Dc = C, and βc = β, ∀ c. Using these simplifications, the
total runtime W for R communication rounds of FedAvg are:

W =
R∑

r=1

Wr = R

(
|x|
D

+
|x|
U

)
+ β

R∑
r=1

Kr. (5.5)

Previous works consider a fixed number of local steps during training: Kr = K, ∀ r.
There are extensive works showing that a larger K can lead to an increased con-
vergence rate of the global model [24, 30]. However, large K means that fewer
communication rounds can be completed in a given timeframe. Previous works have
shown that due to the low computational power of FL clients, the value of β can
dominate the per-round runtime [97]. Therefore by decaying Kr during training, a
balance between fast convergence and higher round-completion rate can be achieved,
which is the primary focus of this chapter.

5.1.3 Convergence Analysis

A convergence analysis of FedAvg using a decaying number of local steps Kr and
constant learning rate η is now presented for strongly-convex objective functions.
The following typical assumptions for theoretical analysis within FL are made.

Assumption 1: Client objective functions are L-smooth: fc(x) ≤ fc(y) + (x −
y)⊤∇fc(y) + L

2
∥x − y∥2. As F (x) is a convex combination of fc, then it is also

L-smooth.

Assumption 2: Client objective functions are µ-strongly convex: fc(x) ≥ fc(y) +
(x− y)⊤∇fc(y) + µ

2
∥x− y∥2, with minima f ∗

c = min fc. As F (x) is a convex com-
bination of fc, then it is also µ-strongly convex.

Assumption 3: For uniformly sampled data points ξck on client c, the variance of
stochastic gradients on c are bounded by: E∥∇fc(x; ξck)−∇fc(x)∥2 ≤ σ2

c .

Assumption 4: The expected squared norm of stochastic gradients on all clients
is bounded: E∥∇fc(x); ξck∥2 ≤ G2, ∀c.

As per [28], the extent of non-IID client data is quantified with: Γ = F ∗−
∑C

c=1 pcf
∗
c ,

where F ∗ is the minimum point of F (x). Γ ̸= 0 when the minimiser of the global
objectives is not the same as the average minimiser of client objectives. Γ = 0 if the
FL data is IID over the clients.

Theorem 5.1: Let Assumptions 1-4 hold, and define κ = L/µ. The expected min-
imum gradient norm of FedAvg using a monotonically decreasing number of local
SGD steps Kr and fixed stepsize η ≤ 1/4L after T total iterations is given by:

min
t
{E
[
∥∇F (x̄t)∥2

]
} ≤ 2κ(κF (x̄0)− F ∗)

ηT

+ ηκL

[
C∑
c=1

p2cσ
2
c + 6LΓ +

(
8 +

4

N

)
G2

∑R
r=1 K

3
r∑R

r=1Kr

]
. (5.6)

Proof: See Appendix A.2.
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Theorem 5.1 shows that with a fixed learning rate and decreasing Kr, FedAvg con-
verges with O(1/T)+O(η). This result reflects the classical result of centralised SGD
with a fixed learning rate (albeit with different constants due to non-IID clients and
Kr > 1). Previous works have shown (like in centralised SGD) the requirement for
η to be decayed to allow FedAvg to converge arbitrarily close to the global minima
[26, 28]. However this chapter is concerned with the runtime and computational sav-
ings available when decaying Kr, so does not re-prove the already-covered decaying
η result.

The second term of Theorem 5.1 shows that using Kr > 1 harms the convergence
of FedAvg in terms of total number of iterations T . This is the case for all state-
of-the-art analyses save for quadratic objectives [76]. However in FL minimising
the number of communication rounds/quantity of communicated data alongside the
total number of iterations (both of which affect the runtime of FedAvg) is highly
important. When using a decreasing η, previous analyses have shown that K > 1
acts to reduce the variance introduced by client stochastic gradients (the

∑C
c=1 p

2
cσ

2
c

term) [26, 28]. Dividing (6) by Kr (to achieve the convergence result in terms of
total number of rounds) shows the same benefit in the above analysis. It is observed
empirically that Kr > 1 helps to reduce the variance of client updates even with
a fixed η. Similarly a large number of clients participating per round (N) helps
to reduce the variance that is introduced by performing Kr > 1 steps. FedAvg
deployments can therefore benefit more from sampling a larger number of clients
per round N when the number of local steps Kr is large.

This chapter’s formulation of FedAvg and its analysis assumes a constant par-
ticipation rate, but in real-world FL the round participation rate varies [8]. Setting
Kr to a large value makes more progress in a round, but fewer clients will be able
to complete the round in a given timeframe. This poses an interesting trade-off
between Kr and N , which could be a potential avenue for future research.

5.1.4 Optimal Values of Kr and ηr

When using a fixed number of local steps Kr = K and communication rounds R,
the total number of FedAvg iterations is T = KR. Substituting this into (5.5) gives
the total runtime W of T iterations of FedAvg:

W =
T

K

[
|x|
D

+
|x|
U

+ βK

]
. (5.7)

Setting Kr = K and substituting (5.7) into Theorem 5.1 gives the convergence
of FedAvg for fixed K and η in terms of the runtime, rather than the number of
iterations:

min
t
{E
[
∥∇F (x̄t)∥2

]
} ≤ 2κ(κF (x̄0)− F ∗)

ηWK

[
|x|
D

+
|x|
U

+ βK

]
(5.8)

+ ηκL

[
C∑
c=1

p2cσ
2
c + 6LΓ +

(
8 +

4

N

)
G2K2

]
.

The optimal value of K to minimise (5.8) can then be derived for any given point
during the runtime of FedAvg.

Theorem 5.2: Let Assumptions 1-4 hold and define κ = L/µ. For fixed η ≤ 1/4L,
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the optimal number of local SGD steps K to (8) is given by:

K∗ = 3

√
(κF (x̄0)− F ∗)

8η2L (1 + 1/2N)

(|x|/D + |x|/U)

W
. (5.9)

Proof: See Appendix A.3.

Theorem 5.2 shows that the optimal value of K decreases with O(1/ 3√W). Wang and
Joshi [98] investigated variable communication intervals for the Periodic Averaging
SGD (PASGD) algorithm in the datacentre, and found that the optimal interval
decreased with O(1/ 2√W). The optimal value of K decreases slower in FedAvg due
to the looser bound on client divergence between averaging (scaling with K2 rather
than K). As the number of clients participating per round (N) increases, the opti-
mal value of K increases. This is because a higher number of participating clients
decreases the variance in model updates (which is especially significant considering
the non-IID client data).

The relationship between the communication time and computation time is
more complex. In FL, it is typically assumed that the local computation time
is dominated by the communication time due to the low-bandwidth connections to
the coordinating server. Considering the case where (|x|/D + |x|/U >> βK), then
W ≈ R (|x|/D + |x|/U). This means:

K∗ = 3

√
κF (x̄0)− F ∗

8η2L (1 + 1/2N)

1

R
, (5.10)

i.e. the optimal value of K is not dependent on the local computation time, only
the total number of rounds R. This decay scheme produces a fairly aggressive decay
rate, and is tested experimentally in Section 5.2 using a variety of model types (with
different communication and computation times).

A similar approach can be taken to find the optimal value of ηr at each com-
munication round. Although the focus of this chapter is on decaying K to improve
the convergence speed of FL, it is compares to the effect of decaying η as well as
constant η/K.

Corollary 5.2.1: Let Assumptions 1-4 hold and define κ = L/µ. Given stepsizes
ηr ≤ 1/4L, the optimal value of η to minimise (8) is given by:

η∗ =

√
2(κF (x̄0)− F ∗)

LZ

(|x|/D + |x|/U + βK)

W
, (5.11)

where Z =
∑C

c=1 p
2
cσ

2
c + 6LΓ + (8 + 4/N)G2K2.

Proof: See Appendix A.4.

Corollary 5.2.1 shows that η∗ is directly affected by the per-round time: as any of
the upload, download or computation time increases, η∗ increases. This is because
less progress is made over time (due to longer rounds) so a larger η∗ compensates
by making more progress per SGD step. Similar to K∗, a larger number of clients
participating per round (N) allows for a smaller η∗ by reducing variance due to
client-drift. Larger K also allows for smaller η as more progress is made per round.
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Making the same assumption as in (5.10) (|x|/D + |x|/U >> βK) gives a decay
schedule for ηr in terms of the number of communication rounds:

η∗ =

√
2(κF (x0)− F ∗)

LZ

1

R
, (5.12)

where Z is defined in (5.11). This schedule is also tested empirically in Section 5.2.

5.1.5 Schedules Based on Training Progress

In practice the values of κ, F ∗, and L are difficult or impossible to evaluate due to
complex nonlinear models (i.e. DNNs) and data privacy in FL. Therefore, appro-
priate values of K and η are chosen via grid-search or some other method (such as
Bayesian Optimisation). Denote K0 as a ‘good’ value of K at W = 0 (found via grid
search), and Kr as the value of K to be used for round r. Each successive round of
FedAvg can be considered as a new optimisation procedure with starting model x̄r.
If the further assumption that F ∗ = 0 is made, substituting these two sets of values
into (5.9) and dividing gives Kr in terms of K0:

Kr =

⌈
3

√
F (x̄r)

F (x̄0)
K0

⌉
. (5.13)

A similar process can be applied to find ηr in terms of η0:

ηr =
2

√
F (x̄r)

F (x̄0)
η0. (5.14)

F (x̄r) is the training loss of the global model at the start of round r. Practically,
an estimate of F (x̄r) can be obtained by requiring clients c ∈ Cr to send their
training loss after the first step of local SGD to the server each round: fc(x̄r, ξc,0),
where E [fc(x̄r, ξc,0)] = F (x̄r). This is only a single floating-point value that does not
require any extra computation and negligibly increases the per-round communication
costs.

Due to only a small fraction of the non-IID clients being sampled each round,
the per-round variance of 1

N

∑
c∈Cr fc(x̄r, ξc,0) can be very high. Therefore, a simple

rolling-average estimate using window size s can be used:

F (x̄r) ≈
1

sN

r∑
i=r−s

∑
c∈Ci

fc(x̄i, ξc,0). (5.15)

The experiments in Section 5.2 use a window size s = 100, where the experiments
run for at least R = 10, 000 communication rounds. For the first s rounds when
(5.15) cannot be computed, the experiments keep Kr = K0.

