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The lifetime of the J π = 2+
1 state in 10C was measured using the Doppler shift attenuation method following the

inverse kinematics p(10B, n)10C reaction at 95 MeV. The 2+
1 state, at 3354 keV, has τ = 219 ± (7)stat ± (10)sys fs,

corresponding to a B(E2) ↓ of 8.8(3) e2 fm4. This measurement, combined with that recently determined for
10Be [9.2(3) e2 fm4], provides a unique challenge to ab initio calculations, testing the structure of these states,
including the isospin symmetry of the wave functions. Quantum Monte Carlo calculations using realistic two- and
three-nucleon Hamiltonians that reproduce the 10Be B(E2) value generally predict a larger 10C B(E2) probability
but with considerable sensitivity to the admixture of different spatial symmetry components in the wave functions
and to the three-nucleon potential used.
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I. INTRODUCTION

A new generation of ab initio calculations based on realistic
nucleon-nucleon forces has deepened our understanding of
how nuclei work. Comparison of their predictions to precise
new experimental data [1–3] has guided improvements in
the calculations, both in the computational methods used
and in the underlying Hamiltonians. Electromagnetic decay
rates have already proved to be surprisingly sensitive for
probing three-body forces [4]. In this paper we examine mirror
symmetry in nuclei, comparing 10Be to 10C, the lightest T = 1
mirror pair for which bound excited states exist. We have
precisely measured the B(E2; 2+

1 → 0+
1 ) from the only bound

state in 10C and compared it to its analog in 10Be to probe the
subtleties of the symmetry. The experimental result is difficult
to reproduce using our Green’s function Monte Carlo (GFMC)
method. A variety of calculations have been performed in order
to better understand the issues.

Conceptually, the A = 10 mirror nuclei are interesting.
10
4 Be6 can be thought of as two α particles with isospin T = 0,
bound to a correlated pair of s-wave neutrons, which are
usually outside the α clusters. Similarly 10

6 C4 consists of two
α particles surrounded by a loosely bound pair of protons.
Naively one might expect the two protons to result in a bigger
B(E2) value for 10C than for 10Be. For example, a simple
classical isoscalar liquid drop model [5] is driven by charge:
The carbon isotope has a larger quadrupole moment (∼Z) and
the decay strength is expected to be larger in 10C compared to
10Be by a factor (6/4)2 = 2.25. In contrast, simple shell models
[6,7] always have properly constructed quantum-mechanical
wave functions for states and allow the electromagnetic decay
to be separated into isoscalar and isovector components. For
the A = 10 system, the isovector contributions are predicted to
be small and symmetric and act to enhance the decay in 10Be
and suppress it in 10C, resulting in a 10C decay that should
be ∼10% lower than that in 10Be. The relative B(E2) values
in 10C and 10Be thus represent an interesting test of nuclear

modeling and of the isospin dependence of electromagnetic
decays.

Within the A = 10 system, 10C is the more exotic partner. It
has only one bound excited state, with Jπ = 2+, at 3354 keV.
It becomes unbound at 4006 keV at which point it can
disintegrate into 9B + p. Its mirror partner, 10Be, has six
bound states below a breakup threshold of 6812 keV where the
9Be + n channel opens. The first excited state of 10Be also has
Jπ = 2+ and lies at 3368 keV, a sign that, in excitation energy
at least, these configurations are similar, despite the difference
in binding energy.

A pioneering Doppler shift attenuation method (DSAM)
experiment by Fisher et al. [8] in 1968 was aimed at under-
standing these issues and testing the intermediate-coupling
shell model predictions by measuring the decay rates from
the first excited states in 10C and 10Be. However, the DSAM
technique was new and only ∼20% precision could be
achieved. 10C was found to be slightly more collective, but
not in glaring disagreement with the shell model, given the
large experimental uncertainties. We have recently remeasured
the lifetime of the 2+

1 state in 10Be [4] and determined
B(E2; 2+

1 → 0+
1 ) = 9.2(3) e2 fm4. Comparing this with the

value B(E2; 2+
1 → 0+

1 ) = 12.2 ± 1.9 e2 fm4 measured by
Fisher et al. for 10C still supports a larger B(E2) rate in
10C. However, the carbon value has substantial experimental
uncertainties, so now, with far superior experimental tools and
much refined theory, we can readdress this interesting problem
at a level of precision which should provide stringent tests of
ab initio calculations.

