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ABSTRACT 
 

Nancy Sey: Annotating genetic risk variants to target genes using Hi-C Coupled MAGMA  
(H-MAGMA) 

(Under the direction of Hyejung Won) 
 
 

An outstanding goal in modern genomics is to systematically predict the functional 

outcome of non-coding variation associated with complex traits. To bridge the gap between 

non-coding variation and its functional impact, we developed Hi-C Coupled Multi-Marker 

Analysis of GenoMic Annotation (H-MAGMA), a framework that converts SNP associations 

into gene-level associations based on chromatin interaction profiles to assign variants to their 

target genes. Applying this approach, we identified key biological pathways implicated in a 

wide range of brain disorders and showed its utility in complementing other functional 

genomic resources such as expression quantitative trait loci (eQTL)-based variant annotation. 

We applied H-MAGMA to five psychiatric and four neurodegenerative disorders. We 

identified that H-MAGMA detects risk genes associated with brain disorders. Additionally, 

we identified excitatory neurons as the critical cell types underlying psychiatric disorders 

compared to neurodegenerative disorders. Furthermore, we identified that genes associated 

with psychiatric disorders are expressed during early brain development, while those 

associated with neurodegenerative disorders are expressed in later years. Next, we utilized H-

MAGMA to pinpoint genes associated with cigarette smoking and alcohol use traits. We next 

characterized the underlying biological processes and critical cell types underlying substance 

use traits. We found that pathways including ethanol metabolic process and alcohol catabolic 
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process to be associated with alcohol use traits, while response to nicotinic and 

acetylcholinergic pathways were identified for cigarette smoking traits. Moreover, we 

identified dopaminergic, GABAergic, and serotonergic neurons in the midbrain as relevant 

cell types that may contribute to substance use etiology. Lastly, we provide a detailed 

protocol for generating the H-MAGMA variant-gene annotation file and provide additional 

annotation files for 28 tissues and cell types, with the hope of contributing a resource for 

researchers.
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CHAPTER 1: GENERAL INTRODUCTION 
 

Brain disorders including psychiatric, and substance use disorders are often 

characterized by disruptions in a person’s cognition, mood, and behavior. According to a 

national survey, approximately 1 in 5 Americans aged 12 or older suffered from at least one 

psychiatric or substance use disorder, underscoring the public health significance of 

understanding their etiology1. However, despite their public health and economic burden, 

treatment options for both lack behind other diseases which can be attributed to several 

factors including insufficient understanding of their underlying neurobiology2. It is therefore 

pertinent to investigate the neurobiological mechanisms associated with the various 

psychiatric and substance use disorders to improve insights into novel therapeutic targets.  

 A growing body of evidence suggests that genetic variations in individuals account 

for differences in a diagnosis of psychiatric and substance use disorder, suggesting that the 

genetic contribution to the variability in psychiatric disorders is substantial3. However, 

challenges remain in finding genes that might mediate variations in brain disorders. Genome-

wide Association Studies (GWAS) provide an avenue to identify variations such as Single 

Nucleotide Polymorphisms (SNPs) associated with complex human traits such as psychiatric 

disorders4. Through GWAS, we can identify variations at genetic loci that occur more 

frequently in individuals with a particular trait compared to individuals who do not exhibit 

the trait. Since its introduction, GWAS have vastly advanced our understanding of the 

genetic basis of complex disorders such as Schizophrenia5 and Bipolar disorders6.  However, 

despite this advancement, the biological implications of these variants 
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are not well characterized because the majority of them reside in noncoding regions of the 

genome. Indeed, an estimated 90% of SNPs identified through GWAS reside in noncoding 

regions, including promoter and enhancer regions of the genome with unknown biology, 

suggesting that they might influence gene regulation7.  

 Several techniques have been developed in the field to derive biologically meaningful 

interpretation of GWAS findings. For example, transcriptome-wide association studies 

(TWAS) and summary data PrediXcan (S-PrediXcan) were developed to incorporate GWAS 

and gene expression information to link genetic variants to target genes8,9. Similarly, VEGAS 

was developed to link genetic risk variants to genes of interest based on permutations10. In 

addition to these tools, conventional gene-based analysis from GWAS findings has utilized 

Multi-marker Analysis of GenoMic Annotation (MAGMA) to assign variants identified from 

GWAS to their target genes11. MAGMA is a bioinformatic tool used to convert single 

nucleotide polymorphism (SNP)-level P-values identified from GWAS for traits to gene-

level P-values in order to identify target genes associated with the trait. MAGMA remains 

widely used compared to the aforementioned techniques because the tool is user friendly, 

efficient, and can be run for any trait with available GWAS summary statistics. Despite its 

practical function in identifying target genes associated with traits, MAGMA relies on 

positional mapping, typically linking non-coding variants to the nearest genes. However, 

functional genomic resources consistently point out that the gene regulatory landscape is 

much more complex than the linear genome. For example, distal regulatory elements may 

influence gene regulation via forming three-dimensional (3D) structure of the genome 

(intricate folding of DNA in the nucleus)12, meaning that it is possible for variants to interact 

with distal genes, a characteristic that is not factored into conventional MAGMA. This has 
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necessitated the need for an advanced approach to identify target genes underlying 

psychiatric disorders to fully understand its genetic and biological components. 

 Various techniques exist in the field to study the spatial organization of chromatin in 

cells. Among these include Hi-C genome-wide chromosome capture technique (Hi-C), which 

detects chromatin interaction in the nuclei13. Using Hi-C we can identify regions in the 

genome that physically interact with each other in a 3D space by measuring the frequency of 

interaction of their fragments14,15. This enabled us to improve the gene-based analysis tool to 

fully capture genes important to delineating traits. Thus, the overarching goal of this 

dissertation was to develop a gene-mapping tool based on functional genomics evidence. To 

extend the capacity of MAGMA, we developed Hi-C coupled MAGMA (H-MAGMA), a 

novel gene mapping tool that improves on MAGMA, by annotating non-coding SNPs to their 

target genes based on chromatin structure.  

Introduction of H-MAGMA 

In Chapter 2, we introduce H-MAGMA and provide a rationale for developing the 

tool. We then apply H-MAGMA to several brain disorders including Schizophrenia and 

Alzheimer’s which remain the most burdensome brain disorders worldwide1. Since the 

advancement in genomic studies and promise of GWAS, researchers in psychiatric genomics 

have applied GWAS to several brain disorders and have identified hundreds of loci 

associated with brain disorders16. However, given the importance of non-coding variants, and 

that they make up a large proportion of GWAS findings, linking these loci to genes to derive 

biologically relevant information remains a challenge. Therefore in this chapter, we introduce 

how using a map of chromatin interaction in the brain could be used to detect novel risk 

genes via H-MAGMA by applying it to five psychiatric disorders (Schizophrenia5, Autism17, 
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ADHD18, Major Depressive Disorder19, and Bipolar disorder6) and four neurodegenerative 

disorders (Alzheimer’s disease20, Parkinson’s diseases21, Amyotrophic lateral sclerosis22, and 

Multiple sclerosis23). We further investigate the biology of the risk genes by identifying their 

biological, molecular, and cellular components critical to each disorder.  

Expanding H-MAGMA to substance use disorders 

 In Chapter 3 we use H-MAGMA to produce a coherent analysis of genetic variants of 

cigarette smoking and alcohol use traits. Heritability estimates of substance use ranges from 

40-60%, indicating that genetics plays a crucial role in substance use24. While GWAS of 

cigarette smoking and alcohol use have identified genetic variants associated with substance 

use phenotypes, most of the variants lie in non-coding regions of the genome, making it a 

challenge to detect their associated genes to decipher how they increase vulnerability of 

substance use disorder. Additionally, GWAS have identified both genetic variants associated 

with consumption/use as well as clinical diagnoses of a use disorder. While both informative, 

consumption/use has been shown to somewhat differ from clinical diagnoses of a use 

disorder. For instance, a GWAS on both alcohol consumption and alcohol use disorder 

observed that despite their genetic overlap (genetic correlation = 0.60), alcohol consumption 

and alcohol use disorder exhibited different trait and disease associations25. Therefore, to 

better characterize the functional impact of genetic variants associated with cigarette 

smoking and alcohol use traits, it is pertinent to characterize both consumption/use and a use 

disorder. Thus, Chapter 3 investigates the functional impact of substance use variants. We 

integrate our H-MAGMA framework to GWAS of heaviness of smoking (measured by the 

number of cigarette smoked per day [CPD])26, Nicotine dependence (ND)27, Problematic 

alcohol use (PAU)28, and heavy drinking (measured by the number of drinks per week 
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[DPW])26 to identify genes associated with each trait. Additionally, a rich body of research 

on the neurobiology of substance use has pinpointed the critical role of neurons in 

understanding substance use vulnerability29. Specifically, brain regions including the 

prefrontal cortex, a region that is associated with higher order cognition and executive 

functioning has been shown to influence substance use29,30. Furthermore, prior research has 

shown that when exposed to rewarding stimuli such as a substance of abuse, dopaminergic 

neurons in the midbrain project to other parts of the reward system, resulting in a cascade of 

processes that might result in developing addiction31. Taken together, these findings highlight 

the important role of cortical and dopaminergic neurons in understanding substance use 

vulnerability. Given that gene regulatory mechanisms are highly tissue-specific, we therefore 

use Hi-C datasets from cortical and dopaminergic neurons to delineate the biological impact 

of genetic variations associated with substance use. We describe the characteristics of 

cigarette smoking and alcohol use risk genes by (1) identifying known biological functions 

using gene ontology analysis, (2) identifying specific cell types enriched for each trait, and 

(3) describing shared biological mechanisms between cigarette smoking and alcohol use.  

Expanding H-MAGMA beyond brain cell types 

 Lastly, Chapter 4 builds upon the successes of Chapters 2 and 3 to expand H-

MAGMA beyond brain cell types. In Chapter 2, we introduce H-MAGMA built from bulk 

tissue from the adult and fetal brains. Chapter 3 extends H-MAGMA to specific brain cell 

types including cortical and dopaminergic neurons. Given that the current H-MAGMA files 

are only available for brain cell types, this limits its application to non-brain disorders. Thus, 

to address this deficiency and build a more comprehensive tool to contribute to the field of 

genetics as a whole, Chapter 4 expands H-MAGMA to multiple tissue and cell types 
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including liver, lung, pancreas, and gastric tissue32. Additionally, we provide a detailed 

protocol on how users can develop H-MAGMA for any other tissue or cell types of interest 

using publicly available datasets. 
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CHAPTER 2: H-MAGMA FOR IMPROVED PREDICTION OF BRAIN-DISORDER 
RISK GENES BY INCORPORATING BRAIN CHROMATIN INTERACTION 

PROFILES1 
 
Introduction 
 

Genome-wide association studies (GWAS) have provided insight into the genetic 

etiology of multiple brain disorders. However, extracting biological mechanisms from 

GWAS data is a challenge, which is largely because most common risk variants reside in 

noncoding regions of the genome33. 

MAGMA was initially developed to extract biological insights from GWAS by 

linking risk variants to their cognate genes11. It aggregates single nucleotide polymorphism 

(SNP) associations to gene-level associations while correcting for confounding factors such 

as gene length, minor allele frequency and gene density11. While MAGMA is a powerful tool 

and is broadly used, there is room for improvement. MAGMA assigns SNPs to the nearest 

genes, which has two major pitfalls. First, it is becoming increasingly recognized that 

noncoding SNPs can regulate distal genes via long-range (>10 kb) regulatory interactions, 

whereby distal enhancers are brought into contact with the gene promoter34,35. Second, 

MAGMA does not consider tissue-specific regulatory relationships, whereas disease-risk 

SNPs are enriched in regulatory elements of the disease-relevant tissue36,37. To overcome the 

limitations in MAGMA, we modified the MAGMA approach to create H-MAGMA to assign 

noncoding SNPs to their cognate genes based on long-range interactions 

 
1 Reproduced with permission from Nature Springer. Sey, N.Y.A. et al. A computational tool (H-MAGMA) 
improves prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat. 
Neurosci. (2020) doi:10.1038/s41593-020-0603-0.  
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in disease-relevant tissues measured by Hi-C. H-MAGMA advances conventional 

MAGMA (hereafter referred to as cMAGMA) by incorporating relevant functional genomic 

evidence and allowing developmental-stage-specific and cell-type-specific gene mapping. H-

MAGMA also differs from traditional Hi-C-guided gene mapping, as it employs the genome-

wide mapping capability of MAGMA. While traditional Hi-C-guided gene mapping restricts 

its analysis to genome-wide significant (GWS) loci38, H-MAGMA can leverage signals from 

subthreshold loci that explain a significant proportion of heritability39. 

H-MAGMA was constructed from four classes of brain-derived Hi-C datasets that 

include human cortical tissue across two developmental stages (prenatal and postnatal) and 

two brain cell types (neurons and astrocytes), enabling developmental-specific and cell-type-

specific gene mapping. We applied H-MAGMA to five psychiatric disorders (attention-

deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), schizophrenia 

(SCZ), bipolar disorder (BD) and major depressive disorder (MDD)) and four 

neurodegenerative disorders (amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), 

Alzheimer’s disease (AD) and Parkinson’s disease (PD)) to generate gene-level summary 

statistics (Fig. 2.1). By comparing H-MAGMA with cMAGMA, we found that noncoding 

SNPs often interact with distal genes, thereby necessitating the use of functional genomic 

evidence in assigning SNPs to cognate genes. We also found a significant overlap between 

H-MAGMA and two widely used expression quantitative trait loci (eQTL)-based gene-

mapping tools: Bayesian framework for colocalization (coloc) analyses40 and transcriptome-

wide association studies (TWAS)9. Gene-level association statistics from H-MAGMA 

closely resembled genetic relationships among brain disorders, which enabled subsequent 



 9 

analyses to identify biological pathways, developmental windows and cell types critical for 

each brain disorder. 

Results 

H-MAGMA 

Since our primary goal was to identify neurobiological mechanisms underlying brain 

disorders, we leveraged two Hi-C datasets obtained from human brain tissue—one from the 

developing cortex35 and the other from the adult dorsolateral prefrontal cortex34 (DLPFC)—

to generate gene–SNP pairs that served as an input file for  H-MAGMA (Fig. 2.1a). Exonic 

and promoter SNPs were directly assigned to their target genes based on their genomic 

location, while intronic and intergenic SNPs were assigned to their cognate genes based on 

chromatin interactions (Fig. 2.1a). We also generated a cMAGMA input file that utilized the 

same set of genes and SNPs as H-MAGMA, whereby all intronic and intergenic SNPs were 

annotated by positional mapping and with a generous gene definition that included 35-kb 

upstream and 10-kb downstream of each gene. 

A major source of discrepancy between H-MAGMA and cMAGMA was noncoding 

variants because promoter and exonic SNPs were assigned to the same genes in both 

frameworks. We therefore tested how often intronic and intergenic SNPs were mapped to the 

nearest genes as predicted by cMAGMA. We found that only 20% of intronic SNPs and 5% 

of intergenic SNPs interact with nearest genes based on Hi-C (Fig. 2.1b; Fig 2.2a). Because 

Hi-C-based gene mapping cannot capture proximal interactions within 10 kb35, we 

additionally used an eQTL resource from the human DLPFC34, from which we found that 

56% of intronic SNPs and 76% of intergenic SNPs did not show any association with nearest 

genes (Fig. 2.2a). The majority of noncoding SNPs associated with nearest genes showed 
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additional association with distal genes, as 80% of intronic SNPs and 87% of intergenic 

SNPs showed associations with distal genes (Fig. 2.1b). These results highlight the 

importance of using functional genomic evidence in assigning noncoding SNPs to genes. 

We reasoned that H-MAGMA would provide neurobiologically relevant target genes 

for GWAS by linking noncoding variants to their cognate genes via brain-derived chromatin 

interaction profiles. We therefore applied the framework to nine brain GWAS, including five 

neuropsychiatric disorders and four degenerative disorders (Fig.2.1a). The number of brain-

disorder risk genes (false discovery rate (FDR) < 0.05) was comparable between H-MAGMA 

and cMAGMA (Fig. 2.2b), whereas the number of SNPs assigned per gene was threefold 

higher for cMAGMA (~244 SNPs per gene) than H-MAGMA (~73 SNPs per gene; Fig. 

2.2c). In total, cMAGMA and H-MAGMA linked ~7.4 million and ~4.0 million SNPs to 

genes, respectively (Fig. 2.2d). 

Up to 60% of disorder risk genes were selective to H-MAGMA (genes identified by 

H-MAGMA but not by cMAGMA), which suggests that gene annotation guided by 

functional genomics can help identify novel genes and pathways (Fig. 2.2b). H-MAGMA-

selective genes were significantly enriched for heritability in all nine brain disorders, thereby 

demonstrating the increase in power of H-MAGMA (Fig. 2.1c; Fig.2.2e). 

Using SCZ GWAS as a representative example, we next compared H-MAGMA with 

the eQTL-based gene annotation tools coloc and TWAS. Coloc tests whether GWAS SNPs 

and eQTL in a certain GWS locus share the same causal variant40, whereas TWAS impute 

the genotype–expression relationship based on the eQTL association statistics and derives 

expression–trait associations by correlating the imputed gene expression to the trait41. We 

found that a significant proportion of genes identified by eQTL-based gene mapping were 
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also detected by H-MAGMA (Fig. 2.1d; 74.9% of coloc genes, Fisher’s exact test, odds ratio 

(OR) = 4.34, 95% confidence intervals (CI) = 3.22–5.90, P = 1.76 × 10−26; 72.6% of TWAS 

genes, Fisher’s exact test, OR = 12.14, 95% CI = 10.20–14.49, P = 3.94 × 10−206). H-

MAGMA detected a much larger number of genes that were associated with SCZ, which 

explained a significant proportion of heritability (4.7% of SNPs explained 38.93% of 

heritability, enrichment = 8.23, enrichment P = 7.17 × 10−53). 

Developmental trajectories of risk genes associated with brain disorders 

Since three-dimensional chromatin loops are highly tissue-specific35, it is important to 

decide which Hi-C datasets are appropriate to identify target genes for each disorder. To 

address this, we first measured the heritability enrichment of each disorder using tissue-

specific regulatory elements. Consistent with the previous findings37, psychiatric disorders 

showed strong enrichment in brain tissues, while degenerative disorders lacked brain-specific 

enrichment. Within brain tissue, psychiatric disorders showed stronger heritability 

enrichment in the fetal brain than in the adult brain, which highlights their 

neurodevelopmental origin (Fig. 2.3a). Fetal enrichment was more robust in 

neurodevelopmental disorders such as ADHD and ASD than in adult-onset disorders such as 

BD, SCZ and MDD. 

To confirm that this result was based entirely on regulatory enrichment, we used an 

alternative gene-centric approach. Genes associated with each brain disorder were identified 

based on fetal and adult brain H-MAGMA, and their expression values were compared 

between prenatal and postnatal stages. There was a clear distinction between psychiatric and 

degenerative disorders. Genes associated with psychiatric disorders were highly expressed 

during prenatal stages, while genes associated with degenerative disorders were highly 
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expressed in postnatal brains (Fig. 2.3b, c). The only exception was MS, which displayed 

prenatal enrichment. This distinction between psychiatric and degenerative disorders was less 

clear in cMAGMA: ASD-associated and BD-associated genes were postnatally enriched, 

whereas AD-associated genes did not display postnatal enrichment and ALS-associated 

genes were prenatally enriched (Fig. 2.4). 

