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ABSTRACT

Nathan W. Bean: Bayesian Multi-Regional Clinical Trials Using Model Averaging
(Under the direction of Joseph Ibrahim and Matthew Psioda)

Multi-regional clinical trials (MRCTs) provide the benefit of more rapidly introducing drugs

to the global market; however, small regional sample sizes can lead to poor estimation quality of

region-specific effects when using current statistical methods. With the publication of the Interna-

tional Conference for Harmonisation E17 guideline in 2017, the MRCT design is recognized as a

viable strategy that can be accepted by regional regulatory authorities, necessitating new statisti-

cal methods that improve the quality of region-specific inference. We develop novel methodology

using Bayesian model averaging (BMA) to estimate region-specific and global treatment effects

for MRCTs that compare two treatment groups with respect to a continuous outcome, a time-to-

event (TTE) outcome, or both a TTE outcome and a longitudinal marker jointly. This approach

accounts for the possibility of heterogeneous treatment effects between regions, and we discuss

how to assess the consistency of these effects using posterior model probabilities.

In the case of a continuous or TTE endpoint, we show through simulation studies that the

proposed modeling approaches estimate region-specific treatment effects with lower mean

squared error than commonly used models (e.g., fixed effects linear regression models, Cox

proportional hazards models) while resulting in higher rejection rates of the global treatment ef-

fect compared to Bayesian hierarchical models. For both types of endpoints, we further develop

three measures to evaluate the consistency of the treatment effect across regions. These three

approaches quantify the strength of evidence that a lack of clinically relevant differences exists

between treatment effects (1) among regions overall, (2) for any two regions, and (3) for any

given region versus all other regions together.
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When jointly modeling a TTE endpoint and an associated longitudinal marker, we show that

the BMA approach can result in an increase in the global rejection rate compared to survival

models that account for only the TTE endpoint. We then apply both the survival and joint model

variations of the BMA approach to data from the LEADER trial, an MRCT designed to evaluate

the cardiovascular safety of an anti-diabetic treatment.
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CHAPTER 1: INTRODUCTION

In recent years, multi-regional clinical trials (MRCTs), or trials with multiple geographic

regions included in the same study protocol, have increased in popularity in the pharmaceutical

industry due to their ability to accelerate the global drug development process. Sponsors can

simultaneously collect data from different regions and seek approval for an investigational treat-

ment from the corresponding regulatory authorities. While regional differences in the treatment

effect may exist due to either intrinsic or extrinsic factors, commonly used statistical models typi-

cally estimate only a global treatment effect without accounting for differences between regions

in the primary analysis. Instead, region-specific treatment effects are often estimated in subgroup

analyses using only data from the respective region, and these estimates can be susceptible to

high variation due to small regional sample sizes.

To address potential challenges with MRCTs, the International Council for Harmonisation

released the E17 guidance document which suggests the use of statistical methods that utilize

information borrowing across regions if regional sample sizes are small (ICH, 2017). We address

this guideline by developing an approach that allows for information borrowing using Bayesian

model averaging (BMA) to analyze data from MRCTs with two treatment arms. Additionally, we

develop three methods to quantify evidence in favor of consistency of the treatment effects across

regions, which is defined as the lack of clinically meaningful differences between region-specific

treatment effects.

In Chapter 2, we provide a literature review on models that have previously been proposed

to analyze data from MRCTs. We also discuss examples from the vast literature concerning the

evaluation of consistency.
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In Chapter 3, we first detail the methodology of the proposed BMA approach in the context

of MRCTs with a continuous endpoint. Through simulation studies, we show that the BMA

approach results in better estimation quality of the region-specific treatment effects compared

to a fixed effects linear model. Unlike the Bayesian hierarchical model, which also incorporates

information borrowing across regions, we demonstrate the robustness of the prior elicitation for

the BMA approach with respect to the global rejection rate.

In Chapter 4, we extend the BMA approach to MRCTs with a time-to-event (TTE) endpoint.

We obtain posterior samples of the treatment effects using a Laplace approximation, and we again

demonstrate through simulation studies that the proposed modeling approach estimates region-

specific treatment effects with lower mean squared error than a Cox proportional hazards model

while resulting in a similar rejection rate of the global treatment effect. We then apply the BMA

approach to data from the LEADER trial, an MRCT designed to evaluate the cardiovascular

safety of an anti-diabetic treatment.

In Chapter 5, we further develop the BMA approach in the context of a joint analysis of sur-

vival and longitudinal data from MRCTs. In this novel application of joint models to MRCTs, we

use Laplace’s method to integrate over subject-specific random effects and to approximate poste-

rior distributions for region-specific treatment effects on the time-to-event outcome. We conduct

simulation studies to compare this joint modeling approach to methods that analyze survival data

alone, and we demonstrate that the joint modeling approach can result in an increased rejection

rate when testing the global treatment effect. We again apply the proposed approach to data from

the LEADER trial by jointly analyzing repeated HbA1c measurements with the time-to-event

primary endpoint.
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CHAPTER 2: LITERATURE REVIEW

2.1 Proposed Models for MRCTs

Generally, treatment effects on the outcome of interest for multi-regional clinical trials

(MRCTs) are tested and estimated using statistical models with fixed effects. Regardless of

the type of endpoint, the global treatment effect is typically estimated in the primary analysis

without accounting for potential differences between regions, and region-specific treatment ef-

fects are estimated as part of subgroup analyses. The total sample size of an MRCT is calculated

to achieve a desired level of power with respect to the global treatment effect, but the small re-

gional sample sizes can result in extreme estimates of the region-specific treatment effects due

to chance. Such behavior has been observed in high profile MRCTs, including the Liraglutide

Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results (LEADER) trial

(Marso et al., 2016) and the Platelet Inhibition and Patient Outcomes (PLATO) trial (Mahaffey

et al., 2011). Both MRCTs were cardiovascular outcomes trials that reported statistically signif-

icant results when testing the global treatment hazard ratio, however, both trials found that the

region-specific hazard ratio for North America (and the U.S. in particular) had a reversal of di-

rection when compared to the global effect (i.e., greater than 1.0). While further investigations

and post hoc analyses suggest that these extreme results for North America were likely due to

chance (Yusuf and Wittes (2016)), these examples illustrate the challenges that can arise when

using fixed effects models to estimate region-specific treatment effects.

In this section, we provide further details on some of the fixed effects models commonly

used to analyze data from MRCTs with different endpoints. Additionally, we discuss other mod-

els that have been proposed for MRCTs.
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2.1.1 Models for Continuous Outcomes

While fixed effects models are commonly used in practice, the use of random effects models

where region-specific treatment effects are treated as random variables has also been suggested

(Hung et al., 2010). This approach overcomes limitations of fixed effects models by accounting

for possible regional differences in the treatment effect. Let N be the total sample size and ni “

riN the sample size of the ith region where 0 ă ri ă 1, i “ 1, . . . , S, and
řS
i“1 ri “ 1 (and thus

řS
i“1 ni “ N ). Additionally, let γ denote the common effect size, and let γi and γ̂i be the true and

the estimated effect sizes, respectively, for the ith region. Assume that each region has an equal

variance, σ2{4, in both treatment groups. Under a normal random effects model, we assume

γ̂i|γi „ N

ˆ

γi,
σ2

ni

˙

,

γi „ N
`

γ, σ2
γ

˘

,

where σγ is the between-region standard deviation of the regional effect sizes. If σγ is large, then

γ may not be interpretable, and instead γi is applicable to the ith region. Consider the case when

σγ is too large to be ignored, and we want to detect a treatment effect size of γ “ δ ą 0 at

significance level α and power 1´β. To do so, it must hold that σγ{δ ă
"

pzα ` zβq
b

řS
i“1 r

2
i

*´1

,

where zα is the p1´ αqth percentile of the standard normal distribution. Under this condition, the

total sample size should be calculated as

N “

«

ˆ

δ

σpzα ` zβq

˙2

´

´σγ
σ

¯2 S
ÿ

i“1

r2
i

ff´1

.

If we assume no regional differences (i.e., σγ “ 0), then the resulting total sample size may be

greatly underestimated if the between-region variance is in fact large.

Rothmann (2021) also suggested treating region-specific effects as random with the use

of a Bayesian hierarchical model (BHM). The BHM allows for information borrowing across

regions by shrinking region-specific effects towards the hierarchical mean, which can be used as
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a logical estimator for the global treatment effect. Unlike fixed effects models, the BHM often

avoids extreme estimates of the region-specific treatment effects, however, this model requires

the possibly unrealistic assumption that these effects are a random sample from some underlying

normal distribution.

In contrast to traditional random effects models, Wu et al. (2014) proposed a variation of the

model in which they assume that the shift in variance across regions is random and that the mean

response is fixed. Lan and Pinheiro (2012) develop a discrete random effects model (DREM) for

MRCTs with a continuous outcome, and Lan et al. (2014) extend this method to MRCTs with

either TTE or binary endpoints. They assume that regional sample sizes are a random sample

from an underlying multinomial distribution, however, this assumption may not be practical

considering that regional sample sizes are often determined in part by minimum sample size

requirements set by regulatory authorities.

Chiang and Hsiao (2019) question altogether the use of random effects models in which

regional differences are treated as random effects, arguing that regional intrinsic and extrinsic

factors are generally known and should be considered as fixed. Further, random effects models

poorly estimate the variability between levels of the grouping variable when the number of levels

is small, as is often the case with the number of regions in MRCTs.

2.1.2 Models for Time-to-Event Outcomes

The proportional hazards model is usually used for MRCTs with time-to-event (TTE) end-

points (Quan et al., 2010b). First introduced by Cox (1972), the proportional hazards model that

compares an active treatment to a control is written as

λ1ptq “ λ0ptq exppγq,

where λ1ptq and λ0ptq are the baseline hazards for the treatment group and control group, respec-

tively, and exppγq is the hazard ratio between the treatment group and control group.
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As described by Quan et al. (2010b), the power calculations are often based on the log-rank

test. Let E be the expected total number of events from both groups. For a two-sided significance

level α and power 1´ β, the expected total number of events are calculated as

E “
4pz1´α{2 ´ z1´βq

2

γ2
,

where z1´α is the p1´ αqth percentile of the standard normal distribution.

Consider the case with S regions, and let γi be the region-specific treatment effect for the

ith region, i “ 1, . . . , S. The estimated region-specific treatment effect γ̂i is asymptotically

distributed as γ̂i „ Npγi, 4{Eiq, were Ei is the expected number of events in the ith region. The

estimated overall treatment effect is defined as

γ̂ “
S
ÿ

i“1

Ei
E
γ̂i, (2.1)

with an asymptotic distribution of γ̂ „ N
`
řs
i“1

Ei
E
γi, 4{E

˘

.

2.1.3 Models for a Joint Time-to-Event Outcome and Longitudinal Marker

The use of statistical models that allow for information borrowing across regions can be

particularly beneficial for MRCTs with both a TTE endpoint and some longitudinal marker, as

is often the case with phase III oncology trials. Due to high mortality rates and unmet medical

needs in oncology drug development, drug sponsors often rely on MRCTs to introduce cancer

treatments more rapidly into the global market. Song et al. (2019) assessed all oncology clini-

cal trials by the top ten pharmaceutical companies between 1 January 2008 and 31 December

2017, and they found that the 65.0% of phase II and 81.8% of phase III trials were MRCTs. Most

phase III oncology MRCTs are powered using results with surrogate endpoints (e.g., response

rate) from phase 1b or 2a studies which may not be representative of primary TTE endpoints

(e.g., overall survival, progression-free survival). This, along with faster speeds common in on-

cology drug development, can result in phase III trials being underpowered. Wong et al. (2019)
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estimated the probability of success for phase III oncology trials to be only 35.5%. The high fail-

ure rate for phase III oncology trials makes clear the need for new statistical methods that can

increase power when testing the global treatment effect with respect to a TTE primary endpoint

in MRCTs, and such an objective can be achieved by using joint models to account for possible

associations between survival data and longitudinal data (e.g., quality of life assessments).

To the best of the author’s knowledge, the application of joint models to MRCTs has not yet

been proposed. However, the methodology of joint models continues to be developed in other

contexts. In a joint model, TTE data and longitudinal data are typically linked together using one

of three methods: (1) including the observed longitudinal outcomes as covariates in the survival

submodel, (2) including the fitted values from a longitudinal submodel as covariates in the sur-

vival submodel, or (3) linking the longitudinal and survival submodels with shared parameters.

The majority of developments in the research focus on the third method in which both submodels

share common subject-specific random effects, and it has been shown that treatment effects are

generally estimated with less bias when using this approach compared to the first two methods

(Sweeting and Thompson, 2011). When a TTE outcome and a longitudinal marker are strongly

correlated, joint models can identify significant treatment effects with greater sensitivity com-

pared to survival models that ignore this underlying association (Gould et al., 2015). Further,

joint models can result in higher power and lower sample sizes when testing treatment effects on

either the TTE or longitudinal outcomes (Ibrahim et al., 2010).

Typically, a linear mixed model is used to analyze the longitudinal data. If we define Xiptq

to be the observed longitudinal outcome for the ith subject at time t and X˚
i ptq to be a trajectory

function that depends on subject-specific random effects bi, then we can formulate the longitudi-

nal submodel as

Xiptq “ X˚
i ptq ` εiptq,

where εiptq „ Np0, σ2q. We assume the errors εiptq are independent from one another and from

bi, and we also assume the random effects are normally distributed.

7



For the survival submodel, we fit the TTE data using a proportional hazards model. At time t,

we write this submodel as

h pt|X˚
i ,wiq “ h0ptq exp tg pα, X˚

i q `w
1
iθu ,

where h0ptq is the baseline hazard function, gp¨q is a function that defines the association struc-

ture, α measures the association between the longitudinal marker and the TTE endpoint, and wi

is a vector of covariates for the ith subject with corresponding effects θ. Different association

structures have been proposed to connect the longitudinal and survival submodels, including the

use of the entire trajectory function (i.e., g pα, X˚
i q “ αX˚

i ) or only shared random effects (i.e.,

g pα, X˚
i q “ α

1bi).

Under the Bayesian framework, Faucett and Thomas (1996) propose a joint model with a

piecewise constant baseline hazard, and they link the two submodels by including the longitu-

dinal trajectory function in the linear predictor of the survival submodel. This model has been

extended in several ways, such as to allow for greater flexibility in the structure of the longi-

tudinal submodel (Wang and Taylor, 2001; Brown and Ibrahim, 2003) or to accommodate for

multivariate longitudinal and survival data (Ibrahim et al., 2004; Chi and Ibrahim, 2006). In prac-

tical contexts, the application of Bayesian joint models has become more accessible with the

development of R packages such as JMbayes (Rizopoulos, 2020) and rstanarm (Gabry et al.,

2022)

2.2 Theory and Application of Bayesian Model Averaging

Bayesian model averaging (BMA) is typically used as an alternative method to model se-

lection. Rather than use some criterion to select a single model with a subset of covariates of

interest, BMA accounts for model uncertainty by averaging together results from all models

in the model space, each of which fits a different sets of covariates (Hoeting et al., 1999). We

discuss the general theory of BMA, and we detail a novel application of BMA to basket trials.
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2.2.1 Theory of Bayesian Model Averaging

Let ML denote a model space with L possible models, and let M` denote the `th model with

prior model probability ppM`q, ` “ 1, . . . , L. Further, let D denote the observed data and θ`

the vector of parameters for M`. Under this model, we write the likelihood of D and the prior

for θ` as ppD|θ`,M`q and ppθ`|M`q, respectively, and the marginal likelihood of M` is given

by ppD|M`q “
ş

ppD|θ`,M`qppθ`|M`qdθ`. The posterior model probability (PMP) for M` is

calculated as

ppM`|Dq “
ppD|M`qppM`q

řL
`1“1 ppD|M`1qppM`1q

. (2.2)

With the PMPs as weights, we obtain model averaged posterior quantities ppθ|Dq as

ppθ|Dq “
L
ÿ

`“1

ppθ`|M`,DqppM`|Dq. (2.3)

2.2.2 Bayesian Model Averaging Applied to Basket Trials

Psioda et al. (2021) apply BMA to oncology basket trials with a binary endpoint. For a given

number of baskets, the model space includes models that correspond to all possible partitions

of the baskets into sets in which baskets within the same set are constrained to share a common

binary response rate (i.e., the probability of having a favorable response to the treatment). Under

this model fromulation, the two extremes include a model that assumes no differences between

the baskets by pooling all baskets together and a model that assumes the response rates of all

baskets differ. They then obtain posterior quantities of interest averaged over the models with the

PMPs as weights.

Consider the scenario with K distinct baskets and binary response rates. The assumption is

made that patients within a basket are independent and share a common response probability. For

K distinct baskets, consider all possible ways of classifying the baskets into active and inactive

groups, where active baskets have response rates that indicate a desirable treatment effect. We

assign a model to each possible grouping, resulting in J models, and we denote the number of
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distinct response rates for the jth model by Pj . Let πpj,pq be the pth distinct response rate for the

jth possible model Mj , p “ 1, . . . , Pj , and let Ωj,p be the set of basket labels corresponding to

baskets having the pth distinct response rate for model Mj . Additionally, let D “ tyk, nk : k “

1, . . . , Ku be the data at a given time of analysis where nk and yk are the number of patients and

responders, respectively, in the kth basket at that time.

To apply BMA, prior distributions are required for the model space and model parameters.

The proposed prior for model Mj is ppMjq 9 Pα
j , j “ 1, . . . , J , where α ě 0 is tuned to achieve

the desired amount of information borrowing. For α “ 0, the prior model probabilities are

uniform, resulting in a greater amount of information sharing and more variable true positive

rates. As α increases, models with more parameters are given more weight a priori, leading to

less borrowing and more stable true positive rates. Based on extensive simulation studies, the

authors recommend the choice of α “ 2 to achieve balance in the amount of information sharing.

For the priors on the response rates, let πpj,pq|Mj „ Betapa0, b0q for each j “ 1, . . . , J and

p “ 1, . . . , Pj . The authors provide default recommendations for choosing initial values of a0 and

b0 by setting
a0

a0 ` b0

“ πA,

where πA is a hypothesized plausible response rate associated with treatment activity. By setting

a0 ` b0 “ 1.0, the prior for πpj,pq|Mj becomes a weekly informative prior with mean equal to πA.

It follows that the posterior distribution for πpj,pq is

πpj,pq|D,Mj „ Betapapjpq, bpjpqq,

where apjpq “ a0 `
ř

kPΩj,p
yk and bpjpq “ b0 `

ř

kPΩj,p
pnk ´ ykq.

The marginal likelihood of the data, conditional on model Mj being the correct model, is

ppD|Mjq “

K
ź

k“1

ˆ

nk
yk

˙

ˆ

Pj
ź

p“1

Bpapjpq, bpjpqq
Bpa0, b0q

,
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where Bp¨, ¨q is the complete beta function. We then calculate the PMPs by applying (2.2). For

some arbitrary value x, we can calculate the posterior probabilities P pπk ą x|Mj,Dq for the

kth basket, conditional on model Mj , j “ 1, . . . , J , k “ 1, . . . , K. By (2.3), we calculate the

posterior probability of interest for the kth basket as

P pπk ą x|Dq “
J
ÿ

j“1

P pπk ą x|Mj,DqppMj|Dq.

In the simulation study, the proposed BMA method is compared to basket trial methodolo-

gies including Simon’s optimal two-stage design in each basket and the calibrated Bayesian

hierarchical model (CBHM). With K “ 5, the authors consider all possible basket groupings

into active and inactive baskets, and they also consider scenarios with uniform, fast active, and

slow active accrual rates. Compared to the other models, they show that the BMA approach re-

sults in well-controlled false positive rates and reasonably high true positive rates with a good

balance across the different scenarios. It also generally resulted in lower expected samples sizes

and expected trial duration.

Their proposed BMA approach offers several advantages, including the flexibility to stop

enrollment in any basket due to futility or efficacy and the ability to quantify the likelihood that

two baskets have the same response. With the suggested prior model probabilities, this approach

also allows for the control of information borrowing by specifying the choice α. Although BMA

can be computationally demanding, the simulation scenarios detailed by the authors allow for

closed-form computations, decreasing the computational burden compared to the CBHM.

2.3 Consistency of Treatment Effects Across Regions

Much of the literature on MRCTs focuses on the development of methods to evaluate the

consistency of treatment effects across regions, however, consistency is often defined in different

ways (Quan et al., 2010a). The International Council for Harmonisation (ICH) defines consis-

tency as “a lack of clinically relevant differences between treatment effects in different regions”
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(ICH, 2017), whereas others focus on the comparison of any given region-specific treatment

effect to the global treatment effect. We discuss several approaches for the assessment of consis-

tency for MRCTs with a continuous endpoint, a TTE endpoint, or multiple continuous endpoints.

2.3.1 Consistency of Treatment Effects for Continuous Endpoints

When sponsors use an MRCT to show the effectiveness of an investigational treatment, reg-

ulatory authorities often require evidence that the global treatment effect can be bridged to the

region-specific treatment effect for their corresponding region. The Japanese Medical Devices

Agency in the Ministry of Health, Labour and Welfare (MHLW) was among the first to discuss

the concept of consistency by establishing guidelines on the number of patients that should be

enrolled in Japan. In 2007, the MHLW proposed two methods for sponsors to consider when de-

signing an MRCT (MHLW, 2007). Method 1 requires that enough patients be enrolled in Japan

such that the Japan-specific treatment effect is at least half of the overall treatment effect with

probability greater than or equal to 0.8; i.e.,

P

ˆ

γJ
γall

ą π

˙

ě 1´ β, (2.4)

where γJ denotes the Japan-specific treatment effect, γall denotes the global treatment effect, and

π ě 0.5 and 1 ´ β ě 0.8. Alternatively, sponsors could consider Method 2 which states that

consistency can be assumed if γi ą 0 for all S regions, i “ 1, . . . , S.

Since the publication of the MHLW guidelines, many authors have proposed extensions

of the two methods and developed calculations for determining the sample size of each region

(Kawai et al., 2008; Ko et al., 2010; Liu et al., 2016; Quan et al., 2010a,b, 2013; Tsong et al.,

2012; Uesaka, 2009). Quan et al. (2010a) discuss the limitations of the MHLW guidelines, and

they instead extend Method 1 to all regions by ensuring that the ratio of each region-specific

treatment effect and the global treatment effect exceeds some prespecified proportion; i.e., γ1 ą

πγall, γ2 ą πγall, . . . , γS ą πγall. For MRCTs with five or more regions, the MHLW’s require-

12



ment of π ě 0.5 for each region is not practical, and alternative values of π have been proposed

(Quan et al., 2014; Teng et al., 2017).

2.3.2 Consistency of Treatment Effects for Time-to-Event Endpoints

Most methods for evaluating consistency of treatment effects in MRCTs are for trials with

continuous endpoints with less research addressing TTE endpoints. Quan et al. (2010b) adapts

the Japanese MHLW’s Method 1 in (2.4) to survival data using the risk reduction (i.e., one minus

the hazard ratio), rewriting this method as

P

ˆ

1´ exp pγ̂iq

1´ exp pγ̂q
ą π

˙

ě 1´ β, (2.5)

where γ̂i is the estimated region-specific treatment effect for some region i and γ̂ is the estimate

for the overall treatment effect in (2.1). The authors show that the left-hand side of (2.5) can be

approximated using a normal distribution, and Hayashi and Itoh (2017) provide a variation of

their approximation in addition to showing that this probability can be computed using numerical

integration. Alternatively, Chen et al. (2013) propose the evaluation of consistency through the

use of normal probability plots, which, in comparison to other graphical tools such as funnel

plots, decrease the false positive rate when identifying outlying countries.

For TTE endpoints, Teng et al. (2018) pose two possible requirements when evaluating if the

overall hazard ratio (HR) results can be extended to the ith region:

(i) Hazard reduction: p1´ exppγ̂iqq ą πi p1´ exppγ̂iqq ô p1 ´ HRiq ą πip1 ´ HRq,

0 ă πi ă 1, i “ 1, . . . , S;

(ii) Log scale of hazard ratio: γ̂i ą πiγ̂ ô HRi ą HRπi , 0 ă πi ă 1, i “ 1, . . . , S.

When comparing the two requirements using the same value of πi and when the overall results

are positive (i.e., HR ă 1), the authors show that the requirement for the log scale of the hazard

ratio is more stringent than the hazard reduction requirement. Thus, the authors suggest that the

hazard reduction requirement may be preferable when assessing consistency.
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2.3.3 Consistency of Treatment Effects for Multiple Co-Primary Endpoints

No methods have been proposed to evaluate consistency for joint models with a TTE out-

come and a longitudinal marker, and more generally, little research has been done to evaluate con-

sistency for MRCTs with multiple co-primary endpoints. Huang et al. (2017) consider the case

of a trial that compares an active treatment to a control with respect to K continuous multiple co-

primary endpoints, where the effect size is consistent across all S regions, with K ě 2 and S ě 2.

For simplicity, they assume that the variances of and correlations between the outcomes are

known, which is not the case in actual practice. For the kth co-primary endpoint, k “ 1, . . . , K,

denote the following: Dik is the observed mean difference between the treatment group and con-

trol group for the ith region, i “ 1, . . . , S, k “ 1, . . . , K, DSC
k is the observed mean difference

from all other regions without the ith region, and Dk is the observed mean difference from all

regions. If the overall mean difference is significant at the α level, they propose evaluating the

effectiveness of the treatment in the ith region using three criteria:

(i) Di1 ą π1D1, . . . , DiK ą πKDK for 0 ă πk ă 1, k “ 1, . . . , K;

(ii) Di1 ą π1D
SC
1 , . . . , DiK ą πKD

SC
K for 0 ă πk ă 1, k “ 1, . . . , K;

(iii) Di1 ą hi1, . . . , DiK ą hiK for hik ą 0, k “ 1, . . . , K.

The values of πk and hik are prespecified for i “ 1, . . . , S and k “ 1, . . . , K. The authors rec-

ommend setting hik “ z1´φikσk
a

4{Npi, where N is the total sample size, pi is the proportion

of all patients in the trial who are in the ith region, σk is the known standard deviation of the kth

outcome, z1´φik is the p1 ´ φikqth percentile of the standard normal distribution, and φik can

be thought of as a desired significance level if one were to test the effect of the treatment with

respect to the kth endpoint using patients from only the ith region. Criteria (i) and (ii) compare

the size of the ith region-specific treatment effect to the overall treatment effect, which is calcu-

lated with and without the ith region, respectively, and we note that the first criterion is similar to

Method 1 proposed by the Japanese MHLW (MHLW, 2007). The authors suggest that the sample

size for each region should be calculated such that at least one of the three criteria is met.
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CHAPTER 3: BAYESIAN MODEL AVERAGING FOR MULTI-REGIONAL
CLINICAL TRIALS WITH A CONTINUOUS ENDPOINT

3.1 Introduction

With the increasing globalization of medical drugs, pharmaceutical companies have turned

to the frequent use of multi-regional clinical trials (MRCTs), or studies that include multiple geo-

graphic regions under the same study protocol. Although these studies introduce both logistical

and statistical challenges, MRCTs provide the benefit of allowing drugs to more quickly enter the

world market. Song et al. (2019) investigated all clinical trials registered on ClinicalTrials.gov by

the top ten pharmaceutical companies between 1 January 2008 and 31 December 2017, and using

the International Council for Harmonisation (ICH) E17 guideline to classify trials as either local

or MRCT, they found that MRCTs made up 66.0% of phase II trials and 72.2% of phase III trials.

While the total number of trials conducted by these ten companies has decreased over time, the

proportion of MRCTs has greatly increased in all three phases. MRCTs gained further attention

after the finalization of ICH E17 in November 2017, which provides nonbinding guidelines for

the planning and design of MRCTs.

Multi-regional clinical trials generally have two objectives: (1) estimate the global effect of

an active treatment, and (2) bridge trial results to individual regions having potentially different

regulatory authorities. In this paper, we refer to the average treatment effect across regions as

the global treatment effect, although it is sometimes referred to as the overall treatment effect in

literature. Substantial evidence of a global effect indicates that the drug is effective in at least one

region. However, region-specific effects can still differ due to differences in both intrinsic factors

(e.g., genetic factors and pathological conditions) and extrinsic factors (e.g., environmental and

cultural factors) between regions (ICH, 1998). Commonly used methods, such as fixed effects
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models, often do not account for regional differences during the primary analysis and instead

assume a homogeneous treatment effect across regions (Hung et al., 2010).