II. EXPERIMENT

The 2+
1 state in 10C was populated in the inverse kinematics

p(10B, n)10C reaction. Beams of 10B ions of ∼1 pnA and
95 MeV were produced by the ATLAS accelerator at Argonne
National Laboratory. Targets consisted of thin layers of CH2 on
thick backings of copper and gold. 10C nuclei recoiling along
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the beam direction were selected by the Argonne Fragment
Mass Analyzer (FMA) [9] positioned 90 cm downstream of the
target and subtending 1◦ around the beam direction. The 10C
nuclei were produced at recoil velocities of β = v/c ∼ 13%
and emerged from the backing target layer with β ∼ 10%. To
satisfy the FMA energy acceptance window, the recoils had to
be further slowed down to β ∼ 8%. This was achieved through
a series of titanium degrader foils placed at the entrance to the
FMA. 10C ions with q = 6+ were transported to the focal plane
while most noninteracting beam particles were rejected by the
FMA. The selection of q = 6+ ions was very effective for
suppressing scattered beam particles. The transmitted ions first
passed through two Parallel Plate Avalanche Counter (PPAC)
detectors before being stopped 50 cm behind the focal plane
in a 30-cm-deep, two-electrode ionization-chamber operated
at 50 torr. γ rays were detected with the Gammasphere
array [10] consisting of 100 Compton-suppressed High Purity
Germanium (HPGe) detectors in 16 azimuthally symmetric
rings from θ = 34◦ to 163◦ relative to the beam direction.

Figure 1(a) shows a typical energy loss (�E) versus total
energy (Etot) spectrum obtained from the ionization chamber.
The locus with the largest �E (solid red circled region)
corresponds to direct population of the 2+

1 state in 10C. The
large spread in total energy for these recoils stems from energy
scattering and straggling in the backing and degrader foils. The
wide strip of counts below the 10C recoils is identified with
10B scattered beam. The pressure in the ionization chamber
was not sufficient to fully stop the highest energy 10C recoils,
resulting in a wraparound feature (punch through) in the �E
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FIG. 1. (Color online) (a) Energy loss versus total energy plot of
data from the ionization chamber behind the focal plane of the FMA.
The solid red circled region is direct population of the 2+

1 state in 10C.
Data were obtained with a 116 μg/cm2 CH2 target on a 23.8 mg/cm2

copper backing. (b) γ -ray spectrum obtained by gating on the excited
10C recoils.

versus Etot plot. Direct population of the ground state of 10C is
also observed, although owing to the punch through, it appears
in the same �E versus Etot area as the 10B scattered beam. The
γ -ray spectrum obtained by gating on the excited 10C recoils
is given in Fig. 1(b), showing only the 3354-keV, 2+

1 → 0+
1

transition in 10C.
The current setup offers several advantages over the prior

DSAM measurement performed with a regular-kinematics
reaction. To compare the present technique with a normal
kinematics DSAM measurement, the original Fisher et al.
experiment [8] was also repeated with Gammasphere. This
regular-kinematics experiment was performed with a 9.5-MeV
proton beam incident on a 10B target followed by a gold
backing. γ rays were detected with the Gammasphere array.
A comparison of the spectra obtained from the regular-
and inverse-kinematics reactions is given in Fig. 2 for the
same angle group (θ = 130◦) in Gammasphere. The regular
kinematics spectrum [Fig. 2(a)] is very complicated, with
considerable background from reactions of the high-energy
protons on the 10B target, the gold backing, and scattering
in the target chamber. In contrast, requiring detection of a
recoiling 10C residue by the FMA almost entirely suppresses
the background [Fig. 2(b)], providing a spectrum where only
the 2+

1 → 0+
1 transition in 10C is observed. Selection of

the 10C recoils with the FMA also provides a well-defined
angle between the recoil velocity vector and the direction
(and subsequent detection) of the γ rays. Recoil detection
comes at the cost of poorer statistics; however, with almost no
background the peak centroids can be reliably determined to
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FIG. 2. Comparison of γ -ray spectra for 10C decays from DSAM
in (a) regular and (b) inverse kinematics. Both spectra correspond
to the θ = 130◦ angle group in Gammasphere. Reaction details are
included in the figure.
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1–2 keV. With the regular-kinematics reaction, the recoiling
10C ions have a kinetic energy of a few MeV, an energy regime
where stopping powers are poorly determined and the γ -ray
energy shifts are only a few keV. In the inverse-kinematics
reaction, 10C nuclei were produced at a very high recoil energy
(E ∼ 80 MeV). This allows the measurement to be performed
in a velocity regime where the stopping is 99.99% electronic
and most precisely known. The high recoil velocity also
produces large Doppler shifts. With the set of Gammasphere
angles, the range of forward-shifted to backward-shifted peaks
spanned more than 800 keV.

