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ABSTRACT

Zhenlin Xu: Towards Deep Visual Learning in the Wild: Data-efficiency, Robustness and
Generalization

(Under the direction of Marc Niethammer and Colin Raffel)

Deep Learning approaches have achieved revolutionary performance improvement on many

computer vision tasks from understanding natural images and videos to analyzing medical images.

Besides building more complex deep neural networks (DNNs) and collecting giant annotated

datasets to obtain performance gains, more attention has now been focused on the shortcomings

of DNNs. As recent research has shown, even when trained on millions of labeled samples, deep

neural networks may still lack robustness to domain shift, small perturbations, and adversarial

examples. On the other hand, in many real-world scenarios, e.g. in clinical applications, the number

of labeled training samples is significantly smaller than for large existing deep learning benchmarks.

Moreover, current deep learning models cannot generalize to samples with novel combinations of

seen elementary concepts.

Therefore, in this thesis, I focus on handling the critical needs to make modern deep learning

approaches applicable in the real-world with a focus on computer vision tasks. Specifically, I focus

on data efficiency, robustness, and generalization. I propose (1) DeepAtlas, a joint learning

framework for image registration and segmentation that can learn DNNs for both tasks from

unlabeled images and a few labeled images. (2) RandConv, a data augmentation technique

that applies a random convolution layer on images during training to improve the generalization

performance of a DNN in the presence of domain shift and robustness to image corruptions. (3) A

comprehensive study of compositional generalization in unsupervised representation learning on

disentanglement and emergent language models.
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CHAPTER 1: Introduction

1.1 Motivation

In the recent decade, deep learning has achieved significant success for applications in speech

and natural language processing, computer vision, and so on. Deep neural networks (DNNs) of

a large number of parameters trained on large-scale labeled datasets often outperform alternative

methods in most academic benchmarks and can sometimes even beat human performance. However,

researchers also point out the issues and concerns when applying deep learning to real-world

scenarios. For example, annotating a larger scale data for every new task is expensive and impossible

in some domain e.g. medical image analysis; A trained deep neural network may encounter samples

that are out of the distribution of training samples and the performance usually degrade significantly

in this scenario; In supervised learning on data without enough diversity, the deep network is good

at find the ”short-cut” features irrelevant to the task in the training dataset and will generalize poorly

to real world testing data.

Therefore, in this thesis, I focus on handling the critical needs to make modern deep learning

approaches applicable in the real-world with a focus on computer vision tasks.

1.2 Thesis Statement and Contributions

Injecting prior-knowledge into deep neural networks by means of inductive biases on task

relations, model biases, representation format, can improve data-efficiency, robustness and general-

ization for deep visual learning.

I present following contributions in this thesis:

1. I develop DeepAtlas, a joint learning framework for image registration and segmentation

that can learn DNNs for both tasks from unlabeled images and a few labeled images.
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2. I propose RandConv, a data augmentation technique that applies a random convolution

layer on images during training to improve the generalization performance of a DNN in the

presence of domain shift and robustness to image corruptions.

3. I present a comprehensive study of compositional generalization in unsupervised

representation learning that includes disentanglement and emergent language models. I

propose an evaluation protocol based on transfer learning and observe that disentangled

representation may not generalize well as we expected, while representations induced by

emergent language learning show consistent good generalization performance.

1.3 Overview of Chapters

This thesis is organized as follows:

Chapter 2 presents the joint learning framework for image registration and segmentation that

can learn DNNs for both tasks from unlabeled images and a few labeled images. Chapter 3 propose

the data augmentation technique that applies a random convolution layer on images during training a

DNN to improve its domain generalization and robustness performance. Chapter 4 presents a study

on evaluating the compositional generalization of unsupervised representation learning algorithms.

Chapter 5 concludes this thesis with a discussion of the contributions and an outlook on future work.
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CHAPTER 2: DeepAtlas: Joint Semi-Supervised Learning of Image Registration and
Segmentation

This chapter presents a framework to address the need for data-efficiency for deep-learning

based medical image analysis. Obtaining 3D segmentations of medical images for supervised

training is difficult and labor intensive. Motivated by classical approaches for joint segmentation

and registration we therefore propose a deep learning framework that jointly learns networks for

image registration and image segmentation. In contrast to previous work on deep unsupervised

image registration, which showed the benefit of weak supervision via image segmentations, our

approach can use existing segmentations when available and computes them via the segmentation

network otherwise, thereby providing the same registration benefit. Conversely, segmentation

network training benefits from the registration, which essentially provides a realistic form of data

augmentation. Experiments on knee and brain 3D magnetic resonance (MR) images show that

our approach achieves large simultaneous improvements of segmentation and registration accuracy

(over independently trained networks) and allows training high-quality models with very limited

labeled data and even one-shot segmentation.

The remainder of this chapter is organized as follows: Section 2.1 introduces the motivation

and contribution of our work and Section 2.3 describes the proposed approach. Section 2.4

provides the experimental setup and details of the knee and brain MRI datasets; Section 2.5

presents results. Section 2.6 concludes this chapter. The work presented in this chapter was

published in the Proceedings of the 2019 International Conference on Medical Image Computing

and Computer-Assisted Intervention (MICCAI 2019) (Xu and Niethammer, 2019).

2.1 Introduction

Image segmentation and registration are two crucial tasks in medical image analysis. They

are also highly related and can help each other. E.g., labeled atlas images are used via image
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registration for segmentation. Segmentations can also provide additional supervision (in addition to

image intensities) for image registration and are used to evaluate registration results. Consequently,

joint image registration and segmentation approaches have been proposed. E.g., approaches based

on active contours (Yezzi et al., 2001) and Bayesian (Pohl et al., 2006) or Markov random field

formulations (Mahapatra and Sun, 2010). While these methods jointly estimate registration and

segmentation results, they operate on individual image pairs (instead of a population of images) and

require the computationally costly minimization of an energy function.

Deep learning (DL) has been widely and successfully applied to medical image analysis. For

supervised image segmentation, CNN-based approaches are faster and better than classical methods

when many labeled training samples are available (Litjens et al., 2017). DL-based registration

achieves similar performance to optimization-based approaches but is much faster. As true transfor-

mations are not available, training either uses estimates from optimization-based methods (Yang

et al., 2017) or is unsupervised (Balakrishnan et al., 2018). Recent work (Balakrishnan et al.,

2019) shows that weak supervision via an additional image segmentation loss between registered

images can improve results over unsupervised training, which is based on only images. In practice,

obtaining segmentations for 3D medical images is difficult and labor intensive. Hence, manual

segmentations will often not be available for a large fraction of image data.

We propose DeepAtlas, to jointly learn deep networks for weakly supervised registration and

semi-supervised segmentation. Our contributions are as follows:

• We propose the first approach to jointly learn two deep neural networks for image registration

and segmentation. Previous joint approaches require joint optimizations for each pair of

images. Instead, we jointly learn from a population of images during training, but can

independently use the resulting segmentation and registration networks at test time.

• Our joint approach only requires few manual segmentations. Our two networks mutually

guide each other’s training on unlabeled images via an anatomy similarity loss. This loss

penalizes the dissimilarity between the warped segmentation of the moving image and the

segmentation of the target image. When registering image pairs consisting of a manually

4



labeled image and the estimate of a labeled image (via its network-predicted segmentation),

this loss provides anatomy consistency supervision for registration and forces the predicted

segmentation to match the manual segmentation after registration.

• We evaluate our approach on large 3D brain and knee MRI datasets. Using few manual

segmentations, our method outperforms separately learned registration and segmentation

networks. In the extreme case, where only one manually segmented image is available, our

approach facilitates one-shot segmentation and boosts registration performance at the same

time.

2.2 Background

2.2.1 Image Registration

Image registration is a process to find the spatial correspondence between a pair of images

1: a moving image Im and a target image It, such that their semantics, e.g. anatomical structures,

are spatially aligned. It is an essential step for longitudinal analysis of the same patient or for the

comparison of different patients within a cohort. The spatial correspondence between the pair of

images is established by estimating a spatial transformation Φ that maps the moving image Im to

the same coordinate system as the target image It, which can be solved as an optimization problem:

Φ⋆ = argmin
Φ

Sim(Im ◦ Φ−1, It) + λ ·Reg(Φ−1) (2.1)

where ◦ is the sampling operator that interpolates local values according to the inverse transform Φ−1

from It to Im, Reg(·) is the function measure the irregularity of the transformation, and Sim(·, ·)

measures the dissimilarity between the warped moving image and the target image. The optimal

transformation maximizes the similarity between the pair of images with as low irregularity as

possible.

1Although image registration can be done for a group of images, we focus on the case of pair-wise registration.
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Transformation Depending on the desired degree of freedom of the desired transformation, Φ can

be parametric transformations such as rigid, affine and b-spline transformations that may not need

the regularization term, as well as more free non-parametric deformation models like elastic (Broit,

1981) deformation and fluid-based deformation (Bro-Nielsen and Gramkow, 1996).

Similarity Metrics that measures how well the two images are aligned are important for image

registration and are often studied to improve the registration performance. The most common

similarity metrics are often based on image intensities, and their details are below.

• Sum of squared differences (SSD) metric simply compares two images I1 and I2 by computing

the SSD between their intensities.

SSD(I1, I2) =
∑
xi∈Ω

(I1(xi)− I2(xi))
2, (2.2)

where Ω is the image spatial domain parameterized by x. SSD is a popular measure when

two images are of the same modality and have a similar intensity range.

• Normalized cross correlation (NCC) is defined as the ratio between the cross-covariance of

intensities between two images and the multiplication of the standard deviation of intensities

of each image:

NCC(I1, I2) =

∑
xi∈Ω(I1(xi)− Ī1)(I2(xi)− Ī2)√∑

xi∈Ω(I1(xi)− Ī1)2
√∑

xi∈Ω(I2(xi)− Ī2)2
, (2.3)

where Ī is the mean intensity of image I . NCC between two images is 1 or −1 when they

are statistically dependent, and is 0 when independent. Since maximizing the statistical

dependence of the aligned image is desired, 1−NCC(I1, I2)
2 is typically used in the energy

function. Compared to SSD, NCC is insensitive to multiplicative factors between the two

images.
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• Mutual Information (MI) is a more flexible similarity measure than NCC that emerges from

information theory. Given two random variables X and Y , the mutual information is defined

as

MI(X, Y ) =

∫
log

p(x, y)

p(x)p(y)
dxdy, (2.4)

where p(x) and p(y) are probability density function of X and Y , and p(x, y) is the joint

probability density function. For image registration, image intensities are viewed as random

variables. p(x, y) is the normalized joint intensity histogram. When two images are inde-

pendent, p(x, y) = p(x)p(y) and therefore the MI is zero. MI measures how well one can

predict the intensity of the other image given the intensity of one image. The more similar

the two images are, the higher the value of MI is. MI does not rely on one-to-one intensity

correspondence. Therefore, it is well suited for multi-modality registration.

The traditional image registration directly optimizes a transformation for a pair of image

according to 2.1 while the iterative optimization process can be computationally expensive. As deep

neural networks have been widely used for image analysis, the image registration task can fit into

the deep learning framework: training a deep network to predict the registration transformations for

any pair of image inputs. To predict non-parameterized transformation output, e.g. displacement

fields, deep networks with encoder-decoder designs, e.g. U-Net (Ronneberger et al., 2015), are

often used. The registration deep network can be trained in a supervised way. However, there are no

ground truth for image registration. Therefore, transformations generated by traditional registration

approaches (Yang et al., 2017) or synthetic transformations (Sokooti et al., 2017) can be used as

pseudo-ground truth. Although supervised methods have been shown to substantially accelerate

registration and achieve accuracy comparable to traditional methods, the fundamental challenge

of obtaining plausible ground-truth transformations remains and limits the supervised approaches.

Therefore, unsupervised image registration is proposed by turning (2.1) into the DL framework:

θ⋆ = argmin
θ

Sim(Im ◦ Φ−1, It) + λ ·Reg(Φ−1) (2.5)
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where θ represent the learnable paramters of the registration network and the transformation Φ−1

is predicted by the network and will warp the moving image to compute the similarity loss as

well as the regularization loss. Since the warping operation is implemented as a differentiable

spatial transform network module (Jaderberg et al., 2015), the registration network can be trained

end-to-end by (2.5). When image segmentations are available, an additional similarity loss can be

computed based on segmentation, which results in weakly supervised registration.

2.2.2 Image Segmentation

Image Segmentation is a fundamental visual understanding task that partitions images or

videos into objects or semantically different segments. Segmentation is important in various

application domains, e.g. biomedical image analysis, video surveillance, autonomous driving,

photo/video editing, and augmented reality to name a few. Before deep learning, numerous

segmentation algorithms have been developed from simple approaches based on thresholding (Otsu,

1979), region growing (Adams and Bischof, 1994), clustering (Dhanachandra et al., 2015), and

watersheds (Beucher, 1982), to more advanced algorithms such as active contour (Kass et al.,

1988), graph cuts (Boykov et al., 2001), and conditional random fields (Lafferty et al., 2001).

Similar to other computer vision tasks, segmentation performance is greatly improved by DL-based

approaches. Under the DL framework, the segmentation task can be formulated as a pixel-wise

classification problem: a deep network takes an image as input and outputs a dense label map. Many

research efforts are focused on the design of model architectures and training loss functions, and we

refer to Minaee et al. (2021) for a detailed survey.

In some specific domains, such as medical image analysis, obtaining dense annotations for

training a deep network for segmentation is difficult and expensive. Therefore, learning a DL-based

segmentation model with limited supervision is a critical and challenging problem. Effective

solutions include data augmentation, transfer learning, leveraging unlabeled images, and learning

from weaker supervisions (e.g. image-level labels). Tajbakhsh et al. (2020) provides a detailed

review for related works.
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Image registration has been used for segmentation with the atlas-based segmentation approach.

In the single atlas case, the atlas, an image template Ia (moving image) associated with a seg-

mentation map Sa, is registered to an image It (target image) that needs to be segmented. The

registration result Φ−1 can warp the atlas segmentation Sa to the coordinate system of the target

image Sa ◦ Φ−1 which can be used as the segmentation of It. Multiple atlas can work together to

improve segmentation performance (Aljabar et al., 2009).

2.3 Method

Our goal is to improve registration and segmentation accuracy when few manual segmentations

are available for a large set of images by jointly learning a segmentation and a registration network.

Fig. 2.1 illustrates our approach consisting of two parts: weakly supervised registration learning

(solid blue lines) and semi-supervised segmentation learning (dashed yellow lines). Our loss is the

weighted sum of the registration regularization loss (Lr), the image similarity loss (Li), the anatomy

loss (La) penalizing segmentation dissimilarity, and the supervised segmentation loss (Lsp). The

losses {Lr, Li, La} drive the weakly supervised learning of registration (Sec. 2.3.1) and the losses

{La, Lsp} drive the semi-supervised learning of segmentation (Sec. 2.3.2). Sec. 2.3.3 details the

implementation.

2.3.1 Weakly-supervised Registration Learning

Given a pair of moving and target images Im and It, a registration network FR with parameters

θr predicts a displacement field u = FR(Im, It; θr). This then allows warping the moving image

to the target image space, Iwm = Im ◦ Φ−1, where Φ−1 = u + id is the deformation map and

id is the identity transform. A good map, Φ, maps related anatomical positions to each other.

Unsupervised registration learning optimizes θr over an intensity similarity loss Li (penalizing

appearance differences between It and Iwm) and a regularization loss Lr on u to encourage smooth

transformations. Adding weak supervision by also matching segmentations between the target

image (St) and the warped moving image (Sw
m = Sm ◦ Φ−1) via an anatomy similarity loss La can

improve registrations (Balakrishnan et al., 2019). Weakly-supervised registration learning is then
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Figure 2.1: DeepAtlas for joint learning of weakly supervised registration and semi-supervised
segmentation. Unlabeled moving/target images are segmented by the segmentation network so that
every training registration pair has weak supervision via the anatomy similarity loss which also
guides segmentation learning on unlabeled images.

formulated as:

θ⋆r = argmin
θr

{Li(Im ◦ Φ−1, It) + λrLr(Φ
−1) + λaLa(Sm ◦ Φ−1, St)}, (2.6)

with weights λr, λa ≥ 0. In practice, while a large set of images are often available, few of them

have manual segmentations. In contrast to existing work, we estimate missing moving or target

segmentations via our segmentation network (see Fig. 2.1). Hence, we provide weak supervision

for every training image pair.

2.3.2 Semi-supervised Segmentation Learning

The segmentation network FS with parameters θs takes an image I as input and generates

probabilistic segmentation maps for all semantic classes: Ŝ = FS(I; θs). In addition to the typical

supervised segmentation loss Lsp(Ŝ, S) where S is a given manual segmentation, the anatomy

similarity loss for registration La(Sm ◦ Φ−1, St) also drives segmentation learning when Sm or St
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are predicted via FS for unlabeled images. Specifically, we define these losses as:

Lseg =



λaLa(Sm ◦ Φ−1,FS(It)) + λspLsp(FS(Im), Sm), if It is unlabeled;

λaLa(FS(Im) ◦ Φ−1, St) + λspLsp(FS(It), St), if Im is unlabeled;

λaLa(Sm ◦ Φ−1, St) + λspLsp(FS(Im), Sm), if Im and It are labeled;

0, if both It and Im are unlabeled.