When using a fixed value of K, Theorem 5.1 shows that the minimum gradient
norm converges with O(1/T) + O(ηK2). As noted earlier, this result is analogous
to the classical result of dSGD using a fixed learning rate. In the datacentre, the
practical heuristic of decaying the learning rate η when the validation error plateaus
is commonly used to allow the model to reach a lower validation error. A similar
strategy for FedAvg can therefore be used: once the validation error plateaus decay
either K or η. This heuristic is investigated alongside the decay schedules presented
above in Section 5.2.
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5.2 Experimental Evaluation

In this section, the results of simulations comparing the three decaying-K schemes
proposed in Section 5.1 are presented, demonstrating their benefits in terms of run-
time, communicated data and computational cost on four benchmark FL datasets.
Table 5.1 overviews the learning tasks, and they are described in more detail in
Section 5.2.1.

Table 5.1: Datasets and models used in the experimental evaluation (DNN = Deep
Neural Network, CNN = Convolutional Neural Network, GRU = Gated Recurrent
Network, SA = Sentiment Analysis, CV = Computer Vision, NLP = Natural Lan-
guage Processing). K0 and η0 are the initial number of local steps and initial learning
rate used.

Task Type Classes Model
Model Total Clients Samples

K0 η0Size (Mb) Clients per Round per Client

Sent140 SA 2 Linear 0.32 21876 50 15 60 3.0
FEMNIST CV 62 DNN 6.71 3000 60 170 80 0.3
CIFAR100 CV 100 CNN 40.0 500 25 100 50 0.01
Shakespeare NLP 79 GRU 5.21 660 10 5573 80 0.1

5.2.1 Datasets and Models

To show the broad applicability of the K-decay approach, experiments are con-
ducted on 4 benchmark FL learning tasks from 3 Machine Learning domains (senti-
ment analysis, computer vision, natural language processing) using 4 different model
types (simple linear, DNN, Convolutional, Recurrent).

Sentiment 140: a sentiment analysis task of Tweets from a large number of Twit-
ter users [99]. This dataset is limited to users with ≥ 10 samples, leaving 22k total
clients, with 336k training and 95k validation samples, and an average of 15 training
samples per client. A normalised bag-of-words vector of size 5k was generated for
each sample using the 5k most frequent tokens in the dataset. A binary linear clas-
sifier using 50 clients per round (0.2% of all clients) and a batch size of 8 was trained.

FEMNIST: an image classification task of (28× 28) pixel greyscale (flattened) im-
ages of handwritten letters and numbers from 62 classes, grouped by the writer of
the symbol [99]. 3k total clients were used, with a total of 501k training and 129k
validation samples and an average of 170 training samples per client. 60 clients were
selected per round (2% of all clients) with a batch size of 32. A DNN comprising a
200-unit ReLU Fully-Connected layer (FC), a second 200-unit ReLU FC layer, and
a softmax output layer was trained.

CIFAR100: an image classification task of (32× 32) pixel RGB images of objects
from 100 classes. The non-IID partition first proposed in [25] was used, which splits
the images into 500 clients based on the class labels. There are 50k training and
10k validation samples in the dataset, with each client possessing 100 samples. 25
clients per round are selected (5% of all clients). A Convolutional Neural Network
(CNN) consisting of two (3× 3) ReLU convolutional + (2× 2) Max-Pooling blocks,
a 512-unit ReLU FC layer, and a softmax output layer was trained with a batch size
of 32. As per other FL works [25, 27] random preprocessing was applied to improve
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generalisation, composed of a random horizontal flip and crop of the (28× 28) pixel
sub-image.

Shakespeare: a next-character prediction task using the complete plays of William
Shakespeare [99]. The lines from all plays are partitioned by the speaking part in
each play, and clients with ≤ 2 lines are discarded, leaving 660 total clients. Using a
sequence length of 80, there are 3.7m training and 357k validation samples, with an
average of 5573 training samples per client. 10 clients per round are selected (1.5%
of all clients) with a batch size of 32. A Gated Recurrent Unit (GRU) was trained
comprising a 79 → 8 embedding, two stacked GRUs of 128 units, and a softmax
output layer.

5.2.2 Simulating Communication and Computation

The convergence of FedAvg for the above learning tasks was simulated using PyTorch
on GPU-equipped workstations. However, real-world FL runs distributed training
on low-powered edge clients (such as smartphones and IoT devices). These clients
exhibit much lower computational power and lower bandwidth to the coordinating
server compared to datacentre nodes.

To realistically simulate real-world FedAvg, the runtime model presented in Sec-
tion 5.1.2 and Equation (5.5) was used. Each client is give a download bandwidth of
D = 20 Mbps and an upload bandwidth of U = 5 Mbps. These are typical values for
wireless devices connected via 4G LTE in the United Kingdom [18]. To determine
the runtime of a minibatch of SGD on a typical low-powered edge device (β), 100
steps of minibatch-SGD for each learning task was run on a Raspberry Pi 3B+ with
the following configuration:

� 1.4GHz 64-bit quad-core Cortex-A53 processor.

� 1GB LPDDR2 SDRAM.

� Ubuntu Server 22.04.1.

� PyTorch 1.8.2.

As shown in Table 5.2, there is a large difference in the minibatch runtimes between
the tasks. This is due to the relative computational costs of the models used:
the Sent140 task uses a simple linear model, whereas the Shakespeare GRU model
requires a far larger number of matrix multiplications for a single forward-backward
pass.

Table 5.2: Mean and standard deviation of runtimes for a minibatch of SGD for
each learning task using a Raspberry Pi 3B+.

Task Mean (s) Std (s)

Sent140 5.2× 10−3 2.1× 10−4

FEMNIST 0.017 5.1× 10−4

CIFAR100 0.31 1.7× 10−2

Shakespeare 1.5 8.5× 10−2
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5.2.3 Kr and ηr Decay Schedules

For each learning task, FedAvg was run for 10k communication rounds using fixed
Kr = K0 and ηr = η0 (henceforth ‘Kη-fixed’). The number of rounds reflects
typical real-world deployments (which are on the order of thousands of rounds) [8].
K0 and η0 were selected via grid-search such that the validation error for each task
could plateau within the 10k rounds, with the values presented in Table 5.1. dSGD
(FedAvg with Kr = 1) was also run to show the runtime benefit of using K > 1
local steps.

FedAvg was then run sing the three schedules for Kr and the three schedules
for ηr as discussed in Section 5.1.4 and 5.1.5. Table 5.3 shows the different decay
schedules tested and the name used to denote each one by in Section 5.2.4. Jointly
decaying Kr and ηr during training was also tested. However decaying either Kr

or ηr decreases the amount of progress that is made during each training round as
the global model changes less. It was found empirically that decaying both lead to
training progress slowing too rapidly, so these results are not included in Section
5.2.4.

Table 5.3: Values of Kr and ηr for given communication round r as tested in the
experimental evaluation.

Schedule Kr ηr

dSGD 1 η0

Kη-fixed K0 η0

Kr-rounds (10) ⌈ 3
√

1/r K0⌉ η0

Kr-error (13) ⌈ 3
√

Fr/F0 K0⌉ η0

Kr-step K0/10 if converged η0

ηr-rounds (12) K0
2
√

1/r η0

ηr-error (14) K0
2
√

Fr/F0 η0

ηr-step K0
η0/10 if converged

5.2.4 Results

Figure 5.1 shows the minimum cumulative training error achieved by FedAvg for
the different Kr and ηr schedules (as shown in Table 5.3). Confidence intervals
for Figure 5.1 were omitted for clarity due to the large number of curves. For all
tasks other than Shakespeare, FedAvg with Kη-fixed (solid grey curve) increases the
convergence rate compared to dSGD (dashed grey curve). For Shakespeare (Figure
5.1 (d)), Kη-fixed improved the initial convergence rate but was overtaken by dSGD
at approximately 2500 minutes. This is likely because of the very high computation
time for Shakespeare (see Table 5.2) relative to the other datasets (due to the very
high computational cost of the GRU model).

For Sentiment 140 (Figure 5.1 (a)) and Shakespeare (Figure 5.1 (d)), decaying
either Kr or ηr during training lead to smaller improvements in the training error
that was achieved. However, for FEMNIST and CIFAR100, the Kr-rounds scheme
lead to lower training error compared to Kη-fixed. For CIFAR100, an improvement
was also seen with ηr-rounds. Both FEMNIST and CIFAR100 are image classifica-
tion tasks, so it be may the case that decaying Kr or ηr during training is beneficial
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Figure 5.1: Cumulative lowest training cross-entropy error over time of FedAvg
using different schedules for Kr and ηr. Curves show mean over 5 random trials.
Vertical line shows the communication round where the validation error plateaus.

for computer vision, which could be investigated further in future works.

Figure 5.2 shows the impact on validation accuracy for the tested decay sched-
ules. The Kη-fixed schedule shows faster initial convergence for all tasks, but it is
overtaken by dSGD in the later stages of training. For FEMNIST, CIFAR100 and
Shakespeare, the aggressive Kr-rounds and Kr-step schemes improved the conver-
gence rate compared to dSGD, with very significant improvement for CIFAR100. A
marked increase in convergence rate can be seen in Figure 5.1 (c) at 1000 minutes
when Kr-step is decayed.

In all tasks, all K-decay schemes were able to match or improve the validation
accuracy that Kη-fixed achieved whilst performing (often substantially) fewer total
steps of SGD within a given runtime. Table 5.4 shows the total SGD steps performed
by the K-decay schemes relative to the total steps performed by Kη-fixed over the
10k communication rounds (all the η-decay schemes perform the same amount of
computation as Kη-fixed). The fact that K-decay schemes can outperform Kη-fixed
with lower total computation indicates that much of the extra computation per-
formed by FedAvg is wasted when considering validation performance. CIFAR100
usingKr-rounds for example achieved over 18% higher validation accuracy compared
to Kη-fixed whilst performing less than 10% of the total steps of SGD. Similarly,
Kr-step achieved the same validation accuracy as Kη-fixed whilst performing only
68% of the total SGD steps.

5.3 Chapter Summary

The FedAvg improves the convergence rate of the global FL model by performing
several steps of SGD (K) locally during each training round. In this chapter, Fe-
dAvg was theoretically analysed to examine the runtime benefit of decreasing (K)
during training. A runtime model of FedAvg was set up and used to determine
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Figure 5.2: Cumulative highest validation top-1 accuracy over time of FedAvg using
different schedules for Kr and ηr. Curves show mean and shaded regions show 95%
confidence intervals of the mean over 5 random trials.

