
ECONOMICALLY PROTECTING COMPLEX, LEGACY OPERATING SYSTEMS USING
SECURE DESIGN PRINCIPLES

Bhushan Jain

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of

Computer Science.

Chapel Hill
2022

Approved by:

Donald Porter

Saba Eskandarian

Mike Ferdman

Ketan Mayer-Patel

Cynthia Sturton

©2022
Bhushan P. Jain

ALL RIGHTS RESERVED

ii

ABSTRACT

Bhushan Jain: Economically Protecting Complex, Legacy Operating Systems using Secure Design
Principles

(Under the direction of Donald Porter)

In modern computer systems, complex legacy operating systems, such as Linux, are deployed ubiqui-

tously. Many design choices in these legacy operating systems predate a modern understanding of security

risks. As a result, new attack opportunities are routinely discovered to subvert such systems, which reveal

design flaws that spur new research about secure design principles and other security mechanisms to thwart

these attacks. Most research falls into two categories: encapsulating the threat and redesigning the system

from scratch. Each approach has its challenge. Encapsulation can only limit the exposure to the risk, but

not entirely prevent it. Rewriting the huge codebase of these operating systems is impractical in terms of

developer effort, but appealing inasmuch as it can comprehensively eliminate security risks. This thesis

pursues a third, understudied option: retrofitting security design principles in the existing kernel design.

Conventional wisdom discourages retrofitting security because retrofitting is a hard problem, may require the

use of new abstractions or break backward compatibility, may have unforeseen consequences, and may be

equivalent to redesigning the system from scratch in terms of effort.

This thesis offers new evidence to challenge this conventional wisdom, indicating that one can economi-

cally retrofit a comprehensive security policy onto complex, legacy systems. To demonstrate this assertion,

this thesis firstly surveys the alternative of encapsulating the threat to the complex, legacy system by adding a

monitoring layer using a technique called Virtual Machine Introspection, and discusses the shortcomings

of this technique. Secondly, this thesis shows how to enforce the principle of least privilege by removing

the need to run setuid-to-root binaries with administrator privilege. Finally, this thesis takes the first steps

to show how to economically retrofit secure design principles to the OS virtualization feature of the Linux

kernel called containers without rewriting the whole system. This approach can be applied more generally to

other legacy systems.

iii

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . x

1 INTRODUCTION . 1

1.1 Security Design Principles . 4

1.2 Security Properties and Mechanisms in a Secure System . 6

1.3 Summary . 8

2 ENCAPSULATING SECURITY THREATS USING VIRTUAL MACHINE INTROSPECTION . . 10

2.1 Background . 12

2.2 Bridges Across the Semantic Gap . 14

2.2.1 Learning and Reconstruction . 14

2.2.1.1 Hand-crafted Data Structure Signatures . 15

2.2.1.2 Source Code Analysis . 16

2.2.1.3 Dynamic Learning . 17

2.2.2 Code Implanting . 18

2.2.3 Process Outgrafting . 18

2.2.4 Kernel Executable Integrity . 19

2.2.4.1 The (Write ⊕ Execute) Principle . 21

2.2.4.2 Allow-listing Code . 21

2.2.4.3 Object Code Hooks . 21

2.3 Prevention vs. Detection . 22

2.3.1 Asynchronous vs. Synchronous Mechanisms . 23

iv

2.3.2 Hardware-assisted Introspection . 24

2.3.2.1 Snapshotting . 24

2.3.2.2 Snooping . 26

2.3.3 Memory Protection: A Necessary Property for Prevention . 26

2.4 Attacks, Defense, and Trust . 27

2.4.1 Kernel Object Hooking . 28

2.4.1.1 Text Section Hooks . 28

2.4.1.2 Data Section Hooks . 28

2.4.2 Dynamic Kernel Object Manipulation . 29

2.4.3 Direct Kernel Structure Manipulation . 32

2.4.4 The Semantic Gap is Really Two Problems . 33

2.5 Toward an Untrusted OS. 34

2.5.1 Paraverification . 35

2.5.2 Hardware Support for Security . 36

2.5.3 Reconstruction from Untrusted Sources . 36

2.6 Under-explored Issues . 37

2.6.1 Scalability . 37

2.6.2 Privacy. 38

2.7 Summary . 38

3 RETROFITTING LEAST PRIVILEGE PRINCIPLE ONTO SETUID-ROOT BINARIES 40

3.1 Overview . 42

3.2 Background . 45

3.2.1 The Setuid Bit . 45

3.2.2 Capabilities, LSMs, and SELinux. 47

3.2.3 Setuid Installation Statistics . 49

3.3 Setuid Policy Study . 50

3.3.1 Network . 53

v

3.3.1.1 Raw and Packet Sockets . 53

3.3.1.2 Point-to-point Protocol (PPP) . 54

3.3.1.3 Bind . 54

3.3.2 Mount . 55

3.3.3 UID Switching and Delegation . 55

3.3.4 File System Permissions . 57

3.3.5 Interface Design . 59

3.3.6 Limitations and Discussion . 60

3.4 Evaluation . 60

3.4.1 Performance Overheads . 62

3.4.2 Security Evaluation . 63

3.4.3 Functional Testing . 65

3.4.4 Toward Zero Setuid-To-Root Binaries . 65

3.4.5 Design Principles for Protection Mechanisms in Protego . 66

3.5 Related Work . 67

3.6 Summary . 68

4 RETROFITTING COMPLETE MEDIATION AND MEMORY PROTECTION TO
ISOLATE LINUX CONTAINERS. 69

4.1 Overview . 70

4.2 Hardware Support for Memory Isolation . 72

4.3 Memory Layout Redesign to Leverage Hardware Support . 73

4.4 Scheduling and Interrupts . 75

4.5 Implementation Details . 77

4.6 Evaluation . 78

4.6.1 Memory Footprint Overhead . 79

4.6.2 Startup Time . 80

4.6.3 Developer Effort . 80

4.6.4 Effect of VMEXIT on Execution Time . 81

vi

4.6.5 Prevent Illegal Memory Access. 82

4.6.6 Design Principles for Protection Mechanisms in This Solution . 83

4.7 Future Work . 85

4.7.1 Filesystem Design . 85

4.7.2 Network Design . 86

4.8 Discussion . 88

4.9 Related Work . 89

4.9.1 Isolating Drivers from the Core Kernel . 89

4.9.1.1 Kernel Wrapping . 89

4.9.1.2 Virtualization . 89

4.9.1.3 User-mode Drivers . 90

4.9.1.4 Software Fault Isolation (SFI) . 90

4.9.1.5 Language-based Protection . 90

4.9.2 Virtualizing Ring 0 . 91

4.9.3 Design Points on the Spectrum Between VMs and Containers. 92

4.9.4 Other Related Work . 95

4.9.4.1 Non-uniform Virtual Address Space . 95

4.9.4.2 Containers as Packaging Instead of a Virtualization Technique 95

4.9.4.3 Leveraging Virtualization Hardware for More Than Virtual Machines 96

4.10 Summary . 96

5 CONCLUSION . 97

BIBLIOGRAPHY . 98

vii

LIST OF TABLES

2.1 Size and documented vulnerabilities of a representative bare-metal hypervisor
(Xen) and legacy OS (Linux). Code sizes were calculated based on Xen 4.4 and
Linux 3.13.5. CVEs were collected for all versions of these code bases over the
period from 01/01/2006 to 03/03/2014. 11

2.2 VMI techniques, monitor placement (as illustrated in Figure 2.1, and their underly-
ing trust assumptions. 20

2.3 VMI attacks, defenses, and underlying trust assumptions. 27

2.4 Trust Models. (
√

indicates the layers that are trusted.) . 34

3.1 Summary of results. 42

3.2 Lines of code written or changed in Protego, including kernel, trusted services, and
command-line utilities. 44

3.3 Percent of systems that install packages containing setuid-to-root binaries, as
reported by the Debian and Ubuntu ’popularity contest’ surveys. Average is
weighted by the total number of systems reporting in each survey. 48

3.4 Part I: System abstractions used by commonly installed setuid utilities on recent
Debian and Ubuntu systems. The table identifies the common thread of inconsistent
kernel policies and system policies for these abstractions, discusses the underlying
security concerns, and how Protego unifies system and kernel policies. 51

3.5 Part II: System abstractions used by commonly installed setuid utilities on recent
Debian and Ubuntu systems. The table identifies the common thread of inconsistent
kernel policies and system policies for these abstractions, discusses the underlying
security concerns, and how Protego unifies system and kernel policies. 52

3.6 Protego overheads compared to Linux with AppArmor. Unless otherwise noted,
tests measure execution time in microseconds (lower is better). A few tests measure
bandwidth in MBps or Kbps, where higher is better. 61

3.7 Historical vulnerabilities in setuid-to-root binaries (total, and those that lead to
privilege escalation). In Protego, these utilities and the vulnerable code would be
deprivileged and would not lead to a privilege escalation. Dashes are placed in
the “Total” column for a CVE that spans multiple packages; the package totals are
reported in other rows. 63

3.8 Gcov coverage of command-line setuid binaries . 65

3.9 System abstractions used by setuid binaries in packages not included in the Sec-
tion 3.3 study. Abstractions below the double line need to be addressed in future
work. 66

viii

4.1 Start-Up times for a VM and a container. 70

4.2 Memory footprint overhead for native clone, MicroVM, and our solution. 80

4.3 Startup time for native clone, MicroVM, and our solution. 80

4.4 Developer effort for Linux kernel, MicroVM, and our solution. 80

ix

LIST OF FIGURES

2.1 Monitor placement options in VMI: in a sibling VM, the hypervisor, in the guest
OS itself, or in hardware. In-guest and hardware solutions require some assistance
from the hypervisor. 13

3.1 Comparison of the mount system call on Linux and Protego. Trusted components
are in gray. Linux places trust in the /bin/mount binary to enforce policies
specified in /etc/fstab; this binary is called by an untrusted user. The mount
system call fails if the caller doesn’t have the CAP SYS ADMIN capability (i.e., is
not root). In Protego, a trusted daemon reads the policies from /etc/fstab and
configures the Protego LSM through a file in /proc. Separately, an untrusted user
can use /bin/mount, or any other binary, to issue a mount system call. The
mount system call then calls an LSM hook to check this change against system
policy. 43

4.1 Hardware-Assisted OS Virtualization (Containers) . 70

4.2 Interrupt delivery to host and guest . 75

4.3 Reduce VMEXITs by servicing system calls in vmx non-root mode . 81

4.4 Effect of VMEXIT on getpid() execution time . 82

4.5 Our solution prevents illegal memory access by an attacker . 83

4.6 Container technologies on a spectrum for security, resource consumption, legacy
code reuse. The blue arrow shows the design point on the spectrum explored by
our solution. 93

x

CHAPTER 1: INTRODUCTION

Legacy systems in production are used in more hostile environments than what the designers and

developers envisioned. Dennis Ritchie [172] said, “The first fact to face is that UNIX was not developed with

security, in any realistic sense, in mind; this fact alone guarantees a vast number of holes.” James Morris [14]

said, “On one hand, we’re doing things today with computers that were maybe pipe dreams 40 years ago, yet

we’re still relying on operating systems designed decades ago.” It is almost impossible to code large, complex

systems without creating bugs. On average, about 30 bugs are introduced per 1000 lines of code written in

commercial software [100]. Some of these bugs are also vulnerabilities, as the bugs can be exploited by an

attacker to manipulate the program or gain control of the system. Just like bugs, it is almost impossible to

code large, complex systems without creating vulnerabilities.

Language or compiler-based security mechanisms can reduce the number of these vulnerabilities and

their impact, but these mechanisms do not ubiquitously work for all code. These security mechanisms

include memory safety, software fault isolation, code integrity, data-flow integrity, control-flow integrity,

address space randomization, data randomization, penetration testing, and formal verification. However,

these mechanisms do not work out-of-the-box for all code written in C. Most of these tools are effective for

application binaries or other high-level languages such as Java, but the code of, say, the Linux kernel, is too

big and complex to apply formal methods or many security mechanisms. For instance, providing memory

safety in Linux is such a daunting task, that security researchers only recently started running Rust code

inside Linux [187].

Saltzer and Schroeder devised design principles to help developers design systems and applications

with security as the prime objective [175]. These secure design principles are economy of design, fail-safe

defaults, complete mediation, open design, separation of privilege, least privilege, least common mechanism,

and psychological acceptability. Modern OSes were designed and initially implemented for much less hostile

environments than in modern deployments, so it is unsurprising that early design and implementation choices

deviate from these principles at several points. Thus, taking the Linux kernel as a running example, the early

stages of design and implementation of a legacy OS like Linux did not adhere to all of these security design

1

principles. Moreover there has been a lot of resistance to add security features in Linux, especially from

Linus Torvalds, the founder of Linux, who famously said “I don’t trust security people to do sane things.” [13]

With the benefit of several intervening decades of research on programming languages and security,

designers and developers of new applications or systems with security as the primary objective can leverage

programming language tools and security design principles. But, to improve the security of legacy codebases,

there are one of the three options: (1) accept the risk, (2) try to encapsulate the risk to limit the exposure [114],

or (3) rewrite the legacy code while following the new techniques and the security design principles [128].

However, these options are either hard or not practical. Firstly, the Linux kernel code is too big to even

completely know the risk. Secondly, encapsulation can only limit the exposure to the risk, not completely

prevent it. Finally, it is not practical to rewrite over 27 million lines of Linux. Approaches for hardening a

legacy codebase must scale in terms of developer effort.

A better approach to protecting a legacy system like Linux would be to retrofit these security design

principles in the existing kernel design, if we had economical and practical techniques. But alas, this is an

open problem. We also need to rethink the design of the legacy system code to maintain the old abstractions

and interfaces for backward compatibility, but make the code adapt to security design principles.

The thesis of this dissertation is that security design principles can be economically, and practically

enforced on complex, legacy kernel code, without the need to rewrite the whole operating system. First,

Chapter 2 will show how encapsulation of threats in the Linux kernel is handled using virtual machine

introspection, and the limitations of the technique. Second, Chapter 3 will show how to reduce privilege

escalation vulnerabilities in the Linux kernel by making just a few isolated changes, and rethinking the design

to enforce the least privilege principle. Finally, Chapter 4 will use the security design principles and compiler

tools to provide memory isolation for the containers feature of the Linux Kernel.

The first technical contribution of the thesis is a survey of virtual machine introspection techniques

from more than 100 papers over 12 years, and organize the VMI design space to create a framework that

can help reason about design choices while building new systems. Threats in the Linux kernel are often

neutralized or contained by encapsulating the Linux kernel into a virtual machine, and monitoring that virtual

machine for unusual behavior. Virtual machine introspection (VMI) adds a hypervisor layer and monitors

the kernel after moving it into a VM. Some of these VMI solutions inspect the memory of a virtual machine

by executing concurrently, and often asynchronously with the VM. These asynchronous VMI solutions

passively monitor and detect attacks on the VM after the fact. On the other hand, some VMI solutions are

2

synchronous, mediating guest operations inline to prevent security policy violations by protecting the VM

memory. This thesis observes that all VMI solutions that prevent an attack are based on the secure design

principle of complete mediation and the technique of memory protection. However, an attacker can also

change the kernel data objects and the interpretation of kernel data structures to show the monitor a view of

the system different from reality. This thesis observes that this stronger attack is often obviated by generous

threat models, rendering encapsulation an imperfect solution.

The second technical contribution of the thesis is to enforce the Least Privilege Principle on the untrusted

user by removing the need to run special setuid-to-root binaries with escalated privileges, and without

changing the user experience. Unprivileged users of modern Unix systems access safe subsets of otherwise

privileged system functionality through trusted, setuid-to-root binaries. The problem with setuid-to-root

binaries is that they violate the Least Privilege Principle (LPP) [175], and create opportunities for privilege

escalation attacks. Chen et al. [70] show that many privilege escalation attacks go through setuid-to-root

binaries, even on SELinux [145] or AppArmor [28]. A study of 28 most popular setuid-to-root binaries,

which account for all setuid-to-root binaries installed on roughly 89.5% of the Debian and Ubuntu systems

surveyed using the Lintian reports [32], revealed that only eight system calls and two other system interfaces

underlie the vast majority of root privilege requirements. This thesis solves this problem by designing and

implementing a simple, efficient framework for migrating policies from setuid-to-root binaries into the kernel

as linux security module (LSM) policies, obviating the need for these binaries to run with escalated privileges

in nearly all situations, and removing a source of privilege escalation.

The third technical contribution of the thesis is to give containers VM-like memory isolation properties

by economically isolating the memory of containers without sacrificing the containers’ lighter weight. Docker

and Linux containers (LXC) have been gaining popularity as a solution to trade off security isolation for

efficiency and compatibility across different OS distributions. For instance, Google has adopted Docker

for their cloud model to compete with Amazon cloud services [154]. Like VMs, containers encapsulate

the threats in the Linux kernel, but containers are a more lightweight and faster alternative to VMs. VMs

consume a lot of extra resources like memory footprint and take a while to start up, as they are booting a

whole new Operating System.

Although containers are lighter weight than virtual machines, they are more susceptible to attacks than

VMs due to the design choice to share the same kernel in the host as well as the guest. The OS virtualization

isolates containers using namespace by creating container-specific copies of selected global kernel objects,

3

such as process descriptor list, and redirecting the use of these objects to the appropriate container-specific

copy. The host exposes the system call interface to the container framework. Thus, the same system call

vulnerabilities that can be exploited by an userspace application are exposed in containers. The problem is

that by exploiting the host kernel vulnerabilities, the guest can access the whole host kernel, including the

memory belonging to other guests as well as the host. To give containers isolation properties comparable

to VMs, we need to redesign the kernel to provide the guest with access to only the necessary parts of host

memory, and use complete mediation to enforce memory protection in the kernel. We take the first steps to

show how the design principles for protection mechanisms and compiler tools can be retroactively fitted on

the huge Linux kernel code by slightly rethinking the design, and making small changes.

Section 1.1 describes the security design principles and the Section 1.2 describes security mechanisms

that complement these principles. In addition to following the security design principles, these security

mechanisms are also necessary to build secure systems.

1.1 Security Design Principles

There is no way to build a perfectly secure system, mainly because of the difficulty in proving that no

unauthorized actions can occur in the system. Even in systems designed and implemented with security as

a prime objective, design and implementation flaws can allow a malicious user to circumvent the access

constraints. For any system, the effectiveness of protection mechanisms is based on the system’s ability

to prevent security violations and unauthorized access. However, it is very difficult to guarantee that all

unauthorized accesses are denied. Almost all security systems are built for a threat model that excludes a few

threats. It is often possible to crash a system or deny system access to other users using a sophisticated attack.

New vulnerabilities are often discovered in systems designed long ago.

In the absence of a methodical technique to build secure systems, Saltzer and Schroeder described a

few design principles based on empirical evidence and experience. These design principles can guide the

design and implementation of a system without security flaws. The security design principles are discussed

as follows:

• Separation of Privilege: This principle requires that access is granted based on two or more conditions

to enforce multi-factor authentication. Linux doesn’t inherently support multi-factor authentication,

but relies on third-party applications to provide this feature.

4

• Least Privilege: This principle states that every program and every user of the system should operate

using the least set of privileges necessary to complete the job. A monolithic kernel like Linux violates

this principle by running all its code at the privileged level, and due to features like setuid-to-root

binaries that allow unprivileged users to use privileged kernel operations.

• Least Common Mechanism: This principle minimizes the number of mechanisms common to more

than one user and is depended on by all users. Trusted computing base (TCB) is an ubiquitously used

security metric to count the number of lines of code that is trusted by the system. Thus, enforcing least

common principle can reduce the TCB to minimum. Linux violates this principle because any kernel

data can be accessed anywhere in the kernel code. Thus, all 27.8 million lines of kernel code and data

are common to all users and processes, and part of the TCB.

• Economy of Mechanism: This principle requires that the design and implementation of a system

are kept as small as possible. A monolithic kernel like Linux violates this principle by adding all the

drivers and subsystems to the kernel.

• Fail-safe Defaults: This principle requires that the access is based on permission instead of exclusion.

Linux follows this principle by using discretionary access control, which allows access only based on

the identity of the user.

• Complete Mediation: This principle states that every access to every object must be checked for

authority. By convention, Linux design requires kernel developers to correctly check for authority, and

sometimes these checks are missing, thus violating the complete mediation principle.

• Open Design: This principle requires that the design is not secret. Linux follows this principle by

making its code open source.

• Psychological Acceptability: This principle states that it is essential that the human interface be

designed for ease of use, so that users routinely and automatically apply the protection mechanisms

correctly. For some security mechanisms in Linux like SELinux, policies are written in such a

specialized format, that only an expert can write a correct SELinux policy. Assessing this aspect of

Linux is out of scope, as it would likely require user studies orthogonal to this thesis, but this thesis

maintains ease of use by not changing any existing user interfaces.

5

1.2 Security Properties and Mechanisms in a Secure System

Although the above security design principles are crucial to creating a secure system, there are also

some standard security properties and mechanisms that complement these principles. These properties and

mechanism are commonly used in modern security literature [192], and tend to reflect more recent and

specific techniques than the above security design principles.

• Non-executable Data: A control-flow-hijack exploit executes the attacker-specified malicious code.

The Non-executable Data policy can prevent this attack by making data memory pages, like the stack

or the heap, non-executable using the executable bit for memory pages in the hardware.

• Memory Safety: Memory safety is a property of some programming languages that prevents program-

mers from introducing certain types of bugs related to how the memory is used. All memory corruption

exploits can be stopped by enforcing memory safety. However, both spatial and temporal errors must

be prevented to achieve complete memory safety. Type-safe languages enforce the memory safety

by checking object bounds at array accesses and using automatic garbage collection to prevent the

programmer from explicitly destroying objects.

• Code Integrity: A Code Integrity policy ensures that program code is never overwritten. To achieve

Code Integrity, all memory pages containing code are set to read-only using the hardware support

present in all modern processors.

• Data Integrity: Data Integrity protects against control data hijacking and non-control data attacks, but

not against covert channels that leak information. Although Data Integrity prevents data corruption,

it only protects against invalid memory writes, not reads. Data Integrity is a weaker property than

memory safety, because Data Integrity solutions enforce an approximation of spatial memory safety,

and do not enforce temporal safety.

• Data-flow Integrity: Data-Flow Integrity (DFI) checks load/store instructions to detect the corruption

of any data before it gets used. DFI restricts reads based on the last instruction that wrote the read

location. For example, the policy ensures that the flag representing the supervisor mode was last

written by the store instruction from the source code, and not by some attacker-controlled store. The

6

policy also ensures that the return address used by a return was last written by the corresponding call

instruction.

• Control-flow Integrity: Control-flow Integrity (CFI) is a policy that detects and prevents attacks by

restricting control-flow transfers to a limited set of allowed destinations. CFI statically determines

the valid targets of not only calls, but also function returns, and thus enforces the resulting static

control-flow graph. To prevent all control-flow hijacks, not only returns, but indirect calls and jumps

have to be protected as well.

• Address Space Randomization: Address Space Layout Randomization (ASLR) is a memory address

randomization technique, which randomly arranges the position of different code and data memory

areas. The attacker cannot reliably divert control-flow if the address in the virtual memory space is not

fixed. ASLR is the most comprehensive currently deployed protection against hijacking attacks.

• Data Space Randomization: Data Space Randomization (DSR) randomizes the representation of data

stored in memory instead of the location of the data. It encrypts all variables, including pointers, and

uses different keys. The code is instrumented to encrypt and decrypt variables when they are stored and

loaded from memory. The protection of this mechanism is stronger, because encrypting all variables

protects against control-flow hijacks, as well as data-only exploits.

• Formal Verification: Formal verification generally proves that an implementation satisfies a model, or

specification, of the program’s expected behavior. Assuming the specification is written to preclude

insecure behavior (for some definition of secure), a formally-verified codebase will also be secure.

Formal verification is a “holy grail” for developers; as E.W. Dijkstra pithily observed, “program testing

can be used very effectively to show the presence of bugs but never to show their absence” [3]. Using

formal verification, a developer can actually prove the absence of bugs in her program.