(2.7)

with weights λa, λsp ≥ 0. La teaches FS to segment an unlabeled image such that the predicted

segmentation matches the manual segmentation of a labeled image via FR. In the case where the

target image It is unlabeled, La is equivalent to a supervised segmentation loss on It, in which the

single-atlas segmentation Sm ◦ Φ−1 is the noisy true label. Note that we do not use two unlabeled

images for training and La does not train the segmentation network when both images are labeled.

We then train our segmentation network in a semi-supervised manner as follows:

θ⋆s = argmin
θs

Lseg. (2.8)

2.3.3 Implementation Details

Losses: Various choices are possible for the intensity/anatomy similarity, the segmentation,

and the regularization losses. Our choices are as follows.

Anatomy similarity and supervised segmentation loss: A cross-entropy loss requires manually tuned

class weights for imbalanced multi-class segmentations (Ronneberger et al., 2015). We use a soft

multi-class Dice loss which addresses imbalances inherently:

Ldice(S, S
⋆) = 1− 1

K

K∑
k=1

∑
x Sk(x)S

⋆
k(x)∑

x Sk(x) +
∑

x S
⋆
k(x)

, (2.9)

where k indicates a segmentation label (out of K) and x is voxel location. S and S⋆ are two

segmentations to be compared.
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Intensity similarity loss: We use normalized cross correlation (NCC) as:

Li(I
w
m, It) = 1−NCC2(Iwm, It), (2.10)

which will be in [0, 1] and hence will encourage maximal correlation.

Regularization loss: We use the bending energy (Rueckert et al., 1999):

Lr(u) =
1

N

∑
x

d∑
i=1

∥H(ui(x))∥2F (2.11)

where ∥ · ∥F denotes the Frobenius norm, H(ui(x)) is the Hessian of the i-th component of u(x),

and d denotes the spatial dimension (d = 3 in our case). N denotes the number of voxels. Note that

this is a second-order generalization of diffusion regularization, where one penalizes ∥∇ui(x)∥22

instead of ∥H(ui(x))∥2F .

Alternating training: It is in principle straightforward to optimize two networks according

to Eqs. 2.6 and 2.8. However, as we work with the whole 3D images, not cropped patches, GPU

memory is insufficient to simultaneously optimize the two networks in one forward pass. Hence,

we alternately train one of the two networks while keeping the other fixed. We use a 1:20 ratio

between training steps for the segmentation and registration networks, as the segmentation network

converges faster. Since it is difficult to jointly train from scratch with unlabeled images, we

independently pretrain both networks. When only few manual segmentations are available, e.g.,

only one, separately training the segmentation network is challenging. In this case, we train the

segmentation network from scratch using a fixed registration network trained unsupervisedly. We

start alternating training when the segmentation network achieves reasonable performance.

Networks: DeepAtlas can use any CNN architecture for registration and segmentation. We use

the network design of (Balakrishnan et al., 2018) for registration; and a customized light 3D U-Net

design for segmentation with LeakyReLU instead of ReLU, and smaller feature size due to GPU

memory limitations. Fig. 2.2 shows the architectures of the segmentation and registration networks.
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Figure 2.2: Architectures of the segmentation network (left) and the registration network (right). In
the segmentation network, max-pooling is used for down-sampling for which 2-stride convolution
is used in the registration network.

2.4 Experiments

We show on a 3D knee and a 3D brain MRI dataset that our framework improves both

registration and segmentation when many images with few manual segmentations are available: i.e.

N of M images are labeled (N << M ).

Mono-networks: We train single segmentation/registration models as baselines. For segmenta-

tion, fully supervised networks are trained with N labeled images; the registration networks are

trained via Eq. 2.6 using all M training images with N images labeled; the anatomy similarity loss,

La, is only used for training pairs where both images have manual segmentations. Models trained

with N = M manual segmentations (i.e., with manual segmentations for all images) provide our

upper performance bound. All mono-networks are trained for a sufficient number of epochs until

they over-fit. The best models based on validation performance are evaluated.

Optimizer: We use the Adam optimizer. The initial learning rates are 1e-3 for the mono-

networks. Initial learning rates are 5e-4 for the registration network and 1e-4 for the segmentation

network for Semi-DA and DA. Learning rates decay by 0.2 at various epochs across experiments.

We use PyTorch and run experiments on Nvidia V100 GPUs with 16GB memory.

DeepAtlas (DA): We initialize the joint model with the trained mono-networks. In addition

to the alternately trained DA models, we hold one network fixed all through training, termed

Semi-DeepAtlas (Semi-DA).
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In one-shot learning (N=1) experiments, training a supervised segmentation network based on

a single labeled image is difficult; hence, we do not compute a segmentation mono-network in this

case. For Semi-DA, we train a segmentation network from scratch with a fixed registration network

that is trained unsupervised (N=0). The DA model is initialized using the Semi-DA segmentation

network and the unsupervised registration network.

Knee MRI experiment: We test our method on 3D knee MRIs from the Osteoarthritis

Initiative (OAI) 2 and corresponding segmentations of femur and tibia as well as femoral and tibial

cartilage (Ambellan et al., 2019). From a total of 507 labeled images, we use 200 for training, 53

for validation, and 254 for testing. To test registration performance we use 10,000 random image

pairs from the test set. All images are affinely registered to an atlas built from the training images,

resampled to isotropic spacing of 1mm, cropped to 160×160×160 and intensity normalized to [0,1].

Also, the images of the right knees are flipped to be consistent with the images of the left knees.

For training, the loss weights are λr = 20, 000, λa = 3, and λsp = 3 based on approximate hyper-

parameter tuning. Note that when computing Lr from the displacements, the image coordinates

are scaled to [-1, 1] for each dimension following the convention in the interpolation function of

PyTorch.

N Models
Segmentation Dice (%) Registration Dice (%)

Bones Cartilages All Bones Cartilages All
0 Mono - - - 95.32(1.13) 65.71(5.86) 80.52(3.24)

1
Semi-DA 96.43(0.85) 76.67(3.24) 86.55(1.86) - - -

DA 96.80(0.81) 77.63(3.22) 87.21(1.84) 95.76(1.01) 70.77(5.68) 83.27(3.14)

5
Mono 96.51(1.69) 78.95(3.91) 87.73(2.37) 95.60(1.08) 68.13(5.98) 81.87(3.31)

Semi-DA 96.97(1.26) 79.73(3.84) 88.35(2.22) 96.38(0.81) 73.48(5.26) 84.93(2.89)
DA 97.49(0.67) 80.35(3.64) 88.92(2.01) 96.35(0.82) 73.67(5.22) 85.01(2.86)

10
Mono 97.29(1.03) 80.59(3.67) 88.94(2.07) 95.77(1.02) 69.45(5.93) 82.61(3.27)

Semi-DA 97.60(0.76) 81.21(3.58) 89.40(1.99) 96.66(0.72) 74.67(5.01) 85.66(2.73)
DA 97.70(0.65) 81.19(3.47) 89.45(1.91) 96.62(0.75) 74.69(5.03) 85.66(2.75)

200 Mono 98.24(0.34) 83.54(2.93) 90.89(1.56) 96.98(0.56) 77.33(4.34) 87.16(2.35)

Table 2.1: The performance of DeepAtlas on 3D knee MRI segmentation and registration.
Average (standard deviation) of Dice scores (%) for bones (femur and tibia) and cartilages (femoral
and tibial). N of 200 training images are manually labeled.

2https://nda.nih.gov/oai/
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Moving Target Mono-0 Mono-5 DA-1 DA-5 Mono-200

Image Manual Seg DA1 BL5 DA5 BL200

Figure 2.3: Examples of registration (top) and segmentation (bottom) results on OAI knee MRI data.
Top: The first two columns are the moving image/segmentation and the target image/segmentation
followed by the warped moving images (with deformation grids)/segmentations by different models.
Bottom left to right: original image, manual segmentation and predictions of various models.
Mono-i and DA-i represent the mono- and DA models with i manual segmentations respectively.

N Models Seg Dice (%) Reg Dice (%)
0 Mono - 54.75(2.37)

1
Semi-DA 61.19(1.49) -

DA 61.22(1.40) 56.54(2.32)

21
Mono 73.48(2.58) 59.47(2.34)

Semi-DA 75.63(1.66) 62.92(2.14)
DA 76.06(1.50) 62.92(2.13)

65 Mono 81.31(1.21) 63.25(2.07)

Table 2.2: The performance of DeepAtlas on 3D brain MRI segmentation and registration. Aver-
age(Standard deviation) of Dice scores (%) for 31 cortical regions. N of 65 training images are
manually labeled.
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Moving Target BL0 BL21 DA1 DA21 BL65

Image Manual Seg DA-1 Mono-21 DA-21 Mono-65

Figure 2.4: Examples of registration (top) and segmentation (bottom) results on OAI knee MRI data.
Top: The first two columns are the moving image/segmentation and the target image/segmentation
followed by the warped moving images (with deformation grids)/segmentations by different models.
Bottom left to right: original image, manual segmentation and predictions of various models.
Mono-i and DA-i represent the mono- and DA models with i manual segmentations respectively.
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Brain MRI experiment: We also evaluate our method on the MindBooggle101 (Klein and

Tourville, 2012) brain MRIs with 32 cortical regions. We fuse corresponding segmentation labels of

the left and right brain hemispheres. MindBoogle101 consists of images from multiple datasets,

e.g., OASIS-TRT-20, MMRR-21 and HLN-12. After removing images with incorrect labels, we

obtain a total of 85 images. We use 5 images from OASIS-TRT-20 as validation set and 15 as

test set. We use the remaining 65 images for training. Manual segmentations in the N=1 and

N=21 experiments are only from the MMRR-21 subset; this simulates a common practical use

case, where we only have few manual segmentations for one dataset and additional unlabeled

images from other datasets, but desire to process a different, new dataset. All images are 1mm

isotropic, affinely-aligned, histogram-matched, and cropped to size 168 × 200 × 169. We apply

sagittal flipping for training data augmentation. We use the same loss weights as for the knee MRI

experiment except for λr = 5, 000, since cross-subject brain registrations require large deformations

and hence less regularization.

2.5 Results

All trained networks are evaluated using Dice overlap scores between predictions and the

manual segmentations for the segmentation network, or between the warped moving segmentations

and the target segmentations for the registration network. Tabs. 2.1 and 2.2 show results for the knee

and brain MRI experiments respectively in Dice scores (%). Fig. 2.3 and Fig. 2.4 shows examples

of registration and segmentation results on knee and brain MRI.

General results: For both datasets across different numbers of manual segmentations, Semi-DA,

which uses a fixed pre-trained network to help the training of the other network, boosts performance

compared to separately trained mono-networks. DA, where both networks are alternately trained,

achieves even better Dice scores in most cases. Based on a Mann-Whitney U-test with a significance

level of 0.05 and a correction for multiple comparisons with a false discovery rate of 0.05, our

models (DA/Semi-DA) result in significantly larger Dice scores than the mono-networks for all

experiments. This demonstrates that segmentation and registration networks can indeed help each

other by providing estimated supervision on unlabeled data.

17



Knee results: On knee MRIs, our method improves segmentation scores over separately learned

networks by about 1.2% and 0.5%, and registration scores increase by about 3.1% and 3.0%, when

training with 5 and 10 manual segmentation respectively. Especially for the challenging cartilage

structures, our joint learning boosts segmentation by 1.4% and 0.7%, and registration by 5.5% and

5.2% for N=5 and N=10 respectively.

Brain results: Dice scores for segmentation and registration increase by about 2.6% and 3.5%

respectively for the cortical structures of the brain MRIs.

One-shot learning: In the one-shot experiments on both datasets, reasonable segmentation

performance is achieved; moreover, DA increases the Dice score over unsupervised registration by

about 2.7% and 1.8% on the knee and brain data respectively. This demonstrates the effectiveness

of our framework for one-shot learning.

Qualitative results: DA achieves more anatomically consistent registrations than the mono-

networks on the knee (Fig. 2.3) and Brain MRI samples (Fig. 2.4).

2.6 Conclusion

We presented our DeepAtlas framework for joint learning of segmentation and registration

networks using only few images with manual segmentations. By introducing an anatomical similarity

loss, the learned registrations are more anatomically consistent. Furthermore, the segmentation

network is guided by a form of data augmentation provided via the registration network on unlabeled

images. For both bone/cartilage structures in knee MRIs and cortical structures in brain MRIs,

our approach shows large improvements over separately learned networks. When only given one

manual segmentation, our method provides one-shot segmentation learning and greatly improves

registration. This demonstrates that one network can benefit from imperfect supervision on unlabeled

data provided by the other network. Our approach provides a general solution to the lack of manual

segmentations when training segmentation and registration networks. For future work, introducing

uncertainty measures for the segmentation and registration networks may help alleviate the effect of

poor predictions of one network on the other. It would also be of interest to investigate multitask
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learning via layer sharing for the segmentation and registration networks. This may further improve

performance and decrease model size.
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CHAPTER 3: RandConv: Robust and Generalizable Visual Representation Learning via
Random Convolutions

While successful for various computer vision tasks, deep neural networks have shown to be

vulnerable to texture style shifts and small perturbations to which humans are robust. In this chapter,

we propose to use random convolutions as data augmentation to improve the robustness of neural

networks in the presence of distribution shift with respect to image ”style”. Random convolutions are

approximately shape-preserving and may distort colors and local textures. Intuitively, randomized

convolutions create an infinite number of new domains with similar global shapes but random local

texture. Therefore, we explore using outputs of multi-scale random convolutions as new images

or mixing them with the original images during training. When applying a network trained with

our approach to unseen domains, our method consistently improves the performance on domain

generalization benchmarks and is scalable to ImageNet. In particular, in the challenging scenario

of generalizing to the sketch domain in PACS and to ImageNet-Sketch, our method outperforms

state-of-art methods by a large margin. More interestingly, our method can benefit downstream

tasks by providing a more robust pretrained visual representation.

This chapter is organized as follows: Section 3.1 introduces the motivation and contribution of

our work and Section 3.2 introduces related previous works. Section 3.3.2 describes the details of

proposed RandConvdata augmentation pipeline. Section 3.4 presents the experimental setup and

results on domain generalization and robustness benchmarks. Section 3.6 concludes this chapter.

Section 3.5 provides further details and additional experiments. The work presented in this chapter

was published in the Proceedings of the 2021 International Conference on Learning Representations

(ICLR 2021) (Xu et al., 2021).
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3.1 Introduction

Generalizability and robustness to out-of-distribution samples have been major pain points

when applying deep neural networks (DNNs) in real world applications (Volpi et al., 2018). Though

DNNs are typically trained on datasets with millions of training samples, they still lack robustness to

domain shift, small perturbations, and adversarial examples (Luo et al., 2019). Recent research has

shown that neural networks tend to use superficial features rather than global shape information for

prediction even when trained on large-scale datasets such as ImageNet (Geirhos et al., 2019). These

superficial features can be local textures or even patterns imperceptible to humans but detectable to

DNNs, as is the case for adversarial examples (Ilyas et al., 2019). In contrast, image semantics often

depend more on object shapes rather than local textures. For image data, local texture differences

are one of the main sources of domain shift, e.g., between synthetic virtual images and real data (Sun

and Saenko, 2014). Our goal is therefore to learn visual representations that are invariant to local

texture and that generalize to unseen domains. While texture and color may be treated as different

concepts, we follow the convention in (Geirhos et al., 2019) and include color when talking about

texture.

We address the challenging setting of robust visual representation learning from single domain

data. Limited work exists in this setting. Proposed methods include data augmentation (Volpi et al.,

2018; Qiao et al., 2020; Geirhos et al., 2019), domain randomization (Tobin et al., 2017; Yue et al.,

2019), self-supervised learning (Carlucci et al., 2019), and penalizing the predictive power of low-

level network features (Wang et al., 2019a). Following the spirit of adding inductive bias towards

global shape information over local textures, we propose using random convolutions to improve

the robustness to domain shifts and small perturbations. While recently Lee et al. (2020) proposed

a similar technique for improving the generalization of reinforcement learning agents in unseen

environments, we focus on visual representation learning and examine our approach on visual

domain generalization benchmarks. Our method also includes a multiscale design and a mixing

variant. In addition, considering that many computer vision tasks rely on training deep networks

based on ImageNet-pretrained weights (including some domain generalization benchmarks), we
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Input k = 1 k = 3 k = 5 k = 7 k = 11 k = 15

Input α = 0.9 α = 0.7 α = 0.5 α = 0.3 α = 0.1 α = 0

Figure 3.1: Top: Illustration that RandConv randomizes local texture but preserves shapes in the image.
Middle: First column is the input image of size 2242; following columns are convolutions results using
random filters of different sizes k. Bottom: Mixing results between an image and one of its random
convolution results with different mixing coefficients α.

ask “Can a more robust pretrained model make the finetuned model more robust on downstream

tasks?” Different from (Kornblith et al., 2019; Salman et al., 2020) who studied the transferability

of a pretrained ImageNet representation to new tasks while focusing on in-domain generalization,

we explore generalization performance on unseen domains for new tasks.