Table 5.4: Total SGD steps performed during training for each K-decay schedule
relative to Kη-fixed for different learning tasks.

Task Schedule
Relative SGD Steps

Sentiment 140 FEMNIST CIFAR100 Shakespeare

Sentiment 140

Kr-rounds 0.21 0.11 0.090 0.74

Kr-error 0.99 0.80 0.57 0.99

Kr-step 0.68 0.44 0.40 0.96

the optimal value of K (and learning rate η) at any point during training under
different assumptions, leading to three practical schedules for decaying K as train-
ing progresses. Simulated experiments using realistic values for communication-time
and computation-time on 4 benchmark FL datasets from 3 learning domains showed
that decaying K during training can lead to improved training error and validation
accuracy within a given timeframe, in some cases whilst performing over 10× less
total computation compared to fixed K.



Chapter 6

Accelerating Federated Learning
with a Global Biased Optimiser

Adaptive optimisation can significantly improve the convergence rate of the global
model, reducing FL’s long training times. Chapters 3 and 4 both propose novel ways
of using adaptive optimisation in FL. However, these approaches allow optimiser val-
ues to change within the client update loop, which could potentially contribute to
client-drift [27] and increases the per-round upload cost compared to FedAvg (as
unique optimiser values must be sent to the coordinating server). In this chapter, a
novel and generalised approach for incorporating adaptive optimisation in FL is pro-
posed with the Federated Global Biased Optimiser (FedGBO) algorithm. FedGBO
accelerates FL by employing a set of global biased optimiser values during training,
reducing client-drift and client model variance due non-IID data whilst benefiting
from adaptive optimisation. The updates to the global model in FedGBO can be
reformulated as centralised training updates using biased gradients and optimiser
updates, and this framework is used to prove FedGBO’s convergence on nonconvex
objectives when using heavy-ball momentum-SGD (SGDm) [100]. Extensive ex-
periments using 4 FL benchmark datasets (CIFAR100, Sent140, FEMNIST, Shake-
speare) and 3 popular optimisers (SGDm, RMSProp [101], Adam [87]) are con-
ducted to compare FedGBO against six state-of-the-art FL algorithms. The results
demonstrate that FedGBO displays superior or competitive performance across the
datasets whilst having low data-upload and computational costs, and provide prac-
tical insights into the trade-offs associated with different adaptive-FL algorithms
and optimisers.

6.1 The FedGBO Algorithm

6.1.1 Algorithm Design

The Federated Global Biased Optimiser (FedGBO) algorithm operates in rounds
similar to FedAvg. In each communication round of FedGBO (Algorithm 6), a ran-
dom subset of clients are selected to participate (line 3). This selection forces partial
client participation in the experimental setting, however in a real-world deployment,
clients devices will participate if they are available for training (e.g., for smartphone
clients this may be when they are charging and connected to Wi-Fi) [8]. FedGBO
is a generic FL algorithm compatible with any adaptive optimiser that can be rep-
resented as an update (U), tracking (T ), and inverse (I) step. Table 6.1 presents
U , T , I for three popular optimisers: RMSProp [101], SGDm [100], and Adam [87].

64
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Algorithm 6: Federated Global Biased Optimiser
(FedGBO)

1 input: initial global model x0, optimiser s0
2 for round r = 1 to R do
3 select round clients Cr
4 for client c ∈ Cr in parallel do
5 download global model xt, and optimiser st
6 initialise local model, yi

0 ← xt

7 for local SGD step k = 1 to K do
8 compute minibatch gradient gi

t

9 yi
k ← yi

k−1 − ηU(gi
t, st)

10 end
11 upload local model yi

K to server

12 end
13 update global model xt+1 ← 1

|St|
∑

i∈St
yi
K

14 compute biased gradient g̃t ← I(xt,xt+1, st, K, η)
15 update global optimiser values st+1 ← T (g̃t, st)

16 end

Participating clients download the global model xt and optimiser values st (line 5),
and then perform K steps of adaptive optimisation using the generic update step
U and locally-computed stochastic gradients (lines 7-10). After local training, all
participating clients upload their local models to the server (line 11). The server
computes the new global model xt+1 as an average of client models (line 13). It
performs the generic inverse-step I to compute the average gradient during the
client local updates (line 14). The server then updates the global statistics using
the generic tracking step T (line 15).

Table 6.1: Update, Tracking and Inverse steps for three popular optimisers with:
decay rates β, β1, β2; (stochastic) gradients g; stability constant ϵ; learning rate η
and total local steps K; and previous and current global models xt and xt+1.

Stats Update (U) Tracking (T ) Inverse (I)
RMSProp v g√

v+ϵ
v ← βv + (1− β)g 1

ηK (xt − xt+1)(
√
v + ϵ)

SGDm m βm+ (1− β)g m← βm+ (1− β)g 1
1−β (

xt−xt+1

ηK − βm)

Adam m,v
β1m+(1−β1)g√

v+ϵ

m← β1m+ (1− β1)g 1
1−β1

(
(xt−xt+1)(

√
v+ϵ)

ηK − β1m
)

v ← β2v + (1− β2)g

An alternative implementation of FedGBO (that would not require optimisers to
be represented using an inverse step I) would update the local model yi

k on clients,
whilst also maintaining a copy of the average local gradient (which would be the same
size as the model used, |x|). This average local gradient would then be uploaded to
the server, and could be used to update the global model and global statistics instead
of performing an inverse step I. However, FedGBO is designed to be lightweight in
terms of computation and memory cost for clients, as real-world FL scenarios can
involve low-powered clients such as IoT devices. Therefore, this design decreases the
memory and total computational cost for clients as the average gradient does not
have to be stored alongside the local model yi

k.
FedGBO shares some design similarities with other adaptive-FL algorithms. The

design differences between FedGBO and these algorithms is described below.
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� AdaptiveFedOpt [25]: clients download a global model each round and perform
vanilla SGD locally. The server generates a ‘psuedogradient’ each round from
client model uploads. This psuedogradient is fed into an adaptive optimiser that
exists only on the server to update the global model at the end of each round.

� MFL [39]: clients download a global optimiser each round (like FedGBO). How-
ever, the optimiser values are allowed to change during the client loop (as opposed
to fixed). The now-unique client optimisers are uploaded to the server each round
along with the client models. The server averages the client optimisers to make
the next round’s global optimiser (as opposed to updating it via the I and T
steps) alongside averaging the client models to produce the next global model.

� Mimelite [27]: clients download a global model and optimiser each round and keep
the values fixed during the client loop (like in FedGBO). However, clients also
compute a full-batch gradient (∇f) before local training and send this gradient
along with the model to the server after local training (FedGBO does not compute
or send ∇f). The server uses ∇f to update the global optimiser (as opposed to
updating it via the I and T steps).

Table 6.2 summaries the practical differences between the algorithms. The bene-
ficial aspects of FedGBO compared to the other algorithms are: compared to the
vanilla SGD used by FedAvg, FedProx, FedMAX and AdaptiveFedOpt, FedGBO’s
client-side optimisation can substantially accelerate model convergence; compared
to MFL, FedGBO accounts for client-drift with fixed optimiser values, which can
help accelerate convergence and has lower upload cost depending on the optimiser
used (50% less for SGDm/RMSProp, 66% less for Adam); compared to Mimelite,
FedGBO does not require the expensive computation of ∇f and has 50% reduced
upload cost. Reducing upload costs in FL is of particular importance due to the
asymmetric bandwidth of devices at the network edge.

Table 6.2: Popular state-of-the-art FL algorithms (plus FedAvg), with per-client
download (Down) and upload (UP) costs and per-client memory requirements. x
denotes the FL model, and s denotes the federated optimiser values.

Algorithm Approach Down Up Memory

FedAvg [24] Averages models x x O(|x|)
FedProx [36] Proximal term x x O(2|x|)
FedMAX [102] Max-entropy term x x O(|x|)

AdaptiveFedOpt [25] Server-only optimiser x x O(|x|)
MFL [39] Averages models and optimisers x, s x, s O(|x|+ |s|)

Mimelite [27] Unbiased global optimiser x, s x,∇f O(2|x|+ |s|)
FedGBO Biased global optimiser x, s x O(|x|+ |s|)

6.1.2 Reducing Client Drift

FedGBO reduces client-drift by keeping a set of global statistics (downloaded at the
start of each communication round) that are not updated in the local-training loop,
as shown in Algorithm 6. For FedGBO with a momentum-based optimiser, when
the ‘decay’ parameter (e.g., β in SGDm) is large, there is less influence from client
gradients in the local updates, and more influence from the global biased statistics,
so the models uploaded by clients will be more similar. For adaptive-learning rate
methods (e.g., RMSProp), using the same fixed adaptive parameters on all clients
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scales the local updates performed by clients for a given model parameter by the
same value, as opposed to letting the adaptive parameters change during the local
update.

Figure 6.1: Average cosine distances between client models uploaded at the end
of each communication round. Curves are averages over 5 random trials. Note
FedGBO with β = 0 is equivalent to FedAvg.

Figure 5.1 plots the average cosine distance between client models at the end of
each communication round, for four benchmark FL datasets (further details about
datasets and models are given in Section 6.3), using FedGBO with the SGDm op-
timiser. When β = 0 (red curves), there is no influence from the global biased
momentum, and FedGBO is equivalent to FedAvg. As explained above, Figure 5.1
(a) - (d) show that increasing the decay parameter (β) causes client updates to be
more aligned due to more influence from the fixed global momentum. Figure 5.1
therefore demonstrates how FedGBO can tackle the problem of client-drift.

6.2 Convergence Analysis

In this section, it is shown that the updates to the global model in FedGBO with
a generic optimiser can be formulated as updates to the same optimiser in the cen-
tralised setting, with a perturbed gradient and statistics update. This formulation
can be used to extend existing convergence analyses, and is applied to a recent anal-
ysis of SGDm [103], recovering the same tight dependence on β as in the centralised
analysis, with added client-drift terms associated with FL.

In FL, a model x ∈ Rd is trained to minimise the following objective:

F (x) = E
i

[
fi(x) =

1

ni

ni∑
j=1

f(x; ξi,j)

]
, (6.1)

where fi, ni and {ξi,1, · · · , ξi,ni
} denote the average loss, total number of samples,

and training samples on client i, respectively. f is the loss function that clients
use to train x. Intuitively, the expected loss over all samples and all clients is
minimised, as would be minimised by training in the centralised setting over pooled
data. The individual client losses fi are presented as a sum and the global loss F
as an expectation to emphasise that in FL there are a very large number of clients,
each possessing a small number of local samples.