Next, we plotted the developmental expression trajectories of brain-disorder risk 

genes (Fig. 2.3b, c). Genes associated with ASD, SCZ and MDD showed remarkably similar 

expression patterns, with a peak at developmental stage 5 (16–19 post-conception week 

(PCW)). BD-associated and ADHD-associated genes gradually increased during the prenatal 

stage, with a peak at developmental stage 6 (19–22 PCW). Developmental stages 5 and 6 

represent mid-gestation, the period during which upper layer neurons are generated and 

neuronal differentiation, including axonogenesis and dendritic arborization, takes place42,43. 

This result highlights mid-gestation as a critical window during neurodevelopment that may 

confer risk to multiple psychiatric disorders, which is consistent with recent results from 

cross-disorder GWAS44,45. Conversely, degenerative disorders showed distinct expression 

trajectories. Genes associated with degenerative disorders, except MS, constantly and 

gradually increased during both prenatal and postnatal stages, which suggests that these 

genes may become more susceptible to damage with aging. This result suggests that there is a 

strong neurodevelopmental predisposition for psychiatric disorders, which contrasts with 

degenerative disorders, which have a postnatal origin. 

Pathways implicated in brain disorders 

To identify biological pathways underlying psychiatric- and degenerative-disorder 

risk, we conducted a gene ontology (GO) analysis on gene-level association statistics from 
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H-MAGMA. We ranked genes based on Z-scores so that genes with higher Z-scores (more 

significantly associated with a given disorder) are located at the top of the list. We then tested 

whether a given gene set is overrepresented at the top of the list by performing an 

incremental enrichment analysis. This approach allowed us to identify biological pathways 

associated with a given trait regardless of the power of GWAS and to characterize the 

biological pathways reflecting the gene set as a whole rather than using arbitrarily defined 

genes with a specific P value threshold. 

All brain disorders showed enrichment for pathways involved in transcriptional and 

translational regulation (for example, transcriptional regulators, RNA splicing, and DNA 

damage and repair pathways; Table 2.1). This is in line with a previous finding that 

transcriptional dysregulation may mediate the risk for developing brain disorders46. Neuronal 

differentiation and neuronal apoptotic pathways were also enriched in all brain disorders. 

Neurogenesis was enriched in the majority of disorders except ASD and BD, which is 

consistent with an increasing number of studies elucidating the role of neurogenesis, 

differentiation and neuronal apoptosis in brain disorders47,48. Unsurprisingly, 

neurotransmitter and synaptic pathways were implicated in multiple brain disorders, which 

supports decades of studies highlighting the importance of synaptic function in psychiatric 

disorders49. 

There were interesting distinctions among brain disorders. For example, all brain 

disorders showed postsynaptic associations, while a selected set of disorders (ADHD, SCZ, 

MDD and MS) also exhibited presynaptic associations. Furthermore, while the majority of 

brain disorders displayed enrichment in glutamatergic signaling, ASD, SCZ and ALS 

displayed enrichment in GABAergic signaling. ASD-associated genes were enriched for 
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acetylcholinergic and serotonergic signaling, which reflects the known biology of ASD50,51. 

SCZ-associated and BD-associated genes were also enriched for acetylcholinergic signaling, 

which supports previous studies reporting that altered cholinergic signaling contributes to 

SCZ and BD pathogenesis35,52. MS-associated genes were enriched for dopaminergic 

signaling, the disruption of which has been associated with immune malfunction in MS53. 

These results collectively highlight synaptic dysfunction in brain disorders, albeit we also 

detected distinctions among disorders based on neurotransmitters and presynaptic and 

postsynaptic associations. 

We observed pronounced immune-related processes for degenerative disorders in 

contrast to psychiatric disorders. In support of this finding, multiple aspects of glial cell 

development were also associated with brain disorders, with stronger enrichment in 

degenerative disorders (Table 2.1). Moreover, all degenerative disorders showed associations 

with genes involved in myelination and oligodendrocyte function, which suggests that there 

is a potential role of oligodendrocytes in neurodegeneration. In line with this, single-cell 

transcriptomic profiles in AD postmortem brains suggested that oligodendrocytes have 

altered molecular profiles54. Together with heritability enrichment, this finding of enriched 

immune response in degenerative, but less so in psychiatric disorders, hints at a possible 

explanation for genetic distinctions between psychiatric and degenerative disorders16. 

Additional interesting findings include amyloid-β enrichment for AD and PD, and tau 

enrichment for MS and PD (Table 2.1), which supports the importance of amyloid-β and tau 

pathology in degenerative disorders55,56. We also observed Wnt/β-catenin pathway 

enrichment for a number of brain disorders, including ASD, SCZ, MDD, PD, MS and ALS. 

Wnt/β-catenin signaling is a key pathway for neurogenesis and cortical pattern specification, 
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and its dysregulation has been observed in several psychiatric disorders57. Notably, genes 

involved in vocalization were associated with ASD, the diagnostic criteria of which include 

impairment in vocalization58. We also identified brain regions (for example, the cortex, the 

hippocampus, the substantia nigra and the hypothalamus) associated with multiple brain 

disorders. This is intriguing, as we used cortical Hi-C data. 

Cell-type specificity  

Brain disorders often exhibit different cellular signatures and vulnerability, which 

highlights the need to identify critical cell types for brain disorders to develop proper 

therapeutic strategies. For example, ASD postmortem brains exhibit cell-type-specific gene 

expression signatures such as upregulation of glial genes and downregulation of neuronal 

genes59. Meanwhile, common variation in SCZ maps onto specific groups of cells, including 

pyramidal neurons and medium spiny neurons60. Finally, microglia are increasingly being 

recognized as a central cell type contributing to the etiology of AD61. 

To identify central cell types that mediate the risk for brain disorders, we next 

assessed cell-type-specific expression profiles of brain-disorder risk genes. One striking 

difference between psychiatric and degenerative disorders was that psychiatric-disorder-

associated genes coalesced in neurons, while degenerative-disorder-associated genes were 

highly expressed in glia (microglia for AD and MS, astrocytes for ALS and PD). Since 

psychiatric disorders showed a neurodevelopmental origin, we also measured cell-type-

specific expression profiles of psychiatric-disorder-associated genes in the developing cortex 

and found convergence onto outer radial glia and excitatory neurons. This selective 

enrichment in excitatory neurons prevailed across development, as adult neuronal expression 
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profiles for psychiatric-disorder-associated genes also indicated excitatory neuronal 

enrichment. 

While cMAGMA gave a similar result to H-MAGMA, there were important 

discrepancies, which included astrocytic expression of ASD-associated genes, lack of 

astrocytic expression of PD-associated and ALS-associated genes and lack of endothelial 

expression of MS-associated genes. Given the growing evidence of astrocyte-mediated 

neurodegeneration in ALS and PD62,63 the emerging role of the blood–brain barrier in MS64 

and the lack of genetic association signals of an astrocytic co-expression network in ASD65 

this result indicates that H-MAGMA can provide cellular etiology that can be missed by 

cMAGMA. 

Cell-type specific gene mapping 

As we detected a remarkable cellular specificity for both psychiatric and degenerative 

disorders, we next sought to identify disorder risk genes in a cell-type-specific manner. To 

this end, we built an H-MAGMA framework based on Hi-C interactions from induced 

pluripotent stem cell (iPSC)-derived neurons and astrocytes66. Neuronal and astrocytic H-

MAGMA data were subsequently used to decode psychiatric- and degenerative-disorder 

GWAS, respectively (Fig. 2.5a). We found that a significant proportion of genes (20–40%) 

were detected in a cell-type-specific fashion. 

Cell-type-specific H-MAGMA recapitulates biological processes, cell-type 

specificities and developmental trajectories of brain homogenate H-MAGMA. For example, 

brain-disorder risk genes derived from cell-type-specific H-MAGMA were involved in 

transcriptional regulation, neurogenesis and synaptic transmission. Meanwhile, degenerative-
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disorder risk genes showed pronounced enrichment for glial development and inflammatory 

responses. 

Cell-type-specific H-MAGMA further recapitulated cellular expression profiles of 

disease risk genes. For example, we observed excitatory neuronal expression of psychiatric-

disorder risk genes, microglial expression of AD-associated and MS-associated genes, and 

astrocytic expression of PD-associated and ALS-associated genes (Fig. 2.5a). As astrocytes 

gain inflammatory profiles with aging67, we further assessed age-associated astrocytic 

expression of degenerative-disorder risk genes derived from astrocytic H-MAGMA. We 

found that AD-associated and PD-associated genes were expressed in mature astrocytes, 

while ALS-associated genes were highly expressed in fetal astrocytes. MS-associated genes 

were highly expressed in glioblastoma, which is consistent with the emerging view that 

astrocyte-mediated neuroinflammation is a key contributor to the pathogenesis of MS68. 

Furthermore, psychiatric-disorder-associated genes showed prenatal enrichment with a peak 

during mid-gestation, while degenerative-disorder-associated genes were postnatally 

enriched with a gradual increase in expression across a lifespan (Fig. 2.5b, c). A remarkable 

difference between cell-type-specific and brain homogenate H-MAGMA was the postnatal 

expression of MS-associated genes from astrocytic H-MAGMA, which was not detected in 

brain homogenate. 

Shared genetic architecture among brain disorders 

We next assessed whether the gene-level association statistics obtained from H-

MAGMA can be used to elucidate shared genetic architecture among brain disorders. Since 

the number of genes significantly associated with a given disorder differs based on the 

sample size and power of GWAS, we used a rank–rank hypergeometric test of overlap 
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(RRHO), which is a threshold-free algorithm for comparing two genomic datasets69. Genes 

were ranked based on Z-scores from the H-MAGMA output and ranked lists between two 

disorders were compared to identify the gene-level overlap between them. We then compared 

this gene-level overlap with genetic correlations calculated by linkage disequilibrium (LD) 

score regression (LDSC)70. 

Gene-level overlaps recapitulated the previously reported genetic architecture of brain 

disorders16 such that psychiatric disorders exhibited strong overlaps in their ranked gene lists, 

whereas degenerative disorders did not display significant overlaps. Among psychiatric 

disorders, neurodevelopmental disorders (ADHD and ASD) and adult-onset psychiatric 

disorders (BD, SCZ and MDD) showed strong overlaps, which indicates that these disorders 

share neurobiological bases. The correlation between RRHO and genetic correlation was 

0.79 (P = 8.08 × 10–9), which demonstrates that gene-level association statistics from H-

MAGMA reflect shared genetic architecture and can therefore be further used to decipher the 

biological mechanisms underlying shared genetic architecture among psychiatric disorders. 

Biological pathways underlying pleiotropy 

Cross-disorder GWAS of eight psychiatric disorders recently identified more than 

100 GWS loci that increase the risk for multiple disorders, which provides further evidence 

of widespread pleiotropy among psychiatric disorders44. Shared genetic etiology across 

psychiatric disorders may underlie concerted developmental expression trajectories and 

cellular expression profiles of psychiatric-disorder-associated genes (Figs. 2.3 and 2.5). 

Therefore, we examined genes shared in multiple psychiatric disorders (n ≥ 4) to identify 

common molecular mechanisms of psychiatric disorders. In total, we found 1,841 genes 

(hereby referred to as pleiotropic genes) that are shared in more than four psychiatric 
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disorders. Notably, pleiotropic genes showed higher enrichment for genes mapped to 

pleiotropic cross-disorder GWS loci than those mapped to non-pleiotropic (disease-specific) 

GWS loci44 (Fig. 2.6a). 

Pleiotropic genes were involved in gene regulation, synaptic function and neuronal 

and dendritic development (Fig. 2.6b). They showed a distinct peak at mid-gestation, which 

is consistent with the overall developmental expression patterns of psychiatric-disorder-

associated genes (Fig. 2.6c). Finally, pleiotropic genes showed strong excitatory neuronal 

enrichment for cortical projection neurons in cortical layers 2/3 (excitatory neuronal subtypes 

1) and corticothalamic projection neurons in cortical layers 5/6 (excitatory neuronal subtype 

7) (Fig. 2.6d). 

Discussion 

We introduce H-MAGMA, a novel gene mapping tool that builds on MAGMA to 

annotate non-coding variants to their target genes based on chromatin interaction. To 

examine the interrelationship between Hi-C and eQTL, we compared H-MAGMA-derived 

outputs with two eQTL-based gene-mapping tools, coloc and TWAS. Consistent with 

previous findings34,41, we detected a substantial overlap. While eQTL-based gene mapping is 

undoubtedly a powerful approach, H-MAGMA can provide a complementary platform to 

understand the mechanism of GWAS for the following reasons. First, Hi-C can provide 

comprehensive genome-wide maps for tissues or cell types with limited access. One example 

is Hi-C datasets from iPSC-derived neurons and astrocytes that allow GWAS annotation in a 

cell-type-specific manner66, which is currently not available with eQTL. Second, it has been 

recently shown that the variants associated with chromatin accessibility capture stimulus-

sensitive signals and explain a significant proportion of heritability, even more so than 
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eQTL71,72. Supporting this claim, we found that H-MAGMA-derived genes explained a 

significant proportion of heritability in addition to eQTL-derived genes. These results 

collectively suggest that chromatin architecture such as Hi-C and chromatin accessibility can 

provide complementary regulatory phenotypes that may be missed by eQTL. It is of note that 

H-MAGMA also has shortcomings, as it does not capture gene regulatory mechanisms such 

as altered RNA splicing or the allelic effect (Hi-C cannot predict whether the SNPs will 

downregulate or upregulate the cognate genes). Leveraging multiple genomic resources, such 

as eQTL, spliceQTL, chromatin accessibility (ca) QTL and Hi-C, is therefore critical for 

annotating and interpreting GWAS. 

An application of H-MAGMA to nine brain disorders GWAS enabled a systematic 

delineation of pathogenic mechanisms of brain disorders. For example, one important 

question in psychiatry is whether a critical window exists for the treatment of psychiatric 

disorders. Moreover, there is an ongoing debate regarding whether adult-onset disorders such 

as SCZ and depression have a neurodevelopmental origin. By comparing prenatal and 

postnatal expression trajectories, we found that genes associated with psychiatric disorders 

show remarkable developmental convergence onto mid-gestation, while genes associated 

with degenerative disorders were gradually increased across the life span, which reflects their 

increased burden with aging. 

Another layer of convergence among psychiatric disorders was hinted at by cellular 

expression profiles. Psychiatric-disorder-associated genes were selectively expressed in 

excitatory neurons, while degenerative-disorder-associated genes showed more diverse 

cellular enrichment profiles. Similar cell-type specificity was reported by an interactome 
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study73, which demonstrates the robustness of the result obtained when using an orthogonal 

approach. 

These results demonstrate that the shared genetic basis of psychiatric disorders 

translates into shared neurobiological mechanisms. To further identify shared neurobiological 

bases among psychiatric disorders, we defined a set of pleiotropic genes that are associated 

with more than four psychiatric disorders. Pleiotropic genes were associated with neuronal 

development and synaptic plasticity, which suggests that inappropriate neuronal activity and 

regulation may act as key components in the pathogenesis of psychiatric disorders. 

Pleiotropic genes also displayed mid-gestational and excitatory neuronal enrichment, which 

summarizes the overall pattern of psychiatric-disorder-associated genes. Importantly, this 

characteristic was also observed for pleiotropic genes identified by a meta-analysis of eight 

psychiatric disorders44. 

Altogether, H-MAGMA can help develop neurobiologically relevant hypotheses from 

GWAS by incorporating higher-order chromatin interactions in a disease-relevant context. 

Methods 

Hi-C 

Fetal brain Hi-C data were obtained from the paracentral cortex of three individuals 

of gestation week 17–1835. Adult brain Hi-C data were obtained from the DLPFC of three 

individuals (aged 36, 44 and 64 years)34. Neuronal and astrocytic Hi-C data were derived 

from human iPSCs obtained from two individuals (aged 15 and 31 years)66. 
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GWAS 

We used the following GWAS summary datasets: ADHD: n = 20,183 cases and 

35,191 controls18; ASD: n = 18,381 cases and 27,969 controls17; BD: n = 20,352 cases and 

31,538 controls6; SCZ: n = 11,260 and 24,542 controls5; MDD: n = 246,363 cases and 

561,190 controls19; AD: n = 71,880 cases and 383,378 controls20; PD: n = 37,700 cases and 

1,400,000 controls21; MS: n = 4,888 cases and 10,395 controls23; and ALS: n = 12,577 cases 

and 23,475 controls22. Since we used publicly available GWAS summary statistics, no data 

points were excluded from analysis, no statistical methods were used to predetermine the 

sample size, and data collection and analysis were not performed blinded to the conditions of 

the experiments. 

Development of H-MAGMA 

Exonic and promoter SNPs were directly assigned to their target genes based on their 

genomic location using a gene model, Gencode v26 

(https://www.gencodegenes.org/human/release_26lift37.html), and a promoter was defined 

as 2-kb upstream of the transcription start site (TSS) of each gene isoform. Intronic and 

intergenic SNPs were assigned to their cognate genes based on chromatin interactions with 

promoters and exons as previously described34,35. Briefly, we generated a background Hi-C 

interaction profile by pooling 9 million imputed SNPs from SCZ GWAS summary 

statistics74. Using this background Hi-C interaction profile, we fit the distribution of Hi-C 

contacts at each distance from each chromosome using the package fitdistrplus 

(https://cran.r-project.org/web/packages/fitdistrplus/index.html). Significance for a given Hi-

C contact was calculated as the probability of observing a stronger contact under the fitted 

Weibull distribution matched by chromosome and distance. Hi-C contacts with FDR < 0.01 
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were selected as significant interactions. Significant Hi-C interacting regions were 

overlapped with Gencode v26 exon and promoter coordinates to identify exon-based and 

promoter-based interactions. We used exon-based and promoter-based interactions because 

our previous study34 comparing Hi-C data with eQTL demonstrated the gene regulatory 

potential of exon-level interactions. Hi-C data from brain homogenate (fetal and adult human 

brain) and brain cells (human iPSC-derived neurons and astrocytes) were used to generate 

MAGMA input files that describe gene–SNP pairs. Input files can be found in the GitHub 

repository at https://github.com/thewonlab/H-MAGMA. 

Gene annotation for cMAGMA 

We generated an input file for cMAGMA that was comparable to H-MAGMA. We 

used the same gene model (Gencode v26) and SNP list used for H-MAGMA, and allowed a 

window of 35-kb upstream and 10-kb downstream of each gene as previously described5,46. 

Subsequently, any intronic and nearby intergenic SNPs were assigned to the genes based on 

positional mapping. This input file can be found in the GitHub repository at 

https://github.com/thewonlab/H-MAGMA. 

Noncoding SNP annotation 

We first grouped noncoding SNPs into intronic and intergenic SNPs. Proximal genes 

were defined by positional mapping as follows: for intronic SNPs, genes in which SNPs are 

located were defined as proximal genes; for intergenic SNPs, nearest genes were defined as 

proximal genes. Intronic and intergenic SNPs were then overlapped with the SNPs annotated 

by Hi-C (Hi-C noncoding SNPs: SNPs that interact with gene promoters and exons) and 

eQTL (eQTL noncoding SNPs: SNPs that have associations with gene expression). For Hi-C 

noncoding SNPs, we compared proximal genes with genes that physically interact with the 
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SNPs. For eQTL noncoding SNPs, we compared proximal genes with e-genes (genes that 

show eQTL associations). We assessed how often physically interacting genes and/or e-genes 

for a given SNP contain proximal (nearest) genes and whether SNPs show any interactions or 

associations with distal (non-nearest) genes (Fig. 2.1b). 