We make the following contributions:

• We develop RandConv, a data augmentation technique using multi-scale random-convolutions

to generate images with random texture while preserving global shapes. We explore using the

RandConv output as training images or mixing it with the original images. We show that a

consistency loss can further enforce invariance under texture changes.

• We provide insights and justifications on why RandConv augments images with different local

texture but the same semantics with the shape-preserving property of random convolutions.
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• We validate RandConv and its mixing variant in extensive experiments on synthetic and real-

world benchmarks as well as on the large-scale ImageNet dataset. Our methods outperform

single domain generalization approaches by a large margin on digit recognition datasets and for

the challenging case of generalizing to the Sketch domain in PACS and to ImageNet-Sketch.

• We explore if the robustness/generalizability of a pretrained representation can transfer. We

show that transferring a model pretrained with RandConv on ImageNet can further improve

domain generalization performance on new downstream tasks on the PACS dataset.

3.2 Related Work

Domain Generalization (DG) aims at learning representations that perform well when trans-

ferred to unseen domains. Modern techniques range between feature fusion (Shen et al., 2019),

meta-learning (Li et al., 2018a; Balaji et al., 2018), and adversarial training (Shao et al., 2019; Li

et al., 2018b). Note that most current DG work (Ghifary et al., 2016; Li et al., 2018a,b) requires a

multi-source training setting to work well. However, in practice, it might be difficult and expensive

to collect data from multiple sources, such as collecting data from multiple medical centers (Raghu-

pathi and Raghupathi, 2014). Instead, we consider the more strict single-domain generalization DG

setting, where we train the model on source data from a single domain and generalize it to new

unseen domains (Carlucci et al., 2019; Wang et al., 2019b).

Domain Randomization (DR) was first introduced as a DG technique by Tobin et al. (2017)

to handle the domain gap between simulated and real data. As the training data in (Tobin et al.,

2017) is synthesized in a virtual environment, it is possible to generate diverse training samples

by randomly selecting background images, colors, lighting, and textures of foreground objects.

When a simulation environment is not accessible, image stylization can be used to generate new

domains (Yue et al., 2019; Geirhos et al., 2019). However, this requires extra effort to collect data

and to train an additional model; further, the number of randomized domains is limited by the

number of predefined styles.
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Data Augmentation has been widely used to improve the generalization of machine learning

models (Simard et al., 2003). DR approaches can be considered a type of synthetic data augmenta-

tion. To improve performance on unseen domains, Volpi et al. (2018) generate adversarial examples

to augment the training data; Qiao et al. (2020) extend this approach via meta-learning. As with

other adversarial training algorithms, significant extra computation is required to obtain adversarial

examples.

Learning Representations Biased towards Global Shape Geirhos et al. (2019) demonstrated

that convolutional neural networks (CNNs) tend to use superficial local features even when trained

on large datasets. To counteract this effect, they proposed to train on stylized ImageNet, thereby

forcing a network to rely on object shape instead of textures. Wang et al. improved out-of-domain

performance by penalizing the correlation between a learned representation and superficial features

such as the gray-level co-occurrence matrix (Wang et al., 2019b), or by penalizing the predictive

power of local, low-level layer features in a neural network via an adversarial classifier (Wang

et al., 2019a). Our approach shares the idea that learning representations invariant to local texture

helps generalization to unseen domains. However, RandConv avoids searching over many hyper-

parameters, collecting extra data, and training other networks. It also scales to large-scale datasets

since it adds minimal computation overhead.

Random Mapping in Machine Learning Random projections have also been effective for

dimensionality reduction based on the distance-preserving property of the Johnson–Lindenstrauss

lemma (Johnson and Lindenstrauss, 1984). (Vinh et al., 2016) applied random projections on entire

images as data augmentation to make neural networks robust to adversarial examples. Lee et al.

(2020) recently used random convolutions to help reinforcement learning (RL) agents generalize

to new environments. Neural networks with fixed random weights can encode meaningful repre-

sentations (Saxe et al., 2011) and are therefore useful for neural architecture search (Gaier and

Ha, 2019), generative models (He et al., 2016a), natural language processing (Wieting and Kiela,

2019), and RL (Osband et al., 2018; Burda et al., 2019). In contrast, RandConv uses non-fixed

randomly-sampled weights to generate images with different local texture.
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3.3 RandConv: Randomize Local Texture at Different Scales

We propose using a convolution layer with non-fixed random weights as the first layer of a DNN

during training. This strategy generates images with random local texture but consistent shapes,

and is beneficial for robust visual representation learning. Sec. 3.3.1 justifies the shape-preserving

property of a random convolution layer. Sec. 3.3.2 describes RandConv, our data augmentation

algorithm using a multi-scale randomized convolution layer and input mixing.

3.3.1 A Random Convolution Layer Preserves Global Shapes

Convolution is the key building block for deep convolutional neural networks. Consider a

convolution layer with filters Θ ∈ Rh×w×Cin×Cout with an input image I ∈ RH×W×Cin , where H

and W are the height and width of the input and Cin and Cout are the number of feature channels

for the input and output, and h and w are the height and width of the layer’s filter. The output (with

appropriate input padding) will be g = I ∗Θ with g ∈ RH×W×Cout .

In images, nearby pixels with similar color or texture can be grouped into primitive shapes

that represent parts of objects or the background. A convolution layer linearly projects local image

patches to features at corresponding locations on the output map using shared parameters. While a

convolution with random filters can project local patches to arbitrary output features, the output of a

random linear projection approximately preserves relative similarity between input patches, proved

in Appendix 3.5.2. In other words, since any two locations within the same shape have similar local

textures in the input image, they tend to be similar in the output feature map. Therefore, shapes that

emerge in the output feature map are similar to shapes in the input image provided that the filter

size is sufficiently small compared to the size of a typical shape.

In other words, the size of a convolution filter determines the smallest shape it can preserve.

For example, 1x1 random convolutions preserve shapes at the single-pixel level and thus work as a

random color mapping; large filters perturb shapes smaller than the filter size that are considered

local texture of a shape at this larger scale. See Fig. 3.1 for examples. More discussion and a formal

proof are in Appendix 3.5.1 and 3.5.2.
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3.3.2 Multi-scale Image Augmentation with a Randomized Convolution Layer

Algorithm 1 Learning with Data Augmentation by Random Convolutions

1: Input: Model Φ, task loss Ltask, training images {Ii}Ni=1 and their labels {yi}Ni=1, pool of
filter sizes K = {1, ..., n}, fraction of original data p, whether to mix with original images,
consistency loss weight λ

2: function RANDCONV(I, K, mix, p)
3: Sample p0 ∼ U(0, 1)
4: if p0 ¡ p and mix is False then
5: return I ▷ When not in mix mode, use the original image with probability p
6: else
7: Sample scale k ∼ K
8: Sample convolution weights Θ ∈ Rk×k×3×3 ∼ N(0, 1

3k2
)

9: Irc = I ∗Θ ▷ Apply convolution on I
10: if mix is True then
11: Sample α ∼ U(0, 1)
12: return αI + (1− α)Irc ▷ Mix with original images
13: else
14: return Irc
15: Learning Objective:
16: for i = 1 → N do
17: for j = 1 → 3 do
18: ŷji = Φ(RandConv(Ii)) ▷ Predict labels for three augmented variants of the same

image
19: Lcons = λ

∑3
j=1 KL(ŷji ||ȳi) where ȳi =

∑3
j=1 ŷ

j
i /3 ▷ Consistency Loss

20: L = Ltask(ŷ
1
i , yi) + λLcons ▷ Learning with the task loss and the consistency loss

Sec. 3.3.1 discussed how outputs of randomized convolution layers approximately maintain

shape information at a scale larger than their filter sizes. Here, we develop our RandConv data

augmentation technique using a randomized convolution layer with Cout = Cin to generate shape-

consistent images with randomized texture (see Alg. 1). Our goal is not to use RandConv to

parameterize or represent texture as in previous filter-bank based texture models (Heeger and

Bergen, 1995; Portilla and Simoncelli, 2000). Instead, we only use the three-channel outputs

of RandConv as new images with the same shape and different “style” (loosely referred to as

”texture”). We also note that a convolution layer is different from a convolution operation in image

filtering. Standard image filtering applies the same 2D filter on three color channels separately. In
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contrast, our convolution layer applies three different 3D filters and each takes all color channels as

input and generates one channel of the output. Our proposed RandConv variants are as follows:

RCimg: Augmenting Images with Random Texture A simple approach is to use the ran-

domized convolution layer outputs, I ∗ Θ, as new images; where Θ are the randomly sampled

weights and I is a training image. If the original training data is in the domain D0, a sampled

weight Θk generates images with consistent global shape but random texture forming the ran-

dom domain Dk. Thus, by random weight sampling, we obtain an infinite number of random

domains D1, D1, . . . , D∞. Input image intensities are assumed to be a standard normal distribution

N(0, 1) (which is often true in practice thanks to data whitening). As the outputs of RandConv

should follow the same distribution, we sample the convolution weights from N(0, σ2) where

σ = 1/
√
Cin × h× w, which is commonly applied for network initialization (He et al., 2015). We

include the original images for training at a ratio p as a hyperparameter.

RCmix: Mixing Variant As shown in Fig. 3.1, outputs from RCimg can vary significantly

from the appearance of the original images. Although generalizing to domains with significantly

different local texture distributions is useful, we may not want to sacrifice much performance

on domains similar to the training domain. Inspired by the AugMix (Hendrycks et al., 2020b)

strategy, we propose to blend the original image with the outputs of the RandConv layer via linear

convex combinations αI + (1 − α)(I ∗ Θ), where α is the mixing weight uniformly sampled

from [0, 1].In RCmix, the RandConv outputs provide shape-consistent perturbations of the original

images. Varying α, we continuously interpolate between the training domain and the randomly

sampled domains of RCimg.

Multi-scale Texture Corruption As discussed in Sec. 3.3.1, image shape information at a

scale smaller than a filter’s size will be corrupted by RandConv. Therefore, we can use filters of

varying sizes to preserve shapes at various scales. We choose to uniformly randomly sample a filter

size k from a pool K = 1, 3, ...n before sampling convolution weights Θ ∈ Rk×k×Cin×Cout from a

Gaussian distribution N(0, 1
k2Cin

). Fig. 3.1 shows examples of multi-scale RandConv outputs.
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Consistency Regularization To learn representations invariant to texture changes, we use a

loss encouraging consistent network predictions for the same RandConv-augmented image for

different random filter samples. Approaches for transform-invariant domain randomization (Yue

et al., 2019), data augmentation (Hendrycks et al., 2020b), and semi-supervised learning (Berthelot

et al., 2019) use similar strategies. We use Kullback-Leibler (KL) divergence to measure consistency.

However, enforcing prediction similarity of two augmented variants may be too strong. Instead,

following (Hendrycks et al., 2020b), we use RandConv to obtain 3 augmentation samples of image

I: Gj = RandConvj(I) for j = 1, 2, 3 and obtain their predictions with a model Φ: yj = Φ(Gj).

We then compute the relaxed loss as λ
∑3

j=1 KL(yj||ȳ), where ȳ =
∑3

j=1 y
j/3 is the sample

average.

3.4 Experiments

Secs. 3.4.1 to 3.4.3 evaluate our methods on the following datasets: multiple digit recogni-

tion datasets, PACS, and ImageNet-sketch. Sec. 3.4.4 uses PACS to explore the out-of-domain

generalization of a pretrained representation in transfer learning by checking if pretraining on

ImageNet with our method improves the domain generalization performance in downstream tasks.

All experiments are in the single-domain generalization setting where training and validation sets

are drawn from one domain. Additional experiments with ResNet18 as the backbone are given in

the Appendix.

3.4.1 Digit Recognition

The five digit recognition datasets (MNIST (LeCun et al., 1998), MNIST-M (Ganin et al., 2016),

SVHN (Netzer et al., 2011), SYNTH (Ganin and Lempitsky, 2014) and USPS (Denker et al., 1989))

have been widely used for domain adaptation and generalization research (Peng et al., 2019a,b;

Qiao et al., 2020). Following the setups in (Volpi et al., 2018) and (Qiao et al., 2020), we train a

simple CNN with 10,000 MNIST samples and evaluate the accuracy on the test sets of the other

four datasets. We also test on MNIST-C (Mu and Gilmer, 2019), a robustness benchmark with 15

common corruptions of MNIST and report the average accuracy over all corruptions.
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Figure 3.2: Average accuracy and 5-run variance of MNIST model on MNIST-M, SVHN, SYNTH
and USPS. Studies for: (a) original data fraction p for RCimg; (b) multiscale design (1-n refers to
using scales 1,3,..,n) for RCimg,p=0.5 (orange) and RCmix (blue); (c) consistency loss weight λ for
RCimg1−7,p=0.5 (orange) and RCmix1−7 (blue).

Selecting Hyperparameters and Ablation Study. Fig. 3.2(a) shows the effect of the hyper-

parameter p on RCimg with filter size 1. We see that adding only 10% RandConv data (p = 0.9)

immediately improves the average performance (DG-Avg) on MNIST-M, SVHN, SYNTH and

USPS performance from 53.53 to 69.19, outperforming all other approaches (see Tab. 3.1) for

every dataset. We choose p = 0.5, which obtains the best DG-Avg. Fig. 3.2(b) shows results for

a multiscale ablation study. Increasing the pool of filter sizes up to 7 improves DG-Avg perfor-

mance. Therefore we use multi-scale 1-7 to study the consistency loss weight λ, shown in Fig.

3.2(c). Adding the consistency loss improves both RandConv variants on DG-avg: RCmix1−7

favors λ = 10 while RCimg1−7,p=0.5 performs similarly for λ = 5 and λ = 10. We choose λ = 10

for all subsequent experiments.

Results. Tab. 3.1 compares the performance of RCimg1−7,p=0.5,λ=10 and RCmix1−7,λ=10 with other

state-of-the-art approaches. We show results of the adversarial training based methods GUD (Volpi

et al., 2018), M-ADA (Qiao et al., 2020), and PAR (Wang et al., 2019a). The baseline model is

trained only on the standard classification loss.

3.4.2 PACS Experiments

The PACS dataset (Li et al., 2018b) considers 7-class classification on 4 domains: photo, art

painting, cartoon, and sketch, with very different texture styles. Most recent domain generalization

work studies the multi-source domain setting on PACS and uses domain labels of the training data.
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MNIST MNIST-M SVHN USPS SYNTH DG-Avg MNIST-C

Baseline 98.40(0.84) 58.87(3.73) 33.41(5.28) 79.27(2.70) 42.43(5.46) 53.50(4.23) 88.20(2.10)

GreyScale 98.82(0.02) 58.41(0.99) 36.06(1.48) 80.45(1.00) 45.00(0.80) 54.98(0.86) 89.15(0.44)

ColorJitter 98.72(0.05) 62.72(0.66) 39.61(0.88) 79.18(0.60) 46.40(0.34) 56.98(0.39) 89.48(0.18)

BandPass 98.65(0.11) 70.22(2.73) 48.34(2.56) 78.60(0.82) 57.17(2.01) 63.58(1.89) 87.89(0.68)

MultiAug 98.80(0.05) 62.32(0.66) 39.07(0.68) 79.31(1.02) 46.48(0.80) 56.79(0.34) 89.54(0.11)

PAR (our imp) 98.79(0.05) 61.16(0.21) 36.08(1.27) 79.95(1.18) 45.48(0.35) 55.67(0.33) 89.34(0.45)

GUD - 60.41 35.51 77.26 45.32 54.62 -
M-ADA - 67.94 42.55 78.53 48.95 59.49 -

RCimg1-7 , p=0.5, λ=5 98.86(0.05) 87.67(0.37) 54.95(1.90) 82.08(1.46) 63.37(1.58) 72.02(1.15) 90.94(0.51)

RCmix1-7,λ=10 98.85(0.04) 87.76(0.83) 57.52(2.09) 83.36(0.96) 62.88(0.78) 72.88(0.58) 91.62(0.77)

RCmix1-7,λ=10 + MultiAug 98.82(0.06) 87.89(0.29) 62.07(0.62) 84.39(1.02) 63.90(0.63) 74.56(0.46) 91.40(0.93)

Table 3.1: Average accuracy and 5-run standard deviation (in parenthesis) of MNIST10K model on
MNIST-M, SVHN, SYNTH, USPS and their average (DG-avg); and average accuracy of 15 types
of corruptions in MNIST-C. Both RandConv variants significantly outperform all other methods.

Although we follow the convention to train on 3 domains and to test on the fourth, we simply pool

the data from the 3 training domains as in (Wang et al., 2019a), without using domain labels during

the training.