Clients are assumed to have heterogeneous local data distributions. Therefore,
the local minimiser f ∗ for any two clients i and j are not necessarily the same:
f ∗
i ̸= f ∗

j (see Chapter 2). This is the source of client drift for K > 1 local updates.
The following standard assumptions are made in the analysis of FedGBO.
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Assumption 1 (Lower bound). F is bounded below by F ∗: F (x) > F ∗,∀x ∈ Rd.

Assumption 2 (Inter-client variance). The variance of client gradients is bounded:
E
i
[∥∇fi(x)−∇F (x)∥2] ≤ G2,∀ i.

Assumption 3 (Gradient magnitude). The magnitude of client gradients is bounded:
∥fi(x; ξ)∥2 ≤ R2,∀ i.

Assumption 4 (Lipschitz gradients). Client loss functions are L-smooth: ∥∇fi(x; ξ)−
∇fi(y; ξ)∥ ≤ L∥x− y∥,∀ i. F is a convex combination of fi, so F is therefore also
L-smooth.

Assumption 5 (Intra-client variance). Client stochastic gradients are unbiased es-
timates of the local gradients, E

ξ
[∇fi(x; ξ)] = ∇fi(x),∀ i, with bounded variance:

E
ξ
[∥∇fi(x; ξ)−∇fi(x)∥2] ≤ σ2,∀ i.

Previously, [27] showed that FedAvg withK > 1 local updates could be reformulated
as centralised optimisation with a perturbed gradient, which the authors then use
to prove the convergence of their Mime algorithm. The perturbation et of the
centralised-training gradient gt is defined as:

et =
1

K|S|

K∑
i=1

∑
i∈S

(∇fi(yi,k−1; ξi,k)−∇fi(x; ξi,k)) , (6.2)

for local iterations {yi,0, · · · , yi,K−1}, and set of sampled clients S. Thus, the
gradient-perturbation et is the average difference between client gradients (over the
K local steps and S clients) and the gradients that would have been computed using
the global model. Using this definition, the updates of FedGBO can be written as
perturbed updates to a centralised optimiser:

xt ← xt−1 − η̃U(gt + et, st−1),

st ← V(gt + et, st−1),

for generic model-update step U , optimiser tracking step T , and ‘pseudo-learning-
rate’ η̃ = Kη. The local updates of FedGBO use fixed global statistics in a similar
manner to the fixed statistics used in Mime (albeit we use biased global statistics).
As the above assumptions are at least as strong as those from [27], their result can
be used to bound the norm of the perturbation et:

E
t

[
∥et∥2

]
≤ (B2L2η̃2)

(
E
t

[
∥gt∥2

]
+G2 +

σ2

K

)
, (6.3)

where B ≥ 0 is a bound on the Lipschitzness of the optimiser U ’s update: ∥U(g)∥ ≤
B∥g∥.

Using the perturbed gradient and momentum generalisation presented above,
updates of FedGBO using the SGDm optimiser can be written as:

mt ← βmt−1 + (gt−1 + et−1) (6.4)

xt ← xt−1 − η̃mt. (6.5)

While the specific SGDm implementation used in the later experiments multiplies
the second term of (6.4) by a (1− β) term (hyperparameter choice with this imple-
mentation tends to be more intuitive), the (1−β) term in (6.4) is dropped to simplify
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the proof, and it is assumed the (1−β) and β terms can be incorporated into η̃. As
is typical for nonconvex analysis, the expected squared norm of the model gradient
(at communication round t) is bounded. For total iterations T , define t as a random
index with value {0, · · · , T − 1}, with probability distribution P[t = j] ∝ 1− βT−j.
Full proofs are given in Appendix B.

Theorem 6.1 (Convergence of FedGBO using SGDm) Let the assumptions A1-A5
hold, the total number of iterations T > (1 − β)−1, η̃ = Kη > 0, 0 ≤ β < 1, and
using the update steps given by (6.4) and (6.5):

E[∥∇F (xt)∥2] ≤
2(1− β)

η̃T̃
(F (x0)− F ∗) +

T η̃2Y

T̃
+

2T η̃L(1 + β)(R2 + η̃2Y )

T̃ (1− β)2
, (6.6)

where T̃ = T − β
1−β

, and Y = 18B2L2
(
R2 +G2 + σ2

K

)
.

Theorem 6.1 therefore shows that the perturbed gradient and momentum frame-
work presented above can be used to apply an existing convergence proof from a
centralised optimiser to FedGBO. Next, Theorem 6.1 is simplified to achieve a more
explicit convergence rate.

Corollary 6.1 (Theorem 6.1 simplification using iteration assumption) Making the
same assumptions as in Theorem 1, and also that T ≫ (1−β)−1, hence T̃ ≈ T , and
using η̃ = (1− β) 2C√

T
, for C > 0, then:

E[∥∇F (xt)∥2] ≤
F (x0)− F ∗

C
√
T

+
4CL(1 + β)(R2 + Z/T)

(1− β)
√
T

+
Z

T
, (6.7)

where Z = 4C2(1− β)2Y .

Corollary 6.1 shows that the gradients of FedGBO can be bounded for nonconvex
objectives. This is the first convergence analysis of an FL-algorithm using SGDm for
nonconvex objectives: [39] analyses strongly-convex objectives with deterministic
gradients, and [25, 27] analyse Adam with β1 = 0 (i.e., RMSProp). The lack of
directly-related analyses makes comparison of this analysis to existing works less
clear, but Corollary 6.1 still provides useful insights into FedGBO’s convergence.

� Relation to centralised rate: Comparing (6.7) to Theorem B.1 of [103] shows
that the O(1/√T) convergence rate can be retained (with the same state-of-the-art
(1 − β) denominator). However, (6.7) contains added error terms due to client-
drift: Z in the second term arises from the biased momentum used in FedGBO,
and the third term arises from biased client gradients.

� Setting η̃: Scaling η̃ with O(1/√T) fortunately decreases the error due to biased
client gradients and momentum with O(1/T) and O(1/√T), respectively. As η̃ =
Kη, this indicates that either K or η could be decayed during training to balance
fast convergence and final error.

� Effect of K: According to (6.7), there is no overt benefit to performing K > 1
local steps, which is a common theme within FL analysis. [39] proves the conver-
gence of MFL by bounding the distance to centralised momentum-SGD, and this
distance naturally converges to 0 as K → 1. Similarly, [26, 27] improve conver-
gence rates for convex objectives whenK > 1 by adding Variance-Reduction (VR)
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to the client objective (which increases communication and computation costs).
Without VR, the convergence of their algorithms do not dominate distributed
SGD (with K = 1). Despite the lack of theoretical benefit from K > 1, the ex-
perimental studies of other works and Section 6.3 shows large K can significantly
improve convergence rate empirically.

Table 6.3: Details of learning tasks used in experiments.

Task Type Classes Model
Total Clients Samples
Clients per Round per Client

CIFAR100 Image classification 100 CNN 500 5 100
Sent140 Sentiment analysis 2 Linear 21876 22 15

FEMNIST Image classification 62 CNN 3000 30 170
Shakespeare Next-character prediction 79 GRU 660 7 5573

6.3 Experiments

In this section, a comprehensive comparison between FedGBO and various state-of-
the-art adaptive-FL algorithms (AdaptiveFedOpt [25], MFL [39], Mimelite [27]), and
non-adaptive algorithms (FedAvg [24], FedProx [36], FedMAX [102]) is conducted.
The experiments use 4 benchmark FL datasets, from the domains of computer vi-
sion, sentiment analysis, and language modelling. Each adaptive-FL algorithm is
compatible with a variety of optimisers, so three of the most popular and ubiquitous
are tested: RMSProp [101], SGDm [100], and Adam [87]. Although from an algo-
rithmic perspective RMSProp and SGDm are simply special cases of Adam (with
β1 = 0 and β2 = 0, respectively), for FL there is the important practical difference
of not requiring the zeroed parameters to be communicated. All of the models and
algorithms tested were implemented with PyTorch 1.7.0, and run on workstations
equipped with Intel i9 CPUs and NVidia RTX 3090 GPUs, running Ubuntu 20.04.
Table 6.3 gives a brief overview of the datasets and models used, with more thorough
details below.

CIFAR100: a federated version of the CIFAR100 dataset consisting of (32 × 32)
pixel RGB images from 100 classes. Training samples are partitioned according to
the class labels into 500 workers using the Pachinko Allocation Method first used in
[25]. Like in similar FL works [25, 27], pre-processing was applied to the training
samples comprising a random horizontal flip (p = 0.5) followed by a random crop of
the (28× 28) pixel sub-image. A CNN with the following architecture was trained:
a (3 × 3 × 32) ReLU Convolution layer, (2 × 2) max pooling, (3 × 3 × 64) ReLU
Convolution layer, (2× 2) max pooling, a 512-unit ReLU fully connected layer, and
softmax output, with batch size of 32.

Sent140: a sentiment analysis task using Twitter posts, pre-processed using the
LEAF FL benchmark suite [99]. Tweets are grouped by user, users with < 10
posts are discarded, and 20% of each users’ samples are taken for the test set. A
normalised bag-of-words vector of length 5k (representing presence of the 5k most
common token in the dataset) was created for each samples, with each target being
a vector of length two (positive or negative sentiment). Samples without any of the
top 5k token were discarded. A linear model using batch size 8 was trained. Note
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that FedMAX is not trained on Sent140 as the algorithm is only compatible with
DNNs.

FEMNIST: a federated version of the EMNIST dataset containing (28× 28) pixel
greyscale images from 62 classes, pre-processed using LEAF [99]. Samples are
grouped into users by the writer of the symbol, and 20% of each user’s samples are
grouped to make a test-set. 3000 clients (from the maximum 3550) were selected for
use in all experiments. A CNN with the same architecture as the CIFAR100 model
was trained (albeit with 62 outputs) using a batch size of 32.

Shakespeare: a next-character prediction task of the complete plays of William
Shakespeare, pre-processed using LEAF [99]. The lines from all plays are grouped by
speaker (e.g., Macbeth, Lady Macbeth etc.). Speakers with < 2 lines are discarded,
leaving 660 total clients. Lines are processed into sequences of length 80, with a
vocabulary size of 79, and the last 20% of each client’s lines are taken to produce the
test-set. A GRU model was trained on the dataset comprising a trained embedding
layer with 8 outputs, two stacked GRU layers with 128 outputs each, and a softmax
output layer, using a batch size of 32.