In a DSAM measurement the lifetime is derived from the
difference between production and emission velocities. For the
inverse-kinematics reaction, the distribution of recoil products
is very forward peaked and there are two solutions for residues
moving along the initial beam direction, depending on the
direction of the emitted neutron. For this particular experiment,
recoils emitted at 0◦ relative to the beam direction can have
recoil velocities of 75 or 82 MeV. The FMA was always set to
transmit the higher-energy recoil group. The initial β value at
production is first measured using a self-supporting CH2 target
and correcting for the small energy loss in the target. Degrader
foils of the same thickness as the backed-target experiments
were used to replicate the DSAM measurements and ensure
that the FMA entrance conditions were the same for both the
self-supporting and the backed targets.

To determine the average velocity of the recoils at the time
of γ -ray emission, the centroid of the 3354-keV, 2+

1 → 0+
1

transition was determined for each of the 16 Gammasphere
angle rings. In Fig. 3(a), the measured centroid is plotted
as a function of cos(θ ) for a 105 μg/cm2 CH2 target on
a 23 mg/cm2 copper backing. A fit to these data yields an
average β at the time of γ -ray emission of β = 0.124 22(24).
For reference, a lifetime of τ ∼ 0 would give β ∼ 0.131
(the production velocity) while an infinitely long lifetime
would yield β ∼ 0.099 (velocity after emerging from the
backing layer). The measured centroids are compared to
the relativistic Doppler shift formula using the best fit β in
Fig. 3(a). Figure 3(b) illustrates the quality of the fit more
clearly, by dividing the measured centroids by the function√

1 − β2/[1 − β cos(θ )]. Included are lines for β values for
the best fit β (β = 0.124 22, corresponding to τ = 224 fs),
production (β = 0.131, corresponding to τ = 0), and that
which would correspond to the previous lifetime value (β =
0.1265 for τ = 154 fs).

To determine the lifetime of the level of interest from the
measured mean β value, the thicknesses of the target and
backing layers must be known, as this defines the relevant
transit time scale. The backing foils were prepared by rolling
gold and copper foils to the appropriate thickness. Targets
were then prepared by dipping the backing foils into solutions
of xylene and C2H2 and subsequently evaporating the xylene.
The thin layer of CH2 on a very thick backing of gold or
copper made a precise measurement of the CH2 thickness by a
traditional α-gauging method impossible. The CH2 thickness
was determined by comparing the yield (number of 10C recoils
detected in the ionization chamber, per beam intensity, per
time) of a backed target relative to a commercially made self-
supporting CH2 target of known thickness. A series of degrader
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FIG. 3. (Color online) (a) Measured centroids of the 3354-keV
transition for each Gammasphere angle group. The solid curve shows
the result of the relativistic Doppler shift formula taking the best-
fit value of β. (b) Similar to (a) but normalized to

√
1 − β2/[1 −

β cos(θ )]. Lines include the best fit value of β (solid line), maximum
β value allowed by the reaction kinematics (dashed line), and the
β value corresponding to the previous lifetime measurement (dotted
line).

foils, identical to the target backing, were placed behind the
self-supporting CH2 target to achieve the same energy recoils
into the FMA as with the backed targets. The thickness of the
CH2 layer on the backed targets was measured before and after
the DSAM measurement via a relative yield measurement, as
described above. An approximately 20% reduction in yield was
observed. For the DSAM analysis, the average of the thickness
before and after the measurement was used and the full range
of thickness taken as the uncertainty. As the target layers are
thin and do not provide much stopping and the ions move very
quickly through them, the target thickness does not contribute
greatly to the systematic uncertainty. The characterization of
carbon and boron ions slowing in CH2, copper, and gold was
taken from the SRIM [11] and MSTAR [12] packages. The two
models differ in stopping powers on the order of 3% in the
relevant velocity regime. These differences were incorporated
into the systematic uncertainty.