Baseline and State-of-the-Art. Following (Li et al., 2017), we use Deep-All as the baseline,

which finetunes an ImageNet-pretrained AlexNet on 3 domains using only the classification loss

and tests on the fourth domain. We test our RandConv variants RCimg1-7,p=0.5 and RCmix1-7 with

and without consistency loss, and ColorJitter/GreyScale/BandPass/MultiAug data augmentation

as in the digit datasets. We also implemented PAR (Wang et al., 2019a) using our baseline model.

RCmix1-7 combined with MultiAug is also tested. Further, we compare to the following state-of-

the-art approaches: Jigen (Carlucci et al., 2019) using self-supervision, MLDG (Li et al., 2018a)

using meta-learning, and the conditional invariant deep domain generalization method CIDDG (Li

et al., 2018c). Note that previous methods used different Deep-All baselines which make the final

accuracy not directly comparable, and MLDG and CIDDG use domain labels for training.

Results. Tab. 3.2 shows significant improvements on Sketch for both RandConv variants.

Sketch is the most challenging domain with no color and much less texture compared to the other

3 domains. The success on Sketch demonstrates that our methods can guide the DNN to learn
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MNIST-M SVHN USPS SYNTH

Figure 3.3: t-SNE feature embedding visualization for digit datasets for models trained on MNIST
without (top) and with our RCmix1-7,λ=10 approach (bottom). Different colors denote different
classes.

global representations focusing on shapes that are robust to texture changes. Without using the

consistency loss, RCmix1-7 achieves the best overall result improving over Deep-All by ∼4% but

adding MultiAug does not further improve the performance. Adding the consistency loss with

λ = 10, RCmix1-7 and RCimg1-7,p=0.5 performs better on Sketch but degrades performance on the

other 3 domains, so do GreyScale and ColorJitter. This observation will be discussed in Sec 3.4.4.

3.4.3 Generalizing an ImageNet Model to ImageNet-Sketch

ImageNet-Sketch (Wang et al., 2019a) is an out-of-domain test set for models trained on

ImageNet. We trained AlexNet from scratch with RCimg1-7,p=0.5,λ=10 and RCmix1-7,λ=10. We evaluate

their performance on ImageNet-Sketch. We use the AlexNet model trained without RandConv

as our baseline. Tab. 3.3 compares PAR and its baseline model and AlexNet trained with Stylized

ImageNet (SIN) (Geirhos et al., 2019) on ImageNet-Sketch. Although PAR uses a stronger baseline,

RandConv achieves significant improvements over our baseline and outperforms PAR by a large

margin. Our methods achieve more than a 7% accuracy improvement over the baseline and surpass

PAR by 5%. SIN as an image stylization approach that can modify image texture in a hierarchical

and realistic way. However, albeit its complexity, it still performs on par with RandConv. Note

that image stylization techniques require additional data and heavy precomputation. Further, the

images for the style source also need to be chosen. In contrast, RandConv is much easier to use:
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Base Method Photo Art Cartoon Sketch Average

Ours

Deep-All 86.77(0.42) 60.11(1.33) 64.12(0.32) 55.28(4.71) 66.57(1.36)

GreyScale 83.93(1.47) 61.60(1.18) 62.12(0.61) 60.07(2.47) 66.93(0.83)

ColorJitter 84.61(0.83) 59.01(0.24) 61.43(0.68) 62.44(1.68) 66.88(0.33)

BandPass 87.08(0.57) 59.46(0.27) 64.39(0.51) 55.39(2.95) 66.58(0.73)

MultiAug 85.21(0.47) 59.51(0.38) 62.88(1.01) 61.67(0.76) 67.32(0.23)

PAR (our imp.) 87.21(0.42) 60.17(0.95) 63.63(0.88) 55.83(2.57) 66.71(0.58)

RCimg1-7 , p=0.5 86.50(0.72) 61.10(0.38) 64.24(0.62) 68.50(1.83) 70.09(0.43)

RCmix1-7 86.60(0.67) 61.74(0.90) 64.05(0.66) 69.74(0.66) 70.53(0.25)

RCmix1-7 + MultiAug 86.23(0.74) 61.91(0.76) 62.69(0.76) 67.74(1.21) 69.64(0.49)

RCimg1-7 , p=0.5, λ=10 81.15(0.76) 59.56(0.79) 62.42(0.59) 71.74(0.43) 68.72(0.58)

RCmix1-7 ,λ=10 81.78(1.11) 61.14(0.51) 63.57(0.29) 71.97(0.38) 69.62(0.24)

Results below are not directly comparable due to different Deep-All implementations.

Wang et al. (2019a)
Deep-All (our run) 88.40 66.26 66.58 59.40 70.16
PAR (our run) 88.40 65.19 68.58 61.86 71.10
PAR (reported) 89.6 66.3 68.3 64.1 72.08

Carlucci et al. (2019)
Deep-All 89.98 66.68 69.41 60.02 71.52
Jigen 89.00 67.63 71.71 65.18 73.38

Li et al. (2018a)
Deep-All 86.67 64.91 64.28 53.08 67.24
MLDG (use domain labels) 88.00 66.23 66.88 58.96 70.01

Li et al. (2018c)
Deep-All 77.98 57.55 67.04 58.52 65.27
CIDDG (use domain labels) 78.65 62.70 69.73 64.45 68.88

Table 3.2: Mean and 5-run standard deviation (in parenthesis) results for domain generalization
on PACS. Best results with our Deep-All baseline are in bold. The domain name in each column
represents the target domain. Base column indicates different baselines and results under different
baselines are not directly comparable. MLDG and CIDDF used domain labels for training.

it can be applied to any dataset via a simple convolution layer. We also measure the shape-bias

metric proposed by (Geirhos et al., 2019) for the RandConv trained AlexNet. RCimg1-7,p=0.5,λ=10

and RCmix1-7,λ=10 improve the baseline from 25.36% to 48.24% and 54.85% respectively.

3.4.4 Revisiting PACS with more Robust Pretrained Representations

A common practice for many computer vision tasks (including the PACS benchmark) is transfer

learning, i.e. finetuning a backbone model pretrained on ImageNet. Recently, how the accuracy on

ImageNet (Kornblith et al., 2019) and adversial robustness (Salman et al., 2020) of the pretrained

model affect transfer learning has been studied in the context of domain generalization. Instead, we
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Baseline PAR
Baseline

RCimg1-7, RCmix1-7, SIN
(Wang et al., 2019a) p=0.5,λ=10 λ=10 (Geirhos et al., 2019)

Top1 12.04 13.06 10.28 18.09 16.91 17.62
Top5 25.60 26.27 21.60 35.40 33.99 36.22

Table 3.3: Accuracy of ImageNet-trained AlexNet on ImageNet-Sketch (IN-S) data. Our methods
outperform PAR by 5% and are on par with a Stylized-ImageNet (SIN) trained model. Note that
PAR was built on top of a stronger baseline than our model, and both PAR and SIN fine-tuned the
baseline model which helped the performance, while we train RandConv model from scratch.

study how out-of-domain generalizability transfers from pretraining to downstream tasks and shed

light on how to better use pretrained models.

Impact of ImageNet Pretraining A model trained on ImageNet may be biased towards

textures (Geirhos et al., 2019). Finetuning ImageNet pretrained models on PACS may inherit this

texture bias, thereby benefitting generalization on the Photo domain (which is similar to ImageNet),

but hurting performance on the Sketch domain. Therefore, as shown in Sec. 3.4.2, using RandConv

to correct this texture bias improves results on Sketch, but degrades them on the Photo domain.

Since pretraining has such a strong impact on transfer performance to new tasks, we ask: ”Can

the generalizability of a pretrained model transfer to downstream tasks? I.e., does a pretrained

model with better generalizability improve performance on unseen domains on downstream tasks?”

To answer this, we revisit the PACS tasks based on ImageNet-pretrained weights where our two

RandConv variants of Sec. 3.4.3 are used during ImageNet training. We study if this results in

performance changes for the Deep-All baseline and for finetuning with RandConv.

Better Performance via RandConv pretrained model We start by testing the Deep-All

baselines using the two RandConv-trained ImageNet models of Sec. 3.4.3 as initialization. Tab. 3.4

shows significant improvements on Sketch. Results are comparable to finetuning with RandConv

on a normal pretrained model. Art is also consistently improved. Performance drops slightly on

Photo as expected, since we reduced the texture bias in the pretrained model, which is helpful for

the Photo domain. A similar performance improvement is observed when using the SIN-trained

AlexNet as initialization. Using RandConv for both ImageNet training and PACS finetuning, we

achieve 76.11% accuracy on Sketch. As far as we know, this is the best performance using an
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PACS ImageNet Photo Art Cartoon Sketch Avg

Deep-All

Baseline 86.77(0.42) 60.11(1.33) 64.12(0.32) 55.28(4.71) 66.57(1.36)
RCimg1-7,p=0.5,λ=10 84.48(0.52) 62.61(1.23) 66.13(0.80) 69.24(0.80) 70.61(0.53)

RCmix1-7,λ=10 85.59(0.40) 63.30(0.99) 63.83(0.85) 68.29(1.27) 70.25(0.45)
SIN 85.33(0.66) 65.85(0.87) 65.39(0.62) 65.75(0.59) 70.58(0.21)

RCimg1-7,
p=0.5,λ=10

Baseline 81.15(0.76) 59.56(0.79) 62.42(0.59) 71.74(0.43) 68.72(0.58)
RCimg1-7,p=0.5,λ=10 84.36(0.36) 63.73(0.91) 68.07(0.55) 75.41(0.57) 72.89(0.33)

RCmix1-7,λ=10 84.63(0.97) 63.41(1.22) 66.36(0.43) 74.59(0.84) 72.25(0.54)

RCmix1-7
λ=10

Baseline 81.78(1.11) 61.14(0.51) 63.57(0.29) 71.97(0.38) 69.62(0.24)
RCimg1-7,p=0.5,λ=10 85.16(1.03) 63.17(0.38) 67.68(0.60) 76.11(0.43) 73.03(0.46)

RCmix1-7,λ=10 86.17(0.56) 65.33(1.05) 65.52(1.13) 73.21(1.03) 72.56(0.50)

Table 3.4: Generalization results on PACS with RandConv and SIN pretrained AlexNet. ImageNet
column shows how the pretrained model is trained on ImageNet (baseline represents training the
ImageNet model using only the classification loss); PACS column indicates the methods used for
finetuning on PACS. Best and second best accuracy for each target domain are highlighted in bold
and underlined.

AlexNet baseline. This approach even outperforms Jigen (Carlucci et al., 2019) (71.35%) with a

stronger ResNet18 baseline model. Cartoon and Art are also improved. The best average domain

generalization accuracy is 73.03%, with a more than 6% improvement over our initial Deep-All

baseline.

This experiment confirms that generalizability may transfer: removing texture bias may not

only make a pretrained model more generalizable, but it may help generalization on downstream

tasks. For similar target and pretraining domains like Photo and ImageNet, where learning texture

bias may actually be beneficial, performance may degrade slightly.

3.5 Theoretical Justification and More Experimental Details

This section provides additional details. Specifically, in Sec. 3.5.1 and 3.5.2, we discuss

definitions of shapes and textures in images and justify why random convolution preserves global

shapes and disrupts local texture formally by proving Theorem 3.1. This theorem shows that random

linear projections are approximately distance preserving. We also discuss our simulation-based

bound based on 80% distance rescaling on real image data. Sec. 3.5.3 provides more experimental

details for the different datasets. Sec. 3.5.4 shows experimental results with a stronger backbone
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Figure 3.4: Left: An image with texture and shapes at different scales; Middle: The output of
RandConv with a small filter size which largely preserves the shapes of the stones. Right: The
output of RandConv with a large filter size distorts the shape of the stones as well.

architecture and on a new benchmark ImageNet-R (Hendrycks et al., 2020a). Sec. 3.5.5 provides

more detailed results regarding hyperparameter selection and ablation studies. Lastly, Sec. 3.5.6

shows example visualizations of RandConv outputs and for its mixing variants.

3.5.1 Shapes and Texture in Images

As discussed in the main text, we define shapes in images that are preserved by a random

convolution layer as primitive shapes: spatial clusters of pixels with similar local texture. An object

in a image can be a single primitive shape alone but in most cases it is the composition of multiple

primitive shapes e.g. a car includes wheels, body frames, windshields. Note that the definition of

texture is not necessarily opposite to shapes, since the texture of a larger shape can includes smaller

shapes. For example, in Fig.3.4, the left occluded triangle shape has texture composed by shapes

of cobble stones while cobble stones have their own texture. Random convolution can preserve

those large shapes that usually define the image semantics while distorting the small shapes as local

texture.

To formally define the shape-preserving property, we assume (x1, y1), (x2, y2) and (x3, y3)

are three locations on a image and (x1, y1) has closer color and local texture with (x2, y2) than

(x3, y3). For example, (x1, y1) and (x2, y2) are within the same shape while (x3, y3) is located at a

neighboring shape. Then we have ∥r(x1, y1)− r(x2, y2)∥ < ∥r(x1, y1)− r(x3, y3)∥, where r(xi, yi)
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is the image patch at location (xi, yi). A transformation f is shape-preserving if it maintains such

relative distance relations for most location triplets, i.e.

∥f(r(xi, yi))− f(r(xj, yj))∥/∥r(xi, yi)− r(xj, yj)∥ ≈ r (3.1)

for any two spatial location (xi, yi) and (xj, yj); r ≥ 0 is a constant.

3.5.2 Random Convolution is Shape-preserving as a Random Linear Projection is Distance
Preserving

We can express a convolution layer as a local linear projection:

g(x, y) = Ur(x, y) , (3.2)

where r(x, y) ∈ Rd (d = h× w × Cin) is the vectorized image patch centerized at location (x, y),

g(x, y) ∈ RCout is the output feature at location (x, y), and U ∈ RCout×d is the matrix expressing

the convolution layer filters Θ. I.e., for each sliding window centered at (x, y), a convolution layer

applies a linear transform f : Rd → RCout projecting the d dimensional local image patch r(x, y)

to its Cout dimensional feature g(x, y). When Θ is independently randomly sampled, e.g. from a

Gaussian distribution, the convolution layer preserves global shapes since a random linear projection

is approximately distance-preserving by bounding the range of r in Eq. 3.1 in Theorem 3.1.

Theorem 3.1. Suppose we have N data points z1, · · · , zN ∈ Rd. Let f(z) = Uz be a random

linear projection f : Rd → Rm such that U ∈ Rm×d and Ui,j ∼ N(0, σ2). Then we have:

P
(

sup
i ̸=j;i,j∈[N ]

{
ri,j :=

∥f(zi)− f(zj)∥
∥zi − zj∥

}
> δ1

)
≤ ϵ,

P
(

inf
i ̸=j;i,j∈[N ]

{
ri,j :=

∥f(zi)− f(zj)∥
∥zi − zj∥

}
< δ2

)
≤ ϵ,

(3.3)

where δ1 := σ
√

χ2
2ϵ

N(N−1)

(m) and δ2 := σ
√
χ2
1− 2ϵ

N(N−1)

(m). Here, χ2
α(m) denotes the α-upper

quantile of the χ2 distribution with m degrees of freedom.
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Thm. 3.1 tells us that for any data pair (zi, zj) in a set of N points, the distance rescaling ratio

ri,j after a random linear projection is bounded by δ1 and δ2 with probability 1− ϵ. A Smaller N

and a larger output dimension m give better bounds. E.g., when m = 3, N = 1, 000, σ = 1 and

ϵ = 0.1, δ1 = 5.8 and δ2 = 0.01. Thm. 3.1 gives a theoretical bound for all the N(N − 1)/2 pairs.

However, in practice, preserving distances for a majority of N(N − 1)/2 pairs is sufficient. To

empirically verify this, we test the range of central 80% of {ri,j} on real image data. Using the

same (m,N, σ, ϵ), 80% of the pairs lie in [0.56, 2.87], which is significantly better than the strict

bound: [0.01, 5.8]. A proof of the theorem and simulation details are given in the following.

Proof. Let Uk represent to the k-th row of U. It is easy to check that vk := ⟨Uk, zi − zj⟩/∥zi −

zj∥ ∼ N(0, σ2). Therefore,

∥f(zi)− f(zj)∥2

σ2∥zi − zj∥2
=

1

σ2

(zi − zj)
⊤U⊤U(zi − zj)

∥zi − zj∥2
=

m∑
k=1

v2
k

σ2
∼ χ2(m).

Therefore, for 0 < ϵ < 1, we have

P
(∥f(zi)− f(zj)∥2

σ2∥zi − zj∥2
> χ2

2ϵ
N(N−1)

(m)
)
≤ 2ϵ

N(N − 1)
.