• Penetration Testing: Penetration testing is an empirical alternative to formal verification. The

developers can recruit a team of expert attackers that test likely attack vectors. One of the successful

examples of this type of security evaluation is the annual hacking contest Pwn2Own [34]. However,

the cost of “bug bounties” can be high. For example, Google offered $1 million to hackers who can

produce zero-day exploits against its Chrome browser [30].

7

• Auditing: Auditors can do a code review to check for any vulnerabilities, but is a labor-intensive

process. Auditing ensures that proper security standards are met, which should reduce the existence of

vulnerabilities in the code. While the goal of penetration testing is to find vulnerabilities, the goal of

the auditor is to ensure safe practices are followed to prevent vulnerabilities.

• System Hardening: In addition to the above mechanisms, system hardening is a process of reducing

the available attack surface. This includes using features like seccomp to prevent certain system calls

from being accessed. More broadly, it involves only running the absolute minimum code needed for

functionality, and removing unnecessary code or binaries from a system.

Often, figuring out how to apply the security design principles in a given context is not straightforward.

Actually applying these principles is not as simple as typing some command or using a well-known tool;

these principles require some creativity to even apply at all, and the manifestation looks different in different

contexts. Additionally, depending on the context, enforcing the security mechanisms and properties can help

adhere to one or more security design principles. For instance, memory safety can help achieve the principle

of complete mediation, and following the economy of mechanism principle can help with auditing and formal

verification.

1.3 Summary

This chapter showed how security was not a primary concern while designing legacy, complex sys-

tems. This chapter briefly described the security design principles and language or compiler-based security

mechanisms. This chapter argued that retrofitting security design principles in the existing kernel design is

a better solution than accepting the risk, encapsulating the risk, or rewriting the legacy code from scratch.

This chapter briefly described how the thesis shows that encapsulating the risk is an incomplete solution,

economically reduces privilege escalation vulnerabilities in Linux, and provides memory isolation for the

containers feature of Linux. Finally, this chapter observes that applying the security design principles in a

given context requires creativity, and the manifestation looks different in different contexts.

Chapter 2 observes how encapsulating the threats to the Linux kernel in a Virtual Machine is an imperfect

solution. Chapter 3 discusses how to enforce the principle of least privilege in the Linux kernel by removing

the need for running setuid-to-root binaries with elevated privileges. Chapter 4 demonstrates how we can

8

economically retrofit security design principles and security mechanisms to a huge, complex codebase such

as the Linux kernel. Finally, chapter 5 summarizes this thesis document.

9

CHAPTER 2: ENCAPSULATING SECURITY THREATS USING VIRTUAL MACHINE
INTROSPECTION

Virtualization has the potential to greatly improve system security by introducing a sensible layering—

separating the policy enforcement mechanism from the component being secured. Most legacy OSes are both

monolithic and burdened with a very wide attack surface. A legacy OS, such as Linux, executes all security

modules in the same address space and with the same privilege level as the rest of the kernel [206]. When

this is coupled with a porous attack surface, malicious software can often load code into the OS kernel that

disables security measures, such as virus scanners and intrusion detection. As a result, users have generally

lost confidence in the ability of the OS to enforce meaningful security properties. In public multi-tenant

cloud computing, for instance, customers’ computations are isolated using virtual machines rather than OS

processes.

In contrast, hypervisors generally have a much narrower interface. Moreover, bare metal, or Type I [164],

hypervisors generally have orders of magnitude fewer lines of code than a legacy OS. Table 2.1 summarizes

the relative size of a representative legacy OS (Linux 3.13.5), and a representative bare-metal hypervisor

(Xen 4.4), as well as comparing the number of reported exploits in both systems over the last 8 years. Perhaps

unsurprisingly, the size of the code base and API complexity are strongly correlated with the number of

reported vulnerabilities [185]. Thus, hypervisors are a much more appealing foundation for the trusted

computing base of modern software systems.

This chapter focuses on systems that aim to assure the functionality required by applications using

a legacy software stack, secured through techniques such as virtual machine introspection (VMI) [98].

A number of research projects observe that a sensitive application component, such as a random number

generator or authentication module, requires little functionality, if any, from the OS, yet are vulnerable to

failures of the OS [150, 151]. These projects are beyond the scope of this chapter, which instead focuses

on systems that leverage virtualization to ensure security properties for applications that require legacy OS

functionality.

10

Codebase Lines of code
Xen hypervisor 4.4 0.50 Million
Linux kernel 3.13.5 12.01 Million

Codebase No. of CVE
Xen hypervisor 24
Linux kernel 903

Table 2.1: Size and documented vulnerabilities of a representative bare-metal hypervisor (Xen) and legacy
OS (Linux). Code sizes were calculated based on Xen 4.4 and Linux 3.13.5. CVEs were collected for all
versions of these code bases over the period from 01/01/2006 to 03/03/2014.

VMI has become a relatively mature research topic, with over 100 projects. This chapter distills key

design points from previous work on VMI—providing readers and system designers with a framework for

evaluating design choices.

Moreover, we observe an unfortunate trend in the literature: many papers do not explicate their assump-

tions about the system, trusted computing base, or threat models. Although an attentive reader can often

discern these facts, this trend can create confusion within the field. Thus, this survey carefully explicates the

connection between certain design choices and the fundamental trust assumptions underlying these designs.

One particularly salient observation is that all current solutions to the semantic gap problem [71] implicitly

assume the guest OS is benign. Although this is a reasonable assumption in many contexts, it can become a

stumbling block to the larger goal of reducing the size of the trusted computing base.

Finally, after identifying key design facets in previous work, this chapter identifies promising under-

explored regions of the design space. The chapter discusses initial work in these areas, as well as the

applicability of existing techniques and more challenging threat models.

The contributions and insights of this work are as follows:

• A thorough survey of research on VMI, and a distillation of the principal VMI design choices.

• An analysis of the relationship between design choices and implicit assumptions and trust. We observe

that existing solutions to the semantic gap problem inherently trust the guest OS, often in direct

contradiction to the underlying motivation for using VM introspection.

• The observation that the semantic gap problem has evolved into two separate issues: an engineering

challenge and a security challenge. Existing solutions address the engineering challenge.

• Identifying a connection between techniques that protect memory and prevent attacks.

11

• Exploring the applicability of current techniques to new problems, such as removing the guest OS from

the trusted computing base without removing OS functionality.

• Identifying additional points in the design space that are under-explored, such as hardware-support for

mutual distrust among system layers and dynamic learning from an untrusted OS.

2.1 Background

The specific goals of VM introspection systems vary, but commonly include identifying if a malicious

loadable kernel module, or rootkit, has compromised the integrity of the guest OS [163]; identifying malicious

applications running on the system [142]; or ensuring the integrity or secrecy of sensitive files [113]. In these

systems, a monitor tracks the behavior of each guest OS and either detects or prevents policy violations. Such

a monitor may be placed in the hypervisor, a sibling VM, in the guest itself, or in the hardware, as illustrated

in Figure 2.1. This process of looking into a VM is Virtual Machine Introspection (VMI).

A fundamental challenge to using VMI for security policy enforcement is that many desirable security

policies are expressed in high-level, OS abstractions, such as files and processes, yet the hypervisor only has

direct visibility into hardware-level abstractions, such as physical memory contents and hardware device

operations. This disparity in abstractions is known as the semantic gap.

As an example of how the semantic gap creates challenges for introspection, consider how a hypervisor

might go about listing the processes running in a guest OS. The hypervisor can access only hardware-level

abstractions, such as the CPU registers and contents of guest memory pages. The hypervisor must identify

specific regions of guest OS memory that include process descriptors, and interpret the raw bytes to reconstruct

semantic information, such as the command line, user id, and scheduling priorities.

As a result of the semantic gap, much of the VMI development effort goes into reconstructing high-level

semantic information from low-level sources. VMI tools attempt to reconstruct a range of information,

including the set of running processes, sensitive file contents, and network sockets. For brevity, we limit

this chapter to memory introspection, where the hypervisor draws inferences about guest behavior from the

contents of memory and CPU registers. A range of work has also introspected disk contents [120, 193, 212]

and network traffic [106, 124]; at this boundary, we limit discussion to in-memory data structures, such as

those representing file metadata (inode) or a socket (sk buff).

12

Sibling
VM

 Hardware

 Hypervisor

App

Guest OS

App App
VM

Figure 2.1: Monitor placement options in VMI: in a sibling VM, the hypervisor, in the guest OS itself, or in
hardware. In-guest and hardware solutions require some assistance from the hypervisor.

As we discuss in the next section, many of these semantic reconstruction techniques rely on fragile

assumptions or are best-effort. Unfortunately, errors in reconstructing semantic information can be exploited

by malware to trick an introspection-based security monitor.

Continuing our example of listing processes in a guest OS, a typical introspection strategy would be

to identify the definition of a process descriptor (e.g., a task struct on Linux) from the source code,

and then walk the list of runnable processes by following the global root of the process list init task,

overlaying this structure definition over the relevant memory addresses. This strategy faces a number of

challenges. First, one must either assume all process descriptors are in this list—even in a compromised or

malicious OS—or one must detect hidden processes, using techniques such as scanning all of guest memory

looking for potential process descriptors or detecting inconsistencies between the currently loaded page

tables and the purported process descriptor [121]. Hidden process detection [113] faces additional challenges,

13

such as false positives from scanning memory during a critical section which temporarily violates some

internal invariant the introspection tool is checking. In order to prevent the guest OS from using a hidden

process descriptor, the introspection must identify all context switching code in the kernel, possibly including

dynamically loaded code that manually context switches a hidden process. Finally, a rootkit might hide itself

in a subtle and unexpected manner, such as loading itself as a thread in the address space of a benign system

process, or placing its code in the memory image of a common library and scheduling itself by changing the

address of a signal handling function.

These subtleties make robustly bridging the semantic gap quite a challenge. The next section organizes

current strategies to solve this problem.

2.2 Bridges Across the Semantic Gap

Modern OSes are complex systems consisting of thousands of data structures, and many instances of

each type. A typical running instance of the Linux kernel was found to have a core set of 29,488 data structure

instances belonging to 231 different types that enable scheduling, memory management, and I/O [169]. Each

of these structures consists of many fields. For instance, a task struct in Linux 3.10 contains more than 50

fields [19], many of which are pointers to other structures. A key ingredient to any solution to the semantic

gap problem is reconstruction of kernel data structures from memory contents.

This section begins with explaining techniques to reconstruct kernel data structures (2.2.1), followed by

additional introspection techniques that do not directly reconstruct data structures (§2.2.2–2.2.3), and then

techniques that assure the integrity of the kernel binary (§2.2.4). As the section explains each technique, it

highlights the underlying trust assumption(s)—most commonly that the guest OS is benign. We will revisit

these trust assumptions as we explain VMI attacks and defenses (§2.4). as well as discussing how one might

adapt VMI to a stronger threat model where these assumptions do not hold (§2.5).

2.2.1 Learning and Reconstruction

Data structure reconstruction generally relies on a learn and search methodology. A learning phase is

used to extract information relevant to data structures, generally a data structure signature. A signature can

be used to identify and reconstruct data structure instances within kernel memory contents. Signatures are

14

created using techniques such as expert knowledge, source analysis, or dynamic analysis—each described in

this subsection (§2.2.1.1–2.2.1.3).

A second search phase identifies instances of the data structure. The two most common search strategies

are to either linearly scan kernel memory or to traverse data structure pointers, starting with public symbols.

Depending on the OS, public symbols may include debugging symbols or the dynamic linking tables exposed

to loadable kernel modules. It is arguable which approach is more efficient, since many kernel data structures

can have cyclic or invalid pointers, but may require traversing less total memory. However, the linear scan of

kernel memory has the advantage that it is robust to “disconnected” structures or other attempts to obfuscate

pointers. Both techniques can observe transient states when searching concurrently with OS operation,

discussed further in §2.3.1.

Several linear scanning techniques limit the search space by introspecting on the kernel memory

allocators—either by interpreting allocator data structures [113] or by placing debugging breakpoints on

the allocator [169]. OS kernels commonly use a different slab or memory pool for each object type; this

information can be used to further infer data structure types. An advantage of leveraging heap-internal

information for search is more easily identifying transient data structures which have been freed but may

be pointed to—a challenge for other search approaches. An inherent risk of this approach is missing data

structures allocated in an unorthodox manner.

Searching overheads. In practice, searching for data structures in a kernel memory snapshot can take

from tens of milliseconds [113] up to to several minutes [63]. Thus, most systems reduce overheads by

searching periodically and asynchronously (§2.3.1). Periodic searches fundamentally limit these approaches

to detecting compromises after the fact, rather than preventing policy violations. Moreover, these approaches

can only reliably detect compromises that make persistent changes to a data structure. Transient malware can

race between two searches of kernel memory.

The rest of this subsection describes the three major approaches to learning data structure signatures.

2.2.1.1 Hand-crafted Data Structure Signatures

Introspection and forensic analysis tools initially used hand-crafted signatures, based on expert knowledge

of the internal workings of an OS. For instance, such a tool might generate the list of running processes,

similar to ps, by walking a global task list in Linux. Examples of this approach include Memparser [16],

KNTLIST [12], GREPEXEC [6] and many others [2, 4, 5, 8, 15, 17, 18, 21, 22, 176, 177].

15

The most sophisticated frameworks for hand-crafted reconstruction use a wide range of subtle invariants

and allow users to develop customized extensions. FACE/Ramparser [80] is a scanner that leverages invariants

on values within a data structure, such as enumerated values and pointers that cannot be null. Ramparser

can identify running processes (task struct), open network sockets (struct sock), in-kernel socket buffers

(sk buff), loaded kernel modules (struct module), and memory-mapped and open files for any given process

(vm area struct). Similarly, Volatility [20] is a framework for developing forensics tools that analyze memory

snapshots, with a focus on helping end-users to write extensions. Currently, Volatility includes tools that

extract a list of running processes, open network sockets and network connections, DLLs loaded for each

process, OS kernel modules, system call tables, and the contents of a given process’s memory.

Hand-crafting signatures and data structure reconstruction tools creates an inherent limitation: each

change to an OS kernel requires an expert to update the tools. For instance, a new version of the Linux

kernel is released every 2–3 months; bugfix updates to a range of older kernels are released as frequently as

every few weeks. Each of these releases may change a data structure layout or invariant. Similarly, different

compilers or versions of the same compiler can change the layout of a data structure in memory, frustrating

hand-written tools. Hand-written tools cannot keep pace with this release schedule and variety of OS kernels

and compilers; thus, most introspection research has instead moved toward automated techniques.

2.2.1.2 Source Code Analysis

Automated reconstruction tools may rely on source code analysis or debugging information to extract

data structures definitions, as well as leverage sophisticated static analysis and source invariants to reduce

false positives during the search phase. Examples of source code analysis tools include SigGraph [140],

KOP [63], and MAS [82].

One basic approach to source analysis is to identify all kernel object types, and leverage points-to

analysis to identify the graph of kernel object types. Kernel Object Pinpointer (KOP) [63] extended a

fast aliasing analysis developed for non-security purposes [109], with several additional features, including:

field-sensitivity, allowing KOP to differentiate accesses made to different fields within the same struct; context-

sensitivity, differentiating different uses of union types and void pointers based on type information in

code at the call sites; as well as inter-procedural and flow-insensitive analysis, rendering the analysis robust

to conditional control flow, e.g., if statements. In applying the static analysis to a memory snapshot, KOP

16

begins with global symbols and traverses all pointers in the identified data structures to generate a graph of

kernel data structures.

A key challenge in creating this graph of data structures is that not all of the pointers in a data structure

point to valid data. As a simple example, the Linux dcache uses deferred memory reclamation of a

directory entry structure, called a dentry, in order to avoid synchronization with readers. When a dentry

is on a to-be-freed list, it may point to memory that has already been freed and reallocated for another

purpose; an implicit invariant is that these pointers will no longer be followed once the dentry is on this list.

Unfortunately, these implicit invariants can thwart simple pointer traversal. MAS [82] addresses the issue of

invalid pointers by extending the static analysis to incorporate value and memory alias checks.

Systems like MAS [82], KOP [63] and LiveDM [169] also improve the accuracy of type discovery by

leveraging the fact that most OSes create object pools or slabs for each object type. Thus, if one knows

which pages are assigned to each memory pool, one can reliably infer the type of any dynamically allocated

object. We hasten to note that this assumption can be easily violated by a rootkit or malicious OS, either by

the rootkit creating a custom allocator, or allocating objects of greater or equal size from a different pool

and repurposing the memory. Thus, additional effort is required to detect unexpected memory allocation

strategies.

SigGraph [140] contributed the idea that the graph structure of the pointers in a set of data structures can

be used as a signature. As a simple example, the relationships of pointers among task struct structures

in Linux is fundamentally different than among inode structures. SigGraph represents graph signatures in a

grammar where each symbol represents a pointer to a sub-structure. This signature grammar can be extended

to encode arbitrary pointer graphs or encode sub-structures of interest. SigGraph is designed to work with a

linear scan of memory, rather than relying on reachability from kernel symbols.

2.2.1.3 Dynamic Learning

Rather than identifying code invariants from kernel source code, VMI based on dynamic analysis learns

data structure invariants based on observing an OS instance [45, 88, 140].

By analogy to supervised machine learning, the VMI tool trains on a trusted OS instance, and then

classifies the data structures of potentially untrusted OS instances. During the training phase, these systems

often control the stimuli, by running programs that will manipulate a data structure of interest, or incorporating

debugging symbols to more quickly discern which memory regions might include a structure of interest.

17

Tools such as Daikon [92] are used to generate constraints based on observed values in fields of a given data

structure.

Several dynamic systems have created robust signatures, which are immune to malicious changes to

live data structure instances [88]. More formally, a robust signature identifies any memory location that

could be used as a given structure type without false negatives. A robust signature can have false positives.

Robust signatures are constructed through fuzz testing during the training phase to identify invariants which,

if violated, will crash the kernel [88, 140]. For instance, RSFKDS begins its training phase with a guest in a

clean state, and then attempts to change different data structure fields. If the guest OS crashes, this value is

used to generate a new constraint on the potential values of that field. The primary utility of robust signatures

is detecting when a rootkit attempts to hide persistent data by modifying data structures in ways that the

kernel doesn’t expect. The key insight is that these attempts are only fruitful inasmuch as they do not crash

the OS kernel. Thus, robust signatures leverage invariants an attacker cannot safely violate.

2.2.2 Code Implanting

A simpler approach to bridging the semantic gap is to simply inject code into the guest OS that reports

semantic information back to the hypervisor. For example, Process implanting [104] implants and executes

a monitoring process within a randomly-selected process already present in the VM. Any malicious agent

inside the VM is unable to predict which guest process has been replaced and thus the injected code can run

without detection. Rather than implant a complete process, SYRINGE [62] implants functions into the kernel,

which can be called from the VM.

A challenge to implanting code is ensuring that the implanted code is not tampered with, actually

executes, and that the guest OS components it uses report correct information. SIM [183] uses page table

protections to isolate an implanted process’s address space from the guest OS kernel. Section 2.2.4 discusses

techniques to ensure the integrity of the OS kernel. Most of these implanting techniques ultimately rely on

the guest kernel to faithfully represent information such as its own process tree to the injected code.

2.2.3 Process Outgrafting

In order to overcome the challenges with running a trusted process inside of an untrusted VM, process

outgrafting [188] relocates a monitoring process from the monitored VM to a second, trusted VM. The trusted

18

VM has some visibility into the kernel memory of the monitored VM, allowing a VMI tools to access any

kernel data structure without any direct interference from an adversary in the monitored VM.

Virtuoso [87] automatically generates introspection programs based on dynamic learning from a trusted

VM, and then runs these tools in an outgrafted VM. Similarly, OSck [113] generates introspection tools from

Linux source which execute in a monitoring VM with a read-only view of a monitored guest.

VMST [96] generalizes this approach by eliminating the need for dynamic analysis or customized tools;

rather, a trusted, clean copy of the OS runs with a roughly copy-on-write view of the monitored guest.

Monitoring applications, such as ps, simply execute in a complete OS environment on the monitoring VM;

each system call executed actually reads state from the monitored VM. VMST has been extended with an

out-of-VM shell with both execute and write capabilities [97], as well as accelerated by using memoization,

trading some accuracy for performance [174]. This approach bridges the semantic gap by repurposing

existing OS code.

The out-grafting approach has several open problems. First, if the monitoring VM treats kernel data as

copy-on-write, the monitoring VM must be able to reconcile divergences in the kernel views. For example,

each time the kernel accesses a file, the kernel may update the inode’s atime. These atime updates will

copy the kernel data, which must be discarded for future introspection or view of the file system will diverge.

VMST does not address this problem, although it might be addressed by an expert identifying portions of the

kernel which may safely diverge, or resetting the VM after an unsafe divergence. Similar to the limitations

of hand-crafted introspection tools, each new OS variant may require hand-updates to divergent state; thus,

automating divergence analysis is a useful topic for future work. Finally, this approach cannot handle policies

that require visibility into data on disk—either files or swapped memory pages.

2.2.4 Kernel Executable Integrity

The introspection approaches described above assume that the executable kernel code does not change

between creation of the introspection tools and monitoring the guest OS. Table 2.2 lists additional assumptions

made by these techniques.

In order to uphold the assumption that the kernel has not changed, most hypervisor-based security

systems must also prevent or limit the ability of the guest OS to modify its own executable code, e.g., by

overwriting executable pages or loading modules. This subsection summarizes the major approaches to

ensuring kernel binary integrity.

19

Technique Assumptions Monitor
Placement Systems

Hand-crafted data
structure signatures
(Expert knowledge)

• Expert knowledge of OS
internals for known kernel
version

• Guest OS is not actively
malicious

Sibling VM,
hypervisor, or
hardware

[2, 4, 5, 6, 8,
12, 15, 16,
17, 18, 21,
22, 176,
177]

Automated learning
and reconstruction
(Source analysis or
offline training)

• Benign copy of OS for training

• OS will behave similarly
during learning phase and
monitoring

• Security-sensitive invariants
can be automatically learned

• Attacks will persist long
enough for periodic scans

Sibling VM,
hypervisor, or
hardware

[45, 63, 82,
88, 140,
169]

Code implanting
(VMM protects
monitoring agent inside
guest OS)

• Malicious guest schedules
monitoring tool and reports
information accurately

Guest with
hypervisor
protection

[62, 104,
183]

Process outgrafting
(Reuse monitoring tools
from sibling VM with
shared kernel memory)

• Live, benign copy of OS
behaves identically to
monitored OS

Sibling VM
[87, 96, 97,
188]

Kernel executable
integrity (Protect
executable pages and
other code hooks)

• Initial benign version of
monitored OS

• Administrator can allow-list
safe modules

Hypervisor
[142, 160,
171, 181,
202]

Table 2.2: VMI techniques, monitor placement (as illustrated in Figure 2.1, and their underlying trust
assumptions.

20

2.2.4.1 The (Write ⊕ Execute) Principle

The W ⊕ X principle prevents attacks that write the text segment by enforcing a property where all

the pages are either writable or executable, but not both at the same time. For instance, SecVisor [181] and

NICKLE [171] are hypervisors that enforce the W ⊕ X principle by setting page table permissions on kernel

memory. SecVisor will only set executable permission on kernel code and loadable modules that are approved

by an administrator, and prevent modification of this code.

Although non-executable (NX) page table bits are ubiquitous on modern x86 systems, lack of NX support

complicated the designs of early systems that enforced the W ⊕ X principle. Similarly, compilers can mix

code and data within the same page, although security-conscious developers can also restrict this with linker

directives.

2.2.4.2 Allow-listing Code

As discussed above, SecVisor and NICKLE policies require a notion of approved code, which is

represented by an allow-list of code hashes created by the administrator.

Patagonix [142] extends this property to application binaries, without the need to understand the structure

of processes and memory maps. Patagonix leverages no-execute page table support to receive a trap the first

time data from a page of memory is loaded into the CPU instruction cache. These pages are then compared

against a database of allow-listed application binary pages.