The lifetime of the 3354-keV level was measured in
five separate experiments. The target characteristics and the
extracted lifetimes are summarized in Table I. The weighted
mean value is τ = 219 ± (7)stat ± (10)syst fs, which implies
B(E2; 2+

1 → 0+
1 ) = 8.8(3) e2 fm4. This lifetime is substan-

tially longer than the previous value obtained by Fisher et al.
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TABLE I. Mean lifetimes from different target and backing
combinations determined for the 3354-keV level in 10C. The CH2

thicknesses are the average of the measured values at the beginning
and end of each DSAM measurement.

Target (CH2) Backing τ �τstat

(μg/cm2) (mg/cm2) (fs) (fs)

105 23.0 Cu 224 ±8
150 31.0 Au 215 ±10
170 23.8 Cu 219 ±13
80 24.0 Au 198 ±18
300 14.9 Au 216 ±23

[8]. Figure 4 gives a comparison of the current measurements
(solid symbols) and those of Ref. [8] (open symbols). Clearly,
the data are now much better constrained for investigating the
symmetry of the wave functions, but theoretical guidance is
needed to infer the meaning of the result.

III. THEORY

Empirically, assuming charge symmetry for the wave
functions, the transition strengths can be written as

B(E2) = [M(E2)]2/5 = [A + BTz]
2, (1)

where M(E2) is the reduced matrix element and we use
the convention that Tz = + 1

2 for the neutron. The new 10Be
and 10C data can be used to infer that the isoscalar term is
dominant, A = 3.00(1) e fm2, while the isovector term is
much smaller, B = 0.03(3) e fm2, a 1% effect. In conventional
shell-model calculations, isospin enhancements or effective
charges, ε(T ) are introduced to account for effects such as
core polarization: A = A′ε(0) and B = B ′ε(1), where A′ and
B ′ are constants derived for a particular wave function. Very
early shell model calculations of Cohen and Kurath [6,13] for
the mass 10 system gave predictions for B(E2) strengths in the
form of Eq. (1). These are included in Fig. 4 (solid black line).

FIG. 4. (Color online) B(E2; 2+
1 → 0+

1 ) transition strengths (in
e2 fm4) for 10C and 10Be. Open symbols are the results of Fisher
et al. [8], while solid symbols are the current work and the recent
measurement of Ref. [4]. Solid and dashed lines are shell model
calculations using different values for effective charges.

These p-shell, mirror-symmetric wave functions provide the
correct slope for describing the transition strengths between
10C and 10Be, however, overestimate the overall magnitude
(Fig. 4) owing to the use of very simple isoscalar and isovector
enhancements, ε(0) = 2 and ε(1) = 1. Using isoscalar and
isovector enhancements now broadly accepted for p-shell
calculations [14,15], ε(0) = 1.7 and ε(1) = 0.6, one obtains
10Be B(E2; 2+

1 → 0+
1 ) = 9.7e2 fm4 and 10C B(E2; 2+

1 →
0+

1 ) = 9.1 e2 fm4. These calculations are included in Fig. 4
(dashed red line).

Clearly, the simple shell model does an excellent job of
reproducing both the trend in B(E2) values between 10C
and 10Be, as well as the absolute magnitude. While this is
a testament to the predictive power of the shell model, it is
perhaps not surprising as the Hamiltonian has been tuned to
reproduce the energies of p-shell nuclei and the effective
charges are fitted to B(E2) data. Furthermore, while the
results tend to suggest mirror symmetry in the wave functions
of 10C and 10Be, a chance cancellation of subtle effects
cannot be ruled out. Mirror symmetry in the shell model
calculations implies a dominant isoscalar term along with
nearly zero isovector contributions to the B(E2) strengths.
With the present set of data and shell-model calculations,
one cannot rule out the possibility that the isoscalar term
actually differs in 10C and 10Be, but that the differences are
offset by varying contributions to the isovector component. To
investigate these different scenarios in more detail, we turn to
more sophisticated ab initio models based on “bare” forces
constrained by NN scattering data and the binding energies of
light nuclei.

The variational Monte Carlo (VMC) and GFMC methods
have been very useful in improving our understanding of
light nuclei [16,17] and successful in reproducing the electric
quadrupole collectivity in 10Be, without resorting to the use
of any effective charges. Using realistic two- and three-
body potentials (including explicit charge-symmetry-breaking
terms), this is a good approach for exploring 10C and the
symmetry of the A = 10 wave functions.