Running MAGMA 

For both H-MAGMA and cMAGMA, we used the MAGMA analysis pipeline as the 

default setting as follows: 

magma_v1.07b/magma -–bfile g1000_eur –pval <GWAS summary 

statistics> use=rsid,p ncol=N -–gene-annot <MAGMA input 

annotation file> -–out<output file>.Here, g1000_eur denotes the reference 

data file for a European ancestry population. This file can be downloaded from 

https://ctg.cncr.nl/software/magma. Detailed instructions can be found in the GitHub 

repository at https://github.com/thewonlab. 

Comparison between H-MAGMA and cMAGMA 

We compared disorder risk genes identified by H-MAGMA with those identified by 

cMAGMA using the package Vennerable in R. We reported the proportion of H-MAGMA-

selective genes by calculating the number of genes only identified by H-MAGMA divided by 

the total number of genes identified by H-MAGMA. Since H-MAGMA results were 

available from the fetal and adult brain Hi-C data, we used genes that were significantly 

associated in either the fetal or the adult dataset using the function ‘union’ function in R 

(hereby referred to as union disorder risk genes). 



 25 

We next obtained SNPs mapped to H-MAGMA-selective genes using H-MAGMA 

input files from the fetal brain and the adult brain (H-MAGMA SNPs) and the cMAGMA 

input file (cMAGMA SNPs). We also obtained H-MAGMA-selective SNPs by excluding 

cMAGMA SNPs from H-MAGMA SNPs to ensure that the heritability enrichment we 

observed was not due to the exonal and promoter SNPs that are shared between H-MAGMA 

and cMAGMA. We then measured heritability explained by H-MAGMA SNPs and H-

MAGMA-selective SNPs using stratified LDSC with the baseline-LD model (S-LDSC)37. 

Comparison between H-MAGMA and eQTL-based gene mapping algorithms 

To compare H-MAGMA with eQTL-based tools, we used previously reported SCZ 

risk genes obtained through TWAS75 and coloc34. Both TWAS and coloc were performed on 

SCZ GWAS5 using the largest eQTL resource obtained from the adult human DLPFC34. We 

restricted our H-MAGMA results to those derived from the adult brain so that we could 

match the developmental period (adult) and brain region (DLPFC) with the eQTL database. 

TWAS identified 708 SCZ-associated genes (TWAS SCZ genes) for which imputed 

expression values correlated with SCZ (FDR < 0.05). Coloc identified 255 SCZ-associated 

genes (coloc SCZ genes) for which eQTL co-localized with SCZ GWS loci (posterior 

probability 4 (PP4) > (PP0 + PP1 + PP2 + PP3)). 

While H-MAGMA uses the whole genome as the genetic background, coloc and 

TWAS require a more carefully defined background. Because coloc is a GWS loci-centric 

approach, e-genes within GWS loci ± 1 Mb were considered as background (3,632 genes). 

Conversely, TWAS is a genome-wide approach and uses cis-heritable genes as background 

(13,396 genes). We therefore intersected H-MAGMA SCZ association results with coloc and 

TWAS background, from which 1,576 and 2,801 H-MAGMA SCZ genes (FDR < 0.05) were 



 26 

selected and compared with coloc and TWAS SCZ genes, respectively. By comparing H-

MAGMA SCZ genes and coloc and TWAS SCZ genes, we obtained 3,004 H-MAGMA-

selective genes (genes identified by H-MAGMA but not by TWAS and/or coloc). SNPs 

mapped to H-MAGMA-selective genes were subsequently identified via the H-MAGMA 

input file from the adult brain (H-MAGMA SNPs). Finally, heritability enrichment of H-

MAGMA SNPs was calculated using S-LDSC to demonstrate that H-MAGMA genes 

without eQTL support still explain a significant proportion of heritability. 

Heritability enrichment for tissue-specific regulatory elements 

To measure heritability enrichment of nine brain disorder GWAS in active genomic 

regions in each cell and tissue type, we used S-LDSC37 with chromHMM-defined chromatin 

states36. Since chromatin profiling has not been performed in all cell or tissue types (for 

example, DNase hypersensitivity was missing for fetal brains, while chromatin 

immunoprecipitation sequencing for histone 3 lysine 27 acetylation was not performed in the 

adult DLPFC), we instead used genomic regions that are active in each cell and tissue type 

using chromatin states defined by chromHMM76. We defined active genomic elements by the 

regions marked as active TSSs (state 1), flanking active TSSs (state 2), genic enhancers (state 

6) and enhancers (state 7), while repressive genomic elements were marked as 

heterochromatin (state 9), repressed polycomb (state 13), weak repressed polycomb (state 14) 

and quiescent (state 15) in the core 15-state model 

(https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html). To further assess 

developmental-stage-specific heritability enrichment in the human brain tissue, we defined 

fetal active elements (elements that are active in the fetal brain and become repressive in the 

adult brain) and adult active elements (elements that are repressive in the fetal brain then 
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become active in the adult brain). The SNP annotation file can be downloaded from the 

GitHub repository at https://github.com/thewonlab/H-MAGMA. Heritability enrichment 

values in different cell and tissue types resulting from S-LDSC were then scaled to enable 

tissue-level comparison of enrichment values. 

Gene selection 

For assessing developmental expression profiles, cell-type-specific expression 

profiles and GO enrichment of disorder-associated genes, we used the following strategies to 

select genes. We restricted our analysis to only protein-coding genes because the majority of 

genes detected in the spatiotemporal transcriptomic atlas42 , single-cell expression datasets77–

79 and GO terms were protein-coding genes, and because noncoding genes have much lower 

expression values compared with protein-coding genes, which can dilute signals. We also 

excluded genes within the major histocompatibility region due to the complexity of LD, 

which can override the overall pattern. Finally, we removed genes within chromosome X, as 

only a subset of GWAS had association statistics available in chromosome X. 

Developmental and cellular expression profiles 

Analyzing developmental and cell-type-specific expression levels required the 

selection of significantly associated genes for each disorder. We calculated adjusted P values 

based on the Benjamini and Hochberg procedure using the function p.adjust in R. We then 

selected genes with two FDR thresholds (FDR < 0.01 for GWAS with >20 GWS hits for 

SCZ, BD, MDD and AD; FDR < 0.1 for GWAS with <20 GWS hits for ADHD, ASD, PD, 

MS and ALS) as significantly associated brain-disorder genes. 

A spatiotemporal transcriptomic atlas from a previous publication42 was used to 

obtain cortical expression profiles across multiple developmental stages. Fourteen 
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developmental stages were defined as follows: stage 1: 4 PCW ≤ age < 8 PCW; stage 2: 8 

PCW ≤ age < 10 PCW; stage 3: 10 PCW ≤ age < 13 PCW; stage 4: 13 PCW ≤ age < 16 PCW; 

stage 5: 16 PCW ≤ age < 19 PCW; stage 6: 19 PCW ≤ age < 24 PCW; stage 7: 24 

PCW ≤ age < birth; stage 8: birth ≤ age < 6 months; stage 9: 6 months ≤ age < 1 year; stage 10: 

1 year ≤ age < 6 years; stage 11: 6 years ≤ age < 12 years; stage 12: 12 years ≤ age < 20 years; 

stage 13: 20 years ≤ age < 60 years; stage 14: age > 60 years. 

Log-transformed expression values were centered to the mean expression level per 

sample using the function scale(center = T, scale = F) in R. Genes associated with 

brain disorders were selected for each brain sample, and their average centered expression 

values were calculated for each brain sample. To ensure that developmental expression 

trajectories are not dictated by the developmental stage from which Hi-C data were obtained, 

we used union disorder risk genes. To further verify the developmental trajectories in a cell-

type-specific fashion, we used neuronal Hi-C for psychiatric disorders and astrocytic Hi-C 

for degenerative disorders. Prenatal versus postnatal expression values were compared using 

the lm function in R (for example, for a given disorder, lm(expression values ~ stages)). 

We also used single-cell transcriptomic data from the adult brain77,79 and the fetal 

brain78 to identify cell-type-specific expression profiles of brain-disorder-associated genes. 

To measure astrocytic expression profiles across developmental stages, we used 

transcriptomic data from purified human astrocytes80. H-MAGMA results derived from fetal 

and adult brain Hi-C were used to assess cell-type-specific expression values in the fetal and 

adult brain, respectively. Furthermore, neuronal H-MAGMA was used to assess cell-type and 

neuronal-subtype enrichment of psychiatric-disorder risk genes, whereas astrocytic H-

MAGMA was used to assess cellular expression profiles and age-associated expression 
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changes in astrocytes for degenerative disorders. We processed log-transformed expression 

values per cell or sample using the function scale(center = T, scale = F) in R. 

Average centered expression values of genes associated with brain disorders were calculated 

for each cell type. 

GO analysis 

We used the R package gProfileR (https://biit.cs.ut.ee/gprofiler/gost) for running GO 

analysis as it allows a ranked gene list, which resembles gene set enrichment analysis. 

Because it does not require a P value threshold to select significantly associated genes, it 

allows comparing GO terms for differently powered GWAS in a non-biased fashion. After 

ranking genes based on Z-scores generated by H-MAGMA, we ran GO analysis using the 

following command line: 

gprofiler(<Ranked gene list>, organism=“hsapiens”, 

ordered_query=T, significant=T, max_p_value=0.05, 

min_set_size=15, max_set_size=600, min_isect_size=5, 

correction_method=“fdr”, hier_filtering=“moderate”, 

custom_bg=background gene set, include_graph=T, 

src_filter=“GO”). 

RRHO 

We assessed the genetic relationship between two disorders (rg) by using genetic 

correlation analysis of LDSC70. To provide similar metrics based on gene-level association 

statistics, we compared ranks between two datasets (for example, H-MAGMA outcomes 

from two disorders) using the R package RRHO 
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(https://www.bioconductor.org/packages/release/bioc/html/RRHO.html) with the following 

command line: 

RRHO(<Ranked gene list 1>, <Ranked gene list 2>, 

outputdir=<output directory>, alternative=“enrichment”, 

BY=TRUE, log10.ind=TRUE). 

To compare gene-level overlaps (RRHO output) with genetic correlations (calculated 

by LDSC), P values from RRHO were converted into Z-scores using the following command 

line:  

Zscore = qnorm(10^(-Pvalues), lower.tail=FALSE). 

We then compared resulting RRHO Z-scores with rg values from the genetic 

correlation analysis using Pearson’s correlation. This correlation coefficient provides a 

metric to compare a genetic relationship between two disorders measured at the SNP level 

(rg) versus the gene level (RRHO Z). 

Identification of pleiotropic genes 

RRHO outputs two gene sets consisting of the most upregulated and downregulated 

genes, with most upregulated genes referring to a list of genes that are associated with both 

conditions and most downregulated genes referring to a list of genes that are not associated 

with both conditions. Therefore, we employed the most upregulated genes as a gene list that 

is shared between two disorders, hence representing pleiotropic genes. We then generated 

pleiotropic genes shared in at least four disorders by intersecting the RRHO most upregulated 

genes between the following disorder pairs (ADHD versus ASD, BD, SCZ or MDD; ASD 

versus BD, SCZ or MDD; BD versus SCZ or MDD; and SCZ versus MDD). Since 
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psychiatric-disorder-associated genes showed neurodevelopmental and neuronal enrichment, 

we used fetal brain and neuronal H-MAGMA results. We merged the gene sets using the 

union function in R and obtained uniquely identified genes. The code is provided in the 

GitHub repository at https://github.com/thewonlab/H-MAGMA. In the end, we obtained 

1,841 genes that were shared in more than four disorders and we defined them as pleiotropic 

genes. These genes were compared with the genes mapped to pleiotropic versus non-

pleiotropic GWS loci from a meta-analysis of eight psychiatric disorders 44. We next 

performed GO, developmental expression and cell-type expression analyses on the 

pleiotropic genes as described above. 

Contributions 

H.W. designed the H-MAGMA framework. N.Y.A.S. and H.F. applied cMAGMA 

and H-MAGMA to nine brain disorders. J.C.M. compared H-MAGMA with cMAGMA. H.F. 

and W.M. performed LDSC and genetic correlation analyses. N.Y.A.S. conducted 

developmental trajectories analyses, RRHO and functional characterization of pleiotropic 

genes. B.H. analyzed astrocyte RNA sequencing data and compared H-MAGMA with eQTL-

based tools. P.R., K.J.B. and S.A. contributed the Hi-C data from iPSC-derived neurons and 

astrocytes. N.Y.A.S. and H.W. wrote the manuscript.
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Figures 

 

Figure 2.1. Schematics of the H-MAGMA approach. (a) H-MAGMA leverages chromatin 
interaction profiles (Hi-C) to assign intergenic and intronic SNPs to cognate genes. We 
applied this framework to five psychiatric disorders and four degenerative disorders using 
Hi-C datasets from the fetal brain and adult brain. In return, H-MAGMA provides gene-level 
association statistics, which were used to elucidate biological mechanisms underlying brain 
disorders. (b) Intronic and intergenic SNPs were often annotated to distal genes. (c) SNPs 
mapped to H-MAGMA-selective genes explained a significant proportion of heritability. 
Top: the heritability enrichment ± standard error, whereby enrichment denotes the proportion 
of heritability/proportion of SNPs. The red broken line indicates enrichment = 1. Bottom: the 
FDR of heritability enrichment. The red broken line indicates FDR = 0.05. (d) Overlap 
between SCZ-associated genes identified by H-MAGMA, TWAS and coloc. 

 



 33 

 
     

Figure 2.2 Comparison between H-MAGMA and cMAGMA. (a) The number and 
proportion of intronic and intergenic SNPs annotation to proximal and distal genes. SNPs 
mapped to proximal genes may also have distal associations, while SNPs mapped to distal 
genes do not have any association with proximal genes. (b) The number of brain disorder risk 
genes (genes that are significantly associated with each brain disorder at a threshold of 
FDr<0.05) predicted by H-MAGMA and cMAGMA. % H-MAGMA denotes the percentage 
of H-MAGMA selective genes (genes that were identified by H-MAGMA but not by 
cMAGMA). (c) The number of SNPs assigned to each gene for H-MAGMA and cMAGMA. 
Center, median; box=1st-3rd quartiles (Q); minima, Q1 - 1.5 x interquartile range (IQr); 
maxima, Q3 + 1.5 x IQr. (d) The number and proportion of SNPs annotated to the cognate 
genes by H-MAGMA and cMAGMA. (e) H-MAGMA selective SNPs (SNPs assigned to H-
MAGMA selective genes in H-MAGMA – SNPs assigned to H-MAGMA selective genes in 
cMAGMA) explain a significant proportion of heritability. Top graph: Heritability 
enrichment ± standard error; enrichment denotes proportion of heritability/proportion of 
SNPs; red broken line, enrichment=1. Bottom graph: false discovery rate (FDR) of 
heritability enrichment: red broken line, FDr=0.05.  
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Figure 2.3. Spatiotemporal dynamics of brain-disorder risk genes. (a) Heritability 
enrichment of brain disorders in active regulatory elements of the fetal brain and adult brain. 
Enrichment ± standard error (circles) and significance of heritability enrichment (triangles) 
are depicted. (b,c) Developmental expression trajectories of brain-disorder risk genes for 
neuropsychiatric (b) and neurodegenerative (c) disorders. For the boxplots (left panels), n = 
410 and 453 for prenatal and postnatal samples, respectively. The center lines represent the 
median, and the boxes represent the first and third quartiles (Q), whereby the minima is Q1 − 
1.5 × the interquartile range (IQr) and the maxima is Q3 + 1.5 × IQr. For the locally 
estimated scatterplot smoothing (LOESS) plots (right panels), smooth curves are shown with 
95% confidence bands. M, month; Y, year.  
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Figure 2.4. Developmental trajectories of brain disorder risk genes derived from 
cMAGMA. PCW, post-conception week; M, month; Y, year. (Left) N = 410 and 453 for 
prenatal and postnatal samples, respectively. Center, median; box=Q1-Q3; lower whisker, Q1 
- 1.5 x IQr; upper whisker, Q3 + 1.5 x IQr. (right) LOESS smooth curve with 95% 
confidence bands.  
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Figure 2.5. Cellular expression profiles of brain-disorder risk genes. (a) We used 
neuronal and astrocytic H-MAGMA to annotate psychiatric disorder and degenerative 
disorder GWAS, respectively. Psychiatric-disorder-associated genes are highly expressed in 
neurons, while neurodegenerative-disorder- associated genes exhibit glial signatures. Astro, 
astrocytes; endo, endothelial cells; ex, excitatory neurons; GBM, glioblastoma multiforme 
tumor; in, inhibitory neurons; micro, microglia; oligo, oligodendrocytes; OPC, 
oligodendrocyte progenitor cells. (b,c,) Developmental expression trajectories of psychiatric-
disorder- associated genes (b) and degenerative-disorder-associated genes (c). For the 
boxplots (left panels), n = 410 and 453 for prenatal and postnatal samples, respectively. The 
center lines represent the median, and ranges are as for Fig. 2b,c. LOESS plots show smooth 
curves with 95% confidence bands.  
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Figure 2.6. Shared molecular mechanisms of psychiatric disorders. (a) Comparison 
between pleiotropic genes and genes mapped to non-pleiotropic and pleiotropic GWS loci. 
Or and 95% CI are shown. (b) GO enrichment of pleiotropic genes. (c) A developmental 
expression trajectory of pleiotropic genes as shown using LOESS smooth curve with 95% 
confidence bands. (d) Cell-type-specific expression profiles of pleiotropic genes. 
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Tables 

Table 2.1. Biological processes enriched for brain disorders    
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CHAPTER 3: CHROMATIN ARCHITECTURE IN ADDICTION CIRCUITRY 
IDENTIFIES RISK GENES AND POTENTIAL BIOLOGICAL MECHANISMS 

UNDERLYING CIGARETTE SMOKING AND ALCOHOL USE TRAITS2 

Introduction 

The National Survey on Drug Use and Health in 2018 estimated that 27.3 million 

individuals were daily cigarette smokers, and 16.6 million individuals were heavy alcohol 

users81. Cigarette smoking and alcohol use are the 1st and 3rd leading causes of mortality and 

morbidity, accounting for 480,000 and 88,000 deaths per year in the United States, 

respectively82,83. Despite their public health burden, treatment options for nicotine and 

alcohol use disorders are limited. However, existing treatments can be improved, and new 

treatments can be developed with a better understanding of the underlying neurobiology of 

addiction. Genome-wide association studies (GWAS) on smoking and alcohol use traits have 

demonstrated that common variation explains a significant proportion of phenotypic variance 

of substance use25. Nearly 400 genomic loci were found to have an impact on smoking and/or 

alcohol use traits from GWAS sample sizes of up to 1.2 million26–28. However, the vast 

majority of associated variants reside in non-coding DNA, and their target genes and relevant 

neurobiological mechanisms are poorly understood. Examining higher-order chromatin 

architecture is crucial to understanding the functional consequences of non-coding variation 

by linking variants to distal genes based on chromatin interaction profiles35,84. Whereas the 

 
2 Reproduced with permission from Nature Springer. Sey, Nancy Y A et al. Chromatin architecture in addiction 
circuitry identifies risk genes and potential biological mechanisms underlying cigarette smoking and alcohol use 
traits. Mol. Psyc. (2022) doi:10.1038/s41380-022-01558-y 
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three-dimensional (3D) genomic landscape of the human brain has advanced our 

understanding of neurobiological mechanisms underlying psychiatric disorders85,86, such 

approaches have       been essentially lacking in explaining the genetic architecture of 

substance use disorders (SUD). 