We propose the use of Bayesian model averaging (BMA) which naturally provides estimates

for the region-specific treatment effects, and we propose an approach for calculating the global

treatment effect based on a weighted average of the region-specific treatment effects. Bayesian

model averaging has previously been used to account for model uncertainty in which inferences

from models with different sets of covariates are averaged (Hoeting et al., 1999), and Psioda

et al. (2021) extend the application of BMA to oncology basket trials by averaging models that

categorize baskets into different homogeneous sets based on response rate. We extend the BMA

approach to MRCTs, where each model considers a different possible grouping of how the re-

gions are similar or different with regard to the effectiveness of an active treatment. For a given

number of regions, the model space includes models pertaining to all possible classifications of

regions into subsets that have common effects, with the two extremes being a model that assumes

no regional differences by pooling all regions together (i.e., a fixed effects linear model that does

not include a region-specific treatment effect) and a model that assumes all region-specific treat-

ment effects differ (i.e., a fixed effects linear model with a separate region-specific treatment

effect for each region). The BMA approach facilitates borrowing of information across regions

while reasonably controlling the type I error rate, whereas other methods, such as Bayesian hi-

erarchical models (BHMs), often incorporate information borrowing at the expense of greatly

increasing type I error rates in regions with a small or null treatment effect.

Various models have been proposed for MRCTs. Fixed effects models are frequently used in

practice, but Hung et al. (2010) suggest the use of random effects models where regional differ-

ences are treated as random variables. Wu et al. (2014) proposed a random effects model based

on the assumption that the shift in variance across regions is random and that the mean response

is fixed. Chiang and Hsiao (2019) point out that regional intrinsic and extrinsic factors are gen-

erally known and considered to be fixed, questioning the treatment of regional differences as

random effects. Additionally, variability across regions is poorly estimated by random effects
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models when the number of regions is small. Instead, Chiang and Hsiao assume that efficacy

responses of regions are independently distributed with a common mean and heterogeneous

variances, and they evaluate the efficacy response through interval estimation based on Howe,

Cochran-Cox, and Satterthwaite approximations. Other methods have also been proposed that

assume heterogeneous variances between the regions. For a continuous response, Lan and Pin-

heiro (2012) proposed a discrete random effects model (DREM) using discrete priors to account

for between-region variability, and Lan et al. (2014) extended DREM to survival and binary re-

sponses. The DREM approach treats regional sample sizes as random by assuming that patients

are randomly drawn from the full patient population of the selected regions, which may not be a

realistic assumption in MRCTs due to minimum regulatory requirements.

In an MRCT, consistency of treatment effects is defined as a lack of clinically relevant dif-

ferences between treatment effects in different regions (ICH, 2017). Evaluation of consistency

provides an understanding of the extent to which global results of a trial can reasonably be

bridged to individual regions. The Pharmaceuticals and Medical Devices Agency in the Min-

istry of Health, Labour and Welfare (MHLW) of Japan released a guideline for MRCTs (MHLW,

2007) that addressed the concept of consistency through two proposed methods, and many au-

thors have extended these methods and developed regional sample size calculations (Kawai et al.,

2008; Ko et al., 2010; Liu et al., 2016; Quan et al., 2010a,b, 2013; Tsong et al., 2012; Uesaka,

2009). One common method to assess consistency is to test the interaction between treatment and

region, however, interaction tests are known for having low power to detect heterogeneity. We

propose three approaches that utilize posterior probabilities to quantify the strength of evidence

in favor of consistency. Two approaches estimate the probability that region-specific treatment

effects (pairwise and globally) differ by no more than a prespecified minimal clinically important

regional difference, and the third approach compares region-specific effects to the global effect.

The rest of this paper is organized as follows. In Section 3.2, we discuss a motivating MRCT

that used current statistical methods in the design and analysis stages, and we highlight limita-

tions. In Section 3.3, we discuss the methodology of BMA and detail its application to MRCTs,
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and we propose methods to assess treatment effect consistency. In Section 3.4, we define the

global treatment effect and outline steps for hypothesis testing of both global and region-specific

treatment effects. In Section 3.5, we present simulation studies to compare the proposed method

to a fixed effects linear regression model and a BHM. We then close the paper with discussion in

Section 3.6.

3.2 Motivating Example

To highlight the strengths of BMA in MRCTs, we discuss a phase III trial comparing two

treatments for chronic obstructive pulmonary disease (COPD), and we design simulation studies

to resemble the COPD trial in Section 3.5. The trial was designed to evaluate the efficacy and

safety of fluticasone furoate/vilanterol inhalation powder (FF/VI) 100/25 mcg once daily com-

pared to vilanterol inhalation powder (VI) 25 mcg once daily in subjects with COPD (Siler et al.,

2017). For patients in either treatment arm, investigators measured a patient’s forced expiratory

volume in one second (FEV1) twice on Treatment Day 1 (30 minutes pre-dose and immediately

pre-dose) and averaged the two values to obtain a baseline measurement. On Treatment Day 84,

investigators measured the patient’s FEV1 twice more (both 23 and 24 hours after the previous

morning’s dosing) and averaged these values. The primary outcome of this study is the mean

change from baseline in clinic visit trough FEV1 on Treatment Day 84.

The overall sample size was calculated using the hypothesized global treatment mean dif-

ference based on historical data from two phase III trials evaluating the efficacy and safety of

FF/VI (GSK, 2014b). A two-sample t-test with an assumed common standard deviation of 230

mL and a two-sided 5% significance level was used. Each treatment arm would need 696 patients

to detect a 40 mL difference between FF/VI 100/25 mcg and VI 25 mcg in trough FEV1 on Treat-

ment Day 84 with 90% power. After the completion of the trial, the FF/VI arm and the VI arm

had sample sizes of 759 and 749, respectively. Subjects were recruited and randomized from 211

centers in 11 countries (GSK, 2014a), and countries were grouped into five regions defined as US,
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Asia Pacific, Eastern Europe, Western Europe, and Other. The primary analysis used region as a

covariate.

The study results focus on the global treatment effect without the inclusion of a region-by-

treatment interaction, and the model does not allow for the treatment effect to differ across re-

gions. Without additional analyses, models such as that used are unable to provide estimates of

region-specific treatment effects. To address the 2007 Japanese guideline of consistency, Japan-

specific analyses were conducted using a new definition of region groupings that classified coun-

tries as either Japan or Not-Japan. Although these Japan-specific analyses were included in the

clinical study report as required by the MHLW, investigators acknowledged that the sample size

was not powered for a formal analysis in the subset of subjects recruited in Japan (GSK, 2014a).

Such is generally true for all regional subgroup analyses when the sample size is powered based

on the global treatment mean difference.

3.3 Model

3.3.1 BMA Applied to MRCTs With a Normally Distributed Outcome

Consider an MRCT comparing two treatments with S regions and a total sample size N .

Let Y “ pyijq
1 be an N ˆ 1 vector where yij is the continuous response for the jth subject in

the ith region, i “ 1, . . . , S, j “ 1, . . . , ni, where ni is the number of patients in the ith region

and
řS
i“1 ni “ N . Define µ “ pµ1, . . . , µSq

1 and γ “ pγ1, . . . , γSq
1 to be the S ˆ 1 vectors

of region-specific intercepts and region-specific treatment effects, respectively, and let β be the

p ˆ 1 vector of covariate effects. We let θ “ pµ1,γ 1,β1q1, and we consider the case where θ is

unknown. The model is written as Y “Wθ ` ε, whereW is the N ˆ p2S ` pq design matrix

with region indicators, region-by-treatment-group indicators, and optional covariates. We assume

that ε „ NNp0, τ
´1INq, where τ is the precision parameter and IN is the N ˆN identity matrix.

Let MS denote the model space for S regions. Assume there are L models in MS where the

`th model is denoted by M`, ` “ 1, . . . , L, and let D` be the number of distinct region-specific

treatment effects for M`, 1 ď D` ď S. The number of models in MS can be calculated as
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L “
řS
i“1

!

1
i!

ři
`“0p´1q`

`

i
`

˘

pi´ `qS
)

, where the bracketed term is the Stirling number of the

second kind.

As an illustration, consider the case when S “ 3. The possible treatment effect models are

shown in Table 3.1, where γp`,dq is the dth distinct treatment effect for model M`, d “ 1, . . . , D`,

` “ 1, . . . , L. Let Ω`,d be the set of region labels corresponding to the regions that have the dth

distinct treatment effect for model M`, and let γp`q be the D` ˆ 1 vector of distinct treatment effects

for model M`. For model M1 in the example when S “ 3, we assume that all three regions share

a common treatment effect γp1,1q, and thus D1 “ 1, Ω1,1 “ t1, 2, 3u, and γp1q “ γp1,1q. For

model M5, we assume that each of three regions has a distinct treatment effect, and thus D5 “ 3,

Ω5,1 “ t1u, Ω5,2 “ t2u, Ω5,3 “ t3u, and γp5q “ pγp5,1q, γp5,2q, γp5,3qq1.

For the `th model, define the pS ` D` ` pq ˆ 1 vector θp`q “ pµ1,γ 1p`q,β
1q1, and letWp`q be

the corresponding design matrix. We write model M` as Y “Wp`qθp`q ` ε. Conditional on model

M`, we write the priors for θp`q and τ as ppθp`q, τ |M`q “ ppθp`q|τ,M`qppτ |M`q, θp`q|τ,M` „

NS`D``ppmp`q, τ
´1Σp`qq, τ |M` „ gamma

`

δ0
2
, ν0

2

˘

, wheremp`q is a pD` ` S ` pq ˆ 1 vector and

Σp`q is a pD``S` pqˆ pD``S` pq matrix. The hyperparameters
`

mp`q,Σp`q, δ0, ν0

˘

are elicited.

For the prior on τ |M`, we use the inverse-scale parameterization of the gamma distribution such

that Epτ |M`q “
δ0
ν0

.

Let Sppb,m,Σq denote a p-dimensional t distribution with b degrees of freedom, location

vectorm, and dispersion matrix Σ, and let D be the observed data for all subjects across both

treatment groups and all S regions. The marginal posterior distribution of θp`q, conditional on

Table 3.1: Possible treatment effect models for S “ 3 regions.

—– Region —– Distinct
i “ 1 i “ 2 i “ 3 Effects Model
γp1,1q γp1,1q γp1,1q 1 M1

γp2,1q γp2,1q γp2,2q 2 M2

γp3,1q γp3,2q γp3,1q 2 M3

γp4,1q γp4,2q γp4,2q 2 M4

γp5,1q γp5,2q γp5,3q 3 M5
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pM`,Dq, can be expressed as

θp`q|M`,D „ SD``S`p

ˆ

N ` δ0, θ̃p`q, s̃
2
p`q

´

W 1
p`qWp`q `Σ´1

p`q

¯´1
˙

, ` “ 1, . . . , L, (3.1)

where

θ̃p`q “ Λp`qmp`q `
`

IpD``S`pq ´Λp`q

˘

θ̂p`q,

Λp`q “

´

W 1
p`qWp`q `Σ´1

p`q

¯´1

Σ´1
p`q ,

θ̂p`q “
`

W 1
p`qWp`q

˘´1
W 1
p`qY ,

s̃2
p`q “ pN ` δ0q

´1
!

Y 1
pIN ´MW qY ` pθ̂p`q ´mp`qq

1
pΛ1

p`qW
1
p`qWp`qqpθ̂p`q ´mp`qq ` ν0

)

,

MW “Wp`q

`

W 1
p`qWp`q

˘´1
W 1
p`q.

For arbitrary x, we approximate P pγi ą x|M`,Dq via Monte Carlo integration.

3.3.2 Application of BMA

The marginal likelihood for the data conditional on model M` is written as

ppD|M`q “

#

Γ

ˆ

N ` δ0

2

˙

Γ

ˆ

δ0

2

˙´1

pπν0q
´N

2 |IN `Wp`qΣp`qW
1
p`q|

´ 1
2

+

ˆ

"

1`
1

ν0

`

Y ´Wp`qmp`q

˘1 `

IN `Wp`qΣp`qW
1
p`q

˘´1 `
Y ´Wp`qmp`q

˘

*´
N`δ0

2

,

and we define ppM`q to be the prior model probability of M`, ` “ 1, . . . , L. Using Bayes’ theo-

rem, the posterior model probability (PMP) for M` is

ppM`|Dq “
ppD|M`qppM`q

řL
`1“1 ppD|M`1qppM`1q

. (3.2)
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Using the PMPs as weights, the model-averaged posterior ppθ|Dq is obtained as

ppθ|Dq “
L
ÿ

`“1

ppθp`q|M`,DqppM`|Dq. (3.3)

3.3.3 Prior Elicitation

Based on simulation studies, we recommend setting the diagonals of Σp`q to Diagtp10 ˆ

|ψp`q|q
2u, where ψp`q is a vector of the best predictions for the corresponding parameters of in-

terest. For diagonals corresponding to µ, ψp`q would be the best prediction for the control group

means within each region. For diagonals corresponding to γp`q, ψp`q would be the best prediction

for the mean difference between the treatment group and control group.

For the prior model probability, we recommend ppM`q 9 Dα0
` , where α0 is a tuning parame-

ter set by the investigator. The choice of α0 “ 0 results in the uniform model prior in which all

models in MS are weighted equally a priori. Increasing values of α0 place greater prior weight

on models with a higher number of distinct treatment effects. We discuss sensitivity of analyses

to the choices of ψp`q and α0 in Section 3.5 with the use of simulation studies.

3.3.4 Assessing Consistency of Treatment Effects

The ICH E17 guideline (ICH, 2017) defines consistency of the treatment effect as a lack of

clinically relevant differences between treatment effects in different regions of an MRCT. In this

section, we introduce approaches for quantifying consistency of treatment effects overall (i.e.,

globally), between regions (i.e., pairwise), and between a region and all other regions (i.e., local).

3.3.4.1 Pairwise and Global Consistency

We refer to the ICH E17 definition as pairwise consistency for pairwise comparisons of

regions and global consistency if comparing all regions. For each comparison, we propose an

approach to assess the strength of evidence in favor of consistency at the ε level, where ε is the

minimal clinically important regional difference (MCIRD). We assume that any two treatment
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effects are consistent if their difference is less than ε. For any two regions i and j, we define

the ε-level pairwise consistency probability as P p|γi ´ γj| ă ε|Dq “
řL
`“1 P p|γi ´ γj| ă

ε|M`,DqppM`|Dq. Similarly, we can define the ε-level pairwise inconsistency probability as

P p|γi ´ γj| ą ε|Dq.

To assess global consistency at the ε level, we define an approach that utilizes PMPs and

ε-level pairwise inconsistency probabilities. For some prespecified probability β˚, we evaluate

whether P p|γi ´ γj| ą ε|Dq ą β˚ for all pairwise comparisons. If this holds true for some regions

i and j, then we consider this to be sufficient evidence that the treatment effects for regions i

and j differ by more than the MCIRD (i.e., evidence in support of pairwise inconsistency). We

then consider all models that allow the ith and jth regions to differ. Let Θ be the set of labels for

the models where at least one pair of distinct treatment effects meets the criterion for having an

MCIRD. We note that evidence for pairwise inconsistency for one or more pairs of regions is

also evidence for global inconsistency. Hence, all models not in Θ support the claim of global

consistency, and thus, we calculate the probability for ε-level global consistency as

1´
ÿ

`PΘ

ppM`|Dq. (3.4)

We note that this probability increases as the pairwise inconsistency threshold β˚ increases,

whereas small values of β˚ allow for greater tolerance of inconsistency. A value of β˚ “ 0.5

provides balance between the tolerance of consistency and inconsistency. We also note that in the

case of “exact” global consistency (i.e., ε “ 0), the probability in (3.4) equals the PMP for the

model that assumes all regions share one distinct treatment effect.

3.3.4.2 Local Consistency

Some regulatory authorities require sponsors to provide evidence that the global treatment

effect can be bridged to a local region-specific treatment effect. In this paper, we refer to this def-

inition of consistency as local consistency. The Japanese MHLW (MHLW, 2007) addressed the
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assessment of local consistency by proposing two methods in a guideline for MRCTs. Method

1 requires that a sufficient number of patients from a given region should be enrolled such that

the treatment effect for that region, denoted by γreg, is at least half of the global treatment effect,

denoted by γall, with probability at least 0.8; i.e., P pγreg{γall ą πq ě 1 ´ β, where π ě 0.5 and

1´ β ě 0.8. Method 2 asserts that consistency can be assumed if γi ą 0 for all i “ 1, . . . , S. Quan

et al. (2010a) describe the limitations of these guidelines and instead combine the two methods,

proposing that each region-specific treatment effect should exceed some proportion of the global

treatment effect; i.e., γ1 ą πγall, γ2 ą πγall, . . . , γS ą πγall. This guideline essentially extends

Method 1 to all regions, and setting π “ 0 results in Method 2 of the MHLW guideline. Quan

et al. (2014) argue that the choice of π ě 0.5 for each region is not practical in cases with five or

more regions, and they recommend choosing the value of π based on the number of regions. One

suggestion offered is to set π proportional to the reciprocal of the number of regions. Teng et al.

(2017) propose guidelines for choosing the value of π and additional consistency assessment

parameters where the values vary according to the number of planned regions. In the simulation

studies in Section 3.5, we follow the guideline of Quan et al. (2014) by setting π “ 1{S.

One criticism of the methods proposed by the MHLW and Quan et al. (2010a) is that the

global treatment effect includes the region of interest to which it is being compared. A second

drawback is that the ratio is difficult to interpret if either the region-specific treatment effect

or global treatment effect is negative. We instead propose calculating P p|γi ´ γp´iq| ă ε|Dq,

i “ 1, . . . , S, where ε is the MCIRD and γp´iq is the global treatment effect, as defined in Section

3.4, calculated without the ith region. We refer to this as the leave-one-out global treatment

effect. We note that the global treatment effect may not correspond to any region, particularly

in scenarios with heterogeneous treatment effects. In these cases, comparing the region-specific

treatment effects to the global treatment effect is not ideal, and the previously described metrics

for global and pairwise consistency may provide more practical interpretations.
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3.4 Hypothesis Testing

The proposed BMA method allows for simultaneous quantification of evidence of region-

specific treatment benefit and global treatment benefit within the same analysis. First, we outline

the hypotheses for each region-specific treatment effect, and then we define a statistic to estimate

the global treatment effect.

For i “ 1, . . . , S, consider the hypotheses H0 : γi ď γ0 versus H1 : γi ą γ0 where

γ0 is a prespecified real value. For arbitrary x, we use (3.3) to calculate posterior probabilities

as P pγi ą x|Dq “
řL
`“1 P pγi ą x|M`,DqppM`|Dq, which can be used for inference for the

ith region-specific treatment effect. For some prespecified threshold probability π0, we have

substantial evidence in favor of the alternative hypothesis if P pγi ą γ0|Dq ą π0. An example

choice for π0 could be π0 “ 1 ´ α, where α is the one-sided significance level in a frequentist

analysis.

Under model M`, we define the global treatment effect conditional on pM`,Dq to be

γG,`|M`,D “
D
ÿ̀

d“1

ωp`,dqγp`,dq, (3.5)

where ωp`,dq is a weight corresponding to γp`,dq, d “ 1, . . . , D`, and
řD`
d“1 ωp`,dq “ 1. We set

ωp`,dq “
np`,dq
N

, where np`,dq “
ř

iPΩ`,d
ni, d “ 1, . . . , D` (i.e., np`,dq is the combined sample size of

all regions that share the dth distinct treatment effect under M`). Using BMA, we then calculate

the posterior global treatment effect as ppγG|Dq “
řL
`“1 ppγG,`|M`,DqppM`|Dq.

Consider the hypotheses H0 : γG ď γ0 versus H1 : γG ą γ0. With the conditional pos-

terior distribution of γp`,dq|M`,D from (3.1) and the global treatment effect function defined in

(3.5), we can obtain the posterior distribution of γG,`|M`,D using Monte Carlo methods. For ar-

bitrary x, we calculate posterior probabilities on the global treatment effect as P pγG ą x|Dq “
řL
`“1 P pγG,` ą x|M`,DqppM`|Dq. If P pγG ą γ0|Dq ą π0, we conclude that we have substantial

evidence in favor of the alternative hypothesis.
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3.5 Simulation Studies

We compare the proposed BMA method to a fixed effects linear model (FELM) and a BHM

via simulation studies. To calculate the global treatment effect for the FELM, we fit a model with

a common treatment effect for all regions combined. For the BHM, we fit a model that allows for

region-specific treatment effects with shrinkage towards an overall average effect. We compare

the proposed global treatment effect from the BMA method to the global treatment effect from

the FELM and to the overall fixed effect from the BHM. For the comparison of region-specific

effects, we construct a second FELM with region-specific treatment effects. These treatment

effects from the second FELM are compared to the region-specific effects from the BMA ap-

proach and the random region-specific treatment effects from the BHM. Full details on the model

specification for the FELM and the BHM are discussed in Section A.1 of Appendix A.

When comparing both the global treatment effects and the region-specific treatment effects,

we calculate the rejection rates of the null hypotheses discussed in Section 3.4 using simulation

studies. For the region-specific treatment effects, we group the regions with a treatment effect

(i.e., the alternative regions) and calculate the true positive rate (TPR), and we group the regions

without a treatment effect (i.e., the null regions) and calculate the false positive rate (FPR).

The simulation studies are motivated by the COPD trial (NIH, 2014) detailed in Section 3.2.

The FF/VI arm had a least squares mean change from baseline and standard deviation of 0.116

L and 0.204 L, respectively, with a sample size of 759, and the VI arm had a least squares mean

and standard deviation of 0.082 L and 0.205 L, respectively, with a sample size of 749. In the

simulation studies, we refer to the FF/VI arm as the treatment group and the VI arm as the control

group. For each simulated dataset, we generated N “ 1508 observations with 1:1 treatment

allocation, and we set the treatment group mean to 0.116 L and the control group mean to 0.082

L (i.e., mean difference of 0.034 L). We assumed a common standard deviation of 0.205 L for the

primary outcome of each group.
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The BMA prior elicitation for the primary simulation studies reflects the realistic case when

investigators rely on parameter predictions that differ from underlying “true” values. For ele-

ments ofmp`q and diagonals of Σp`q that correspond to region-specific treatment effects γp`q, we

specified values of 0 and p10 ˆ 0.04q2 L, respectively, where 0.04 L is the assumed mean dif-

ference from the original study’s sample size calculations (18% increase from the assumed true

value of 0.034). We choose a value of 0.1 L for the region-specific control means, which is an

increase from the true value by a similar factor (22% increase). Thus, we set values of 0.10 L and

p10ˆ 0.10q2 L for the elements ofmp`q and the diagonals of Σp`q that correspond to region-specific

intercepts µ. Assuming uniform prior model probabilities, we set α0 “ 0, and we set γ0 “ 0 and

π0 “ 0.975 for both the region-specific and global hypotheses in Section 3.4.

3.5.1 Simulation Results

3.5.1.1 Equal Regional Sample Sizes

In each simulation study, we set the number of regions to S “ 5 and use the total sample

size of N “ 1508. We first consider the case of equal regional sample sizes, and we look at six

scenarios that differ in the number of null regions. For one extreme, all five regions are specified

as alternative regions, in which each has an underlying mean difference of 0.034 L. The opposite

extreme considers five null regions, none of which have a true underlying mean difference. For

each scenario, we generated 10,000 datasets and calculated the global and regional null hypothe-

sis rejection rates for each model. Both FELMs and the BHM were fit using the rjags package

(Plummer et al., 2022) in R. The rejection rates and relative MSE (FELM used as the reference

method) are shown in Figure 3.1, and estimates of bias are reported in Section A.2 of Appendix

A where positive bias indicates overestimation.

The BMA global test resulted in a similar global rejection rate as the FELM and the BHM

in each scenario (see Panel A of Figure 3.1). Although the BHM had a higher TPR than the

BMA approach and the FELM in most scenarios when testing region-specific treatment effects

in alternative regions, it also had a much higher FPR when testing the effects in null regions for
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Figure 3.1: Global rejection rates (Panel A), true positive rates for alternative regions (Panel B),
false positive rates for null regions (Panel C), relative MSE (FELM as reference) for alternative
regions (Panel D), and relative MSE for null regions (Panel E) for simulations with equal
regional sample sizes. Alternative regions have a treatment effect of 0.034 L.

all scenarios that included at least one alternative region (see Panels B and C of Figure 3.1). The

BMA approach resulted in a greater TPR than the FELM for the region-specific tests for the

0- and 1-null-regions scenarios, with the tradeoff of having a slightly greater FPR in the 1- and

2-null-regions scenarios.

Compared to the FELM, the BMA approach provides appreciable reduction in MSE, result-

ing in a lower MSE than the FELM in each scenario. For both null and alternative regions, the

MSE of the FELM estimates is the highest in four of the six scenarios (see Panels D and E of

Figure 3.1). The BHM had the lowest MSE for alternative-region estimates in cases with more al-

ternative regions than null regions and for null-region estimates in cases with a greater number of

null regions. Additionally, the BMA approach resulted in the lowest MSE for alternative-region

estimates in scenarios with a greater number of null regions than alternative and for null-region

estimates in scenarios with a greater number of alternative regions than null. The FELM had

minimal bias in all scenarios with a mix of null and alternative regions, and the BHM had the

highest bias in these same scenarios. In the cases of only null regions and only alternative regions,

the BMA approach resulted in the most-biased estimates. A common theme for both the BMA
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approach and the BHM is an increase in bias for the alternative-region estimates as the number

of alternative regions decreases. This increase in bias is more drastic with the BHM, where the

increase in bias is often more than double the increase for the BMA approach between each sce-

nario. These same trends are observed with the bias in null regions as the number of null regions

decreases. The results of this simulation study highlight the strengths of the BMA approach over

other models with its improved estimation quality of region-specific treatment effects while main-

taining reasonable control over the FPR.

3.5.1.2 Behavior of Proposed Global Consistency Approach

We compute the ε-level global consistency probability defined in (3.4) by varying the value

of ε between 0 and 0.07, and we consider two values of β˚ to reflect the scenario with equal

balance between consistency and inconsistency (β˚ “ 0.5) and a scenario with lower tolerance

of inconsistency (β˚ “ 0.8). We also illustrate the proposed approach for total sample sizes of

N P t754, 1508, 7650u, where N “ 754 is half the sample size of the COPD trial, and N “ 7650

was chosen as a hypothetical case when each regional sample size is powered to achieve 90%

power to detect a mean difference of 0.034 L with a standard deviation of 0.205 L and one-sided

α “ 0.025. The results are shown in Figure 3.2. As the sample size increases, this approach has

a greater ability to discern inconsistencies between region-specific treatment effects, which is

seen in the increased separation of lines between the cases simulated under global consistency

(0- and 5-null-regions scenarios) and all other cases. A higher value of β˚ results in an increased

probability of consistency across all scenarios, even in cases with a mix of alternative and null

regions. While there is no correct choice for β˚, we recommend β˚ “ 0.5 if investigators believe

that heterogeneous treatment effects across regions is plausible.

3.5.1.3 Measures of Consistency for First Simulation Study

In the context of COPD, one proposed minimal clinically important difference is a change

of 100 mL in pre-dose FEV1 (Donohue, 2005), which corresponds to a treatment group mean
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Figure 3.2: Average ε-level global consistency probabilities for varying values of ε, β˚, and N .
We compare β˚ “ 0.5 (top row) vs. β˚ “ 0.8 (bottom row) across three different sample sizes:
N “ 754 (left column), N “ 1508 (middle column), and N “ 7650 (right column).

of 0.100 L and a mean difference of 0.018 L. We assume this mean difference to be the MCIRD

in our simulation studies. With N “ 1508 and β˚ “ 0.5, we estimate the average 0.018-level

global consistency probability to be approximately 0.50 in the 0- and 5-null-regions scenarios,

0.33 in the 1- and 4-null-regions scenarios, and 0.26 for the 2- and 3-null-regions scenarios. For

β˚ “ 0.8, the average probabilities for these three scenario groups increase to approximately

0.88, 0.73, and 0.65. We calculated all ε-level pairwise consistency probabilities for each dataset

with ε “ 0.018, and we report the average probabilities for each pairwise comparison of regions

in Section A.2 of Appendix A.

To assess local consistency for the ith region under the six scenarios, i “ 1, . . . , S, we

calculated both P pγi{γG ą π|Dq and P p|γi ´ γp´iq| ă ε|Dq for each dataset with π “ 0.2 (i.e., the

reciprocal of the number of regions) and ε “ 0.018. The region-specific median probabilities of

the 10,000 datasets are presented in Table 3.2. For the 5-null-regions scenario, the ratio measure

resulted in median probabilities that are approximately 0.23 lower than the results for the 0-null-

regions scenario, whereas the medians for the leave-one-out absolute difference approach are
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Table 3.2: Median probabilities of local consistency measures where π “ 0.20 and ε “ 0.018.