Although allow-listing code can prevent loading unknown modules which are the most likely to be

malicious, the approach is limited by the administrator’s ability to judge whether a driver or OS kernel is

malicious a priori.

2.2.4.3 Object Code Hooks

A practical limitation of the W ⊕ X principle is that many kernels place function pointers in data objects

that must be writable. These function pointers are used to implement a crude form of object orientation. For

instance, the Linux VFS allows a low-level file system to extend generic routines for operations such as

reading a file or following a symbolic link.

Lares [160] implemented a simple page-protection mechanism on kernel object hooks, but incurred

substantial performance penalties because these executable pointers are in the same page as fields which the

21

guest kernel must be able to write, such as the file size and modification time. HookSafe [202] addresses this

problem by modifying OS kernel code to relocate all hooks to a read-only, shadow memory space. All code

that calls a hook must also check that the requested hook is in the shadow memory space, and a policy must

approve before a code is added to the hook section. The hook redirection and checking code is in the kernel’s

binary text, and is read-only. HookSafe identifies locations where hooks are called through dynamic learning

(§2.2.1); this could likely be extended with static analysis for more complete coverage.

Ultimately, these techniques are approximating the larger property of ensuring control flow integrity

(CFI) of the kernel [35]. Ensuring CFI is a broad problem with a range of techniques. For instance, Program

Shepherding [127] protects the integrity of implanted functions [62] (§2.2.2), using a machine code interpreter

to monitor all control transfers and guarantee that each transfer satisfies a given security policy. Discovering

efficient CFI mechanisms is a relevant, but complimentary problem to VMI.

2.3 Prevention vs. Detection

Some introspection tools prevent certain security policy violations, such as execution of unauthorized

code, whereas others only detect a compromise after the fact. Clearly, prevention is a more desirable goal, but

many designs accept detection to lower performance overheads. This section discusses how certain design

choices fundamentally dictate whether a system can provide detection or prevention.

Prevention requires a mechanism to identify and interpose on a low-level operation within a VM that

violates a system security policy. Certain goals map naturally onto hardware mechanisms, such as page

protections on kernel code or hooks [160, 171, 181, 202]. Other goals, such as upholding data structure

invariants the kernel code relies upon, are open questions.

As a result, violations of more challenging properties are currently only detected after the fact by VMI

tools [45, 86, 87, 96, 113, 140, 142, 162, 163, 169, 174, 183]. In general, there is a strong connection between

approaches that periodically search memory and detection. Periodic searching is a good fit for malware that

persistently modifies data structures, but can miss transient modifications. To convert these approaches to

prevention techniques would require interposing on every store, which is prohibitively expensive. Moreover,

because some invariants span multiple writes, even this strawman approach would likely yield false negatives

without even deeper analysis of the code behavior.

22

Current detection systems usually just power off a compromised VM and alert an administrator. Several

research projects identify how systems can recover from an intrusion or other security violation [65, 89,

125, 126]. In general, general-purpose solutions either incur relatively high overheads to track update

dependencies (35% for the most recent general-purpose, single-machine recovery system [126]), or leverage

application-specific properties. Improving performance and generality of recovery systems is an important

direction for future work.

2.3.1 Asynchronous vs. Synchronous Mechanisms

Synchronous mechanisms mediate guest operations inline to prevent security policy violations, or receive

very low latency notification of changes. All prevention systems we surveyed [160, 171, 181, 183, 202] use

synchronous mechanisms, such as page protection or code implanting. Several low-latency detection systems

use customized hardware, discussed further in §2.3.2. A few systems also use synchronous mechanisms

on commodity hardware for detection [132, 142, 169], but could likely lower their overheads with an

asynchronous mechanism.

Asynchronous mechanisms execute concurrently with a running guest and inspect its memory. These

systems generally introspect into a snapshot of memory [45, 86, 140, 162] or a read-only or copy-on-write

view of guest memory [87, 96, 113, 118, 163, 174]. All surveyed asynchronous systems detect rootkits after

infection through passive monitoring.

On one hand, the synchronous systems gain a vantage point over their counterparts against transient

attacks but increase the overhead for the guest OS being protected. On the other hand, asynchronous systems

introduce lower monitoring overhead but miss cleverly built transient attacks; asynchronous systems are also

limited due to the inherent race condition between the attacker and the detection cycle.

Synchronous and asynchronous mechanisms make fundamental trade-offs across the performance,

frequency of policy-relevant events, risk, and assumptions about the behavior of the system. Synchronous

mechanisms tend to be more expensive, and are generally only effective when the monitored events are

infrequent, such as a change in the access pattern to a given virtual page. The cost of an asynchronous search

of memory can also be quite high (ranging from milliseconds [113] to minutes [63]), but the frequency can be

adjusted to an acceptable rate—trading risk for performance. Both synchronous and asynchronous systems

make potentially fragile assumptions about the system to improve performance, such as knowing all hook

locations or assuming all objects of a given type are allocated from the same slab. These risks could be

23

reduced in future work by identifying low-frequency events that indicate a policy violation, are monitorable

without making fragile assumptions about the system, and introduce little-to-no overheads in the common

case.

A final issue with executing introspection concurrently with the execution of an OS is false positives

arising because of transient states. In general, an OS may violate its own invariants temporarily while

executing inside of a critical section. A correct OS will, of course, restore the invariants before exiting the

critical section. If an introspection agent searches memory during a kernel critical section, it may observe

benign violations of these invariants, which will resolve quickly. Approaches to this problem include simply

looking for repeated violations of an invariant (leaving the system vulnerable to race conditions with an

attacker), or only taking memory snapshots when the OS cannot be in any critical sections (e.g., by preempting

each CPU while out of the guest kernel).

VMI systems face fundamental trade-offs between performance and risk, often making fragile

assumptions about the guest OS.

2.3.2 Hardware-assisted Introspection

Several research prototypes have employed customized hardware for introspection [132, 144, 157], or

applied existing hardware in novel ways [42, 162, 200]. The primary division within the current design space

of hardware-assisted introspection is whether the introspection tool uses memory snapshots or snoops on a

bus. Snooping can monitor memory regions at finer granularity than page protections, reducing overheads.

2.3.2.1 Snapshotting

One strategy for hardware-assisted introspection is using a PCI device to take RAM snapshots, which are

sent to a second machine for introspection (monitored and monitor, respectively). For instance, Copilot [162]

adds an Intel StrongARM EBSA-285 Evaluation Board to the monitored machine’s PCI bus. The PCI device

on the monitored machine uses DMA requests to retrieve a snapshot of host RAM, which is sent to the

monitor machine upon request over an independent communication link. The monitor periodically requests

snapshots and primarily checks that the hash of the kernel binary text and certain code pointers, such as the

system call table, have not changed from known-good values.

24

Unfortunately, a memory snapshot alone isn’t sufficient to robustly reconstruct and interpret a snapshot.

Of particular importance is the value of the cr3 register, which gives the physical address of the root of the

page tables. Without this CPU register value, one cannot reliably reconstruct the virtual memory mapping.

Similarly, a system can block access to regions of physical memory using an IOMMU [39, 58].

HyperCheck [200] augments physical memory snapshots with the contents of the cr3 register, using the

CPU System Management Mode (SMM) [9]. SMM is an x86 CPU mode designed primarily for firmware,

power management, and other system functions. SMM has the advantage of protecting the introspection code

from the running system as well as giving access to the CPU registers, but must also preempt the system

while running (i.e., this is a synchronous mechanism). The processor enters SMM when the SMM interrupt

pin (SMI) is raised, generally by the Advanced Programmable Interrupt Controller (APIC). The hypervisor

is required to create SMI interrupts to switch the CPU to SMM mode. Upon entering SMM, the processor

will launch a program stored in system management RAM (SMRAM). SMRAM is either a locked region of

system DRAM, or a separate chip, and ranges in size from 32 KB to 4 GB [9] Outside of SMM, SMRAM

may not be read or written. Within SMM, the integrity checking agent has unfettered access to all RAM and

devices, and is not limited by a IOMMU or other attacks discussed previously. Unfortunately, SMM mode

also has the limitation that Windows and Linux will hang if any software spends too much time in SMM,

bounding the time introspection code can take.

HyperSentry [42] further refines this model by triggering an SMI handler from an Intelligent Platform

Management Interface (IPMI) device. IPMI devices generally execute system management code, such as

powering the system on or off over the network, on a device hidden from the system software.

A limitation of any SMM-based solution, including the ones above, is that a malicious hypervisor could

block SMI interrupts on every CPU in the APIC, effectively starving the introspection tool. For VMI, trusting

the hypervisor is not a problem, but the hardware isolation from the hypervisor is incomplete.

Each of these systems focus on measuring the integrity of system software—e.g., checking that the

executable pages have a known-good hash value. At least in SMM mode, more computationally expensive

introspection may be impractical. Because all of these operations operate on periodic snapshots, which may

visibly perturb memory access timings, a concern is that an adversary could predict the snapshotting interval

and race with the introspection agent. In order to ensure that transient attacks cannot race with the snapshot

creation, more recent systems have turned to snooping, which can continuously monitor memory changes.

25

2.3.2.2 Snooping

A number of recent projects have developed prototype security hardware that snoops on the memory

bus [132, 144, 157]. These systems have the useful function of efficiently monitoring writes to sensitive

code regions; unlike page protections, snooping systems can monitor writes at the finer granularity of cache

lines, reducing the number of needless checks triggered by memory accesses adjacent to the structure being

monitored. These systems can also detect updates to memory from a malicious device or driver by DMA,

which page-level protections cannot detect.

Although most prototypes have focused on detecting modifications to the kernel binary itself, KI-Mon

also watches for updates to object hooks [132], and there is likely no fundamental reason other solutions

could not implement this.

Because these snooping devices aim to be very lightweight, they cannot then check data structure

invariants or code integrity, but instead signal a companion snapshotting device (as discussed above) to do

these checks. However, a specific memory event triggering asynchronous checks is a clear improvement

over periodic snapshots, in both efficiency and risk of races with the attacker. A small complication with

snooping-triggered introspection is that invariants often span multiple cache lines, such as next.prev ==

next in a doubly-linked list. If an invariant check is triggered on the first write in a critical section, the

system will see many false positives. KI-Mon addresses this by waiting until the system quiesces. However,

quiescence is an OS-kernel-specific convention, and can be violated by an adversarial kernel.

We note that these systems do not use commodity hardware, but are implemented in simulators or FPGAs.

Section 2.5.2 argues that this is a promising area of research that deserves more attention, but more work

has to be done to demonstrate the utility of the approach before it will be widely available. Similarly, these

systems have initially focused on attack detection, but it would be interesting to extend these systems to

recovering from a detected attack.

Snooping is useful for finer-grained memory monitoring.

2.3.3 Memory Protection: A Necessary Property for Prevention

We end this section by observing that all prevention systems employ some form of memory protection to

synchronously interpose on sensitive data writes. For example, HookSafe [202] and Lares [160] use memory

26

Attack Defense Trust Assumption

Write text Segment Hypervisor-enforced
W ⊕ X. Initial text segment benign.

KOH (code and
hooks)

Memory protect hooks
from text section
modification, or
allow-list loadable
modules.

Pristine initial OS copy and administrator’s ability
to discern trustworthy kernel modules.

DKOM (heap)

Identify data structure
invariants, detect
violations by scanning
memory snapshots.

• Guest kernel exhibits only desirable behavior
during training, or source is trustworthy.

• All security-relevant data structure invariants
can be identified a priori.

• All malware will leave persistent modifications
that violate an invariant.

• All invariants can be checked in a single search.

• Attackers cannot win races with the monitor.

DKSM Prevent Bootstrapping
through KOH or ROP.

OS is benign; behaves identically during training
and classification.

Table 2.3: VMI attacks, defenses, and underlying trust assumptions.

protection to guard against unexpected updates to function pointers. In contrast, it isn’t clear how to convert

an asynchronous memory search from a detection into a prevention tool. The most likely candidate is with

selective, fine-grained hardware memory bus snooping, described above. Thus, if attack prevention is a

more desirable goal than detection after-the-fact, the community should focus more effort on discovering

lightweight, synchronous monitoring mechanisms.

All current prevention systems rely on synchronous memory protection.

2.4 Attacks, Defense, and Trust

This section explains the three major classes of attacks against VMI, known defenses against those

attacks, and explains how these attacks relate to an underlying trust placed in the guest OS. These issues are

summarized in Table 2.3.

27

2.4.1 Kernel Object Hooking

A Kernel Object Hooking (KOH) attack [11] attempts to modify function pointers (hooks) located in

the kernel text or data sections. An attacker overwrites a function pointer with the address of a function

provided by the attacker, which will then allow the attacker to interpose on a desired set of kernel operations.

In some sense, Linux Security Modules provide similar hooks for security enhancements [206]; the primary

difference is that KOH repurposes other hooks used for purposes such as implementing an extensible virtual

file system (VFS) model. The defenses against KOH attacks generally depend on whether the hook is located

in the text or data segment.

2.4.1.1 Text Section Hooks

The primary text section hooks are the system call table and interrupt descriptor table. For instance, an

attacker could interpose on all file open calls simply by replacing the pointer to the sys open() function

in the system call table.

In older OSes, these hooks were in the data segment despite not being dynamically changed by most

OSes. In order to prevent malware from overwriting these hooks, most kernels now place these hooks in

the read-only text segment. As discussed in §2.2.4.1, a sufficient defense is hypervisor-imposed, page-level

Write ⊕ Execute permissions.

2.4.1.2 Data Section Hooks

Kernel data section hooks are more difficult to protect than text section hooks. Data section hooks place

function pointers in objects, facilitating extensibility. For instance, Linux implements a range of different

socket types behind a generic API; each instantiation overrides certain hooks in the file descriptor for a given

socket handle.

The fundamental challenge is that, although these hooks generally do not change during the lifetime of

the object, they are often placed in the same page or even cache line with fields that do change. Because

most kernels mix hooks which should be immutable with changing data, most hardware-based protection

mechanisms are thwarted.

In practice, these hooks are very useful for rootkits to hide themselves from anti-malware tools inside the

VM. For instance, the Adore-ng [76] rootkit overrides the lookup() and readdir() functions on the

28

/proc file system directory. Process listing utilities work by reading the sub-directories for each running

process under /proc; a rootkit that overrides these functions can filter itself from the readdir() system

call issued by ps.

In order to defend against such attacks, the function pointers need to be protected from modification once

initialized. Because of the high-cost of moderating all writes to these data structures, most defenses either

move the hooks to different locations which can be write-protected [202], or augment hooks in the kernel

with checks against an allow-list of trusted functions [163].

Trust. Protecting the kernel code from unexpected modifications at runtime is clearly sensible. Underly-

ing these defenses is the assumption that the kernel is initially trusted, but may be compromised later. The

more subtle point, however, is that all of the VMI tools discussed in §2.2 assume that the kernel text will not

change. Thus, preventing text section modification is effectively a prerequisite for current VMI techniques.

Defenses against KOH on data hooks generally posit trust in the ability of an administrator to correctly

identify trustworthy and untrustworthy kernel modules. Dynamic kernel module loading requires changing the

kernel control flow by writing to the code hooks. As explained in Section 2.2.4, KOH defenses [142, 171, 181]

assume that kernel modules are benign in order to provide some meaningful protections without solving the

significantly harder problem of kernel control flow integrity in the presence of untrusted modules.

KOH defenses generally assume benign kernel modules.

Finally, we note that some published solutions to the KOH data section problem are based on best-effort

dynamic analysis, which can miss hooks that are not exercised. There is no fundamental reason this analysis

should be dynamic, other than the unavailability of source code. In fact, some systems do use static analysis

on the source code to identify code hooks [113], which can identify all possible data section hooks.

2.4.2 Dynamic Kernel Object Manipulation

Manipulating the kernel text and code hooks are the easiest attack vector against VMI; once KOH

defenses were developed, attackers turned their attention to attacks on the kernel heap. Dynamic Kernel

Object Manipulation (DKOM) [59] attacks modify the kernel heap through a loaded module or an application

accessing /dev/mem or /proc/kcore on Linux. DKOM attacks only modify data values, and thus are

distinct from modifying the control flow through function hooks (KOH).

29

A DKOM attack works by violating latent assumptions in unmodified kernel code. A classic example

of a DKOM attack is hiding a malicious process from a process listing tools, such as ps. The Linux kernel

tracks processes in two separate data structures: a linked list for process listing and a tree for scheduling. A

rootkit can hide malicious processes by taking the process out of the linked list, but leaving the malicious

process in the scheduler tree. The interesting property is that loading a module can be sufficient to alter the

behavior of unrelated, unmodified kernel code, because any module can write to any kernel data structure.

DKOM attacks are hard to prevent because they are a metaphorical needle in a haystack of expected

kernel heap writes. As a result, most practical defenses attempt to identify data structure invariants — either

by hand, static, or dynamic analysis — and then detect data structure invariant violations asynchronously.

Because an attacker can create objects from any memory, not just the kernel heap allocator, data structure

detection is also a salient issue for detecting DKOM attacks (§2.2.1). Thus, a robust, asynchronous DKOM

detector must search all guest memory, increasing overheads, and tolerate attempts to obfuscate a structure.

Trust. DKOM defenses introduce additional trust in the guest beyond a KOH defense, and make several

assumptions which an attacker can could be violated by an attacker. Most DKOM defenses work by

identifying security-related data structure invariants. Because it is difficult for the defender to ever have

confidence that all security-relevant invariants have been identified, this approach will generally be best-effort

and reactive in nature. Deeper source analysis tools could yield more comprehensive invariant results, but

more research is needed on this topic. Many papers on the topic focus on a few troublesome data structures,

such as the task struct, yet Linux has several hundred data structure types. It is unclear whether any

automated analysis will scale to the number of hiding places afforded to rootkits by monolithic kernels, or

whether detection tools will always be one step behind attackers. That said, even a best-effort defense has

value in making rootkits harder to write.

Another problematic assumption is that all security-sensitive fields of kernel data structures have invari-

ants that can be easily checked in a memory snapshot. For instance, one might assume that any outgoing

packets come from a socket that appears in the output of a tool such as netstat (or a VMI-based equivalent).

Yet a malicious Linux kernel module could copy packets from the heap of an application to the outgoing IP

queue—a point in the networking stack which doesn’t maintain any information about the originating socket

or process. Thus, memory snapshots alone couldn’t easily identify an inconsistency between outgoing packets

and open sockets, especially if the packet could have been sent by a different process, such as a process with

an open raw socket. Although the problem in this example could be mitigated with continuous monitoring,

30

such monitoring would substantially increase runtime overheads; in contrast, most DKOM defenses rely on

infrequent scanning to minimize overheads. In this example, the data structure invariant spans a sequence of

operations, which can’t be captured with one snapshot.

A single snapshot cannot capture data structure invariants that span multiple operations.

Third, DKOM defenses cement trust that the guest kernel is benign. These defenses train data structure

classifiers on a clean kernel instance or derive the classifiers from source code, which is assumed to only

demonstrate desirable behavior during the training phase. This approach is similar to using symbolic execution

to verify that a cryptographic client’s message sequence is consistent with its known implementation [74].

Although we hasten to note that this assumption may be generally reasonable, it is not beyond question that

an OS vendor might include a backdoor that such a classifier would learn to treat as expected behavior.

In order to ensure that the guest kernel is benign, DKOM defenses generally posit a KOH defense.

Learning code invariants is of little use when an attacker can effectively replace the code. The interesting

contrast between KOH and DKOM defenses is that DKOM defenses can detect invalid data modifications even

in the presence of an untrustworthy module, whereas common KOH defenses rely on module allow-listing.

Thus, if a DKOM defense intends to tolerate untrusted modules, it must build on a KOH defense that is robust

to untrusted modules as well, which may require substantially stronger control flow integrity protection.

KOH defenses are a building block for DKOM defenses, but often make different trust assumptions

about modules.

Finally, these detection systems explicitly assume malware will leave persistent, detectable modifications

and implicitly assume malware cannot win races with the detector. DKOM detectors rely on invariant

violations being present in the view of memory they analyze—either a snapshot or a concurrent search using

a read-only view of memory. Because DKOM detectors run in increments of seconds, short-lived malware

can easily evade detection. Even for persistent rootkits, a reasonably strong adversary may also have access

to similar data structure classifiers and aggressively search for invariants missed by the classifier.

If a rootkit can reliably predict when a DKOM detector will view kernel memory, the rootkit has the

opportunity to temporarily repair data structure invariants—racing with the detector. Reading a substantial

portion of guest memory can be is highly disruptive to cache timings—stalling subsequent writes on coherence

misses. Similarly, solutions based on preempting the guest OS will leave telltale “lost ticks” on the system

clock. Even proposed hardware solutions can be probed by making benign writes to potentially sensitive

31

addresses and then observing disruptions to unrelated I/O timings. Given the long history of TOCTTOU

and other concurrency-based attacks [60, 209], combined with a likely timing channel induced by the search

mechanism and recent successes exploiting VM-level side channels [211], the risk of an attacker successfully

racing with a detector is concerning. More recent works show vulnerability of SGX to several types of side

channel attacks, such as traditional cache timing and page table side channel attacks that reveal page-level

memory accesses [55, 103, 179, 198, 201, 208], as well as speculative attacks [68, 129] that use the side

channels as a way of retrieving information.

DKOM defenses are potentially vulnerable to race conditions within their threat model.

2.4.3 Direct Kernel Structure Manipulation

Direct Kernel Structure Manipulation (DKSM) attacks [44] change the interpretation of a data structure

between training a VMI tool and its application to classify memory regions into data structures. Simple

examples of a DKSM attack include swapping two fields within a data structure or padding the structure with

garbage fields so that relative offsets differ from the expectation of the VMI tool.

Because most VMI tools assume a benign kernel, a successful DKSM attack hinges on changing kernel

control flow. DKSM attack can be broken down to 2 attack vectors: 1) change in-memory kernel code

and 2) compile malicious code into the kernel. In order to change the in-memory kernel code, DKSM

needs to manipulate control flow. If KOH attacks cannot be used to bootstrap the DKSM attack, the DKSM

attacker needs to employ return-oriented programming [143]. As discussed above, a number of successful

countermeasures for KOH attacks have been developed, as have effective countermeasures to return-oriented

programming, including G-Free [159], “Return-Less” kernels [137], and STIR [203].

Trust. DKSM is somewhat of an oddity in the literature because it is effectively precluded by a

generous threat model. However, a realistic threat model might allow an adversarial OS to demonstrate

different behavior during the data structure training and classification phases—analogous to “split-personality”

malware that behaves differently when it detects that it is under analysis.

DKSM is a reasonable concern obviated by generous threat models.

32

2.4.4 The Semantic Gap is Really Two Problems

Under a stronger threat model, the DKSM attack effectively leverages the semantic gap to thwart security

measures. Under DKSM, a malicious OS actively misleads VMI tools in order to violate a security policy.

In the literature on VM introspection, the semantic gap problem evolved to refer to two distinct issues: (1)

the engineering challenges of generating introspection tools, possibly without source code [87, 96, 174], and

(2) the ability of a malicious or compromised OS to exploit fragile assumptions underlying many introspection

designs in order to evade a security measure [113, 140, 169, 181, 202]. These assumptions include:

• Trusting that the guest OS is benign during the training phase, and will not behave differently under

monitoring.

• All security-sensitive invariants and hooks can be automatically learned.

• Attacks will persist long enough to be detected by periodic searches.

• Administrators can allow-list trustworthy kernel modules.

Most papers on introspection focus on the first problem, which has arguably been solved [87, 96, 174],

yet interesting attacks leverage the second issue, which is still an open problem, as is reliable introspection

under stronger threat models.

Unfortunately, before this work was published, the literature do not clearly distinguish these problem

variations, and only a close reading indicate which one a given paper is addressing. This confusion is only

exacerbated when one attempts to place these papers next to each other in the context of attacks and defenses.