To understand the functional impact of common variants associated with cigarette 

smoking and alcohol use, we applied Hi-C coupled MAGMA (H-MAGMA)86 to GWAS of 

smoking and alcohol use traits and identified their putative target genes for further 

characterization26–28. Smoking and alcohol use traits likely affect neural circuits that underlie 

addiction and include the prefrontal cortex (PFC), nucleus accumbens (NAc), amygdala, and 

midbrain dopaminergic cell groups such as ventral tegmental area (VTA) and substantia 

nigra (SN)29,87. We reasoned that the characterization of chromatin architecture across the 

brain reward circuitry is critical to understanding the gene regulatory mechanisms associated 

with substance use. With neurons being the major drivers of substance use behaviors, we 

profiled chromatin architecture from cortical neurons (CNs) in the dorsolateral PFC 

(DLPFC)88 and dopaminergic neurons (DNs) in the midbrain89. We then built H-MAGMA 

inputs from CNs and DNs and applied them to GWAS summary statistics of smoking and 

alcohol use traits. In particular, given the recent work on a potential difference in genetic 

architecture between substance consumption and clinical diagnosis of use disorder25, we 

mapped genetic variants associated with consumption or use (drinks per week [DPW]26 and 

cigarettes per week [CPD]26) versus use disorder (problematic alcohol use [PAU]28 and 

nicotine dependence [ND]27) to their associated risk genes. Our analysis of substance use risk 

genes identified key biological pathways, primary cell types, and brain circuitry that might 

confer risk for substance use. In addition, we characterized genes and pathways shared 
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between cigarette smoking and alcohol use traits to provide a core neurobiological basis of 

addiction. 

Results 

Epigenetic landscape of cortical and midbrain dopaminergic neurons 

Neural circuitry underlying addiction involves, among others, dopaminergic cell 

groups in the midbrain, including VTA and SN, as well as neuronal populations in the PFC29 

(Fig. 3.1a). However, the gene regulatory landscape in these two brain regions and its 

implication in the genetics of cigarette smoking and alcohol use traits have not been studied. 

To understand the relationship between the reward circuitry and genetic underpinnings of 

substance use, we evaluated enrichment of genetic risk factors for four traits associated with 

alcohol use (PAU28 and DPW26) and cigarette smoking (ND27 and CPD26) in cis-regulatory 

elements (CREs) of the midbrain and PFC90 using stratified LD score regression (LDSC)37. 

We defined CREs using publicly available data and annotations derived from epigenomic 

assays and demonstrated that every trait showed significant heritability enrichment for CREs 

in the midbrain and PFC (Fig. 3.1b, Fig. 3.2 and Fig. 3.3).   

Midbrain DNs have long been hypothesized to be the major player of the brain 

reward circuitry29,91. Thus, we investigated whether midbrain DN-CREs explained the 

heritability enrichment of cigarette smoking and alcohol use traits. Indeed, genetic risk 

factors for substance use traits were enriched in chromatin accessible regions of DNs derived 

from human induced pluripotent stem cells92 (hiPSC, Fig. 3.3a). Given the cellular 

heterogeneity of the PFC, we also evaluated heritability enrichment of substance use traits in 

CREs of four major cell types (neurons, astrocytes, microglia, and oligodendrocytes) in the 

cortex93. Neurons showed the strongest heritability enrichment of substance use traits among 
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the four cell types (Fig. 3.3b). These results collectively suggest that the gene regulatory 

relationships in CNs and DNs may provide rich information about genetic underpinnings of 

substance use traits.  

We next sought to compare gene regulatory relationships between CNs and DNs. 

Substantial differences in chromatin architecture have been observed across different cell 

types in the human brain66,88,93, but less information is available for the chromatin 

architecture in different brain regions and/or neuronal subtypes. To interrogate differences in 

chromatin architecture between CNs and DNs, we identified differential chromatin 

accessibility peaks between CNs and DNs92 using DiffBind94. Differentially accessible 

regions (DARs) in CNs (CN-DARs) were then mapped to their target genes based on CN Hi-

C data recently generated by our group88 (Fig. 3.1c). Since DN Hi-C data with comparable 

read depths were not available, we generated high-resolution chromosome conformation 

maps from the midbrain DNs to link DN-DARs to the corresponding genes (Fig. 3.1c and 

Fig. 3.2). To examine the correlation between neuronal subtype-specific chromatin 

architecture and gene expression signatures, we then measured cell-type specific expression 

profiles of the genes linked to CN- and DN-DARs. Genes linked to CN-DARs were highly 

expressed in cortical pyramidal neurons of the telencephalon (GLU1–3, 6–8), whereas genes 

linked to DN-DARs were highly expressed in midbrain dopaminergic (DOP2) and 

cholinergic neurons (CHO1) as well as subcortical-projection glutamatergic neurons in the 

telencephalon (GLU5, 13–17) 95 (Fig. 3.1d). 

We also found evidence of different enhancer wiring between CNs and DNs. For 

example, FOXA2 and NR4A2, master regulators for dopaminergic neuronal specification and 

differentiation96–98, displayed different regulatory connections between CNs and DNs. 
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FOXA2 was linked to two proximal enhancers in DNs as compared to one distal enhancer in 

CNs (Fig. 3.1e). NR4A2 was linked to multiple distal enhancers only in DNs, but not in CNs 

(Fig. 3.1f). On the contrary, genes that encode synaptic scaffolding proteins at glutamatergic 

synapses (e.g. SHANK3 and DLGAP2) displayed enhancer-promoter connectivity only in 

CNs, but not in DNs (Fig. 3.1g-h). 

We next compared topologically associating domains (TADs) between CNs and DNs. 

Consistent with previous reports99, TADs were largely conserved between CNs and DNs. 

However, we noted some differences in TAD boundary strengths (defined by binSignal) 

between CNs and DNs. For example, EN1 is a critical survival factor for DN differentiation 

and maintenance100. We found that EN1 was located at the TAD boundary whose strength is 

stronger in DNs than in CNs. FOXA2 also showed strengthened TAD boundaries in DNs, 

which corresponds to the confinement of loops in proximal space as evidenced in Fig. 3.1e. 

Importantly, these genes were more highly expressed in DNs than in CNs. On the contrary, 

CREBBP and WNT3A, genes with elevated expression in CNs, were located in TADs that 

were enlarged in CNs. Therefore, these results indicate that different neuronal subtypes 

involved in substance use traits display distinct chromatin architecture that is coupled with 

transcriptional regulation. 

CN and DN H-MAGMA identifies genes and biological pathways underlying cigarette 

smoking and alcohol use traits  

To investigate the functional impact of common variants associated with cigarette 

smoking and alcohol use traits, we next employed H-MAGMA to assign genetic variants to 

their target genes based on long-range chromatin interaction86. Heritability enrichment results 

suggested roles for CNs and DNs in cigarette smoking and alcohol use traits (Fig. 3.1b and 
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Fig. 3.3). Therefore, we generated H-MAGMA input files from CN Hi-C data previously 

reported in Hu et al.88 and newly generated Hi-C libraries from the midbrain DNs (hereafter 

referred to as CN and DN H-MAGMA, respectively). We applied H-MAGMA to PAU, 

DPW, ND, and CPD, and identified risk genes for each trait using a false discovery rate 

(FDR) threshold of 5% (Fig. 3.4a-b).  We detected a small number of risk genes for ND in 

comparison to other GWAS, which can be attributed to the smaller sample size of the ND 

GWAS. 

Both CN and DN H-MAGMA identified CHRNA3, whose role in increased risk of 

smoking27 has been well established, to be associated with CPD (Fig. 3.4c). Similarly, 

ADH1B, a gene that encodes alcohol metabolizing enzymes, was found to be associated with 

DPW via both CN and DN H-MAGMA, illustrating H-MAGMA’s ability (Fig. 3.4d). 

Additionally, some of the risk genes identified by CN and DN H-MAGMA have been 

directly characterized using rodent models of substance use. For example, DRD2, a gene that 

encodes a dopaminergic receptor, was identified by CN and DN H-MAGMA to be associated 

with all traits. Deletion of its ortholog in mice altered alcohol preferences and alcohol-

induced ataxia101. Moreover, individual variability in DRD2 was found to be associated with 

response to nicotine replacement therapies102. We also identified GABRG1 association with 

DPW from DN H-MAGMA. In a previous study investigating the role of GABA receptors in 

alcohol consumption, Gabrg1 knockout mice exhibited decreased alcohol consumption 

during an operant conditioning testing and home cage drinking assessment103. Lastly, BDNF 

was identified by CN and DN H-MAGMA to be associated with PAU and DPW. 

Downregulation of this gene in the dorsal striatum has been shown to increase alcohol 

consumption in rats104.  
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While differential gene expression has been detected in the postmortem brain samples 

of substance abusers compared with controls105,106, the extent to which this expression 

signature is predisposed by genetic risk factors remains unclear. To address this, we 

compared H-MAGMA gene-level scores to differentially expressed genes from human brain 

tissue and human iPSC-derived neural cultures after exposure to nicotine and alcohol, 

respectively. In this comparison, DN H-MAGMA results for DPW showed a significant 

association with gene expression signatures from hiPSC-derived forebrain neural cells 

exposed to alcohol (DEG logFC ~ H-MAGMA Z-score + number of SNPs, β=2.31×10-2, 

p<2.0×10-16)107. In parallel, we identified a significant association between CN H-MAGMA 

results for ND and gene expression signatures from the adult prefrontal cortex of active 

smokers (DEG logFC ~ H-MAGMA Z-score + number of SNPs, β=3.10×10-3, p<2.0×10-

16)106. Among the genes that were differentially expressed in ND was CHRNB4, a gene that 

encodes a nicotinic acetylcholine receptor subunit. Together, these results suggest that 

genetic risk factors may contribute to the gene expression signatures of cigarette smoking 

and alcohol use traits.  

Next, we mapped risk genes identified from CN and DN H-MAGMA to biological 

pathways using gene ontology (GO) analysis. Rather than using a specific FDR threshold, we 

ran ranked-based GO analysis using the Z-score of H-MAGMA output files. Since we used 

two separate H-MAGMA inputs to assign common variants to their target genes, we obtained 

two GO results for each trait – one for CN H-MAGMA risk genes and the other for DN H-

MAGMA risk genes. We then classified GO terms as CN-specific or DN-specific if they 

represented biological pathways unique to CN or DN H-MAGMA, respectively.  
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We validated previous findings that ethanol metabolic processes and response to 

alcohol were associated with PAU and DPW (Fig. 3.4e-f)25,28, and that cholinergic and 

nicotinic pathways were associated with ND and CPD26,27 (Fig. 3.4g-h). Notably, we also 

identified alcohol catabolic processes for ND and nicotinic pathways for PAU. Likewise, we 

further identified GO terms relating to other substances of abuse. For instance, GO terms for 

PAU included response to morphine (Fig. 3.4e), while GO terms for CPD included response 

to cocaine (Fig. 3.4h). Taken together, these findings underscore potential genetic overlap 

and interplay among different substances of abuse. 

We identified several similarities across cigarette smoking and alcohol use traits. For 

example, neuronal processes such as neuronal migration and apoptosis were associated with 

cigarette smoking and alcohol use, which is in line with studies that have pinpointed the 

disruption of neuronal migration and neurotransmission in response to substance use108,109. 

We also observed myelination and gliogenesis to be associated with DPW and CPD, 

respectively, hinting at the role of neuron-glia interactions in substance use traits. Several 

immune processes including T and B cell activation were shown to be associated with 

cigarette smoking and alcohol use, which corroborates the relationship between substance 

use and suppressed immunity (Fig. 3.4g)110,111. We also identified a potential role of protein 

folding that has been shown to contribute to the stress response112. A potential link between 

substance use and neurodegeneration emerged, such as amyloid-beta metabolic processes for 

CPD and tau protein binding for DPW. Lastly, pain perception was associated with DPW and 

CPD, consistent with prior research linking pain perception and the reward circuitry113. 

We also observed distinct biological processes between cigarette smoking and alcohol 

use traits. For instance, long term synaptic depression (Fig. 3.4e), as well as learning and 



 47 

memory (Fig 3.4f), were characteristic of alcohol use traits but not cigarette smoking, 

highlighting the important role of synaptic plasticity and memory consolidation in the 

mechanism of alcohol use114,115. We also found GO terms relating to sleep and wake cycle 

for alcohol use traits, which support a rich body of evidence suggesting that prolonged 

alcohol use and misuse can cause deleterious effects on sleep quality116. Cigarette smoking 

traits also exhibited distinct associations not observed in alcohol use traits. For instance, we 

noted lung development to be associated with both ND and CPD which supports 

epidemiological findings of lung morbidities linked to cigarette smoking117.  

Discrete biological processes were also observed between CN and DN H-MAGMA. 

Ethanol metabolism and alcohol response were enriched for alcohol use traits in a DN-

specific manner (Fig. 3.4e-f). In contrast, the potential link between neurodegeneration and 

substance use was specific to CNs. These results suggest that the neurobiological basis of 

cigarette smoking and alcohol use traits may need to be studied in a brain region- and 

neuronal subtype-specific manner. 

Cellular expression profiles of cigarette smoking and alcohol use risk genes convey cell 

types associated with substance use 

Since CNs and DNs display heterogeneity and act in synchrony with multiple cell 

types, we leveraged single-cell RNA sequencing (scRNA-seq) datasets to further refine 

neuronal subtypes that confer risk of substance use. We first evaluated cellular expression 

profiles of cigarette smoking and alcohol use risk genes identified from CN H-MAGMA 

using scRNA-seq data from the human cortex77. We not only recapitulated our findings that 

genetic risk variants underlying cigarette smoking and alcohol use are highly expressed in 
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neurons, but also observed that the risk genes were highly expressed in excitatory neurons 

(Fig. 3.5a). Specifically, we found PAU, DPW, and CPD risk genes to be highly expressed in 

layer 5 pyramidal neurons (Ex5) that project to both cortical and subcortical areas including 

the striatum and the midbrain and layer 4 neurons (Ex2) that receive sensory signals from the 

thalamus, a region that has been shown to be integral to addiction by modulating arousal and 

motivation118.  

Comparably, we examined expression profiles of cigarette smoking and alcohol use 

risk genes identified from DN H-MAGMA in midbrain cell types using scRNA-seq data 

from the human embryonic ventral midbrain119. Risk genes for all traits except for ND were 

highly expressed in DNs, providing additional evidence to support the impact of DNs in 

modulating substance use via the reward-circuitry29 (Fig. 3.5a). Within the DN lineage, we 

found elevated expression of risk genes in intermediate DNs (DA1) for all traits, suggesting 

that they may be more vulnerable to substance use. Moreover, risk genes showed elevated 

expression in midbrain GABAergic neurons which have been shown to regulate a diverse set 

of processes including motor control and inhibition of dopaminergic cells, thereby 

modulating the reward-circuitry120. Similarly, risk genes’ expression in serotonergic neurons 

is consistent with their reported involvement in substance use vulnerability121.  

Next, we extended our approach to a brain-wide fashion by assessing brain regional 

expression profiles of cigarette smoking and alcohol use risk genes. We leveraged extensive 

scRNA-seq data from the mouse nervous system to determine brain regions with high 

expression values of risk genes identified by CN and DN H-MAGMA95. Both cigarette 

smoking and alcohol use risk genes were highly expressed in cortical and midbrain regions as 
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expected (Fig. 3.5b). We also found strong expression in the hippocampus for ND risk genes, 

highlighting the role of hippocampus-dependent learning in ND122. Furthermore, thalamic 

expression was observed for PAU, DPW, and CPD risk genes, which is consistent with high 

levels of expression in Ex2 that receives thalamic inputs (Fig. 3.5a) and points to the role of 

sensory perception in drug-seeking behaviors123. Finally, our results highlight the amygdala 

for elevated expression of risk genes associated with cigarette smoking and alcohol use. The 

association of risk variants with the amygdala underscores the role of emotional processing 

in substance use due to its projections to other parts of the reward-circuitry29. 

Shared genetic architecture among substance use 

Individuals often become dependent on multiple substances, and these comorbidities 

may be driven by shared genetic signals28,124. We hypothesized that biological 

characterization of pleiotropic genes between cigarette smoking and alcohol use traits would 

identify neurobiological mechanisms underlying the shared genetic architecture of substance 

use traits. 

We first calculated genetic correlations and gene-level overlap across cigarette 

smoking and alcohol use traits using LDSC and rank-rank hypergeometric overlap (RRHO) 

test, respectively (Fig. 3.6). We found that RRHO of DN H-MAGMA outputs gives stronger 

gene-level overlaps than that of CN H-MAGMA. For example, 119 and 3,120 genes were 

shared between PAU and CPD using CN and DN H-MAGMA, respectively (Figure 3.7a and 

Fig. 3.6b-c). These results suggest that DNs may play a central role in explaining 

comorbidity in substance use. Because the PAU and CPD showed a significant genetic 

correlation (genetic correlation = 0.19) and gene-level overlap (RRHO Z-score = 12.16), we 
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selected shared genes between PAU and CPD in DN H-MAGMA to serve as pleiotropic 

genes (Fig. 3.7a). Pleiotropic genes were enriched for synaptic function and cell junction 

organization (Fig. 3.7b), suggesting that alterations in synaptic organization may influence 

core features of substance use. We further evaluated cellular expression profiles of 

pleiotropic genes in the human embryonic ventral midbrain. We again found elevated 

expression of pleiotropic genes in dopaminergic, GABAergic, and serotonergic neurons in 

the midbrain, indicating their potential function in substance use biology (Fig. 3.7c).  

Based on our hypothesis that pleiotropic genes between cigarette smoking and 

alcohol use traits may represent risk genes shared across multiple SUD, we next examined 

whether they are dysregulated in response to other substances. We overlapped our pleiotropic 

genes with differentially expressed genes (DEGs) in the rat NAc after cocaine treatment125. 

We found a significant proportion of our pleiotropic genes was dysregulated in response to 

cocaine (Fig. 3.7d). We also compared the cellular expression profiles of pleiotropic genes in 

saline versus cocaine treatment conditions125. We found that pleiotropic genes were 

downregulated in response to cocaine in Drd1- and Drd2-expressing MSN (Fig. 3.7e). Taken 

together, these results indicate that pleiotropic genes derived from cigarette smoking and 

alcohol use traits can provide insights into the core neurobiological mechanism of substance 

abuse. 