Number P pγi{γG ą π|Dq P p|γi ´ γpiq| ă ε|Dq
of Null —— Region —— —— Region ——
Regions 1 2 3 4 5 1 2 3 4 5

0 0.942 0.940 0.941 0.943 0.942 0.562 0.560 0.562 0.562 0.564
1 0.689 0.921 0.919 0.919 0.920 0.446 0.525 0.527 0.529 0.528
2 0.668 0.666 0.886 0.885 0.886 0.468 0.471 0.491 0.494 0.494
3 0.674 0.673 0.676 0.830 0.834 0.494 0.492 0.493 0.466 0.465
4 0.693 0.698 0.698 0.696 0.757 0.525 0.525 0.525 0.526 0.438
5 0.720 0.718 0.719 0.721 0.719 0.559 0.560 0.559 0.559 0.558

Null regions shaded; Treatment effect for alternative regions is 0.034

approximately the same for these two scenarios with underlying consistency across all regions.

We also note that in the ideal case when every region has the same effect and γG|D is perfectly

estimated to be 0.034, there are values of γi|D less than the proposed MCIRD that would satisfy

the criterion γi{γG ą π, even when using the MHLW’s minimal requirement of π “ 0.5. The

MHLW method would still classify these region-specific treatment effects as consistent with

the global effect, whereas the proposed method makes this classification only if the differences

between the estimates is not clinically meaningful.

3.5.1.4 Unequal Regional Sample Sizes

For the second and third simulation studies, we varied the regional sample sizes based on the

number of null regions in each scenario. In the second simulation study, we set the regional sam-

ple sizes of the null regions equal to half of the sample sizes of the alternative regions. We then

set the alternative regional sample sizes to half the size of the null regions for the third simula-

tion study. The rejection rates, relative MSE, and bias for the second and third simulation studies

are presented in Section A.2 of Appendix A. Relative to the first simulation study, the BMA ap-

proach is more robust to changes in regional sample sizes than the BHM. We observe the same

patterns in the rejection rates and relative MSE when using the BMA approach for the second

and third simulation studies compared to the first study, whereas we observe greater changes in

the relative MSE with the BHM across simulation studies. For the scenarios with a mix of null
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and alternative regions, the average 0.018-level global consistency probabilities with β˚ “ 0.5

ranged as low as 0.22 in the second simulation study (3-null-regions case) and 0.25 in the third

simulation study (2-null-regions case).

3.5.1.5 Heterogeneous Positive Treatment Effects

In the fourth simulation study, we compare the models in three scenarios where each region

has a positive treatment effect with differing magnitudes and equal regional sample sizes. For

the first scenario, we choose the underlying region-specific effects of the five regions by mul-

tiplying 0.034 L by 0.50, 0.75, 1.00, 1.25, and 1.50. For the second scenario, we choose two

region-specific effects to be 0.034 while setting the effects of the other three regions as half of

0.034. For the third scenario, we choose one region-specific effect to be half of 0.034, two to be

0.034, and two to be 1.5 times 0.034. The results are shown in Figure 3.3. The BHM results in

the highest TPR in each region with the FELM having the lowest TPR. The MSE for both the

BMA approach and the BHM is much less than the MSE for the FELM, with the most substantial

differences being observed for regions with treatment effects closest to the average effect. For

β˚ “ 0.5, the average 0.018-level global consistency probabilities for the three scenarios are 0.37,

0.42, and 0.35, respectively.

3.5.2 Sensitivity Analysis

For the BMA prior elicitation in all simulation studies previously described, we chose values

of hyperparameters that differ from the underlying “true” values. To further assess robustness of

the proposed methods to the elicited priors, we repeated the first simulation study using several

incorrect predictions for the assumed region-specific control mean and the mean difference used

in the prior elicitation ofmp`q and Σp`q. The results are included in Section A.3 of Appendix A.

For both the region-specific control mean and the mean difference, we considered cases when the

assumed values are both half and double the true values used to generate the data, and we also

represent the ideal case when these values are perfectly predicted. The BMA rejection rate for the
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Figure 3.3: Global and regional rejection rates (left column) and relative MSE with the FELM as
the reference method (right column) for simulations with equal regional sample size allocation
and varying positive treatment effects across regions. We consider cases with five distinct effects
ranging between 0.017 and 0.051 (top row), two distinct effects of 0.017 and 0.034 (middle row),
and three distinct effects ranging between 0.017 and 0.051 (bottom row).

global test increased slightly when assuming the region-specific control mean to be half of the

correct value, and the FPR under the 5-null-regions case increased by approximately 1 percentage

point. When assuming the mean difference to be half of the correct value, the rejection rates

decreased by 1-6 percentage points across the different scenarios. The rejection rates for all other

incorrect predictions had only marginal changes from the primary simulation study, and the MSE

remained substantially lower for the BMA approach compared to the FELM in each case. These

results illustrate the robustness of using the BMA approach.

We performed a sensitivity analysis on the value of α0 in the recommended prior model prob-

ability ppM`q 9 Dα0
` , and the results are included in Section A.3 of Appendix A. To understand

the influence of α0 on the rejection rates, we repeated the first simulation study while considering
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values of α0 P t˘2,˘4,˘10u. Note that as α0 increases, more weight is placed on models with

a higher number of distinct region-specific treatment effects, thus favoring heterogeneous treat-

ment effect models and reducing the amount of information borrowing. As expected, the global

rejection rates across all six scenarios decrease as α0 increases to account for less information

borrowing, however, these decreases are marginal. Negative values of α0, which favor models

with fewer distinct treatment effects, allow for more information borrowing, resulting in increases

in both TPR and FPR. On balance, we recommend α0 ď 0, with α0 “ 0 serving as a default

choice.

3.6 Discussion

The proposed BMA design is motivated by the assumption that some regions in MRCTs may

have similar treatment effects while recognizing that the treatment effects for other regions may

differ. Compared to fixed effects models, the BMA approach results in substantially lower MSE

when estimating region-specific effects while maintaining similar global rejection rates.

Both the BMA approach and the BHM incorporate information borrowing across regions,

and an increase in TPR is associated with an increase in FPR. In most scenarios tested, this in-

crease in FPR is minimal for the BMA approach compared to the BHM, which induces shrinkage

towards the overall average mean and substantially inflates type I error rates for regions without a

treatment effect (e.g., see Panel C of Figure 3.1). Hence, we recommend the BMA approach with

α0 “ 0 if it is plausible (in the opinion of stakeholders) that the investigational treatment may

exhibit the desired level of efficacy for some regions while having no or minimal effect for others.

In circumstances where such extreme levels of heterogeneity are not plausible, taking α0 ă 0 will

permit more information borrowing and greater efficiency gains in terms of MSE.

The BMA approach characterizes both a global treatment effect and region-specific effects,

and its ability to probabilistically classify regions into sets with common effects via PMPs makes

possible the use of innovative approaches for assessing global, local, and pairwise consistency of

treatment effects. Unlike most existing methods for consistency assessment, these novel methods
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ward against dichotomized thinking regarding whether consistency exists by focusing on quan-

tifying the strength of evidence in favor of consistency rather than using an underpowered or ad

hoc hypothesis testing approach.

We note that all methods produced the same degree of power for the overall treatment effect

in each of the simulation scenarios. Hence, investigators can use traditional methods for sample

size calculations and preserve the overall power with the use of BMA, and they can use simula-

tions to further understand power for a given case. Nonetheless, after data are collected from an

MRCT, the BMA approach should still be used to provide better estimation of region-specific

treatment effects.

The marginal likelihood of the data and the marginal posterior distributions for the region-

specific treatment effects have closed forms for the continuous-outcome situation described in

this paper, allowing for quick and efficient computations. With S “ 5 regions, L “ 52 models

in the model space, and S ` 1 scenarios with a combined total of 60,000 datasets per simulation

study, all simulation studies were easily conducted using the Longleaf high-performance com-

puting cluster at the University of North Carolina at Chapel Hill. For a single dataset, the BMA

approach is easily executable on a computer using only a single core.

Conceptually, the proposed methodology for BMA can easily be extended to trials with non-

Gaussian endpoints, however, these scenarios present a much harder computational problem.

Without closed forms for the posterior distributions and marginal likelihoods, we must rely on

approximation or Markov chain Monte Carlo methods when estimating PMPs and when sam-

pling the region-specific treatment effects for each model. This is a topic for future research that

would vastly increase the applicability of the BMA approach to MRCTs with different types of

endpoints.
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CHAPTER 4: BAYESIAN MODEL AVERAGING FOR MULTI-REGIONAL
CLINICAL TRIALS WITH A TIME-TO-EVENT ENDPOINT

4.1 Introduction

Multi-regional clinical trials (MRCTs), or trials with multiple geographic regions included

in the same study protocol, have become increasingly popular in the pharmaceutical industry due

to their ability to allow sponsors to seek approval for investigational treatments from regulatory

authorities for multiple geographic regions. Among all registered clinical trials conducted by the

top ten pharmaceutical companies between the years 2008 and 2017 (the companies being ranked

according to prescription sales in 2016), the proportion of trials that were MRCTs increased over

time in each phase type, with the majority of phase II and phase III trials being MRCTs (Song

et al., 2019). The increased reliance on MRCTs prompted the publication of the International

Council for Harmonisation (ICH) E17 guidelines for the planning and design of MRCTs in 2017

(ICH, 2017), which encourage the estimation of region-specific treatment effects in addition to

the overall treatment effect.

Two major objectives of MRCTS are (1) to make inference on the overall treatment effect of

an investigational treatment (referred to as the global treatment effect in the remainder of the pa-

per), and (2) to estimate the region-specific treatment effects as part of subgroup analyses. With

the increased popularity of MRCTs, greater research interest has been placed in assessing consis-

tency of the treatment effect, or quantifying the degree of heterogeneity between region-specific

treatment effects and the global treatment effect. The Japanese Ministry of Health, Labour and

Welfare (MHLW) issued a guidance document describing two methods to determine the number

of subjects needed in a trial to establish consistency between the Japan-specific treatment effect

and the global treatment effect (MHLW, 2007), and adaptions of these guidelines have been ex-
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tended for time-to-event (TTE) outcomes (Hayashi and Itoh, 2017; Huang et al., 2012; Ko, 2020;

Quan et al., 2010b).

Data from MRCTs with TTE endpoints are commonly analyzed using the Cox proportional

hazards model (Cox, 1972). The proportional hazards model can be formulated as a fixed effects

model or a random effects model, in which the random effects are often referred to as “frailties”

in survival analysis. When used for MRCTs, fixed effects models typically estimate only a global

treatment effect in the primary analysis, ignoring regional differences that may result from intrin-

sic or extrinsic factors that vary across regions. If region-specific treatment effects are estimated,

they are often done so as part of exploratory analyses and with the use of under-powered region-

by-treatment interactions. Random effects models can estimate both a global treatment effect and

region-specific effects if regions are considered to be a random sample from a larger population,

however, this assumption may not be realistic depending on how geographical regions are defined

in the study protocol. Additionally, if interest lies in assessing between-region heterogeneity, the

region-level variation may be poorly estimated if the number of regions is small (Gelman and

Hill, 2006).

The ICH E17 guidelines suggest the use of methods that allow for information borrowing

across regions when regional sample sizes are small. For MRCTs with a TTE endpoint, we pro-

pose a method that naturally estimates region-specific treatment effects in addition to a global

treatment effect, and the estimation quality of these effects is improved using information bor-

rowing across regions. Specifically, we consider all possible partitions of the regions into sets

where regions within a set share a common treatment effect. For each partition, we fit a model

and estimate the distinct treatment effects for each set, and we then average posterior summaries

from all of these models using Bayesian model averaging (BMA) (Hoeting et al., 1999). Unlike

traditional models that calculate only the global treatment effect, this approach accounts for re-

gional heterogeneity in the treatment effects while also mitigating the possibility of obtaining

poor estimates for the region-specific treatment effects.
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While BMA has often been used for variable subset selection (Hoeting et al., 1999), the

idea of partitioning subgroups in clinical trials and then applying BMA to the corresponding

models was first proposed by Psioda et al. (2021) as a method for estimating basket-specific re-

sponse rates in oncology basket trials. Bean et al. (2021) extended the application to MRCTs

with continuous endpoints while allowing for the inclusion of covariates. In both cases, estimates

of region-specific treatment effects for each model can be directly sampled from closed-form

posterior distributions. We further extend this methodology to TTE endpoints, and we develop

a computationally efficient algorithm to obtain accurate approximations of posterior estimates

using Laplace’s method. Compared to standard statistical methods such as fixed effects models,

this novel approach incorporates recommended guidelines from ICH E17—namely the estima-

tion of both region-specific and global treatment effects in the primary analysis and the use of

information borrowing methods—to greatly improve estimation quality of region-specific effects.

Random effects models that use the hierarchical mean parameter as the global effect typically

achieve low MSE when estimating region-specific effects at the cost of drastically decreasing the

global rejection rate, whereas the BMA approach results in similar global rejection rates as fixed

effects models.

The rest of this paper is organized as follows. Section 4.2 introduces a high-profile cardio-

vascular outcomes MRCT to highlight the shortcomings of commonly used statistical methods.

In Section 4.3, we discuss the methodology of the proposed BMA approach, and we compare

it to current methods using simulation studies in Section 4.4 to show how this approach results

in similar global rejection rates while improving estimation quality of region-specific treatment

effects. In Section 4.5, we use the proposed methodology to conduct a post hoc analysis of data

from the MRCT discussed in Section 4.2, and we close with discussion in Section 4.6.

4.2 Motivating Example

The shortcomings of using standard statistical methods to analyze data from MRCTs are il-

lustrated in the Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome
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Results (LEADER) trial (Marso et al., 2016). In compliance with recently published guidelines

from the U.S. Food and Drug Administration (FDA) for evaluating the cardiovascular safety of

anti-diabetic medications (FDA, 2008), the study was designed with the primary objective of

assessing the long-term effects of the treatment liraglutide versus placebo on the incidence of

major adverse cardiovascular events (MACE), where the primary composite outcome in the TTE

analysis is defined as time from randomization to first occurrence of a MACE. A hierarchical test-

ing strategy was implemented to first test the primary hypothesis that liraglutide is non-inferior

to placebo with regard to the primary outcome, and then superiority was subsequently tested. Ac-

cording to the FDA guidelines (FDA, 2008), non-inferiority is established if the upper boundary

of the 95% confidence interval for the hazard ratio comparing to placebo is less than 1.30, and

superiority is established if this upper boundary is below 1.00.

A total of 9340 patients were enrolled in the trial across 32 countries, and patients were

assigned to either liraglutide or placebo. Significantly fewer patients in the liraglutide arm expe-

rienced the primary outcome compared to patients in the placebo arm (hazard ratio of 0.87; 95%

confidence interval of 0.78–0.97), supporting the hypothesis that liraglutide results in a lower

MACE incidence rate than placebo; however, the findings were not consistent when data were an-

alyzed by geographical region as part of exploratory subgroup analyses. Of the four geographical

regions analyzed, the North America region had an estimated hazard ratio favoring placebo (esti-

mate = 1.01) while the three other regions (Asia, Europe, Rest of the World) had point estimates

favoring liraglutide (i.e., less than 1.00).

All members of the Endocrinologic and Metabolic Drugs Advisory Committee agreed that

the trial results supported the conclusion that liraglutide does not increase cardiovascular risk

to patients with type 2 diabetes, but the regional subgroup analysis for North America raised

concerns regarding liraglutide’s ability to decrease cardiovascular risk in patients with type 2

diabetes for that group (Nielsen et al., 2021). In June 2017, the advisory committee voted 17-2

in support of the claim that liraglutide reduces the risk for myocardial infarction, stroke, and car-

diovascular death in adults with type 2 diabetes mellitus, and the FDA followed these recommen-
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dations to approve a new indication for liraglutide. Additional post hoc analyses later provided

support for this decision by suggesting that discrepancies in the estimated region-specific hazard

ratios may be due to decreased drug exposure or chance rather than differences in intrinsic and

extrinsic factors (Nielsen et al., 2021).

We note that the LEADER trial was completed with published results in 2016 prior to the

publication of ICH E17, and both the trial design and statistical analyses methods are standard for

cardiovascular outcome MRCTs. Yusuf and Wittes (2016) detail additional examples of MRCTs,

including four cardiovascular outcomes trials, where results vary across regions. Considering

trial-specific explanations for these differences, they conclude that most variations in regional

results are likely due to chance. The challenge posed by random extremes in region-specific

treatment effect estimates can largely be overcome in MRCTs using information borrowing

methods, which in turn can provide evidence in support of bridging a beneficial global effect of

an investigational treatment to each region.

4.3 Model

4.3.1 Piecewise Constant Hazard Model for Time-to-Event Outcomes

Consider an MRCT comparing two treatments with S regions and a total sample size N , and

let ni be the number of patients in the ith region where
řS
i“1 ni “ N . Let Tij be the true survival

time and Cij the potential censoring time for the jth subject in the ith region, and we observe

yij “ minpTij, Cijq and νij “ 1pTij ă Cijq, where 1p¨q is the indicator function. Define the N ˆ 1

vectors Y “ pyijq
1 and ν “ pνijq1, and letW be the N ˆ pS ` pq design matrix where the first

S columns correspond to region-specific treatment indicators and the last p columns are optional

baseline covariates. We denote the observed data by D “ tY ,ν,W u.

We construct a finite partition of the time axis, m0 ă m1 ă m2 ă . . . ă mK , with m0 ” 0

and mK ą maxpyijq, i “ 1, . . . , S, j “ 1, . . . , ni, creating K intervals p0,m1s, pm1,m2s, . . . , pmK´1,mKs.

In the kth interval, we assume a separate constant baseline hazard h0pyijq “ λik for each region

where yij P pmk´1,mks, and we let λ “ pλikq1.

40



For the parameters of interest, we define an S ˆ 1 vector of region-specific treatment effects

as γ “ pγ1, . . . , γSq
1 where γi is the treatment effect (i.e., log of the hazard ratio) for the ith

region. We let β be the pˆ 1 vector of covariate effects, θ “ pγ 1,β1q1, and ξ “ tλ,θu. Using the

formulation of Ibrahim et al. (2001), we write the likelihood for ξ as

Lpξ|Dq “
S
ź

i“1

ni
ź

j“1

K
ź

k“1

«

 

λik exp
`

w1ijθ
˘(δijkνij

ˆ exp

˜

´δijk

#

λikpyij ´mk´1q `

k´1
ÿ

g“1

λigpmg ´mg´1q

+

exp
`

w1ijθ
˘

¸ff

,

where wij is the row ofW corresponding to the jth subject in the ith region, and δijk “ 1 if the

subject had an event or was censored in the kth interval and 0 otherwise.

4.3.2 Definition of the Model Space and Classification of Region-Specific Treatment Effects

We define a model space that considers all partitions of regions, and we note the similarities

of this approach to other applications of product partition models (PPMs) (Hartigan, 1990; Barry

and Hartigan, 1992) in clinical trials. While PPMs are commonly used to identify subpopula-

tions by clustering patients into covariate-dependent partitions (Muller et al., 2011; Xu et al.,

2019), they can also be used to combine levels of categorical covariates in subgroup analyses.

Sivaganesan et al. (2011) define a class of models for each covariate by considering partitions of

subgroups based on treatment effects, and they propose a model selection approach to identify

the presence of treatment-by-subgroup interactions. Similarly, Psioda et al. (2021) define a model

space based on all possible partitions of baskets in a basket trial, however, they propose the use

of BMA instead of model selection. Bean et al. (2021) extend this approach to linear models for

MRCTs.

Following the model formulation of Bean et al. (2021), we assume that the model space MS

contains L models where each model corresponds to a unique partition of regions into sets such

that all regions within the same set share a common treatment effect. The number of models is

a function of the number of regions, calculated as L “
řS
i“1

!

1
i!

ři
`“0p´1q`

`

i
`

˘

pi´ `qS
)

. We
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denote the `th model by M` and the prior model probability for M` by ppM`q, ` “ 1, . . . , L.

Additionally, let D` denote the number of distinct region-specific treatment effects for the `th

model, where 1 ď D` ď S. We let γp`,dq denote the dth distinct treatment effect for model M`,

d “ 1, . . . , D`, ` “ 1, . . . , L, and we define Ω`,d to be the set of region labels corresponding to the

regions that have the distinct effect γp`,dq.

LetW` be the N ˆ pD` ` pq matrix where the first D` columns correspond to region-specific

treatment indicators under M`, and let w`ij be the row ofW` corresponding to the jth patient in

the ith region. We define γ` to be the D` ˆ 1 vector of distinct treatment effects for model M`, and

let θ` “ pγ 1`,β
1q1 and ξ` “ tλ,θ`u. We may now write the likelihood for ξ` conditional on M`

being the true model as

Lpξ`|D,M`q “

D
ź̀

d“1

ź

iPΩ`,d

ni
ź

j“1

K
ź

k“1

«

 

λik exp
`

w1`ijθ`
˘(δijkνij

ˆ exp

˜

´δijk

#

λikpyij ´mk´1q `

k´1
ÿ

g“1

λigpmg ´mg´1q

+

exp
`

w1`ijθ`
˘

¸ff

.

4.3.3 Prior Formulation and Posterior Distributions

For model M`, we write the joint prior distribution for ξ` as

ppξ`|M`q “ ppθ`|M`q ˆ

#

S
ź

i“1

K
ź

k“1

ppλik|M`q

+

,

where θ`|M` „ NpD``pqpµ0`,Σ0`q and λik|M` „ Gammapηik, φikq, with hyperparameters

pµ0`,Σ0`, ηik, φikq, i “ 1, . . . , S, k “ 1, . . . , K. The full conditional distribution for λik is

λik|θ`,D,M` „ Gammapη̃ik, φ̃ikq, where

η̃ik “ ηik `
ni
ÿ

j“1

pδijkνijq ,

φ̃ik “ φik `
ni
ÿ

j“1

«#

δijkpyij ´mk´1q `

K
ÿ

g“k`1

δijgpmk ´mk´1q

+

ˆ exppw1`ijθ`q

ff

.
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After integrating out the baseline hazards, the marginal posterior distribution for θ` is

ppθ`|D,M`q 9

$

&

%

D
ź̀

d“1

ź

iPΩ`,d

K
ź

k“1

Γ pη̃ikq

φ̃η̃ikik
exp

˜

ni
ÿ

j“1

δijkνijw
1
`ijθ`

¸

,

.

-

ˆ ppθ`|M`q.

We recommend eliciting µ0` to be the vector of best predictions for the corresponding treatment

effects or covariate effects under model M` and setting Σ0` to be the diagonal matrix Diagtp10ˆ

|µ0`|q
2u. In the context of a non-inferiority trial, the elements of µ0` that correspond to region-

specific treatment effects could be set as the non-inferiority bound on the log hazard ratio scale.

4.3.4 Efficient Sampling from Posterior Distributions Using a Laplace Approximation

In the case of normal endpoints, the marginal posterior distributions of all regression pa-

rameters have closed forms with recognizable distributions, allowing for direct sampling (Bean

et al., 2021). Additionally, the marginal likelihood of the data has a closed form, and the posterior

model probabilities (PMPs) can be easily computed. In the case with TTE endpoints, however,

the marginal distribution of the regression parameters is not a recognizable distribution, and the

marginal likelihood of the data does not have a closed form. We implement Laplace’s method

(Tierney and Kadane, 1986) to derive accurate approximations of these posterior distributions and

the marginal likelihood.

Laplace approximations have been applied to a wide class of survival models. Martino et al.

(2011) apply integrated nested Laplace approximations (INLA) (Rue et al., 2009) to parametric

and semi-parametric Cox models formulated as latent Gaussian models, and Niekerk et al. (2021)

extend INLA to joint models for TTE and longitudinal data. As an alternative to INLA, Gressani

and Lambert (2018) approximate posterior distributions for latent variables in semi-parametric

promotion time cure models by combining Laplace’s method with penalized B-splines. Laplace

approximations have also been used to integrate over random effects in mixed effects Cox models

(Pankratz et al., 2005) and joint models (Rizopoulos et al., 2009).
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Let hθ`pθ`q “ log tppθ`|D,M`qu. We approximate ppθ`|D,M`q by the NpD``pqpθ̂`, Ψ̂θ`q

distribution, where θ̂` is the posterior mode of ppθ`|D,M`q and Ψ̂θ` is the negative inverse Hes-

sian of hθ`pθ`q evaluated at θ̂` (see Section B.1 of Appendix B for details of Ψ̂θ`). The marginal

likelihood of the data conditional on M` is approximated as

ppD|M`q « p2πq
D``p

2 | Ψ̂` |
1
2 ppD|θ̂`,M`qppθ̂`|M`q,

where ppD|θ`,M`q “
ş

Lpξ`|D,M`qppλ|M`qdλ and Ψ̂` is the negative inverse Hessian of

log tppD|θ`,M`qppθ`|M`qu evaluated at θ̂` (Kass and Raftery, 1995). We note that ppθ`|D,M`q is

proportional to ppD|θ`,M`qppθ`|M`q and hence Ψ̂θ` “ Ψ̂`. By first integrating out the baseline

hazards from the joint posterior distribution, we can make posterior inference on the region-

specific treatment effects without the need to sample posterior baseline hazards. Thus, we im-

prove computational efficiency and obtain more accurate approximations of ppθ`|D,M`q and

ppD|M`q when working with the marginal distribution of θ`|D,M` rather than the full conditional

distribution of θ`|λ,D,M`, ` “ 1, . . . , L.

4.3.5 Inference via Bayesian Model Averaging

The PMP for M` is calculated as

ppM`|Dq “
ppD|M`qppM`q

řL
`1“1 ppD|M`1qppM`1q

, (4.1)

where ppM`q denotes the prior probability for M`. We recommend setting ppM`q 9 eD`ˆα0 ,

where positive values of the tuning parameter α0 place greater prior probability on models with

more distinct region-specific treatment effects. This recommendation is the default prior used in

the bmabasket package in R (Psioda and Alt, 2022), but applied to MRCTs instead of basket

trials.
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Using BMA, we obtain the averaged posterior distributions of the region-specific treatment

effects as

ppγi|Dq “
L
ÿ

`“1

#

D
ÿ̀

d“1

1pi P Ω`,dqppγp`,dq|D,M`q

+

ppM`|Dq, i “ 1, . . . , S.

We define the global treatment effect under model M` to be γG|M` “
řD`
d“1

np`,dq
N

γp`,dq, where

np`,dq is the combined sample size of all regions that share the dth distinct treatment effect. We

then compute the posterior global treatment effect as ppγG|Dq “
řL
`“1 ppγG|D,M`qppM`|Dq. If

we allow γ to denote either the global treatment effect or a region-specific treatment effect, we

can use BMA to test the hypothesis H0 : γ ě γ0 versus H1 : γ ă γ0 for some prespecified value

γ0 by calculating P pγ ă γ0|Dq “
řL
`“1 P pγ ă γ0|D,M`qppM`|Dq.

4.3.6 Measures of Consistency of the Treatment Effect

Consistency of the treatment effect across regions is defined differently throughout the lit-

erature with a common definition focusing on the comparison of region-specific effects to the

global effect. For the continuous endpoint case, Bean et al. (2021) address the differences be-

tween definitions by proposing three measures to assess consistency: (1) the comparison of any

two region-specific treatment effects (pairwise consistency), (2) the comparison of region-specific

treatment effects across all regions (global consistency), and (3) the comparison of the treatment

effect for a given region to the global treatment effect calculated without that region (local consis-

tency). Here, we extend these three measures to TTE endpoints.

Both the pairwise and global consistency measures were designed to assess consistency as it

is defined by ICH E17, which is a lack of clinically relevant differences between treatment effects

in different regions of an MRCT (ICH, 2017). We note that two region-specific hazard ratios

(HRs) with perfect consistency have a ratio of one, and we define ε as the smallest acceptable

ratio between two region-specific HRs while still considering them to be consistent with one

another; i.e., two region-specific HRs are consistent if ε ă eγi´γj ă ε´1, i ‰ j, ε P p0, 1q. The
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value of ε, which we refer to as the minimal clinically important regional difference (MCIRD),

should be defined prior to assessing any of the proposed measures of consistency. For example,

the MCIRD can be set as the inverse of the non-inferiority margin.