From the above inequality, we have

P
(
supi ̸=j;i,j∈[N ]

{
∥f(zi)−f(zj)∥2

∥zi−zj∥2

}
> σ2χ2

2ϵ
N(N−1)

(m)
)

= P
(
supi ̸=j;i,j∈[N ]

{
∥f(zi)−f(zj)∥2
σ2∥zi−zj∥2

}
> χ2

2ϵ
N(N−1)

(m)
)

= P
( ⋃

i ̸=j;i,j∈[N ]

{
∥f(zi)−f(zj)∥2
σ2∥zi−zj∥2 > χ2

2ϵ
N(N−1)

(m)
})

≤
∑

i ̸=j;i,j∈[N ]

P
(

∥f(zi)−f(zj)∥2
σ2∥zi−zj∥2 > χ2

2ϵ
N(N−1)

(m)
)

≤ ϵ,
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which is equivalent to

P
(

sup
i ̸=j;i,j∈[N ]

{∥f(zi)− f(zj)∥
∥zi − zj∥

}
> σ

√
χ2

2ϵ
N(N−1)

(m)
)
≤ ϵ.

Similarly, we have

P
(

inf
i ̸=j;i,j∈[N ]

{∥f(zi)− f(zj)∥
∥zi − zj∥

}
< σ

√
χ2
1− 2ϵ

N(N−1)

(m)
)
≤ ϵ.

Simulation on Real Image Data To better understand the relative distance preservation property

of random linear projections in practice, we use Algorithm 2 to empirically obtain a bound for real

image data. We choose m = 3, N = 1, 000, σ = 1 and ϵ = 0.1 as in computing our theoretical

bounds. We use M = 1, 000 real images from the PACS dataset for this simulation. Note that the

image patch size or d does not affect the bound. We use a patch size of 3× 3 resulting in d = 27.

This simulation tell us that applying linear projections with a randomly sampled U on N local

images patches in every image, we have a 1− ϵ chance that 80% of ri,j is in the range [δ10%, δ90%].

Algorithm 2 Simulate the range of central 80% of ri,j on real image data

1: Input: M images {Ii}Mi=1, number of data points N , projection output dimension m, standard deviation
σ of normal distribution, confidence level ϵ.

2: for m = 1 → M do
3: Sample images patches in Im at 1,000 locations and vectorize them as {zml }Nl=1

4: Sample a projection matrix U ∈ Rm×d and Ui,j ∼ N(0, σ2)
5: for i = 1 → N do
6: for j = i+ 1 → N do
7: Compute rmi,j =

∥f(zmi )−f(zmj )∥
∥zmi −zmj ∥ , where f(z) = Uz

8: qm10% = 10% quantile of rmi,j for Im
9: qm90% = 90% quantile of rmi,j for Im ▷ Get the central 80% of ri,j in each image

10: δ10% = ϵ quantile of all qm10%
11: δ90% = (1− ϵ) quantile of all qm90% ▷ Get the ϵ confident bound for qm10% and qm90%
12: return δ10%, δ90%

38



3.5.3 Experimental Details

Digits Recognition The network for our digits recognition experiments is composed of two

Conv5×5-ReLU-MaxPool2×2 blocks with 64/128 output channels and three fully connected layer

with 1024/1024/10 output channels. We train the network with batch size 32 for 10,000 iterations.

During training, the model is validated every 250 iterations and saved with the best validation score

for testing. We apply the Adam optimizer with an initial learning rate of 0.0001.

PACS We use the official data splits for training/validation/testing; no extra data augmentation

is applied. We use the official PyTorch implementation and the pretrained weights of AlexNet

for our PACS experiments. AlextNet is finetuned for 50,000 iterations with a batch size of 128.

Samples are randomly selected from the training data mixed between the three domains. We use the

validation data of the source domains only at every 100 iterations. We use the SGD optimizer for

training with an initial learning rate of 0.001, Nesterov momentum, and weight decay set to 0.0005.

We let the learning rate decay by a factor of 0.1 after finishing 80% of the iterations.

ImageNet Following the PyTorch example 1 on training ImageNet models, we set the batch

size to 256 and train AlexNet from scratch for 90 epochs. We apply the SGD optimizer with an

initial learning rate of 0.01, momentum 0.9, and weight decay 0.0001. We reduce the learning rate

via a factor of 0.1 every 30 epochs.

3.5.4 More Experiments with ResNet-18

In this section, we demonstrate that RandConv also works on other stronger backbone ar-

chitectures, e.g. for a Residual Network He et al. (2016b). Specifically, we run the PACS and

ImageNet experiments with ResNet-18 as the baseline and RandConv. As Table 3.5 shows,

RandConv improves the baseline using ResNet18 on ImageNet-sketch by 10.5% accuracy. When

using a RandConv pretrained ResNet-18 on PACS, the performance of finetuning with DeepAll

and RandConv are both improved as shown in Table 3.7. The best average domain generalization

accuracy is 84.09%, with a more than 8% improvement over our initial Deep-All baseline. A model

1https://github.com/pytorch/examples/tree/master/imagenet
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pretrained with RCmix1-7,λ=10 generally performs better than when pretrained with RCimg1-7,p=0.5,λ=10.

We also provide the ResNet-18 performance of JiGen (Carlucci et al., 2019) on PACS as a reference.

Note that JiGen uses extra data augmentation and a different data split than our approach and it only

improves over its own baseline by 1.5%. In addition, we test RandConv trained ResNet-18 on

ImageNet-R (Hendrycks et al., 2020a), a domain generalization benchmark that contains images of

artistic renditions of 200 object classes from the original ImageNet dataset. As Table 3.6 shows,

RandConv also improves the generalization performance on ImageNet-R and reduces the gap

between the in-domain (ImageNet-200) and out-of-domain (ImageNet-R) performance.

Baseline RCimg1-7, p=0.5, λ=10 RCmix1-7, λ=10

Top1 20.23 28.79 30.70
Top5 37.26 49.02 51.80

Table 3.5: Accuracy of ImageNet-trained ResNet-18 on ImageNet-Sketch data.

Baseline RCimg1-7, p=0.5, λ=10 RCmix1-7, λ=10

ImageNet-200 (%) 88.15 83.72 72.7
ImageNet-R (%) 33.06 37.38 35.75

Gap 55.09 46.34 36.95

Table 3.6: Top 1 Accuracy of ImageNet-trained ResNet-18 on ImageNet-R data. ImageNet-200 are
the original ImageNet data with the same 200 classes as ImageNet-R.

3.5.5 Hyperparameter Selections and Ablation Studies on Digits Recognition Benchmarks

We provide detailed experimental results for the digits recognition datasets. Table 3.8 shows

results for different hyperparameters p for RCimg1. Table 3.9 shows results for an ablation study

on the multi-scale design for RCmix and RCimg,p=0.5. Table 3.10 shows results for studying the

consistency loss weight λ for RCmix1-7 and RCimg1-7,p=0.5. Tables 3.8, 3.9, and 3.10 correspond to

Fig. 3.2 (a)(b)(c) in the main text respectively.
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PACS ImageNet Photo Art Cartoon Sketch Avg

Deep-All
Baseline 95.45(0.43) 74.96(0.99) 71.48(1.22) 62.09(1.12) 76.00(0.37)

RCimg1-7,p=0.5,λ=10 94.65(0.16) 73.85(0.97) 74.78(0.58) 73.51(1.16) 79.20(0.40)
RCmix1-7,λ=10 94.10(0.43) 76.72(1.43) 73.41(1.29) 77.60(0.55) 80.46(0.74)

RCimg1-7,
p=0.5,λ=10

Baseline 92.37(0.54) 76.50(0.55) 71.33(0.29) 79.65(1.32) 79.96(0.53)
RCimg1-7,p=0.5,λ=10 94.43(0.22) 79.80(1.03) 73.40(0.37) 81.51(0.85) 82.28(0.38)

RCmix1-7,λ=10 94.57(0.45) 81.32(1.00) 76.28(0.82) 84.18(0.94) 84.09(0.61)

RCmix1-7
λ=10

Baseline 93.57(0.40) 77.73(0.91) 71.24(0.91) 75.53(2.17) 79.52(0.61)
RCimg1-7,p=0.5,λ=10 95.23(0.30) 80.56(0.82) 74.18(0.53) 80.70(1.43) 82.67(0.46)

RCmix1-7,λ=10 95.01(0.32) 81.09(1.24) 76.04(0.92) 83.02(0.93) 83.79(0.60)

Deep-All
Baseline

95.73 77.85 74.86 67.74 79.05
JiGen 96.03 79.42 75.25 71.35 80.51

Table 3.7: Generalization results on PACS with RandConv pretrained model using ResNet-18.
ImageNet column shows how the pretrained model is trained on ImageNet (baseline represents
training using only the classification loss); PACS column indicates the methods used for finetuning
on PACS. Best and second best accuracy for each target domain are highlighted in bold and
underlined. The performance of JiGen (Carlucci et al., 2019) and its baseline using ResNet-18 is
also given.

MNIST-10k MNIST-M SVHN USPS SYNTH DG Avg MNIST-C

Baseline 98.40(0.84) 58.87(3.73) 33.41(5.28) 79.27(2.70) 42.43(5.46) 53.50(4.23) 88.20(2.10)

RCimg1, p=0.9 98.68(0.06) 83.53(0.37) 53.67(1.54) 80.38(1.41) 59.19(0.85) 69.19(0.34) 89.79(0.44)

RCimg1, p=0.7 98.64(0.07) 84.17(0.61) 54.50(1.55) 80.85(0.91) 60.25(0.85) 69.94(0.50) 89.20(0.60)

RCimg1, p=0.5 98.72(0.08) 85.17(1.12) 55.97(0.54) 80.31(0.85) 61.07(0.47) 70.63(0.42) 88.66(0.62)

RCimg1, p=0.3 98.71(0.12) 85.45(0.87) 54.62(1.52) 79.78(1.40) 60.51(0.41) 70.09(0.60) 89.02(0.32)

RCimg1, p=0.1 98.66(0.06) 85.57(0.79) 54.34(1.52) 79.21(0.44) 60.18(0.63) 69.83(0.38) 88.53(0.38)

RCimg1, p=0 98.55(0.13) 86.27(0.42) 52.48(3.00) 79.01(1.11) 59.53(1.14) 69.32(1.19) 88.01(0.36)

Table 3.8: Ablation study of hyperparameter p for RCimg1 on digits recognition benchmarks. DG-
Avg is the average performance on MNIST-M, SVHN, SYNTH and USPS. Best results are bold.
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MNIST-10k MNIST-M SVHN USPS SYNTH DG Avg MNIST-C

RCmix1 98.62(0.06) 83.98(0.98) 53.26(2.59) 80.57(1.09) 59.25(1.38) 69.26(1.35) 88.59(0.38)

RCmix1-3 98.76(0.02) 84.66(1.67) 55.89(0.83) 80.95(1.15) 60.07(1.05) 70.39(0.58) 89.80(0.94)

RCmix1-5 98.76(0.06) 84.32(0.43) 56.50(2.68) 81.85(1.05) 60.76(1.02) 70.86(0.86) 90.06(0.80)

RCmix1-7 98.82(0.06) 84.91(0.68) 55.61(2.63) 82.09(1.00) 62.15(1.30) 71.19(1.21) 90.30(0.44)

RCmix1-9 98.81(0.12) 85.13(0.72) 54.18(3.36) 82.07(1.28) 61.85(1.41) 70.81(1.24) 90.83(0.52)

RCimg1, p=0.5 98.66(0.05) 85.12(0.96) 55.59(0.29) 80.65(0.71) 60.85(0.48) 70.55(0.15) 89.00(0.45)

RCimg1-3, p=0.5 98.79(0.07) 85.36(1.04) 55.60(1.09) 80.99(0.99) 61.26(0.80) 70.80(0.86) 89.84(0.70)

RCimg1-5, p=0.5 98.83(0.07) 86.33(0.47) 54.99(2.48) 80.82(1.83) 62.61(0.75) 71.19(1.25) 90.70(0.43)

RCimg1-7, p=0.5 98.83(0.07) 86.08(0.27) 54.93(1.27) 81.58(0.74) 62.78(0.86) 71.34(0.61) 91.18(0.38)

RCimg1-9, p=0.5 98.80(0.12) 85.63(0.70) 52.82(2.01) 81.48(1.22) 62.55(0.74) 70.62(0.73) 90.79(0.48)

Table 3.9: Ablation study of multi-scale RandConv on digits recognition benchmarks for RCmix

and RCimg,p=0.5. Best entries for each variant are bold.

λ MNIST-10k MNIST-M SVHN USPS SYNTH DG Avg MNIST-C

RCmix1-7

20 98.90 (0.05) 87.18 (0.81) 57.68 (1.64) 83.55 (0.83) 63.08 (0.50) 72.87 (0.47) 91.14 (0.53)

10 98.85 (0.04) 87.76 (0.83) 57.52 (2.09) 83.36 (0.96) 62.88 (0.78) 72.88 (0.58) 91.62 (0.77)

5 98.94 (0.09) 87.53 (0.51) 55.70 (2.22) 83.12 (1.08) 62.37 (0.98) 72.18 (1.04) 91.46 (0.50)

1 98.95 (0.05) 86.77 (0.79) 56.00 (2.39) 83.13 (0.71) 63.18 (0.97) 72.27 (0.82) 91.15 (0.42)

0.1 98.84 (0.07) 85.41 (1.02) 56.51 (1.58) 81.84 (1.14) 61.86 (1.44) 71.41 (0.98) 90.72 (0.60)

0 98.82 (0.06) 84.91 (0.68) 55.61 (2.63) 82.09 (1.00) 62.15 (1.30) 71.19 (1.21) 90.30 (0.44)

RCimg1-7
p=0.5

20 98.79 (0.04) 87.53 (0.79) 53.92 (1.59) 81.83 (0.70) 62.16 (0.37) 71.36 (0.49) 91.20 (0.53)

10 98.86 (0.05) 87.67 (0.37) 54.95 (1.90) 82.08 (1.46) 63.37 (1.58) 72.02 (1.15) 90.94 (0.51)

5 98.90 (0.04) 87.77 (0.72) 55.00 (1.40) 82.10 (0.55) 63.58 (1.33) 72.11 (0.62) 90.83 (0.71)

1 98.86 (0.04) 86.74 (0.32) 53.26 (2.99) 81.51 (0.48) 62.00 (1.15) 70.88 (0.93) 91.11 (0.62)

0.1 98.85 (0.14) 86.85 (0.31) 53.55 (3.63) 81.23 (1.02) 62.77 (0.80) 71.10 (1.31) 91.13 (0.69)

0 98.83 (0.07) 86.08 (0.27) 54.93 (1.27) 81.58 (0.74) 62.78 (0.86) 71.34 (0.61) 91.18 (0.38)

Table 3.10: Ablation study of consistency loss weight λ on digits recognition benchmarks for
RCmix1-7 and RCimg1-7,p=0.5. DG-Avg is the average performance on MNIST-M, SVHN, SYNTH
and USPS. Best results for each variant are bold.
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3.5.6 More Examples of RandConv Data Augmentation

We provide additional examples of RandConv outputs for different convolution filter sizes in

Fig. 3.6 and for its mixing variants at scale k = 7 with different mixing coefficients in Fig. 3.5. We

observe that RandConv with different filter sizes retains shapes at different scales. The mixing

strategy can continuously interpolate between the training domain and a randomly sampled domain.

Input α = 0.9 α = 0.7 α = 0.5 α = 0.3 α = 0.1 α = 0

Figure 3.5: Examples of the RandConv mixing variant RCmix7 on images of size 2242 with different
mixing coefficients α. When α = 1, the output is just the original image input; when α = 0, we use the
output of the random convolution layer as the augmented image.

3.6 Conclusion and Discussion

Randomized convolution (RandConv) is a simple but powerful data augmentation technique

for randomizing local image texture. RandConv helps focus visual representations on global shape

information rather than local texture. We theoretically justified the approximate shape-preserving

property of RandConv and developed RandConv techniques using multi-scale and mixing designs.

We also make use of a consistency loss to encourage texture invariance. RandConv outperforms

state-of-the-art approaches on the digit recognition benchmark and on the sketch domain of PACS

and on ImageNet-Sketch by a large margin. By finetuning a model pretrained with RandConv on
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Original image k = 1 k = 3 k = 5 k = 7 k = 11 k = 15

Figure 3.6: RandConvdata augmentation examples on images of size 2242. First column is the
input image; following columns are convolution results using random filters of different sizes k. We
can see that the smaller filter sizes help maintain the finer shapes.
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PACS, we showed that the generalizability of a pretrained model may transfer to and benefit a new

downstream task. This resulted in a new state-of-art performance on PACS in the Sketch domain.

RandConv can help computer vision tasks when a shape-biased model is helpful e.g. for object

detection. RandConv can also provide a shape-biased pretrained model to improve performance

on downstream tasks when generalizing to unseen domains. However, local texture features

can be useful for many computer vision tasks, especially for fixed-domain fine-grained visual

recognition. In such cases, visual representations that are invariant to local texture may hurt

in-domain performance. Therefore, important future work includes learning representations that

disentangle shape and texture features and building models to use such representations in an

explainable way.