Figure 6.2: Comparison of adaptive FL algorithms on different FL datasets, using
K = 10 local update steps. Lines show average over 5 random trials, shaded regions
show 95% confidence intervals of the mean.

6.3.1 Convergence Speed

Convergence speeds of the different adaptive-FL algorithms using each optimiser on
each dataset are first compared. For each [dataset, FL algorithm, optimiser] combi-
nation, hyperparameters were tuned via grid search in order to achieve the highest
test-set accuracy within 5k communication rounds (evaluated every 50 rounds).
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Learning rates were tested in the range η ∈ [101, 10−5], with step size of 0.1, and
optimiser parameter β = {0.3, 0.6, 0.9, 0.99, 0.999, 0.9999}. For Adam, in order to
keep the number of experiments performed feasible, β2 = 0.99 was fixed for all ex-
periments and β1 was tuned as above. For RMSProp and Adam, as has been noted
previously [25, 27] it was found that a large adaptivity parameter ϵ = 10−3 was
required for stable convergence. Tuning AdaptiveFedOpt took significantly more
simulations compared to the other algorithms due to the extra hyperparameter (the
server learning rate, on top of client learning rate and optimiser parameter), which
represents a drawback for real-world use.

For FedAvg only η was tuned. For FedProx η and proximal term µ were tuned.
For FedMAX η and entropy-loss-weighting α was tuned. These algorithms do not
use adaptive optimisation, so the same curve for each algorithm in each row of
Figures 6.2 and 6.3 are presented. Well over 1000 simulations were conducted in
total.

Figure 6.3: Comparison of adaptive-FL algorithms on different FL datasets, using
K = 50 local update steps. Lines show average over 5 random trials, shaded regions
show 95% confidence intervals of the mean.

In Figure 6.2, the test-set accuracies during training for these tuned parameters us-
ing K = 10 local steps are presented. This a ‘low-K’ regime, representing scenarios
where clients can communicate more frequently with the server. Figure 3 shows the
accuracy curves for a ‘high-K’ (K = 50) regime. The practical insights provided by
these experiments are discussed below.

Choice of FL algorithm: Comparing the rows of Figures 6.2 and 6.3, there is no
clear FL algorithm that has universally superior performance in terms of convergence
speed. For CIFAR100 and K = 10, FedGBO with SGDm converges fastest, whereas
for the Shakespeare, K = 10, Mimelite with SGDm converges fastest. Furthermore,
for FEMNIST none of the tested algorithms provided significant benefit compared
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to FedAvg in both the K = 10 and K = 50 scenarios. The reason for this result is
likely because FEMNIST is a relatively simple greyscale task, so more sophisticated
optimisation techniques do not much help convergence.

Therefore, when planning a real-world FL deployment, the potential benefit of
adaptive-FL should be taken into account. If the learning task is relatively sim-
ple, additional hyperparameters (which then need to be tuned) and communicated
data added by adaptive-FL algorithms may outweigh the performance gain. Some
non-adaptive FL algorithms can show enhanced performance compared to FedAvg
without adding to the communication or computation cost (e.g., FedMAX for CI-
FAR100). However, on the more challenging CIFAR100 and Shakespeare tasks,
adaptive FL algorithms provide significant speedup compared to FedAvg.

Comparing Figures 6.2 and 6.3, some datasets and algorithms benefited from
increased local computation, whereas others were hindered. For CIFAR100 with
RMSProp, the best accuracy that all algorithms could achieve was lowered for
K = 50. For Shakespeare, almost all algorithms and optimisers were able to con-
verge faster for K = 50, and the ordering of which algorithm achieved the best
accuracy changed. The relative performance of adaptive-FL algorithms on the dif-
ferent benchmark datasets warrants further investigation in future works, but task
complexity and number of local samples appear to be important factors.

Alongside this, the communication costs of the adaptive-FL algorithms should be
taken into account. A more detailed analysis of the results considering final model
accuracy, upload cost, and total computation is presented in Section 6.3.2.

Choice of optimiser: As shown in Figure 6.2, there was also no universally-best
optimiser for each dataset and adaptive-FL algorithm, which matches the finding
for centralised training [104]. For example, the fastest convergence for Shakespeare,
K = 10 was using Mimelite with SGDm, whereas for Sent140 it was RMSProp and
Adam in both K = 10 and K = 50 scenarios.

In both scenarios for Sent140, SGDm provided little improvement compared to
FedAvg. The gradients computed in the Sent140 task are sparse (due to very sparse
features). Adaptive learning-rate methods like RMSProp and Adam are known to
provide good convergence rates for sparse-gradient tasks [105], whereas the very
noisy convergence of SGDm is due to the learning rate having to be set very large
for this task (η = 10.0). For the K = 50 scenario, the learning rate could be set
lower, resulting in slightly less erratic convergence and narrower confidence intervals.

On the other hand, the rest of the tasks do not have sparse features, and RM-
SProp performed largely the worst. Therefore, these results suggest that when
choosing an adaptive-FL optimiser, a good initial choice of optimiser is the one
that works best on the task in the standard centralised setting. Also, as shown in
Table 6.2, optimiser choice impacts the communication cost of FedGBO, MFL and
Mimelite: for RMSProp and SGDm, the total download cost is doubled, and tripled
for Adam. The relationship between convergence speed gain due to optimiser choice
and increased communication cost represents another design consideration for FL
engineers.

Combining strategies: The adaptive-FL algorithms studied (FedGBO, Mimelite,
MFL, AdaptiveFL) can improve the convergence rate of the global model through
adaptive optimisation. However, in some cases simply modifying the local objective
can result in faster convergence (e.g., FedMAX on CIFAR100). The adaptive-FL al-
gorithms could readily be combined with objective-modifying algorithms, which may
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provide even greater performance without additional overheads. This combination
presents an interesting avenue for future research.

6.3.2 Considering Convergence, Communication and Com-
putation

There are many factors to consider when designing an FL algorithm for real-world
use. Alongside convergence speed, the total computational cost of FL is very im-
portant. In cross-device FL, clients may be a highly diverse set of devices with a
wide range of computational power (e.g., different generations of smartphones) [7].
This has two practical implications: the time taken to perform local training may
be the most significant bottleneck [97], and FL deployments that drop stragglers [8]
may end up regularly dropping the same clients, skewing the global model in favour
of faster clients. Furthermore, research indicates the total energy consumed by FL
can exceed the energy consumed by centralised training, motivating FL algorithms
with lower computational costs [35].

Table 6.4: Experimental results for different algorithms. The left section displays the
maximum accuracy achieved by each algorithm (95% confidence intervals in brack-
ets), and the total upload cost and FLOPs to achieve it. The right section shows
the number of rounds taken to match FedAvg’s accuracy, with the corresponding
upload cost and FLOPs. Adaptive-FL algorithms use SGDm.

Algorithm
Max Acc Upload FLOPs Upload FLOPs

(%) (GB) (×1012) (GB) (×1012)
CIFAR100

FedAvg 40.2 (±0.9) 112 120 - -
FedProx 40.6 (±0.7) 115 124 115 124
FedMAX 45.6 (±1.0) 112 120 65.2 69.7
AFO 41.7 (±0.8) 112 120 59.4 63.5
MFL 47.7 (±0.3) 231 125 126 68.3

Mimelite 46.8 (±0.4) 231 163 130 92.0
FedGBO 49.2 (±0.7) 115 124 22.1 23.8

Sent140
FedAvg 75.2 (±0.4) 3.9 0.27 - -
FedProx 73.3 (±0.4) 4.0 0.31 - -
AFO 75.0 (±1.0) 3.4 0.24 - -
MFL 75.4 (±0.8) 6.1 0.26 6.1 0.26

Mimelite 75.0 (±2.0) 6.9 0.32 - -
FedGBO 76.5 (±0.2) 3.4 0.27 1.2 0.09

FEMNIST
FedAvg 86.6 (±0.2) 423 416 - -
FedProx 86.6 (±0.2) 472 469 423 420
FedMAX 86.7 (±0.2) 472 464 423 416
AFO 86.4 (±0.6) 433 426 389 383
MFL 87.0 (±0.1) 846 423 418 209

Mimelite 87.3 (±0.2) 720 544 282 213
FedGBO 86.4 (±0.3) 447 444 447 444

Shakespeare
FedAvg 53.9 (±0.1) 21.0 409 - -
FedProx 54.4 (±0.1) 20.4 396 13.0 396
FedMAX 54.6 (±0.1) 21.0 409 12.1 235
AFO 54.1 (±0.1) 21.0 409 16.1 314
MFL 53.9 (±0.2) 37.8 368 - -

Mimelite 56.6 (±0.3) 40.8 7325 7.6 1373
FedGBO 54.6 (±0.3) 20.6 401 8.9 173
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As well as model convergence and computation cost, other important factors include
the total data communicated during FL (especially uploaded data considering the
asymmetric bandwidth of the network edge), number of algorithm hyperparame-
ters, and more. It is therefore difficult to compare FL algorithms when considering
all these factors. In Table 6.4, the tested algorithms are summarised using several
factors by combining the per-round communication costs from Table 6.2, the con-
vergence results from Figure 6.2 and the computation costs of each algorithm for
the K = 10 scenario using SGDm. Details about calculating the computation costs
of the FL algorithms are given in Appendix B.

The left-hand section of Table 6.4 shows the maximum accuracy of each algo-
rithm, and the total upload cost and FLOPs (Floating Point Operations) required
to reach it (number of rounds multiplied by per-round upload/FLOPs). The right-
hand section shows the total data and FLOPs required to match the maximum
FedAvg accuracy for that scenario, giving an indication of convergence speed.

Table 6.4 shows that for CIFAR100, FedGBO achieved the highest accuracy
whilst also having near-lowest uploaded data and total FLOPs. To match FedAvg’s
accuracy, FedGBO had by far the lowest upload cost and FLOPs, much lower than
FedAvg. Similar performance is shown with Sent140. For FEMNIST, FedGBO
had competitive performance in terms of model accuracy, upload cost and FLOPs,
and for Shakespeare, had competitive accuracy whilst having among the lowest
upload cost and computation. FedGBO therefore shows a good trade-off between
convergence rate, final accuracy, uploaded data, and computational cost.