We define the ε-level pairwise consistency probability as P pε ă eγi´γj ă ε´1|Dq “
řL
`“1 P pε ă eγi´γj ă ε´1|D,M`qppM`|Dq, and the ε-level pairwise inconsistency probability

as P p|γi ´ γj| ą ´ logpεq|Dq “ 1 ´ P pε ă eγi´γj ă ε´1|Dq. The ε-level global consistency

probability quantifies the strength of evidence that no clinically meaningful difference exists

between any of the region-specific HRs. Hence, the stronger the evidence in favor of pairwise

inconsistency for any two regions, the weaker the evidence in favor of global consistency.

To calculate the global consistency probability, we first calculate all ε-level pairwise incon-

sistency probabilities and compare them to some prespecified probability threshold β˚. If the

pairwise inconsistency probability is greater than this threshold, we assume that the HRs from

the two regions are inconsistent (i.e., the ratio of the smaller to larger HR is likely less than the

MCIRD), and we consider all models in MS that allow these two regions to differ in the calcula-

tion of the global inconsistency probability as described below. Let Θ be the set of labels for the

models where at least one pair of distinct HRs meets the criterion for being inconsistent. These

models provide evidence in favor of ε-level pairwise inconsistency for at least one pair of regions,

and the sum of their PMPs measures the strength of evidence in favor of global inconsistency.

Thus, the ε-level global consistency probability is calculated as 1 ´
ř

`PΘ ppM`|Dq. High values

of β˚ are more conservative with respect to classifying two regions as inconsistent, which ulti-

mately results in an increase in the ε-level global consistency probability; conversely, low values

of β˚ correspond to a decrease in the global consistency probability. We recommend the choice

of β˚ “ 0.5 as to not overly favor nor discriminate against the classification of regions as incon-

sistent. We note that the ε-level global consistency probability is an exploratory metric that can

inform investigators of the degree of heterogeneity between region-specific HRs. By measuring

the strength of evidence in support of consistency as defined by ICH E17, this metric discourages

the notion of attempting to prove consistency.
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Consistency is commonly assessed by comparing region-specific treatment effects to the

overall treatment effect. For the ith region, we define the ε-level local consistency probability as

P pε ă eγi´γp´iq ă ε´1|Dq, where γp´iq is the global treatment effect defined in Section 4.3.5 cal-

culated without the ith region. If the underlying treatment effects are heterogeneous, the global

treatment effect may not be representative of any region; we recommend the use of pairwise or

global consistency measures in these cases due to practical interpretability.

4.4 Simulation Studies

We compare the BMA approach to two Cox proportional hazards models (CPHMs) and

a Bayesian hierarchical model (BHM) using simulated data designed to imitate aspects of the

LEADER trial. The first CPHM estimates only a global treatment effect, whereas the second

CPHM estimates only region-specific treatment effects. In many MRCTs with a TTE endpoint,

these CPHMs correspond to models typically used for the primary analysis and as part of ex-

ploratory subgroup analyses. We designed the BHM using the same model specification and prior

elicitation used by the FDA in a post hoc analysis of the LEADER trial data (Rothmann, 2021),

where the response modeled is the crude log hazard ratio for each region. Additional details

about the model setup and prior elicitation for the CPHMs and the BHM can be found in Section

B.2 of Appendix B.

4.4.1 Setup of Simulation Studies

For each simulation study, we randomly generated datasets with four regions and a total

sample size of N “ 9340, and we considered scenarios in which the sample size allocation and

underlying region-specific treatment effects were varied. We simulated 10,000 datasets for each

scenario using a uniform accrual rate for the first 1.5 years and a maximum follow-up time of

5 years, and we chose the constant baseline hazard and dropout rate so that the datasets mirror

the LEADER trial data with respect to the average number of events, the average percentage of
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subjects who either completed follow-up or experienced an event, and the median follow-up time

(see Section B.3 of Appendix B for details).

We focused our simulation studies on testing superiority of an investigational treatment over

placebo. Setting γ0 “ 0 for both the global and region-specific hypotheses, we calculated the

global rejection rate, the true positive rate (TPR) for regions with a beneficial treatment effect

(which we refer to as alternative regions), and the false positive rate (FPR) for regions with no

treatment effect (which we refer to as null regions). Additionally, we assessed estimation quality

by calculating the mean squared error (MSE) of the region-specific treatment effect estimates

from the BMA approach and the BHM relative to the estimates obtained from the second CPHM.

We then compared the three modeling approaches with respect to the rejection rates and relative

MSE.

We used K “ 8 intervals for the piecewise constant baseline hazard under the BMA ap-

proach, where the interval boundaries were chosen such that each interval contained approxi-

mately the same number of events. To reflect a priori prior elicitation, we chose each element

of µ0` to equal logp1.3q (i.e., the log of the non-inferiority bound established by the FDA), ` “

1, . . . , L, and we set ηik “ 0.01 and φik “ 0.01, i “ 1, . . . , S, k “ 1, . . . , K. We chose Σ0` and

ppM`q according to the recommendations in Sections 4.3.3 and 4.3.5, respectively, with α0 “ 0

(i.e., uniform prior model probabilities). For the MCIRD, we set ε “ 0.77 (i.e., 1.3´1) when

calculating the consistency probability measures. Lastly, we set β˚ “ 0.5 for the inconsistency

probability threshold used to calculate ε-level global consistency.

4.4.2 First Simulation Study: Equal Regional Sample Sizes

For the first set of simulation studies, we defined the underlying treatment hazard ratio for

alternative regions to equal 0.868 (i.e., treatment effect of ´0.142). We considered five cases in

which we incremented the number of null regions between zero and four, and we set the regional

sample sizes to be equal for each case. In MRCTs with time-to-event outcomes, the expected

number of events for each region depends on both the sample size and the underlying treatment
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effect. Specifically, the number of events is expected to be greater in null regions than in alterna-

tive regions despite having the same sample size. Thus, this first set of simulation studies with

equal sample size should not be mistaken for the case in which each region contributes the same

expected number of events.

The results for the first set of simulation studies are shown in Figure 4.1. Compared to the

CPHMs, the BMA approach results in similar global rejection rates and substantially lower MSE

in each scenario. While the BHM results in lower MSE than the BMA approach for two of the

four scenarios when estimating the treatment effect in alternative and null regions, the BHM’s

global rejection rate is drastically lower across all scenarios (e.g., 0.27 compared to the BMA

approach’s rejection rate of 0.72 in the 0-null-regions case). We note that the BMA approach re-

sults in higher TPRs for the 0- and 1-null-regions cases while also having inflated FPRs; however,

this should be of comparatively less concern considering that the primary objectives of MRCTs

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Number of Null Regions

G
lo

ba
l R

ej
ec

tio
n 

R
at

e

A CPHM
BMA
BHM

0 1 2 3

Number of Null Regions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
M

S
E

B BMA (alt. regions)
BHM (alt. regions)

1 2 3 4

Number of Null Regions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
M

S
E

C BMA (null regions)
BHM (null regions)

0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Null Regions

Tr
ue

 P
os

iti
ve

 R
at

e

D CPHM
BMA
BHM

1 2 3 4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Number of Null Regions

Fa
ls

e 
P

os
iti

ve
 R

at
e

E CPHM
BMA
BHM

Figure 4.1: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for the simulation study with
equal regional sample sizes. Alternative regions have a treatment-to-placebo hazard ratio of
0.868.
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include testing the global treatment effect and estimating region-specific treatment effects (as

opposed to formal hypothesis testing).

When ε “ 0.77, the average ε-level global consistency probabilities for the 0- and 2-null-

regions scenarios are estimated to be 0.97 and 0.90, respectively. We further investigated the

nature of the global consistency metric by plotting the average probabilities over a range of ε for

values of β˚ P t0.2, 0.5, 0.8u (see Figure B.1 in Appendix B). As expected, increasing β˚ for a

fixed ε led to an increase in the ε-level global consistency probability across all five scenarios in

which the number of null regions vary.

4.4.3 Second Simulation Study: Unequal Regional Sample Sizes

In the second set of simulation studies, we changed the regional sample sizes to equal the

number of patients enrolled in Asia (AS), Europe (EU), North America (NA), and Rest of the

World (RW) in the LEADER trial (nAS “ 711, nEU “ 3296, nNA “ 2847, nRW “ 2486). We

defined the underlying region-specific treatment HRs for two different scenarios: (1) set HR =

0.868 for all regions, and (2) set the HRs equal to the estimates obtained in the original analysis

of the LEADER data (HRAS “ 0.62, HREU “ 0.82, HRNA “ 1.01, HRRW “ 0.83). We note

that this second scenario is an extreme case to reflect the possibility that the HR point estimates

from the original analysis were accurately estimated (i.e., the true underlying treatment effects

are heterogeneous across regions with one region having no beneficial effect).

The results for the second set of simulation studies are shown in Figure 4.2. For the first

scenario, the BMA approach and the CPHM have comparable global rejection rates, and the

BMA approach results in the lowest MSE for three of the four regions. The BHM has a slightly

lower MSE for Asia, but the global rejection rate is only a third of the rejection rate from the

BMA approach (0.24 versus 0.72). In the second scenario, the BMA approach has a similar

global rejection rate as the CPHM, and both the BMA approach and BHM have lower MSE than

the CPHM for Europe and Rest of the World (the two regions with both a larger sample size and
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Figure 4.2: Rejection rates (Panel A) and MSE relative to CPHM (Panel B) for the scenario with
all treatment-to-placebo hazard ratios equal to 0.868, and rejection rates (Panel C) and relative
MSE (Panel D) for the scenario with differing treatment-to-placebo hazard ratios.

a favorable treatment effect). The BHM has lower MSE than the BMA approach for each region

and a drastically lower global rejection rate.

We plotted the average ε-level global consistency probabilities over a range of ε values for

both scenarios (see Figure B.2). For the first scenario with equal underlying region-specific HRs,

the average global consistency probability is approximately 0.97 for ε “ 0.77. In the second sce-

nario with unequal region-specific HRs, this average probability decreases to 0.63, illustrating the

ability of this metric to discern differences between the two extreme scenarios when quantifying

the strength of evidence in favor of global consistency.

The average ε-local consistency probabilities for the first scenario when ε “ 0.77 are 0.96

(AS) and 0.99 (EU, NA, and RW). For the second scenario, these average ε-local consistency

probabilities are approximately 0.82 (AS), 0.87 (NA), and 0.96 (EU and RW). While the results
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for local consistency clearly differ between the two scenarios, we again note that the local consis-

tency probabilities alone can be difficult to interpret in the likely occurrence that some degree of

heterogeneity exists between the regions. Thus, we recommend using both the global and local

consistency probabilities to obtain a holistic understanding of the extent to which region-specific

treatment effects are consistent with one another and the global effect.

4.4.4 Additional Simulation Studies

To better understand the performance of the BMA approach under different scenarios, we

conducted additional simulation studies similar to the first study. We first considered two cases

when the sample sizes of null regions are half/double the sizes of alternative regions, and we

then considered the case with equal samples sizes and a non-constant piecewise baseline hazard.

The results for these simulation studies are included in Section B.5 of Appendix B. The patterns

observed in the global rejection rates and MSE of region-specific treatment effects for these

three simulation cases are similar to the patterns from the first simulation study, demonstrating

the robustness of the BMA approach in scenarios when regional sample sizes vary or when the

underlying baseline hazard is non-constant.

We also compared the BHM with a gamma prior on the hierarchical precision parameter τ to

two BHMs with priors (uniform and half-Cauchy) on the standard deviation τ´
1
2 according to the

recommendations of Gelman (2006). The BHMs with a gamma prior on τ and the half-Cauchy

prior resulted in similar global rejection rates and MSE while the BHM with the uniform prior

resulted in lower global rejection rates. Further details on the results, sampling methods, and

convergence diagnostics of the BHMs are included in Section B.5 of Appendix B.

4.4.5 Sensitivity Analyses

We also performed sensitivity analyses on the choices of K, µ0`, and α0. The results for each

analysis, which are included in Section B.6 of Appendix B, show the robustness of the BMA
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approach when choosing K or eliciting µ0` and α0 with respect to the global rejection rate and

MSE of the region-specific treatment effects.

For the first analysis, we considered values of K P t4, 8, 12, 16u when defining the number

of time intervals in the piecewise constant baseline hazard. The global rejection rates and MSE

of the region-specific treatment effects are approximately equal across scenarios for all values of

K considered, as is to be expected with an underlying constant baseline hazard. Thus, overfitting

with respect to the constant baseline hazard increases the computational complexity without

providing additional benefit when testing the global treatment effect or estimating the region-

specific effects. If the underlying baseline hazard is believed to be non-constant, K should be

sufficiently large and the intervals defined such that each interval contains approximately the

same number of events.

The next sensitivity analysis compares values of µ0` where all elements of µ0` are equal

across models M`, ` “ 1, . . . , L. Specifically, we considered values of eµ0` P t0.7, 1.05, 1.3, 1.5u.

While the TPRs and FPRs of the region-specific treatment effects increased as the magnitude µ0`

increases, the choice of µ0` (and in turn Σ0` using the recommended elicitation) made negligible

difference on the global rejection rates. All choices of µ0` resulted in lower MSE for the BMA

approach than the CPHMs; however, the BMA approach had slightly greater MSE than the BHM

in both null and alternative regions for all scenarios when eµ0` “ 1.05 (i.e., the case with the

smallest prior variances along the diagonals of Σ0`). For the other three values of eµ0` , the BMA

approach had the lowest MSE in alternative regions for the 0- and 1-null-regions scenarios and in

null regions for the 3- and 4-null-regions scenarios.

For the third sensitivity analysis, we elicited different prior model probabilities with α0 P

t0,˘0.5,˘1,˘2,˘5u, which in turn varied the amount of information borrowing. The choice of

α0 made no discernable difference on the global rejection rate, and the MSE of region-specific

treatment effects remained lower for the BMA approach compared to the CPHM across all sce-

narios for α0 ě ´1. Negative values of α0 with large magnitude allow for greater information

borrowing, resulting in major increases in TPRs and FPRs of the region-specific effects. As α0 in-
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creases and greater prior model probability is placed on models with more distinct region-specific

treatment effects (i.e., less information borrowing), the BMA approach more closely resembles

the CPHMs with respect to the MSE, TPRs, and FPRs.

4.5 Data Analysis: LEADER Trial

We analyzed the full analysis set of 9340 subjects from the LEADER trial using the BMA

approach, and we compared these results to the treatment effects estimated from the original

planned analysis and the post hoc analysis conducted by statisticians at the Center for Drug Eval-

uation and Research of the FDA. The original analysis estimated the global treatment effect using

a CPHM with treatment arm as the only covariate, and region-specific treatment effects were esti-

mated as part of an exploratory subgroup analysis using a CPHM with main effects for treatment

arm, region, and their interaction (Esbjerg and Ogenstad, 2012). The FDA’s post hoc analysis

incorporated shrinkage estimation by modeling the crude log hazard ratio for each region using

a BHM (Rothmann, 2021), the details of which are described further in Section 4.4 of this paper

and Section B.2 of Appendix B.

For the BMA approach, we used a piecewise constant baseline hazard with K “ 8 intervals,

and we used the same priors as in the first simulation study; i.e., µ0` “ logp1.3q and Σ0` “

Diagtp10 ˆ |µ0`|q
2u (` “ 1, . . . , L), ηik “ 0.01 and φik “ 0.01 (i “ 1, . . . , S; k “ 1, . . . , K),

and α0 “ 0 (i.e., uniform prior model probabilities). We calculated 95% credible intervals for the

global and region-specific treatment effects, and we compared these interval estimates to both the

95% confidence intervals from the original analysis and the 95% credible intervals from the FDA

analysis. The results from all modeling approaches are shown in Figure 4.3.

The three approaches result in similar point estimates of the global treatment effect, and

the BMA approach and CPHM from the original analysis provide enough evidence to support

the superiority of liraglutide over placebo with respect to the global MACE incidence rate. As

seen in the simulation studies in Section 4.4, the BHM suffers from low power when testing the

global effect based on the hierarchical mean parameter, and the BHM in this data analysis does
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0.2 0.4 0.6 0.8 1.0 1.2 1.4

Hazard Ratio
(95% Interval)

Liraglutide Better Placebo Better

Region /
Method

Hazard Ratio
(95% Interval)

* The estimate for the global treatment effect was not included in the results
   of the FDA analysis presented by Rothmann (2021).

Global
Planned CPHM 0.868 (0.778, 0.968)
FDA BHM* 0.855 (0.671, 1.046)
BMA 0.866 (0.776, 0.965)

Asia
Planned CPHM 0.622 (0.372, 1.040)
FDA BHM 0.803 (0.591, 1.089)
BMA 0.813 (0.482, 1.002)

Europe
Planned CPHM 0.815 (0.678, 0.979)
FDA BHM 0.836 (0.715, 0.978)
BMA 0.852 (0.723, 0.974)

North America
Planned CPHM 1.010 (0.835, 1.220)
FDA BHM 0.936 (0.786, 1.115)
BMA 0.904 (0.786, 1.125)

Rest of the World
Planned CPHM 0.833 (0.676, 1.027)
FDA BHM 0.847 (0.716, 1.003)
BMA 0.858 (0.729, 0.987)

Figure 4.3: Comparison of global and region-specific hazard ratio estimates and 95% intervals
for each analysis of the LEADER trial data.

not provide sufficient evidence to support the superiority of liraglutide based on the 95% credible

interval. When estimating region-specific treatment effects, all point estimates obtained by both

the BMA approach and the BHM are less than 1.00 and align with the global treatment effect

estimate. Both approaches, which use information borrowing, result in a “regression to the global

treatment effect” for region-specific effects.

It is worth noting that the purpose of the FDA’s post hoc analysis of the LEADER trial data

was to investigate the differences between the region-specific effect estimates. Hence, the FDA

provided estimates only for the region-specific treatment effects and not the global effect (Roth-

mann, 2021). While the BHM may be appropriate for an exploratory analysis to better under-

stand the extent to which treatment effects differ across regions, it is less suitable for evaluating
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the global effect, at least based on the hierarchical mean parameter which is the most logical esti-

mator. Additional information on the BHM’s hierarchical parameters can be found in Section B.7

of Appendix B.

We further explored how the region-specific treatment effects relate to one another and to

the global treatment effect by calculating the ε-level global and local consistency probabilities

for values of ε P r0.7, 1.0q (see Figure 4.4). When β˚ “ 0.5, the global consistency probability

is equal to 1.0 for values of ε ă 0.91, indicating very strong evidence in favor of global consis-

tency for these values of the MCIRD. If β˚ ă 0.5, then any pair of regions is more likely to be

considered inconsistent, which in turn decreases the global consistency probability for a given

value of ε. Thus, lower values of ε are required for the global consistency probability to reach

1.0 when β˚ is small, and the opposite behavior is observed for values of β˚ ą 0.5. We note that

the global consistency probability is the sum of PMPs for models that do not provide sufficient

evidence of inconsistency, resulting in a step function with respect to ε for a set value of β˚. As

ε increases toward one (with equivalence of effects corresponding to ε “ 1.0), the global consis-

tency probability for any value of β˚ equals the PMP for the model that constrains all regions to

share a common treatment effect.
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Figure 4.4: Comparison of ε-level global consistency probabilities for values of
β˚ P t0.2, 0.5, 0.8u (left) and ε-level local consistency probabilities for all four regions (right) for
values of ε P r0.7, 1.0q.
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The right panel of Figure 4.4 shows how the ε-level local consistency probabilities differ

across regions for ε P r0.7, 1.0q. Unsurprisingly, the probabilities for North America and Asia

are the lowest for all ε values, with probabilities of approximately 0.90 and 0.89, respectively,

when ε “ 0.77. When interpreted in conjunction with the global consistency probabilities using

the same ε value, these probabilities provide reasonably strong evidence in favor of consistency

between all region-specific hazard ratios and the global hazard ratio.

4.6 Discussion

The BMA approach provides better estimation quality of the region-specific treatment effects

than CPHMs while maintaining a high global rejection rate within a single, comprehensive anal-

ysis. While it is plausible that region-specific treatment effects differ to some degree in MRCTs,

major observed differences between the estimated treatment effects may be due in part to chance.

The BMA approach mitigates this problem through information borrowing while still providing

the flexibility of assuming that some level of heterogeneity between regions is possible. Like

other approaches that utilize information borrowing, the BMA approach results in lower MSE

when estimating the region-specific treatment effects at the price of increased false positive rates

when testing these effects; however, it is worth noting that hypothesis testing on region-specific

effects is uncommon in practice considering that the two main objectives of MRCTs relate to

inference on the global effect and estimation of region-specific effects. Thus, emphasis of model

performance should be placed on operating characteristics relating to these two objectives, both

with which the BMA approach excels in comparison to competitor methods.

We also note that the BHM used by the FDA is appropriate for a post hoc analysis of the

LEADER trial data to better understand the effects of liraglutide in each region; however, this

model is not a reasonable choice for the primary analysis of MRCT data if treating the hierar-

chical mean parameter as the global treatment effect due to its low power and the challenge of a

priori prior elicitation. Additionally, the BHM approach used by the FDA provides information

only on the hazard ratio, whereas the piecewise constant baseline hazard regression model of
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the BMA approach allows for flexible estimation of the survival curve and can be formulated as

a BHM. Further, the BMA approach estimates PMPs that can inform investigators about simi-

larities between the region-specific treatment effects to help with the assessment of consistency

across regions.

A key assumption of BHMs is that the treatment effects of regions are a random sample

from an underlying population, which may not be valid depending on how regions are defined;

e.g., regions based on geography without accounting for intrinsic and extrinsic factors (Tanaka

et al., 2011). If investigators believe location effects are a random sample from a continuous

distribution, they should give special care when defining regions in the planning stage of an

MRCT to ensure that this assumption is reasonable. Careful consideration should also be given to

the prior choice on the hierarchical variance parameter (Gelman, 2006).

While the BMA approach requires posterior samples of the region-specific treatment effects

for all L models, the application of Laplace’s method to approximate the full conditional dis-

tributions results in tremendous computational efficiency with minimal decrease in estimation

accuracy. The BMA approach is easily and quickly executable for one dataset using only a single

core on a computer, and a substantial increase in the number of subjects in a dataset makes little

difference on the computation time due to the Laplace approximation.
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CHAPTER 5: BAYESIAN MODEL AVERAGING FOR MULTI-REGIONAL
CLINICAL TRIALS WITH A JOINT TIME-TO-EVENT

ENDPOINT AND LONGITUDINAL MARKER

5.1 Introduction

As greater emphasis is placed on the globalization of drug development, multi-regional

clinical trials (MRCTs), or trials that include multiple geographic regions under the same study

protocol, have become a viable method for global data collection. Drug sponsors often rely on

MRCTs to simultaneously seek approval for an investigational treatment from multiple regulatory

authorities, resulting in their increased popularity among pharmaceutical companies in recent

years (Song et al., 2019). While MRCTs allow sponsors to more quickly introduce new treat-

ments into the global market, these trials are also associated with several logistical and statistical

challenges, prompting the International Council for Harmonisation (ICH) to publish the E17 doc-

ument with guidelines for the planning and design of MRCTs in 2017. Among the guidelines

include the recommendation to estimate region-specific treatment effects in addition to the overall

treatment effect and the consideration of statistical methods that allow for information borrowing

across regions if regional sample sizes are small (ICH, 2017).

Generally, the first major objective of MRCTs is to test and estimate the global treatment ef-

fect, and the second major objective is to assess the degree to which these results can be bridged

to the individual regions. Some degree of heterogeneity in the treatment effects likely exists be-

tween regions due to intrinsic and extrinsic factors, however, these regional differences are often

addressed only in exploratory subgroup analyses. Typically, the overall treatment effect (here-

after referred to as the global treatment effect) is estimated in the primary analysis using a fixed

effects model, and region-specific treatment effects are later estimated using a separate fixed ef-

59



fects model as part of a regional subgroup analysis. Alternative models that account for regional

heterogeneity include a continuous random effects model (CREM) with region-specific random

treatment effects and the discrete random effects model (DREM) (Lan and Pinheiro, 2012), both

of which assume different random mechanisms. The CREM assumes that region-specific treat-

ment effects are samples from an underlying normal distribution, whereas the DREM assumes

that regional sample sizes jointly follow a multinomial distribution. Depending on how regions

are defined or if regional samples sizes are predetermined (e.g., based on regional regulatory re-

quirements), these assumptions about the random effects may not be valid for an MRCT, and the

model performances can be sensitive to the accuracy of these assumptions and the magnitude of

the between-region variability (Li et al., 2021).

To address the ICH E17 recommendations, we propose a Bayesian approach that incorpo-

rates information borrowing when estimating the region-specific treatment effects in addition to

the global treatment effect. We consider all possible partitions of regions into sets, and we fit a

unique model for each partition in which regions within a set are constrained to share the same

treatment effect. We then average the posterior results from each model using Bayesian model av-

eraging (BMA) (Hoeting et al., 1999). This approach has previously been proposed for MRCTs

with either a continuous endpoint (Bean et al., 2021) or a time-to-event (TTE) endpoint (Bean

et al., 2022), and we now extend this method to models that jointly analyze a TTE endpoint and a

continuous longitudinal marker. To the best of the authors’ knowledge, this is the first proposed

application of joint models to MRCTs.

The rest of this paper is organized as follows. In Section 5.2, we provide a brief description

of joint models. We then discuss our proposed methodology using BMA in Section 5.3, and we

compare this approach to survival models using simulation studies in Section 5.4. In Section

5.5, we apply the proposed approach to data from a high-profile MRCT that investigated the

cardiovascular safety of an anti-diabetic treatment. Lastly, we close with discussion in Section

5.6.
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5.2 Joint Models

Joint models typically include both a survival submodel and a longitudinal submodel. Differ-

ent approaches for linking the two submodels include (i) using the observed longitudinal values

as covariates in the survival submodel, (ii) fitting the longitudinal submodel first and then includ-

ing the fitted values of the longitudinal trajectory for each subject in the survival submodel as

covariates, and (iii) incorporating shared subject-specific random effects in both the longitudinal

and survival likelihood. The majority of recent and ongoing research in joint modeling consider

the third method, which generally results in less biased estimates than the first two methods

(Sweeting and Thompson, 2011). In this paper, we discuss the joint modeling framework in the

context of linking longitudinal and survival submodels via shared random effects.

Compared to classical models, such as the linear mixed model for longitudinal data and the

Cox proportional hazards model for survival data, joint models can lead to higher power and

lower sample sizes when testing the treatment effects on both the TTE outcome and the longitu-

dinal marker by accounting for possible associations or dependencies between the two (Ibrahim

et al., 2010). When the longitudinal and survival outcomes are correlated, significant treatment

effects on either outcome can be detected with greater sensitivity, which is especially beneficial

when longitudinal outcomes are subjectively measured and susceptible to high variability (e.g.,

patient-reported outcomes) (Gould et al., 2015).

The longitudinal submodel is commonly formulated as a linear mixed model of the form

Xiptq “ X˚
i ptq ` εiptq, (5.1)

where Xiptq is the observed longitudinal outcome for the ith subject at time t, X˚
i ptq is a tra-

jectory function that depends on subject-specific random effects bi (normally distributed), and

εiptq „ Np0, σ2q. The errors εiptq are independent and can be thought of as deviations due to
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measurement error. The proportional hazards survival submodel at time t is generally written as

h pt|X˚
i ,wY,iq “ h0ptq exp

`

g pα, X˚
i q `w

ᵀ
Y,iθY

˘

, (5.2)

where h0ptq is the baseline hazard function, gp¨q is a function that defines the association struc-

ture, α measures the association between the longitudinal marker and the TTE endpoint, and

wY,i is a vector of covariates for the ith subject with corresponding effects θY . In this paper, we

consider an association structure that connects the longitudinal and survival submodels via shared

random effects; i.e., g pα, X˚
i q “ α

ᵀbi.

Faucett and Thomas (1996) propose a Bayesian joint model as defined in (5.1) and (5.2), and

they define a piecewise constant baseline hazard for the survival submodel. Several variations of

this model have been proposed, including joint models for multivariate longitudinal and survival

data (Ibrahim et al., 2004; Chi and Ibrahim, 2006) and models that allow for greater flexibility in

the structure of the longitudinal submodel (Wang and Taylor, 2001; Brown and Ibrahim, 2003).

Despite the computational challenges associated with Bayesian joint models, their implemen-

tation has become more accessible with R packages such as JMbayes (Rizopoulos, 2020) and

rstanarm (Gabry et al., 2022). We use the model formulation of Faucett and Thomas (1996) in

our extension of joint models to MRCTs.