The details on the GFMC method of calculating transition
strengths are given in Ref. [18]. Here, we outline some aspects
relevant to the current discussion. The VMC calculations use
trial wave functions containing noncentral two- and three-body
correlation operators acting on an antisymmetrized one-body
wave function, 
(JMT Tz), which determines the quantum
numbers of the state being computed. The 
(JMT Tz) wave
function is expanded in LS-basis functions [17]:


(JMTTz) =
∑

LS[n]

β(2S+1L[n], JTTz)
(2S+1L[n], JMTTz),

(2)

where the amplitudes β(2S+1L[n], JT Tz) are found from
a diagonalization of the Hamiltonian. For 10Be, we con-
struct states from the three highest spatial symmetries as
denoted by the Young diagram [n] (see Ref. [19]). This
gives three basis functions for the 0+ ground state: 1S[442],
3P[4411], and 3P[433], while the 2+ states have six basis
functions: 1D[442]−, 1D[442]+, 3P[4411], 3P[433], 3F[4411],
and 3F[433]. Note that there are two linearly independent

014312-4



LIFETIME OF THE 2+
1 STATE IN 10C PHYSICAL REVIEW C 86, 014312 (2012)

10Be10B10C
0

2

4

6

8

10

B
(E

2;
 2+

 →
 0

+
) 

 (
e2 f

m
4 )

1S[442]

1D-

1D+

3P[433]

3P
3F

3P[4411]

3P

3F

FIG. 5. (Color online) B(E2) transition strengths (in e2 fm4)
for VMC basis state pairs. Only transitions that conserve spatial
symmetry are shown. The legend gives the designation of the 0+

states while the curves are labeled with the 2S+1L of the 2+ states.
The Monte Carlo statistical errors associated with the calculation are
on the order of 10%.

1D[442] basis states; the distinction between them is arbitrary
and we choose to express them as eigenfunctions of the
quadrupole operator, with the subscript indicating the sign
of the quadrupole moment. The VMC E2 matrix element is

M(E2) =
∑

L′S ′[n′],LS[n]

β(2S ′+1L′[n′], J = 0, T = 1, Tz)

×β(2S+1L[n], J = 2, T = 1, Tz)

×〈C
(2S ′+1L′[n′], J = 0, T = 1, Tz)

× ||E2||C
(2S+1L[n], J = 2, T = 1, Tz)〉, (3)

where C denotes the two- and three-body correlations and
there are 3 × 6 contributions to the sum. The isoscalar E2
operator does not change spatial symmetry, so the only big
contributions are those from 1D[442]− or 1D[442]+ to 1S[442],
3P[4411] or 3F[4411] to 3P[4411], and 3P[433] or 3F[433]
to 3P[433] (the C do not conserve the spatial symmetry
so there are small nonzero matrix elements for the other
possibilities). These individual contributions, calculated with
wave functions for the AV18 two-nucleon and Illinois-7 three-
nucleon potentials (AV18 + IL7) [20,21], are shown in Fig. 5
for isospin-symmetric basis states; that is, the parameters in

(2S+1L[n], J = 2,M, T = 1, Tz) are independent of Tz. The
diagonalization of the two 1D[442] states into the quadrupole
basis was done for 10Be and not changed for 10B and 10C.

As can be seen, these isospin-symmetric calculations can
give very different Tz behaviors, depending on the pair
of 2S+1L[n] states being used. In particular, while 10Be is
dominated by the transition with the 1D[442]− component,
10C can have significant contributions from all the spatial
symmetries. Calculations with basis states containing different
variational parameters give very similar results to those in
the figure; we believe that the trends shown result from
the different 2S+1L[n] values of the pairs and thus also
would be obtained with other realistic Hamiltonians and even
for the corresponding harmonic-oscillator shell model states.
This means that the nearly Tz-independent B(E2) strengths
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FIG. 6. (Color online) VMC and GFMC calculations of B(E2)
strengths for the 2+

1 (Q < 0) state assuming isospin symmetric wave
functions. The wave functions were computed for 10Be using the
indicated Hamiltonians. VMC results are shown as open symbols
and dashed lines; GFMC results are solid symbols and solid lines.

obtained in the shell model calculation require a specific
combination of states.