That said, we do believe that the overall path of starting with a weak attacker and iteratively strengthening the

threat model is a pragmatic approach to research in this area; the issue is ambiguous nomenclature.

We therefore suggest a clearer nomenclature for the two sub-problems: the weak and strong semantic

gap problems. The weak semantic gap is the largely solved engineering challenge of generating VMI tools,

and the strong semantic gap refers to the challenge of defending against an adversarial, untrusted guest OS.

A solution to the open strong semantic gap problem would not make any assumptions about the guest OS

being benign during a training phase or accept inferences from guest source code as reliable without runtime

validation. The strong semantic gap problem is, to our knowledge, unsolved, and the ability to review future

work in this space relies on clearer delineation of the level of trust placed in the guest OS. A solution to the

strong semantic gap problem would also prevent or detect DKSM attacks.

33

App Guest OS Hypervisor Challenge Solutions
√ √

Weak Semantic Gap Layered Security, VMI. Incrementally reduce
trust in the guest OS.

√
Strong Semantic Gap Difficult to solve. Need techniques that can

learn from untrusted sources and detect
inconsistencies during VMI.

√ √
Untrusted guest OS Paraverification. Application trust bridges the

semantic gap.
√ √

Untrusted cloud
hypervisor

Support from trusted hardware like SGX
[10, 152].

√
Untrusted guest OS
and hypervisor

Fine grained support from trusted hardware
needed.

Table 2.4: Trust Models. (
√

indicates the layers that are trusted.)

The weak semantic gap is a solved engineering problem. The strong semantic gap is an open security

problem.

Thenceforward, new VMI literature [83, 133, 166, 210] adopted the nomenclature of weak and strong

semantic gap, and new research [84, 115] is making progress to solve the strong semantic gap.

2.5 Toward an Untrusted OS

Any solution to the strong semantic gap problem may need to remove assumptions that the guest OS can

be trusted to help train an introspection tool. As illustrated in Section 2.2, most existing introspection tools

rely on the assumption that the guest OS begins in a benign state and its source code or initial state can be

trusted. Over time, several designs have reduced the degree to which they rely on the guest OS. It is not clear,

however, that continued iterative refinement will converge on techniques that eliminate trust in the guest.

Table 2.4 illustrates the space of reasonable trust models in virtualization-based security. Although a lot

of effort in VMI has gone into the first row (the weak semantic gap), the community should focus on new

directions likely to bridge the strong semantic gap (second row), as well as adopt useful techniques from

research into the other rows.

This section identifies promising approaches to the strong semantic gap, based on insights from the

literature.

34

2.5.1 Paraverification

Many VMI systems have the implicit design goal of working with an unmodified OS, or limiting

modifications to the module loader and hooks. The goal of introspecting on an unmodified guest OS often

induces trust in the guest OS to simplify this difficult problem. Specifically, most VMI tools assume the guest

OS is not actively malicious and adheres to the behavior exhibited during the learning phase.

This subsection observes that, rather than relax the threat model for VMI, relaxing the requirement of an

unmodified OS may be a more useful stepping stone toward an untrusted OS. By analogy, although initial

hypervisors went through heroic efforts to virtualize unmodified legacy OSes on an ISA very unsuitable

for virtualization [57], most modern OSes now implement paravirtualization support [46]. Essentially,

paravirtualization makes small modifications to the guest OS that eliminate the most onerous features to

emulate. For instance, Xen allowed the guest OS to observe that there were inaccessible physical pages,

substantially reducing the overheads of virtualizing physical memory. The reason paravirtualization was a

success is that it was easy to adopt, introduced little or no overheads when the system executes on bare metal,

and dramatically improved performance in a VM.

Thus, we expect that light modifications to a guest OS to aid in introspection could be a promising

direction. Specifically, we observe that the VirtualGhost [81] and InkTag [114] system introduced the idea

of paraverification, in which the guest OS provides the hypervisor with evidence that it is servicing an

application’s request correctly. The evidence offered by the guest OS is easily checked by the hypervisor

without trusting the guest OS. For instance, a trusted application may request a memory mapping of a file, and,

in addition to issuing an mmap system call, also reports the request to the hypervisor. When the OS modifies

the application’s page tables to implement the mmap system call, the OS also notifies the hypervisor that this

modification is in response to a particular application request. The hypervisor can then do an end-to-end

check that (1) the page table changes are applied to an appropriate region of the application’s virtual memory,

(2) that the CPU register values used to return to the application are sensible, and (3) that the contents of these

pages match the expected values read from disk, using additional metadata storing hashes of file contents.

We hasten to note that the goals of InkTag and Virtual Ghost are different from VMI—ensuring a trusted

application can safely use functionality from a malicious OS. This problem has also been explored in a

number of other papers [72, 139]. Moreover, InkTag leverages the trusted application to bridge the semantic

gap—a strategy that would not be suitable for the types of problems VMI aims to solve. Nonetheless, forcing

35

an untrusted OS to aid in its own introspection could be fruitful if the techniques were simple enough to

adopt.

Rather than relaxing the threat model for VMI, relax strict limits on guest modifications.

2.5.2 Hardware Support for Security

As we observe in §2.3.3, memory protection or other synchronous notification mechanisms appear to

be a requirement to move from detection to prevention. Unfortunately, the coarseness of mechanisms in

commodity hardware introduce substantial overheads. §2.3.2 summarizes recent work on memory monitoring

at cache line granularity—a valuable approach meriting further research.

An interesting direction taken by Intel is developing a mutual distrust model for hardware memory

protection, called Software Guard Extensions (SGX) [40, 112, 117, 152]. SGX allows an OS or hypervisor

to manage virtual-to-physical OS mappings for an application, but the lower-level software cannot access

memory contents. SGX provides memory isolation of a trusted application from an untrustworthy software

stack. Similar memory isolation has been provided by several software-only systems [72, 114], but at a

substantial performance cost attributable to frequent traps to a trusted hypervisor. Finally, we note that in

order for an application to safely use system calls on an untrusted OS, a number of other problems must be

addressed [66, 114].

In the context of introspection or the strong semantic gap, hardware like SGX can also be useful for

creating a finer-grained protection domain for code implanted in the guest OS 2.2.2. However, we also note

that SGX introduces the problem of malware getting in the trusted execution environment and hiding from the

OS [178, 179, 180]. More fine-grained memory protection and monitoring tools are needed from hardware

manufacturers to help solve the strong semantic gap.

Fine-grained memory protection and monitoring hardware can reduce overheads and trust.

2.5.3 Reconstruction from Untrusted Sources

Current tools that automatically learn data structure signatures assume the OS will behave similarly

during training and classification (§2.4.2). Among the assumptions made in current VMI tools, this is one

36

that potentially has the best chance of being incrementally removed. For example, one approach might train

the VMI classifiers on the live OS, and continue incrementally training as the guest OS runs.

Another approach would be to detect inconsistencies between the training and classification stages of

VMI. By analogy, distributed fault tolerance systems are often built around the abstraction of a proof of

misbehavior, where a faulty participant in the protocol generates signed messages to different participants

that contradict one another [38, 138]. Similarly, one approach to assuring learning-based systems is to

look for proof of misbehavior in the guest OS. For instance, Lycosid detected inconsistencies between the

cr3 register and the purported process descriptor’s cr3 value [121]. A proof of misbehavior may also

include inconsistencies in code paths or data access patterns between the training and classification phases of

introspection.

VMI should detect inconsistent behavior over the life of an OS, not just between training and

classification.

2.6 Under-explored Issues

Based on our survey of the literature on VMI, we identify a few issues that deserve more consideration in

future work.

2.6.1 Scalability

Many VMI designs are fairly expensive, especially designs that run a sibling VM on a dedicated core for

analysis. For example, one state-of-the-art system reports overheads ranging from 9.3—500× [96]. There is

a reasonable argument why high VMI overheads might be acceptable: the average desktop has idle cores

anyway, which could be fruitfully employed to improve system security. However, this argument does not

hold in a cloud environment, where all cores can be utilized to service additional clients. In a cloud, customers

will not be pleased with doubling their bill, nor would a provider be pleased with halving revenue.

It is reasonable to expect that VMI would be particularly useful on a cloud or other multi-VM system.

Thus, future work on VMI must focus not only on novel techniques or threat models, but also on managing

overheads and scalability with increasing numbers of VMs.

VMI research must measure multi-tenant scalability.

37

Another strategy to mitigate the costs of asynchronous scanning is to adjust the frequency of the scans—

trading risk for performance. For instance, a recent system measured scanning time at 50ms, and could keep

overheads at 1% by only scanning every 5s [113]. Similarly, one may cache and reuse introspection results

to trade risk of stale data for better scalability [174]. An interesting direction for future work is identifying

techniques that minimize both overheads and risk.

2.6.2 Privacy

VMI has the potential to create new side-channels in cloud systems. For instance, after reading application

binaries, Patagonix [142] queries the NSRL database with the binary hash to determine the type of binary

that is running on the system. This effectively leaks information about the programs run within a VM to an

outside observer, undermining user privacy.

More generally, VMI has the potential for one guest to observe different cache timings based on the

behavior of another guest. Consider a VMI tool that does periodic memory scans of multiple VMs on a

cloud system, one after another. The memory scan or snapshot will disrupt cache timings of the guest under

observation by forcing exclusive cache lines to transition back to a shared, read-only mode §2.4.2. Based on

its own cache timings, the VM can observe the frequency of its periodic scans. Because the length of a scan

of another VM can also be a function of what the VM is doing, changes in time between scans of one VM

can indicate what is happening in another VM on the same system.

Although it is unclear whether this example side channel is exploitable in practice, the example raises the

larger issue that VMI projects should be cognizant of potential side channels in a multi-VM system. Richter

et al. [170] present initial work on privacy-preserving introspection, but more work is needed. An ideal

system would not force the user to choose between integrity or privacy risks.

VMI designs should evaluate risks of new side channels.

2.7 Summary

Virtual machine introspection is a relatively mature research topic that has made substantial advances

since the semantic gap problem was posed. However, efforts in this space should be refocused on removing

trust from the guest OS in service of the larger goal of reducing the system’s TCB. Moreover, future VMI

38

solutions should balance innovative techniques and security properties with scalability and privacy concerns.

We have observed that the lessons from previous work is guiding new efforts to adapt existing techniques

and develop new techniques to bridge the strong semantic gap. The main takeaway from this chapter is that

encapsulating the threat using a VM, and then relying on the VMI to neutralize that threat is an incomplete

solution due to the strong semantic gap. Finally, this chapter observes that all VMI solutions that prevent

an attack are based on the secure design principle of complete mediation and the technique of memory

protection.

39

CHAPTER 3: RETROFITTING LEAST PRIVILEGE PRINCIPLE ONTO SETUID-ROOT
BINARIES

Unprivileged users of modern Unix systems access safe subsets of otherwise privileged system function-

ality through trusted, setuid-to-root binaries. For instance, the mount utility executes with administrative

privilege, allowing unprivileged users to mount a CD-ROM or USB Flash device without involving a human

administrator. Because the mount binary must issue the mount() system call, which requires root privilege

(or the CAP SYS ADMIN capability), the mount binary is inadvertently empowered to issue many more

privileged system calls. For instance, if an attacker can exploit an input parsing bug in mount, she might

be able to change the root user’s password, install a rootkit, or replace the contents of the /etc directory.

Chen et al. [70] show that many privilege escalation attacks go through setuid-to-root binaries, even on

SELinux [145] or AppArmor [28]. This attack surface is ubiquitous; e.g., 99.99% of surveyed systems install

mount (§3.2.3).

The problem with setuid-to-root binaries is that they violate the Least Privilege Principle (LPP) [175],

and create opportunities for privilege escalation attacks. As a result, most major Linux distributions had

ongoing, but incomplete efforts to prune unnecessary setuid-to-root binaries [93, 197] (§3.2.1). Although

these efforts have made substantial progress in reducing the number of setuid-to-root binaries, they leave a

small core of “unavoidable” trusted binaries that continue to violate least privilege.

Previous research efforts [52, 101, 108, 130, 199, 205], as well as hardened Linux configurations, such

as SELinux and AppArmor, have only considered least privilege on these utilities from the perspective of the

administrator, not the untrusted user. In the case of mount utilities, systems like AppArmor attempt to limit

the effects of a compromised mount to arbitrarily changing the file system tree. When the administrator

executes mount with least privilege, she can only corrupt the file system tree, not change passwords (directly)

or configure the network device. In contrast, least privilege for an unprivileged user should restrict that user

to only mounting allow-listed devices and directories (e.g., /cdrom); even on AppArmor, a bug in mount

could allow an unprivileged user to make arbitrary changes to the file system tree. SELinux further restricts

mount to specific users and mountpoints, but still trusts mount to correctly map devices and options to

these mountpoints. In this example, least privilege on these utilities can only be enforced by the OS kernel,

40

and policies must be expressed not just in terms of the user requesting a system call, but also in terms of the

objects of the requested call.

This chapter presents a simple, efficient framework for migrating policies from setuid-to-root binaries

into the kernel, obviating the need for these privileged binaries in nearly all situations. We study the 28 most

commonly installed binaries on Debian and Ubuntu Linux, which account for all setuid-to-root binaries on

roughly 89.5% of systems surveyed (§3.2.3).

One essential insight from the study is that only eight system calls and a few other system interfaces

underlie the vast majority of root privilege requirements. These system calls export functionality that is

required by unprivileged users, yet required administrative privilege. For these system calls, this chapter

proposes enforcing more expressive policies that more closely match the policies encoded in setuid binaries

and configured by administrators. We present a prototype, called Protego, which extends the AppArmor [28]

Linux Security Module (LSM) [206]. Protego changes only 715 lines of Linux kernel code, and adds

additional trusted utilities to keep the kernel policy synchronized with legacy, policy-relevant configuration

files, such as /etc/sudoers. In addition to these 8 system calls, a few additional system abstractions

must be adjusted to remove privilege. Although Protego extends AppArmor, any security-hardened Linux

variant could adopt these techniques.

An underlying motivation for setuid-to-root binaries is flexibility. When the kernel adopts a new

abstraction, system developers may not understand precisely what the safe subsets of functionality are, or

which subsets any real application will require. The underlying assumptions are that the setuid binary can be

patched faster than the OS kernel, and that some experience may be required before a sufficient and minimal

policy language can be defined. This chapter observes, however, that almost all setuid binaries are using

abstractions that are decades old with very well-understood policies, and that modern kernels have flexible

infrastructures for security policy enforcement [206]. Thus, there is no compelling reason to prefer setuid

binaries to dynamically configurable policies enforced by a kernel security module.

The contributions of this work are as follows:

• A study of the policies encoded in setuid-to-root binaries on current Linux systems, considering

privilege from the perspective of the non-administrative user.

41

Net lines of code de-privileged. 12,717
Percentage of deployed Ubuntu and Debian systems that can eliminate the setuid bit. 89.5%
Historical exploits that would be unprivileged on Protego. 40/40
Performance overheads. ≤7.4%
System calls changed. 8

Table 3.1: Summary of results.

• Identifying a set of straightforward changes to Linux which would obviate the need to violate the least

privilege principle on most systems. Our prototype reduces the trusted computing base of Ubuntu

Linux by 12,717 lines.

• Evaluating these changes on Linux, demonstrating that setuid-to-root binaries can be deprivileged

with minimal overheads, minimal changes to trusted code, and no loss of functionality for users. For

instance, a Linux kernel compilation on Protego is less than 2% slower than on unmodified Linux.

Thus, this chapter demonstrates that most deployed systems can uphold the Least Privilege Principle at

minimal costs. Section 3.4.4 surveys the expected effort to remove setuid-to-root altogether.

3.1 Overview

Protego executes setuid-to-root binaries without privilege. A fairly wide range of packages (currently 82)

containing setuid-to-root binaries use only a small number of system calls (8), system files, and devices that

require root privilege. Protego centralizes the policies currently encoded in this disparate collection of trusted

binaries by instead adding Linux Security Module (LSM) hooks (§3.2.2) that apply equivalent policies in the

kernel. Protego is an extension of AppArmor on Linux 3.6.0.

To explain the system design, we use the mount system call as a representative example. The mount

system call grafts a new file system onto the file system directory tree at a given location. Similarly, the

umount system call removes a file system from the directory tree. In general, changing the file system

directory tree requires root privilege, as a malicious user might mount bad configuration files over /etc or

even replace the system binaries in /bin or /sbin. Thus, the Linux kernel currently rejects any mount

or umount call from processes without administrative privilege—namely the CAP SYS ADMIN capability,

explained in §3.2.2.

Some mount-related binaries are setuid to root. The reason is to permit certain privileged operations

without requiring administrator privilege, such as mounting a CD-ROM at /dev/cdrom. Operational

42

/etc/fstab

/* Parse /etc/fstab */
if (ruid == 0 ||
 user_mount_ok(args))
 sys_mount(args);

/bin/mount

sys_mount() {
if (!capable(CAP_SYS_ADMIN))
 return -EPERM;
...Kernel

User

Linux mount.

/* Parse /etc/fstab */
/etc/
fstab

 sys_mount(args);

/bin/mount

sys_mount() {
if (!security_mount_ok(args))
 return -EPERM;
...Kernel

User

Protego LSM

/proc/
mnt_policy

Privileged Daemon
(backwards compatibility) Unprivileged User

Protego mount.

Figure 3.1: Comparison of the mount system call on Linux and Protego. Trusted components are in gray.
Linux places trust in the /bin/mount binary to enforce policies specified in /etc/fstab; this binary
is called by an untrusted user. The mount system call fails if the caller doesn’t have the CAP SYS ADMIN
capability (i.e., is not root). In Protego, a trusted daemon reads the policies from /etc/fstab and
configures the Protego LSM through a file in /proc. Separately, an untrusted user can use /bin/mount,
or any other binary, to issue a mount system call. The mount system call then calls an LSM hook to check
this change against system policy.

constraints for these privileged functions are set by the administrator in /etc/fstab with the “user” or

“users” option. The mount utilities, e.g., mount or umount, are then responsible for checking the real UID

with which they were invoked: they are required to fail unless the file system and mount point match a “user”

entry in /etc/fstab.

Protego is based on the observation that the kernel can just as easily perform these checks in an LSM.

Both approaches are compared in Figure 3.1. For the mount system call, Protego keeps an allow-list of

allowed user mountpoints in the kernel. If a process without CAP SYS ADMIN calls mount, the system

43

Component Description Lines
Kernel

Linux Additional LSM hooks, /proc filesystem interface. 415
Protego LSM module Implement security policies, called by additional LSM hooks in

Linux.
200

Netfilter Extensions for raw sockets. 100

Trusted Services

Monitoring daemon Trusted process that monitors changes in policy-relevant
configuration files. Required only for backwards compatibility.

400

Authentication utility Trusted binary launched by the kernel to authenticate user
sessions, password protected groups. Code refactored from
login and newgrp.

1200

Utilities

iptables Extension for raw sockets. 175
vipw Modified to edit per-user files instead of a shared database file. +40
dmcrypt-get-device Switch to /sys to read underlying device information. 43
mount/umount, sudo, pppd Disable hard-coded root uid checks. -25

Grand Total Changed 2,598

Table 3.2: Lines of code written or changed in Protego, including kernel, trusted services, and command-line
utilities.

call will only succeed if the arguments match the allow-list. Mount utilities no longer require administrative

privilege when invoked by unprivileged users, as the policies are migrated to the kernel.

This mount allow-list can be created by either the administrator by directly adding entries to a file

in /proc, or, for convenience, we also provide a trusted daemon that reads and monitors /etc/fstab,

propagating changes to the kernel via the /proc file. Protego provides two other files in /proc for

configuration inputs using a simple grammar: a mapping of privileged ports to allowed application paths, and

an /etc/sudoers-like syntax for delegation. Policies that do not take configuration parameters are simply

hard-coded in the LSM. The underlying policy abstractions, concerns, and defaults derive from our study of

current setuid-to-root binaries (Section 3.3).

Table 3.2 details the added or modified lines of code in Protego. The only code changes we made to most

setuid utilities was removing checks that cause the binary to exit if the effective user id is not root—all policy

checks are moved into the OS kernel and the utility runs without changing its effective user id to root. In a

few cases, such as vipw, we modified these utilities to use different configuration files.

44

Backward compatibility. Protego modifies a few system configuration file formats. For example,

Protego fragments the password database to better match policy and file system permissions; the monitoring

database can keep the original database file and the new files synchronized for backwards compatibility.

Although some previously-privileged applications must make changes to adopt the newer file formats, Protego

maintains copies of the old formats for compatibility with other applications. Applications that did not

previously require privilege are unmodified on Protego.

The monitoring daemon is written with a Python library [26] based on Linux’s inotify file monitoring

framework [184]. The monitoring daemon is only required for backward compatibility.

Threat model. We assume that setuid binaries may have programming errors that are exploitable

through inputs carefully crafted by an adversary. We assume the adversary is an unprivileged user of a system

who aims to acquire enhanced privileges (one or more administrative capabilities, or root access, depending

on the system).

Protego’s goal is to minimize the privilege held by binaries executed by a non-administrative user. Even

if one of these binaries is compromised, the user acquires no more privilege than she already had before

executing the binary. Other privilege escalation attack vectors, such as vulnerable system daemons running

as root or bugs in system calls, are beyond the scope of this chapter.

3.2 Background

This section explains background on the setuid bit, related efforts to improve Linux security, and current

setuid installation statistics.

3.2.1 The Setuid Bit

Setuid bit vs. system call. The namespace collision between the setuid permission bit and setuid

system call can lead to some confusion. The primary mechanism to raise privilege in Linux is the setuid

permission bit (04000) in an inode’s stat field. When a setuid binary is executed, the process executes as

the binary’s owner, regardless of which user exec-ed the binary. Some privileged daemons, such as ssh,

may initially execute as root and then drop to an unprivileged user by using the setuid system call. Similarly,

setuid-to-root binaries often bound the risk of privilege escalation by dropping root privilege after completing

45

the last privileged system call, using the setuid system call. Unless otherwise specified, setuid in this chapter

refers to the bit.

Papers including “Setuid Demystified” explain how an application should use the setuid system call

to drop its privileges [69, 195]. Our primary interest is complementary: eliminating privilege altogether in

current setuid-to-root binaries, and thereby eliminating the need to securely drop privilege with the setuid

system call.

Why is setuid-to-root needed? Administrators use setuid binaries to relax hard-coded policy decisions

in the kernel, which are inconsistent with the desired system policy. Hecht et al. [108] observe that there

are three categories of system calls: (1) unprivileged calls, (2) privileged calls, and (3) calls with privileged

options. Modern Linux kernels generally enforce a stricter policy on calls with privileged options than

administrators want, limiting application functionality. For example, the mount system call fails if the caller

doesn’t have administrative privilege—even if the caller is only requesting options considered safe by system

policy. In the cases of bind and open, setuid is often used to allow an application to access a single port or

file, but trusts the binary with access to all other ports or files. These point solutions implement the desired

policy, but violate least privilege.

setgid. This chapter focuses on the setuid-to-root binaries, although similar issues could arise with

the setgid bit. We note that no Debian or Ubuntu packages currently install binaries that are setgid

to root. The delegation framework we describe in §3.3.3 provides equivalent functionality to setuid and

setgid-nonroot on Protego.

Eliminating setuid-to-root binaries. Several Linux distributions have hardening efforts that have

reduced the number of setuid-to-root binaries [93, 197]. For instance, Ubuntu has eliminated roughly 30

setuid-to-root packages between 2008-2014. These efforts have used the following major techniques:

• Consolidation. When several different packages perform similar tasks, developers create a shared

setuid helper utility, such as the sensible-mda mail server utility.

• File system permissions. Utilities such as at write to logs and other protected system files, generally

under the /var directory. Root privilege can be replaced with setuid non-root or setgid non-root by

changing permissions on these files to an unprivileged user or group.

46

• Capabilities. Linux has a coarse capability model, which we explain next. Several utilities have

replaced setuid with the similar setcap mechanism, which launches the binary with specific capabili-

ties. Although setcap can replace setuid, several setuid-to-root binaries require capabilities tantamount

to root.