Mimelite and FedGBO both use fixed global optimisers. However, the com-
putation performed by Mimelite is much higher than FedGBO due to computing
full-batch gradients (see Appendix B). This motivates the question of whether com-
puting these full-batch gradients is a good use of local computation, especially con-
sidering the results from the Shakespeare scenario (where Mimelite achieved the
highest model accuracy but with more than 10× the total computation). To test
this, Mimelite was modified to use minibatch unbiased gradients instead (denoted
‘MimeXlite’: Mime-‘extra’-light). MimeXlite has the same computational cost as
FedGBO, but 2× the upload cost.

Table 6.5: Maximum accuracy achieved by FedGBO, Mimelite and MimeXlite on
the Shakespeare dataset (95% confidence intervals given in brackets).

Dataset FedGBO Mimelite MimeXlite

K = 10
RMSProp 55.4 (±0.1) 54.8 (±0.2) 55.9 (±0.3)
SGDm 54.6 (±0.3) 56.6 (±0.3) 51.9 (±0.3)
Adam 55.6 (±0.1) 56.6 (±0.2) 52.8 (±0.2)

K = 50
RMSProp 56.8 (±0.1) 56.7 (±0.2) 55.9 (±0.1)
SGDm 57.1 (±0.1) 57.2 (±0.2) 50.4 (±0.3)
Adam 56.4 (±0.2) 56.2 (±0.1) 52.5 (±0.2)

Table 6.5 shows that the performance of MimeXlite is significantly worse than
FedGBO or Mimelite in almost all Shakespeare scenarios. The performance drop
is worst for SGDm and Adam. This is likely due to the high variance of mini-
batch gradients harming the momentum parameters (as used in SGDm and Adam),
but having a lesser impact on RMSProp. FedGBO may ‘get away’ with computing
only minibatch gradients because the optimiser gradients are averaged over the local
steps, helping to lower the variance of the global optimiser gradients (despite these
gradients being biased).
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6.4 Chapter Summary

In this Chapter, the Federated Global Biased Optimiser (FedGBO) algorithm was
proposed, incorporating a set of global statistics for a generic machine learning op-
timiser within FedAvg. FedGBO demonstrates fast convergence rates whilst having
lower communication and computation costs compared to other state-of-the-art FL
algorithms that use adaptive optimisation. It was showed that FedGBO with a
generic optimiser can be formulated as centralised training using a perturbed gra-
dient and optimiser update, allowing analysis of generic centralised optimisers to
be extended to FedGBO. The same convergence rate for FedGBO with SGDm was
achieved as in a recent analysis on centralised SGDm, plus an extra FL-related error
term that decays with η2. An extensive set of comparison experiments were per-
formed using 6 competing FL algorithms (3 of which also use adaptive optimisation)
and 3 different optimisers on 4 benchmark FL datasets. These experiments high-
lighted FedGBO’s highly competitive performance, especially considering FedGBO’s
low computation and communication costs. Practical insights into the choice of
adaptive-FL algorithms and optimisers, and communication and computation trade-
offs within FL were also provided based on the experimental results.



Chapter 7

Conclusion & Future Work

This chapter concludes the thesis by providing first a short summary of contri-
butions, followed by an overview of current limitations to the state-of-the-art and
potential avenues for future research.

7.1 Thesis Summary

Federated Learning (FL) is a recent paradigm within Machine Learning (ML) for
creating ML models from user data in a distributed fashion, without users sharing
their training data with any other party. FL has received huge research interest
from academia and industry due to its potential for privacy-preserving ML. Chap-
ters 3 - 6 presented novel algorithms and theoretical contributions related to FL,
with the broad aims of reducing computation and network-communication costs,
improving the generalisation of FL models across heterogeneous client datasets, and
accelerating model-convergence rates.

Most FL deployments consider a large number of users connected over the in-
ternet, meaning that network communication can be a major training bottleneck.
The basic approach for training FL models in a communication-efficient manner is
performing rounds of model training on clients followed by model communication
and averaging. Chapter 3 presented a new algorithm that adds adaptive optimisa-
tion in order to improve FL’s per-round convergence rate. Adaptive optimisation
increases communication overheads, so novel compression techniques tailored to the
adaptive optimisation algorithm were also proposed. This combination of techniques
was named Communication-Efficient Federated Averaging (CE-FedAvg). Thorough
simulations and testbed results showed that CE-FedAvg can simultaneously reduce
the total communication cost and runtime of training compared to baselines, making
FL more practicable for use in Edge Computing (EC).

In real-world FL, the data possessed by users is highly heterogeneous due to dif-
ferent behaviours and environments. The goal of Personalised-FL is to train unique
models tailored to each user, rather than a single FL model. This may be more use-
ful for deployments where the model(s) are used for on-device inference. Chapter 4
proposes a new Personalised-FL algorithm, Multi-Task Federated Learning (MTFL),
which takes inspiration from the topic of multi-task learning to train unique models
for each FL user, facilitated by model layers that are kept private rather than aver-
aged along with the rest of the FL model. Theoretical analysis suggests that these
personal layers help client models to match the output distributions that would be
produced by purely local training, and extensive experiments show that MTFL can
improve average model performance and reduce the training burden compared to
FL and other Personalised-FL algorithms.
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Performing more local computation in each communication round typically in-
creases the convergence rate of FL and reduces the total communicated data to
reach a given error. However, it usually comes at the cost of increased total compu-
tation, and with diminishing returns compared to centralised training. In Chapter
5, the principle of decaying the amount of work performed by users during FL was
explored. The optimal number of Stochastic Gradient Descent steps performed by
clients each round to maximise the convergence rate was derived for strongly-convex
objectives. Simulated results using representative compute times and communica-
tion rates for the wireless EC scenario show that the total runtime of FL can be
reduced whilst also significantly decreasing the total compute cost.

Many works have also proposed methods for incorporating adaptive optimisa-
tion into FL, however these approaches typically lead to higher computation, mem-
ory and communication costs compared to simpler algorithms. This limits their
practicality for FL in EC using low-powered devices. Chapter 6 proposed the Fed-
erated Global Biased Optimiser (FedGBO) algorithm, which accelerates training
whilst having lower communication, computation and memory overheads compared
to other adaptive-FL algorithms. This is achieved by using adaptive optimiser statis-
tics that are kept constant during the local update loop, which also helps to mitigate
client-drift due to heterogeneous client data. FedGBO’s convergence on nonconvex
objectives was proven, and its empirical performance was demonstrated in a thor-
ough experimental comparison on four benchmark datasets using three different
adaptive optimisers.

7.2 Limitations & Future Work

As FL is a very recent sub-field within ML, there are a lack of realistic benchmarks
that reflect the heterogeneous distribution of data across large-scale sets of users.
Early research including the work in Chapters 3 and 4 took existing popular datasets
such as CIFAR and designed artificial partitions in an attempt to reflect realistic user
data [24]. However, there were no standardised partitioning methods, meaning the
performance of algorithms was difficult to compare, and could be inflated by choosing
splits amenable to the proposed algorithms [61]. Some attempts have been made
to produce representative datasets [99], however many of these still create artificial
partitions of existing datasets, and have yet to be widely adopted. To address this
issue, future works should collect, pre-process and freely publish real-world data from
a variety of FL tasks to make realistic benchmarks that are attractive to researchers.
Datasets that exhibit concept-drift (changing distributions over time) would also be
beneficial to the research community.

Similarly, analytics of real-world FL deployments would be very beneficial for
researchers. A few technical papers of some deployments have been published [8]
which provide insights that can be used to steer future research. These insights
may cover aspects such as varying client participation rates over time, real-world
systems-engineering considerations and directions for novel and useful applications
and problems domains. Businesses may be reluctant to give precise details of de-
ployments for commercial purposes, but inspiring relevant research will help improve
commercial products in the long run.

Furthermore, due to the extremely high rate at which FL papers are being pub-
lished, thorough and impartial comparison works covering multiple algorithms would
be useful for researchers and industry. These survey papers would be aided by the
realistic benchmarks and analytics suggested in the previous paragraphs. Alongside
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comparing individual algorithms, combining elements of different algorithms could
yield novel insights and findings. For example, many FL optimisation algorithms
have been proposed with the aim of increasing per-round convergence rates, whilst
many compression algorithms aim to reduce communication overheads at the cost
of increased convergence rounds. Testing different optimisation and compression al-
gorithms together (similar to the combined approach proposed in Chapter 3) would
yield useful Pareto-optimal solutions on the communication-convergence trade-off,
as has been done for convergence and final accuracy of FL models on convex objec-
tives [30].

As is the case with much of ML, the theoretical progress in FL currently lags
behind the empirical developments. Multiple works have proven that popular FL
algorithms such as FedAvg can converge to a minimum point of convex [28] and
nonconvex [26] objectives, and Chapter 5 proved the benefit of decaying the local
computation over time for strongly-convex objectives. However, in order to prove
dominant iteration complexity compared to simple distributed SGD, previous works
have made additional assumptions or altered client objectives functions, leading to
worse empirical performance or significantly increased computation and communica-
tion [36, 27, 76]. Further work is needed to tighten the converge bounds for popular
and basic algorithms on nonconvex objectives, or to develop new algorithms with
superior theoretical and empirical convergence with low costs.

Whilst FL provides the guarantee that sensitive data does not leave user devices
during training, FL can still be vulnerable to information leakage. For example,
gradient inversion attacks can be used to recreate user data and infer identity by
malicious clients [106] or the server [107]. The MTFL algorithm proposed in Chapter
4 may help to mitigate this problem by reducing the total number of parameters
shared by users, but still does not provide a formal guarantee. Technologies such
as differential privacy and homomorphic encryption can be used to prevent these
problems, but their study within FL has been limited. Their incorporation into
popular FL algorithms should be thoroughly tested and theoretically analysed to
understand the fundamental trade-off between privacy and utility within FL.
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Appendix A

Chapter 5 Supplementary
Material

A.1 Key Lemmas

Previously, Li et al. [28] analysed the per-iteration convergence of FedAvg for µ-
strongly convex functions when using a decreasing stepsize. Their result was the first
to prove convergence for non-IID clients with partial participation. The assumptions
in Chapter 5 are at least as strong as Li et al., so their intermediary result bounding
the distance to the global minimiser when using partial client participation can be
directly used.