5.3 Methodology

5.3.1 Joint Model for a Time-to-Event Outcome and a Continuous Longitudinal Marker

Consider an MRCT with two treatment groups, S regions, and N subjects, and let ni denote

the sample size for the ith region where
řS
i“1 ni “ N . We define the longitudinal and survival

submodels in the form of (5.1) and (5.2), respectively, and we change all i indices to ij to indi-

cate the jth patient from the ith region, i “ 1, . . . , S, j “ 1, . . . , ni.

For the longitudinal submodel, let wX,ijptq be a vector of region indicators, functions of time

(e.g., the identity function, polynomials, splines), region-specific treatment indicators, region-
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specific interactions between treatment and all functions of time, and optional covariates (poten-

tially time varying). Additionally, let θX be the vector of regression effects on the longitudinal

marker corresponding to wX,ijptq. The trajectory function from (5.1) at time t can be written as

X˚
ijptq “ zptq

ᵀbij `wX,ijptq
ᵀθX , (5.3)

where zptq is an r ˆ 1 vector of functions at time t and bij „ Nrp0,Gq is an r ˆ 1 vector of

subject-specific random effects with positive-definite covariance matrixG. We assume bij and

εijptq are independent, and we define ξX “ tθX ,G, τu where τ “ σ´2. Suppose we observe

Kij measurements of the longitudinal marker for the jth patient from the ith region at times

tij1, . . . , tijKij , and we denote Xijk “ Xijptijkq, X˚
ijk “ X˚

ijptijkq, and wX,ijk “ wX,ijptijkq for

notational convenience.

We model the TTE endpoint using the proportional hazards model from (5.2) with a piece-

wise constant baseline hazard function. Let Tij be the true survival time and Cij a potential right-

censoring time for the jth subject from the ith region, and suppose we observe the TTE outcome

Yij “ minpTij, Cijq and νij “ 1pTij ă Cijq, where 1p¨q is the indicator function. Define wY,ij

to be an pS ` pY q ˆ 1 vector of region-by-treatment indicators and pY optional baseline covari-

ates (possibly with overlapping covariates in wX,ijk), and we define the pS ` pY q ˆ 1 vector

θY “ pγ
ᵀ
Y ,β

ᵀ
Y q

ᵀ where γY “ pγY,1, . . . , γY,Sqᵀ is the vector of region-specific treatment effects

on the TTE outcome (log hazard ratio scale) and βY is the vector of covariate effects. For the

piecewise constant baseline hazards, we construct a finite partition of the time axis into Q inter-

vals pm0,m1s, pm1,m2s, . . ., pmQ´1,mQs, where m0 ” 0 and mQ ą maxpYijq, i “ 1, . . . , S,

j “ 1, . . . , ni. We assume each interval has a separate region-specific constant baseline hazard

h0pyijq “ λiq for yij P pmq´1,mqs, q “ 1, . . . , Q, and we define λ “ pλiqqᵀ. Using the formula-

tion for the piecewise constant baseline hazard model as presented by Ibrahim et al. (2001), we
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write the likelihood of the survival submodel given the random effects and ξY “ tα,θY ,λu as

LpY ,ν|ξY , bq “
S
ź

i“1

ni
ź

j“1

Q
ź

q“1

«

!

λiq exp
´

αᵀbij `w
ᵀ
Y,ijθY

¯)δijqνij

ˆ exp

˜

´δijq

#

λiqpyij ´mq´1q `

q´1
ÿ

g“1

λigpmg ´mg´1q

+

exp
´

αᵀbij `w
ᵀ
Y,ijθY

¯

¸ff

,

where Y “ pYijq
ᵀ and ν “ pνijqᵀ are N ˆ 1 vectors and δijq “ 1pyij P pmq´1,mqsq.

We denote the observed data for all subjects by D “ tX,Y ,ν,WX ,WY u whereX is the

set of observed longitudinal markers, andWX andWY are the design matrices corresponding to

θX and θY , respectively. Setting b “ pbijqᵀ, we write the joint density as LpY ,ν,X|ξY , ξX , bq “

LpY ,ν|ξY , bqLpX|ξX , bq, where LpX|ξX , bq is the likelihood of the longitudinal model.

5.3.2 Definition of the Model Space

We define the model space such that each model corresponds to a unique classification of

regions into sets where regions within a set are constrained to share the same treatment effect

(i.e., data from all regions within a set are pooled together to estimate a common treatment ef-

fect). Thus, the number of distinct treatment effects for a given model equals the number of sets

into which regions are classified. This definition of a model space was first proposed by Psioda

et al. (2021) in the context of basket trials, and Bean et al. (2021, 2022) extend the application to

MRCTs with either a continuous or TTE endpoint. Similarly, we define both the longitudinal and

survival submodels in this manner. For a given joint model, we allow the classification of regions

into sets for one submodel to differ from the sets for the other submodel.

Let D0 denote the maximum number of distinct treatment effects allowed in either submodel,

where 1 ď D0 ď S. Considering the longitudinal or survival component individually, the number

of submodels based on unique classifications of sets is a function of D0 and S, calculated as

L0 “
řD0

i“1

!

1
i!

ři
`“0p´1q`

`

i
`

˘

pi´ `qS
)

. We let M`,`1 denote the joint model that consists of the

`th longitudinal submodel and the `1th survival submodel, 1 ď ` ď L0, 1 ď `1 ď L0, and we

denote the model space containing all L “ L2
0 possible joint models as MS,D0 . Additionally, we
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let DX,` and DY,`1 be the number of distinct treatment effects on the longitudinal outcome and

TTE outcome, respectively, for model M`,`1 where 1 ď DX,` ď D0 and 1 ď DY,`1 ď D0.

For model M`,`1 , we defineWX,` andWY,`1 to be variations of the design matricesWX

andWY in which we collapse together columns of region-specific treatment indicators that

correspond to regions within the same set. We then let wX,`ijk be the row ofWX,` for the jth

patient in the ith region at time point k, and we similarly define wY,`1ij to be a row ofWY,`1

for the same patient. We also define θX,` and θY,`1 to be the updated vectors of regression co-

efficients corresponding toWX,` andWY,`1 , respectively, and we let ξX,` “ tθX,`,G, τu and

ξY,`1 “ tα,θY,`1 ,λu. Given that M`,`1 is the true model, we rewrite the trajectory function in (5.3)

as

X˚
ijk “ zptq

ᵀbij `w
ᵀ
X,`ijkθX,`,

and we write the survival submodel as

h pt|X˚
ijk,wY,`1ijq “ h0ptq exp

`

αᵀbij `w
ᵀ
Y,`1ijθY,`1

˘

.

The likelihoods LpY ,ν|ξY,`1 , b,M`,`1q, LpX|ξX,`, b,M`,`1q, and LpY ,ν,X|ξY , ξX , b,M`,`1q are

then updated accordingly.

We define the prior distributions for each element of tξX,`, ξY,`1 , bu to be independent, where

θX,`|τ,M`,`1 „ NpµX,`, τ
´1ΣX,`q,G´1|M`,`1 „ Wishartrpν0,C0q, τ |M`,`1 „ Gamma

`

ητ
2
, φτ

2

˘

such that Epτ |M`,`1q “
ητ
φτ

, α|M`,`1 „ Npµα,Σαq, θY,`1 |M`,`1 „ NpµY,`1 ,ΣY,`1q, and λiq|M`,`1 „

Gammapηiq, φiqq, i “ 1, . . . , S, q “ 1, . . . , Q, with hyperparameters tµX,`,ΣX,`, ν0,C0, ητ , φτ ,

µα,Σα,µY,`1 ,ΣY,`1 , ηiq, φiqu. For the prior on the survival regression effects, we follow the rec-

ommendation of Bean et al. (2022) by eliciting µY,`1 to be the vector of best predictions for

the corresponding treatment effects or covariate effects under model M`,`1 and setting ΣY,`1

to be the diagonal matrix Diagtp10 ˆ |µY,`1 |q
2u. Similarly, we recommend setting ΣX,` “

Diagtp10 ˆ |µX,`|q
2u where the first S elements of µX,` are the best predictions for the region-

specific intercepts in the longitudinal submodel and the remaining elements are set as the best
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prediction of the rate of change in the longitudinal marker (e.g., possibly obtained from previous

clinical trials).

5.3.3 Posterior Distributions for Model M`,`1

Let ξ˚`,`1 “ tθX,`,G, τ,α,θY,`1u be the set of parameters without the piecewise constant

baseline hazards λ for model M`,`1 . We derive the joint posterior distribution of tξ˚`,`1 , bu|M`,`1 as

ppξ˚`,`1 , b|D,M`,`1q “

ż

LpY ,ν,X|ξY , ξX , b,M`,`1qppξX,`, ξY,`1 , b|M`,`1qdλ,

where ppξX,`, ξY,`1 , b|M`,`1q is the joint prior distribution. By integrating over λ, we reduce the

complexity of the joint model and eliminate the need to sample the posterior baseline hazards.

To make inference on ξ˚`,`1 , we first integrate over the subject-specific random effects; i.e.,

ppξ˚`,`1 |D,M`,`1q “

ż

ppξ˚`,`1 , b|D,M`,`1qdb. (5.4)

We note that this integral does not have a closed-form solution, and thus we must rely on approx-

imation methods. One common approach for solving high-dimensional integrals over random

effects is to apply a Laplace approximation in which inference for model parameters can be

made by conditioning on maximized values of the random effects. In the context of non-linear

mixed models, Wolfinger and Lin (1997) approximate the integral by making a quadratic Taylor-

series expansion of the integrand about the empirical best linear unbiased predictors of the ran-

dom effects, and Lindstrom and Bates (1990) and Vonesh (1996) obtain the modes of the ran-

dom effects using maximization algorithms that iterate between the fixed effects and random

effects until convergence. Similarly, Ripatti and Palmgren (2000) and Pankratz et al. (2005) use

Laplace approximations for survival frailty models by maximizing the fixed effects and random

effects with a two-step iterative algorithm. For joint models, Rizopoulos et al. (2009) estimate

the model parameters using an EM algorithm in which they apply a Laplace approximation to

high-dimensional integrals over the random effects in the E step. Specifically, they obtain the
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modes of the random effects for each subject using the Newton-Raphson algorithm, and then they

take a second-order Taylor series expansion of the logarithm of the integrand around these modes.

Additionally, they note that many repeated measurements per subject are necessary to achieve a

satisfactory approximation when using Laplace’s method.

Similar to the previously discussed methods, we apply a Laplace approximation to (5.4) us-

ing an iterative algorithm to obtain the maximum a posteriori (MAP) estimates of the parameters

in ξ˚`,`1 and the random effects b with respect to the full conditional distributions obtained from

ppξ˚`,`1 , b|D,M`,`1q. We denote these maximized values by ξ̂˚`,`1 and b̂. For each parameter or vec-

tor of subject-specific random effects bij , we condition on the most current MAP estimates of

all other parameters and random effects, and we iterate through each parameter and vector of

subject-specific random effects until convergence. Additional details for the algorithm and the

full conditional distributions are included in Section C.1 in Appendix C.

Conditional on τ and b, the longitudinal regression effects θX,` under model M`,`1 follow a

multivariate normal distribution; however, the full conditional distribution of the survival regres-

sion effects θY,`1 does not have a closed form. Thus, we use Laplace’s method to approximate

ppθY,`1 |α, b,D,M`,`1q with the Npθ̂Y,`1 , Ψ̂θY,`1
q distribution, where θ̂Y,`1 is the posterior mode of

ppθY,`1 |α, b,D,M`,`1q conditional on the MAP estimates of α and b, and Ψ̂θY,`1
is the negative

inverse Hessian of logtppθY,`1 |α, b,D,M`,`1qu evaluated at the MAP estimates. A similar approxi-

mation is made for the full conditional distribution of α.

We approximate the marginal likelihood of the data conditional on M`,`1 as

ppD|M`,`1q « p2πq
Dpξ˚

`,`1
q

2 | Ψ̂ξ˚
`,`1
|
1
2 ppD|ξ̂˚`,`1 , b̂,M`,`1qppξ̂

˚
`,`1 |M`,`1q,

where Dpξ˚`,`1q is the sum of the lengths of all parameters in ξ˚`,`1 , Ψ̂ξ˚
`,`1

is the negative inverse

Hessian of log
 

ppD|ξ˚`,`1 , b,M`,`1qppξ
˚
`,`1 |M`,`1q

(

evaluated at ξ̂˚`,`1 and b̂, and ppD|ξ˚`,`1 , b,M`,`1q “

ş

LpY ,ν,X|ξY , ξX , b,M`,`1qppλ|M`,`1qdλ (Kass and Raftery, 1995). We refer readers to Section

C.2 in Appendix C for details of the negative inverse Hessian matrices.
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5.3.4 Inference via Bayesian Model Averaging

Given the marginal likelihoods for all models and the prior model probabilities, which we

denote as ppM`,`1q for model M`,`1 , we calculate the posterior model probability (PMP) for M`,`1

as

ppM`,`1 |Dq “
ppD|M`,`1qppM`,`1q

řL0

k“1

řL0

k1“1 ppD|Mk,k1qppMk,k1q
.

As an extension of the prior model probability elicitation suggested by Bean et al. (2022), we rec-

ommend setting ppM`,`1q 9 exp paXDX,` ` aYDY,`1q, where aX and aY are scalars that influence

the amount of information borrowing across regions in the longitudinal and survival submodels,

respectively. Negative values of these scalars result in more information borrowing by placing

greater prior weight on models with fewer distinct treatment effects, whereas positive values lead

to less borrowing.

With the PMPs as weights, we obtain model-averaged posterior probabilities for θY as

ppθY |α̂, b̂,Dq “
L0
ÿ

`“1

L0
ÿ

`1“1

ppθY,`1 |α̂, b̂,D,M`,`1qppM`,`1 |Dq. (5.5)

Similarly for other parameters, we can apply BMA to get model-averaged posterior quantities.

Under model M`,`1 , we define the global treatment effect on the TTE outcome to be

γY,G|M`,`1 “

DY,`1
ÿ

d“1

np`1,dq
N

γpY,`1,dq,

where γpY,`1,dq is the dth distinct region-specific treatment effect for survival submodel `1 and

np`1,dq is the combined sample size of all regions that share the dth distinct treatment effect. For

the longitudinal submodel, we let γX,` “ pγpX,`,1q, . . . , γpX,`,DX,`qq
ᵀ denote the DX,` ˆ 1 vector

of region-specific treatment effects of interest (e.g., main effects, treatment-by-time interaction
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effects). We calculate the corresponding global treatment effect as

γX,G|M`,`1 “

DX,`
ÿ

p“1

Kp`,pq
KN

γpX,`,pq,

where Kp`,pq is the number of longitudinal observations for subjects in regions that share the

pth distinct treatment effect and KN is the total number of longitudinal observations for all sub-

jects; i.e., KN “
řS
i“1

řni
j“1Kij . If we allow γY to denote either the global treatment effect or a

region-specific treatment effect on the TTE outcome, we can test the hypotheses H0 : γY ě

γ0 versus H1 : γY ă γ0 for some prespecified value γ0 by calculating P pγY ă γ0|Dq “
řL0

`“1

řL0

`1“1 P pγY ă γ0|D,M`,`1qppM`,`1 |Dq, and we consider P pγY ă γ0|Dq ą π0 to be strong

enough evidence in favor of H1 for a prespecified π0. Likewise, the global and region-specific

treatment effects on the longitudinal marker can be tested for any one- or two-sided hypotheses

using BMA.

5.4 Simulation Studies

5.4.1 Motivating Example

As motivation for the simulation studies, we consider the Liraglutide Effect and Action in

Diabetes: Evaluation of Cardiovascular Outcome Results (LEADER) trial, a phase 3 MRCT

designed to test the cardiovascular safety of an anti-diabetic treatment liraglutide in adults with

type 2 diabetes (Marso et al., 2016). In 2008, the U.S. Food and Drug Administration (FDA)

issued a guidance document requiring pharmaceutical companies with anti-diabetic treatments

to establish non-inferiority of the treatment to a placebo with respect to the primary outcome of

time from enrollment to first occurrence of a major adverse cardiovascular event (MACE) (FDA,

2008). Per FDA guidelines, a hierarchical testing strategy was implemented for the LEADER

trial in which non-inferiority of liraglutide to placebo would be established if the upper bound of

the 95% confidence interval (CI) was below the non-inferiority margin of 1.3, and superiority of

liraglutide would subsequently be established if this upper bound was below 1.0.

69



The global treatment hazard ratio (HR) was estimated to be 0.868 (95% CI: 0.778–0.968),

providing evidence of the superiority of liraglutide. Three of the four regions had treatment effect

point estimates that supported this conclusion, however, the HR point estimate for North Amer-

ica marginally favored placebo (HR: 1.010; 95% CI: 0.835–1.220). Post hoc analyses suggest

that the heterogeneity originally observed between the regions may be due to chance more than

differences in intrinsic and extrinsic factors (Rothmann, 2021, Nielsen et al., 2021), highlighting

challenges that can arise in MRCTs when estimating region-specific treatment effects without

borrowing information across regions.

A secondary objective of the LEADER trial was to assess the efficacy and safety of liraglu-

tide with regard to clinically important events or other surrogate parameters of treatment (Esbjerg

and Ogenstad, 2012). As one of several clinical assessments, glycated hemoglobin (HbA1c) was

measured at 11 post-screening visits from the time of randomization through the end of the treat-

ment period, and change from baseline in HbA1c to the last assessment during the treatment

period was used as a supportive endpoint to the secondary objective.

5.4.2 Simulation Setup

To assess the performance of the proposed joint modeling approach, we simulate survival and

longitudinal data that mirror the LEADER trial with respect to the MACE incidence rate and the

HbA1c trajectories for both treatment groups. Each dataset has a total of N “ 9340 subjects from

S “ 4 regions, and the number of longitudinal measurements per subject range between 1 and

11. We connect the survival and longitudinal data with shared subject-specific random intercepts,

and we consider different cases in which we vary the regional sample sizes, the magnitude of the

association parameter, and the underlying region-specific treatment effects on the TTE outcome

across scenarios, where regions may have a beneficial effect (alternative regions) or no effect

(null regions). Additional details of the data generation (e.g., the dropout rate, a steadily increas-

ing baseline hazard, and the mean and standard deviation of the longitudinal data for each visit)

are provided in Section C.3 in Appendix C.
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Considering that the TTE outcome was the primary endpoint in the LEADER trial and

HbA1c measurements were used only in part as a supportive endpoint to the secondary objec-

tive, we report simulation results with respect to only the global and region-specific treatment

effects on the TTE outcome. Any subsequent mention of treatment effects refers to these survival

effects. In the absence of other proposed joint models for MRCTs, we compare the BMA joint

modeling approach (BMA-JM) to survival models that have previously been used to analyze data

from the LEADER trial, each of which ignore potential correlations with the longitudinal data.

Specifically, we consider (i) Cox proportional hazards models (CPHMs) similar to the models

used in the primary and subgroup analyses of the LEADER trial (i.e., one CPHM to estimate the

global treatment effect without accounting for region, and a second CPHM to estimate region-

specific treatment effects with region-by-treatment interactions) and (ii) the BMA approach for

survival data only (BMA-S) (Bean et al., 2022). Additional model details for the CPHMs and the

BMA-S approach are included in Section C.4 in Appendix C. We simulate 10,000 datasets for

each simulation scenario and set γ0 “ 0 and π0 “ 0.975 when testing the hypotheses in Section

5.3.4, and we compare the models with respect to the global rejection rate, the mean square er-

ror (MSE) when estimating region-specific treatment effects in both alternative and null regions,

and the true positive rate (TPR) and false positive rate (FPR) when testing treatment effects for

alternative and null regions, respectively.

For the prior elicitation of regression effects in both submodels of the BMA-JM approach,

we set each element of µY,`1 equal to logp1.3q (i.e., the non-inferiority bound established by the

FDA on the log scale), and we rely on HbA1c data from previous trials to predict the intercept

values and rate of change when eliciting µX,`. In a set of phase 3 trials comparing liraglutide

to placebo in the presence of other oral anti-diabetic agents, one study estimated the change in

HbA1c from a baseline value of 8.6% to be as much as -1.5% over a 26-week period (-0.25%

per month, assuming a linear rate of change) (Raskin and Mora, 2010). Thus, we set the first S

elements of µX,` corresponding to region-specific intercepts equal to 8.6, and we set all other

elements equal to -0.25. We let ΣY,`1 “ Diagtp10 ˆ |µY,`1 |q
2u and ΣX,` “ Diagtp10 ˆ |µX,`|q

2u,
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and we set ν0 “ 1, C0 “ 1, ητ “ 0.001, φτ “ 0.001, µα “ 0, Σα “ 1000, and ηiq “ 0.01

and φiq “ 0.01 for i “ 1, . . . , S, q “ 1, . . . , Q. For each model M`,`1 , we elicit the prior model

probabilities as recommended in Section 5.3.4 with aX “ 0 and aY “ 0 (i.e., uniform prior model

probabilities), and we discuss the sensitivity of this elicitation in Section 5.4.5.

We define the piecewise constant baseline hazards in the survival submodel of the BMA-JM

approach by dividing the time axis into Q “ 8 intervals where each interval contains approx-

imately the same number of observed events, and we estimate a single association parameter

corresponding to shared random intercepts. For the longitudinal submodel, we construct linear

splines with knots at t P t3, 18u, and we account for potential time-by-treatment interactions for

each spline. Considering the small regional sample sizes typical of MRCTs, we assume that only

models with at most two distinct treatment effects in either submodel can practically be identified

with meaningful PMPs, and thus we set D0 “ 2 (i.e., L0 “ 8 longitudinal/survival submodels, or

64 possible joint models in MS,D0).

5.4.3 First Simulation Study: Equal Sample Sizes

In the first set of simulation studies, we consider the case of equal regional sample sizes and

two values of α P t0.5, 1.0u. We set the underlying treatment HR of alternative regions equal to

0.868, and we define five unique scenarios by differing the ratio of alternative to null regions.

The results for the simulation study when α “ 0.5 are shown in Figure 5.1. Compared to

the survival models, the BMA-JM approach resulted in the highest global rejection rates for the

scenarios with 0-3 null regions. Both BMA approaches resulted in lower MSE than the CPHM in

all scenarios with the BMA-JM approach having the lowest MSE when estimating the treatment

effect in alternative regions in the 2- and 3-null-regions scenarios. In exchange for better estima-

tion quality of region-specific treatment effects, the BMA approaches had higher FPRs than the

CPHM in scenarios with 1-3 null regions; however, we note that a major objective of MRCTs

is to estimate the treatment effects within regions (as opposed to formal testing), and thus the

inflated FPRs are of relatively low practical concern.
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Figure 5.1: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for the simulation study with
equal regional sample sizes and α “ 0.5. Alternative regions have a treatment-to-placebo hazard
ratio of 0.868.

We also consider the case when α “ 1.0 (see Figure 5.2). In contrast to the BMA-S approach

and the CPHM, the global rejection rates of the BMA-JM approach substantially increased as

the magnitude of α increased. Additionally, we also observe an increase in the MSE with the

BMA-JM approach relative to the CPHM when estimating the treatment effects of null regions in

all scenarios. These results highlight the tradeoff of using a joint model versus a survival model

when the TTE outcome and longitudinal marker are strongly associated: joint models may result

in higher rejection rates of the global treatment effect, whereas survival models may estimate

region-specific treatment effects with lower MSE as a result of ignoring the additional source of

variation from the random effects. By not accounting for the correlated longitudinal data, survival

models are prone to underestimate the variance of the region-specific treatment effects.

To further illustrate the behavior of reduced MSE with survival models, we conducted an

additional simulation study in which we fit the CPHM and the BMA-S approach to joint data

with a strong association (α “ 1.0) and to data with no association (α “ 0), and we compare the
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Figure 5.2: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for the simulation study with
equal regional sample sizes and α “ 1. Alternative regions have a treatment-to-placebo hazard
ratio of 0.868.

MSE and variance between the two types of data. As seen in Figure 5.3, we observe a consistent

decrease in variance when estimating region-specific treatment effects as α increases, which in

turn leads to lower MSE across scenarios. This reduction in MSE is particularly notable for the

BMA-S approach when estimating the treatment effects for null regions.

5.4.4 Second Simulation Study: Unequal Sample Sizes

The second simulation study considers the case in which the regional sample sizes mirror the

LEADER trial. Specifically, we set the sample sizes for Asia (AS), Europe (EU), North America

(NA), and Rest of the World (RW) equal to nAS “ 711, nEU “ 3296, nNA “ 2847, and nRW “

2486. The first scenario reflects the case where each region shares an underlying HR of 0.868,

and the second scenario represents the extreme case in which the underlying HR of each region

is equal to the point estimates from the LEADER trial subgroup analysis; i.e., HRAS “ 0.622,

HREU “ 0.815, HRNA “ 1.010, and HRRW “ 0.833. We once again choose α P t0.5, 1.0u.

74



0 1 2 3

Number of Null Regions

0.00

0.01

0.02

0.03

0.04

0.05

0.06
M

S
E

 (
al

te
rn

at
iv

e 
re

gi
on

s)

A CPHM (α = 0)
CPHM (α = 1)

BMA−S (α = 0)
BMA−S (α = 1)

1 2 3 4

Number of Null Regions

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
S

E
 (

nu
ll 

re
gi

on
s)

B CPHM (α = 0)
CPHM (α = 1)

BMA−S (α = 0)
BMA−S (α = 1)

0 1 2 3

Number of Null Regions

0.000

0.003

0.006

0.009

0.012

0.015

V
ar

ia
nc

e 
(a

lte
rn

at
iv

e 
re

gi
on

s)

C CPHM (α = 0)
CPHM (α = 1)

BMA−S (α = 0)
BMA−S (α = 1)

1 2 3 4

Number of Null Regions

0.000

0.003

0.006

0.009

0.012

0.015

V
ar

ia
nc

e 
(n

ul
l r

eg
io

ns
)

D CPHM (α = 0)
CPHM (α = 1)

BMA−S (α = 0)
BMA−S (α = 1)

Figure 5.3: MSE for alternative regions (Panel A) and null regions (Panel B), and variance of
region-specific treatment effects in alternative regions (Panel C) and null regions (Panel D),
estimated from survival models fit to data with either a strong association (α “ 1) or no
association (α “ 0) between the TTE outcome and longitudinal data. Alternative regions have a
treatment-to-placebo hazard ratio of 0.868.

Figure 5.4 shows the results for the case when α “ 0.5. In both scenarios, the BMA-JM

approach resulted in a higher global rejection rate compared to the survival models. For the sce-

nario with equal underlying treatment effects, both BMA approaches resulted in substantially

lower MSE than the CPHM with the BMA-S approach having marginally lower MSE than the

BMA-JM approach for each region. Compared to the CPHM in the second scenario, both BMA

approaches had lower MSE for Europe and Rest of the World (BMA-S slightly lower) and higher

MSE for Asia and North America, the two regions with more extreme underlying HRs (BMA-JM

lower).

The results when α “ 1.0 are included in Section C.5 in Appendix C. Similar to the first set

of simulation studies, the BMA-JM approach resulted in a large increase in the global rejection
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Figure 5.4: Rejection rates (Panel A) and MSE relative to CPHM (Panel B) for the scenario with
all treatment-to-placebo hazard ratios equal to 0.868, and rejection rates (Panel C) and relative
MSE (Panel D) for the scenario with differing treatment-to-placebo hazard ratios. Both scenarios
consider unequal regional sample sizes and α “ 0.5.

rate and moderate increases in the MSE for several regions in both scenarios compared to the

case when α “ 0.5. The increase in MSE for the first scenario is moderate for each region while

remaining well below the MSE of the CPHM. In the second scenario, the largest increase in MSE

that resulted from the increase in α occured for North America (i.e., the region with essentially

no underlying treatment effect) while the MSE for Asia (i.e., the region with the greatest effect)

remained approximately the same.

5.4.5 Additional Simulation Studies

We further investigate the behavior of the BMA-JM approach by varying the association

parameter, the sample sizes of null regions compared to alternative regions, the prior model
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probability elicitation, and the number of time intervals when defining the constant baseline

hazards. The results from these simulation studies are included in Section C.5 in Appendix C.

We repeat the first two simulation studies using values of the association parameter in α P

t0, 0.15u. As the magnitude of α decreased, the global rejection rates of the BMA-JM approach

became more similar to the rates from the survival models in each scenario. For both values of

α in the case with equal sample sizes, the BMA-JM had lower MSE compared to the BMA-S

approach when estimating treatment effects in alternative regions for the 3-null-region scenario

and in null regions for the 1-null-region scenario. The patterns in MSE between the BMA-JM

and BMA-S approaches remained similar for all other scenarios with equal and unequal sample

sizes in comparison to the corresponding scenarios when α “ 0.5.