These techniques are insufficient to enforce least privilege on all categories of current setuid-root binaries.

3.2.2 Capabilities, LSMs, and SELinux.

Capabilities in Linux are not pointers with fine-grained access control information, as commonly defined

in capability-based operating systems [136, 182]. Linux divides root privilege into roughly 36 capabilities,

called file system capabilities [77], which are roughly based on Trusted IRIX capabilities [119] and the

POSIX.1e draft specification [165]. All uses of the term “capability” in this chapter refer to Linux file system

capabilities.

By default, Linux gives all capabilities to a process running as root. A hardened Linux variant can

reduce the capabilities granted to the administrator for a given task, as well as limit the capabilities given to a

setuid-to-root binary.

Capabilities are designed to enforce least privilege on the administrator, but are generally too coarse

to enforce least privilege on unprivileged users. For instance, if the administrator is configuring a network

interface, the configuration utility may only run with the CAP NET ADMIN capability. If the configuration

utility is buggy and makes errant privileged system calls, the damage is limited to the network.

Continuing our example, CAP NET ADMIN is required by the setuid-to-root pppd binary so that unpriv-

ileged users may make very restricted changes to the system’s routing tables, such as creating a route if it

does not conflict with previously existing routes. Even if pppd executes only with the CAP NET ADMIN

capability, if pppd is compromised, the unprivileged user has substantially escalated her privileges, gaining

the ability to arbitrarily change routes, disable devices, set privileged socket options, enable multicasting, etc.

A potential solution to this problem is to bestow finer-grained capabilities on trusted binaries.

Unfortunately, developers have failed to effectively manage 36 coarse capabilities in the Linux kernel.

Most Linux developers are not security experts, but nonetheless are required to place capability checks

throughout the kernel. When in doubt, developers use the CAP SYS ADMIN capability. As a result, over

38% of all capability checks in Linux require this capability. Even our initial mount example requires

47

Package Ubuntu(%) Debian(%) Wt.Avg.(%)
mount 100.00 99.75 99.99
login 99.99 99.82 99.98
passwd 99.97 99.84 99.97
iputils-ping 99.87 99.60 99.85
openssh-client 99.54 99.48 99.53
eject 99.68 90.95 99.24
sudo 99.48 74.34 98.21
ppp 99.54 45.65 96.81
iputils-tracepath 99.78 13.06 95.39
mtr-tiny 99.54 11.79 95.10
iputils-arping 99.60 3.55 94.74
libc-bin 50.14 86.15 51.96
fping 27.70 12.42 26.92
nfs-common 9.76 82.89 13.46
ecryptfs-utils 11.64 0.72 11.08
virtualbox 10.56 7.78 10.41
kppp 10.11 4.97 9.85
cifs-utils 2.59 19.23 3.43
tcptraceroute 0.33 23.38 1.50
chromium-browser 0.48 8.49 0.89

Table 3.3: Percent of systems that install packages containing setuid-to-root binaries, as reported by the
Debian and Ubuntu ’popularity contest’ surveys. Average is weighted by the total number of systems
reporting in each survey.

CAP SYS ADMIN. Moreover, this capability has become so permissive that it can acquire all other capa-

bilities and is described as “the new root” [122]. Finally, the mapping of capabilities to privileged tasks

is many-to-many. For instance, the X server requires 4 capabilities to set the video mode (CAP CHOWN,

CAP DAC OVERRIDE, CAP SYS RAWIO, and CAP SYS ADMIN). Changing passwords requires 6 capabil-

ities: CAP SYS ADMIN, CAP CHOWN, CAP DAC OVERRIDE, CAP SETUID, CAP DAC READ SEARCH,

and CAP FOWNER. Linux capabilities do not enforce least privilege on the administrator, much less limit the

risk of privilege escalation by unprivileged users.

The deeper problem with Linux capabilities is that they provide an insufficient language to express

policies for unprivileged users. Linux capabilities require a subject-based policy (“allow if requester is

root”), yet most setuid-root binaries export select, safe operations on a kernel abstraction to all users—an

object-based policy. As a result, system security hinges on a cumbersome, error-prone translation of an

object-based policy onto a strictly subject-based language.

Linux Security Modules (LSMs). LSMs encapsulate sophisticated security policies from the rest

of the kernel development process by placing suitable access control hooks throughout the kernel [206].

48

Security experts can then implement more advanced policies, such as mandatory access control (MAC), by

using these hooks to override the default, discretionary access control policies. These hooks are intended to

be sufficient to implement any policy without making additional changes outside of the module. The exact

number of hooks varies (184 in Linux 3.13.5); Protego adds additional LSM hooks for system calls that are

currently hard-coded to check specific capabilities.

Security-hardened Linux variants. SELinux [145] and AppArmor [28] are implemented as LSMs, as

is Protego. SELinux provides a powerful mandatory access control (MAC) and multi-level security (MLS)

model for Linux, complete with role-based access control [94] and security type enforcement. AppArmor is

also an MLS implementation, and the default on Ubuntu. AppArmor tends to enforce coarser policies than

SELinux.

LSMs can carefully control when a process is given a capability, and can use an LSM hook to obviate

a capability check for some, but not all system calls. For example, SELinux associates capabilities with

roles, which can prevent a process from accumulating capabilities. For instance, in order to use capabilities

associated with another role, the process has to change roles, and thus relinquish the capabilities associated

with the previous role. SELinux can also replace the coarse capability checks in bind with an allocation of

low-numbered ports to types.

SELinux requires considerable policy effort to expose safe functionality to non-administrator users. For

instance, SELinux must carefully manage the CAP NET RAW capability and assign the capability to trusted

binaries, such as ping. This does not enforce least privilege, as CAP NET RAW is coarser than ping’s

safe functionality (§3.3.1). SELinux could enforce simpler and more precise policies by adopting Protego’s

strategy of considering safe functionality separately from fragmenting administrator privilege.

Tools such as VulSAN [70] analyze system attack surface, generating the path for an attacker to install a

rootkit. In many cases, the path goes through a setuid or capability-enhanced program, even on SELinux or

AppArmor.

3.2.3 Setuid Installation Statistics

To focus our efforts on removing privilege from the most commonly-installed setuid-to-root binaries, we

studied installation statistics collected by the Debian and Ubuntu distributions. The first step was to identify

all potentially installable setuid binaries in all Debian and Ubuntu 12.10 APT repositories using the Lintian

49

reports [32]. Ubuntu adopts and repackages stable versions of Debian packages, and the differences between

the distributions tend to be minor. 82 packages contain setuid-to-root binaries.

We obtained the rough frequency of installation from the popularity contest results for all the monitored

Ubuntu [33] and Debian [31] systems, based on over 2.5 million systems (2,502,647 Ubuntu and 134,020

Debian).

Table 3.3 lists the 20 most frequently installed packages, with per-distribution percentages and an average

weighted by number of installations of each distribution. We have completely investigated all popular

packages through ecryptfs-utils—indicating that roughly 89.5% of sample systems could adopt Protego with

no loss of functionality. The 62 packages not listed are installed by fewer than .89% of systems sampled;

Section 3.4.4 summarizes the additional work we foresee in deprivileging the remaining packages.

3.3 Setuid Policy Study

This section presents a detailed study of the policies encoded in the 28 most commonly installed setuid-to-

root binaries. This study identifies the system-level policy goal encoded in the binary, how the kernel policy

for a specific system call or other interface is mismatched to the policy goal, how low-level mechanisms can

be easily modified to efficiently and comprehensively enforce these policies in the kernel, and how Protego

enforces these policies.

In the interest of brevity, we do not discuss each binary in detail, but rather organize our discussion

around each interface that requires administrative privilege. Table 3.4 summarizes these results. The Protego

design is guided by two major themes from this study:

• Express and enforce object-based policies. The majority of these binaries encapsulate sensible

policies that do not map onto subject-based checks (e.g., “is this user x?”), but that can be easily

expressed as object-based policies (e.g., “may any user take this action on this object?”). For instance,

several utilities enforce fine-grained access control on network ports, and enforce policies for raw

sockets based on the protocol type (§3.3.1).

• Interface designs can thwart least privilege. In several cases, poor interface design can require

applications to have more privilege than necessary. For instance, the dmcrypt-get- device utility

uses a privileged ioctl to report the physical device underneath an encrypted block device; additional

privilege is required because this ioctl also discloses the private key. A more subtle example of this

50

Interface Used by Kernel policy System policy Security con-
cerns

Our approach

socket ping, ping6,
arping, mtr,
traceroute6.-
iputils

Creating raw
or packet sock-
ets requires
CAP NET RAW.

Users may send
and receive safe,
non TCP/UDP
packets, such as
ICMP.

Raw sockets al-
low one to send
both benign
packets (e.g.,
ICMP) and pack-
ets that appear
to come from
socket owned by
another process.

Allow any user
to create a raw
or packet socket,
but outgoing
packets are sub-
ject to firewall
rules that filter
unsafe packets.

ioctl
pppd Only the ad-

ministrator my
configure mo-
dem hardware or
modify routing
tables.

A user may con-
figure a modem
(if not in use)
and add routes
that don’t con-
flict with exist-
ing routes.

Protect the in-
tegrity of routes
for unrelated ap-
plications.

Add LSM hooks
that verify routes
do not conflict
with old rules
when requested
by non-root
users.

dmcrypt-get-
device

Require CAP -
SYS ADMIN to
read dmcrypt
metadata.

Any user may
read public por-
tion of dmcrypt
metadata (e.g.,
device set).

The same
ioctl dis-
closes both
the physical
devices and the
encryption keys.

Abandon this
ioctl for a
/sys file that
only discloses
the physical
devices.

bind procmail,
sensible-
mda, exim4

Require CAP -
NET BIND -
SERVICE to
bind to ports <
1024.

Mail server
should generally
run without root
privilege.

Prevent untrust-
worthy applica-
tions from run-
ning on “well-
known” ports.

System poli-
cies allocating
low-numbered
ports to specific
(binary, userid)
pairs.

mount,
umount

fusermount,
mount,
umount

Mounting or un-
mounting a file
system requires
CAP SYS ADMIN.

Any user may
mount or un-
mount entries in
/etc/fstab
with the “user(s)”
option.

Protect the in-
tegrity of trusted
directories (e.g.,
/etc, /lib);

Add LSM hooks
that permit any-
one to mount an
allow-listed file
system with safe
locations and op-
tions.

Table 3.4: Part I: System abstractions used by commonly installed setuid utilities on recent Debian and
Ubuntu systems. The table identifies the common thread of inconsistent kernel policies and system policies
for these abstractions, discusses the underlying security concerns, and how Protego unifies system and kernel
policies.

51

Interface Used by Kernel policy System policy Security con-
cerns

Our approach

setuid,
setgid

polkit-agent-
helper-1,
sudo, pkexec,
dbus-
daemon-
launch-
helper, su,
sudoedit,
newgrp

Only allowed
with
CAP SETUID.

Permit del-
egation of
commands as
configured by
administrator,
in some cases
require recent
reauthentica-
tion.

Require authen-
tication and au-
thorization to ex-
ecute as another
user.

Add LSM
hooks that
check delegation
rules encoded
in files like
/etc/sudoers,
and a kernel
abstraction for
recency.

Credential
databases

chfn, chsh,
gpasswd,
lppasswd,
passwd

Only root can
modify these
files (or read
/etc/shadow).

A user may
change her own
entry to update
password, shell,
etc.

Prevent users
from accessing
or modifying
each other’s
accounts.

Fragment the
database to
per-user or
per-group con-
figuration files,
matching DAC
granularity.

Host
private
ssh key

ssh-keysign Only root may
read the key (FS
permissions)

Allow non-root
users to sign
their public key
with the host
key, disabled by
default.

A user should
be able to ac-
quire a host key
signature with-
out copying the
host key.

Restrict file ac-
cess to specific
binaries instead
of, or in addition
to, user IDs.

Video
driver
control
state

X Root must set
the video card
control state, re-
quired by older
drivers.

Any user may
start an X server.

An untrustwor-
thy application
could misconfig-
ure another ap-
plication’s video
state.

Linux now
context switches
video devices
in the kernel,
called KMS.

/dev/pts*
terminal
slaves

pt chown Root must
allocate pts
slaves on pre-2.1
kernels.

Users may cre-
ate terminal ses-
sions.

This utility has
been obviated
for 17 years, but
is still shipped.

Ignore.

Table 3.5: Part II: System abstractions used by commonly installed setuid utilities on recent Debian and
Ubuntu systems. The table identifies the common thread of inconsistent kernel policies and system policies
for these abstractions, discusses the underlying security concerns, and how Protego unifies system and kernel
policies.

point is the division of labor between user and kernel in the X window server (§3.3.5). Where needed,

Protego adjusts these interfaces.

52

Several of the issues raised in this study could be addressed in more than one way, and some already

have point solutions in another OS. This section strives to delineate the essential requirements of any solution

from the particular solution implemented in the Protego prototype, as well as cite existing alternative point

solutions. To the best of our knowledge, however, no system has comprehensively addressed all of the issues

requiring setuid-to-root binaries.

3.3.1 Network

Three networking tasks require privilege: creating a raw or packet socket, the point-to-point protocol

(PPP), and binding a socket to a TCP or UDP port less than 1024.

3.3.1.1 Raw and Packet Sockets

When applications program with TCP or UDP sockets, the kernel encapsulates the application-level

payload with the appropriate headers. In the rare case that an application needs to send messages with a

protocol the kernel doesn’t implement, the application must create most of the packet headers itself, using a

raw or packet socket [27]. The difference between raw and packet sockets is that raw sockets provide the IP

layer and MAC layer headers, whereas a packet socket only implements the MAC layer headers.

Linux requires the CAP NET RAW capability to create a raw or packet socket, because an application

can also create packets that appear to come from another application. However, a number of setuid-to-root

binaries, such as ping, allow unprivileged users to send safe packets over raw sockets.

A more precise, object-based policy, would specify which types of outgoing packets are acceptable

from unprivileged users on raw sockets. We observe that the set of all safe packets exported by setuid-

to-root binaries can be easily encoded as an allow-list in any packet filtering framework, such as Linux’s

netfilter/iptables [24], or BSD’s Berkeley Packet Filters (BPF) [149]. For instance, some BSD variants use

BPFs to sandbox binaries in a similar manner, such as ensuring the DHCP server sends DHCP packets only

to limited addresses [194].

The Protego prototype allows unprivileged programs to create raw sockets, with the caveat that these

unprivileged raw sockets are subject to additional netfilter rules. The default rules are based on the studied

setuid-to-root binaries, but the rules may be changed by the administrator through the iptables utility.

Protego implements this with modest extensions to the Linux netfilter framework, as well as adding an LSM

hook to the socket system call.

53

In Protego, a compromised network utility cannot spoof packets from a TCP or UDP socket, unlike all

current Linux variants. Also in contrast to Linux, Protego allows any unprivileged user to create her own

enhanced ping utility, as long as it conforms to system security policy.

3.3.1.2 Point-to-point Protocol (PPP)

PPP is a protocol used to establish connections over modems, including dial-up and cellular networks. In

most Linux systems, the service that manages a PPP connection (pppd) requires root privilege for two tasks:

configuring modem hardware and, potentially setting system routing tables to relay IP traffic through a PPP

link. The pppd binary is setuid root so that it can be launched on demand, because, unlike ethernet, most

PPP connections are not constantly active.

When pppd is launched as a user other than root, only certain safe configuration options are accepted,

such as compression and congestion control session parameters. An administrator can also configure pppd

to allow unprivileged users to add system routes over a ppp connection, but only if the new address ranges

were not previously reachable. If a PPP connection duplicates an existing route, a user may only create a

tty that communicates with the remote point.

We add LSM hooks to the appropriate ioctl system calls for configuring routing tables and modem

options. Specific policies are mined from the ppp configuration file /etc/ppp/options. We also changed

the default file system permissions on /dev/ppp to be more permissive, replacing a capability check with

device file permissions.

We verified that pppd works without root privilege by connecting two machines over a crossover serial

cable, such that one serves as an internet gateway to the other. Both machines ran pppd without root privilege,

both were able to create routing table entries, and the non-gateway machine was able to connect to remote

websites.

3.3.1.3 Bind

Creating a socket that listens to a TCP or UDP port less than 1024 requires root or the CAP NET BIND

SERVICE capability. For this reason, many network services run with root privilege, at least temporarily, to

set up a listening socket.

This policy reflects the notion that an administrator should be involved in setting up a service that listens

on a well-known port. For instance, one expects that a web server listening on port 80 is endorsed by the

54

administrator, but not if it is listening on port 8080. However, any privileged application can open any

privileged port; for instance, a malicious web server can also act as an email or DNS server.

The system policy goal is that specific ports should be allocated to specific application instances.

Protego uses a tuple of (binary path name, user ID) to represent an application instance, and a simple policy

configuration file, /etc/bind, which maps each TCP or UDP port less than 1024 to an application instance.

Each port may map to only one application instance.

Our strategy is a simplified version of SELinux’s approach, which allocates ports to types. Using types

to specify an application instance is sufficient, but not necessary; eliminating privilege escalation should

not hinge on adopting SELinux. Similarly, Berkeley Packet Filters can also be used to delegate access to a

privileged port; a centralized configuration has the advantage of easier auditing.

3.3.2 Mount

§3.1 explains our approach to the mount utilities as a motivating example; we will not repeat this for

brevity. We validated that unprivileged users can mount user entries in /etc/fstab but not other file

systems.

An alternative point solution used by many Linux and Unix systems is a trusted daemon (e.g., auto-

mounter [25]) that monitors accesses to allow-listed mount points, and automatically mounts them in

response to attempts to access the device. Any design that allows unprivileged users to access allow-listed

mount points is sufficient; the Protego design adds only 258 lines of trusted code to the system, whereas the

Linux automounter implementation increases the TCB by 21,674 lines, including a 79 line kernel patch.

3.3.3 UID Switching and Delegation

A process changes its user and group IDs using a family of system calls including setuid and setgid,

which require the CAP SETUID or CAP SETGID capabilities. These capabilities give a process the ability

to assume any user’s or group’s id. Utilities such as sudo are setuid root so that they start with administrator

privilege, validate that the invoking user is allowed to switch to the new user, and then call setuid to drop

privileges.

Because our interest is in enforcing least privilege on non-administrator users, we focus on lateral moves,

where one unprivileged user (Alice) acts for another (Bob). Most delegation utilities, such as sudo, violate

55

the principle of least authority by giving Alice the privilege to run as any user via a setuid root binary, and

then dropping back down to Bob with the setuid system call.

Ideally, Alice’s sudo process should never be able to switch to any uid other than Bob’s, and only in ways

Bob has authorized her to act for him. If sudo enforced least privilege on Alice, even if Alice compromises

her sudo process, she should never be able to switch to an unrelated user, say Charlie. Obviously, in many

cases, sudo is used to transition to root; even in this case, root privilege should only be granted to the

process after all checks have succeeded, not before. These policies are only possible if the kernel, not a user

application, validates setuid system call transitions.

Taking sudo as a representative example, there are two checks that require a trusted agent:

• Authentication: Either the current or target user’s password should be entered and checked. Utilities

like sudo check the calling user’s password to ensure that another person hasn’t sat down at an

unattended terminal. sudo only checks the password if a password has not been entered on the

terminal in the last 5 minutes. In contrast, utilities like su ask for the target user’s password as both

authentication and authorization to act as the target user.

• Authorization: The administrator may configure sudo to only allow a user to issue specific commands

as another user. For instance, Alice may allow Bob to issue the lpr command to print with her

credentials, but sudo will not allow Bob to directly execute any other binaries as Alice. Specifying a

particular command also requires limiting inheritance of environment variables or open file descriptors,

to ensure integrity of the delegated command.

An untrusted binary should not be charged with either.

Rather than check for administrator privilege on a setuid system call, Protego enforces the policies col-

lected from the /etc/sudoers configuration file and the configuration files in the /etc/sudoers.d/

directory. Policies currently encoded in setuid binaries are explicated in additional /etc/sudoers rules.

Similar to /etc/fstab, the monitoring daemon parses these files, watches for changes, and sets the

kernel policies accordingly. Protego also requires that any user issuing a setuid system call be recently

authenticated, unless specifically countermanded by a sudoers policy with the NOPASSWD directive. We

shift the validation of command-line arguments to the kernel.

The Protego kernel tracks the last authentication time in the task struct of each process. If a

setuid system call is issued without a recent authentication of the current user, a trusted authentication

56

service temporarily takes over the terminal and asks for the user’s password. This authentication service is

refactored from the login source code. This service can also request the password of another user or group,

according to system policy.

A challenge in restricting sudo privilege to a given binary is that policy enforcement must span two

system calls: setuid and exec. To achieve least privilege, the process privileges must not change before

the exec system call. To address this, we slightly change the behavior of setuid for restricted UID

transitions. If a process could make an exec call with at least one permissible binary, the setuid system

call’s return code (0) will indicate success to the application, but the system call will set a field in the task’s

security metadata indicating a pending setuid-on-exec and storing the pending user. When a process with the

setuid-on-exec field set issues an exec call, Protego hooks the exec system call and checks whether the

requested binary is allowed as the pending user. The authentication service may also ask for the target user’s

password at this point. If the user is not authorized to exec the requested binary as the target user, the exec

will fail with a permission denied error. This change in error behavior is difficult to avoid when enforcement

must span two system calls; in practice, our target utilities have worked correctly despite this change. We

also add appropriate restrictions on inheritance through setuid transitions, except where explicitly permitted

in the sudoers policy.

In our example of Alice acting for Bob, a setuid-to-Bob binary can provide the desired user transition. In

practice, tools like sudo are preferred because sudo is more flexible, centralizes system policy in an easy-to-

audit location, and sanitizes inputs and environment variables to reduce the application’s attack surface. An

alternative approach to implementing a least-privilege sudo might generate a set of setuid-nonroot binaries

that encode the system policies, similar to capability amplification in Hydra [207].

Protego encodes the policies of a wide range of delegation utilities as extended sudoers rules, including

su, sudoedit, dbus, policykit, and newgrp. For instance, newgrp exports password-protected groups; this

functionality can be encoded by requiring the user authenticate on a setgid system call that requests certain

groups. We omit full details of these utilities for brevity.

3.3.4 File System Permissions

Several setuid-to-root binaries require root in order to work around inconvenient file system permissions.

For instance, mail servers use root privilege to access configuration files, such as .forward, even if the

user’s permissions otherwise block access to the file. Similarly, most of the software for managing one’s local

57

account, such as passwd and chsh, requires access to a single record in a database file, but the kernel only

enforces access control at the file granularity.

In order for a user to change her password or default shell, she should be able to modify her own

entry of the database files. However, if Alice can modify Bob’s database entry, Alice can access or modify

Bob’s account—a clear security problem. Thus, the shared database files can only be written by root.

In terms of capabilities, a process must acquire CAP SYS ADMIN, CAP CHOWN, CAP DAC OVERRIDE,

CAP SETUID, CAP DAC READ SEARCH, and CAP FOWNER to complete this operation—undermining the

goal of substantially limiting administrative privilege with capabilities. To permit users to modify their

credentials and preferences, passwd, chsh, and similar utilities are setuid and validate that the update does

not corrupt the entire database.

To modify one’s account with least privilege, the system must enforce access control at the granularity of

a user’s record, not the entire database. Protego splits the shared database files into per-account files. For

instance, we split /etc/passwd into one file per-user under /etc/passwds/. Each file has permissions

rw-------, owned by the user it defines and the parent directory /etc/passwds/ has permissions

rwxr-xr-x owned by user root and group root so that unprivileged users cannot add new users to the

system. For backward compatibility, a trusted daemon monitors the per-user files and updates the legacy

/etc/passwd file (§3.1). A similar approach is taken with /etc/group and /etc/shadow.

Network directory servers, such as OSX’s Directory Server [41] or OpenLDAP [23], already enforce

record-level access control. However, such a mechanism is generally not available for the local system ac-

counts, and adds substantially more code to the system TCB (Protego changes 240 LoC, whereas OpenLDAP

Version 2.8 is 175,368 LoC).