Lemma A.1: Given Assumptions 1-4, the expected distance between average client
model x̄t and the global minimiser x∗ is upper-bounded by:

E
[
∥x̄t+1 − x∗∥2

]
≤ (1− ηtµ)E

[
∥x̄t − x2∥2

]
+ η2t

( C∑
c=1

p2cσ
2
c + 6LΓ

+ 8(Kt − 1)2G2 +
C −N

N − 1

4

N
K2

t G
2
)
. (A.1)

Proof: See Appendix B.3 of [28].

Lemma A.2: Given Assumptions 1-4, the sum of expected gradient norms over T
iterations of the average client model x̄t is upper-bounded by:

T∑
t=1

ηtE
[
∥∇F (x̄t)∥2

]
≤ 2κ(κF (x̄0)− F ∗) + κL

( C∑
c=1

p2cσ
2
c + 6LΓ

+ 8(Kt − 1)2G2 +
4

N
K2

t G
2
) T∑

t=1

η2t . (A.2)

Proof : Rearranging Lemma A.1 and then defining for notational convenience:

D =

(
C∑
c=1

p2cσ
2
c + 6LΓ + 8(Kt − 2)2G2 +

C −N

N − 1

4

N
K2

t G
2

)
,

the recursive definition can be written as:

ηtµE
[
∥x̄t − x∗∥2

]
≤ E

[
∥x̄t − x∗∥2

]
− E

[
∥x̄t+1 − x∗∥2

]
+ η2tD. (A.3)
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Using Assumption 1 (L-smoothness), then:

ηtµ

L2
E
[
∥∇F (x̄t)∥2

]
≤ E

[
∥x̄t − x∗∥2

]
− E

[
∥x̄t+1 − x∗∥2

]
+ η2tD. (A.4)

Summing up the T iterations and telescoping the distance terms gives:

µ

L2

T∑
t=1

η2tE
[
∥∇F (x̄t)∥2

]
≤ E

[
∥x̄0 − x∗∥2

]
− E

[
∥x̄T − x∗∥2

]
+D

T∑
t=1

η2t . (A.5)

Using Assumption 1 (L-smoothness) and Assumption 2 (µ-strong convexity) to
bound the distance terms now gives:

µ

L2

T∑
t=1

η2tE
[
∥∇F (x̄t)∥2

]
≤ 2

µ
[F (x̄0)− F ∗]− 2

L
[F (x̄T )− F ∗] +D

T∑
t=1

η2t , (A.6)

which can be simplified by noting that µ ≤ L, so that:

µ

L2

T∑
t=1

η2tE
[
∥∇F (x̄t)∥2

]
≤ 2

µ
F (x̄0)−

2

L
F (x̄T ) +D

T∑
t=1

η2t . (A.7)

Multiplying both sides of the inequality by L2/µ, using the lower-bound F ∗ ≤
F (x̄T ), the definition κ = L/µ, and the fact that C−N

N−1
≤ 1 completes the proof.

A.2 Proof of Theorem 5.1

The bound on gradient norms given in Lemma A.2 uses the index t that denotes the
global SGD step that each client evaluates (irrespective of communication round).
However, FedAvg clients participate in communication rounds. The values of ηt
and Kt are therefore fixed within each communication round. To account for this,
Lemma A.2 can be reindexed using the given communication round r and local step
k: t = I + k, where I =

∑r
i=1Ki. The total number of communication rounds is R,

therefore T =
∑R

r=1Kr. Using this to reindex Lemma A.2:

R∑
r=1

ηr

Kr∑
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E
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4

N
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(
N∑

n=1

p2nσ
2
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(A.8)

Diving both sides through by
∑

r=1 ηrKr:∑R
r=1 ηr

∑Kr

k=1 E [∥∇F (x̄I+k)∥2]∑R
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Using a fixed ηr = η ≤ 1/4L, then the above inequality can be simplified as:∑R
r=1

∑Kr

k=1 E [∥∇F (x̄I+k)∥2]∑R
r=1 Kr

≤ 2κ (F (x̄0)− F ∗)

η
∑R

r=1Kr

+ ηκL

(
N∑

n=1

p2nσ
2
n + 6LΓ

)

+ 16ηκLG2

∑R
r=1 K

3
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Reindexing using the fact that
∑R

r=1Kr = T gives:∑T
t=1 E [∥∇F (x̄t)∥2]

T
≤ 2κ (F (x̄0)− F ∗)

ηT
+ ηκL
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2
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3
r∑R

r=1Kr

]
.

(A.11)

Using min{E [∥∇F (x̄t)∥2]} ≤ E [∥∇F (x̄t)∥2] then completes the proof.

A.3 Proof of Theorem 5.2

Starting from the bound on gradient norms using a constant K and η (8):

min
t
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]
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Taking the first derivative with respect to K gives:
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N

)
G2K. (A.13)

Taking the second derivative with respect to K gives:

d2 min
t
{E [∥∇F (x̄t)∥2]}

dK2
=

4κ(κF (x̄0)− F ∗)

ηWK3

[
|x|
D

+
|x|
U

+ βK

]
+ 2ηκL

(
8 +

4

N

)
G2. (A.14)

Considering (F (x̄0)−F ∗) > 0 and all the constants in (25) are > 0, then inspection
of (25) shows that the second derivative with respect to K is greater than 0, and
hence (23) is convex. Solving d min

t
{E[∥∇F (x̄t)∥2]}/dK = 0 gives Theorem 2.

A.4 Proof of Corollary 5.2.1

As with the proof of Theorem 2, start with the bound on gradient norms using a
constant K and η given in (8):

min
t
{E
[
∥∇F (x̄t)∥2

]
} ≤ 2κ(κF (x̄0)− F ∗)

ηWK

[
|x|
D

+
|x|
U

+ βK

]
+ ηκL

[
C∑
c=1

p2cσ
2
c + 6LΓ +

(
8 +

4

N

)
G2K2

]
. (A.15)



92 Appendix A – Chapter 5 Supplementary Material

Taking the first derivative with respect to η gives:

d min
t
{E [∥∇F (x̄t)∥2]}

d η
=
−2κ(κF (x̄0)− F ∗)

η2WK

[
|x|
D

+
|x|
U

+ βK

]
+ κL

[
C∑
c=1

p2cσ
2
c + 6LΓ +

(
8 +

4

N

)
G2K2

]
. (A.16)

Taking the second derivative with respect to η gives:

d2 min
t
{E [∥∇F (x̄t)∥2]}

d η2
=

4κ(κF (x̄0)− F ∗)

η3WK

[
|x|
D

+
|x|
U

+ βK

]
. (A.17)

Noting that (F (x̄0)−F ∗) > 0 and all the constants in (28) are > 0, then inspection
of (28) shows that the second derivative with respect to η is > 0 and hence (27) is
convex. Solving d min

t
{E[∥∇F (x̄t)∥2]}/dη = 0 yields Corollary 2.1.
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B.1 Proof of Theorems

In the proofs below, unless otherwise specified, the expectation E[·] is over both the
clients selected randomly in each round of FedGBO, and the random sampling of
minibatches in local updates.

B.1.1 Key Lemmas

Lemma B.1 (Bounding the momentum term). Given η̃ = ηK > 0, 0 ≤ β < 1, mt

defined in (6.4) and (6.5), and Assumptions A1-A5, then

E
[
∥mt∥2

]
≤ 2

R2 + η̃2Y

(1− β)2
,

where Y = 18B2L2
(
R2 +G2 + σ2

K

)
.

Proof. Taking any iteration t:

E
[
∥mt∥2

]
= E

∥∥∥∥∥
t−1∑
i=0

βi(gt−i + et−i)

∥∥∥∥∥
2


≤

(
t−1∑
i=0

βi

)
t−1∑
i=0

βiE
[
∥gt−i + et−i∥2

]
≤ 1

1− β

t−1∑
i=0

βiE
[
∥gt−i + et−i∥2

]
≤ 2

1− β

t−1∑
i=0

βi
(
E
[
∥gt−i∥2

]
+ E

[
∥et−i∥2

])
≤ 2

E [∥gt−i∥2] + E [∥et−i∥2]
(1− β)2

≤ 2
R2 + η̃2Y

(1− β)2
.
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Here, the first inequality comes from Jensen, the third inequality is from Cauchy-
Schwarz and the linearity of expectation, and the last inequality from Assumption
3 and the definition of Y .

Lemma B.2 (bounding the negative term of the Descent Lemma). Given η̃ =
ηK > 0, 0 ≤ β < 1, mt defined in (6.4) and (6.5), and Assumptions A1-A5, then

E[∇F (xt−1)
⊤mt] ≥

1

2

t−1∑
k=0

βkE
[
∥∇F (xt−k−1)∥2

]
− η̃2Y

2(1− β)
− 2η̃Lβ(R2 + η̃2Y )

(1− β)3
.

where Y = 18B2L2
(
R2 +G2 + σ2

K

)
.

Proof. To ease notation, denote Gt = ∇F (xt−1) and ct = gt + et:

G⊤
t mt =

t−1∑
k=0

βkG⊤
t ct

=
t−1∑
k=0

βkG⊤
t−kct +

t−1∑
k=0

βk(Gt −Gt−k)
⊤ct. (B.1)

Due to F being L-smooth (Assumption 4), and using the relaxed triangle inequality:

∥Gt −Gt−k∥2 ≤ L2

∥∥∥∥∥
k∑

l=1

η̃mn−l

∥∥∥∥∥
2

≤ η̃2L2k
k∑

l=1

∥mn−l∥2. (B.2)

Using (λx − y)2 ≥ 0,∀x,y ∈ Rd, λ > 0, and hence ∥xy∥ ≤ λ
2
∥x∥2 + 1

2λ
∥y∥2, then

x = Gt −Gt−k, y = ct, λ = 1−β
kη̃L

, can be substituted into (B.3):

G⊤
t mt ≥

t−1∑
k=0

βkG⊤
t−kct−k −

t−1∑
k=1

βk

2

((
(1− β)η̃L

k∑
l=1

∥mt−l∥2
)
+

η̃Lk

1− β
∥ct−k∥2

)
.