Drug repurposing analysis 

A fundamental issue facing the treatment of SUD is the limited number of effective 

medications available. Although medications such as Naltrexone126 and Nicotine 

Replacement Therapies (NRT)127 have been traditionally used to treat alcohol use disorder 
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and nicotine addiction, respectively, their efficacies are lacking or produce severe adverse 

outcomes, rendering the need for new treatment. To address this challenge, we used the Drug 

Signature and Drug Matrix databases of EnrichR128, a comprehensive gene analysis tool to 

identify potential drug candidates for SUD based on genetic evidence. We identified several 

significantly enriched drug candidates for cigarette smoking and alcohol use traits. Among 

these included mood stabilizers and selective serotonin reuptake inhibitors such as 

Fluoxetine, Citalopram, and Imipramine, consistent with their potential therapeutic benefits 

in some patients diagnosed with nicotine or alcohol dependency. We further identified 

enrichment for antipsychotics such as Chlorpromazine and Clozapine, pointing to some 

degree of convergence of addiction-relevant risk genes with molecular pathways implicated 

in other types of psychiatric illnesses. These findings speak to the well-documented 

epidemiological129,130 and genetic131,132 evidence supporting the comorbidity between 

psychiatric illnesses and substance use.  

Discussion 

We interrogated chromatin interaction profiles of CNs and DNs, two primary 

neuronal subtypes involved in the neurocircuitry of addiction, to map GWAS risk variants of 

cigarette smoking and alcohol use traits to their target genes. While we identified cigarette 

smoking and alcohol use traits to be significantly enriched in CREs in the midbrain and PFC, 

it is possible for the enrichment pattern to be dependent on the sample size of GWAS used. 

We next built enhancer-promoter interaction landscapes in CNs and DNs by combining Hi-C 

and ATAC-seq and demonstrated brain region- and neuronal subtype-specific gene 

regulatory relationships. We then employed these profiles to perform CN and DN H-

MAGMA, which was used to identify risk genes and neurobiological pathways underlying 
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PAU, DPW, ND, and CPD. Investigation into the biological pathways underlying cigarette 

smoking and alcohol use risk genes revealed the important role of drug catabolic process and 

alcohol metabolic process in substance use. Notably, we found that substance use risk genes 

were enriched for pathways associated with other neurodegenerative disorders such as tau 

protein binding for DPW and amyloid-beta metabolic process for CPD. The association 

between substance use and neurodegenerative disorders has been observed in a mouse model 

of Alzheimer’s disease where alcohol exposure was shown to heighten neuronal and 

behavioral deficits related to Alzheimer’s disease133. Thus, our results provide additional 

evidence to support that substance use and neurodegenerative disorders may share underlying 

genetic risk factors134,135 and that risk variants associated with alcohol use may exacerbate 

neurodegenerative disorders by disrupting protein metabolism. We also identified an 

association between cigarette smoking and food intake which is in line with the previous 

reports linking weight gain with smoking cessation136,137.  

We next surveyed the cellular expression profiles of cigarette smoking and alcohol 

use risk genes to refine cortical and midbrain neuronal subtypes that confer risk for substance 

use. Within CNs, we found that cigarette smoking and alcohol use risk genes were highly 

expressed in glutamatergic neurons, providing an additional level of support for the neuronal 

basis of addiction29. We have previously shown that risk genes of psychiatric disorders were 

also enriched for glutamatergic neurons86). Based on prior epidemiological studies reporting 

higher substance use among individuals with mental health issues, these results suggest a 

potential cellular basis of comorbidity between substance use and psychiatric disorders124. 

We also identified potential divergence between ND and CPD such that risk genes associated 

with ND were enriched in inhibitory neurons, in contrast to the observed excitatory 



 53 

enrichment for CPD risk genes. While this may hint at a distinct biological pattern 

underlying use (CPD) versus a use disorder (ND), caution should be exercised as this finding 

could also be influenced by the smaller number of genes associated with ND in comparison 

to CPD due to the smaller sample size of ND GWAS. Our cellular expression profiles within 

the DN lineage showed enrichment in intermediate DNs (DA1), suggesting early 

development as a critical time period linked to heritable risk of substance use that manifest 

later in life106,138. Finally, we leveraged cigarette smoking and alcohol use risk genes to 

identify the brain circuitry of addiction based on the hypothesis that defining brain regions 

most relevant to substance use may help derive better targeted approaches to treating SUD. 

In addition to the cortical and midbrain enrichment, we found enrichment for the amygdala 

and thalamus, reinforcing that multiple brain regions are important for understanding 

substance use and addiction.   

To further characterize how cigarette smoking and alcohol use risk genes can expand 

our understanding of substance use and addiction, we generated a list of pleiotropic genes 

between PAU and CPD. In contrast to individual risk genes being more focused on 

individual substance use traits, we reasoned that pleiotropic genes would provide us with the 

opportunity to identify principal pathways associated with addiction. Therefore, we generated 

pleiotropic genes using both CN and DN H-MAGMA output files. DNs, but not CNs, 

showed strong gene-level overlap between PAU and CPD, conveying that DNs might be the 

central cell type that mediates pleiotropy. Based on our hypothesis that pleiotropic genes 

might translate beyond just cigarette smoking and alcohol use traits, we compared them with 

DEGs in response to cocaine125. Indeed, we showed that pleiotropic genes were likely to be 
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dysregulated in response to cocaine in the rat NAc, demonstrating that these genes may be 

more susceptible to a wide range of substance use.  

Lastly, we took advantage of EnrichR to identify potential drug candidates to treat 

nicotine dependence and alcohol use disorder. We found potential drug candidates including 

those already on the market to treat various psychiatric illnesses such as depression and 

schizophrenia, further supporting a shared genetic architecture between psychiatric illnesses 

and substance use. These findings could be further prioritized by incorporating pathway 

analyses and literature review to corroborate the association between potential drug 

candidates’ mechanism of action and substance use. Additionally, prioritized genes and drug 

candidates could be validated in model organism experiments. Together, we demonstrate that 

H-MAGMA built from brain region- and neuronal subtype-specific chromatin architecture 

can successfully identify risk genes and biologically relevant processes associated with 

cigarette smoking and alcohol use. 

Methods 

Postmortem brains and nuclei sorting 

Tissue blocks dissected from the substantia nigra pars compacta (SNpc) along with 

surrounding regions of the ventral tegmental area (VTA) were dissected from midbrain slices 

from adult specimens collected by the Human Brain Collection Core (HBCC) at the National 

Institutes of Health. All procedures were approved by the Institutional Review Boards of the 

participating institutions. 

Our protocol for the sorting of nuclei extracted from ventral midbrain/substantia nigra 

nuclei, including RNA-seq based quality checks confirming the dopaminergic phenotype of 

Nurr1+/NeuN+ double-positive nuclei, has been described in two earlier publications which 
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identified Nurr1+/NeuN+ nuclei to be enriched for dopaminergic genes over other neuronal 

subtypes89,139. The anti-Nurr1 antibody was produced in rabbits (Sigma-Aldrich, N4663) and 

the anti-NeuN antibody (EMD Millipore, MAB377X) was from mice.   

Brain tissue was cut and dounced with 5 mL of lysis buffer with RNase inhibitor, then 

transferred to an ultracentrifuge tube, followed by immediately adding 9 mL of sucrose 

buffer underlaid beneath the solution. The samples were then spun at 24,000 rpm in an 

ultracentrifuge for 1 hour at 4°C. Next, the pellet was resuspended with 1mL of 0.1% BSA in 

DBPS, which was subsequently left on ice for 5–10 minutes. Pre-conjugated Nurr1 primary 

antibody (N4664) that had been incubated with the secondary antibody (Alexa 647) for an 

hour was then added to the nuclei suspension. Subsequently, 1.5 uL of NeuN antibody 

conjugated with Alexa 488 was added. Samples were wrapped in foil and rotated for 2 hours 

at 4°C. After 2 hours of incubation, DAPI was added to the reaction. The nuclei suspension is 

immediately taken to be processed on a FACSAria flow cytometry sorter, with all gates 

modified to eliminate debris and divide cells effectively, resulting in an apparent separation 

of nuclei populations through their fluorescent cell signal.  

Dopaminergic neuronal Hi-C library generation  

For each sample, 5,000 to 12,964 dopaminergic neuronal nuclei (NeuN+/Nurr1+) 

were processed through the Arima-HiC Kit User Guide for Mammalian Cell Lines (A51008, 

San Diego, CA) according to the manufacturer’s instructions with the anti-Nurr1 antibody 

produced in rabbit (Sigma-Aldrich, N4663). For the present study, we generated new Hi-C 

libraries from five brain donors. Note that an earlier pilot study89 had generated midbrain 

Arima Hi-C libraries from one donor (an independent donor not included in the present 
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study) which had produced better quality control indices as compared to an alternative low 

input protocol (Tn5-Hi-C).  

Genomic DNA from Hi-C processed sorted nuclei was purified using the Beckman 

Coulter AMPure® SPRIselect Beads (Indianapolis, IN). Subsequently, samples were 

sonicated utilizing the Covaris S220 (Woburn, MA), then size selected and purified using 

Beckman Coulter AMPure® SPRIselect Beads (Indianapolis, IN) to target for 300–500 base 

pair sized fragments. Samples were then enriched in biotin using the Arima-HiC Kit for 

Library Preparation, alongside the Swift Biosciences® Accel-NGS® 2S Plus DNA Library 

Kit (San Diego, CA). Afterward, the Swift Biosciences Accel-NGS 2S Plus DNA library kit 

(21024, Ann Arbor, MI) was utilized for end-repair and adapter ligation. Unique indices were 

ligated to each sample using the Swift Biosciences 2S Indexing Kit (26148). DNA libraries 

were amplified and purified using the Kapa Hyper Prep Kit (NC0709851, Wilmington, MA) 

and Beckman Coulter AMPure® SPRIselect Beads according to the manufacturer’s 

instructions. The resulting Hi-C libraries were sequenced through Illumina NovaSeq 6000 

(150 bp paired-end sequencing) at a depth between 200-300 million reads per sample. 

Hi-C analysis 

We applied HiC-Pro (v2.11.1)140 to the DN Hi-C89. In brief, we used Bowtie2 

(v2.3.5.1)141 with --very-sensitive -L 30 --score-min L,-0.6,-0.2 --end-to-end --reorder to 

align Hi-C reads to hg19 from UCSC database, and obtained unique mapped read pairs (valid 

pairs). Valid pairs were then used to generate Hi-C contact matrices at 10kb and 40kb 

resolutions. Hi-C contact matrices were subsequently normalized using Iterative Correction 

and Eigenvector decomposition (ICE) built in HiC-Pro. FitHiC2 (v2.0.7)142 was then used to 

call chromatin interactions with -U 2000000 -L 20000  -r 10000 -p 2. Significant promoter-
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anchored interactions, declared as chromatin contacts within 1Mb at an FDR threshold <1%, 

were defined based on overlap with gene promoter regions (2kb upstream and 1kb 

downstream of transcription start sites [TSS]). CN Hi-C data was obtained from Hu et al.88.  

TopDom (v0.9.1)143 with default arguments was used to define topologically 

associating domains (TADs) from normalized 40kb contact matrices. TopDom firstly 

computed the average contact frequency (defined as a value of binSignal) between upstream 

and downstream regions for each bin. The binSignal values demarcate TAD boundaries such 

that it shows local minimum in a TAD boundary while it is relatively high within a TAD 

domain. We then used the pheatmap (v1.0.12) package to visualize chromatin contact maps. 

Information about samples and Hi-C libraries for DN is described in Table 3.1. 

Gene regulatory relationships of cortical and dopaminergic neurons  

RNA-seq and ATAC-seq data from CNs and DNs (cortical glutamatergic neurons) 

were obtained from GEO (GSE129017)92. We used FastQC (v.0.11.8)144 to check the quality 

of RNA-seq and ATAC-seq reads.  

For RNA-seq analysis, clean reads were mapped to the human reference genome 

(hg19) from the UCSC database with HISAT2 (v.2.2.1)145 using default parameters. We 

assembled and quantified transcripts using StringTie (v.2.1.2)146. Normalized expression 

values (fragments per kilobase of exon model per million reads mapped, FPKM) of DN 

marker genes were compared between CNs and DNs. 

For ATAC-seq analysis, we applied Bowtie2 (v2.3.5.1)141 with --very-sensitive to 

map clean reads from ATAC-seq to hg19 from the UCSC database. After filtering out 

mitochondrial reads, duplicate reads were further removed by Picard (v.2.20.1, 

http://broadinstitute.github.io/picard/) by MarkDuplicates function. We then ran MACS2 
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(v.2.1.0.20150731)147 with --nolambda --nomodel to call open chromatin regions. Blacklisted 

regions from ENCODE were removed from the MACS2-called peaks. Finally, we used 

DiffBind (v.2.13.1)94 to analyze differentially open chromatin regions between CN and DN 

ATAC-seq data. Differentially open chromatin regions were selected based on FDR<0.05. 

Differential ATAC-seq peaks between CNs and DNs were intersected with promoter-

anchored interactions to identify enhancer-promoter interactions as shown in Table 3.2.  

GWAS datasets 

We used the largest publicly available GWAS datasets from European ancestries of 

cigarette smoking and alcohol use traits. Datasets used were: Problematic alcohol use 

(PAU)28, N = 435,563; Drinks Per Week (DPW)26, N = 941,280; Nicotine Dependence 

(ND)27, N = 78,067; Cigarettes Per Day (CPD)26, N = 337,334.  

LD score regression analysis 

Stratified LD score regression (LDSC)37 was used to estimate the enrichment of SNP-

based heritability for PAU, DPW, ND, and CPD GWAS. Cis-regulatory elements (CREs) of 

the PFC and substantia nigra (SN) were defined as regions marked as active transcriptional 

start site (TSSs, state 1), flanking active TSSs (state 2), genic enhancers (state 6) and 

enhancers (state 7) in the chromHMM core 15-state model90. We acquired CREs of CNs and 

DNs by converting chromatin accessibility peaks reported in Zhang et al92 to hg19 using 

liftOver. CREs of different cell types in the cortex were obtained by merging H3K27ac and 

H4K3me3 peaks reported from Nott et al93. Genetic variants were annotated to corresponding 

CREs, and SNP-based heritability enrichment was calculated using the GWAS summary 

statistics mentioned above.  
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H-MAGMA and gene selection  

H-MAGMA input files were generated from the midbrain DN Hi-C data (DN H-

MAGMA). Briefly, exonic and promoter SNPs were assigned to the genes in which they 

reside, while intronic and intergenic SNPs were coupled to their target genes based on 

significant chromatin interactions detected in DNs. For the adult brain and CN H-MAGMA, 

we used H-MAGMA input previously generated from bulk tissue and NeuN-positive cells 

sorted from the dorsolateral prefrontal cortex (DLPFC)34,88, respectively. These input files 

are available in the GitHub repository at https://github.com/thewonlab/H-MAGMA.  

Using these input files, we ran Hi-C coupled MAGMA (H-MAGMA) v.1.0811 as previously 

described with the following code86.  

magma_v1.08/magma -–bfile g1000_eur –pval <GWAS summary statistics> use=rsid, p 

ncol=N -–gene-annot <MAGMA input annotation file> -–out<output file> 

H-MAGMA converts SNP-level p-values into gene-level p-values, from which we 

selected protein-coding genes that are significantly associated with cigarette smoking and 

alcohol use traits at FDR<0.05. Since we used both cortical and dopaminergic Hi-C datasets, 

we obtained two gene sets, one from running CN H-MAGMA and the other from running 

DN H-MAGMA. These genes were used for subsequent functional analyses. We generated 

locus plots using the R package plotgardener148,149. 

Comparison of H-MAGMA results with differential expression signatures 

We employed a linear regression model to test for association between H-MAGMA 

gene-level scores and differential gene expression signatures from human tissue after 

exposure to nicotine or alcohol using the following equation: 
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lm(DEG absolute log2 Fold Change ~ Z-scores calculated by H-MAGMA + number of SNPs 

assigned to each gene) Fold changes for differential expression signatures in response to 

cigarette smoking and alcohol use were obtained from Semick et al.106 and Jensen et al.107, 

respectively. 

Gene ontology  

We performed gene ontology (GO) analyses to identify biological pathways 

underlying cigarette smoking and alcohol use traits. Rather than using a selected set of genes 

with a specific FDR cutoff, we ran a rank-based gene ontology analysis using the 

Bioconductor package g:Profiler (v.0.7.0)150. Briefly, genes were ranked based on Z-scores 

calculated by H-MAGMA, such that genes more significantly associated with a given trait 

are listed at the top. Biological pathways over-represented by the highly ranked genes were 

selected. 

gprofiler(<Ranked gene list>,organism=“hsapiens”, 

ordered_query=T,significant=T,max_p_value=0.05,min_set_size=15

, max_set_size=600, min_isect_size=5, correction_method=“fdr”, 

hier_filtering=“strong”,custom_bg=background gene set, 

include_graph=T, src_filter=“GO”) 

Cellular expression 

We identified cellular expressions of cigarette smoking and alcohol use risk genes 

using publicly available single-cell RNA sequencing data (scRNA-seq)77,79,119,151. Given that 

GWAS power can influence the number of significant genes for a given trait, we used two 

different FDR thresholds to select cigarette smoking and alcohol use risk genes. We used 
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FDR<0.1 for GWAS for ND, given that there were <20 genome-wide significant loci; 

FDR<0.05 for PAU, DPW, and CPD given >20 genome-wide significant loci. Next, we used 

scRNA-seq data from the human cortex to annotate cell-type specific and neuronal subcluster 

specific expressions of CN H-MAGMA risk genes for PAU, DPW, ND, and CPD77,79. Upon 

gene selection, we scaled expression profiles of each cell using the scale (x, center=T, 

scale=F) function in R and calculated the average expression of H-MAGMA risk genes in a 

given cell. Cell types (e.g. Neurons, Astrocytes, Microglia, Endothelial, Oligodendrocytes) 

and neuronal subclusters (e.g. excitatory and inhibitory neurons) with the highest average 

expression values were identified as central cell types underlying cigarette smoking and 

alcohol use traits. Similarly, we annotated DN H-MAGMA risk genes to midbrain cell-types 

identified from scRNA-seq from the human embryonic ventral midbrain during 

development119. Midbrain cell types include Radial glial (Rgl), Neuroblast, Progenitors 

(consisting of medial floorplate, lateral floorplate, midline, and basal plate progenitors), 

Neuronal progenitors (NProg), Oligodendrocyte progenitor cells (OPC), Dopaminergic 

neurons, Endothelial, GABAergic neurons, Microglial, Oculomotor and trochlear nucleus 

(OMTN), Pericytes, Red nucleus, and Serotonergic neurons. Additionally, we sought to 

identify specific dopaminergic clusters enriched for cigarette smoking and alcohol use risk 

genes. To achieve this, we annotated DN H-MAGMA risk genes to the dopaminergic lineage 

identified from the human embryonic ventral midbrain119. Lastly, we ran a linear regression 

model (H-MAGMA Z-score ~ cellular expression + mean expression across cell types + 

number of SNPs mapped by H-MAGMA) to evaluate statistical significance of cellular 

expression of risk genes152. 
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Regional expression pattern 

We measured brain regional expression profiles of cigarette smoking and alcohol use 

risk genes using a comprehensive dataset of the mouse nervous system from Zeisel et al. 