Adversarial robustness of deep neural networks has received significant recent attention. In-

terestingly, (Zhang and Zhu, 2019) find that adversarially-trained models are more shape biased

and less texture/color-biased; (Shi et al., 2020) show that their method for increasing shape bias

also helps adversarial robustness, especially when combined with adversarial training. Therefore,

exploring how RandConv affects the adversarial robustness of models could be interesting future

work. Moreover, recent biologically inspired models for improving adversarial robustness (Dapello

et al., 2020) use Gabor filters with fixed random configurations followed by a stochastic layer to

add Gaussian noise to the network input, which may explain the importance of randomness in

RandConv. Exploring connections between RandConv and biological mechanisms in the human

visual system would be interesting future work.
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CHAPTER 4: Compositional Generalization in Unsupervised Compositional Representation
Learning: A Study on Disentanglement and Emergent Language

Deep learning models struggle with compositional generalization, i.e., the ability to recognize

or generate novel combinations of observed elementary concepts. In hopes of enabling composi-

tional generalization, various unsupervised learning algorithms have been proposed with inductive

biases that aim to induce compositional structure in learned representations (e.g. disentangled

representation and emergent language learning). In this chapter, we evaluate these unsupervised

learning algorithms in terms of how well they enable compositional generalization. Specifically,

our evaluation protocol focuses on whether or not it is easy to train a simple model on top of the

learned representation that generalizes to new combinations of compositional factors.

• We systematically study three unsupervised representation learning algorithms – β-VAE,

β-TCVAE, and emergent language (EL) autoencoders – on two datasets that allow directly

testing compositional generalization. We find that directly using the bottleneck representation

with simple models and few labels may lead to worse generalization than using representations

from layers before or after the learned representation itself.

• Additionally, we find that the previously proposed metrics for evaluating the levels of compo-

sitionality are not correlated with the actual compositional generalization in our framework.

Surprisingly, we find that increasing pressure to produce a disentangled representation (e.g.,

increasing β in the β-VAE) produces representations with worse generalization, whereas

representations from EL models show strong compositional generalization.

• Motivated by this observation, we further investigate the advantages of using EL to induce

compositional structure in unsupervised representation learning, finding that it shows con-

sistently stronger generalization than disentanglement models, especially when using less

unlabeled data for unsupervised learning and fewer labels for downstream tasks.
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Taken together, our results shed new light onto the compositional generalization behavior of different

unsupervised learning algorithms with a new setting to rigorously test this behavior, and suggest the

potential benefits of developing EL learning algorithms for more generalizable representations.

The remainder of this chapter is organized as follows: Section 4.1 introduces the motivation and

contribution of our work. Section 4.2 describes the details of unsupervised disentanglement learning

and emergent language learning algorithms. Section 4.3 presents the experimental design including

data, evaluation protocal, and implementation details for evaluation the compositional generalization.

Section 4.4 illustrate the key studies, interesting findings and the their implications. Section 4.6

discusses the limitation of our study, Section 4.5 introduces related works, and Section 4.9 concludes

this chapter. Section 4.7 and Section 4.8 provides further details and additional studies and results.

The work presented in this chapter has been accepted for publishing in Thirty-sixth Conference on

Neural Information Processing Systems (NeurIPS 2022) (Xu et al., 2022).

4.1 Introduction

A human’s ability to recognize or generate novel combinations of seen elementary concepts,

also known as compositional generalization, is desirable for building general artificial ingelligence

(AI) systems (Hoffman and Richards, 1984; Fodor and Pylyshyn, 1988; Biederman, 1987). The

Recognition-By-Components theory by Biederman (Biederman, 1987) influenced the early devel-

opment of computer vision models that are inherently compositional, e.g., hierarchical features

(Felzenszwalb et al., 2009; Fidler and Leonardis, 2007) and part-based models (Ott and Everingham,

2011; Pandey and Lazebnik, 2011). However, modern deep learning systems still struggle with

this key capability of human intelligence (Marcus, 2018). A few works studied specific spatial and

object-wise compositionality (Stone et al., 2017; Lin et al., 2020) or more general compositionality

in the space of pre-defined attributes (Tokmakov et al., 2019; Purushwalkam et al., 2019) or the

semantics of human language descriptions (Yun et al., 2022; Thrush et al., 2022).

Humans often express complex meaning in a compositional manner: we combine elementary

representations to describe observations. For example, an object with simple geometry is described

by separate and independent properties such as color (red, blue, ...), position (left, right, close, far
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away,...), and shape (circle, triangle, ...). Therefore, compositional representations are thought as

helpful or even essential to achieve compositional generalization (Hoffman and Richards, 1984;

Fodor, 1975; Biederman, 1987; Lake et al., 2017). However, considering that there are exponentially

many possible combinations of a given set of elementary concepts, we need to deal with this

combinatorial explosion for real-world visual observations. It is unrealistic to annotate enough data

to learn the fine-grained compositionality. Therefore, unsupervised compositional representation

learning is appealing because it does not require comprehensive labeling. However, unsupervised

representation learning heavily relies on the design of an effective inductive bias (e.g. on the

representation formulation) to induce the emergence of compositional representations.

A widely explored representation formulation with explicit compositionality is disentanglement.

The most common formulation of disentanglement is that the generative factors of observations

should be encoded into different factors of low-dimensional representations, and a change of a single

factor in an observation leads to a change in a single factor of the representation. State-of-the-art

unsupervised disentanglement models (Higgins et al., 2017; Kim and Mnih, 2018; Kumar et al.,

2018; Chen et al., 2018; Mathieu et al., 2019) are largely built on top of variational generative

models (Kingma and Welling, 2013). To measure the level of disentanglement, various quantitative

metrics have been proposed that are defined based on the statistical relations between the learned

representations and ground truth factors with an emphasis on the separation of factors. A summary of

disentanglement metrics and methods is provided in (Locatello et al., 2019). Another representation

learning approach with an inductive bias towards compositionality is emergent language learning.

Natural language allows us to describe novel composite concepts by combining expressions of their

elementary concepts according to grammar. Therefore, linguists have been interested in studying

the compositionality of discrete codes evolving during multi-agent communication when agents

learn to complete a task cooperatively (Chrupała et al., 2015; Lazaridou et al., 2016; Havrylov and

Titov, 2017; Ren et al., 2020). Compositionality metrics with language structure assumptions, e.g.

topographic similarity (Brighton and Kirby, 2006), were used to evaluate the learned language.

However, for the above two types of methods, relatively few studies (Montero et al., 2021; Schott

48



et al., 2022; Chaabouni et al., 2020; Andreas, 2019) have directly evaluated how well the learned

representations generalize to novel combinations on downstream tasks, which is the main motivation

for compositional representation learning in the first place.

In this work, we study the compositional generalization performance of representations learned

from unsupervised learning algorithms with two types of inductive biases for compositionality:

disentanglement and emergent languages (EL). Instead of measuring the compositionality and

disentanglement metrics defined based on various assumptions, we directly measure the general-

ization performance on novel input combinations with a two-stage protocol. Specifically, with a

dataset divided into train and test sets ensuring that the test set contains novel combinations of

concepts that never appear in the train set, we first learn an unsupervised representation model

from unlabeled images in the train set. With very few labeled samples from the train set and the

frozen unsupervised representation model, we train simple (e.g. linear) models on top of learned

representations to predict the ground truth value for each generative factor of the dataset and evaluate

these simple models on the test set. These choices are aligned with common practices in recent deep

representation learning works, for example, self-supervised representation learning (Dittadi et al.,

2021) and semi-supervised learning with generative models (Kingma et al., 2014). Different from

previous studies (e.g. (Chaabouni et al., 2020; Montero et al., 2021)) that measure unsupervised

learning performance (e.g. image reconstruction), we evaluate the performance on downstream

tasks. We also emphasize how easily we can obtain downstream task models with the learned

representation, e.g. when using very few labels and simple linear models. These designs highlight

the generalization performance of the unsupervised learning stage, different from a setup that uses

many more or even all labeled samples of the train set in the downstream task learning stage (Dittadi

et al., 2021; Schott et al., 2022) or performs unsupervised learning on the entire dataset (Locatello

et al., 2019). More importantly, we study not only the compositional generalization of intermediate

representations at the model bottleneck, e.g. where the disentangled latent variables are formulated,

but also the representations from layers before or after it.
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Figure 4.1: The architecture of VAE-based unsupervised disentanglement models.

With the above evaluation protocol for compositional generalization, we explore selected unsu-

pervised learning algorithms by varying (1) the hyperparameters of each algorithm that may control

the levels of compositionality; (2) image datasets and the amount of data for both unsupervised and

supervised learning stages; and (3) design choices of EL learning. First, we find that, compared to

the low-dimensional latent variables from the model bottleneck, representations from the layers

before or after the model bottleneck enable better compositional generalization. Second, we find that

attaining higher scores on previously proposed compositionality/disentanglement metrics does not

always correlate with better generalization performance. Finally, the representations learned from

EL models show stronger generalization performance than disentanglement models. These findings

reveal the divergence between the efforts to achieve better compositionality / disentanglement metric

scores and the initial motivation to obtain better generalization performance. To our best knowledge,

this is the first study to compare representations in disentanglement models and emergent language

learning through the lens of compositional generalization with a unified evaluation setup. We also

discuss the advantage of the emergent language representation format versus disentanglement and

connect it with recent related research in representation learning.

4.2 Unsupervised Learning with Compositional Representation Inductive Bias

In this section, we introduce more details on unsupervised learning algorithms with two

different compositionality-seeking inductive biases on the representation formulation: disentangled

representations in Section 4.2.1 and emergent languages in Section 4.2.2.
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4.2.1 Learning Disentangled Representations

The concept of disentanglement assumes that high-dimensional observations of the real world

x can be represented by low-dimensional latent variables z, where each dimension of z encodes

independent factors of variations in x. For unsupervised disentanglement learning algorithms, we

select the popular β-VAE and β-TCVAE methods which both modify the evidence lower bound

(ELBO) objective in the variational autoencoder (VAE).

β-VAE use a hyperparameter β for the Kullback-Leibler (KL) regularization term of the vanilla

VAE loss to control the bandwidth of the VAE bottleneck:

Ep(x)[Eqϕ(z|x)[log pθ(x|z)]− βKL(qϕ(z|x)||p(z))] , (4.1)

where p(z) is the assumed prior distribution of the latent variables and its conditional distribution

qϕ(z|x) is parameterized by a neural network (encoder) whose parameters are ϕ and the posterior

pθ(x|z) is parameterized by a decoder whose parameters are θ. β = 1 corresponds to the VAE loss.

β-TCVAE further decomposes the KL term in Eq. (4.1) into mutual information, total correla-

tion, and dimension-wise KL terms, and penalizes the total correlation with the hyperparameter

β:

Eq(z|x)p(x)[log pθ(x|z)]− αIq(x; z)− βKL(qϕ(z)||
∏
j

qϕ(zj))− γ
∑
j

KL(q(zj)||p(zj)) , (4.2)

where Iq(x; z), KL(qϕ(z)||
∏

j qϕ(zj)) and
∑

j KL(q(zj)||p(zj)) are the mutual information term,

total correlation term and the dimension-wise KL term respectively. The proposed β-TCVAE uses

α = γ = 1 and tunes β only.

4.2.2 Learning Emergent Language

An alternative compositional representation learning method is emergent language (EL) learn-

ing, which aims to learn a representation that mimics the properties of natural language. The

emergent language consists of sequences of discrete symbols from a vocabulary. Since the model
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Figure 4.2: The architecture of emergent language learning models.

combines discrete symbols in the vocabulary to represent complex semantics in observations, one

expects that meaningful compositionality might naturally emerge in communication between mul-

tiple agents using the emergent language to solve tasks. We consider the typical speaker-listener

model (two-agent communication) for EL learning, as shown in Figure 4.2. We apply EL learning to

the image reconstruction task to be consistent with the reconstruction objective used by variational

auto-encoder-based models. Note that in our setting the terminology “speaker-listener” is equivalent

to the more common “encoder-decoder” terminology. The task is as follows.

1. The speaker receives an input x and encodes it as a message m = {m1,m2, ...}, a sequence

of discrete symbols from the vocabulary V = {c1, c2, cnV
} of size nV . The maximum length

of m is nmsg.

2. The listener model receives the message m and outputs x̂, aiming to accurately reconstruct

the encoder input x.

In this work, we use a speaker and listener that are both hybrids of a convolutional neural network

and an LSTM recurrent neural network. The flattened convolutional embedding of the input image,

EncConv(x), is used as the initial cell state of an LSTM encoding module (EncLSTM). EncLSTM

generates a discrete distribution q(mt|x) over V at each time step t autoregressively (with the

embedding of the discrete token sampled at the previous step t− 1 as input):

q(mt|x) = EncLSTM(mt−1|EncConv(x), emb(m1), .., emb(mt−2)) , (4.3)
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where emb(·) is the learnable layer that projects a discrete token into a high-dimensional embedding.

We use the Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017) to sample from the discrete

distribution q(mt|x) and the “straight-through” (ST) gradient estimator (Bengio et al., 2013) for

quantization (from soft-distribution to one-hot vector). This allow us to estimate the gradients from

the discrete sampling process.

mt = ST(GumbelSoftmax(q(mt|x))) . (4.4)

To allow the message to be of variable length, which better mimics natural language, we set one

token in V to be the end-of-sequence (EOS) token that indicates the message end.

When the listener decodes the message m, it first maps each discrete symbol into an embedding

based on a learnable embedding layer and uses a decoding LSTM layer (DecLSTM) to process the

sequence of embeddings recurrently.

Embt(m) = DecLSTM(emb(mt)|emb(m1), emb(m2), .., emb(mt−1)) . (4.5)

We use the output of DecLSTM at the ending step T as the embedding of the message to be the

input of a convolutional decoder for image reconstruction:

Emb(m) = EmbT (m),where T = min(nmsg, argmin
i

{mi == EOS, i ∈ {1..N}}) . (4.6)

Finally, the convolutional decoder (DecConv) reconstructs the input by:

x̂ = DecConv(Emb(m)) . (4.7)
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4.3 Experimental Design

4.3.1 Datasets

We are interested in whether representations can generalize to novel combinations of seen

concepts. Therefore, we need datasets that provide ground truth labels of elementary concepts for

(1) creating train/test splits and (2) downstream task evaluation. We consider datasets with ngen

independent generative factors F = {f1, ..., fngen} where the space of factor fi is Si. For example, if

f1 is color, then S1 could be {yellow, red, blue, ...}. The data space D is defined by the Cartesian

product of the spaces of each factor, and therefore the cardinality of the dataset is |D| =
∏ngen

i |Si|.

In our study we use two public image datasets studied in the disentanglement literature:

dSprites (Matthey et al., 2017) and MPI3D (Gondal et al., 2019). The dSprites dataset contains

images of 2D shapes generated from 5 factors F = {shape, scale, rotation, x and y position}. To

avoid label ambiguity due to the rotational symmetry of the square and ellipse shapes, we limit

the range of orientations to be within [0, π/2). Then the cardinality of each factor’s space is

{3, 6, 10, 32, 32} respectively, which makes |D| = 183, 320. MPI3D is a set of 3D datasets

synthesized or recorded in a controlled environment with an object held by a robotic arm. In

our evaluation, the challenging real-world version (MPI3D-Real) is used. It has 7 factors F =

{object-color(6), object-shape(6), object-size(2), camera-height(3), background-color(3), horizontal-

axis(40), vertical-axis(40)} with the corresponding cardinalities of the space in parentheses, leading

to a total of 1,036,800 images.

4.3.2 Compositional Generalization Evaluation Protocol

Our evaluation protocol emphasizes the compositional generalization that models can achieve

on downstream tasks. We aim to measure how easily an unsupervised representation learning

method can produce compositional generalization by using a simple model on top of the learned

representation. Figure4.3 shows the designs of our evaluation protocol. (1) Data splits. We first

split a dataset into train/test sets randomly while ensuring that all samples in the test-set are novel

combinations of elementary factors seen in the train-set. (2) Unsupervised representation learning.
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Figure 4.3: Our compositional generalization evaluation protocol.

We learn unsupervised representations from the unlabeled images of the train-set of size Ntrain with

a selected algorithm. (3) Learning for downstream tasks. Then, we freeze the learned representation

model and use the Nlabel labeled samples from the train set (Nlabel << Ntrain), to train a simple

classifier/regressor to predict the ground truth value for each factor fi of the dataset. (4) Testing

generalization performance. Lastly, we test the performance of the downstream task models on

novel combinations of seen values of elementary factors.

Readout model. We argue that it is important to use simple read-out models and a limited

number of labeled training samples to evaluate downstream tasks. Otherwise, the performance gain

from the downstream task learning stage is mixed with that of the unsupervised learning stage. For

example, if the unsupervised representation model is an identity mapping, we can still get great

performance with a powerful read-out model and enough labeled samples. In our main article, we

use linear models for downstream tasks. However, perfectly disentangled but linearly inseparable

representations may still show poor performance with a linear readout model. Through sanity

checking experiments (discussed in Section 4.8.1), the linear readout model can still generalize

well on nonlinear oracle representations possibly due to the limited value range of attributes in our

datasets. In addition, extra results using a non-linear readout model (Gradient Boosting Trees) are

in Section 4.8 and the main observations are consistent. The linear models we use to predict the

values of the generative factors are ridge regression, using the R2 score as the evaluation metric,
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and logistic regression, using classification accuracy as the evaluation metric. Since the R2 score

can be negative while R2 = 0 indicates random guessing, we clip all negative R2 scores to zero.