Next, we considered the two cases when the sample sizes of null regions are half/double the

sizes of alternative regions with α “ 0.5. Comparing these cases to the first simulation study

with equal sample sizes, we observe similar relationships between the two BMA approaches with

respect to the global rejection rates and MSE across all scenarios. For the case with smaller null

regions, the global rejection rate substantially increased for all three modeling approaches in the

scenarios with 1-3 null regions, and both BMA approaches experienced an increase in the MSE

of alternative regions for the 3-null-regions scenario and a decrease in the MSE of null regions

for the 1-null-region scenario; we observe opposite behaviors in the global rejection rates and

MSE for these same scenarios when null regions are larger than alternative regions.

To better understand the sensitivity of the prior model probabilities, we consider all pairwise

combinations of aX , aY P t´1, 0, 1u. The tested values of aX and aY made no discernible dif-

ference with respect to the global rejection rate, and the choice of aY resulted in no change in

the MSE or the TPR/FPR of the region-specific treatment effects for a given value of aX . For

a set aY , negative values of aX resulted in decreases in the MSE when estimating the effect of

null regions for the 0- and 1-null-region scenarios while increasing the MSE in the 4-null-regions

scenario, and the MSE for alternative regions increased in the 1-null-region scenario while de-
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creasing in the 3- and 4-null-regions scenarios; the opposite behavior is observed for positive

values of aX .

Lastly, we vary the number of time intervals when defining the constant baseline hazards

for each region by considering values of Q P t5, 8, 12u. For the case with a steadily increasing

baseline hazard, the number of time intervals made no discernible difference with respect to any

of the calculated operating characteristics. If the baseline hazard is believed to greatly increase

over time, a sufficiently large value of Q should be chosen such that each interval contains ap-

proximately the same number of observed events.

5.5 Data Analysis: LEADER Trial

We apply the BMA-JM approach to data from the LEADER trial discussed in Section 5.4.1,

and we compare the estimates of the global and region-specific HRs to estimates from the origi-

nal primary and subgroup analyses using CPHMs and from the BMA-S approach. For both BMA

approaches, we use the same model formulation and prior elicitation detailed in Section 5.4.2.

As seen in Figure 5.5, all three approaches resulted in similar point and interval estimates

for the global treatment HR. Compared to the CPHM, both BMA approaches estimated region-

specific HRs that are closer to the global estimate, and the corresponding 95% credible intervals

are more narrow than the 95% confidence intervals from the CPHM. The point estimates and

credible intervals from the BMA-JM approach and the BMA-S approach are similar for Eu-

rope, North America, and Rest of the World with the BMA-JM interval for North America being

marginally smaller. Of the four regions, Asia has the largest observed differences in the point and

interval estimates between the BMA-JM and BMA-S approaches.

The association parameter corresponding to the shared random intercepts is estimated to

be 0.183 (95% credible interval: 0.135–0.232), indicating that HbA1c may have some effect on

the time to first occurrence of a MACE. While this association is non-zero, both the BMA-JM

and BMA-S approaches produced similar estimates for the treatment effect on the TTE outcome

for this particular trial, likely due to the small magnitude of the association parameter. Despite
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0.2 0.4 0.6 0.8 1.0 1.2 1.4

Hazard Ratio
(95% Interval)

Liraglutide Better Placebo Better

Region /
Method

Hazard Ratio
(95% Interval)

Global
Planned CPHM 0.868 (0.778, 0.968)
BMA−S 0.866 (0.776, 0.965)
BMA−JM 0.864 (0.774, 0.965)

Asia
Planned CPHM 0.622 (0.372, 1.040)
BMA−S 0.813 (0.482, 1.002)
BMA−JM 0.786 (0.445, 1.022)

Europe
Planned CPHM 0.815 (0.678, 0.979)
BMA−S 0.852 (0.723, 0.974)
BMA−JM 0.847 (0.713, 0.976)

North America
Planned CPHM 1.010 (0.835, 1.220)
BMA−S 0.904 (0.786, 1.125)
BMA−JM 0.907 (0.787, 1.109)

Rest of the World
Planned CPHM 0.833 (0.676, 1.027)
BMA−S 0.858 (0.729, 0.987)
BMA−JM 0.861 (0.728, 0.999)

Figure 5.5: Comparison of global and region-specific hazard ratio estimates and 95% intervals
for each analysis of the LEADER trial data.

the strength of the association, the BMA-JM approach provides the benefit of simultaneously

estimating treatment effects on a longitudinal marker which may be of clinical interest in an

MRCT (results for these treatment effects and PMPs are reported in Section C.6 in Appendix

C). Further, as was illustrated with simulation studies in Section 5.4, we would expect to see

additional benefits of the joint modeling approach when testing the global treatment effect on

the TTE outcome for trials in which the association parameter is estimated to be of a higher

magnitude (e.g., 0.5 or greater).
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5.6 Discussion

The proposed BMA approach was motivated in part by the absence of joint modeling appli-

cations to MRCTs and by the need for statistical methodology that accounts for possible hetero-

geneity of the treatment effect across regions. While some degree of heterogeneity is expected to

exist, only a few distinct treatment effects are likely to be identified in practice due to small re-

gional sample sizes. Thus, we recommend reducing the number of possible models in the model

space by choosing a small maximum number of distinct treatment effects allowed in either the

longitudinal or survival submodel (e.g., set D0 “ 2 for a trial with S “ 4 regions).

In the presence of a strong association between the TTE outcome and a longitudinal marker,

the BMA-JM approach results in a substantially greater global rejection rate compared to survival

models, whereas survival models may potentially estimate region-specific treatment effects on

the TTE outcome with lower MSE by failing to account for the uncertainty from the random

effects. Investigators should carefully consider this tradeoff if they suspect the TTE outcome to

be associated with a longitudinal marker, and the choice of model may depend on the objectives

of the study. In the case of most MRCTs, the first major objective is to make inference on the

global treatment effect, and thus the joint modeling approach may be more appropriate if the

survival and longitudinal data are believed to be correlated.

Using a computer with a single core, the data analysis from Section 5.5 took approximately

1.1 hours to run when D0 “ 2 (64 models in MS,D0). The BMA-JM approach relies on a maxi-

mization algorithm that implements Laplace’s method to integrate over subject-specific random

effects and to approximate the posterior distributions of the treatment effects on the TTE end-

point. While existing software such as JMbayes may be appropriate for fitting each joint model

defined in the model space with a single dataset, the computational demands and memory require-

ments make the use of this package and other pre-existing software infeasible in the necessary

simulation studies when investigating the operating characteristics of the proposed approach.
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An active research topic relating to MRCTs involves the evaluation of the consistency of

treatment effects across regions, where consistency is defined by the ICH E17 document as a lack

of clinically relevant differences (ICH, 2017). Possibilities for future research include developing

methods to assess the consistency of the longitudinal treatment effect over time or exploring

different association structures in the survival submodel.
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK

In this dissertation, we proposed a novel methodology to analyze data from a multi-regional

clinical trial (MRCT). By utilizing Bayesian model averaging (BMA), this approach accounts

for possible heterogeneity between the region-specific treatment effects while utilizing informa-

tion borrowing across regions. We developed this approach for trials with a continuous endpoint

(Chapter 3), a time-to-event (TTE) endpoint (Chapter 4), and a joint TTE endpoint and longitudi-

nal marker (Chapter 5).

In Chapters 3 and 4, we detailed the application of the BMA approach to MRCTs with ei-

ther a continuous or TTE endpoint, and we developed computationally efficient algorithms to

obtain posterior samples by relying on either closed-form solutions (if the endpoint is continuous)

or Laplace approximations (if the endpoint is TTE). We illustrated through simulation studies

several advantages of this approach over commonly used models, including the ability to esti-

mate region-specific treatment effects with lower mean squared error compared to fixed effects

models (e.g., fixed effects linear models, Cox proportional hazards models). Unlike Bayesian

hierarchical models, we showed that the BMA approach results in improved estimation quality of

region-specific effects without compromising the rejection rate when testing the global treatment

effect. Additionally, we developed three novel measures for testing the consistency of treatment

effects across all regions, between any two regions, and between any given region and all other

regions averaged together.

In Chapter 5, we further extended the BMA approach to joint models, and we used simula-

tion studies to show the increased global rejection rate that can be obtained with the joint model-

ing approach compared to models that ignore underlying associations between the TTE outcome

and longitudinal data. To overcome the computational complexities of fitting joint models, we
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developed an algorithm that applies a Laplace approximation to integrate over the subject-specific

random effects.

In addition to simulation studies, we conducted post hoc analyses of data from the Liraglu-

tide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results (LEADER)

trial using the proposed BMA approaches. In Chapter 4, we demonstrated the advantages of the

BMA approach in a practical setting by highlighting the similar point and interval estimations

of the global treatment effect compared to a Cox proportional hazards model and the similar es-

timates of the region-specific treatment effects compared to a Bayesian hierarchical model. In

Chapter 5, we jointly analyzed the TTE outcome with repeated HbA1c measurements to simulta-

neously obtain estimates of the treatment effect on both outcomes.

Areas of future research include the extension of the BMA approach to MRCTs with other

types of endpoints (e.g., binomial, count). The proposed approaches for evaluating the consis-

tency of the treatment effects across regions can also be developed for longitudinal data, in which

case we recommend methods that compare the trajectories for different regions. In the case of

joint models, additional work can be done to incorporate different association structures in the

survival submodel (e.g., inclusion of the entire trajectory function) and to further increase the

computational efficiency of the approach when fitting all models in the model space.
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APPENDIX A: ADDITIONAL RESULTS FOR CHAPTER 3

A.1 Comparison Models

A.1.1 Fixed Effects Linear Regression Models

Let z be the N ˆ 1 vector of treatment indicators (zi “ 1 if the ith patient received treatment

and zi “ 0 otherwise), and J the N ˆ 1 vector of ones. Let V be the N ˆ pS ´ 1q matrix with

region indicators corresponding to regions 2–S (region 1 is the reference region), and denote the

observed data as D “ pY , z,V q. For the first fixed effects linear model (FELM), we write the

model as

Y “ β0J ` V βR ` γz ` ε,

where β0 is the intercept, βR is the pS ´ 1q ˆ 1 vector of region effects corresponding to regions

2–S, γ is the global treatment effect, and ε is distributed as NNp0, τ
´1INq. We specify the follow-

ing non-informative priors: β0 „ Np0, 10,000q, βR „ NS´1p0, 10,000IS´1q, γ „ Np0, 10,000q,

and τ „ gammap0.001, 0.001q.

To test the global treatment effect, we calculate a 95% credible interval for γ|D. We reject

the global null hypothesis from Section 3.4 if γ0 is less than the lower limit of the credible inter-

val, where γ0 “ 0.

For the second FELM, let Vz be the N ˆ pS ´ 1q matrix with region-by-treatment indicators

corresponding to subjects who received treatment in regions 2–S, and let D “ pY , z,V ,Vzq.

When testing the region-specific treatment effects, we write the FELM as

Y “ β0J ` V βR ` γz ` VzγR ` ε,

where γ is the treatment effect for region 1 and γR is the pS ´ 1q ˆ 1 vector of region-specific treat-

ment effects corresponding to regions 2–S. In addition to the non-informative priors specified for

the first FELM, we set the prior for γR as NS´1p0, 10,000IS´1q.
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The region-specific treatment effects for regions 2–S are calculated as pγ ` γRiq|D, where γRi

is the ith element of γR, i “ 1, . . . , S ´ 1. We calculate 95% credible intervals for each region-

specific treatment effect and conclude that the data favor the alternative hypothesis from Section

3.4 if γ0 is below the lower limit.

A.1.2 Bayesian Hierarchical Model

Now let V be the N ˆ S matrix with region indicators for all S regions, and let Vz be the

NˆS matrix with region-by-treatment indicators corresponding to subjects who received treatment

in regions 1–S. For the likelihood portion of the Bayesian hierarchical model (BHM), we assume

Y “ β0J ` V βR ` γz ` VzγR ` ε,

where β0 is the fixed intercept, γ is the fixed treatment effect, βR is the S ˆ 1 vector of random

region-specific intercepts, γR is the S ˆ 1 vector of random region-specific treatment effects,

and ε is distributed as NNp0, σ
2
eINq. We assume that βR and γR are distributed NSp0, σ

2
βISq

and NSp0, σ
2
γISq, respectively. For the fixed effects, we specify the prior distributions as β0 „

Np0, 10,000q and γ „ Np0, 10,000q. Due to the high sensitivity of gamma priors for the pre-

cision parameters when modeling BHMs (Cunanan et al., 2019), we use bounded uniform

priors for the standard deviation parameters. Specifically, we choose σe „ uniformp0, 100q,

σβ „ uniformp0, 100q, and σγ „ uniformp0, 0.01q. The prior for σγ was chosen to be appropri-

ately informative so that the global rejection rate is comparable to that of both the fixed effects

model and the BMA approach. We note that the behavior of this model when testing and estimat-

ing region-specific treatment effects more closely resembles the second fixed effects model as the

prior for σγ becomes more noninformative, and the global rejection rate dramatically decreases.

To test the null hypothesis for the global treatment effect, we calculate a 95% credible inter-

val for γ|D. For the region-specific treatment effects, we calculate a 95% credible interval for

pγ ` γRiq|D, i “ 1, . . . , S.
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A.2 Additional Results from Simulation Studies

A.2.1 Bias and Average Pairwise Consistency Probabilities for Simulation Study 1

• Simulation Study 1:

– Equal regional sample sizes

– Alternative regions have treatment effects equal to 0.034

Table A.1: Bias of region-specific treatment effects for simulations with equal regional sample
sizes.

Number Bias Bias
of Null Method (Alternative† (Null
Regions Regions) Regions)

FELM ´9.95ˆ 10´5 —
0 BMA ´1.50ˆ 10´3 —

BHM ´8.57ˆ 10´5 —

FELM ´1.94ˆ 10´4 5.95ˆ 10´4

1 BMA ´3.88ˆ 10´3 9.55ˆ 10´3

BHM ´6.42ˆ 10´3 2.56ˆ 10´2

FELM ´1.54ˆ 10´5 1.05ˆ 10´4

2 BMA ´5.87ˆ 10´3 6.59ˆ 10´3

BHM ´1.27ˆ 10´2 1.92ˆ 10´2

FELM 1.60ˆ 10´4 2.27ˆ 10´4

3 BMA ´8.06ˆ 10´3 4.57ˆ 10´3

BHM ´1.89ˆ 10´2 1.30ˆ 10´2

FELM ´2.21ˆ 10´4 ´7.33ˆ 10´5

4 BMA ´1.12ˆ 10´2 2.16ˆ 10´3

BHM ´2.57ˆ 10´2 6.28ˆ 10´3

FELM — ´7.71ˆ 10´5

5 BMA — ´1.90ˆ 10´4

BHM — ´7.89ˆ 10´5

† Treatment effect for alternative regions is 0.034

The average pairwise consistency probabilities (averaged across datasets) are reported in

Table A.2. These average probabilities are approximately 0.08 ´ 0.11 higher when assessing
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consistency between two regions with equal effects (null or alternative) compared to assessments

between one region with a null effect and another with an alternative effect. As the regional

sample sizes increase, the average pairwise consistency probabilities for two regions with the

same effect will increase for a set value of ε, and the average probabilities for two regions with

different effects will decrease.

Table A.2: Average pairwise consistency probabilities P p|γi ´ γj| ă ε|Dq between regions i and j
where ε “ 0.018. Pairwise comparisons are between two alternative† regions (darkly shaded),
one alternative† and one null region (lightly shaded), and two null regions (no shading).

# Null ———— Region ————

Regions
i

j
1 2 3 4 5

1 1.000 0.605 0.606 0.607 0.608
2 0.605 1.000 0.605 0.606 0.606

0 3 0.606 0.605 1.000 0.608 0.608
4 0.607 0.606 0.608 1.000 0.608
5 0.608 0.606 0.608 0.608 1.000
1 1.000 0.503 0.505 0.503 0.505
2 0.503 1.000 0.595 0.593 0.592

1 3 0.505 0.595 1.000 0.595 0.594
4 0.503 0.593 0.595 1.000 0.597
5 0.505 0.592 0.594 0.597 1.000
1 1.000 0.586 0.486 0.488 0.488
2 0.586 1.000 0.486 0.487 0.487

2 3 0.486 0.486 1.000 0.593 0.590
4 0.488 0.487 0.593 1.000 0.594
5 0.488 0.487 0.590 0.594 1.000
1 1.000 0.580 0.578 0.488 0.487
2 0.580 1.000 0.578 0.487 0.487

3 3 0.578 0.578 1.000 0.491 0.488
4 0.488 0.487 0.491 1.000 0.602
5 0.487 0.487 0.488 0.602 1.000
1 1.000 0.580 0.582 0.584 0.503
2 0.580 1.000 0.582 0.582 0.504

4 3 0.582 0.582 1.000 0.582 0.507
4 0.584 0.582 0.582 1.000 0.505
5 0.503 0.504 0.507 0.505 1.000
1 1.000 0.597 0.597 0.598 0.597
2 0.597 1.000 0.601 0.598 0.600

5 3 0.597 0.601 1.000 0.599 0.597
4 0.598 0.598 0.599 1.000 0.599
5 0.597 0.600 0.597 0.599 1.000

† Treatment effect for alternative regions is 0.034
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A.2.2 Rejection Rates, MSE, and Bias for Simulation Study 2

• Simulation Study 2:

– Sample sizes of null regions are half the size of alternative regions

– Alternative regions have treatment effects equal to 0.034
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Figure A.1: Global rejection rates (Panel A), true positive rates for alternative regions (Panel B),
false positive rates for null regions (Panel C), relative MSE (FELM as reference) for alternative
regions (Panel D), and relative MSE for null regions (Panel E) for simulations with regional
sample size allocation such that null regions are half the size of alternative regions. Alternative
regions have a treatment effect of 0.034 L.
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Table A.3: Bias of region-specific treatment effects for simulations where sample sizes of null
regions are half the size of alternative regions.

Number Bias Bias
of Null Method (Alternative† (Null
Regions Regions) Regions)

FELM ´2.10ˆ 10´5 —
0 BMA ´1.42ˆ 10´3 —

BHM ´8.16ˆ 10´6 —

FELM 3.99ˆ 10´6 1.37ˆ 10´4

1 BMA ´2.77ˆ 10´3 1.17ˆ 10´2

BHM ´3.60ˆ 10´3 2.91ˆ 10´2

FELM ´3.25ˆ 10´4 1.38ˆ 10´4

2 BMA ´4.43ˆ 10´3 8.70ˆ 10´3

BHM ´8.30ˆ 10´2 2.41ˆ 10´2

FELM 1.15ˆ 10´4 ´2.25ˆ 10´4

3 BMA ´5.54ˆ 10´3 5.68ˆ 10´3

BHM ´1.37ˆ 10´2 1.82ˆ 10´2

FELM ´5.86ˆ 10´5 ´7.16ˆ 10´5

4 BMA ´7.72ˆ 10´3 3.10ˆ 10´3

BHM ´2.08ˆ 10´2 1.03ˆ 10´2

FELM — ´1.26ˆ 10´4

5 BMA — ´2.34ˆ 10´4

BHM — ´1.22ˆ 10´4

† Treatment effect for alternative regions is 0.034
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A.2.3 Rejection Rates, MSE, and Bias for Simulation Study 3

• Simulation Study 3:

– Sample sizes of alternative regions are half the size of null regions

– Alternative regions have treatment effects equal to 0.034
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Figure A.2: Global rejection rates (Panel A), true positive rates for alternative regions (Panel B),
false positive rates for null regions (Panel C), relative MSE (FELM as reference) for alternative
regions (Panel D), and relative MSE for null regions (Panel E) for simulations with regional
sample size allocation such that alternative regions are half the size of null regions. Alternative
regions have a treatment effect of 0.034 L.
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Table A.4: Bias of region-specific treatment effects for simulations where sample sizes of
alternative regions are half the size of null regions.

Number Bias Bias
of Null Method (Alternative† (Null
Regions Regions) Regions)

FELM ´2.10ˆ 10´5 —
0 BMA ´1.42ˆ 10´3 —

BHM ´8.16ˆ 10´6 —

FELM 1.05ˆ 10´4 5.64ˆ 10´4

1 BMA ´4.80ˆ 10´3 6.93ˆ 10´3

BHM ´1.01ˆ 10´2 2.11ˆ 10´2

FELM ´1.87ˆ 10´5 1.61ˆ 10´4

2 BMA ´7.99ˆ 10´3 4.59ˆ 10´3

BHM ´1.81ˆ 10´2 1.38ˆ 10´2

FELM ´1.35ˆ 10´4 ´3.80ˆ 10´5

3 BMA ´1.14ˆ 10´2 2.87ˆ 10´3

BHM ´2.43ˆ 10´2 8.05ˆ 10´3

FELM ´8.12ˆ 10´5 5.18ˆ 10´5

4 BMA ´1.48ˆ 10´2 1.47ˆ 10´3

BHM ´2.90ˆ 10´2 3.68ˆ 10´3

FELM — ´1.26ˆ 10´4

5 BMA — ´2.34ˆ 10´4

BHM — ´1.22ˆ 10´4

† Treatment effect for alternative regions is 0.034
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A.2.4 Bias for Simulation Study 4

• Simulation Study 4:

– Equal regional sample sizes

– All regions have positive, heterogeneous treatment effects (see Table A.5)

Table A.5: Region-specific treatment effects for three scenarios.

Scenario γ1 γ2 γ3 γ4 γ5

1 0.017 0.026 0.034 0.043 0.051
2 0.017 0.017 0.017 0.034 0.034
3 0.017 0.034 0.034 0.051 0.051

Table A.6: Bias of region-specific treatment effects for simulations with heterogeneous treatment
effects.

Region Method Scenario 1 Scenario 2 Scenario 3
FELM ´1.41ˆ 10´4 ´3.35ˆ 10´4 1.11ˆ 10´4

1 BMA 5.47ˆ 10´3 1.67ˆ 10´3 6.59ˆ 10´3

BHM 1.63ˆ 10´2 6.30ˆ 10´3 1.91ˆ 10´2

FELM 3.40ˆ 10´4 ´1.00ˆ 10´4 ´1.50ˆ 10´4

2 BMA 2.23ˆ 10´3 1.76ˆ 10´3 ´1.49ˆ 10´4

BHM 7.85ˆ 10´3 6.31ˆ 10´3 3.12ˆ 10´3

FELM 4.89ˆ 10´4 1.99ˆ 10´5 ´4.55ˆ 10´4

3 BMA ´8.67ˆ 10´4 1.88ˆ 10´3 ´3.56ˆ 10´4

BHM 3.39ˆ 10´4 6.31ˆ 10´3 3.10ˆ 10´3

FELM ´1.869ˆ 10´4 ´3.63ˆ 10´5 1.96ˆ 10´4

4 BMA ´5.11ˆ 10´3 ´5.48ˆ 10´3 ´7.10ˆ 10´3

BHM ´8.15ˆ 10´3 ´9.67ˆ 10´3 ´1.28ˆ 10´2

FELM 9.66ˆ 10´5 2.35ˆ 10´5 ´1.23ˆ 10´4

5 BMA ´8.40ˆ 10´3 ´5.46ˆ 10´3 ´7.25ˆ 10´3

BHM ´1.57ˆ 10´2 ´9.67ˆ 10´3 ´1.28ˆ 10´2
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A.3 Sensitivity Analysis

A.3.1 Vary Values of Hyperparameters in Regression Parameter Priors

• Equal regional sample sizes

• Model prior type: α0 “ 0 used for uniform model priors

• True region-specific control means/intercepts: 0.082

• True mean difference under alternative: 0.034

• We vary the values of the region-specific control mean and the mean difference, consider-

ing cases when the assumed values are both half and double the true values specified for

data generation.
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Table A.7: Rejection rates and relative MSE (FELM as reference) for sensitivity analysis on
hyperparameters in priors of regression parameters. Shaded cells correspond to scenarios with
assumed true intercept and mean difference.

——– Rejection Rates ——– — Relative MSE —
Number
of Null
Regions

Assumed
Intercept

Assumed
mean difference

Global
Rejection

Rate

TPR
(Alternative†

Regions)

FPR
(Null

Regions)
(Alternative†

Regions)
(Null

Regions)
0.082 0.034 0.887 0.415 — 0.43 —
0.082 0.017 0.852 0.334 — 0.38 —
0.082 0.068 0.894 0.469 — 0.43 —
0.041 0.017 0.890 0.374 — 0.35 —

0 0.041 0.034 0.919 0.457 — 0.41 —
0.041 0.068 0.927 0.516 — 0.41 —
0.164 0.017 0.845 0.329 — 0.39 —
0.164 0.034 0.881 0.408 — 0.44 —
0.164 0.068 0.890 0.462 — 0.43 —
0.082 0.034 0.717 0.340 0.056 0.50 0.77
0.082 0.017 0.659 0.273 0.036 0.46 0.55
0.082 0.068 0.731 0.376 0.077 0.50 0.86
0.041 0.017 0.721 0.310 0.044 0.41 0.58

1 0.041 0.034 0.775 0.381 0.066 0.47 0.81
0.041 0.068 0.788 0.419 0.090 0.47 0.91
0.164 0.017 0.649 0.268 0.035 0.47 0.54
0.164 0.034 0.709 0.335 0.055 0.51 0.77
0.164 0.068 0.722 0.370 0.076 0.51 0.86
0.082 0.034 0.473 0.279 0.037 0.58 0.66
0.082 0.017 0.408 0.222 0.024 0.54 0.47
0.082 0.068 0.492 0.300 0.047 0.59 0.70
0.041 0.017 0.474 0.253 0.029 0.48 0.49

2 0.041 0.034 0.539 0.317 0.044 0.54 0.68
0.041 0.068 0.555 0.337 0.057 0.55 0.74
0.164 0.017 0.399 0.217 0.023 0.55 0.47
0.164 0.034 0.464 0.274 0.036 0.59 0.65
0.164 0.068 0.481 0.295 0.046 0.60 0.70
0.082 0.034 0.239 0.225 0.025 0.67 0.57
0.082 0.017 0.190 0.171 0.016 0.63 0.41
0.082 0.068 0.253 0.234 0.030 0.70 0.59
0.041 0.017 0.235 0.201 0.019 0.57 0.42

3 0.041 0.034 0.293 0.257 0.030 0.61 0.58
0.041 0.068 0.308 0.269 0.037 0.64 0.61
0.164 0.017 0.184 0.168 0.015 0.64 0.41
0.164 0.034 0.233 0.221 0.025 0.68 0.57
0.164 0.068 0.248 0.229 0.029 0.71 0.59
0.082 0.034 0.082 0.162 0.016 0.82 0.50
0.082 0.017 0.062 0.118 0.010 0.78 0.36
0.082 0.068 0.090 0.161 0.018 0.89 0.51
0.041 0.017 0.079 0.138 0.013 0.71 0.36

4 0.041 0.034 0.107 0.188 0.019 0.75 0.50
0.041 0.068 0.114 0.189 0.022 0.81 0.51
0.164 0.017 0.059 0.115 0.010 0.80 0.36
0.164 0.034 0.080 0.159 0.016 0.83 0.50
0.164 0.068 0.086 0.158 0.018 0.90 0.51
0.082 0.034 0.023 — 0.009 — 0.43
0.082 0.017 0.015 — 0.005 — 0.31
0.082 0.068 0.026 — 0.010 — 0.43
0.041 0.017 0.022 — 0.006 — 0.30

5 0.041 0.034 0.033 — 0.011 — 0.42
0.041 0.068 0.036 — 0.012 — 0.42
0.164 0.017 0.014 — 0.005 — 0.31
0.164 0.034 0.022 — 0.009 — 0.44
0.164 0.068 0.026 — 0.009 — 0.43

† Treatment effect for alternative regions is 0.034
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A.3.2 Vary Values of Prior Model Probabilities

• Equal regional sample sizes

• Assumed control mean/intercept in regression coefficient priors: 0.10

• Assumed mean difference under alternative in regression coefficient priors: 0.04

• We vary the values of α0 used in the prior model probabilities:

– α0 “ 0

– α0 “ ˘2

– α0 “ ˘4

– α0 “ ˘10
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Table A.8: Rejection rates and relative MSE (FELM as reference) for simulations with equal
regional sample sizes. Compare BMA approach with α0 P t0,˘2,˘4,˘10u to FELM and BHM.