201895. Of the 24 brain regions represented, we analyzed the following regions: Cortex, 

Hippocampus, Amygdala, Striatum, Thalamus, Hypothalamus, Midbrain, Cerebellum, and 

Spinal cord. We generated a new list of risk genes for cigarette smoking and alcohol use 

traits by combining CN and DN H-MAGMA risk genes using union(x,y) in R to ensure 

that our findings were not being dominated by a specific H-MAGMA gene set. Next, we 

scaled each brain regional expression profile using scale(x, center=T, scale=F)in 

R  and calculated the average expression of H-MAGMA risk genes. Regions with relatively 

enriched expression were identified as brain regions associated with cigarette smoking and 

alcohol use traits.  

Pleiotropic genes 

To identify shared neurobiological mechanisms between cigarette smoking and 

alcohol use traits, we compared gene-level association statistics of PAU and CPD using the 

rank-rank hypergeometric overlap (RRHO, v.1.40)69 R package. Because non-coding genes 

could result in spurious relationships, we restricted our analysis to protein-coding genes and 

ran RRHO with the following command line.  

RRHO.result=RRHO(Gene list 1, Gene list 2, 

outputdir=“~/output/”, alternative=“enrichment”, 

labels=c(“Gene list 1”, “Gene list 2”), BY=TRUE, log.ind=TRUE, 

plot=TRUE). 
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Overlapping genes between PAU and CPD as identified by RRHO output files served as 

pleiotropic genes for downstream analyses. To identify biological pathways underlying 

pleiotropic genes, we ran GO analyses as previously described150. Because RRHO does not 

provide a ranked gene list, we performed GO analyses on the unranked pleiotropic genes 

with the following command line. 

gprofiler(<Unranked pleiotropic gene list>,  

organism=”hsapiens”,ordered_query=F,significant=T,max_p_value=

0.05,min_set_size=15,max_set_size=800,min_isect_size=5,correct

ion_method=”fdr”,hier_filtering=”moderate”,custom_bg=backgroun

d gene set, include_graph=T, src_filter=”GO) 

Differentially expressed genes in response to cocaine 

To test for cell-type specific changes of pleiotropic genes in response to cocaine, we 

first overlapped H-MAGMA genes with differentially expressed genes (DEGs) in the rodent 

nucleus accumbens (NAc) upon cocaine exposure125. DEGs from dopaminoceptive neurons 

expressing dopamine receptors (Drd1-MSNs, Drd2-MSNs1, Drd2-MSNs2, Drd3-MSNs) 

identified from the NAc were converted from the rodent HUGO Gene Nomenclature 

Committee (HGNC) symbol to their homologous human Ensembl gene IDs. Rodent genes 

that did not have a corresponding human Ensembl ID were removed from the analysis, 

resulting in a total of 12,437 cocaine background genes from the dopaminergic clusters. We 

next selected for DEGs at FDR adjusted p-value<0.05 from the dataset, resulting in a total of 

608 significant dopaminergic DEGs from the cocaine background genes. These 608 

significant DEGs were classified as cocaine DEGs for analysis. Because cocaine background 

genes differ from all H-MAGMA background genes, we generated a comparable H-
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MAGMA risk gene set by overlapping pleiotropic genes with the cocaine background genes. 

Next, we compared the proportion of pleiotropic genes that overlapped with cocaine DEGs 

using the Venn(x) function in the Vennerable package (v.3.1.0.9000) in R. We also applied a 

Fisher’s exact test to test for significance of overlap as follows: 

fisher.test(matrix(c(overlapping set, Gene list 1-overlapping 

set, Gene list 2-overlapping set, cocaine background 

genes),2,2) 

Lastly, to assess cell-type specific transcriptional changes of pleiotropic genes upon 

cocaine treatment, we compared transcriptional changes between saline vs. cocaine in the 

scRNA-seq data125. Briefly, we scaled each cell using the scale(x, center=T, 

scale=F) function in R and generated box plots comparing saline vs. cocaine treatment 

for each cluster (e.g. Astrocytes, Dopaminergic neurons, GABAergic neurons, Glutamatergic 

neurons, Metabotropic glutamate receptor [Grm8-MSN], Microglia, Mural cells, 

Oligodendrocytes, Polydendrocytes, Interneurons). To test if our risk genes behave 

differently after cocaine treatment, we compared cellular expression levels between saline 

and cocaine treatment using the t.test (x1, x2) function in R.  

Drug enrichment analysis  

We used EnrichR128 to obtain a list of potential drug candidates for cigarette smoking 

and alcohol use risk genes. We limited our analysis to the Drug Signature (DsigDB) and 

Drug Matrix databases of EnrichR as they were the most comprehensive drug libraries 

available on the platform. Using cigarette smoking and alcohol use risk genes identified with 

the threshold of FDR<0.05 for PAU, DPW, ND, and CPD, we adjusted drug-associated p-
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values provided by EnrichR after multiple testing correction and selected for significant 

drugs approved by the Food and Drug Administration (FDA) and small molecules. 
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Figures 

 

Figure 3.1. Gene regulatory landscape in cortical and dopaminergic neurons. (a) Brain 
reward circuitry encompasses the midbrain (MB) and its projection to the prefrontal cortex 
(PFC). (b) Stratified LDSC analysis determined that cis-regulatory elements (CREs) in the 
PFC and substantia nigra (SN) are enriched for genetic risk factors for problematic alcohol 
use (PAU), drinks per week (DPW), nicotine dependence (ND), and cigarettes per day 
(CPD). The black dotted line represents FDR=0.05.(c) Dopaminergic neuronal (DN) 
differentially accessible regions (DARs) were linked to their target genes using DN Hi-C 
data, while cortical neuronal (CN) DARs were linked to target genes using CN Hi-C data. (d) 
Genes mapped to DN-DARs were highly expressed in midbrain dopaminergic (DOP2) and 
cholinergic neurons (CHO1), while genes mapped to CN-DARs were highly expressed in 
telencephalic glutamatergic neurons (GLU1, 3, 7, 11). (e-h) Different enhancer connectivity 
between CNs and DNs for FOXA2 (e), NR4A2 (f), SHANK3 (g), and DLGAP2 (h) loci. 
Promoters of genes (FOXA2, NR4A2, SHANK3, DLGAP2) are highlighted in blue, while 
their interaction targets in CN and DN are highlighted in red and orange, respectively. CN- 
and DN-DAR are depicted in the bottom tracks. 
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Figure 3.2. Analysis overview of the present study 
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Figure 3.3. Heritability enrichment of cigarette smoking and alcohol use traits in 
dopaminergic and cortical cell types. (a) Heritability enrichment of cigarette smoking and 
alcohol use traits using stratified LDSC. Genetic risk variants associated with cigarette 
smoking and alcohol use traits are enriched for DN-CREs. (b) Cell-type specific heritability 
enrichment of cigarette smoking and alcohol use traits in the cortex. We observed neuronal 
enrichment for cigarette smoking and alcohol use traits. Dotted lines indicate FDR=0.05. 
Astro, astrocyte; Micro, microglia; Neuro, neuron; Oligo, oligodendrocyte.  
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Figure 3.4. Pathways associated with cigarette smoking and alcohol use traits. (a) The 
number of risk genes for cigarette smoking and alcohol use traits based on H-MAGMA built 
from CN and DN Hi-C data (FDR<0.05). For each stacked bar plot, an upper bar plot and 
number in light blue denote all genes, whereas a lower layer and number in dark blue 
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correspond to protein-coding genes. (b) The number of protein-coding genes associated with 
smoking and alcohol use traits by CN H-MAGMA only (CN-specific), DN H-MAGMA only 
(DN-specific), and by both CN and DN H-MAGMA (overlap) at an FDR threshold of 0.05. 
(c) H-MAGMA identifies CHRNA3 to be associated with CPD. From top to bottom, we 
display the GWAS variant association, gene model, Hi-C loops, and CREs. GWAS variant 
association, gray dots represent all SNPs in the locus, red dots represent SNPs annotated to 
CHRNA3 via H-MAGMA (either DN or CN). Hi-C loops and CREs, red and orange lines 
represent the regulatory architecture of CNs and DNs, respectively. (d) H-MAGMA 
identifies ADH1B to be associated with DPW. Red dots in the GWAS association represent 
SNPs annotated to ADH1B via H-MAGMA (either DN or CN). e-h. Gene ontologies (GO) 
enriched for PAU (e), DPW (f), ND (g), and CPD (h). CN-specific GO terms represent terms 
unique to genes identified from H-MAGMA built on CN Hi-C data, while DN-specific GO 
terms represent terms unique to genes identified from H-MAGMA built from DN Hi-C data. 
Shared terms denote GO terms detected in both CN and DN H-MAGMA results. The dotted 
red line denotes FDR=0.05.  
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Figure 3.5. Cellular and brain regional expression profiles of cigarette smoking and 
alcohol use traits. (a) Top left panel represents cellular expression profiles of cigarette 
smoking and alcohol use risk genes identified from CN H-MAGMA using scRNA-seq data 
from the adult cortex77,79. Genetic risk factors underlying cigarette smoking and alcohol use 
influence genes highly expressed in neurons. Bottom left panel represents risk gene 
expression across neuronal subclusters. OPC, oligodendrocytes progenitor cells; Ex, 
excitatory neurons; In, inhibitory neurons. Top right panel, cellular expression profiles of 
cigarette smoking and alcohol use risk genes identified from DN H-MAGMA using scRNA-
seq from the ventral midbrain of human embryo. Risk genes are highly expressed in 
dopaminergic, GABA-ergic, and serotonergic neurons in the midbrain. NProg, neuronal 
progenitors; OMNT, oculomotor and trochlear nucleus. Bottom right panel, cigarette 
smoking and alcohol use risk genes were enriched for DA1 across DN development in 
human embryonic midbrain. NbM, medial neuroblasts and precursors of DNs; DA0, 
immature DNs; DA1, intermediate DNs; DA2 matured DNs. (b) Left, graphic representation 
of brain regions with elevated expression levels of risk genes for substance use traits. 
Regions highlighted in red are enriched for at least three of the four traits. Right, brain 
regional expression profiles of cigarette smoking and alcohol use risk genes using scRNA-
seq from the mouse nervous system. Risk gene expression spans multiple brain regions 
including the cortex, amygdala, and midbrain.  
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Figure 3.6. Genetic correlations and overlapping genes between cigarette smoking and 
alcohol use traits. (a) LDSC and RRHO were used to estimate genetic correlations and 
gene-level overlap between cigarette smoking and alcohol use traits, respectively. Bottom 
left plot represents genetic correlations (rg) while the top-right plot denotes gene-level 
overlap using CN H-MAGMA output files. (b) Overlap between PAU and CPD risk genes 
identified by CN H-MAGMA using RRHO. (c) Genetic correlations (bottom left) and gene-
level overlap from DN H-MAGMA output files. 

 

 

 

 

 

 

 

 

 

 

 

 



 73 

 

Figure 3.7. Pleiotropic genes highlight shared neurobiological bases of cigarette 
smoking and alcohol use. (a) Overlap between PAU and CPD risk genes identified by DN 
H-MAGMA using a rank rank hypergeometric overlap (RRHO) test. Overlapping genes 
represent pleiotropic genes. (b) Biological processes and molecular functions enriched for 
pleiotropic genes. Dotted red line denotes FDR=0.05. (c) Cellular expression profiles of 
pleiotropic genes in the midbrain (top plot) and dopaminergic lineage (bottom plot). 
Pleiotropic genes are highly expressed in GABAergic midbrain neurons and intermediate 
DNs (DA1). (d) Overlap between pleiotropic genes and differentially expressed genes 
(DEGs) in the rat NAc after cocaine treatment (Fisher’s exact test, p=6.88×10-6; odds ratio 
[OR]=1.60; 95% confidence interval [CI]=1.34–1.96). (e) Cellular expression changes of 
pleiotropic genes in response to cocaine treatment125. The x-axis indicates medium spiny 
neuronal (MSN) clusters identified in the rat NAc while the y-axis indicates scaled 
expression values of the pleiotropic genes in each cluster.  
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Tables 

Table 3.1. Hi-C libraries used in this chapter. 

Sample 
information 

cis reads total reads cis 
proportion 

Diagnosis NeuN+ 
/Nurr1+ 
Collected 
for Hi-C 

Male, 35 yo 
African 

American 
158,222,950 230,186,257 0.69 Control 5,336 

Female, 45 
yo 

African 
American 

192,097,648 266,025,620 0.72 Control 5,000 

Female, 46 
yo 

African 
American 

164,038,226 197,508,199 0.83 Bipolar 5,000 

Male, 36 yo 
Caucasian 176,575,402 237,642,800 0.74 Bipolar 5,916 

Male, 45 yo 
African 

American 
243,313,838 325,461,515 0.75 Control 12,964 

 934,248,064  
1,256,824,391 0.74   
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Table 3.2. Source of cis-regulatory elements used in this chapter. 

CREs Cellular/Tissue 
source 

Figures Assay Reference 

Midbrain CRE Substantia Nigra Figure 3.1B chromHMM, 
chromatin states 
1,2,6,7 

Roadmap 
epigenomics90 

PFC CRE Prefrontal Cortex 

DN-CRE 
DN-DAR 

hiPSC-derived 
dopaminergic 
neurons 

Figure 
3.1C,E,F,  
Figure 
3.3A 

CREs were 
defined from 
ATAC-seq peak 
calls.  
DARs were 
defined by 
differential peak 
calls. 

Zhang et al.92 

CN-CRE 
CN-DAR 

hiPSC-derived 
cortical 
glutamatergic 
neurons 

Astro-CRE Astrocytes sorted 
from the cortex 

Figure 3.3B H3K27ac, 
H3K4me3 
merged peaks 

Nott et al.93 
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CHAPTER 4: DETAILED PROTOCOL OF H-MAGMA AND EXPANDING THE 
TOOL TO NON-BRAIN CELL-TYPES3 

Introduction 

Genome-wide association studies (GWAS) have provided an avenue for scientists to 

identify common genetic variations associated with human traits and diseases. However, 

despite the surge in GWAS in recent years, the functional outcomes of the common variants 

are not well understood because the majority of them reside in poorly characterized, non-

coding regions of the genome153. Previous studies have used Multi-Marker Analysis of 

GenoMic Annotation (MAGMA), a gene-based analysis tool that converts single nucleotide 

polymorphism (SNP)-level P-values identified from GWAS to gene-level P-values to assign 

variants to their target genes11. While revolutionary, MAGMA mainly relies on positional 

mapping, typically linking non-coding variants to the nearest genes. However, advancement 

in epigenomic profiling highlights the complexity of gene regulatory architecture. For 

example, it is possible for variants to interact with and regulate distal genes12, necessitating 

gene regulatory architecture to be taken into account for variant-gene annotation. One way to 

investigate the gene regulatory architecture includes Hi-C, a genome-wide chromosome 

conformation capture technique154. Using Hi-C data, we can complement gene-based analysis 

tools built upon the linear genome such as MAGMA to fully capture distal regulatory 

relationship between variants and genes. To this end, we have developed a tool, Hi-C 

 
3 Reproduced with permission from Nature Springer. Sey NYA, Pratt M, Won H. Annotating genetic variants to 
target genes using H-MAGMA. Nat Protoc. 2022. doi: 10.1038/s41596-022-00745-z. H.W. designed the H-
MAGMA framework.  



 77 

Coupled MAGMA (H-MAGMA), that incorporates Hi-C based variant-gene 

relationships in the gene-based analytic framework of MAGMA86. 

In this protocol, we outline the H-MAGMA framework including (1) how to generate 

the H-MAGMA variant-gene annotation file that provides variant-gene relationships using 

Hi-C data from the adult human brain34 and (2) how to run H-MAGMA using GWAS 

summary statistics of Parkinson’s Disease21. While we use Hi-C data from the adult human 

brain and Parkinson’s Disease GWAS in this protocol, the H-MAGMA framework is 

versatile and can be adapted to functionally annotate any GWAS by generating the H-

MAGMA variant-gene annotation file from a tissue or cell type that is most enriched for the 

GWAS trait of interest. To highlight the versatility of the H-MAGMA framework, we also 

provide H-MAGMA variant-gene annotation files generated from promoter-anchored 

interactions of 28 tissue and cell types reported in Jung et al.32. In addition to the variant-gene 

annotation files provided in this protocol, users can also create their own annotation files 

from Hi-C datasets either generated by the user or acquired from publicly available 

resources. 

Development of the protocol 

We developed H-MAGMA based on the hypothesis that we can leverage chromatin 

architecture to extend the capacity of MAGMA to better annotate non-coding variants to 

their target genes. In our primary application of H-MAGMA to GWAS of psychiatric 

(Schizophrenia5 [SCZ], Bipolar disorder6 [BD], Autism Spectrum Disorder17 [ASD], 

Attention Deficit Hyperactivity Disorder18 [ADHD], Major Depressive Disorder19 [MDD]) 

and neurodegenerative disorders (Parkinson’s disorder21 [PD], Alzheimer’s disease20 [AD], 

Multiple Sclerosis23 [MS], and Amyotrophic Lateral Sclerosis22 [ALS]), we identified novel 
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target genes and biological pathways underlying each disorder 86. We further identified 

critical developmental windows and central cell types in understanding the disease biology86. 

Specifically, we identified that psychiatric disorder-associated genes exhibit prenatal 

enrichment compared to the postnatal enrichment of neurodegenerative disorder-associated 

genes. Additionally, we found that biological processes including transcriptional regulation, 

synaptic transmission, and neuroinflammation were involved with various brain disorders86. 

Collectively, these findings suggest that H-MAGMA can effectively broaden our 

understanding of disease biology by annotating common variants to their target genes with 

the use of functional genomic data. 

Comparison with other methods 

To investigate the effectiveness of H-MAGMA, we compared our results from H-

MAGMA to that of conventional MAGMA. We discovered that H-MAGMA could identify 

disease-associated genes that were missed by conventional MAGMA by predominantly 

linking non-coding variants to distal genes. Variants assigned to target genes by H-MAGMA 

explained a significant proportion of heritability of brain disorders86. To further investigate 

the biological relevance of these findings, we compared developmental trajectories of H-

MAGMA-associated genes with those of conventional MAGMA-associated genes. We noted 

important differences between H-MAGMA and conventional MAGMA. For instance, 

conventional MAGMA-associated genes for ASD exhibit postnatal enrichment which 

contradicts prior evidence supporting the early developmental origin of ASD155. On the 

contrary, ASD risk genes annotated by H-MAGMA showed prenatal enrichment. 

We further improved H-MAGMA by implementing Imhof’s algorithm which can 

better control for type I error rate inflation156,157. As a result of this update, we reexamined 
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our previous analysis of psychiatric disorders. While we detected a smaller number of genes 

for each disorder than previously reported, we recapitulate our prior findings including the 

prenatal enrichment of psychiatric disorder-associated genes157. Collectively, we demonstrate 

the statistical rigor of H-MAGMA and its accuracy in delineating biological processes 

underlying traits and diseases. 

Applications of the method 

Since its introduction, several studies have utilized H-MAGMA to detect risk genes 

associated with various human traits and diseases. For example, Matoba et al.158 employed 

H-MAGMA using a variant-gene annotation file built from chromatin interactions in the fetal 

brain35 to identify ASD-associated genes from risk variants. They observed that genes 

detected by H-MAGMA played roles in telencephalon development and regulation of 

synapse organization. Additionally, the authors noted that a subset of the risk genes were 

differentially expressed in postmortem brains of ASD compared to neurotypical 

individuals158. 