(B.3)
Taking the expectation of both sides gives:

E[G⊤
t mt] ≥

t−1∑
k=0

βkE[G⊤
t−kct−k]− η̃L

t−1∑
k=1

βk

2

((
(1− β)

k∑
l=1

E[∥mt−l∥2]
)

+
k

1− β
E[∥ct−k∥2]

)
. (B.4)

Bounding the E[G⊤
t−kct−k] term, this time using (G⊤

t−k + et−k)
2 ≥ 0, and hence

G⊤
t−ket−k ≥ −1

2
(∥Gt−k∥2 + ∥et−k∥2), and linearity of expectation:

E[G⊤
t−kct−k] = E

[
G⊤

t−k(gt−k + et−k)
]

= E
[
G⊤

t−kgt−k

]
+ E

[
G⊤

t−ket−k

]
≥ E

[
∥Gt−k∥2

]
− 1

2
E
[
∥Gt−k∥2 + ∥et−k∥2

]
=

1

2

(
E
[
∥Gt−k∥2

]
− E

[
∥et−k∥2

])
. (B.5)
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Using Cauchy-Schwarz, linearity of expectation, (6.3), Assumption 3, and the defi-
nition of Y :

E[∥ct−k∥2] = E[∥gt−k + et−k∥2]
≤ 2(E[∥gt−k∥2] + E[∥et−k∥2])
≤ 2(R2 + η̃2Y ). (B.6)

Then inserting Lemma B.1, (B.5) and (B.6) into (B.4) gives:

E[G⊤
t mt] ≥

t∑
k=0

βk

2

(
E[∥Gt−k∥2]− E[∥et−k∥2]

)
− η̃L

t−1∑
k=1

βk

2

((
(1− β)

k∑
l=1

2
R2 + η̃2Y

(1− β)2

)
+

k

1− β
2(R2 + η̃2Y )

)

=
t∑

k=0

βk

2
E[∥Gt−k∥2]−

t∑
k=0

βk

2
E[∥et−k∥2]

− η̃L(R2 + η̃2Y )
t−1∑
k=1

βk

(( k∑
l=1

1

(1− β)

)
+

k

1− β

)

=
t∑

k=0

βk

2
E[∥Gt−k∥2]−

η̃2Y

2(1− β)
− 2η̃L

1− β
(R2 + η̃2Y )

t−1∑
k=1

βkk. (B.7)

Using Lemma B.2 from [2], which states that, for 0 < a < 1, i ∈ N, Q ≥ i:

Q∑
q=i

aqq ≤ a

(1− a)2
, (B.8)

then (B.7) becomes:

E[G⊤
t mt] ≥

1

2

t−1∑
k=0

βkE[∥Gt−k∥2]−
η̃2Y

2(1− β)
− 2η̃Lβ(R2 + η̃2Y )

(1− β)3
. (B.9)

Substituting the definition of Gt completes the Lemma.

B.1.2 Proof of Theorem 6.1

Theorem 6.1 (Convergence of FedGBO using SGDm) Let the assumptions A1-A5
hold, the total number of communication rounds T > (1 − β)−1, η̃ = Kη > 0, 0 ≤
β < 1, and using the update steps given by (6.4) and (6.5), then:

E[∥∇F (xt)∥2] ≤
2(1− β)

η̃T̃
(F (x0)− F ∗) +

T η̃2Y

T̃
+

2T η̃L(1 + β)(R2 + η̃2Y )

T̃ (1− β)
,

where T̃ = T − β
1−β

, and Y = 18B2L2
(
R2 +G2 + σ2

K

)
.

Proof. Using the L-smoothness of F , and the update rules from (6.4) and (6.5), the
Descent Lemma of FedGBO with SGDm is given by:

F (xt) ≤ F (xt−1)− η̃G⊤
t mt +

η̃2L

2
∥mt∥2. (B.10)
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Taking expectations of both sides, and inserting Lemma B.1 and Lemma B.2 into
(B.10):

E[F (xt)] ≤ E[F (xt−1)]−
η̃

2

t−1∑
k=0

βkE[∥Gt−k∥2]

+
η̃3Y

2(1− β)
+

2η̃2Lβ(R2 + η̃2Y )

(1− β)3
+

η̃2L(R2 + η̃2Y )

(1− β)2

= E[F (xt−1)]−
η̃

2

t−1∑
k=0

βkE[∥Gt−k∥2] +
η̃3Y

2(1− β)

+
η̃2L(1 + β)(R2 + η̃2Y )

(1− β)3
. (B.11)

Rearranging (B.11), summing over the iterations t = 1, · · · , T and telescoping:

η̃

2

T∑
t=1

t−1∑
k=0

βkE
[
∥Gt−k∥2

]
≤ F (x0)− E [F (xT )] +

η̃3TY

2(1− β)

+
η̃2LT (1 + β)(R2 + η̃2Y )

(1− β)3
. (B.12)

Proceeding as [2] do to bound the left hand side of (B.12), introduce the change of
index i = t− k:

η̃

2

T∑
t=1

t−1∑
k=0

βkE
[
∥Gt−k∥2

]
=

η̃

2

T∑
t=1

t∑
i=0

βt−iE
[
∥Gi∥2

]
=

η̃

2

T∑
i=0

E
[
∥Gi∥2

] T∑
t=1

βt−i

=
η̃

2(1− β)

T∑
i=1

(
E
[
∥∇F (xi−1)∥2

]
(1− βT−i+1)

)

=
η̃

2(1− β)

T−1∑
i=0

(
E
[
∥∇F (xi)∥2

]
(1− βT−i)

)
. (B.13)

(B.13) shows a non-normalised iteration probability as defined in Section 6.2.2 (P[t =
j] ∝ 1− βT−j). The normalisation constant for summing to 1 is:

T−1∑
i=0

1− βT−i = T − β
1− βT

1− β
≥ T − β

1− β
= T̃ . (B.14)

(B.14) can then be used in (B.13) to obtain:

η̃

2

T∑
t=1

t−1∑
k=0

βkE
[
∥Gt−k∥2

]
≥ η̃T̃

2(1− β)
E
[
∥∇F (xt)∥2

]
. (B.15)

Inserting (B.15) into (B.13), and using the lower bound F (x) ≥ F ∗ completes the
proof:

E[∥∇F (xt)∥2] ≤
2(1− β)

η̃T̃
(F (x0)− F ∗) +

T η̃2Y

T̃
+

2T η̃L(1 + β)(R2 + η̃2Y )

T̃ (1− β)2
.
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B.2 Computation Costs of FL Algorithms

The total number of Floating Point Operations (FLOPs) required on average to
compute the local update of the FL algorithms studied in Chapter 6 were deter-
mined. Tables B.2 and B.3 shows these values for K = 10 and K = 50 local steps,
respectively. The total FLOPs were calculated as the sum of FLOPs required to com-
pute K minibatch gradients [108] and update the local model using the algorithm’s
optimisation strategy. The Mimelite algorithm also requires computing full-batch
gradients. The cost of work on the server as it is represents a small fraction of
the total, and in FL the server is assumed to have arbitrarily high compute power
compared to client devices. FLOPs are calculated from an algorithmic standpoint,
and do not consider optimisations such as vectorised operations, memory access etc.

The total FLOPs for a single forward-backward pass were computed using the
Thop library (https://github.com/Lyken17/pytorch-OpCounter/), and the for-
mula from the following OpenAI page: https://openai.com/blog/ai-and-compute/.

Local update steps involve computing gradients and applying them to the local
model, plus any updates to a local optimiser if used. For example, for FedGBO
using RMSProp, Table 6.1 shows that there are 5 operations per step that act on
either g or v: (+), (× − η), (÷), (

√
v), (+ϵ). MFL with RMSProp has 8 total

operations: those 5 plus 3 to track the local v values. FedGBO, Mime and MFL all
have 4 operations per SGDm update, as MFL’s local tracking can be incorporated
into the model update. FedAvg, AdaptiveFedOpt and FedMAX use vanilla SGD
with 2 operations: (+), (× − η). FedProx uses 5 operates due to the proximal
update. Finally, Mimelite adds the cost of computing full-batch gradients.

The formulas for computing the FLOPs for the local update of each algorithm,
N , are therefore as follows:

NFedGBO = K(B(fwd + bwd) + CFixed|x|),
NMimelite = K(B(fwd + bwd) + CFixed|x|)

+ n(fwd + bwd),

NMFL = K(B(fwd + bwd) + CMoving|x|),
NAdaptiveFedOpt = K(B(fwd + bwd) + 2|x|),

NSGD = K(B(fwd + bwd) + 2|x|),
NFedProx = K(B(fwd + bwd) + 5|x|), (B.16)

where K is the number of local updates, B is the minibatch size, (fwd + bwd) are
the FLOPs required to compute the forward plus backward passes on one sample,
C∗ is the number of operations for the type of local adaptive optimisation (see Table
B.1), |x| is the number of model parameters, and n is the average number of client
samples, as shown in Table 6.3.

Table B.1: Number of operations per local step of fixed or moving local optimisers.
Algorithm CFixed CMoving

RMSProp 5 5
SGDm 5 8
Adam 8 11
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Table B.2: Total average FLOPs (×108) performed per client per round for differ-
ent FL tasks, using different optimisers and FL algorithms: FedGBO , Mimelite ,
MFL using RMSProp, SGDm and Adam. AdaptiveFedOpt, FedAvg and FedMAX
use SGD and FedProx . Values shown for K = 10 local update steps, to 3 signifi-
cant figures.

Task RMSProp SGDm Adam SGD FedProx

CIFAR100
50.2 50.2 50.6
65.7 65.7 66.1 49.8 50.2
50.2 50.6 50.9

Sent140
0.0290 0.0290 0.0320
0.0350 0.0350 0.0365 0.0260 0.0290
0.0290 0.0320 0.0350

FEMNIST
32.2 32.2 32.4
49.0 49.0 49.3 31.9 32.2
32.2 32.4 32.7

Shakespeare
118 118 118
2180 2180 2180 118 118
118 118 118

Table B.3: Total average FLOPs (×108) performed per client per round for differ-
ent FL tasks, using different optimisers and FL algorithms: FedGBO , Mimelite ,
MFL using RMSProp, SGDm and Adam. AdaptiveFedOpt and FedAvg use
SGD. Values shown for K = 50 local update steps, to 3 significant figures.

Task RMSProp SGDm Adam SGD FedProx

CIFAR100
251 251 253
266 266 268 249 251
251 253 255

Sent140
0.145 0.145 0.160
0.150 0.150 0.165 0.130 0.145
0.145 0.160 0.175

FEMNIST
161 161 162
178 178 179 160 161
161 162 163

Shakespeare
592 592 592
2650 2650 2650 591 592
592 592 592