——– Rejection Rates ——– — Relative MSE —
Number
of Null
Regions

Method
Global

Rejection
Rate

TPR
(Alternative†

Regions)

FPR
(Null

Regions)
(Alternative†

Regions)
(Null

Regions)
FELM 0.895 0.301 — 1.00 —
BHM 0.880 0.867 — 0.21 —
BMA (α0 “ ´10) 0.891 0.881 — 0.19 —
BMA (α0 “ ´4) 0.890 0.659 — 0.26 —

0 BMA (α0 “ ´2) 0.889 0.513 — 0.35 —
BMA (α0 “ 0) 0.887 0.424 — 0.44 —
BMA (α0 “ 2) 0.886 0.379 — 0.51 —
BMA (α0 “ 4) 0.885 0.352 — 0.57 —
BMA (α0 “ 10) 0.882 0.308 — 0.71 —

FELM 0.731 0.300 0.030 1.00 1.00
BHM 0.659 0.689 0.510 0.29 1.29
BMA (α0 “ ´10) 0.723 0.705 0.644 0.29 1.39
BMA (α0 “ ´4) 0.722 0.494 0.199 0.36 1.02

1 BMA (α0 “ ´2) 0.720 0.396 0.097 0.44 0.86
BMA (α0 “ 0) 0.718 0.347 0.059 0.51 0.80
BMA (α0 “ 2) 0.716 0.325 0.047 0.57 0.78
BMA (α0 “ 4) 0.714 0.311 0.039 0.62 0.78
BMA (α0 “ 10) 0.710 0.289 0.030 0.73 0.80

FELM 0.491 0.304 0.027 1.00 1.00
BHM 0.396 0.486 0.313 0.49 0.79
BMA (α0 “ ´10) 0.484 0.470 0.404 0.54 0.86
BMA (α0 “ ´4) 0.480 0.348 0.109 0.52 0.70

2 BMA (α0 “ ´2) 0.477 0.300 0.056 0.55 0.67
BMA (α0 “ 0) 0.474 0.283 0.038 0.59 0.67
BMA (α0 “ 2) 0.472 0.278 0.032 0.63 0.69
BMA (α0 “ 4) 0.469 0.276 0.029 0.67 0.72
BMA (α0 “ 10) 0.464 0.275 0.024 0.76 0.78

FELM 0.259 0.307 0.027 1.00 1.00
BHM 0.200 0.287 0.170 0.80 0.50
BMA (α0 “ ´10) 0.248 0.247 0.209 0.92 0.50
BMA (α0 “ ´4) 0.246 0.223 0.059 0.72 0.50

3 BMA (α0 “ ´2) 0.243 0.220 0.033 0.68 0.54
BMA (α0 “ 0) 0.241 0.227 0.026 0.68 0.58
BMA (α0 “ 2) 0.239 0.236 0.024 0.70 0.62
BMA (α0 “ 4) 0.237 0.245 0.023 0.73 0.66
BMA (α0 “ 10) 0.233 0.262 0.022 0.79 0.75

FELM 0.092 0.298 0.027 1.00 1.00
BHM 0.075 0.124 0.071 1.33 0.29
BMA (α0 “ ´10) 0.087 0.088 0.078 1.51 0.27
BMA (α0 “ ´4) 0.086 0.112 0.027 1.09 0.36

4 BMA (α0 “ ´2) 0.084 0.138 0.018 0.92 0.44
BMA (α0 “ 0) 0.083 0.163 0.016 0.84 0.51
BMA (α0 “ 2) 0.082 0.184 0.017 0.82 0.57
BMA (α0 “ 4) 0.082 0.201 0.017 0.82 0.62
BMA (α0 “ 10) 0.081 0.235 0.019 0.83 0.73

FELM 0.028 — 0.027 — 1.00
BHM 0.025 — 0.025 — 0.20
BMA (α0 “ ´10) 0.026 — 0.024 — 0.19
BMA (α0 “ ´4) 0.025 — 0.010 — 0.26

5 BMA (α0 “ ´2) 0.025 — 0.009 — 0.35
BMA (α0 “ 0) 0.024 — 0.009 — 0.44
BMA (α0 “ 2) 0.023 — 0.011 — 0.51
BMA (α0 “ 4) 0.023 — 0.012 — 0.57
BMA (α0 “ 10) 0.022 — 0.016 — 0.70

† Treatment effect for alternative regions is 0.034

96



APPENDIX B: ADDITIONAL RESULTS FOR CHAPTER 4

B.1 Additional Details of the Laplace Approximation

Let hθ`pθ`q “ log tppθ`|D,M`qu. It can be shown that

h1θ`pθ`q “
dhθ`pθ`q

dθ`

“ ´Σ´1
0` pθ` ´ µ0`q `

D
ÿ̀

d“1

ÿ

iPΩ`,d

K
ÿ

k“1

ni
ÿ

j“1

pδijkνijw`ijq

´

D
ÿ̀

d“1

ÿ
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ÿ
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1
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+´1

ˆ
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`ijθ`qw`ij

+

fi
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where ĉijk “ δijkpyij ´mk´1q `
řK
g“k`1 δijgpmk ´mk´1q. Let Ψ̂θ` “ ´

!

h2θ`pθ̂`q
)´1

where θ̂` is

the posterior mode of θ` and

h2θ`pθ`q “
d2hθ`pθ`q

dθ`dθ
1
`
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B.2 Comparison Models in Simulation Studies

B.2.1 Cox Proportional Hazards Models

We consider two Cox proportional hazards models (CPHMs): one to estimate the global

treatment effect γG and one to estimate the region-specific treatment effects γ “ pγ1, . . . , γSq.

For the first CPHM, we define λ0 to be the baseline hazard where λ0 „ Gammapηλ0, φλ0q. Addi-

tionally, we define θ˚1 “ pγG,β
1q1 where β is a p ˆ 1 vector of covariate effects, and we assume

θ˚1 „ Npp`1qpµ1,Σ1q. Let wij be the pp ` 1q ˆ 1 vector corresponding to θ˚1 for the jth subject

in the ith region where the first element is a treatment indicator (1 for treatment and 0 for control)

and the last p elements are optional covariates. Lastly, we define ξ˚1 “ tλ0,θ
˚
1u.

The likelihood for the first CPHM can be written as

Lpξ˚1 |Dq “
S
ź

i“1

ni
ź

j“1

“ 

λ0 exp
`

w1ijθ
˚
1

˘(νij
ˆ exp

 

´λ0yij exp
`

w1ijθ
˚
1

˘(‰

,

where yij and νij are as defined in Section 4.3.1. The full conditional distribution of λ0|θ
˚
1 ,D is

λ0|θ
˚
1 ,D „ Gammapη˚0 , φ

˚
0q, where

η˚0 “
S
ÿ

i“1

ni
ÿ

j“1

νij ` ηλ0,

φ˚0 “ φλ0 `

S
ÿ

i“1

ni
ÿ

j“1

yij exp
`

w1ijθ
˚
1

˘

.

The marginal posterior distribution of θ˚1 |D is

ppθ˚1 |Dq 9 exp

#

S
ÿ

i“1

ni
ÿ

j“1

νijw
1
ijθ

˚
1

+

ˆ exp

"

´
1

2
pθ˚1 ´ µ1q

1Σ´1
1 pθ˚1 ´ µ1q

*

ˆ pφ˚0q
´η˚0 .

For the second CPHM, we define λ “ pλ1, . . . , λSq to be the region-specific baseline hazards,

where λi „ Gammapηλi, φλiq, i “ 1, . . . , S. We define θ˚2 “ pγ,β1q1 and ξ˚2 “ tλ,θ˚2u, and
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we now let wij be the pS ` pq ˆ 1 vector corresponding to θ˚2 where the first S elements are

region-specific treatment indicators.

The likelihood for the second CPHM can be written as

Lpξ˚2 |Dq “
S
ź

i“1

ni
ź

j“1

“ 

λi exp
`

w1ijθ
˚
2

˘(νij
ˆ exp

 

´λiyij exp
`

w1ijθ
˚
2

˘(‰

.

The full conditional distribution of λi|θ˚2 ,D is λi|θ˚2 ,D „ Gammapη˚i , φ
˚
i q, i “ 1, . . . , S, where

η˚i “
S
ÿ

i“1

ni
ÿ

j“1

νij ` ηλi,

φ˚i “ φλi `
S
ÿ

i“1

ni
ÿ

j“1

yij exp
`

w1ijθ
˚
2

˘

.

If we assume θ˚2 „ NpS`pqpµ2,Σ2q, then the marginal posterior distribution of θ˚2 |D is

ppθ˚2 |Dq 9 exp

#

S
ÿ

i“1

ni
ÿ

j“1

νijw
1
ijθ

˚
2

+

ˆ exp

"

´
1

2
pθ˚2 ´ µ2q

1Σ´1
2 pθ˚2 ´ µ2q

*

ˆ

S
ź

i“1

pφ˚i q
´η˚i .

We elicit the prior distributions as θ˚1 „ Npp`1qp0, 10,000Ip`1q and λ0 „ Gammap0.01, 0.01q

for the first CPHM, and θ˚2 „ NpS`pqp0, 10,000IS`pq and λi „ Gammap0.01, 0.01q, i “ . . . , S,

for the second CPHM, where Iq denotes the qˆ q identity matrix. To test the global null hypothesis

using simulation studies discussed in Section 4.3.5, we calculate the upper limit of a 95% credi-

ble interval for γG|D using the first CPHM, and we reject the null hypothesis if γ0 is greater than

this limit. Similarly, we reject the null hypothesis for each region-specific treatment effect using

the second CPHM if the upper boundaries of the corresponding 95% credible intervals are below

γ0. For all simulation studies presented in Chapter 4 and Appendix B, we set γ0 “ 0.

B.2.2 Bayesian Hierarchical Model

We now consider a Bayesian hierarchical model (BHM), and we use the same model formu-

lation and prior elicitation used by the FDA in a post hoc analysis of the LEADER trial data
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(Rothmann, 2021). Let y˚i denote the observed subgroup log hazard ratio for the ith region,

i “ 1, . . . , S. We assume the following:

y˚i „ Npµi, σ
2
i q,

µi „ Npµ, 1{τq,

µ „ Np0, 16q,

τ „ Gammap0.001, 0.001q.

For the ith region, σ2
i is estimated as the asymptotic variance of the log hazard ratio; i.e., σ2

i “

1
η0i
` 1

η1i
, where η0i and η1i correspond to the number of failures in the control group and the

experimental treatment group, respectively (Lininger et al., 1979). In Section B.5, we discuss

alternative priors on the hierarchical standard deviation τ´
1
2 as recommended by Gelman (2006).

We test the global treatment effect by calculating the 95% credible interval for µ|D, and

we reject the null hypothesis for the global effect if the upper limit is below γ0. Similarly, we

test the ith region-specific treatment effect by calculating the 95% credible interval for µi|D,

i “ 1, . . . , S, and we reject the null hypothesis if the upper limit is below γ0.
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B.3 Details of Data Generation in Simulation Studies

For each simulation study, we generate datasets designed to mirror the LEADER trial data.

Marso et al. (2016) state that N “ 9340 patients from S “ 4 regions underwent randomiza-

tion from September 2010 through April 2012 (i.e., 18 months). Additionally, they report the

following details for the LEADER trial:

• 608 out of 4668 patients in the liraglutide group and 694 out of 4672 patients in the placebo

group experienced a primary composite outcome.

• 96.8% of the patients completed a final visit, died, or had a primary outcome.

• The median time of exposure to liraglutide or placebo was 3.5 years.

In the data simulation process, we set the constant baseline hazard equal to 0.0386 and the

dropout rate to 0.0082 (i.e., we assume theoretical dropout times are randomly sampled from

an exponential distribution with mean 0.0082´1). These two numbers were chosen such that the

average number of events in the liraglutide and placebo group, the average percentage of subjects

who either completed follow-up or experienced an event, and the median follow-up time from

thousands of simulated datasets were approximately equal to the reported information above.
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B.4 Additional Results for Primary Simulation Studies

B.4.1 First Simulation Study: Equal Regional Sample Sizes

Simulation study details:

• Equal regional sample sizes

• Underlying treatment-to-placebo hazard ratio for alternative regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Underlying baseline hazard of 0.0386

• Number of time intervals in piecewise constant baseline hazard: K “ 8

• Prior elicitation:

– Each element of µ0` equal to logp1.3q, ` “ 1, . . . , L

– Diagonals of Σ0` equal to Diagtp10ˆ |µ0`|q
2u

– ηik “ 0.01 and φik “ 0.01, i “ 1, . . . , S, k “ 1, . . . , K

– ppM`q 9 eD`ˆα0 , where α0 “ 0
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Table B.1: Bias of region-specific treatment effects for simulation study with equal regional
sample sizes.

Number Bias Bias
of Null Method (Alternative† (Null
Regions Regions) Regions)

CPHM 1.47ˆ 10´3 —
0 BMA 4.17ˆ 10´4 —

BHM 2.28ˆ 10´3 —

CPHM 1.04ˆ 10´3 ´7.35ˆ 10´4

1 BMA 2.19ˆ 10´2 ´6.25ˆ 10´2

BHM 1.98ˆ 10´2 ´5.11ˆ 10´2

CPHM 5.65ˆ 10´4 1.08ˆ 10´4

2 BMA 4.19ˆ 10´2 ´3.98ˆ 10´2

BHM 3.66ˆ 10´2 ´3.28ˆ 10´2

CPHM 3.02ˆ 10´4 4.72ˆ 10´5

3 BMA 6.51ˆ 10´2 ´2.08ˆ 10´2

BHM 5.54ˆ 10´2 ´1.68ˆ 10´2

CPHM — 1.81ˆ 10´4

4 BMA — ´2.56ˆ 10´5

BHM — 2.76ˆ 10´4

† Treatment hazard ratio for alternative regions is 0.868
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Figure B.1: Global consistency probabilities for varying values of the minimal clinically
important regional difference ε and for β˚ P t0.2, 0.5, 0.8u.
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B.4.2 Second Simulation Study: Unequal Regional Sample Sizes

Simulation study details:

• Regional sample sizes equal to original sample sizes in LEADER trial: sample sizes of

711, 3296, 2847, and 2486 for Asia, Europe, North America, and Rest of the World, respec-

tively.

• Scenario 1: underlying treatment-to-placebo hazard ratio for all regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Scenario 2: underlying treatment-to-placebo hazard ratios of 0.62, 0.82, 1.01, and 0.83 for

Asia, Europe, North America, and Rest of the World, respectively.

• Underlying baseline hazard of 0.0386

• Number of time intervals in piecewise constant baseline hazard: K “ 8

• Prior elicitation:

– Each element of µ0` equal to logp1.3q, ` “ 1, . . . , L

– Diagonals of Σ0` equal to Diagtp10ˆ |µ0`|q
2u

– ηik “ 0.01 and φik “ 0.01, i “ 1, . . . , S, k “ 1, . . . , K

– ppM`q 9 eD`ˆα0 , where α0 “ 0

Table B.2: Bias of region-specific treatment effects for simulation study with differing regional
sample sizes and equal treatment-to-placebo hazard ratios.

Bias
Method Asia Europe North America Rest of the World

(n1 “ 711, (n2 “ 3296, (n3 “ 28470, (n4 “ 248,
γ1 “ ´0.142) γ2 “ ´0.142) γ3 “ 0.142) (γ4 “ ´0.142)

CPHM ´2.10ˆ 10´3 1.32ˆ 10´3 1.78ˆ 10´3 ´3.60ˆ 10´4

BMA ´1.09ˆ 10´3 ´2.34ˆ 10´4 1.00ˆ 10´4 ´7.81ˆ 10´4

BHM 1.28ˆ 10´3 1.65ˆ 10´3 2.06ˆ 10´3 8.98ˆ 10´4
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Table B.3: Bias of region-specific treatment effects for simulation study with differing regional
sample sizes and differing treatment-to-placebo hazard ratios.

Bias
Method Asia Europe North America Rest of the World

(n1 “ 711, (n2 “ 3296, (n3 “ 28470, (n4 “ 248,
γ1 “ ´0.478) γ2 “ ´0.198) γ3 “ 0.010) (γ4 “ ´0.186)

CPHM ´5.65ˆ 10´3 2.60ˆ 10´3 ´6.49ˆ 10´4 1.15ˆ 10´3

BMA 1.63ˆ 10´1 2.30ˆ 10´2 ´7.10ˆ 10´2 1.77ˆ 10´2

BHM 1.88ˆ 10´1 1.57ˆ 10´2 ´5.63ˆ 10´2 1.14ˆ 10´2
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Figure B.2: Global consistency probabilities for varying values of the minimal clinically
important regional difference ε and for β˚ “ 0.5.
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B.5 Additional Simulation Studies

B.5.1 Sample Sizes of Null Regions Half the Size of Alternative Regions

Simulation study details:

• Sample sizes of null regions half the size of alternative regions

• Underlying treatment-to-placebo hazard ratio for alternative regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Underlying baseline hazard of 0.0386

• Number of time intervals in piecewise constant baseline hazard: K “ 8

• Same prior elicitation discussed in Section 4.4.1
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Figure B.3: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for simulation study where
sample sizes of null regions are half the size of alternative regions.
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B.5.2 Sample Sizes of Null Regions Double the Size of Alternative Regions

Simulation study details:

• Sample sizes of null regions double the size of alternative regions

• Underlying treatment-to-placebo hazard ratio for alternative regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Underlying baseline hazard of 0.0386

• Number of time intervals in piecewise constant baseline hazard: K “ 8

• Same prior elicitation discussed in Section 4.4.1
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Figure B.4: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for simulation study where
sample sizes of null regions are double the size of alternative regions.
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B.5.3 Non-Constant Baseline Hazard

Simulation study details:

• Equal regional sample sizes

• Underlying treatment-to-placebo hazard ratio for alternative regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Underlying piecewise baseline hazard of 0.02, 0.035, and 0.055 over the intervals (0, 2], (2,

3.75], and (3.75, 5], respectively

• Number of time intervals in piecewise constant baseline hazard: K “ 8

• Same prior elicitation discussed in Section 4.4.1

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Number of Null Regions

G
lo

ba
l R

ej
ec

tio
n 

R
at

e

A CPHM
BMA
BHM

0 1 2 3

Number of Null Regions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
M

S
E

B BMA (alt. regions)
BHM (alt. regions)

1 2 3 4

Number of Null Regions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
M

S
E

C BMA (null regions)
BHM (null regions)

0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Null Regions

Tr
ue

 P
os

iti
ve

 R
at

e

D CPHM
BMA
BHM

1 2 3 4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Number of Null Regions

Fa
ls

e 
P

os
iti

ve
 R

at
e

E CPHM
BMA
BHM

Figure B.5: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for simulation study with a
non-constant baseline hazard.
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B.5.4 Comparison of BHMs with Different Priors on Hierarchical Parameters

We investigated the prior choice on the hierarchical precision/standard deviation parameter

by comparing the version of the BHM used in the FDA’s analysis which had a Gammap0.001, 0.001q

prior on the hierarchical precision τ (Rothmann, 2021) to two additional BHMs, one with a

Uniformp0, 100q prior on the hierarchical standard deviation τ´
1
2 and one with a Half-Cauchypdf “

1, peak “ 0, scale “ 10q prior on τ´
1
2 . The priors on τ´

1
2 for these additional BHMs were chosen

according to the recommendations of Gelman (2006), and the priors for all other parameters were

the same across the BHMs (see Section B.2.2 for details). To compare these models, we repeated

the first two simulation studies.

For both simulation studies, all three BHMs were fit using the rjags package in R (Plum-

mer et al., 2022) with four chains, 1000 burn-in iterations per chain, and 100,000 post-burn-in

iterations per chain that were thinned by every fifth iteration. We assessed the convergence of all

parameters using the potential scale reduction factor (Gelman and Rubin, 1992) and the multivari-

ate potential scale reduction factor (Brooks and Gelman, 1998).
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B.5.4.1 First Simulation Study: Equal Regional Sample Sizes

Across all five scenarios, the average potential scale reduction factor for the hierarchical

variance τ´1 was approximately 1.09 for the BHM with the gamma prior (BHM-G), 1.12 for the

BHM with the uniform prior (BHM-U), and 1.05 for the BHM with the half-Cauchy prior (BHM-

HC). The potential scale reduction factors for all other parameters were approximately 1.00 with

each model. With each simulated datasets across the scenarios, the multivariate potential scale

reduction factor ranged between 1.000 and 1.001 for the BHM-G, 1.000 and 1.045 for the BHM-

U, and 1.000 and 1.006 for the BHM-HC, indicating good convergence.

The results from the first repeated simulation study are shown in Figure B.6. The BHM-HC

resulted in global rejection rates that were marginally lower than the BHM-G, while the BHM-U

resulted in drastically lower global rejection rates than the other two BHMs. All three BHMs

showed similar patterns in MSE across scenarios compared to the BMA approach. As discussed

by Gelman (2006), the uniform prior on τ´
1
2 supports larger values of the standard deviation and

thus less information borrowing when the number of groups is small, as is often the case with

MRCTs.
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Figure B.6: Comparison of BHMs with respect to global rejection rates (Panel A), relative MSE
(CPHM as reference) for alternative regions (Panel B), relative MSE for null regions (Panel C),
true positive rates for alternative regions (Panel D), and false positive rates for null regions (Panel
E) for the simulation study with equal regional sample sizes.
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B.5.4.2 Second Simulation Study: Unequal Regional Sample Sizes

Across the two scenarios, the average potential scale reduction factor for the hierarchical

variance τ´1 was approximately 1.08 for the BHM-G, 1.12 for the BHM-U, and 1.05 for the

BHM-HC. The potential scale reduction factors for all other parameters were approximately 1.00

with each model. With each simulated datasets across the scenarios, the multivariate potential

scale reduction factor ranged between 1.000 and 1.001 for the BHM-G, 1.000 and 1.035 for the

BHM-U, and 1.000 and 1.004 for the BHM-HC, indicating good convergence.

The results from the second repeated simulation study are shown in Figure B.7. Similar

to the first repeated simulation study, the BHM-HC resulted in global rejection rates that were

slightly lower than the BHM-G, while the BHM-U again resulted in drastically lower global

rejection rates than the other two BHMs. All three BHMs showed similar patterns in MSE for all

regions in both scenarios compared to the BMA approach.
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Figure B.7: Comparison of BHMs with respect to rejection rates (Panel A) and MSE relative to
CPHM (Panel B) for the scenario with all treatment-to-placebo hazard ratios equal to 0.868, and
rejection rates (Panel C) and relative MSE (Panel D) for the scenario with differing
treatment-to-placebo hazard ratios.
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B.6 Sensitivity Analyses for Simulation Studies

B.6.1 Change Number of Intervals K

Simulation study details:

• Equal regional sample sizes

• Underlying treatment-to-placebo hazard ratio for alternative regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Underlying baseline hazard of 0.0386

• Number of time intervals in piecewise constant baseline hazard: K P t4, 8, 12, 16u

• Prior elicitation:

– Each element of µ0` equal to logp1.3q, ` “ 1, . . . , L

– Diagonals of Σ0` equal to Diagtp10ˆ |µ0`|q
2u

– ηik “ 0.01 and φik “ 0.01, i “ 1, . . . , S, k “ 1, . . . , K

– ppM`q 9 eD`ˆα0 , where α0 “ 0
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Figure B.8: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for sensitivity analysis with
varying values of K.
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B.6.2 Change Elicitation of Prior Distributions on Regression Effects

Simulation study details:

• Equal regional sample sizes

• Underlying treatment-to-placebo hazard ratio for alternative regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Underlying baseline hazard of 0.0386

• Number of time intervals in piecewise constant baseline hazard: K “ 8

• Prior elicitation:

– Each element of µ0` chosen to be equal, where eµ0` P t0.7, 1.05, 1.3, 1.5u, ` “

1, . . . , L

– Diagonals of Σ0` equal to Diagtp10ˆ |µ0`|q
2u

– ηik “ 0.01 and φik “ 0.01, i “ 1, . . . , S, k “ 1, . . . , K

– ppM`q 9 eD`ˆα0 , where α0 “ 0
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Figure B.9: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for sensitivity analysis with
varying values of µ0`.
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B.6.3 Change Elicitation of α0

Simulation study details:

• Equal regional sample sizes

• Underlying treatment-to-placebo hazard ratio for alternative regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Underlying baseline hazard of 0.0386

• Number of time intervals in piecewise constant baseline hazard: K “ 8

• Prior elicitation:

– Each element of µ0` equal to logp1.3q, ` “ 1, . . . , L

– Diagonals of Σ0` equal to Diagtp10ˆ |µ0`|q
2u

– ηik “ 0.01 and φik “ 0.01, i “ 1, . . . , S, k “ 1, . . . , K

– ppM`q 9 eD`ˆα0 , where α0 P t0,˘0.5,˘1,˘2,˘5u
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Figure B.10: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for sensitivity analysis with
varying values of α0.
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B.7 Additional Information on the BHM Parameters in the LEADER Trial Data Analysis

To better understand the fit of the BHM in the analysis of the LEADER trial data, we exam-

ine the convergence diagnostics and summary statistics of the hierarchical parameters. The BHM

was fit using the rjags package in R (Plummer et al., 2022) with four chains, 1000 burn-in it-

erations per chain, and 100,000 post-burn-in iterations per chain that were thinned by every fifth

iteration. Posterior summary statistics and the potential scale reduction factors (PSRFs) (Gel-

man and Rubin, 1992) for the hierarchical mean µ and hierarchical precision τ are reported in

Table B.4, and trace plots are displayed in Figures B.11 and B.12, respectively. The PSRFs for

all model parameters and the multivariate PSRF (Brooks and Gelman, 1998) were each approxi-

mately 1.000, indicating good convergence.

Table B.4: Posterior summary statistics for the hierarchical parameters from the BHM.

Hierarchical Posterior Posterior 95% Credible PSRF PSRF 95% C.I.
Parameter Mean SD Interval Point Est. Upper Bound
Mean µ -0.157 0.120 (-0.399, 0.045) 1.000 1.000
Precision τ 259.8 432.8 (4.03, 1515.64) 1.000 1.000

Figure B.11: Trace plot for µ from BHM in analysis of the LEADER trial data.
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Figure B.12: Trace plot for τ from BHM in analysis of the LEADER trial data.
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APPENDIX C: ADDITIONAL RESULTS FOR CHAPTER 5

C.1 Additional Details of the Maximization Algorithm

C.1.1 Full Conditional Distributions for Model M`,`1

• Piecewise constant baseline hazards λiq, i “ 1, . . . , S, q “ 1, . . . , Q:

λiq|α,θY,`1 , b,D,M`,`1 „ Gamma
´

η̃iq, φ̃`1iq

¯

,

where

η̃iq “ ηiq `
ni
ÿ

j“1

δijqνij,

φ̃`1iq “ φiq`
ni
ÿ

j“1

«#

δijqpyij ´mq´1q `

Q
ÿ

g“q`1

δijgpmq ´mq´1q

+

exppαᵀbij `w
ᵀ
Y,`1ijθY,`1q

ff

.

• Survival regression effects θY,`1:

Let Ω`1,d be the set of region labels for all regions that share the dth distinct treatment effect

for some survival submodel `1, d “ 1, . . . , DY,`1 .

ppθY,`1 |α, b,D,M`,`1q9

$

&

%

DY,`1
ź

d“1

ź

iPΩ`1,d

Q
ź

q“1

φ̃
´η̃iq
`1iq exp

˜

ni
ÿ

j“1

δijqνijw
ᵀ
Y,`1ijθY,`1

¸

,

.

-

ˆppθY,`1 |M`,`1q

• Longitudinal regression effects θX,`:

Let Ω`,d be the set of region labels for all regions that share the dth distinct treatment effect

for some longitudinal submodel `, d “ 1, . . . , DX,`, and letWX,`ij be the subject-specific

design matrix in the longitudinal submodel where each row corresponds to a different
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longitudinal observation for the jth subject in the ith regions, i “ 1, . . . , S, j “ 1, . . . , ni.

θX,`|τ, b,D,M`,`1 „ N
´

µ̃X,`, τ
´1Σ̃X,`

¯

,

where

µ̃X,` “ Σ̃X,`

$

&

%

DX,`
ÿ

d“1

ÿ

iPΩ`,d

ni
ÿ

j“1

W ᵀ
X,`ij pXij ´ zptq

ᵀbijq `Σ´1
X,`µX,`

,

.

-

,

Σ̃X,` “

¨

˝

DX,`
ÿ

d“1

ÿ

iPΩ`,d

ni
ÿ

j“1

W ᵀ
X,`ijWX,`ij `Σ´1

X,`

˛

‚

´1

.