Similarly, Quach et al.27 applied H-MAGMA using Hi-C datasets from fetal35 and 

adult34 brain tissues to a GWAS of nicotine dependence and detected 11 and 13 protein-

coding genes, respectively. Meanwhile, Song et al.159 ran H-MAGMA for traits including 

intelligence quotient (IQ), SCZ, MDD, and AD to identify implicated biological processes. 

They noted that H-MAGMA associated genes, particularly for AD and SCZ, supported prior 

evidence of disease risk. 

Feleke et al.160 used H-MAGMA built on Hi-C data from the adult brain to identify 

risk genes of Lewy body diseases. Here, the authors applied H-MAGMA to PD, PD with 

dementia, and dementia with Lewy bodies, three neurodegenerative disorders that share 
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several similarities. Using H-MAGMA, they were able to identify distinct cell types and 

biological processes that differentiate the diseases from each other160. 

Given that gene regulatory landscapes are highly tissue and cell type specific, Hu et 

al.88 leveraged data from glial 3D chromatin interactions to characterize AD GWAS using H-

MAGMA. They identified 181 AD-associated genes, including BIN188. Taken together, these 

studies highlight that tissue and cell type specific application of H-MAGMA can predict risk 

genes associated with human diseases within the biologically relevant contexts. 

Currently, H-MAGMA variant-gene annotation files are only available for brain cell 

types, limiting its application to non-brain disorders. To allow researchers from other 

backgrounds to use H-MAGMA for their research, we have generated variant-gene 

annotation files using other Hi-C datasets including lung, pancreas, and liver32 as part of this 

protocol. While we have primarily used Hi-C and promoter-capture Hi-C data to identify 

variant-gene relationship, any epigenetic data that provides such relationship including 

HiChiP161 and PLACseq162 can be used to generate H-MAGMA variant-gene annotation 

files. Moreover, whereas we generated H-MAGMA variant-gene annotation files from 3D 

chromatin interaction data acquired from various tissue types, cell-type specific 3D 

chromatin interactions data are still relatively rare. We expect that cell-type specific 3D 

chromatin data will become more and more available, which would enable cell type specific 

dissection of GWAS. 

Experimental design 
  

In this protocol, we have outlined how to generate the H-MAGMA variant-gene 

annotation file that provides the variant-gene relationship required to run H-MAGMA as well 

as the steps to run H-MAGMA (Fig. 4.1). Generation of H-MAGMA variant-gene annotation 
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files can be broken down to two steps: First, exonic and promoter variants are directly linked 

to target genes based on positional mapping. This assumes that exonic and promoter variants 

are more likely to impact the genes in which they reside. Second, intronic and intergenic 

variants are mapped to their target genes based on Hi-C interactions. Prior to implementing 

the protocol, Hi-C interactions need to be formatted in the BEDPE file format that describes 

two anchor points of the chromatin interactions: chromosome1, start1, end1, chromosome2, 

start2, end2. Once the variant-gene annotation file is generated, the procedure to run H-

MAGMA mirrors that of conventional MAGMA. All files listed in the protocol are publicly 

available (see Data Availability). 

Level of expertise required 

The protocol assumes familiarity with the R programming language for generating 

the variant-gene annotation file and linux commands to run H-MAGMA.  

Format of H-MAGMA output files 

Exon/promoter coordinates (steps 4-5, Table 4.1): The first step to creating an H-

MAGMA variant-gene annotation file is to create a GenomicRange (GRange) object for exon 

and promoter coordinates. The corresponding GRanges objects (promoterranges, 

exonranges) are provided as an RData file, exon_promoranges.rda (see Data Availability). 

Here, we show the output from exonranges. Column names denote following: 

●   SEQNAMES  - Chromosome in which the gene is located. 

●   RANGES - Genomic location of the gene. 

●   STRAND - The DNA strand orientation of the gene where star(*) represents 

an unspecified strand, plus (+) represents features from start to end, and minus (-) 

indicates features from end to start. 
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●   GENE - Gene names in ENSEMBL gene IDs. 

SNPs located in exons and promoters (steps 9-11, Table 4.2): In steps 9-11, we 

overlap SNP annotations from European Ancestry (EUR.bim) with the exon and promoter 

coordinates to create GRange objects that denote variant-gene relationships. These objects 

(snpro,snpexon) are provided as an RData file, 

snp_locating_in_exon_promoter_transcript_level.rda (see Data Availability). Here, we show 

the output from snpro. 

Hi-C annotated SNPs (step 20, Table 4.3): SNPs that did not fall within an exon or 

gene promoter are annotated to target genes based on Hi-C interaction data. This object 

(snpint) is provided as an RData file as: Hi-C_transcript_interacting_snp.rda. 

Variant-gene annotation file (step 28, Table 4.4): This is an H-MAGMA-compatible 

variant-gene annotation file that is recognizable by the MAGMA software. This file consists 

of a gene, its genomic location, and a list of SNPs assigned to the gene. This is provided as: 

Adultbrain.transcript.annot. 

PD output file (steps 29-33, Table 4.5): Once the H-MAGMA variant-gene 

annotation file is created, users can run H-MAGMA for their trait of interest to obtain a gene 

list associated with the trait. We use Parkinson’s Disease as an example in this protocol. 

Shown below are the first three lines from the PD output file (PD_GWAS) and the first three 

genes associated with GWAS summary statistics of Parkinson’s Disease21 (PD.genes.csv) 

using an FDR threshold of 0.05, respectively. 

Materials 

Hardware 

● To run H-MAGMA, you will need a linux-based operating system with a minimum of 

2.5 GB of memory. 
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Software 
  

●   R: This protocol requires you to install the R software (>3.6.0). It is freely 

available from https://www.r-project.org.  

●   R Libraries 

Install the following libraries into R using the code below. 

if (!requireNamespace("BiocManager", quietly = TRUE)) 

	 install.packages("BiocManager") 

BiocManager::install(“GenomicRanges”) 

BiocManager::install(“biomaRt”) 

install.packages(“dplyr”) 

install.packages(“tidyr”) 

install.packages(“ggplot2”) 

●   MAGMA: Since H-MAGMA was built based on the MAGMA software, we 

will adopt the MAGMA framework with a modified version of the variant-gene 

annotation file to allow for incorporation of 3D chromatin interaction data. The most 

up-to-date MAGMA program can be downloaded from the following link: 

https://ctg.cncr.nl/software/magma. Here, we will use MAGMA v1.09. 

Required data 

Download all required data in a ~/work/ directory. All files required to run the 

protocol are also provided in Zenodo163 at https://doi.org/10.5281/zenodo.5503876 and in our 

GitHub repository at https://github.com/thewonlab/H-MAGMA164. For the sake of this 
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protocol, we will use the reference genome from European ancestry which is available from 

the MAGMA website using the following link: https://ctg.cncr.nl/software/magma. 

●            Obtain gene and exon coordinates from Gencode version 26 using this link: 

https://www.gencodegenes.org/human/release_26lift37.html. We downloaded the GFT file 

for basic gene annotation and converted them to .bed files. Promoters were defined as 2kb 

upstream to every transcription start site (TSS). Gene, exon, and promoter coordinate files 

are listed as Gencode26_gene.bed, Gencode26_exon.bed, and Gencode26_promoter.bed, 

respectively, in the Zenodo repository. Columns for these files are defined as [chromosome, 

start, end, gene]. 

●   For this protocol, we will use chromatin interaction from the adult brain 

obtained from the PsychEncode consortium: http://resource.psychencode.org. This is 

listed as Promoter-anchored_chromatin_loops.bed on the PsychEncode consortium 

website. We also provide it in the Zenodo repository in a BEDPE file format as 

adultbrain_hic.bedpe. Columns are defined as [chrom1, start1, end1, chrom2, start2, 

end2]. Note that the Hi-C dataset can be changed based on the tissue or cell type of 

interest. 

●   Download the reference genome for European ancestry from the MAGMA 

website using the following link: https://ctg.cncr.nl/software/magma. This file is 

provided in the Zenodo repository as EUR.bim. 

●   Download summary statistics from your GWAS of interest. We will use 

GWAS of PD 21 as an example. This is provided as PD.summary.stat.txt in the 

Zenodo repository. 
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●   Lastly, download the gene annotation file to convert ENSEMBL gene IDs to 

HGNC symbols. We have provided the annotation file as geneAnno_allgenes.rda in 

the Zenodo repository. 

Procedure 

CRITICAL. We have broken the protocol into two main sections. The first section 

walks through generating the variant-gene annotation file needed to run H-MAGMA, while 

the second portion walks through running H-MAGMA using GWAS summary statistics. 

Prepare libraries and directory 

Timing 5 min 

1. Enter the following commands in R. 

options(stringsAsFactors=F) 

library (GenomicRanges) 

library(biomaRt) 

library(dplyr) 

2. Navigate to the appropriate work directory with all downloaded files using the 

command below. 

setwd("~/work/")  

Create GenomicRanges (GRanges) objects for exon and promoter coordinates 

Timing ~5 min 

3. Read in exonic and promoter coordinate files by entering the following commands. 

exon <- read.table("Gencode26_exon.bed") 

exon$V1 <- sub ("^", "chr", exon$V1) 
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promoter <- read.table("Gencode26_promoter.bed") 

promoter$V1 <- sub ("^", "chr", promoter$V1) 

4. Create a GRanges object for exon and promoter definitions. 

exonranges<- GRanges (exon [,1], IRanges(exon [,2], 

exon[,3]),gene=exon[,4]) 

promoterranges <- GRanges (promoter [,1], IRanges(promoter 

[,2], promoter[,3]),  gene=promoter[,4]) 

5. Save exon and promoter GRanges objects as an .rda file for future use. 

save (exonranges, promoterranges, file="exon_promoranges.rda")  

Generate a GRanges object for single nucleotide polymorphism (SNP) coordinates. 

Timing ~5 min 

6. Read in the SNP annotation file using the following command. 

snps <- read.table("EUR.bim") 

snps <- snps[, c(1,2,4)] 

colnames(snps) <- c("chr","SNP","Position") 

snps$chr <- sub("^", "chr", snps$chr) 

7. Create a GRanges object for SNP annotations. 

snps<-GRanges(snps$chr, IRanges(snps$Position, snps$Position), 

rsid=snps$SNP) 

8. Save the SNP GRanges object as an .rda file for future use. 

save(snps, file="snps.rda") 

Assign SNPs to genes by overlapping SNPs with exons and promoters. 

Timing 10 - 15 min 
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9. Identify genes that map to SNPs residing in exons by overlapping the GRanges object 

for SNPs with the GRanges object for exons. 

olap <- findOverlaps(snps,exonranges) 

snpexon <- snps[queryHits(olap)] 

mcols(snpexon)<-cbind(mcols(snpexon), 

mcols(exonranges[subjectHits(olap)])) 

snpexon <- snpexon[seqnames(snpexon)!="chrX"] 

snpexon <- unique(snpexon) 

10. Overlap the GRanges object for promoters with the GRanges object for SNPs. Similar 

to the code above, this command will identify genes that map to SNPs residing in 

promoter regions. 

olap <- findOverlaps(snps,promoterranges) 

snpro <- snps[queryHits(olap)] 

mcols(snpro)<-cbind(mcols(snpro), 

mcols(promoterranges[subjectHits(olap)])) 

snpro <- snpro[seqnames(snpro)!="chrX"] 

snpro <- unique(snpro) 

11. Save SNPs overlapping with exons and promoters as an .rda file. 

save(snpro,snpexon, 

file="snp_locating_in_exon_promoter_transcript_level.rda") 

Assign unmapped SNPs to genes based on Hi-C interaction data. 

Timing 30 - 45 min 
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12. After identification of SNPs that reside in exons and/or promoters, there will be a 

subset of SNPs that do not overlap with either (e.g. intergenic or intronic SNPs). In 

the following steps, we will match those SNPs to cognate genes based on Hi-C 

interaction data. Identify unmapped SNPs using the code below. 

snpranges <- snps[!(snps$rsid %in% snpexon$rsid), ] 

snpranges <- snpranges[!(snpranges$rsid %in% snpro$rsid), ] 

13. Save unmapped SNPs as an .rda file. 

save(snpranges,file="non_exonic_promoter_snp.rda") 

14. Read in adult brain Hi-C data. The first three columns represent genomic coordinates 

[chr, start, end] of loop anchor 1 and the last three columns represent genomic 

coordinates of loop anchor 2. 

CRITICAL STEP. While we use a Hi-C dataset from the adult human brain for this 

protocol, Hi-C datasets from the tissue or cell-type associated with the disease/trait of 

interest can be used instead. 

hic <- read.table("adultbrain_hic.bedpe", header=T) 

15. Restructure Hi-C data to account for both anchors 1 and 2 using the command below. 

hic.int1 <- hic [,1:6] 

hic.int2 <- hic[, c(4:6,1:3)] 

colnames(hic.int1) = colnames(hic.int2) = c("chrom1", 

"start1", "end1", "chrom2", "start2", "end2") 

hic.comb <- rbind(hic.int1, hic.int2) 

16. Generate a GRanges object for the adult brain Hi-C data using the command below. 

hicranges<-GRanges(hic.comb$chrom1, 

IRanges(as.numeric(hic.comb$start1), 
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as.numeric(hic.comb$end1)), 

int1=hic.comb$start2,int2=hic.comb$end2) 

17. Identify promoter-anchored interactions by overlapping loop anchor 1 with 

promoters. 

olap <- findOverlaps(hicranges,promoterranges) 

generanges <- hicranges[queryHits(olap)] 

mcols(generanges) <- cbind(mcols(hicranges[queryHits(olap)]), 

mcols(promoterranges[subjectHits(olap)])) 

18. Reverse the order of the GRanges object from Step 17. The generanges object created 

in Step 17 is in a format of loop anchor 1, loop anchor 2, followed by gene name. We 

reverse the order of loop anchors so that the resulting genebed object has a format of 

loop anchor 2, loop anchor 1, followed by gene name. 

genebed<-data.frame(chr=seqnames(generanges), 

snp.start=generanges$int1, snp.end=generanges$int2, 

gene.start=start(generanges), 

gene.end=start(generanges)+width(generanges)-1, 

ensg=generanges$gene) 

genebed <- unique(genebed) 

19. Create a GRanges object from Step 18. 

genesnpranges<-GRanges(genebed$chr, IRanges(genebed$snp.start, 

genebed$snp.end), ensg=genebed$ensg) 



 90 

20. Overlap unmapped SNPs from Step 12 with loop anchor 2 from Step 19. This step 

assigns SNPs (located at loop anchor 2) to the genes they interact with (located at 

loop anchor 1). 

olap <- findOverlaps(snpranges,genesnpranges) 

snpint <- snpranges[queryHits(olap)] 

mcols(snpint)<-cbind(mcols(snpranges[queryHits(olap)]), 

mcols(genesnpranges[subjectHits(olap)])) 

snpint <- unique(snpint) 

save(snpint, file=paste0("Hi-

C_transcript_interacting_snp",".rda")) 

21. Integrate SNP-gene relationships derived from exons, promoters, and Hi-C 

interaction data. 

load("Hi-C_transcript_interacting_snp.rda") 

load("snp_locating_in_exon_promoter_transcript_level.rda") 

snpdat <- data.frame(chr=seqnames(snpint), bp=start(snpint), 

rsid=snpint$rsid, ensg=snpint$ensg) 

snpromat<-unique(data.frame(rsid=snpro$rsid, ensg=snpro$gene)) 

snpexonmat<-unique(data.frame(rsid=snpexon$rsid, 

ensg=snpexon$gene)) 

snpcomb <- unique(rbind(snpdat[,3:4], snpromat, snpexonmat)) 

save(snpcomb, file="SNP_to_transcript_comb",".rda") 

Create the H-MAGMA-compatible variant-gene annotation file  

Timing 15 - 20 min 
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22. Aggregate SNP-gene relationship to generate the variant-gene annotation file 

compatible with MAGMA. 

snpagg <- aggregate(snpcomb, list(snpcomb$ensg), unique) 

23. Read in the gene definition file. 

genedef <- read.table("~/work/Gencode26_gene.bed") 

colnames(genedef) <- c("chr", "start", "end", "ensg") 

24. Create an index column from the gene definition file consisting of gene chromosomal 

location, start, and end. 

genedef <- genedef [grep("chr", genedef$chr),] 

genedef$chr<-unlist(lapply(strsplit(genedef$chr, "chr"), '[[', 

2)) 

genedef$index<- paste(genedef$chr, genedef$start, genedef$end, 

sep=":") 

25. Attach the index column from Step 24 to the variant-gene annotation file from Step 

22. 

snpagg$index<-genedef[match(snpagg$ensg, 

genedef$ensg),"index"] 

26. Remove any missing values from the variant-gene annotation file. 

snpagg <- snpagg[!is.na(snpagg$index),] 

27. Subset gene, gene location, and SNPs from the variant-gene annotation file. 

snpannot <- snpagg[,c("ensg", "index", "rsid")] 

28. Save the variant-gene annotation file in an executable format. 

writable <-  format(snpannot) 
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write.table(writable,file="SNP_aggregate_transcript.txt", 

quote=F, row.names=F, col.names=F, sep="\t") 

system(paste0("sed-e's/,/\t/g'< 

SNP_aggregate_transcript",".txt 

>","Adultbrain.transcript.annot"))  

Run H-MAGMA. 

Timing 30 - 50 min 

29. We can now run H-MAGMA using the variant-gene annotation file generated in the 

previous steps. As an example for this protocol, we will use GWAS summary 

statistics of PD 21. Verify that all necessary files to run H-MAGMA (v1.09), including 

the program files that best fit your operating system, have been downloaded from the 

MAGMA website using the following link: https://ctg.cncr.nl/software/magma. 

Download all necessary files into a subfolder under the main working directory. This 

should appear as the directory below: 

~/work/magma1.9/magma 

         The MAGMA subfolder should contain the following items. 

●  A CHANGELOG that describes the MAGMA version. We will run 

MAGMA version 1.09. 

●  Executable magma program 

●  A magma.log file that details the executed code including date and 

time lapsed. 

●  A manual describing the software 

●  A README file 
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30. Run H-MAGMA in linux using the command below. H-MAGMA requires reference 

genome data which is denoted here with --bfile 

~/work/magma1.9/g1000_eur/g1000_eur to account for linkage disequilibrium 

between SNPs. Here, we use the European reference genome, but readers may replace 

it with a different ancestry. The GWAS summary statistics file is placed at the --

pval flag with the use and ncol parameters modified according to the column 

names of the GWAS summary statistics. The H-MAGMA variant-gene annotation 

file generated through the Steps 1-28 is placed at the --gene-annot flag. Lastly, 

the output file name to write gene-level association statistics is placed after the --out 

flag. 

~/work/magma1.9/magma 

--bfile ~/work/magma1.9/g1000_eur/g1000_eur 

--pval ~/work/PD.summary.stat.txt  use=rs,p ncol=N 

--gene-annot ~/work/Adultbrain.transcript.annot   

--out ~/work/PD_GWAS 

CRITICAL STEP.  MAGMA outputs a .log file after each run session. We 

advise taking a look at the log file to ensure the program runs in the manner it 

is expected to. 