Figure 6 shows VMC and GFMC calculations of B(E2)
values for the 2+

1 (Q < 0) state assuming isospin symmetric
wave functions. The wave functions were computed for 10Be
using the AV18 interaction alone or with the IL2 or IL7
three-body potentials. As shown in Ref. [4], the 2+

1 state
of 10Be has a negative quadrupole moment and a strong
E2 decay to the ground state for all the Hamiltonians. (For
AV18 alone, the energies of the two 2+ states are nearly
degenerate, so we choose to identify the Q < 0 state as the 2+

1
state.) The reduced matrix elements for 10C were obtained by
interchanging protons and neutrons in the 10Be wave functions
and the 10B reduced matrix elements are the average of the 10Be
and 10C; that is, the wave functions are isospin symmetric
with those of 10Be. There is considerable variation in the Tz

behavior of the B(E2) strengths for the different Hamiltonians
in the VMC calculations. This is presumably attributable to
the different β(2S+1L[n], J = 2, T = 1, Tz = +1) amplitudes
from the separate diagonalizations. The GFMC generally
preserves, or even enhances, these different trends, which
suggests a strong sensitivity of the isovector B(E2) to the
three-body force.

Isospin symmetry of the wave functions is certainly only
an approximation. Owing primarily to the increasing Coulomb
potential energy going from 10Be to 10C, the 10C states under
consideration are less bound (0.5 MeV vs 3.5 MeV for the 2+

1
state) and, hence, should be more diffuse. This can be studied
by performing separate calculations for each nucleus. We have
done such calculations for the AV18 + IL7 Hamiltonian. The
one-body parts of the VMC wave functions are solutions of
Woods-Saxon wells plus an average Coulomb potential [17];
the strength of the Coulomb term is proportional to the
number of p-shell protons. Separate diagonalizations were
made for each nucleus, so the β are also different. The GFMC
propagations are still made in a good isospin basis, but the
isoscalar Coulomb potential used reflects the total charge of
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FIG. 7. (Color online) VMC and GFMC calculations of B(E2)
for the lowest (Q < 0) 2+ state with the AV18 + IL7 Hamiltonian.
The wave functions were computed separately for each nucleus using
different VMC correlations and independent GFMC propagation.
VMC results are shown as open symbols; GFMC results are solid
symbols. The dashed lines show the corresponding isospin symmetric
results from Fig. 6.

the nucleus [18]. The results of these calculations are compared
with the isospin-symmetric AV18 + IL7 calculations in Fig. 7.
The independent calculations for 10C and 10B are not very
different from the isospin-symmetric extrapolations from the
10Be results. Unfortunately, the already too large value for the
10C B(E2) is further increased.

In light of the apparent failure of these GFMC calculations
to reproduce the B(E2; 2+

1 → 0+
1 ) transition strength in 10C,

it is important to consider possible shortcomings of the
calculation which could cause the discrepancy. One possibility
is that, with the weaker binding of the 2+

1 state in 10C
compared to 10Be, contributions from beyond the p shell might
become important. In fact, the VMC trial functions already
have a fair admixture of sd-shell and higher components
owing to two-body tensor correlations in the C of Eq. (3)
(see Ref. [16]), and these are further enhanced in the GFMC
propagation. However, to further test this possibility, we
constructed alternative clusterized VMC trial functions with
explicit sd-shell components. These wave functions combine
a 8Be(0+ or 2+) core with two final nucleons in p- or sd-shell
orbitals (with appropriate Coulomb terms), all LS-coupled
to give the appropriate total Jπ . The 0+ (2+) states have
four (seven) p-shell and eight (seven) sd-shell components;
separate diagonalizations for the corresponding β’s are made
for each Tz. For a Hamiltonian containing AV18 and the
Urbana IX (UIX) three-body potential [22], the sd-shell β’s
contribute only 2.5% of the total wave function in the 10Be
0+

1 state, but 21% in the 0+
2 state; these numbers increase to

3.4% and 28.9%, respectively, in 10C. The 2+
1 and 2+

2 states
both have 4% or less sd-shell contributions, with only slightly
greater amounts in 10C than in 10Be. (Interestingly, 96% of
the 2+

1 state has a 8Be(2+) core in this construction, clearly
indicating it is the J = 2 member of the K = 0 rotational
band.) Consequently, inclusion of the sd-shell components
has only a very minor effect on the B(E2) values; in 10Be

using p-shell only components gives B(E2) = 8.6 e2 fm4,
while adding sd-shell components raises it to 9.2 e2 fm4. The
corresponding B(E2) values in 10C are 9.6 and 11.6 e2 fm4,
respectively, showing the same moderate change with Tz as
the AV18 + IL2 and AV18 + IL7 Hamiltonians.