Representation Mode. In unsupervised disentanglement learning, low-dimensional latent

variables with explicit disentanglement regularization are used as the representation for downstream

tasks, e.g. the mean values of Gaussian distributions of the latent variables in the VAE. If the

disentangled latent variables each represent a single ground truth factor, only a simple mapping

between factors and the corresponding variables must be learned to achieve good performance.

However, it is questionable if the learned latent variables disentangle in the assumed structure and

therefore improve generalization. On the other hand, the simple linear models in our evaluation

protocol may not be capable to process the latent variables (discrete messages) in emergent language

(EL) learning because we would not expect discrete sequential latent variables to be easily linearly

separable. Therefore, we also evaluate the intermediate features of the layers before or after the

model bottleneck. Specifically, in addition to the latent variables (zlatent), we also use the features

immediately after the convolutional encoder (zpost) or before the convolutional decoder (zpre) as

representations of images, shown in Figure 4.1 and 4.2. We evaluate the use of zpost and zpre in both

disentanglement and emergent language models.

4.3.3 Implementation details

Data Splits For the main experiments, we use a 1:9 train/test split. The train set size (10%) is

smaller than what common machine learning setups and previous studies have used (Montero et al.,

2021; Schott et al., 2022). However, considering the number of possible combinations increases

exponentially for real data with an increased number of generative factors, using fewer training

samples even at the unsupervised learning stage can help to obtain more meaningful conclusions for

real-world scenarios.

Model architectures. Figure 4.1 and 4.2 show the architectures for disentanglement and

emergent language learning models, respectively. The encoder and decoder in disentanglement

learning models are symmetric architectures with a convolutional network and a multi-layer percep-

tron (MLP) similar to the design in (Burgess et al., 2018). We scale up the size of the model by
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doubling the width of all layers, which improves the performance of all models. Since our emergent

language learning model uses the same autoencoding task as disentanglement learning, it also uses

a symmetric encoder-decoder architecture. Instead of MLPs, the EL model uses LSTM modules to

encode and decode latent variables. The sizes of the MLP module in the disentanglement models

and the LSTM module in the EL models are matched for fair comparison. We use a Bernoulli

decoder for the autoencoding task, which uses pixel values normalized to [0, 1] as probabilities.

Hyperparameters. We follow previous studies (Locatello et al., 2019; Montero et al., 2021)

for disentanglement models to set our hyperparameters. We set the number of disentangled latent

variables, |zlatent|, and the maximum length of the emergent latent message, nmsg, to 10, unless

specifically mentioned. For the pre-training stage, we use batch size 64 and train the model for

500,000 steps for dSprites and 1,000,000 steps for MPI3D-Real using the Adam optimizer with

learning rate 0.0001. For each specific model, we collect results from three different runs with

different random seeds.

Figure 4.4: Generalization performance (accuracy for classification tasks and R2 score for regression
tasks) of three representation models: β-VAE, β-TCVAE, and emergent language on dSprites.

57



4.4 Key Studies and Results

4.4.1 Compositional latent variables may not be the best representations for downstream
tasks

We first study the generalization behaviors of different representation modes. For each un-

supervised learning algorithm, we vary the hyperparameters that were designed to control the

compositionality of representations. For β-VAE and β-TCVAE, we simply vary β. For emergent

language models, we use the communication bandwidth, defined as the number of bits in the

message and calculated by log2(n
nmsg

V ), nmsg ∈ {8, 10, 12} and nV ∈ {128, 256, 512}. Figure4.4

shows the results for accuracy and R2-score vs β and the number of bits when Nlabel = 500 for the

dSprites dataset. We highlight the following observations:

Emergent language learning As expected, linear models do not work well on zlatent for EL

models. zpost and zpre are more suitable. zpost consistently outperforms zpre, which reveals that the

emergent language bottleneck induces compositional latent structures useful for downstream tasks

after being processed by the DecLSTM module.

Disentanglement learning Surprisingly, mismatched with the goal of disentanglement, zlatent in

β-VAE and β-TCVAE is not the optimal choice for downstream tasks. For β -VAE and β -TCVAE,

increasing β to decrease the bandwidth of the bottleneck (which was thought of as the source of

disentanglement (Burgess et al., 2018)) reduces generalization performance. When β is larger, zpre

works best. For most cases, the representation of β = 0 is best. When β = 0, the regression task

seems to favor zpre while zpost performs better for classification tasks.

Implications. Both disentangled representation learning and emergent language learning try to

induce compositionality through the inductive bias on the representation’s compositional structure.

The zlatent representation itself does not perform well as its structure may be too complex to be

processed by simple linear models. But if zlatent can generalize well, its decoded version zpost will

perform well. In EL models, zpost consistently performs better than zpre, which demonstrates the

improved generalization with the language-like bottleneck. However, disentanglement models may

learn useless disentangled representations since increasing the penalty on either the KL-term of the
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Figure 4.5: Compositionality metrics vs generalization performance in the dSprites dataset. The
disentanglement metrics (SAP, IRS, DCI, MIG) of the β-VAE (dots) and β-TCVAE (crosses) models
are not postively correlated with generalization performance in all the three representation modes.
The compositionality metric for emergent language (EL), topographical similarity (TopSim), shows
no strong correlation with generalization performance.

ELBO or the total correlation consistently lead to worse generalization performance. To further

confirm this conclusion, we also measure the disentanglement metrics on the learned β-VAE and

β-TCVAE models in the next section.

4.4.2 Compositionality Metrics May Not Represent Generalization Performance

Figure 4.6: Generalization performance vs Nlabel. Three representation modes of β-VAE with β=0,
β-TCVAE with β=0, and emergent language (EL) with nV =256 are evaluated.

We further evaluate existing compositionality metrics on learned representations. For β-VAE,

β-TCVAE with various β, we measure four common disetanglement metrics: Separated Attribute

Predictability (SAP) Score (Kumar et al., 2018), Interventional Robustness Score (IRS) (Suter et al.,

2019), Disentanglement-Completeness-Informativeness (DCI) (Eastwood and Williams, 2018), and

Mutual Information Gap (MIG) (Chen et al., 2018) based on the implementation in disentanglement-
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Figure 4.7: Generalization performance (with Nlabel = 500) of β-VAE with β=0, and Emergent
language (EL) with nV =256 on MPI3D-Real when using (5%) and (10%) unlabeled data.

lib (Locatello et al., 2019). The large-scale studies used by Locatello et al. 2019 (Locatello et al.,

2019) broadly measured these metrics on a few datasets. For emergent language learning models,

we vary the number of bits in the discrete messages and measure topographical similarity, a common

compositionality metric for emergent languages that uses the (Spearman) correlation ρSpearman

between the pairwise distances of the inputs and the distances of the corresponding representations.

We compute the cosine distance for input attributes and the editing distance for messages. Since we

have the train/test data split for the unsupervised learning stage, we evaluate these metrics on both

splits. The metrics on these two splits are similar, and we only show the ones for the train split.

We find that both β-VAE and β-TCVAE show positive correlations between β and the dis-

entanglement metric scores, stronger in dSprites and weaker in MPI3D-Real where the highest

scores usually occur for moderate β values. However, neither of the two datasets show the same

pattern as in Figure 4.4 where generalization performance is negatively correlated with β. Therefore,

for β-VAE and β-TCVAE, models with higher disentanglement scores do not achieve a better

generalization performance. Figure 4.5 confirms the non-correlation or even negative correlation

between compositionality metrics and generalization performance on the dSprites dataset. The

topographical similarity of emergent language models does not show a strong correlation, e.g.

ρSpearman < 0.5 with compositional generalization for both dSprites and MPI3D-Real datasets. The

observations are consistent with some previous studies on emergent language (Chaabouni et al.,

2020) and disentanglement (Locatello et al., 2019).
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Implications. Existing compositionality/disentanglement metrics do not measure the general-

ization performance of learned representations. However, we should be careful about interpreting

the results as compositionality in representation learning does not necessarily help compositional

generalization. As these metrics were defined more or less based on the compositional annotations

by humans, they can only measure particular types of compositionality. However, the composition-

ality exhibited in representation learning, especially with unsupervised algorithms, may not match

with human definitions, e.g., a language where editing distance is a poor measure of similarity,

and therefore cannot be captured by those metrics. Since designing generic compositionality is

challenging or maybe even impossible, one should directly evaluate the compositional generalization

if it is the ultimate goal.

4.4.3 Representations Learned by Emergent Language Models Generalize Better

In Fig 4.4, we observed some clues that “post” representations of EL models generalize consis-

tently well on both tasks. In this section, we take a closer look at the generalization performance of

representations learned by EL by comparing them with disentanglement models.

Varying the number of labeled samples for downstream learning. We evaluate the per-

formance of downstream models trained with different numbers of labeled samples Nlabel ∈

{100, 500, 1000}. We compare three models: β-VAE and β-TCVAE with β = 0 (since β = 0

consistently performs best, as shown in Figure 4.4) and the EL model with nV = 256. Figure 4.6

shows results for dSprites. When Nlabel is low, e.g. Nlabel = 100 and 500 for dSprites, zpost of EL

consistently beats all other models in all representation modes for both classification (accuracy

metric) and regression (R2 score metric). More importantly, even when Nlabel is large, 0-VAE/0-

TCVAE/AE models do not have a consistent representation mode that shows similar performance

as zpost of the EL models: their zpost is worse at regression and zpre is worse at classification.

Using less unlabeled data for unsupervised learning. Furthermore, we reduced the train-

split ratio to 5% to test unsupervised learning algorithms with less unlabeled data. We compared

the performance of 0-VAE and EL models on MPI3D-Real in Figure 4.7. With 5% unlabeled

training data, the post representation of EL models outperforms the pre/post 0-VAE model at
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both classfication or regression tasks and all Nlabel with an even larger margin. In other words,

the generalization performance of representations of 0-VAE models degrades faster with reduced

unlabeled data.

Implications. Representations learned by emergent language models generalize well even with

limited unlabeled data for unsupervised learning and labeled samples for downstream learning.

4.4.4 Ablations on Emergent Language Models

Figure 4.8: Ablation study of Emergent Language (EL) with nV = 256 and Nlabel = 500 in MPI3D-
Real using fixed-length messages (EL-fix) and greedy sampling (EL-fix-det).

Figure 4.9: Generalization performance of EL models with zpost and Nlabel = 500 on MPI3D-Real
dataset, for different bandwidths by varying message sizes nmsg ∈ {8, 10, 12} and vocabulary sizes
nV ∈ {128, 256, 512}. Three nmsg are plotted as segments of different line styles with increasing
nV /bits.

Since EL models showed superior compositional generalization performance over disentan-

glement models, we conduct ablation studies on important hyperparameters and design choices

of EL models on the MPI3D-real dataset. We first study the impact of bandwidth controlled by

either length of the messages or the size of dictionary. We can see that increasing the bandwidth

generally improves compositional generalization. In some cases, for similar bandwidth, shorter
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sequences/a larger vocabulary is favored, e.g. 5128 vs 12810. Since the MPI3D-Real dataset only

has 6 + 6 + 2 + 3 + 3 + 40 + 40 = 100 distinct values for all generative factors, a simple choice of

language can express the values of factors in a fixed order using nmsg = 7 and nV = 100. Apparently

this behavior is not learned by the current design of EL models possibly because of optimization

issues due to poor gradient estimation for discretization, regardless of the good generalization

performance. However, EL models can learn their own language with additional redundancies that

require more bandwidth.

We also ablate the two characteristics of the EL models we have considered thus far: allowing

variable-length messages and using stochastic sampling. We can turn an EL model into one with

fixed-length messages by always generating nmsg tokens (EL-fix) and additionally with deterministic

messages by using greedy sampling (EL-fix-det). We can see that as we remove these two designs,

the generalization performance is worse, especially after making the model deterministic. Notably,

the EL model with fixed-length messages and using deterministic sampling (EL-fix-det) is very

close to the popular discrete representation learning model VQ-VAE (Van Den Oord et al., 2017)

that uses a shared vocabulary over spatial locations of the feature map. Therefore, our study may

indicate that the use of discrete latent variables of variable length and stochastic sampling can enable

unsupervised learning models to learn better representations for downstream tasks. We also found

that while the EL model allows variable-length codes, at convergence it still almost always uses

the maximum message length on both the training and testing set. This is not surprising given that

the reconstruction task drives the discrete message to be longer so that more information can pass

through the discrete bottleneck.

4.5 Related Work

Compositional generalization was shown in previous work on disentangled representation

learning (Esmaeili et al., 2019; Higgins et al., 2018) to generate images of novel combinations

of concepts. Zhao et al. (Zhao et al., 2018) systematically evaluated generative models in a

few compositional generalization tasks without exploring whether disentanglement is correlated

with generalization performance. Recently, Montero et al. (Montero et al., 2021) studied the
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compositional generalization along with the interpolation and extrapolation generalization of two

VAE-based disentanglement models. Similar to (Zhao et al., 2018), the performance is evaluated

on the unsupervised learning task, e.g. image reconstruction/generation. However, we evaluate

the compositional generalization directly. Different from (Montero et al., 2021) that manually

selects the train-test splits with various difficulty, we use random splits which is earlier for studying

different split ratios.

The comprehensive study on unsupervised learning of disentangled representation by Locatello

et al. (Locatello et al., 2019) included an evaluation on downstream tasks. However, they train

unsupervised models on the whole dataset and therefore are not able to evaluate the generalization

as we do. (Dittadi et al., 2021) evaluated the downstream out-of-distribution (OOD) generalization

that includes interpolation and extrapolation generalization of unsupervised and weakly supervised

disentanglement models, while we focus on compositional generalization. A very recent work

(Schott et al., 2022) included compositional generalization behaviors of unsupervised and weakly

supervised disentanglement models in their broad study on generalization. Unlike our evaluation

that trains simple downstream models with a small amount of labeled samples, they use all labels in

the train set to learn MLP models. Furthermore, none of these works evaluated the representations

beyond the latent variables at the bottleneck layer as we did.

In emergent language (EL) learning, Chaabouni et al. (Chaabouni et al., 2020) found that

regardless of the degree of compositionality, measured by topographic similarity, EL can generalize

to novel combinations of concepts when the input space is rich enough. Andreas (Andreas, 2019)

proposed a new compositionality metric, tree reconstruction error (TRE), measuring how well a

representation model can be approximated by a compositional operator and learnable primitive

representations. While claimed as a general compositionality metric with learnable compositional

operator, some pre-commitment to a restricted composition function is essentially inevitable.

Similar to (Chaabouni et al., 2020), (Andreas, 2019) also studied the relationship between TRE

and generalization. While they work on attribute data and evaluate on tasks for learning emergent

language, we used image data and are motivated by learning useful representations for downstream
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tasks. Furthermore, different from all previous works, we studied the compositional generalization

of representations from both disentanglement and emergent language models with a unified setup.

4.6 Limitations of Our Study

Our goal was to provide a thorough study of learning algorithms including their hyperparameters.

However, our study is limited in the variety of other design choices to restrict the experimental

complexity. While we studied both synthetic and realistic image datasets, both these datasets are

relatively simple with the same small number of generative factors and each of the factor follows

a uniform distribution. For learning algorithms, we focus on studying the inductive bias on the

representation format while fixing the model architecture design which can impact the results.

Moreover, we did not study hyperparameters beyond those related to the latent representations.

Specifically, we did not study how the type and configurations of the optimizer, and the batch size

would change the results, instead, we followed common setups in previous studies.

4.7 More Experimental Details

Model architectures. In our experiments, disentanglement models and emergent language (EL)

models use the same architectures for the convolutional encoder and decoder. Disentanglement

models use an MLP to encode the convolutional features into the disentangled latent variables and

another MLP to decode them, while EL models use two LSTMs to encode and decode the discrete

messages. Table 4.1 provides architecture details for all these modules.

Table 4.1: The encoder module architectures which are the symmetric reflection of the decoder
layers.

EncConv EncMLP EncLSTM

4x4 Conv, 64 ReLU, stride 2 FC 512, ReLU
LSTM 5124x4 Conv, 128 ReLU, stride 2 FC 1024, ReLU

4x4 Conv, 128 ReLU, stride 2 FC 1024, ReLU Linear nmsg

4x4 Conv, 128 ReLU, stride 2 FC 512, ReLU
Flatten layer Linear |zlatent|
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Readout Model We use the implementations in scikit-learn1 (version 0.22) for the readout models

of our downstream evaluation. The specific linear or gradient boosting tree (GBT) models for

classification or regression tasks are configured as specified in Table 4.2.

Table 4.2: The implementation details of the readout models.