31. Retrieve the number of genes associated with PD at different thresholds after multiple 

corrections by running the following commands. Genes can be stratified into either 

protein-coding or non-coding genes. 

options(stringsAsFactors=F) 

setwd ("~/work/") 



 94 

load("geneAnno_allgenes.rda") 

backgroundset<- 

unique(geneAnno1[geneAnno1$gene_biotype=="protein_coding", 

"ensembl_gene_id"]) 

diseasename <- c("PD") 

fdrdisease <- c() 

diseasemat <- read.table("PD_GWAS.genes.out", header=T) 

diseasemat <- diseasemat[diseasemat$GENE %in% backgroundset, ] 

diseasemat$FDR <- p.adjust(diseasemat$P, "BH") 

backgroundensg <- diseasemat$GENE 

queryensg0 <- diseasemat[diseasemat$FDR<0.1, "GENE"] 

queryensg1 <- diseasemat[diseasemat$FDR<0.05, "GENE"] 

queryensg2 <- diseasemat[diseasemat$FDR<0.01, "GENE"] 

fdrgene<-c(diseasename,length(queryensg0),length(queryensg1), 

length(queryensg2)) 

fdrdisease <- rbind(fdrdisease, fdrgene) 

colnames(fdrdisease)<-c("disease", "FDR<0.1", "FDR<0.05", 

"FDR<0.01")  

fdrdisease <- data.frame(fdrdisease) 

write.csv(fdrdisease,file="PD.genes.csv",col.names=T, 

row.names=F, sep="\t", quote=F) 
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The commands above provide the number of protein-coding genes at 

different thresholds. To retrieve the number of all genes at the same 

threshold, simply comment out the command line as displayed below. 

#diseasemat<-diseasemat[diseasemat$GENE%in% 

backgroundset, ]. This will treat the command line 

as a comment and prevent it from being included 

from the rest of the analysis thereby generating a 

list of all genes rather than just protein-coding 

genes. 

32. Retrieve a list of PD risk genes at FDR<0.05 in HGNC symbols by entering the 

command below 

pd. genes<-unique (geneAnno1[match(queryensg1, 

geneAnno1$ensembl_gene_id), "hgnc_symbol"]) 

33. Generate a bar plot to compare the number of all genes versus protein-coding genes at 

different thresholds using the commands below. 

library(tidyr) 

library(ggplot2) 

df <- read.csv ("/work/PD.genes.csv", header = T) 

df$Threshold <- row.names(df) 

lab <- c("FDR<0.1","FDR<0.05","FDR<0.01") 

df_long <- gather (df, key = var, value = value, 

All_genes,PCG) 

ggplot(df_long, aes(x = Disorder, y = value, fill = var)) + 
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 geom_bar(stat = 'identity', position = 'dodge') + 

 scale_x_discrete(labels = lab)+ 

 geom_text(aes(label=value), vjust=1.6, color="black") + 

 scale_fill_manual(values = c("#00AFBB", "#CC79A7")) 

To generate the bar plot, you must first create a .csv file containing the 

number of all genes and protein-coding genes from Step 31. The file 

should be structured to have the numbers of all genes and protein-

coding genes associated with PD as column names and the three FDR 

thresholds as row names as shown in (Fig. 4.2). 

Troubleshooting 

Table 4.6 displays solutions to some common errors that might occur while 

implementing the protocol. 

Timing 

The total time to follow the protocol is about 2 hours. However, you should allow 

additional time to configure all necessary files needed to successfully implement the 

protocol. The step most likely to require additional time is running H-MAGMA using GWAS 

summary statistics due to the varying sizes of GWAS summary statistics. Overall, generation 

of the H-MAGMA variant-gene annotation file should take about 90 minutes. An additional 

30 minutes are required to run H-MAGMA for the GWAS of interest.  

Anticipated results 

This protocol yields a variant-gene annotation file to run H-MAGMA that assigns 

genetic variants to cognate genes based on chromatin architecture. Application of H-
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MAGMA to GWAS summary statistics will result in four output files (.log.suppl, .genes.out, 

.genes.raw, and a .log). The .genes.raw file can be subsequently used for pathway analysis. 

Of particular interest to this protocol is the .genes.out file which contains the gene-level 

summary statistics for the trait of interest. Within the .genes.out file, users will find features 

including gene identifications in the ENSEMBL format and gene-level P-values which can 

be corrected using multiple testing corrections to derive significant risk genes for a given 

trait. Once risk genes are identified, users can further characterize risk genes by leveraging 

resources such as gene ontologies to characterize the biological processes associated with the 

trait and transcriptomic datasets to investigate either developmental or cellular expression 

profiles to pinpoint important developmental periods or cell types associated with the trait86. 

It is important to note that the threshold used and sample size of the GWAS might impact the 

number of identifiable risk genes (Fig. 4.2). In particular, a smaller number of risk genes may 

be identified for less powered GWAS compared to well powered GWAS5. We recommend 

users adjust the threshold according to the sample size of the GWAS. 

 Data availability 

All required data to run the protocol are publicly available. Downloadable versions of 

files are also provided in the Zenodo repository at https://doi.org/10.5281/zenodo.550387628 

.In addition to the variant-gene annotation file generated from adult brain Hi-C data34, we 

have uploaded variant-gene annotation files generated from 28 different cell and tissue types 

using promoter-capture Hi-C data from Jung et al. 201932. All 28 variant-gene annotation 

files including commands used to generate these files are also available in the Zenodo 

repository. All files including source code and documentation to run MAGMA are available 

on the MAGMA website using this link: https://ctg.cncr.nl/software/magma 
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Figures 

 

Figure 4.1. Schematic of the protocol. The “Steps'' column represents the main steps of the 
H-MAGMA protocol. For each step, the corresponding step number in the protocol is 
described on the left. The “Objects'' and “Output files'' columns represent R objects and 
output files created from the corresponding step, respectively. For example, Steps 1-8 
generate GRange objects for exons, promoters, and SNPs, under the names of exonranges, 
promoterranges, and snps, respectively. Objects exonranges and promoterranges are saved 
as an RData (.rda) file named exon_promoranges.rda, while the object snps is saved as an 
RData file named snps.rda. 
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Figure 4.2. Number of PD risk genes at different FDR thresholds. (a) A table display of 
the number of PD risk genes at varying FDR thresholds. (b) Barplots of the number of risk 
genes associated with PD at different FDR thresholds. 
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Tables 

Table 4.1. Exonic and promoter coordinates corresponding to steps 4 and 5 of Chapter 4 
 

  SEQNAMES 
 <Rle> 

RANGES 
<IRanges> 

STRAND  
<Rle> 

GENE 
<Characterer> 

[1] chrX 99883667-99884983 * ENSG00000000003 

[2] chrX 99885756-99885863 * ENSG00000000003 

[3] chrX 99887482-99887565 * ENSG00000000003 
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Table 4.2. Exonic and promoter SNPs corresponding to steps 9 to 11 of Chapter 4. 
 

  SEQNAMES 
<Rle> 

RANGES 
<IRanges> 

STRAND 
<Rle> 

RSID 
<Character> 

GENE 
<Character> 

[1] chr1 10177 * rs367896724 ENSG00000223972 

[2] chr1 10352 * rs555500075 ENSG00000223972 

[3] chr1 10616 * rs376342519 ENSG00000223972 
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Table 4.3. Hi-C annotated SNPs corresponding to step 20 of Chapter 4. 
 

  SEQNAMES 
 <Rle> 

RANGES 
<IRanges> 

STRAND  
<Rle> 

RSID 
<Character> 

GENE 
<Characterer> 

[1] chr1 570638 * rs368120791 ENSG00000197530 

[2] chr1 574151 * rs74047006 ENSG00000197530 

[3] chr1 583483 * rs577801075 ENSG00000197530 
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Table 4.4. Variant-gene annotation file corresponding to step 28 of Chapter 4. 
 

GENE ID GENE LOCATION VARIANT ID 

ENSG00000000419 20:49551404:49575092 rs6126129, rs7274624, rs6096200, … 

ENSG00000000457 1:169818772:169863100 rs11577641, rs10800486, rs3766155, 
… 

ENSG00000000460 1:169763871:169823221 rs112141016, rs140700407, 
rs112042073, … 
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 Table 4.5. Parkinson’s disorder output file corresponding to steps 29 to 33 of Chapter 4. 
 
PD_GWAS 

GENE CH
R 

START STOP NPARAM N ZSTAT P 

ENSG00000238009 1 89295 133723 1 2137 1.3031 0.09627 

ENSG00000239945 1 89551 91105 1 2137 1.3031 0.09627 

ENSG00000228327 1 661265 714006 1 12776 -1.1272 0.87018 

  

PD.genes.csv 

PD Genes 

HAX1 

ADAM15 

EFNA4 
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Table 4.6. Troubleshooting steps associated with Chapter 4. 
 

Step Problem Possible reason Solution 

1 No such file or 
directory 

Missing the 
directory with 
downloaded files 

Change working 
directory to the path 
with downloaded files 

9, 10, 14 The two combined 
objects have no 
sequence levels in 
common 

Chromosome 
annotations for 
SNPs, 
exon/promoter, and 
Hi-C files do not 
match. For instance, 
chromosome 1 can 
be listed as "1" in 
one file, while 
"chr1" in another 
file 

Make sure chromosome 
annotations are 
identical in every 
GRanges object 

30 version 
`GLIBCXX_3.4.20'; 
`CXXABI_1.3.8'; 
`GLIBCXX_3.4.21' 
not found 
(required by 
/work/magma1.9/mag
ma) 
 
Variable “x” not 
found 

Missing GNU 
Compiler 
Collection (GCC). 
 
 
 
 
 
 
H-MAGMA is 
unable to find 
required columns in 
the summary 
statistics 

Follow the instructions 
on 
https://gcc.gnu.org/insta
ll/ to install gcc/6.3.0 
 
 
 
 
 
Verify that column 
names from the GWAS 
summary statistics are 
correctly listed 
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CHAPTER 5: GENERAL DISCUSSION 

In this work we presented H-MAGMA, a refined framework for gene pathway 

analysis, that aggregates SNP-level summary statistics into gene-level association statistics. 

Compared with cMAGMA, H-MAGMA links noncoding SNPs to their target genes based on 

functional genomic evidence and adds relevant cellular context to gene mapping by using 

chromatin interaction data from disease-relevant tissue and cell types. While the basic 

concept of mapping SNPs to genes using functional genomic resources is similar to FUMA38, 

H-MAGMA leverages the MAGMA framework to obtain gene-level association statistics in 

a genome-wide fashion, while FUMA maps a selected set of genomic loci to target genes. 

Therefore, H-MAGMA can provide an attractive framework to identify genes and biological 

pathways for low-powered GWAS. It also allows the comparison of different GWAS to 

elucidate shared biological pathways. 

H-MAGMA can be expanded into many different forms. For example, we decided to 

use MAGMA among many other tools available because it is most widely used; however, 

this framework is applicable to any other tools that convert SNP-level P values into gene-

level association statistics46. Moreover, H-MAGMA can be built on Hi-C datasets from 

multiple tissue and cell types to distill biological mechanisms of any GWAS (for example, 

Hi-C datasets from immune cells for rheumatoid arthritis GWAS). Finally, while we 

primarily used Hi-C datasets to link SNPs to target genes, other functional genomics tools 

such as chromatin accessibility correlations and machine-learning-based enhancer–promoter 

predictions can be used to generate SNP–gene pairs. In fact, a similar approach using eQTL
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(eMAGMA) has been recently reported to detect more risk genes underlying psychiatric 

disorders compared to other e-QTL gene mapping tools165. 

In Chapter 2, we demonstrated the effectiveness of H-MAGMA in comparison to 

MAGMA by applying H-MAGMA built from fetal and adult brain Hi-C profiles to GWAS 

summary statistics of five psychiatric disorders (SCZ, ASD, ADHD, BD, MDD) and four 

neurodegenerative disorders (AD, PD, MS, ALS), respectively. Our finding confirmed that 

H-MAGMA can detect more disease-associated risk genes underlying psychiatric and 

neurodegenerative disorders by primarily linking non-coding variants to their target genes 

based on functional genomic evidence. Importantly, we also noted that risk genes identified 

by H-MAGMA explained a significant proportion of the heritability underlying brain 

disorders, suggesting the significance of the noncoding genome in explaining disease 

etiology7,153,166. After identifying brain disorder-associated risk genes, we next investigated 

their functional impact by exploring developmental windows, biological processes and 

cellular expression profiles. Using these approaches, we identified that psychiatric disorder-

associated genes exhibit a prenatal enrichment compared to the postnatal enrichment for 

neurodegenerative disorder-associated genes which supports the early onset of diagnosis for 

psychiatric disorders compared to neurodegenerative disorders167,168. Additionally, biological 

processes underlying brain disorders included transcriptional regulators, synaptic 

transmission, and immune processes. Lastly, cellular expression profile of the risk genes 

hinted to the role of excitatory neurons as the primary cell type in understanding psychiatric 

disorders which was in contrast to the non-neuronal enrichment for neurodegenerative 

disorders.  
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Driven by the findings in Chapter 2, we further expanded H-MAGMA beyond 

homogenate tissue to specific cell types in the brain in Chapter 3. Here, we developed H-

MAGMA from cortical and dopaminergic neurons, two neuronal subtypes critical to 

understanding substance use vulnerability. We hypothesized that using H-MAGMA built 

from chromatin interaction profiles from cortical and dopaminergic neurons will allow us to 

detect risk genes underlying cigarette smoking and alcohol use traits in a relevant biological 

context. We then characterized risk genes by identifying their biological and cellular 

functions using gene ontology analysis and specific cell types enriched for each trait. We 

denoted that risk genes underlying cigarette smoking and alcohol use traits are involved with 

stress response, learning or memory, and protein folding. Interestingly, we identified 

biological functions relating to other drugs of abuse not explored as part of this chapter, such 

as response to morphine and cocaine. Prior research among substance use traits have 

elucidated a strong comorbidity among multiple substance use traits, instigating a shared 

genetic signal among drug use24. However, not all substance use traits have a well-powered 

GWAS for downstream analyses. For context, the most current GWAS of cocaine use 

disorder reported genetic variants in a sample of 9965 individuals169 . Therefore, prompted 

by these findings, we characterized the shared genetic architecture among substance use traits 

by generating a list of shared genes between cigarette smoking and alcohol use traits. We 

found the shared genes to play a role in synaptic functioning including synapse organization 

and structure. Additionally, they were enriched for GABAergic neurons and overlapped with 

cocaine DEGs, suggesting that shared genes derived from cigarette smoking and alcohol use 

may provide additional insight into the neurobiological mechanisms associated with multiple 

substance use traits. 
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Lastly, to contribute further to the field, we provide a detailed protocol to users on 

how to generate the H-MAGMA variant-gene annotation file by generating their own Hi-C 

libraries or using publicly available datasets. We also provide additional H-MAGMA variant-

gene annotation files beyond brain cell types using data from Jung et al. to generate 

annotation files for additional 28 cell types32. 

Limitations of H-MAGMA 

While H-MAGMA wildly improves on MAGMA, it is important to draw attention to 

lingering limitations of both tools. For example, an important limitation of H-MAGMA that 

should be taken into consideration is that, while H-MAGMA detects risk genes associated 

with a trait, it cannot determine the directionality of the effects of risk genes, such that it 

cannot detect whether risk genes may be upregulated or downregulated in the diseased state. 

This limitation can be remedied by incorporating gene expression datasets such as expression 

Quantitative Trait Loci (eQTL). For instance, when an eQTL is detected for an H-MAGMA 

associated gene in a matching tissue, the eQTL can determine whether the risk allele of the 

variant is associated with upregulation or downregulation of the corresponding gene.  

In addition, due to the confounding effects of linkage disequilibrium (LD) in GWAS 

findings, not all risk genes identified by H-MAGMA are necessarily implicated with the trait. 

Thus, it is important to follow-up with functional validation experiments to prioritize risk 

genes. For instance, high-throughput techniques such as Massively Parallel Reporter Assays 

(MPRA) may be used to functionally validate the regulatory effects of risk variants in the 

relevant tissue or cell type170.  

Moreover, given that the sample size of a GWAS is closely associated with its 

statistical power, users should note that the number of risk genes identified by H-MAGMA 
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may be impacted by the power of the specific GWAS. For instance, the number of risk genes 

identified for Autism Spectrum Disorder in Chapter 2 and Nicotine Dependence in Chapter 3 

were smaller compared to the other psychiatric disorders and  substance use phenotypes 

discussed in both chapters, respectively, due to the sample size of the Autism and Nicotine 

Dependence GWAS. Therefore, it is important to factor in the possible effect of sample sizes 

when selecting parameters such as FDR thresholds for downstream analysis of risk genes. 

Additionally, the quality of the Hi-C dataset may affect the robustness of variant-gene 

annotation. Thus, we recommend users pay particular attention to quality control measures of 

Hi-C data such as the read depth, cis-to-trans ratio, and its relationship with other functional 

genomic data (e.g. whether enhancer-promoter interactions closely align with gene 

expression). 

Lastly, due to the lack of diversity in genetic studies and overrepresentation of 

European ancestry in genetic studies, we applied H-MAGMA to GWAS from European 

ancestry in Chapters 2 through 4 which may limit its relevance to other populations. Given 

that representation in genetic studies may bolster our understanding of disease etiology, it is 

important to expand GWAS beyond European ancestry in order to fully benefit from the 

technique171,172. Consequently, H-MAGMA can be modified to identify risk genes from 

GWAS from other ancestries by incorporating a definition of sub-populations when running 

using the tool. However, it is important to also note that the number of identifiable genes for 

other ancestries may be smaller in comparison to European ancestry due to their smaller 

sample size.  
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Future directions 

 While our analyses provide insights into the genes and potential biological 

mechanisms underlying brain disorders, part of our findings warrants further investigation. 

For instance, while pleiotropic genes between psychiatric disorders discussed in Chapter 2 

provides insights into the shared etiology among psychiatric disorders, the rate of 

misdiagnosis of psychiatric disorders, especially between Schizophrenia and Bipolar disorder 

remains high due to overlap in their symptoms173,174. Therefore, it would be equally 

informative to parse out biological characteristics that differentiates the disorders from each 

other to better understand their unique biomarkers to improve diagnosis. Additionally, 

overrepresentation of substance use among individuals with psychiatric disorders has been 

widely reported. Previous research has identified high levels of alcohol use among 

individuals with anxiety and mood disorders175,176 while others have found high prevalence 

of nicotine use among Schizophrenic patients177,178. There is future work to be pursued into 

the comorbidity between substance use and psychiatric disorders which could include 

generating a list of shared genes between psychiatric disorders and substance use phenotypes 

to further probe their biological characteristics and critical cell types.   

 Lastly, while our analysis in Chapter 3 prioritizes the role of neuronal cells in 

substance use, non-neuronal cells including astrocytes and microglia have been shown to 

modulate substance use. For instance, alcohol has been shown to differentially affect 

astrocyte activity in various brain regions179. Indeed, our heritability enrichment in Chapter 3 

showed enrichment for astrocytes for all traits. Given these findings and the clear role of non-

neuronal cells in substance use, it would be informative to link substance use variants to risk 

genes based on H-MAGMA derived from glial cells to further investigate their role in 
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substance use vulnerability. Collectively, the work presented in this dissertation underscores 

the biologically relevant information that can be obtained from GWAS results after 

identifying trait-associated genes via H-MAGMA.
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