In the case of mail delivery problems, we advocate sufficient warnings in the log to diagnose delivery

problems resulting from incorrect file permissions.

We note that users may desire finer-grained access control to prevent their password hash from leaking

from their /etc/shadows file. Protego mitigates this risk by requiring the user to reauthenticate before

reading the shadow file using the mechanisms described above (§3.3.3). The shadow file handle may not be

inherited (CLOSE ON EXEC).

58

3.3.5 Interface Design

A small number of utilities require root privilege because the kernel’s interface design forces otherwise

unnecessary trust on the utility. In many cases, non-security reasons naturally lead to more sensible interfaces

and obviate the need for trusted binaries. For instance, very old versions (before 2.1, or 1996) of the Linux

pseudo-terminal implementation required applications to allocate slave [sic] terminal devices, and thus

required a trusted binary to prevent applications from interfering with each other. Ultimately, allocating

slaves in the kernel was simpler all around, and obviated the need for a trusted pt chown utility.

Similarly, the X window server is setuid to root because the X server may need to both manage the

graphics hardware as well as display the user’s composite desktop. In practice, simply drawing a screen

image to a frame buffer does not require any administrator privileges. Root privilege is required to configure

and context switch the video hardware, e.g., setting the refresh rate, screen resolution, and, most importantly,

configuring which application’s frame buffer should be displayed on the screen [29].

In practice, video card management has been migrating from the X server into the kernel. When the X

server manages the video card, developers find writing context switching code for a range of video hardware

cumbersome. The video configuration changes when a user switches from one X server to another, or from

the X server to a text console (via Ctrl-Alt-F1). The X server must correctly save and restore all state for all

supported video cards. Thus, X and video driver developers have decided that a more sensible division of

labor is for the OS kernel to manage context switching the video card. Linux now has a standard interface for

device drivers to save and restore device state, called Kernel Mode Setting (KMS) [29], introduced in Linux

2.6.29.

KMS eliminates the need for X to run as root [78], and is ubiquitous among all major device manufactur-

ers. Device drivers with KMS support have been written for chipsets manufactured by Intel, ATI (radeon),

Nvidia (nouveau driver), and others. Nvidia’s closed-source drivers have also adopted KMS [131]. We have

verified this on our own machines using the Nouveau driver and running an X server binary that is not setuid

to root.

An interesting contrast is that, unlike many setuid binaries, X and the Linux video drivers are still under

very active development. The same decision that led to a needless attack surface has caused enough practical

problems that developers are rectifying the problem for non-security reasons.

59

3.3.6 Limitations and Discussion

Our study covers a representative sample of setuid-to-root binaries, and we expect that Protego can

easily support most of the remaining setuid-to-root binaries. We note that the Protego prototype allows an

administrator to reenable the setuid bit if necessary. If the setuid bit is actually removed from all other binaries

when the bit is reenabled on the system, the only marginal difference will be that the one unsupported binary

is added to the system’s trusted computing base.

The most likely situations where the setuid bit may be required are new kernel interfaces where the

desired policy is not well understood. For instance, Linux has been gradually adding support for sandboxing

with restricted namespaces [123], beginning with version 2.6.23. Until version 3.8, the security implications

were not sufficiently understood, and sandboxing utilities, such as chromium-sandbox, had to run setuid-to-

root. The security implications are now better understood, and newer kernels allow unprivileged users to use

safe namespace configurations.

The main weakness of the Protego design is that its tools for mitigating information leaks are limited

compared to SELinux, but more powerful than unmodified Linux. Two setuid binaries need to read sensitive

data: ssh-keysign and password changing utilities. In these cases, a measure of trust is unavoidable.

Protego develops fine-grained delegation rules (§3.3.3) that allow only these trusted binaries to read specific

sensitive files. These restrictions are not as strong as SELinux roles [94, 145], but they can be combined. For

example, a keysigning role might take away network access and write permission to any file handle other

than a pipe to the parent. In comparison, Linux allows any program with root privilege to read these files.

Protego’s contributions are orthogonal to SELinux’s, and could be adopted by SELinux to mutual benefit.

3.4 Evaluation

This section aims to answer the following questions:

• What is the cost (in execution time and network throughput) of moving setuid policies into the kernel?

In particular, what cost is imposed on applications that do not use any privileged functionality?

• How does Protego affect overall system security?

• Are Protego functionality and policies identical to unmodified Linux?

60

Test Linux +/- Protego +/- % OH
lmbench

syscall (us) 0.04 0.00 0.04 0.00 0.00
read 0.09 0.00 0.09 0.00 0.00
write 0.09 0.00 0.09 0.00 0.00
stat 0.34 0.00 0.33 0.00 -2.94
open/close 1.17 0.09 1.17 0.09 0.00
mount/umnt 525.15 18.82 531.13 19.44 1.13
setuid 0.82 0.09 0.83 0.06 1.22
setgid 0.82 0.09 0.83 0.09 1.22
ioctl 2.76 0.45 2.78 0.48 0.72
bind 1.77 0.10 1.81 0.11 2.25
sig install 0.10 0.00 0.10 0.00 0.00
sig overhead 0.70 0.00 0.70 0.00 0.00
prot. Fault 0.19 0.00 0.19 0.00 0.00
fork+exit 159.00 0.99 158.00 0.40 -0.63
fork+execve 554.00 1.86 573.00 1.81 3.43
fork+/bin/sh 1360.00 1.33 1413.00 1.72 3.90
0KB create 5.57 0.39 5.43 0.37 -2.51
0KB delete 3.93 0.59 3.79 0.73 -3.56
10KB create 11.00 0.13 10.80 0.10 -1.82
10KB delete 5.90 0.36 5.85 0.57 -0.85
AF UNIX 9.30 0.00 9.69 0.00 4.19
Pipe 6.73 0.00 6.88 0.00 2.23
TCP connect 18.00 0.00 18.55 0.00 3.05
Local TCP lat 19.63 0.00 20.87 0.00 6.32
Local UDP lat 16.70 0.00 17.90 0.00 7.19
Rem. UDP lat 543.60 0.00 578.30 0.00 6.38
Rem. TCP lat 588.10 0.00 631.50 0.00 7.38
BW (MB/s) 5316.60 0.00 5170.69 0.00 2.74

Postal Benchmark for Exim server
Messages/min 258.64 3.33 258.75 3.09 0.04

Kernel Compile
time(s) 764.41 4.36 775.39 5.28 1.44

Apache Bench
Time per request (ms, lower is better)
25 conc. reqs 0.28 0.01 0.29 0.01 3.57
50 conc. reqs 0.26 0.00 0.27 0.00 3.85
100 conc. reqs 0.25 0.01 0.26 0.01 4.00
200 conc. reqs 1.13 0.02 1.16 0.02 2.65
Transfer rate (Kbps, higher is better)
25 conc. reqs 6781.04 134.14 6506.29 157.34 4.05
50 conc. reqs 7375.21 253.56 7083.63 248.34 3.95
100 conc. reqs 7342.15 206.45 7051.54 236.78 3.96
200 conc. reqs 1642.90 106.46 1599.55 113.92 2.64

Table 3.6: Protego overheads compared to Linux with AppArmor. Unless otherwise noted, tests measure
execution time in microseconds (lower is better). A few tests measure bandwidth in MBps or Kbps, where
higher is better.

61

• What effort would be required to deprivilege the remaining 67 packages containing setuid-to-root

binaries?

Our baseline is an unmodified Linux 3.6.0 kernel configured to use AppArmor and iptables with no

firewall rules on Ubuntu 12.04. Protego was refactored from Linux 3.6.0. All measurements were collected

on a Dell Optiplex 790 with a 4-core 3.40 GHz Intel Core i7 CPU. The test machine has 4 GB of memory

and a 250GB, 7200 RPM SATA disk.

3.4.1 Performance Overheads

We measure the performance cost of Protego policy enforcement on applications that do not require any

privilege on Linux with both application benchmarks and the lmbench microbenchmark suite, version 3.0-a9.

We note that within a run, we use the standard lmbench configuration, which includes a number of iterations

scaled appropriately to the test case. We report the mean and 95% confidence intervals. We also measure

Linux kernel 3.6.6 compilation time and network performance using the ApacheBench benchmark, version

2.3, exercising an Apache web server, version 2.2.16.

We note that most applications which use the setuid bit are interactive, and thus difficult to meaning-

fully benchmark. The most interesting exception to this are the mail servers, so we include measurements of

exim4 server using the Postal [75] benchmark. We also extend lmbench with 5 additional tests that exercise

the system calls we modified.

In general, the overheads of Protego are low, ranging from 0–7.4%. Table 3.6 lists the measurements of

Protego, as well as overhead relative to Linux. For many system calls, Protego has no effect on the behavior

and performance is comparable. In the case of exec, for instance, Protego adds 5.78% overhead to enforce

setuid policies. A few microbenchmarks show small performance improvements commensurate with the

confidence intervals, which we believe are noise. At the macro-benchmark level, such as a Linux kernel

compile, Protego overhead is only 1.44%.

In order to enforce policies on raw network packets, we add additional netfilter rules on all outgoing

packets. To measure the impact on unprivileged applications, we compare to netfilter with no rules configured,

and the overhead ranges from 2–4% for the standard ApacheBench web service benchmark. These results

indicate that the performance overheads are acceptable.

62

Utilities Total Priv. CVE Identifiers
CVEs Esc.

ping 84 4 1999-1208, 2000-1213, 2000-1214, 2001-0499
traceroute 26 2 2005-2071, 2011-0765
mount,umount 114 2 2006-2183, 2007-5191
mtr 4 3 2000-0172, 2002-0497, 2004-1224
sendmail 84 2 1999-0130, 1999-0203
exim 21 2 2010-2023, 2010-2024
sudo 61 5 2001-0279, 2002-0043, 2002-0184, 2009-0034, 2010-

2956
sudoedit 3 1 2004-1689
newgrp 7 6 1999-0050, 2000-0730, 2000-0755, 2001-0379, 2004-

1328, 2005-0816
passwd 87 1 2006-3378
passwd, su - 1 2003-0784
su 31 2 2000-0996, 2002-0816
chsh, chfn, su, passwd - 1 2002-1616
chsh, chfn 10 2 2005-1335, 2011-0721
dbus 22 1 2012-3524
pkexec, policykit 24 2 2011-1485, 2011-4945
X 33 2 2002-0517, 2006-4447
capabilities 7 1 2000-0506

Table 3.7: Historical vulnerabilities in setuid-to-root binaries (total, and those that lead to privilege escalation).
In Protego, these utilities and the vulnerable code would be deprivileged and would not lead to a privilege
escalation. Dashes are placed in the “Total” column for a CVE that spans multiple packages; the package
totals are reported in other rows.

3.4.2 Security Evaluation

It is difficult to quantify the change in risk of any change to a system interface and enforcement

mechanism. To evaluate Protego we consider two rough indicators: the net change in the trusted computing

base and whether historical vulnerabilities in setuid binaries would occur in code that is now de-privileged,

or in code that moved into the OS kernel.

Trusted Computing Base. We first carefully measure the change in privileged lines of code in the

previously setuid binaries. At a high level, Protego adds 715 lines of policy checking code to the Linux

kernel, 400 lines of code in Python which monitors certain configuration files for changes, and a 1,200

line authentication utility. The authentication utility is refactored from existing trusted code in login and

newgrp. To balance this number, we also measure the lines of trusted binary code that no longer execute

with privilege—a total of 15,047. We are careful to report a conservative estimate—ignoring whitespace,

comments, standard libraries, and any code that would have executed after dropping privilege in the original

code. Thus, Protego decreases the lines of trusted code by at least 12,732.

63

One potential concern is that Protego (conceptually) migrates policy enforcement code from applications

to the kernel. We hasten to note that the policy enforcement code in the kernel is only 200 lines of

straightforward C code. Protego also expands the purview of policies enforced in the kernel; these concerns

are localized to our LSM, and generally make existing kernel policies more precise.

Similarly, one might be concerned about adding the user-level authentication service and monitoring

daemon to the trusted computing base. We note that authentication code is trusted in both systems, the only

difference is how it is invoked. Parsing configuration files can introduce new vulnerabilities, but the risk

is small, as the files are simple. This daemon is written in a managed language with regular expressions

(Python) to minimize the risks commonly associated with input parsing. The monitoring service could be

eliminated by changing additional legacy code. The code we add to the TCB is short, simple, and easily

audited.

A more subtle issue in selecting a configuration format is the risk of misconfiguration. Whenever possible,

we chose to use legacy configuration files administrators would find familiar. This choice is debatable and

largely incidental to the Protego design; one could just as easily have a single policy file, as SELinux does,

and perhaps manage this with some application to assist the administrator, all using the same underlying

/proc interfaces to the Protego LSM.

Historical Vulnerabilities. We surveyed the Common Vulnerabilities Database [156] entries for the 28

binaries this chapter studies. We found 618 total vulnerabilities over the lifespan of these utilities—40 of

which led to acquisition of root privilege, summarized in Table 3.7.

We manually analyzed these 40 privilege escalation vulnerabilities and determined that these executed

in code that now runs without privilege in Protego. Most of these vulnerabilities exploit buffer overflows,

format strings, or environment variables. Moreover, these vulnerabilities are not in code substantially similar

to the parsing, policy checking, or authentication code that we have added to Protego’s TCB.

This data indicates that the probability of new privilege escalation vulnerabilities is relatively low, but

the overall risk is still substantial. Most of the credit for the low probability of privilege escalation belongs to

efforts to drop privilege after the privileged system calls have executed. Nonetheless, our analysis indicates

that kernel support in Protego can further reduce the risk of privilege escalation.

As code matures the probability of exploitable bugs decreases. Although the most popular packages are

generally quite old, Ubuntu has added 21 setuid-to-root binaries based on new code between 2011-2014,

64

Binary Coverage % Binary Coverage %
chfn 94.4 sudo 90.1
chsh 92.7 sudoedit 90.9
gpasswd 91.3 mount 94.1
newgrp 93.5 umount 92.5
passwd 91.0 ping 96.2
su 92.2

Table 3.8: Gcov coverage of command-line setuid binaries

despite a net reduction in setuid binaries. The long-term goal of this project is to completely obviate the need

for new setuid-to-root binaries, and their considerably higher risk of exploitable bugs.

3.4.3 Functional Testing

In addition to manual functionality tests, we validate that Protego behaves equivalently to unmodified

Linux with exhaustive test scripts for setuid command line utilities. We validate that the utilities have

the same output and effects on both systems. We also use gcov [105] to measure the test coverage for

the command-line utilities in Table 3.8, which is always above 90%. Although exercising nearly all code

paths does not necessarily mean all inputs are handled equivalently on both systems, one can infer that the

functionality and policy enforcement is very likely to be equivalent.

3.4.4 Toward Zero Setuid-To-Root Binaries

This subsection surveys the remaining 67 packages (91 binaries) in Ubuntu Linux to assess how many

can likely be deprivileged on Protego and how many will require different approaches. We note that this

survey is preliminary, based on the documentation, and we have not tested these on Protego.

Table 3.9 groups the remaining binaries by the underlying interfaces that require privilege. We observe

that 77 use interfaces already addressed by Protego, but may require refinement to the policies currently

enforced. The remaining 14 binaries require privilege for:

• Namespaces (6). §3.3.6 explains that namespaces no longer require privilege in Linux kernel versions

3.8 and higher.

• System administration (3). Three binaries use privilege to reboot the system, load kernel modules, or

configure the network. Some may be able to use PolicyKit or sudo (§3.3.3), but others may require

additional consideration.

65

Interface No. of Setuid Binaries
socket 14
bind 23
mount 3
setuid,setgid 24
Video driver control state 13
chroot/namespace 6
miscellaneous 8

Table 3.9: System abstractions used by setuid binaries in packages not included in the Section 3.3 study.
Abstractions below the double line need to be addressed in future work.

• Open a custom device (5). Virtualbox includes a kernel-level virtual machine monitor, which exports

a custom device to 5 setuid binaries. These applications and the kernel module are tightly coupled, and

additional work will be required to identify a sensible policy for this device.

Thus, we are optimistic that a few additional policy abstractions can complete our ongoing effort to obviate

the need for all setuid-to-root binaries.

3.4.5 Design Principles for Protection Mechanisms in Protego

Protego applies design principles to setuid-to-root binaries in userspace, but enforcement is done in

kernel space. This thesis will now discuss how the secure design principles are followed in Protego.

Economy of Mechanism: Protego changes only 715 LoC in the kernel to enforce the least privilege

policies. Almost all the changes are made in the LSM piece of code. Thus, Protego demonstrates the use of

economy of mechanism in the Linux kernel.

Fail-Safe Defaults: Protego uses allow-list policies that explicitly allow certain functions. All other

functions not explicitly allowed by the administrator are denied by default for the untrusted user.

Complete Mediation: The LSM code is based on hooks appropriately placed throughout the kernel

to check permission before taking any action. Protego leverages this design principle followed by LSM to

ensure complete mediation for the setuid-to-root binaries.

Open Design: Protego does not have any secret algorithms. The complete code is open source.

Least Privilege: The least privilege principle states that each entity should gain exactly the right

privileges necessary to perform the function they are allowed to do, and nothing more. This principle was

violated by the setuid-to-root binaries as they gained the root privilege or all-encompassing capabilities. The

Least Privilege principle is at the core of the Protego design. Protego determines the exact privileges needed

to use one of the privileged abstractions based on the administrator policies, and enforces them in the kernel.

66

Psychological Acceptability: As the table 3.2 shows, Protego adds a monitoring daemon and the

authentication utility to maintain backward compatibility, and not change the untrusted user’s interface to

these setuid-to-root binaries.

3.5 Related Work

This section surveys related efforts to reduce the privilege of setuid binaries, which generally speaking,

either enforce least privilege on the administrator, but not regular user, or simply remove functionality from

users.

Much related work on setuid binaries attempts to mitigate the risk of privilege escalation attacks by

allocating privilege only to portions of a program (also known as privilege bracketing or privilege separation).

Systrace [167] mitigates privilege escalation attacks by localizing privilege in setuid binaries to a single

system call (e.g., the socket call in ping). Executable based access control [56] specifies which files a

trusted binary may open; this design cannot prevent an errant passwd utility from changing other users’

passwords, nor does it restrict privileged system calls unrelated to files. Protection domains within a setuid

binary have also been proposed to preventing exploits in unprivileged operations from leaking into privileged

code [186].

Secure Xenix [101, 108], and other secure Unix variants [52, 130, 199, 205] developed modern best

practices for enforcing least privilege on the administrator: fragmenting administrative privilege into roles or

capabilities, restricting the ability to create more setuid binaries, and removing the setuid bit if a binary is

overwritten. Limiting the risk of exploiting a setuid binary is complimentary to Protego’s goal of eliminating

the need for setuid binaries.

Plan 9 eliminates setuid binaries by making every OS resource a file or file system, and by prolific use

of fine-grained capabilities [79]. For instance, Plan 9 represents all networking abstractions as files with

capabilities, whereas Protego enforces finer-grained network security policies.

Although Windows has a richer access control model than Linux users and groups [191], Windows adopts

similar practices for some resources, such as requiring Administrator privilege to create a raw socket [155].

Finally, Bastille [47] simply removes the setuid flag and supported functionality from many utilities. For

instance, non-privileged users cannot mount a USB drive, ping another computer, or use the traceroute

command—functionality that could be safely reinstated on Protego.

67

Namespaces. Linux 3.8 allows unprivileged sandboxing applications, such as chromium, to create

sandboxed network, mount, user, and process namespaces [123].

Namespaces are designed for isolating untrusted binaries, and are simply the wrong tool for enforcing

least privilege when accessing shared system abstractions. Inside of a sandbox, a process can appear to have

any capability, but any externally visible operations are subject to the original user’s privilege. For instance,

network namespaces allow an unprivileged process to access a fake network interface, and send ICMP packets

within a fake network with no routes to the outside world. The major caveat is that any connection to the

outside world requires an agent outside of the sandbox with the appropriate capabilities. In our network

example, the agent would still need the CAP NET RAW capability to send ICMP packets out of the sandbox.

In contrast, namespaces cannot safely allow access to shared system resources, such as passwd updating the

password database.

3.6 Summary

This chapter presents a study of setuid-to-root binaries on modern systems, yielding insights into the

nature of least privilege, especially that one should consider the administrator and user separately. There is an

interplay between the division of labor between the kernel and userspace that directly impacts the need for

trust; trusted binaries are often compensating for a design flaw in the system interface. Protego demonstrates

techniques that can eliminate this long-standing attack surface without sacrificing functionality.

68

CHAPTER 4: RETROFITTING COMPLETE MEDIATION AND MEMORY PROTECTION TO
ISOLATE LINUX CONTAINERS

This chapter leverages virtualization hardware, such as Extended Page Tables (EPT) [51], to isolate the

memory of OS containers by redesigning the OS abstractions to match the hardware requirements.

OS virtualization systems like Docker and Linux Containers (LXC) have been gaining popularity for

cloud computing because of their low resource consumption. Profitability of operating a cloud is tied to how

many applications the cloud provider can pack on the same hardware. Thus, the most common cloud use-case

for containers is a multi-tenant environment, where containers of competitors may be running on the same

physical machine. The security guarantees given by the OS virtualization rely on creating container-specific

copies of selected kernel data structures and redirecting the use of these objects to an appropriate container-

specific copy. Vulnerabilities in the Linux namespace code that implements this indirection can be exploited

to gain unauthorized access to other containers’ objects. Currently, there are 15 reported vulnerabilities in the

Linux namespace code, which cause privilege escalation [1]. This is a security concern for the widespread

adoption of OS virtualization for multi-tenant cloud computing.

The multi-tenancy security concern for containers exists because the container-specific copies of kernel

objects are not isolated from each other. Containers reduce their footprint by sharing the OS kernel between

the host and the container. As a result, all containers share the vulnerability of the OS kernel. A malicious

application in a container can exploit the shared kernel to access or manipulate other containers’ kernel

objects, making multi-tenancy security difficult to implement for containers. The multi-tenancy security for

containers needs a way to control access and isolate the container-specific kernel objects.

Virtual machines provide better security isolation for the applications within the VM compared to

containers. VMs do not face the problem of isolating kernel objects because the hypervisor isolates each

VM’s memory for kernel data structures using the second set of page tables like shadow page tables or

Extended Page Tables (EPT) [51] as described in §4.2. Moreover, the interface between the hypervisor

and the guest is much narrower than the wide system call interface for containers. However, in the cloud

environment, virtual machines run a complete legacy OS for one application and thus lead to substantial

overheads in terms of memory and disk space compared to lightweight OS virtualization. Moreover, the

69

Technique time(sec)
KVM Start-Up 10.342
LXC Start-Up 0.200
FreeBSD Jail Start-Up 0.090

Table 4.1: Start-Up times for a VM and a container

Host OS

struct kref
kref;

struct mount
*root;

kgid_t
pid_gid;

App App

Isolated address
space, Isolated

vulnerability

Hardware
Page Tables

Extended
Page Tables

Shared OS

Occluded per-
container

objects

Figure 4.1: Hardware-Assisted OS Virtualization (Containers)

boot time for VM is orders of magnitude higher than containers as shown in Table 4.1. This overhead of

booting a complete legacy OS for one application is why the cloud computing community is moving towards

containers instead of VMs.

The key insight is that memory isolation for just the container-specific kernel objects can solve the

problem of multi-tenant security for containers. Our solution repurposes the virtualization hardware to

achieve this isolation. Our solution maintains the lighter weight of containers by sharing the OS kernel

between containers and the host while providing memory isolation using a second set of page tables like EPT.

4.1 Overview

In the current Linux kernel design, containers are created by passing special flags to the clone()

system call. The flags indicate that the kernel should create a new namespace, and the new process should

use this new namespace. Namespaces, like file handles in Unix, can be selectively inherited from a parent.