Scikit-learn function Configuration

Linear
linear model.LogisticRegressionCV default

linear model.RidgeCV alphas=[0, 0.01, 0.1, 1.0, 10]

GBT
ensemble.GradientBoostingClassifier default
ensemble.GradientBoostingRegressor default

Computational Cost. We use an Nvidia RTX A6000 to benchmark the computational cost. For

unsupervised representation learning, training a β-VAE or a β-TCVAE model takes about 3 hours

and 10 hours for dSprites and MPI3D-real respectively, and an EL model with nmsg = 10 takes

about 11 and 15 hours respectively for dSprites and MPI3D-real .

Dataset License. The two datasets used in our experiments, dSprites2 and MPI3D3, are publicly

available under an Apache License and the Creative Commons Public License respectively.

Reproducibility. Our code is publicly available.4.

4.8 More Experimental Results

4.8.1 Sanity Check Experiments with Oracle Representations

We test the oracle representations using the ground truth value of all attributes or the squared

value of each attribute (which would not be perfectly linearly fittable). On the dSprites dataset, we

use 500 samples to train linear or GBT readout models for classification and regressions tasks. Their

generalization performance is given in Table 4.3. The attribute values are expected to generalize

perfectly with linear or GBT readout models. However, linear readout models can still fit the

1https://scikit-learn.org/
2https://github.com/deepmind/dsprites-dataset
3https://github.com/rr-learning/disentanglement_dataset
4https://github.com/wildphoton/Compositional-Generalization
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non-linear attributes2 well. We think this may be due to the limited value range of attributes of our

datasets. This experiment shows that if the learned representation is disentangled into attributes

(as is often the goal), the linear head should not be a major issue to constrain the generalization

performance.

Table 4.3: Sanity check with oracle linear and non-linear representations. The accuracy/R2-score
are reported for classfification and regression tasks respectively.

Representations Linear GBT

attributes 100% /100% 100% / 100%
attributes2 94.7% / 100% 100% / 100%

4.8.2 A Closer Look of Generalization.

Our evaluation protocol includes two training stages: unsupervised pre-training of a representa-

tion model and supervised training of a read-out model with a small amount of labeled data. To

better understand the generalization results, we further evaluate performance on the whole unsuper-

vised training data (US-train) that is only visible to the representation model, and the supervised

training data (S-train) that is part of the pre-training data and were seen by both the representation

model and the readout model. The results on the held-out test set (Test) unseen by both training

stages are given as a reference. In Table 4.4, we show the results of the evaluation of the pre / latent

/ post representations of EL and β-VAE(beta=0) with linear or GBT readout models on the dSprites

dataset. The classification accuracy or regression R2 score is given in each entry.

• On all representation models/modes and read-out models, the performance of Unsup-train

and test is very close. This tells us that an example seen by the unusupervised pretraining

stage does not necessarily have good performance in a downstream task in our setting.

• In the S-train set, linear readout models under-fit the latent representations of both VAE

and EL models. Bad performance is expected for EL-latent representations since a linear

readout model is not a good choice for language-like messages as discussed in the paper.
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Combined with sanity-checking experiment 4.8.1, it indicates that VAE models do not produce

representations that disentangle attributes.

• GBT readout models fit EL-latent and VAE-latent well on S-train but generalize poorly to US-

train and Test. This further indicates that latent representations perform worse in providing

good generalization when compared to pre/post representations.

Table 4.4: Performance on three subsets of dSprites data. Pre/latent/post representations of EL and
β-VAE(beta=0) are evaluated with linear and GBT readout models. The classification accuracy /
regression R2 score is given in each entry.

Data + Readout VAE-Pre VAE-Latent VAE-Post EL-Pre EL-Latent EL-Post

S-train + Linear 99.93/94.48 73.27/64.83 100/95.99 100/92.55 46.13/13.35 100/99.39
US-train + Linear 84.83/84.15 70.89/63.13 98.74/71.29 91.02/84.7 39.11/9.92 99.99/98.04

Test + Linear 84.3/83.9 70.98/63.1 97.88/73.98 90.56/84.6 38.8/9.5 99.94/97.85

S-train + GBT 100/96.44 99.33/93.64 100/98.81 100/95.86 96.93/83.63 100/99.83
US-train + GBT 77.67/79.44 76.8/77.57 97.73/88.34 81.58/81.02 56.19/58.53 99.53/95.83

Test + GBT 76.76/78.95 76.09/77.26 96.83/87.82 80.86/90.56 54.84/57.36 99.52/95.68

4.8.3 Detailed Results with GBT read-out models

In Section 4.4, we only present representative results to support our key findings. In this section,

we provide detailed results for different algorithms and datasets with additional gradient-boosting-

tree (GBT) read-out models that are able to model non-linear mappings.

Compositional latent variables may not be the best representations for downstream tasks.

Figure 4.10 compares pre, latent, and post representation modes for three different learning

models (β-VAE, β-TCVAE, and emergent language (EL)) using different read-out models. For

emergent language (EL) models, when using GBT instead of linear models for downstream tasks,

zlatent performance improves, but still underperforms zpre and zpost. For disentanglement models,

increasing the regularization (β) still decreases the performance when using GBT read-out models.

However, when β = 0, the regression task no longer favors zpre and zpost performs well for both the

regression and classification tasks.
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Compositionality Metrics May Not Represent Generalization Performance. Figure 4.11 shows

the disentanglement/compositionality metrics vs generalization performance on the dSprites and

MPI3D-Real datasets using linear and GBT read-out models. Consistently to our results in the

main article, we do not observe strong correlations between these metrics and generalization

performance. Figs. 4.12 and 4.13 show quantitative measures of ranking correlation. We see

that for disentanglement models, all metrics show no or negative correlations with generalization

performance except for a weak correlation between the DCI score and generalization on the MPI3D-

Real dataset. For EL models, post representations show stronger, although still weak, correlations

than pre representations.

Representations Learned by Emergent Language Models Generalize Better. Figure 4.14

compares EL models with β-VAE and β-TCVAE with β = 0. We see that zpre of EL using linear

read-out models gives the best performance overall especially when Nlabel is small. While applying

GBT read-out models improves the performance of zpost/zpre over the 0-VAE and 0-TCVAE models

and zpre from the EL models in regression tasks, GBT read-out reduces performance in other cases,

especially for classification tasks. The reason may be that GBT models need more labeled samples

than linear models for training to work well. When we reduce the train-split ratio in Figure 4.15, the

EL model learns more generalizable representations than the 0-VAE and 0-TCVAE models which

degrade faster with reduced unlabeled data.

Ablations on Emergent Language Models. From the ablation study of EL models in Figs. 4.16

and 4.17, we observe consistent patterns: using a shorter sequence with a larger vocabulary size

works better; using greedy sampling significantly reduces the performance of EL models.

4.9 Conclusions and Discussions

We proposed a protocol to evaluate the compositional generalization of unsupervised repre-

sentation learning models that have a built-in inductive bias for compositionality: disentanglement

models and emergent language (EL) learning. Our evaluation emphasizes using a small number of

labeled samples to train simple models for downstream tasks. The interesting finding that latent
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variables at the bottleneck do not work as well as “pre” and “post” representations reminds us

to be careful when concluding that a model performs poorly when its latent representation does

not perform well. For disentanglement models, we observe that generalization performance is not

well correlated with existing disentanglement metrics. This finding demonstrates the gap between

pursuing better disentanglement metrics and more generalizable representations in previous studies.

Similarly, the existing compositionality metrics for EL, e.g. topographical similarity, cannot rep-

resent the generalization of learned representations. However, under the same setup, EL models

which were not initially proposed for unsupervised representation learning induce representations

with surprisingly strong compositional generalization and are robust to the change of dataset and

hyperparameters.

We focus on unsupervised learning algorithms that are specifically designed for compositional

representation to answer whether they lead to better generalization (which was an assumption made

by a great deal of prior work). A broader evaluation on other representation learning approaches

e.g. self-supervised learning (Chen et al., 2020; Grill et al., 2020) would be interesting for future

work. We hope that our study draws more attention to the study of compositional generalization and

emergent language models as a way of learning representations. Interesting future directions include

working on more challenging datasets, e.g. images of multiple objects; testing on other downstream

tasks, e.g. visual question answering; testing different model architectures, e.g. Transformers

(Vaswani et al., 2017); and developing better pre-training tasks beyond auto-encoding. Recent work

showing that emergent language (zlatent) can be used as a corpus to pre-train a language model (Yao

et al., 2022) also suggests that emergent language may be a better visual representation choice in

vision-language models.
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(a) Results on dSprites with linear read-out models.

(b) Results on dSprites with GBT read-out models.
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(c) Results on MPI3D-Real with linear read-out models.

(d) Results on MPI3D-Real with GBT read-out models.

Figure 4.10: Generalization performance (accuracy for classification and R2 score for regression)
with Nlabel = 500 of three representation models: β-VAE, β-TCVAE, and emergent language
(EL) varying hyper-parameters (β or bandwidth), datasets (dSprites and MPI3D-Real) and read-out
model (linear and GPT).
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(a) Results on dSprites with linear read-out models.

(b) Results on dSprites with GBT read-out models.
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(c) Results on MPI3D-Real with linear read-out models.

(d) Results on MPI3D-Real with GBT read-out models.

Figure 4.11: Compositionality metrics vs generalization performance on dSprites and MPI3D-Real
datasets, and linear and GPT read-out models. The disentanglement metrics (SAP, IRS, DCI,
MIG) of the β-VAE (dots) and β-TCVAE (crosses) models are not positively correlated with
generalization performance in all the three representation modes. The compositionality metric
for emergent language (EL), topographical similarity (TopSim), shows no strong correlation with
generalization performance.
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Figure 4.12: Ranking correlation between disentanglement scores (SAP, IRS, DCI, MIG) and the
generalization performance of three representation modes (pre, latent, post) using linear (the first
row) and GBT (the second row) read-out models on dSprites (the left column) and MPI3D-Real
(the right column) datasets. Except for the DCI metric, which shows weak correlations with
generalization performance on MPI3D-Real, all other metrics show no or even negative correlations.

Figure 4.13: Ranking correlation between topographical similarity (TopSim) and the generalization
performance of three representation modes (pre, latent, post) using linear (the left column) and GBT
(the right column) read-out models on dSprites (the second row) and MPI3D-Real (the first row)
datasets. The correlations between TopSim and generalization are stronger on post representations
than on the pre representations.
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(a) Results on dSprites dataset.

(b) Results on MPI3D-Real dataset.

Figure 4.14: Generalization performance of two representation modes (pre, post) of β-VAE with
β=0, β-TCVAE with β=0, and emergent language (EL) with nV =512 when evaluated with linear
(LN) and gradient boosting tree (GBT) read-out models.
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Figure 4.15: Generalization performance of pre and post representations of β-VAE with β=0
(0-β-VAE) and β-TCVAE with β=0 (0-β-TCVAE), and post representations of emergent language
(EL) with nV =512 when evaluated with linear (LN) and gradient boosting tree (GBT) read-out
models on MPI3D-Real when using (5%) and (10%) unlabeled data.
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(a) Results using linear read-out models.

(b) Results using GBT read-out models.

Figure 4.16: Ablation study of Emergent Language (EL) models of different bandwidths by varying
message sizes nmsg ∈ {8, 10, 12} and vocabulary sizes nV ∈ {128, 256, 512} with zpost and
Nlabel = 100/500/1000 on MPI3D-Real dataset evaluated with (a) linear and (b) gradient boosting
tree read-out models, The three nmsg results are plotted as segments of different line styles with
increasing nV /bits.
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(a) Results using linear read-out models.

(b) Results using GBT read-out models.

Figure 4.17: Ablation study of Emergent Language (EL) when using fixed-length messages (EL-fix)
and greedy sampling (EL-fix-det), with nV = 512 and Nlabel = 100/500/1000 for MPI3D-Real
dataset.
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CHAPTER 5: Summary and Future Work

5.1 Summary of Contributions

To summarize, let me first revisit my thesis statement here:

Injecting prior knowledge into deep neural networks by means of inductive biases on task

relations, model biases, representation format, can improve data efficiency, robustness, and general-

ization for deep visual learning.

I present following contributions in this thesis:

1. I developed DeepAtlas, a joint learning framework for image registration and segmentation

that can learn DNNs for both tasks from unlabeled images and a few labeled images.

The two networks mutually guide each other’s training on unlabeled images via an anatomy

similarity loss which penalizes the dissimilarity between the warped segmentation of the mov-

ing image and the segmentation of the target image. When registering image pairs consisting

of a manually labeled image and a image pseudo-labeled by the prediction of the segmenta-

tion network, this loss provides anatomy consistency supervision for registration and forces

the predicted segmentation to match the manual segmentation after registration. For both

bone/cartilage structures in knee MRIs and cortical structures in brain MRIs, DeepAtlas

shows large improvements over separately learned networks. DeepAtlas provides one-shot

segmentation learning and greatly improves registration. This demonstrates that one task can

benefit from imperfect supervision on unlabeled data provided by the other task.

2. I proposed RandConv, a data augmentation technique that applies a random convolution

layer on images during training to improve the generalization performance of a DNN in the

presence of domain shift and robustness to image corruptions.
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RandConv is based on the observation that the bias towards local texture may hurt the

generalization performance of DNN models. I theoretically justified the approximate shape-

preserving property of RandConv and develop RandConv techniques with multi-scale and

mixing designs, as well as a consistency loss to further enforce texture invariance. I validated

RandConv and its mixing variant in extensive experiments on synthetic and real-world

benchmarks as well as on the large-scale ImageNet dataset. RandConv outperforms single

domain generalization approaches by a large margin on digit recognition datasets and for the

challenging case of generalizing to the Sketch domain in PACS and to ImageNet-Sketch. I

also explored if the robustness/generalizability of a pretrained representation can transfer. By

finetuning a model pretrained with RandConv on PACS, the generalizability of a pretrained

model may transfer to and benefit a new downstream task.

3. I presented a comprehensive study of compositional generalization in unsuper-

vised representation learning that includes disentanglement and emergent language models.

I proposed an evaluation protocol that focuses on whether or not it is easy to train a simple

model on top of the learned representation that generalizes to new combinations of composi-

tional factors. I systematically studied three unsupervised representation learning algorithms

with compositional representation inductive biases. I find that directly using the bottleneck

representation may lead to worse generalization than using representations from layers be-

fore or after the learned representation itself. Additionally, the previously proposed metrics

to evaluate the levels of compositionality are not correlated with the actual compositional

generalization in our framework. Surprisingly, I find that increasing pressure to produce a

disentangled representation (e.g., increasing β in the β-VAE) produces representations with

worse generalization, whereas representations from EL models show strong compositional

generalization. My results shed new light onto the compositional generalization behavior of

different unsupervised learning algorithms with a new setting to rigorously test this behavior,

and suggest the potential benefits of developing EL learning algorithms for more generalizable

representations.
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5.2 Discussion and Future Work

Finally, in this section, I present an outlook on possible future work.

5.2.1 Joint Image Registration and Segmentation with Limited Labeled data

To further improve DeepAtlas, introducing uncertainty measures for segmentation and

registration networks can help alleviate the effect of poor predictions of one network on the other. It

would also be of interest to investigate multitask learning via layer sharing for the segmentation and

registration networks, e.g. sharing the image encoder. This may further improve performance and

decrease the size of the model. Furthermore, scaling up the training data by merging datasets of

different organs and imaging modality may improve the performance and generalization for both

tasks.

5.2.2 Domain Generalization and Robustness

RandConv can help computer vision tasks when a shape-biased model is helpful e.g. for object

detection. RandConv can also provide a shape-biased pretrained model to improve performance

in downstream tasks when generalizing to unseen domains. However, local texture features can

be useful for many computer vision tasks, especially for fine-grained visual recognition in fixed

domain. In such cases, visual representations that are invariant to local texture may hurt in-domain

performance. Therefore, important future work includes learning representations that disentangle

shape and texture features and building models to use such representations in an explainable way.

Recent work on vision and language learning (Radford et al., 2021) that allows one to explicitly

define a target domain with natural language shows promising results along this direction.

5.2.3 Compositionality Generalization

My study focused on unsupervised learning algorithms that are specifically designed for

compositional representation to answer whether they lead to better generalization (which was an

assumption made by a great deal of prior work). A broader evaluation on other representation

learning approaches e.g. self-supervised learning (Chen et al., 2020; Grill et al., 2020) would be
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interesting for future work. I hope that my study draws more attention to the study of compositional

generalization and emergent language models as a way of learning representations due to the

observed superior generalization behavior. Interesting future directions include working on more

challenging datasets, e.g. images of multiple objects; testing on other downstream tasks, e.g. visual

question answering; testing different model architectures, e.g. Transformers (Vaswani et al., 2017);

and developing better pre-training tasks beyond auto-encoding. Recent work showing that emergent

language can be used as a corpus to pretrain a language model (Yao et al., 2022) also suggests

that emergent language may be a better visual representation choice in vision-language models.

Inspired by recent advance on large scale vision-language model (Radford et al., 2021) and the

shown compositional behavior (Goh et al., 2021), using language supervision to help to learn

compositional representation with both good generalization and interpretability would be exciting

future direction.
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