A more likely possibility is simply that the Hamiltonians
tested are not adequate for these transitions. The first priority
in theoretically modeling the nuclear Hamiltonian has been
obtaining good energies for the states in question, both absolute
binding energy of the nucleus and excitation energies of the
higher states. These energies are shown in Table II for the
various Hamiltonians used in the present GFMC calculations,
along with charge radii, quadrupole moments, and the B(E2)
values. The AV18 + IL7 Hamiltonian gives a particularly good
overall reproduction of both absolute binding and excitation
energies. The charge radius for 10Be is also in excellent
agreement with a recent measurement [23]. Table II and Fig. 6
indicate that while the various models tested give rather similar
results for the B(E2) strengths in 10Be, they give a much
more widely varying range of results for 10C. The quadrupole
moments also have far more variation in 10C.

The no-core shell model (NCSM) [24–26] is another ab
initio method that has been used to compute transitions in
A = 10 nuclei. So far, these calculations have been made with
only two-nucleon potentials: Results for the CD-Bonn 2000
(CDB2k) potential [27] are given in Table II. Not surprisingly,
without a three-body force the ground states are significantly
underbound, but the excitation energies are reasonable. NCSM
calculations are generally performed in a harmonic oscillator
basis with a maximum number of excited quanta allowed, so
that radial wave functions tend to fall off too rapidly at large
distances. This is the probable reason for the charge radius for
10Be being too small (especially in light of the underbinding).
Consequently, operators with an r2 dependence such as B(E2)
may converge more slowly than the energy calculations.
Nevertheless, the NCSM results for B(E2) strengths are in
excellent agreement for both the transitions in 10Be. The 10C
is also very good, although there is a large error bar owing to
a difficulty in separating the two 2+ states [25].

A number of other ab initio many-body methods are being
developed, some of which can calculate transitions in the
A = 10 and neighboring nuclei. The no-core Monte Carlo shell
model is currently [28] being applied to both 10C and 10Be. The
fermion molecular dynamics approach [29] has been used to
study energies and densities in a variety of light p- and sd-shell
nuclei using realistic interactions such as AV18. Results for
B(E2) values in beryllium isotopes have been reported in
workshops, but have not yet been published [30]. A similar
many-body method which emphasizes the cluster structure of
light nuclei is the antisymmetric molecular dynamics [31,32]
approach, but it has been used only with much simpler
interactions that are not directly related to NN scattering
data. Coupled-cluster methods [33] are being applied to an
increasing number of light- and medium-mass nuclei, but have
not been used for A = 10 nuclei. Lattice methods have been
used [34] to calculate the ground states of simple light systems,
such as N = Z and α-cluster nuclei, and recently have been
extended to calculate [35] the properties of excited states
in 12C.
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TABLE II. GFMC calculations of the A = 10, T = 1, ground-state energies Egs and excitation energies Ex in MeV for several Hamiltonians
used in this work, plus NCSM results for the CD-Bonn 2000 potential and experimental values. (10B excitations are shown relative to the
0+; 1 isobaric analog.) Also shown are ground-state charge radii in fm, quadrupole moments for the excited states in e fm2, and the B(E2)
transition strengths in e2 fm4. Asterisks denote GFMC results obtained with isospin-symmetric wave functions generated from 10Be (see text).
The numbers in parentheses for the GFMC calculations are Monte Carlo statistical errors; those for the NCSM results are the errors reported
in Refs. [24–26].

AZ Observable NCSM GFMC Expt.