Figure 4.1 shows the overview of the new design. This thesis makes the container a first-class object

in the Linux kernel by creating all new namespaces for the new process, and protecting those namespaces

70

using a new type of hardware-supported memory namespace. Hardware virtualization features like EPT

help prevent access to container-specific kernel objects outside the memory namespace. As the hardware

protection is at page granularity, this thesis redesigns the OS to be EPT page protection-friendly for containers.

The memory allocators allocate container-specific objects at page granularity, so that the protection boundary

can naturally map to the page translation and the page protection provided by EPT. The hardware delivers all

the safe interrupts and exceptions directly to the guest, except a few unsafe interrupts like EPT fault, or triple

fault. The unsafe interrupts cause a VMEXIT, so that they can be handled by the host. The host scheduler

schedules which guest to run, but a second level of process scheduler inside the guest schedules the guest

processes.

The contributions of this work are as follows:

• A redesign of the memory allocation of guest kernel objects to be EPT page protection friendly.

• Isolate containers with VM-like EPT-based protection.

• Leverage known techniques to lower overhead and improve performance in the presence of virtualiza-

tion hardware.

Threat Model. This work follows the same threat model as a virtual machine. The host kernel is fully

trusted, however, the code running in the guest mode is not trusted. An attacker can modify the kernel code

running in the guest mode. Even in the presence of a compromised kernel in the guest mode, the guest cannot

access information about any of the other co-located guests. The guest can only access data if the host has

given explicit permission. A malicious guest cannot cause a denial of service for the co-located guests or the

host. Any attempt made by a malicious guest to access other guest data will lead to the malicious guest’s

termination.

This thesis assumes that the code to set up the EPT permissions, which is part of the host kernel, does

not have any vulnerabilities. As the code size is small (about 3K lines-of-code), the code can be formally or

manually verified. Furthermore, this thesis assumes that the hardware does not have any vulnerabilities and

our solution do not protect against hardware attacks. Side-channel attacks are out of the threat model.

Section 4.2 explains how the virtualization hardware provides memory isolation. Section 4.3 describes

the changes in the kernel memory layout to use the virtualization hardware for isolation. Section 4.4 explains

how to schedule different guests, and the different processes within those guests. Section 4.6 evaluates the

71

memory footprint, startup time, developer effort, performance, and isolation property of our solution. Section

4.7 explains how our solution can be extended to support file I/O and network access for each guest in future.

Section 4.9 discusses the related work, and Section 4.10 summarizes this chapter.

4.2 Hardware Support for Memory Isolation

In a native system, the hardware converts logical memory page numbers to physical memory page

numbers, and caches the translation in a buffer called the TLB. Virtualization uses a second level of the page

table called the Extended Page Table (EPT), that allows the host to set permissions that restrict guest access to

pages. This thesis uses this feature to occlude parts of the host kernel from being accessible in the guest mode.

This subsection will discuss in detail the need for EPT, and how the hardware address translation works.

The operating system maps logical memory page numbers (LPN) to physical memory page numbers

(PPN) by storing the mappings in the page table. When a process of any application accesses the logical

address of the memory, the hardware goes through the page table to determine the corresponding physical

address location of where the data is actually stored. Frequently access translations are cached by the

hardware system in the translation lookaside buffer also called the TLB. The TLB is a small cache on the

processor, which accelerates the memory management process by providing faster LPN to PPN mappings of

frequently accessed memory locations.

Virtual machines require 2 levels of page tables. As a virtual machine runs on a hypervisor, the guest OS

cannot access the hardware page tables like the bare-metal OS. The hypervisor gives the guest OS an illusion

that the guest OS is accessing actual physical page numbers by emulating the page tables for the guest OS.

The hypervisor actually creates its own page table called Shadow Page table, which is visible to the system

hardware. So whenever the guest OS requests for virtual address translation to physical memory address, that

request is trapped by the hypervisor, which in turn uses its shadow page tables to provide the address of the

physical memory location.

Hardware-assisted memory virtualization using EPT hardware walks the guest and the host page tables,

and reduces the number of expensive VMEXITs. In presence of EPT, the TLB cache also keeps track of

virtual memory and physical memory from the perspective of the guest OS. The TLB assigns each individual

virtual machine an address space identifier for tracking the virtual machine address space without the need to

flush the TLB cache on context switches.

72

The permissions in the EPT takes precedence over the access permissions declared in the guest page table

managed by the guest kernel. Essentially, the hardware passes the read, write, and execute permission bits in

the guest page table and the EPT through an AND gate, and uses the result to determine whether to allow the

operation or not. So, if the guest page table mapping sets write permission on a particular page, but the host

EPT disables the write permission on that page, the write access request from a guest to that page is denied.

The EPT mechanism lets the host set superseding permissions on pages accessible to guests. Our solution

leverages superseding permissions to enable EPT tables for container processes, and only allows access to

the kernel objects belonging to that particular guest container process.

4.3 Memory Layout Redesign to Leverage Hardware Support

There is a mismatch in granularity between the page-based EPT isolation mechanism, and the subjects of

isolation, which are instances of kernel data structures smaller than a page. The Linux kernel uses a cache

allocator to allocate memory for different kernel objects. A malicious guest container that has compromised

the host kernel can use simple pointer arithmetic to easily locate and access kernel objects belonging to other

co-located guests. As the hardware memory protection used to isolate guests works on a page boundary, to

correctly isolate kernel objects and the memory of each guest, our solution modifies the cache allocator to

allocate memory for objects of different guests from different pages.

Allocating and freeing data structures is a common operation inside any kernel. The Linux kernel uses

the cache allocator to allocate memory for different kernel objects. The cache allocator works on certain

observations:

• It is better to pool frequently used data structures, because these data structures are usually allocated

and freed often.

• Frequent allocation and deallocation can cause memory fragmentation.

• The next allocation can immediately use a freed object.

• The allocator can make more intelligent decisions, if it is aware of concepts such as object size, page

size, and total cache size.

The cache allocator divides different objects into groups called caches. Each cache stores a different type

of object. Thus, there is one cache per object type. For instance, one cache is for inode objects (struct

73

inode), whereas another cache is for process descriptors (a free list of task struct structures). The

kmalloc() interface uses a set of global caches for different sized objects called the memcache array.

The caches are further divided into slabs. The slabs are composed of one or more physically contiguous

pages. Typically, slabs are composed of only a single page. Each cache may consist of multiple slabs. Each

slab contains a number of objects, which are instances of the data structures. When some part of the kernel

requests a new object, the request is serviced from a partially full, or else an empty slab. This strategy reduces

fragmentation.

A malicious guest container that has compromised the host kernel can use simple pointer arithmetic to

access objects of the same type belonging to other containers. The problem with using caches for allocating

container objects is that all objects of the same type are allocated on the same page. This violates the complete

mediation security principle.

Our solution redesigns the cache allocator so that each guest object is allocated from its own separate

cache, called memory namespace. As a result, the object locations for each guest are separated on the page

boundary. However, the kmalloc kernel interface allocates objects using the global memcache array for

objects of different sizes. To isolate these dynamically allocated objects, our solution creates a separate copy

of the memcache array for each guest in its memory namespace.

In addition to the dynamically allocated objects, our solution also needs to isolate the statically allocated

data for each container located in the data section. In order to use the page-level protection, our solution

needs to consolidate all the data of a specific container on the same set of pages. Our solution uses a

per-CPU-like macro code to place per-container data on a separate page. Our solution introduces a new

macro called per-CON. The kernel developers can declare and define per-container objects using the macro

DEFINE PERCON, and access these per-container objects using the macro PERCON. The host allocates

separate per-container page(s) for each container and map these new pages for each new container in the EPT

at the same per-CON page address.

The host cannot trust the kernel mapped in the guest address space to correctly allocate memory only

from its designated area. So, our solution developed a two-layered memory allocator such that when the

guest needs to allocate memory, the guest memory allocator checks if it has space in the pages assigned to

it. If not, the guest memory allocator requests more pages from the host memory allocator, which in turn

allocates pages from the memory assigned to the specific guest.

74

Kernel
struct kref

kref;

struct mount
*root;

kgid_t
pid_gid;

App
Co

nt
ai

ne
r

Vmx non-root mode

Lightweight
Hypervisor

Vmx root mode

Hardware

Interrupt
Handlers

Interrupt
Handlers

schedule ()

VMX-preemption
timer interrupt

Extended Page
Tables

Safe exceptions/interrupts:
divide by zero, protection

fault, page fault

Unsafe interrupts:
Triple fault, EPT fault

schedule ()

timer interrupt

Figure 4.2: Interrupt delivery to host and guest

Thus, in our solution, all of a container’s dynamically created kernel objects are densely packed into

pages, shared only with other objects for that container. For static structures, the solution leverages link-time

directives, such as macros, to make the implementation effort trivial. This ease of retrofitting comes from

following existing coding conventions and design patterns, and any coding mistakes will be made apparent

by a hardware fault, thus achieving simple design and fail-safe defaults principles.

4.4 Scheduling and Interrupts

Linux, like most OSes, uses the timer interrupt to implement the preemption needed for preemptive

multitasking. To improve performance and avoid VMEXITs, our solution delivers safe interrupts and

expections directly to the guest. In order to ensure that a malicious guest cannot affect denial of service for

co-located guests and the host, our solution needs a way to periodically preempt the guest. In our solution

the host and the guest modes are separated by the virtualization hardware. So, when a guest is running, the

hardware delivers the timer interrupt and other safe interrupts and exceptions directly to the kernel in the

guest mode using the APIC Virtualization extension. The guest kernel uses this timer interrupt to switch

between different processes of the same guest. To maintain the fairness of execution time and avoid denial of

service attacks, our solution uses a special VMX-preemption timer interrupt, which causes a VMEXIT and is

delivered to the host. The host can then schedule the next guest or a host process.

In the current Linux design, the host schedules all processes including the containerized guest processes.

Containers isolate processes in the guest using the PID namespace. The process in the guest gets a different

75

PID when inside the container and another PID when outside the container. The PID namespace maps the 2

PIDs inside and outside the guest. The host gets to see all the guest and host processes. The host schedules

the guest as well as host processes using the same scheduler. If the selected process is a containerized process,

the host runs the corresponding guest process.

The maximum timeslice of each host, as well as the guest process, is determined by the timer interrupt.

For containers, as both the guest and the host share the same kernel irrespective of whether the guest or the

host process is running, the interrupts are handled by the host. In case of the timer interrupt, the host preempts

the running process and selects a new process to be run next based on its scheduling policy.

In our solution, even though the guest and the host share the same kernel, they are separated by the

second-level page tables. The task struct of the guest processes in its PID namespace is allocated from a

separate slab, which is not mapped or directly accessible in the host. For the host to understand and control

what exactly is going on in the guest, the host will have to use expensive techniques such as virtual machine

introspection. This would defeat the purpose of using containers.

To solve this issue, our solution adds a second-level scheduler in the guest. Even though the host can’t

schedule individual guest processes, the host can still schedule the host process corresponding to a container.

Once the container process starts running, the first thing it does is check for interrupts or exceptions to

be handled, and then the guest scheduler chooses one of the guest processes to be run. However, now the

problem is, if the timer interrupt arrives, whether the guest or the host gets to handle that interrupt. If the

guest handles this interrupt, a malicious guest may never give control back to the host. On the other hand, if

the host handles the timer interrupt and preempts the guest, the guest can only run one process in its time

slice, thus affecting the performance.

Our solution trades off the performance and fairness using a special VMX-preemption timer interrupt

that traps out of the guest after a set amount of time. The standard timer interrupt is delivered and handled in

either guest or host, whichever is running when the timer interrupt arrives. The VMX-preemption timer is

initialized to a value that is a multiple of the timer interrupt. So, if the guest is running a few CPU-bound

processes, the guest scheduler can switch to other guest processes on receiving the standard timer interrupt.

When the preemption interrupt arrives, it gets delivered to the host, which preempts the guest, and runs

another guest or host process. The preemption timer interrupt ensures that the guest doesn’t monopolize

all the CPU time, but can run multiple processes before having to give control back to the host, thus not

sacrificing performance. As the preemption timer interrupt is a feature of the virtualization hardware, the

76

interrupt is only as expensive as a VMEXIT, which is the cost of context switching between the guest and the

host.

As our solution shares the same kernel in the host and the guest, the guest does not need a separate

interrupt descriptor table (IDT), which maps interrupt numbers to their respective handling functions. The

same code handles the host, as well as guest, interrupts in respective modes. But, the guest cannot be allowed

to handle all the interrupts, especially the hardware interrupts, and highly important ones such as triple fault

and EPT fault. Intel’s virtualization extensions allow the host to control whether interrupts are routed to the

guest or host during guest execution, using a structure called the VM control structure (VMCS).

Intel’s Advanced Programmable Interrupt Controller (APIC) is used for sophisticated interrupt redirection,

and to send interrupts between the processors. Intel has introduced APIC Virtualization extension (APICv) to

improve performance by speeding up the interrupt delivery to the guest. APICv is built on top of x2APIC,

which is available in modern CPUs. This virtualization extension allows inter-processor interrupts to be

delivered to the guest without causing VMEXIT. APICv creates a Virtual-APIC Page to enable virtualized

APIC read and write accesses without causing VMEXIT. The hardware checks for notification of interrupts. If

the notification is present, the hardware updates the guest interrupt status in VMCS. On the next VMENTRY,

the guest will know about the interrupt, and the guest will jump to the handler while in the guest mode.

Thus, in our solution, the hardware is configured to deliver the timer interrupt and other safe interrupts

and exceptions directly to the kernel in the vmx non-root mode, and deliver the VMX-preemption timer

interrupt, and unsafe interrupts to the vmx root mode for security and fairness. Adding a guest-level scheduler

increases the memory footprint slightly, but the guest scheduler is small and light-weight. Our solution

leverages performance optimization features of the virtual hardware interrupt delivery to efficiently deliver

interrupts to the vmx root and non-root mode.

4.5 Implementation Details

Our solution modifies the Linux kernel version 4.1.6 and supports running on Intel x86 processors in

64-bit long mode. The engineering needed to support AMD CPUs is straightforward. Our solution builds on

the virtualization hardware configuration code from Dune [48]. However, Dune uses a library OS to run guest

userspace code in the kernel in vmx non-root mode. In contrast, our solution only runs the kernel code in

kernel mode in vmx non-root mode and runs the guest userspace code in the userspace in vmx non-root mode.

77

Our solution also configures the virtualization hardware to deliver safe interrupts and exceptions directly to

the kernel in vmx non-root mode to avoid unnecessary VMEXITs as discussed in Section 4.4.

In our solution, guest containers are created in the same way as before — by making a clone()

system call — except for the additional CLONE NEWMEM flag. If the CLONE NEWMEM flag is passed to the

clone() system call, our solution creates a new memory namespace for the child process, which initializes

new kmem cache pointers for processes in this new memory namespace. All the subsequent objects for the

child process are allocated using these new cache pointers during the clone() processing.

Once all the data structures are created, if the new process is isolated in a new memory namespace, the

ret from fork routine, which is the address used by any newly created process, calls a special routine to

setup the VMCS data and the EPT tables for the new process, and then transitions to the vmx non-root mode,

and starts running the userspace code in the vmx non-root mode. The EPT mappings are made with read

and write permissions for the per-CON pages, the new kernel stack page for the guest, and all the memory

allocated in the new memory namespace. The EPT mappings are read-only for the kernel text and follow the

well-known virtual memory map of a process as explained in the kernel documentation [7].

If anything causes a VMEXIT in the vmx non-root mode, like a hypercall, the VMX-preemption timer

interrupt, an unsafe interrupt, a bug, or an attack, the control comes back to the special routine, which then

determines the reason for the VMEXIT and deals with it appropriately. The invariant enforced is that if any

change is required to shared data or objects, the vmx non-root mode kernel does a VMEXIT to ask the kernel

in the vmx-root mode to make the change, which will succeed only if the change requested is safe and fair.

The current implementation can create new memory isolated containers using the clone() system call,

create multiple guest processes within that memory namespace, switch contexts among these guest processes,

and handle system calls that don’t need VMEXITs such as getpid(). The implementation of filesystem

and network support is left as future work, which is discussed in Section 4.7. As this is not a complete

solution, some of the evaluation results may change with a complete solution as discussed in Section 4.8.

4.6 Evaluation

The goal of our solution is to keep the memory footprint overhead and startup time orders of magnitude

lower than a VM. To show that our solution is an economical solution to protect complex, legacy operating

systems, this section measures the developer effort in terms of lines of code changed. This section also

78

demonstrates the claim that the execution time will be proportional to the number of VMEXITs. And finally,

this section demonstrates that an attacker running in vmx non-root mode cannot access the data of another

co-located guest. Our solution is compared with the native clone() system call as the lower bound. Our

solution offers security similar to a VM at lower costs. So our solution will be worse than native clone();

the goal is to be significantly closer to clone() than the best case VM. Our solution is also compared with

a Firecracker MicroVM as the upper bound, because Firecracker MicroVM represents the state of the art in

building a lightweight VM of a full Linux guest as demonstrated in Figure 4.6.

It is important to note that the results in this section are preliminary, because our solution is an incomplete

prototype, which is compared to full-featured, production systems of Firecracker MicroVM. It is possible that

the overheads of our solution will increase as new features are added, but these results are still encouraging

because the differences are so pronounced, and there are known techniques to avoid VMEXITs to improve

performance. So, the results of a full-featured prototype are not expected to skew a lot.

4.6.1 Memory Footprint Overhead

This thesis defines the memory footprint overhead of a platform as the number of new pages allocated by

the kernel to start a guest using that particular platform. For containers, this is the number of pages allocated

to make the clone system call. For VMs, the memory footprint overhead is the number of pages allocated

by the host to start a new VM. This section uses the lightweight MicroVM on the Firecracker platform as a

representative example for virtual machines. For our solution, the memory footprint overhead is the number

of pages allocated to make the clone system call, including the pages allocated for the EPT table. For this

experiment, the native cloned process as well as the process cloned using our solution, exits without running

any instructions.

To measure the memory footprint overhead, the host initializes a counter in task struct and incre-

ments the counter for every page allocated till do exit() is called. The value of this counter at do exit()

is the memory footprint overhead. Table 4.2 shows the number of pages allocated for a container, VM, and

our solution. Although our solution allocates 161x pages compared to a native clone() system call, our

solution allocates about 40x fewer pages compared to a Firecracker MicroVM.

79

Native Clone MicroVM This Solution
Pages Allocated 5 32731 809
Normalized 1x 6546.2x 161.8x

Table 4.2: Memory footprint overhead for native clone, MicroVM, and our solution.

Native Clone +/- MicroVM +/- This Solution +/-
Startup Time (ms) 107 0 3597 30 1180 50
Normalized 1x - 33.61x - 11.02x -

Table 4.3: Startup time for native clone, MicroVM, and our solution.

Linux kernel KVM MicroVM This Solution
Lines of Code 17.3 M 0.15 M 65 K (0.065 M) +/- 2845 (0.002 M)

Table 4.4: Developer effort for Linux kernel, MicroVM, and our solution.

4.6.2 Startup Time

In addition to the low memory footprint, another benefit of using containers is the fast startup time.

This subsection compares the startup time of our solution with the native clone() system call and the

Firecracker MicroVM. For the native clone() system call and our solution, startup time is the time to run the

first line of guest userspace code. For a Firecracker MicroVM, the startup time is the time to boot the VM.

Table 4.3 shows results with respective standard deviation. Our solution takes 11x more time than a native

clone() system call, but is 3x faster than the startup time of the Firecracker VM. The higher startup time

of our solution is due to the time required for configuration of the EPT table and the virtualization hardware.

4.6.3 Developer Effort

One of the goals of this design is to keep the developer effort minimal so that it is economical to apply our

solution to complex, legacy systems. Additionally, the fewer the lines of code added or changed, the easier it

is for auditors to audit and verify the design and code changes. The redesign of the memory subsystem caused

propagation of some mechanical changes throughout the code, such as using the memory namespace for

kernel object allocation (§4.3). Table 4.4 shows the lines of code needed to implement our solution compared

to the Firecracker MicroVM, KVM, and the Linux kernel. Our solution is orders of magnitude smaller than

MicroVM and KVM.

80

Kernel

struct kref
kref;

struct mount
*root;

kgid_t
pid_gid;

App
Co

nt
ai

ne
r

Vmx non-root mode

getpid ()

pid_nr_ns (…) Lightweight Hypervisor

Vmx root mode

Extended Page
Tables

No need for
vmexit!

Figure 4.3: Reduce VMEXITs by servicing system calls in vmx non-root mode

4.6.4 Effect of VMEXIT on Execution Time

The cost of using the virtualization hardware is that every context switch between each guest and the

host is the cost of handling a VMEXIT in the host. In order to improve performance, the goal is to avoid

VMEXITs as much as possible, and only pay the price of VMEXIT if absolutely necessary. Our solution

reduces VMEXITs by servicing most system calls in vmx non-root mode as shown in Figure 4.3. This

subsection compares the performance of the getpid() system call in native Linux with our solution. The

execution time for getpid() system call is the same in our solution as well as the native Linux because

our solution services the getpid() system call in the vmx non-root mode, without the need to cause a

VMEXIT.

According to the conventional wisdom, the fewer the VMEXITs, the better the performance efficiency.

To verify this conventional wisdom, this work modified the implementation of the getpid() system call

to make null hypercalls to the vmx root mode that returns without doing any computation. The plot of

the execution time for getpid() against the number of null hypercalls made demonstrates the effect of

VMEXITs on execution time as shown in Figure 4.4. The linear increase in the execution time shows that the

execution time is directly proportional to the number of VMEXITs. Thus, the goal of this design is to reduce

the number of VMEXITs needed, so that the performance is as close to the native performance as possible.

81

0.11
2.63

5.13
7.71

10.33
12.77

15.4
17.99

20.38
23.23

0
5

10
15
20
25

0 100 200 300 400 500 600 700 800 900

ge
tp

id
()

ex
ec

ut
io

n
tim

e
(m

s)

No. of VMEXITs

Effect of number of VMEXIT on execution time

Same as
native when
0 hypercalls

Execution time
directly

proportional to
no. of VMEXITs

Figure 4.4: Effect of VMEXIT on getpid() execution time

4.6.5 Prevent Illegal Memory Access

One of the most important security invariants, based on the threat model, is that even if an attacker

controls the guest, and leverages kernel vulnerabilities to compromise the kernel, the attacker in the guest

still cannot compromise host or other co-located guests. Our solution achieves this property by only mapping

the kernel data specific to a particular guest in its EPT table, and setting correct permission values in the EPT

entries.

In order to verify that this protection isolates the host memory and co-located guest memory from a

malicious guest, this work introduces a new system call attack() that takes an address and an operation

flag to indicate read, write or execute operation to be performed at the given address. Effectively, just for

verification purpose, a rootkit is added in the guest, that allows the attacker to read, write or execute arbitrary

address. Whatever the goal of an attacker may be, the attacker can achieve it using this interface in the

absence of our solution.

When the attacker passed an address to the task struct page containing host data structures, as well

as another guest data structure, any attempt to access these memory pages in the vmx non-root mode caused

an EPT fault, and the control was transferred to the kernel in vmx root mode, which realized that the guest

is trying to access a page that is not mapped in its EPT tables. As the page is not mapped in the guest EPT

table, it meant that the guest was not supposed to have access to this page. Clearly, this was an attempt at

82

Kernel

struct kref
kref;

struct mount
*root;

kgid_t
pid_gid;

App

Co
nt

ai
ne

r

Vmx non-root mode

syscall (..)

Attempt to touch
non-container structures

Lightweight Hypervisor

Vmx root mode

Extended Page
Tables

Bug or Attack
detected. Kill the
container.

Figure 4.5: Our solution prevents illegal memory access by an attacker

breaking out of the memory isolation, and as a result, on recognizing this attempt, the host terminated the

guest without having to even resume the execution of the guest as shown in Figure 4.5.

This thesis notes that, in our solution, the attack surface of the host consists of both memory mappings

and the host API. Iago and semantic attacks [66] against this host API, and hardening that API in general are

a potential concern, but out of scope for now, since this is of a smaller size than KVM’s hypercall table.