• Precision of longitudinal likelihood τ :

τ |θX,`, b,D,M`,`1 „ Gamma
´

η̃τ , φ̃`τ

¯

,

where

η̃τ “
1

2

$

&

%

DX,`
ÿ

d“1

ÿ

iPΩ`,d

ni
ÿ

j“1

Kij ` lengthpθX,`q ` ητ

,

.

-

,

φ̃`τ “
1

2

$

&

%

DX,`
ÿ

d“1

ÿ

iPΩ`,d

ni
ÿ

j“1

pXij ´WX,`ijθX,` ´ zptq
ᵀbijq

ᵀ
pXij ´WX,`ijθX,` ´ zptq

ᵀbijq

` pθX,` ´ µX,`q
ᵀ Σ´1

X,` pθX,` ´ µX,`q ` φτ

+

.

• Association parameters α:

ppα|θY,`1 , b,D,M`,`1q9

$

&

%

DY,`1
ź

d“1

ź

iPΩ`1,d

Q
ź

q“1

φ̃
´η̃iq
`1iq exp

˜

ni
ÿ

j“1

δijqνijα
ᵀbij

¸

,

.

-

ˆ ppα|M`,`1q

122



• Inverse of covariance matrix of random effectsG´1:

G´1
|b,D,M`,`1 „ Wishartr

¨

˝ν0 `N,

˜

C´1
0 `

S
ÿ

i“1

ni
ÿ

j“1

bijb
ᵀ
ij

¸´1
˛

‚

• Subject-specific random effects bij , i “ 1, . . . , S, j “ 1, . . . , ni:

ppbij|α,θY,`1 ,θX,`, τ,G, b´pijq,D,M`,`1q9

#

Q
ź

q“1

φ̃
´η̃iq
`1iq exp pδijqνijα

ᵀbijq

+

ˆ exp
!

´
τ

2
pXij ´WX,`ijθX,` ´ zptq

ᵀbijq
ᵀ
pXij ´WX,`ijθX,` ´ zptq

ᵀbijq
)

ˆ ppbij|G,M`,`1q
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C.1.2 Algorithm Details

Let M`,`1 denote the joint model with longitudinal submodel ` and survival submodel `1. Our

goal is to estimate the posterior modes of the full conditional distributions of the parameters and

random effects. The algorithm steps are as follows:

1. Obtain initial values of all parameters.

(a) Set θp0qX,`, τ
p0q, andG´1p0q equal to the maximum likelihood estimates (MLEs) and

bp0q equal to the empirical best linear unbiased predictors from a linear mixed model

corresponding to longitudinal submodel `.

(b) Set θp0qY,`1 equal to the MLEs from a Cox proportional hazards model corresponding to

survival submodel `1.

(c) Set αp0q “ 0 for the first model, or set αp0q equal to the estimated posterior mode of

α from the previous model.

2. Update the current estimates of all parameters and random effects for iteration m by evalu-

ating the modes of the full conditional distributions (see Section A.1).

(a) Update αpmq by evaluating the mode of p
´

αpmq|θ
pm´1q
Y,` , bpm´1q,D,M`,`1

¯

.

(b) Update θpmqY,` by evaluating the mode of p
´

θ
pmq
Y,` |α

pmq, bpm´1q,D,M`,`1

¯

.

(c) Update τ pmq from p
´

τ pmq|θ
pm´1q
X,` , bpm´1q,D,M`,`1

¯

(gamma distribution).

(d) Update θpmqX,` from p
´

θ
pmq
X,` |τ

pmq, bpm´1q,D,M`,`1

¯

(multivariate normal distribution).

(e) UpdateG´1pmq from p
´

G´1pmq|bpm´1q,D,M`,`1

¯

(Wishart distribution).

(f) Update bpmqij (the random effects for the jth subject from the ith region) by evaluating

the mode of p
´

b
pmq
ij |α

pmq,θ
pmq
Y,` , τ

pmq,θ
pmq
X,` ,G

pmq, b
pmq
i1j1ăij, b

pm´1q
i1j1ąij,D,M`,`1

¯

.

3. Repeat Step 2 until convergence of all parameters and random effects.
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C.2 Hessian Matrices Used in the Laplace Approximations

C.2.1 Hessian of Full Conditional Distribution of Association Parameters pαq

Let hαpαq “ log tppα|θY,`1 , b,D,M`,`1qu and Ψα “ ´

!

:hαpαq
)´1

, where

:hαpαq “
d2hαpαq

dαdαᵀ

“ ´Σ´1
α ´

S
ÿ

i“1

Q
ÿ

q“1

η̃iq

»

–

#

ni
ÿ

j“1

ĉijqĝ`1ijbijb
ᵀ
ij

+#

φiq `
ni
ÿ

j“1

ĉijqĝ`1ij

+´1

´

#

ni
ÿ

j“1

ĉijqĝ`1ijbij

+#

ni
ÿ

j“1

ĉijqĝ`1ijbij

+ᵀ#

φiq `
ni
ÿ

j“1

ĉijqĝ`1ij

+´2
fi

fl ,

where

• η̃iq “ ηiq `
řni
j“1 δijqνij ,

• ĉijq “ δijqpyij ´mq´1q `
řQ
g“q`1 δijgpmq ´mq´1q,

• ĝ`1ij “ exppαᵀbij `w
ᵀ
Y,`1ijθY,`1q.
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C.2.2 Hessian of Full Conditional Distribution of Survival Regression Effects pθY q

Let Ω`1,d be the set of region labels for all regions that share the dth distinct treatment effect

for some survival submodel `1, d “ 1, . . . , DY,`1 . Let hθY,`1 pθY,`1q “ log tppθY,`1 |α, b,D,M`,`1qu

and ΨθY,`1
“ ´

!

:hθY,`1 pθY,`1q
)´1

, where

:hθY,`1 pθY,`1q “
d2hθY,`1 pθY,`1q

dθY,`1dθ
ᵀ
Y,`1

“ ´Σ´1
Y,`1 ´

DY,`1
ÿ

d“1

ÿ

iPΩ`1,d

Q
ÿ

q“1

η̃iq

»

–

#

ni
ÿ

j“1

ĉijqĝ`1ijwY,`1ijw
ᵀ
Y,`1ij

+#

φiq `
ni
ÿ

j“1

ĉijqĝ`1ij

+´1

´

#

ni
ÿ

j“1

ĉijqĝ`1ijwY,`1ij

+#

ni
ÿ

j“1

ĉijqĝ`1ijwY,`1ij

+ᵀ#

φiq `
ni
ÿ

j“1

ĉijqĝ`1ij

+´2
fi

fl ,

where

• η̃iq “ ηiq `
řni
j“1 δijqνij ,

• ĉijq “ δijqpyij ´mq´1q `
řQ
g“q`1 δijgpmq ´mq´1q,

• ĝ`1ij “ exppαᵀbij `w
ᵀ
Y,`1ijθY,`1q.
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C.2.3 Hessian of Likelihood Multiplied by Priors for Fixed Effects
`

ξ˚`,`1
˘

Let hξ˚
`,`1
pξ˚`,`1q “ log

 

ppD|ξ˚`,`1 , b,D,M`,`1qppξ
˚
`,`1 |M`,`1q

(

, Ψξ˚
`,`1
“ ´

!

:hξ˚
`,`1
pξ˚`,`1q

)´1

, and

:hξ˚
`,`1
pξ˚`,`1q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dαdαᵀ

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dαdθᵀ
Y,`1

0 0 0

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dθY,`1dα
ᵀ

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dθY,`1dθ
ᵀ
Y,`1

0 0 0

0 0
d2h

ξ˚
`,`1
pξ˚
`,`1
q

dθX,`dθ
ᵀ
X,`

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dθX,`dτ
0

0 0
d2h

ξ˚
`,`1
pξ˚
`,`1
q

dτdθᵀX,`

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dτ2
0

0 0 0 0
d2h

ξ˚
`,`1
pξ˚
`,`1
q

dG´1dG´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where

d2hξ˚
`,`1
pξ˚`,`1q

dαdαᵀ
“
d2hαpαq

dαdαᵀ
(see Section B.1),

d2hξ˚
`,`1
pξ˚`,`1q

dθY,`1dθ
ᵀ
Y,`1

“
d2hθY,`1 pθY,`1q

dθY,`1dθ
ᵀ
Y,`1

(see Section B.2),

d2hξ˚
`,`1
pξ˚`,`1q

dθY,`1dαᵀ
“

˜

d2hξ˚
`,`1
pξ˚`,`1q

dαdθᵀY,`1

¸ᵀ

“ ´

DY,`1
ÿ

d“1

ÿ

iPΩ`1,d

Q
ÿ

q“1

η̃iq

»

–

#

ni
ÿ

j“1

ĉijqĝ`1ijwY,`1ijb
ᵀ
ij

+#

φiq `
ni
ÿ

j“1

ĉijqĝ`1ij

+´1

´

#

ni
ÿ

j“1

ĉijqĝ`1ijwY,`1ij

+#

ni
ÿ

j“1

ĉijqĝ`1ijbij

+ᵀ#

φiq `
ni
ÿ

j“1

ĉijqĝ`1ij

+´2
fi

fl ,
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with

• η̃iq “ ηiq `
řni
k“1 δikqνik,

• ĉikq “ δikqpyik ´mq´1q `
řQ
g“q`1 δikgpmq ´mq´1q,

• ĝ`1ij “ exppαᵀbij `w
ᵀ
Y,`1ijθY,`1q.

Let Ω`,d denote the set of region labels for all regions that share the dth distinct treatment effect

for some longitudinal submodel `, d “ 1, . . . , DX,`. Then

d2hξ˚
`,`1
pξ˚`,`1q

dθX,`dθ
ᵀ
X,`

“ ´τΣ̃´1
X,`,

with Σ̃X,` “

¨

˝

DX,`
ÿ

d“1

ÿ

iPΩ`,d

ni
ÿ

j“1

W ᵀ
X,`ijWX,`ij `Σ´1

X,`

˛

‚

´1

,

d2hξ˚
`,`1
pξ˚`,`1q

dτ 2
“ ´

1

2τ 2

¨

˝

DX,`
ÿ

d“1

ÿ

iPΩ`,d

ni
ÿ

j“1

Kij

˛

‚´
1

τ 2

´ητ
2
´ 1

¯

,

d2hξ˚
`,`1
pξ˚`,`1q

dθX,`dτ
“

˜

d2hξ˚
`,`1
pξ˚`,`1q

dτdθᵀX,`

¸ᵀ

“ ´Σ̃´1
X,` pθX,` ´ µ̃X,`q

“ 0 if θX,` is optimized to equal µ̃X,`,

with µ̃X,` “ Σ̃X,`

$

&

%

DX,`
ÿ

d“1

ÿ

iPΩ`,d

ni
ÿ

j“1

W ᵀ
X,`ij pXij ´ zptq

ᵀbijq `Σ´1
X,`µX,`

,

.

-

.

If only random intercepts are included, then let bij “ b0ij , C´1
0 “ C̃011, andG´1 “ g̃11. Then

d2hξ˚
`,`1
pξ˚`,`1q

dG´1dG´1
“ ´

1

2g̃2
11

pν0 ´ r `N ´ 1q.
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If both random intercepts and random slopes are included, then let

bij “

»

—

–

b0ij

b1ij

fi

ffi

fl

, C´1
0 “

»

—

–

C̃011 C̃012

C̃012 C̃022

fi

ffi

fl

, G´1
“

»

—

–

g̃11 g̃12

g̃12 g̃22

fi

ffi

fl

.

It follows that

d2hξ˚
`,`1
pξ˚`,`1q

dG´1dG´1
“

»

—

—

—

—

—

—

—

—

—

—

—

–

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dg̃211

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dg̃11dg̃22

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dg̃11dg̃12

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dg̃11dg̃22

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dg̃222

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dg̃22dg̃12

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dg̃11dg̃12

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dg̃22dg̃12

d2h
ξ˚
`,`1
pξ˚
`,`1
q

dg̃212

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ ´
pν0 ´ r `N ´ 1q

pg̃11g̃22 ´ 2g̃12q
2

»

—

—

—

—

–

g̃222
2

g̃12 ´g̃22

g̃12
g̃211
2

´g̃11

´g̃22 ´g̃11 2

fi

ffi

ffi

ffi

ffi

fl

.
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C.3 Details of Data Generation in Simulation Studies

For each simulation study, we generate datasets designed to mirror the LEADER trial data.

Marso et al. (2016) state that N “ 9340 patients from S “ 4 regions underwent randomization

from September 2010 through April 2012 (i.e., 18 months).

In the data simulation process, we imitate the 18-month enrollment period and maximum

follow-up time of 60 months, and we set the dropout rate to 0.0082 (i.e., we assume theoretical

dropout times are randomly sampled from an exponential distribution with mean 0.0082´1). For

the survival data, we set the baseline hazard to increase from 0.0026 to 0.0045 at a constant rate

of 0.0001 per 3-month period. We sample the longitudinal observations for each visit from a

normal distribution with a common standard deviation of σ “ 0.886 and means specific to each

visit and treatment group (see Table C.1).

Table C.1: Means of simulated longitudinal HbA1c values for each visit by treatment group.

Visit 1 2 3 4 5 6 7 8 9 10 11
Month 0 3 6 12 18 24 30 36 42 48 54
Placebo 8.7 8.2 8.1 8.0 7.9 7.9 7.9 7.9 7.9 7.9 8.0
Treatment 8.7 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.5 7.5 7.6
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C.4 Comparison Models in Simulation Studies

C.4.1 Cox Proportional Hazards Models

We consider two Cox proportional hazards models (CPHMs): one to estimate the global

treatment effect γG and one to estimate the region-specific treatment effects γ “ pγ1, . . . , γSq.

For the first CPHM, we define λ0 to be the baseline hazard where λ0 „ Gammapηλ0, φλ0q. Addi-

tionally, we define θ˚1 “ pγG,β
ᵀqᵀ where β is a pˆ 1 vector of covariate effects, and we assume

θ˚1 „ Npp`1qpµ1,Σ1q. Let wij be the pp ` 1q ˆ 1 vector corresponding to θ˚1 for the jth subject

in the ith region where the first element is a treatment indicator (1 for treatment and 0 for control)

and the last p elements are optional covariates. Lastly, we define ξ˚1 “ tλ0,θ
˚
1u.

The likelihood for the first CPHM can be written as

Lpξ˚1 |Dq “
S
ź

i“1

ni
ź

j“1

“ 

λ0 exp
`

wᵀ
ijθ

˚
1

˘(νij
ˆ exp

 

´λ0yij exp
`

wᵀ
ijθ

˚
1

˘(‰

,

where yij and νij are as defined in Section 5.3.1. The full conditional distribution of λ0|θ
˚
1 ,D is

λ0|θ
˚
1 ,D „ Gammapη˚0 , φ

˚
0q, where

η˚0 “
S
ÿ

i“1

ni
ÿ

j“1

νij ` ηλ0,

φ˚0 “ φλ0 `

S
ÿ

i“1

ni
ÿ

j“1

yij exp
`

wᵀ
ijθ

˚
1

˘

.

The marginal posterior distribution of θ˚1 |D is

ppθ˚1 |Dq9 exp

#

S
ÿ

i“1

ni
ÿ

j“1

νijw
ᵀ
ijθ

˚
1

+

ˆ exp

"

´
1

2
pθ˚1 ´ µ1q

ᵀ Σ´1
1 pθ˚1 ´ µ1q

*

ˆ pφ˚0q
´η˚0 .

For the second CPHM, we define λ “ pλ1, . . . , λSq to be the region-specific baseline hazards,

where λi „ Gammapηλi, φλiq, i “ 1, . . . , S. We define θ˚2 “ pγ,βᵀqᵀ and ξ˚2 “ tλ,θ˚2u, and
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we now let wij be the pS ` pq ˆ 1 vector corresponding to θ˚2 where the first S elements are

region-specific treatment indicators.

The likelihood for the second CPHM can be written as

Lpξ˚2 |Dq “
S
ź

i“1

ni
ź

j“1

“ 

λi exp
`

wᵀ
ijθ

˚
2

˘(νij
ˆ exp

 

´λiyij exp
`

wᵀ
ijθ

˚
2

˘(‰

.

The full conditional distribution of λi|θ˚2 ,D is λi|θ˚2 ,D „ Gammapη˚i , φ
˚
i q, i “ 1, . . . , S, where

η˚i “
S
ÿ

i“1

ni
ÿ

j“1

νij ` ηλi,

φ˚i “ φλi `
S
ÿ

i“1

ni
ÿ

j“1

yij exp
`

wᵀ
ijθ

˚
2

˘

.

If we assume θ˚2 „ NpS`pqpµ2,Σ2q, then the marginal posterior distribution of θ˚2 |D is

ppθ˚2 |Dq9 exp

#

S
ÿ

i“1

ni
ÿ

j“1

νijw
ᵀ
ijθ

˚
2

+

ˆ exp

"

´
1

2
pθ˚2 ´ µ2q

ᵀ Σ´1
2 pθ˚2 ´ µ2q

*

ˆ

S
ź

i“1

pφ˚i q
´η˚i .

We elicit the prior distributions as θ˚1 „ Npp`1qp0, 10,000Ip`1q and λ0 „ Gammap0.01, 0.01q

for the first CPHM, and θ˚2 „ NpS`pqp0, 10,000IS`pq and λi „ Gammap0.01, 0.01q, i “ . . . , S,

for the second CPHM, where Iq denotes the qˆ q identity matrix. To test the global null hypothesis

using simulation studies discussed in Section 5.3.4, we calculate the upper limit of a 95% credi-

ble interval for γG|D using the first CPHM, and we reject the null hypothesis if γ0 is greater than

this limit. Similarly, we reject the null hypothesis for each region-specific treatment effect using

the second CPHM if the upper boundaries of the corresponding 95% credible intervals are below

γ0. For all simulation studies presented in the per, we set γ0 “ 0.
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C.4.2 Survival-Only Bayesian Model Averaging Approach

We also consider the Bayesian model averaging approach for survival data only (BMA-S) as

proposed by Bean, Ibrahim, and Psioda (2022). We partition the time axis into Q “ 8 intervals

where each interval contains an approximately equal number of observed events, and we assume

each region has a unique constant baseline hazard in each interval. If we consider a model space

with L models and let M` denote the `th model, then we can define ξ` “ tλ,γ`u to be the model

parameters under M`, ` “ 1, . . . , L, where λ is the Qˆ S constant baseline hazards and γ` is the

vector of D` distinct region-specific treatment effects (i.e., log of the hazard ratio).

For the prior elicitation under M`, we set

ppξ`|M`q “ ppγ`|M`q ˆ

#

S
ź

i“1

Q
ź

q“1

ppλiq|M`q

+

,

where

γ`|M` „ ND`pµ0`,Σ0`q,

λiq|M` „ Gammapηiq, φiqq.

We set each element of µ0` to equal logp1.3q and Σ0` “ Diagtp10ˆ|µ0`|q
2u, ` “ 1, . . . , L, and we

choose ηiq “ 0.01 and φiq “ 0.01, i “ 1, . . . , S, q “ 1, . . . , Q. Lastly, we assume uniform prior

model probabilities; i.e., ppM`q 9 1.

Let γ denote either the global treatment effect or a region-specific treatment effect, and set

γ0 “ 0. We test H0 : γ ě γ0 versus H1 : γ ă γ0 by calculating

P pγ ă γ0|Dq “
L
ÿ

`“1

P pγ ă γ0|D,M`qppM`|Dq.
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C.5 Additional Simulation Studies

C.5.1 Equal Sample Sizes with α P t0, 0.15u

We follow the same simulation setup, model details, and prior elicitations discussed in Sec-

tion 4.2 of the main paper, along with the following details:

• Equal regional sample sizes

• Underlying treatment-to-placebo hazard ratio for alternative regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Association parameter: α “ 0
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Figure C.1: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for simulation study with
equal regional sample sizes and α “ 0.
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We follow the same simulation setup, model details, and prior elicitations discussed in Sec-

tion 4.2 of the main paper, along with the following details:

• Equal regional sample sizes

• Underlying treatment-to-placebo hazard ratio for alternative regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Association parameter: α “ 0.15
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Figure C.2: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for simulation study with
equal regional sample sizes and α “ 0.15.
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C.5.2 Unequal Sample Sizes with α P t0, 0.15, 1.0u

We follow the same simulation setup, model details, and prior elicitations discussed in Sec-

tion 4.2 of the main paper, along with the following details:

• Regional sample sizes equal to original sample sizes in LEADER trial: sample sizes of

711, 3296, 2847, and 2486 for Asia, Europe, North America, and Rest of the World, respec-

tively.

• Scenario 1: underlying treatment-to-placebo hazard ratio for all regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Scenario 2: underlying treatment-to-placebo hazard ratios of 0.62, 0.82, 1.01, and 0.83 for

Asia, Europe, North America, and Rest of the World, respectively.

• Association parameter: α “ 0
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Figure C.3: Rejection rates (Panel A) and MSE relative to CPHM (Panel B) for the scenario with
all treatment-to-placebo hazard ratios equal to 0.868, and rejection rates (Panel C) and relative
MSE (Panel D) for the scenario with differing treatment-to-placebo hazard ratios. Both scenarios
consider unequal regional sample sizes and α “ 0.
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We follow the same simulation setup, model details, and prior elicitations discussed in Sec-

tion 4.2 of the main paper, along with the following details:

• Regional sample sizes equal to original sample sizes in LEADER trial: sample sizes of

711, 3296, 2847, and 2486 for Asia, Europe, North America, and Rest of the World, respec-

tively.

• Scenario 1: underlying treatment-to-placebo hazard ratio for all regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Scenario 2: underlying treatment-to-placebo hazard ratios of 0.62, 0.82, 1.01, and 0.83 for

Asia, Europe, North America, and Rest of the World, respectively.

• Association parameter: α “ 0.15
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Figure C.4: Rejection rates (Panel A) and MSE relative to CPHM (Panel B) for the scenario with
all treatment-to-placebo hazard ratios equal to 0.868, and rejection rates (Panel C) and relative
MSE (Panel D) for the scenario with differing treatment-to-placebo hazard ratios. Both scenarios
consider unequal regional sample sizes and α “ 0.15.
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We follow the same simulation setup, model details, and prior elicitations discussed in Sec-

tion 4.2 of the main paper, along with the following details:

• Regional sample sizes equal to original sample sizes in LEADER trial: sample sizes of

711, 3296, 2847, and 2486 for Asia, Europe, North America, and Rest of the World, respec-

tively.

• Scenario 1: underlying treatment-to-placebo hazard ratio for all regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Scenario 2: underlying treatment-to-placebo hazard ratios of 0.62, 0.82, 1.01, and 0.83 for

Asia, Europe, North America, and Rest of the World, respectively.

• Association parameter: α “ 1.0
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Figure C.5: Rejection rates (Panel A) and MSE relative to CPHM (Panel B) for the scenario with
all treatment-to-placebo hazard ratios equal to 0.868, and rejection rates (Panel C) and relative
MSE (Panel D) for the scenario with differing treatment-to-placebo hazard ratios. Both scenarios
consider unequal regional sample sizes and α “ 1.0.
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C.5.3 Sample Sizes of Null Regions Half the Size of Alternative Regions

We follow the same simulation setup, model details, and prior elicitations discussed in Sec-

tion 4.2 of the main paper, along with the following details:

• Sample sizes of null regions half the size of alternative regions

• Underlying treatment-to-placebo hazard ratio for alternative regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Association parameter: α “ 0.5
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Figure C.6: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for simulation study where
sample sizes of null regions are half the size of alternative regions.
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C.5.4 Sample Sizes of Null Regions Double the Size of Alternative Regions

We follow the same simulation setup, model details, and prior elicitations discussed in Sec-

tion 4.2 of the main paper, along with the following details:

• Sample sizes of null regions double the size of alternative regions

• Underlying treatment-to-placebo hazard ratio for alternative regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Association parameter: α “ 0.5
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Figure C.7: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for simulation study where
sample sizes of null regions are double the size of alternative regions.
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C.5.5 Sensitivity Analysis: Change Prior Model Probabilities

We follow the same simulation setup, model details, and prior elicitations discussed in Sec-

tion 4.2 of the main paper, along with the following details:

• Equal regional sample sizes

• Underlying treatment-to-placebo hazard ratio for alternative regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Number of time intervals in piecewise constant baseline hazard: Q “ 8

• Association parameter: α “ 0.5

• Prior model probabilities: ppM`,`1q9 exp paXDX,` ` aYDY,`1q, where aX , aY P t´1, 0, 1u
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Figure C.8: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for sensitivity analysis with
varying values of aX and aY .
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C.5.6 Sensitivity Analysis: Change Number of Time Intervals

We follow the same simulation setup, model details, and prior elicitations discussed in Sec-

tion 4.2 of the main paper, along with the following details:

• Equal regional sample sizes

• Underlying treatment-to-placebo hazard ratio for alternative regions equal to 0.868 (i.e.,

treatment effect of ´0.142)

• Association parameter: α “ 0.5

• Number of time intervals in piecewise constant baseline hazard: Q P t5, 8, 12u
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Figure C.9: Global rejection rates (Panel A), relative MSE (CPHM as reference) for alternative
regions (Panel B), relative MSE for null regions (Panel C), true positive rates for alternative
regions (Panel D), and false positive rates for null regions (Panel E) for sensitivity analysis with
varying values of Q.
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C.6 Additional Results for the LEADER Trial Data Analysis

C.6.1 Treatment Effects on the Longitudinal Marker HbA1c

Table C.2: Posterior summary statistics for the global treatment effects γX,G (main effect and
treatment-by-time interactions) on the longitudinal marker HbA1c. The knots for the linear
splines are at t P t3, 18u.

Type of Global Posterior Posterior Probability Probability
Treatment Effect Mean SD P pγX,G ă 0|Dq P pγX,G ą 0|Dq
Main Effect 0.067 0.021 0.325 0.675
Interaction with Time t ą 0 -0.351 0.009 1.000 0.000
Interaction with Time t ą 3 0.381 0.010 0.000 1.000
Interaction with Time t ą 18 -0.022 0.003 1.000 0.000
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Table C.3: Posterior summary statistics for the region-specific treatment effects γX,i (main effect
and treatment-by-time interactions) on the longitudinal marker HbA1c. The knots for the linear
splines are at t P t3, 18u.

Region / Type of Posterior Posterior Probability Probability
Treatment Effect Mean SD P pγX,i ă 0|Dq P pγX,i ą 0|Dq
Asia

Main Effect 0.130 0.020 0.002 0.998
Interaction with Time t ą 0 -0.402 0.008 1.000 0.000
Interaction with Time t ą 3 0.434 0.009 0.000 1.000
Interaction with Time t ą 18 -0.025 0.002 1.000 0.000

Europe
Main Effect -0.037 0.024 0.881 0.119
Interaction with Time t ą 0 -0.269 0.010 1.000 0.000
Interaction with Time t ą 3 0.295 0.011 0.000 1.000
Interaction with Time t ą 18 -0.018 0.003 1.000 0.000

North America
Main Effect 0.123 0.020 0.004 0.996
Interaction with Time t ą 0 -0.393 0.008 1.000 0.000
Interaction with Time t ą 3 0.425 0.009 0.000 1.000
Interaction with Time t ą 18 -0.025 0.002 1.000 0.000

Rest of the World
Main Effect 0.131 0.020 0.000 1.000
Interaction with Time t ą 0 -0.404 0.008 1.000 0.000
Interaction with Time t ą 3 0.436 0.009 0.000 1.000
Interaction with Time t ą 18 -0.025 0.002 1.000 0.000
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C.6.2 Marginal Posterior Model Probabilities by Submodel

Table C.4: Marginal posterior model probabilities (PMPs) for models corresponding to different
partitions of regions into sets (survival submodel).

———– Set Assignment ———– Number of
North Rest of Distinct Marginal

Submodel Asia Europe America World Effects PMP
1 1 1 1 1 1 0.218
2 1 1 1 2 2 0.032
3 1 1 2 1 2 0.170
4 1 1 2 2 2 0.114
5 1 2 1 1 2 0.067
6 1 2 1 2 2 0.083
7 1 2 2 1 2 0.073
8 1 2 2 2 2 0.244

Table C.5: Marginal posterior model probabilities (PMPs) for models corresponding to different
partitions of regions into sets (longitudinal submodel).

———– Set Assignment ———– Number of
North Rest of Distinct Marginal

Submodel Asia Europe America World Effects PMP
1 1 1 1 1 1 0.000
2 1 1 1 2 2 0.012
3 1 1 2 1 2 0.000
4 1 1 2 2 2 0.003
5 1 2 1 1 2 0.907
6 1 2 1 2 2 0.000
7 1 2 2 1 2 0.078
8 1 2 2 2 2 0.000
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