CDB2k AV18 AV18 + IL2 AV18 + IL7

10Be |Egs(0+)| 56.5(5) 50.1(1) 66.4(4) 64.1(3) 64.98
Ex(2+

1 ) 3.6(1) 2.9(1) 5.0(4) 3.4(3) 3.37
Ex(2+

2 ) 4.8(1) 3.0(1) 5.8(4) 5.3(3) 5.96
rc 2.25(5) 2.47(1) 2.33(1) 2.33(1) 2.36(2)

Q(2+
1 ) −5.9(5) −4.1(1) −4.9(1) −6.7(1)

Q(2+
2 ) 5.3(5) 5.8(1) 0.2(1) 4.5(1)

B(E2; 2+
1 → 0+) 9.8(4) 10.5(4) 8.1(3) 8.8(4) 9.2(3)

B(E2; 2+
2 → 0+) 0.2(2) 3.4(2) 3.3(2) 1.8(1) 0.11(2)

10B |E(0+; 1)| 55.3(5) 48.3(3)* 64.6(4)* 62.6(2) 63.01
Ex(2+

1 ; 1) 2.9(4)* 5.0(5)* 3.6(3) 3.42
Ex(2+

2 ; 1) 3.0(4)* 5.8(5)* 5.2(5)
Q(2+

1 ; 1) −5.8(1)* −3.5(1)* −2.7(1)
Q(2+

2 ; 1) 7.9(1)* −2.0(1)*
B(E2; 2+

1 ; 1 → 0+; 1) 6.7(5)* 11.4(5)* 11.4(6)
B(E2; 2+

2 ; 1 → 0+; 1) 8.9(4)* 1.0(1)*

10C |Egs(0+)| 51.9(5) 45.8(3)* 61.7(4)* 60.0(2) 60.32
Ex(2+

1 ) 3.6(1) 2.7(3)* 4.7(4)* 3.2(3) 3.35
Ex(2+

2 ) 4.3 2.8(3)* 5.4(4)* 5.1(5)
rc 2.77(1)* 2.55(1)* 2.65(1)

Q(2+
1 ) −1.1(12) −7.5(2)* −2.1(2)* −2.7(2)

Q(2+
2 ) 10.0(2)* −4.2(2)* −0.9(3)

B(E2; 2+
1 → 0+) 10(2) 3.7(5)* 15.3(6)* 15.3(1.4) 8.8(3)

B(E2; 2+
2 → 0+) 17.0(8)* 0.0(1)* 0.2(1)

IV. CONCLUSIONS

We have performed a precise measurement of the lifetime of
the first excited state in 10C. We have separated, investigated,
and reduced many systematic errors in the Doppler shift
attenuation method to obtain reliable results with less than
5% error. From data on five different targets with varying
thickness of gold and copper backings, we arrive at a lifetime
of τ = 219 ± (7)stat ± (10)sys fs for the 2+

1 state at 3354 keV.
From this result, we find that the electric quadrupole matrix

element in 10C is only 2% different from the corresponding
transition in 10Be. This finding is consistent with traditional
p-shell shell model calculations, especially when modern
effective charges are employed. However, our result has proved
exceptionally difficult to reproduce using GFMC ab initio
calculations. We have investigated many aspects of the cal-
culation. In particular, we have done calculations with explicit
isospin breaking and find these effects are small: The proton
distribution in 10C is calculated to be very similar to the neutron
distribution in 10Be. We have investigated the contributions of
sd-shell occupancy in these wave functions, and again find
the effects small, similar in 10C and 10Be, and insufficient to
explain the discrepancy between calculation and experiment.
It appears that the near-equal matrix elements arise from a

specific interference of single-particle contributions and do
not have a single, simple underlying cause.

The GFMC with modern three-body forces has proved
very successful in reproducing the “static” properties of light
nuclei, such as binding energies of states and rms radii.
Indeed, these properties are what have been used to model
and constrain three-body forces. Dynamic properties, such as
transition rates for γ and β decay, are the current challenge.
By investigating the individual contributions to the B(E2)
transition strengths, we find that while the [442] symmetry
components are the dominant components of the low-lying
states, the precise admixture of the lower symmetries is quite
sensitive to the three-body force. Obtaining the correct mix of
these components in the ground and excited states is crucial
to reproducing the proper variation of the B(E2) with Tz. It
appears that our energetically best force, AV18 + IL7, does
not produce the correct mixing; some modification is needed
which would preserve the energy characteristics, but produce
a better combination of spatial symmetry components. At the
onset of this research it was not clear that electromagnetic
decay rates would be very sensitive to the form of the
three-body forces used. Now it emerges that some of these
rates, carefully measured, may be critical for constraining the
next generation of three-body forces.
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