4.6.6 Design Principles for Protection Mechanisms in This Solution

Least Privilege: In our solution, the kernel in the guest mode runs at a higher ring level than the host

kernel, which means it has a lower privilege than the host kernel. Even though our solution shares the same

kernel between the host and the guest, the guest can only read and execute the code. The guest kernel does

not have the privilege to write to data objects belonging to the host or other guests. Our solution reduces the

privilege of the kernel in the guest mode so that it can read or write data that belongs only to that guest. Our

solution assumes that the small piece of code added to the host kernel doesn’t have vulnerabilities.

Economy of Mechanism: This principle calls for a simple and small design. To that end, our solution

only add about 5K lines of code, and use well-known techniques such as virtio and exitless interrupt

delivery to reduce duplicating code. This design is already sharing the same kernel in the host and the guest.

83

The modifications that our solution did to the kernel are very modest. The layer of code that sets up the

environment to use and manage EPT, slab allocator changes, and the ring buffer for I/O and network packets

is very minimal.

Complete Mediation: This principle requires that every access to every object must be checked for

authority. Our solution only maps the relevant pages of the guest in its EPT. As a result, the hardware

automatically does the complete mediation.

Open Design: This principle requires the design to not be secret. The code, as well as design, is

open-sourced. Beyond this, none of the security properties depend on secret information remaining secret.

Separation of Privilege: When applied to computer systems, this principle requires that two or more

conditions must be met before access is permitted. Our solution has 2 levels of page tables. The userspace

program running in the guest cannot access any memory unless it is explicitly allowed by the guest kernel

page table and the host EPT for that guest. Thus even if the guest userspace program compromises the guest

kernel, it cannot compromise the host and other guest memory due to the EPT mappings.

Least Common Mechanism: The least common mechanism requires minimizing the number of shared

mechanisms to more than one entity. Virtual machines follow this principle well as the guest and the host

have their own separate copies of the kernel. Containers on the other hand break this principle by design by

sharing the same kernel code and data with all the guests and the host. This design allows sharing of code

between the host and guest, but not the data objects. This reduces the number of shared mechanisms between

the guest and the host, which may unintentionally compromise security. However, the small amount of new

code that our solution added to the kernel is in the shared TCB for all the guests and the host.

Psychological Acceptability: This principle suggests that the human interface for the system should

be a well-known specification. Our solution runs unmodified apps, so that the software developers do not

have to change their interactions with the system. Our solution supports the creation of containers with the

standard clone system call, and allow the guest programs to make system calls as in the case of containers.

Our solution only changes the internal workings of the system so as to be backward compatible with existing

mechanisms.

Fail-safe Defaults: This suggests basing the access decisions on permission rather than exclusion.

The way EPT is configured, the host can set read, write and execute permissions for the guest at the page

granularity. By default, each EPT entry is initialized so that the page is not accessible to the guest. Thus, any

type of access by the guest is allowed only if the host has given explicit permission for that access.

84

4.7 Future Work

Our solution doesn’t yet support filesystem and network. However, this section will describe the design

for filesystem and network subsystem. The implementation of these subsystems is left as future work.

4.7.1 Filesystem Design

Containers use the FS namespace and a unioning file system to isolate files on the host file system, while

the host for VMs emulate a separate virtual disk for each guest, which is accessed as a block virtio disk

device by the guest kernel. Our solution supports the standard mechanism for file system in containers of

unioning file systems and FS namespace, but to avoid giving the guest mode kernel full access to the host

disk, our solution creates a separate ring buffer for each guest, and allow guests to access the file system

using file-based abstraction and the POSIX interface over the virtio protocol. This subsection describes in

detail how our solution plans to support file I/O in the guests.

Containers isolate the guest file systems using FS namespace and a unioning file system such as AUFS.

AUFS projects to the guest a unified view of the files, which may be scattered over the host. As the entire

kernel is mapped in each container guest, all guests have access to AUFS driver, which in turn forwards the

requests to the corresponding underlying file system, such as ext4 or btrfs. Thus, guest containers can directly

access the disk contents through this indirection. The abstraction used by the guests is file-based and POSIX

interface.

Virtual machines, on the other hand, have a separate kernel in the guest, but the disk is managed by the

host kernel. The guest cannot directly access the files on the host’s disk. VMs solve this problem by having

the host emulate a virtual disk device to the guest, which is managed by a virtio block driver in the guest. The

guest finds this device during discovery at boot time, and registers the device for block io, which is used by

the guest file system. The virtio driver uses a mechanism called vring to communicate with the host emulator.

The virtio driver forwards the block io requests to the host, and the host forwards those requests to the disk

device driver. Once the disk driver returns the data to the host emulator, the emulator forwards the data back

to the virtio driver, and the virtio driver forwards it to the guest file system. Thus, the abstraction used by the

guests is block-based and the interface is block requests over a vring.

Our solution can’t just use the virtio system of virtual machines as is, because a) like containers, guests in

our solution do not go through the boot process and device discovery, and b) the virtual machine virtio system

85

is block-based, whereas containers use file-based abstraction and the POSIX interface to access files. In order

to solve this problem, our solution plans to modify the virtio infrastructure to fit the design. At the launch of

the container, our solution will create 2 vrings for each guest to keep track of the requests and responses from

the guest. This design will maintain the container’s file-based abstraction and the POSIX interface, but over a

vring like in the case of virtual machines. However, since our solution does not have a virtual device and its

driver, this design will need to create the wrappers around the vring interface in the guest and the host.

The guest side wrapper will register itself as a file system in the guest. When the guest userspace makes

file system calls, those calls get passed on to the VFS layer, which forwards it to the guest side-wrapper. The

guest-side wrapper then creates a request message, adds it to the vring, and makes a hypercall to the host for

it to service this request.

The host-side wrapper handles this hypercall, checks to see if there is a pending request, and if there is a

request, forwards it to the VFS layer of the host. Just like containers, this design plans to use the file system

namespace and AUFS to project a unified restricted view of the file system. So the VFS layer then forwards

the request to the AUFS driver in the host, which in turn services the request and returns the response back

through the call-chain to the host-side wrapper. The host-side wrapper creates the response message, adds

it to the response vring, and injects an interrupt in the guest. This interrupt is handled in the guest by the

guest-side wrapper. The guest-side wrapper collects the response and returns it back to the guest userspace

through the call chain.

The level of abstraction for our solution is files for efficiency, so that there is no need to duplicate the

block device drivers in the guests. All interactions between the guest and the disk are mediated for security,

but can be asynchronous for efficiency.

4.7.2 Network Design

Network support in VMs as well as containers is a solved problem. This subsection plans to leverage

known solutions, and adapt the solutions to fit the security requirements of the threat model. For any guest

to communicate with the host and the outside world, the host needs to provide special networking support.

Containers, as well as Virtual machines, have two mechanisms for this communication: a) single-root

input/output virtualization (SR-IOV) and b) virtual network. SR-IOV is hardware-assisted virtualization,

whereas virtual network is software-only virtualization. In the case of SR-IOV, each guest gets its own virtual

86

function, which acts as an ethernet device. In absence of SR-IOV, the host passes packets to guests using

another ring buffer and virt-net protocol, similar to the file system.

The SR-IOV is a specification that allows a PCIe device to appear as multiple separate physical PCIe

devices. A PCIe device, such as an Ethernet port, that is SR-IOV-enabled with appropriate hardware and OS

support can appear as multiple, separate physical devices, each with its own PCIe configuration space. The

SR-IOV enabled PCIe device advertises physical functions (PFs) and virtual functions (VFs) to configure and

access these network devices. PFs have the ability to configure or control the PCIe device via the PF, and

the ability to move data in and out of the device. VFs are similar to PFs but lack the configuration ability;

VFs only have the ability to move data in and out. Each SR-IOV device has a PF and each PF can have

multiple VFs associated with it. The VFs are created by the PF. After SR-IOV is enabled in the PF, the PCI

configuration space of each VF can be accessed by the bus, device, and function number of the PF. Each VF

has a PCI memory space, which is used to map its register set. The VF device drivers operate on the register

set to enable its functionality and the VF appears as an actual PCI device. So, to use SR-IOV in containers

or virtual machines, the host needs to configure the SR-IOV enabled device and set the number of virtual

network adapters, which are accessed using respective VFs. The guest needs to configure its network stack

against these VFs.

In case SR-IOV is not supported by the PCIe device, the host connects the guest and the host using a

virtual network. For virtual machines, the host exposes a virtual PCIe device to the guest. As the guest and

the host have a separate copy of the OS, they instantiate and manage their own network stacks. At boot time,

after discovering the PCIe device, the guest configures its network stack against this device, and initializes

the virt-net driver to access this device. The virt-net driver functions similarly to the virt-io driver. It uses a

ring buffer to pass network packets to and from the host. Thus when a packet arrives at the host, the host

forwards that packet to the guest using the ring buffer and raises an interrupt in the guest to handle the packet.

Similarly, when the guest wants to send a packet, the virt-net driver forwards the packet to the host using the

ring buffer, and makes a hypercall for the host to handle the packets.

In the case of containers, in absence of SR-IOV support, the host creates a virtual ethernet (veth) to

connect the host and the guest. veth can be considered as a virtual network cable with connectors at both ends.

The guest network stack can be isolated from the host and the other guests using the network namespace.

The host moves one end of the veth to the guest network namespace, and the other end is connected to the

host network stack. Often the host end is connected to a bridge created in the host so that all the guests

87

can communicate with each other and the host. Unlike VMs, the container guests share the kernel, but the

network namespace instantiates a separate network stack for the container configured with its end of the veth.

Our solution plans to support the standard mechanisms for networking in containers. If a SR-IOV enabled

network adapter is present, the guest network stack is configured with the virtual functions exposed by the

device. Our solution also plans to change the driver for these devices so that the objects for a particular

guest are allocated from its memory namespace, which is isolated from the host and other guests by the

second-level page table. If SR-IOV support is missing, our solution plans to use the veth to connect the host

and the guest. However, our solution plans to change the veth driver to create the objects for each container

endpoint in a separate page, which are then mapped into that guest’s address space using EPT. Also, as the

guest and host are isolated by memory namespace, our solution plans to add a transmit and receive routine in

the veth driver code. Our solution creates another ring buffer for network packets, just like the file system,

and then plans to use the same mechanism described above to transfer the network packets between the host

and the guest.

Thus, our solution plans to adapt well known solutions for network support in VMs and containers.

The networking pass-through for guests has rapidly evolved over the last 10 years in a way storage has not,

especially as hardware like SR-IOV, and user-space solutions like Arrakis [161], IX [49], Snap [148]. Our

solution plans to use these well known techniques to isolate the packets sent and received by the guest, and

enforce complete mediation either in the hardware or the vmx root mode kernel.

4.8 Discussion

VMs can use a technique called kernel Same-page Merging (KSM) to increase the density of guests on a

particular host, and use snapshots to speed up the startup costs of VMs [37]. Although these are similar goals

to our solution, our solution’s approach can reduce the memory footprint of a guest more than the gains from

using KSM because our solution requires more fine-tuning compared to the coarse KSM approach.

As an incomplete prototype is used for evaluation in Section 4.6, some of the results may change in the

future after the implementation of the filesystem and network support. This thesis expects an increase in the

number of lines of code, commensurate with the order of magnitude. Adding support for the filesystem and

the network may cause more VMEXITs, and slow down the performance of the system. In such a case, more

engineering effort will be needed to fine-tune the system to avoid VMEXITs as much as possible. Changing

88

the memory layout of some of the objects specific to the guest may have idiosyncratic effects on cache hit

ratios, which needs to be further analyzed, but is also left as future work. As the prototype is incomplete, this

thesis cannot definitively declare the problem as solved. Instead, this thesis claims this work is a significant

step in the direction of achieving the best of both the container and the VM world.

4.9 Related Work

This section discusses related work divided into 4 major groups. The first group discusses the techniques

to isolate drivers from the core kernel. Next, this section describes different options to virtualize the supervisor

mode or the ring 0 in the case of Intel x86. Then this section discusses other research exploring the design

points on the spectrum between VMs and containers. The section concludes with a collection of other

research works related to the solution described in this chapter.

4.9.1 Isolating Drivers from the Core Kernel

There is an area of research focused on isolating the faults in the drivers from the core kernel. This

isolation is achieved by using one of the following five techniques as also discussed by Herder et al. [111].

4.9.1.1 Kernel Wrapping

First, wrapping and interposition are used to safely run untrusted drivers inside the OS kernel. In this

technique, the idea is to interpose and verify all parameters on calls between the core kernel and device

drivers. For example, SafeDrive [213] uses wrappers to enforce type safety constraints and system invariants

for extensions written in C. Nooks [190] combines in-kernel wrapping and hardware-enforced protection

domains to trap common faults and permit recovery. Similarly, the solution in this chapter plans to interpose

and verify the I/O and network syscalls, and only allow access to the files or packets that belong to the

container.

4.9.1.2 Virtualization

Data corruption problems, which are one of the most common driver faults, can be isolated using Virtual

memory protection. However, this technique can’t catch deadlock errors caused by improper disabling of

interrupts. Virtualization can be used to run services in separate hardware-enforced protection domains.

89

Examples of virtual machine (VM) approaches are VMware [189] and Xen [95]. However, the driver faults

can still propagate and crash the core OS. Instead, each driver needs to run in a para-virtualized OS in a

dedicated VM [134]. The client OS running in a separate VM accesses its devices by issuing virtual interrupts

to the driver OS. The solution in this chapter leverages virtualization hardware to provide memory isolation

for guests.

4.9.1.3 User-mode Drivers

One can prevent drivers from accessing privileged address space, executing privileged instructions, and

corrupting the kernel, by lowering the privilege level of drivers to user level. However, this lowering of

privilege level causes an additional trap and return to change privilege level for every call into the driver, thus

incurring a huge performance penalty. MINIX 3 [110] encapsulates untrusted drivers in a private address

space of user-mode process. Mach [102] experimented with user-mode drivers directly linked into the

application. L4Linux [107] runs drivers in a para-virtualized Linux server. SawMill Linux [99] focuses on

performance rather than driver isolation. User-mode drivers were also used in commodity systems such as

Linux and Windows. By using the virtualization hardware, the solution in this chapter effectively runs the

guest kernel at a lower privilege, but not in the userspace.

4.9.1.4 Software Fault Isolation (SFI)

Software fault isolation (SFI) such as VINO [64] provides similar the benefits to a privilege level change,

but is difficult to implement for non-contiguous range of addresses. It is cheaper to call into and out of SFI

code as compared to lowering the privilege level, but SFI code executes slower. Additionally, SFI does not

easily support recovery using copy-on-write, which is supported by hardware memory protection. XFI [91]

combines static verification with run-time guards for system state integrity and memory access control. SFI

technique is orthogonal to our solution.

4.9.1.5 Language-based Protection

Some solutions use language-based protection and formal verification to isolate drivers. OKE [54]

instruments an extension’s object code according to a policy corresponding to the user’s privileges using a

customized Cyclone compiler. Singularity [116] combines type-safe languages with protocol verification

and seals processes after loading. Redleaf [158] uses only type and memory safety of the Rust language for

90

isolation instead of the hardware address space. Tock [135] relies on Rust’s language safety for isolation of

a collection of device drivers from the kernel. The seL4 kernel [128] formally verified the microkernel by

mapping the design onto a provably correct implementation. Devil [153] enables low-level code generation

and consistency checking. Dingo [173] reduces concurrency and formalizes protocols to simplify the

communication between drivers and the OS. Although the solution in this chapter has not been formally

verified, this thesis posits that it will be easier to do so because of its small size.

4.9.2 Virtualizing Ring 0

Some related works isolate a small piece of a Linux kernel from the rest of the kernel, and rely on

different hardware protection mechanisms to enforce the isolation. These techniques effectively de-privilege

part of the Linux kernel.

The PerspicuOS system [85] virtualizes the ring 0 hardware privilege level in x86 architecture by

turning on the Write-Protect Enable (WP) bit in the CR0 register, which enforces read-only policies even

on supervisor-mode writes. The OS is divided using a nested kernel architecture that uses a small isolated

trusted piece, to remove the privilege from the rest of the kernel by enforcing memory access control. Even

though the entire operating system, including untrusted components, operate at the highest hardware privilege

level, it is de-privileged by the nested kernel such that the nested kernel manages all the page-tables, and

configures all the MMU mappings to page-table pages as read-only. Thus, PerspicuOS de-privileges outer

kernel code by replacing instances of writes to CR0 with invocations of nested kernel services and restricting

outer kernel code execution to validated, write-protected code.

SKEE [43] is another system that provides an isolated lightweight execution environment at the same

privilege level of the kernel for the ARM architecture. The memory regions used by SKEE are carved out

of the memory ranges accessible to the kernel. SKEE also instruments the kernel code to remove certain

MMU control instructions that may change the memory translation tables. Thus, SKEE prevents the kernel

from managing its own memory translation tables, and forces the kernel to switch to SKEE to modify the

system’s memory layout. The switch to SKEE passes through a carefully designed switch gate so that its

execution sequence is atomic and deterministic. SKEE in turn verifies that the requested modification does

not compromise the isolation of the protected address space.

DIKernel [147] is another sandbox for kernel extensions by inserting a layer of indirection. DIKernel is

implemented by inserting a layer between the base kernel and its extensions. It intercedes all interactions

91

between the extensions and the kernel to enforce isolation and compatibility with existing extensions. This

special layer called DI-switcher has three roles. First, it enforces memory access isolation between the base

kernel and the extensions. The second role of the DI-switcher is interposition, it supervises all inter-domain

control transfers and provides a secure interface between base kernel and extensions. The third role of

the DI-switcher is to ensure compatibility with the existing extension code. Redirecting the kernel APIs

by hooking the kernel symbols, and changing the stack, heap into the isolated memory region happens

transparently without altering any existing codes or logic of the extension.

Another approach to isolating parts of the Linux kernel is to use compiler techniques. Virtual Ghost [81]

combines compiler instrumentation and run-time checks on operating system code, to create ghost memory

that the operating system cannot read or write. Virtual Ghost then interposes a thin hardware abstraction layer

in this ghost memory between the kernel and the hardware, that provides a set of operations that the kernel

must use to manipulate hardware. Even though the hardware abstraction layer runs at the same privilege level

as the rest of the kernel, unlike other solutions, Virtual Ghost uses compiler techniques rather than hardware

page protection to secure its own code and data. The OS is not able to access the secure ghost memory pages

of the hardware abstraction layer as all the OS code is first passed through LLVM bitcode form and translated

to native code by the Virtual Ghost compiler. During this phase, the compiler instruments memory access

instructions in the kernel, and adds CFI checks to prevent by-passing the instrumentation. Virtual Ghost also

extends the MMU configuration instructions in the hardware abstraction layer to ensure that a new MMU

configuration does not make ghost memory accessible to the kernel.

On the other hand, the solution in this chapter uses the x86 virtualization architecture to isolate the

guest-specific parts from the rest of the host kernel. The kernel memory layout redesign techniques used by

our solution to isolate the guest and the host kernel are orthogonal to how the isolation is enforced, whether

by virtualizing the ring 0 in hardware like x86 vt-d, in software like the PerspicuOS or SKEE, or by using

compiler techniques like Virtual Ghost.

4.9.3 Design Points on the Spectrum Between VMs and Containers

Recently, researchers have started exploring different design points on the spectrum of VMs and Contain-

ers to bridge the gap between VMs and containers in terms of security. New solutions are using library OS,

unikernel, or running a lightweight virtual machine. While these virtualization techniques try to reconcile

the security and resource efficiency of containers and virtual machines, they have to build new runtimes

92

Security Spectrum

Resource Spectrum

Worst Best

Worst Best

MicroVMUnikernel + LibOS

Unikernel

Unikernel Full VMLibrary OSContainers

Reuse Legacy Code

Worst Best

Full VM MicroVM

Unikernel

UnikernelUnikernel + LibOS Library OS Containers

Full VM MicroVM

Unikernel

Unikernel Unikernel + LibOS Library OS Containers

Our design point is closest to containers for efficiency, and
equivalent to VM for memory isolation

Figure 4.6: Container technologies on a spectrum for security, resource consumption, legacy code reuse. The
blue arrow shows the design point on the spectrum explored by our solution.

from scratch, or still use a lighter weight VM, or use the unikernel and Library OS to isolate the guests from

each other and the host. The solution in this chapter on the other hand explores a different design point

on the spectrum where instead of recreating a new image for every single application, the design leverages

the variety of features available in a stock Linux kernel, while solving most of the same problems as these

different virtualization techniques. As shown in Figure 4.6, the design point in this chapter is towards the

right side for most of the metrics compared to these virtualization techniques.

Manco et al. [146] use compiler techniques to build a lightweight VM targeted for specific applications

using unikernels. The LightVM solution provides faster boot-times by redesigning the Xen’s control plane.

They reduce the interactions with the hypervisor to the minimum by transforming the centralized operation

of Xen’s control plane to a distributed one. In addition, they use Tinyx, a compiler tool to create tailor-made,

trimmed-down Linux virtual machines for a given application. This tool creates unikernels by directly linking

a minimalistic operating system such as MiniOS with the target application. The resulting VM is typically

only a few megabytes in size and can only run the target application. This approach moves the OS in the

userspace, and only links pieces of the OS components needed by that specific application.

93

IBM’s Nabla containers [204] run a unikernel application as a process on a specialized virtual machine

monitor. They replace the general-purpose monitor, like QEMU, with Nabla Tender, which is a unikernel-

specific monitor. The idea is to improve security by reducing the number of allowed system calls. Nabla

Tender translates the hypercalls made by the unikernel into system calls, and uses a seccomp policy to block

other system calls that are not needed. Nabla Tender combined with a unikernel runs as a userspace process

on the host, and uses less than seven system calls to interact with the host. Nabla Tender acts as a library OS

to run the unikernel.

Google uses gVisor [61] in CloudML, Cloud Functions, and Google Computing Platform’s (GPC) App

Engine for sandboxing. gVisor uses Sentry, as a library OS, which is a userspace kernel implementation that

intercepts and handles the system calls from applications to the host kernel. gVisor sandboxes an application

from the host by creating a software security boundary, and restricting the system calls that an application can

use. Sentry implements most of the kernel functionality, and only uses less than 20 Linux syscalls to interact

with the host kernel. Both gVisor and Nabla use less than 10% of the Linux system calls to communicate with

the host, and sandbox an application using a specialized guest kernel in userspace like a Library OS [196].

On the other end of the spectrum is the idea to use lightweight virtual machines by stripping off

the unnecessary code and functionality in the hypervisor. AWS Lambda and AWS Fargate use Amazon

Firecracker [36], which is a hypervisor that creates lightweight virtual machines (MicroVMs) specifically

for serverless operational models in multi-tenant environment. Similar to the unikernel model, Firecracker

provisions only a small subset of the emulated devices and functionality that are absolutely necessary for

the guest operations, so that the microVMs have a much smaller attack surface, memory footprint, and boot

time compared to traditional VMs. Firecracker provisions a maximum of four emulated devices for each

microVM: virtio-block, virtio-net, serial console, and a 1-button keyboard controller used only to stop the

microVM. MicroVMs do not share files with the host, instead the VM images are exposed to the guest using

File Block Devices, and the network devices are built as tap devices over a network bridge.

Kata container [168] is another approach to build light-weight VMs by creating a highly-customized

QEMU-KVM hypervisor, called qemu-lite, to achieve high-perfomance for VM-based container. QEMU-lite

is a lightweight version of QEMU with 80% of devices and packages removed. Additionally, Kata container

reduces the boot time by using VM-Templating, which snapshots a running Kata VM instance, and uses this

snapshot to start new Kata VMs. Kata container uses Intel’s virtualization technology, similar to our solution,

but only creates light-weight VMs.

94

4.9.4 Other Related Work

4.9.4.1 Non-uniform Virtual Address Space

In the solution in this chapter, parts of the host Linux kernel are not accessible while running the guest

context due to EPT mappings, which keep guests isolated from each other. Some systems isolate parts

of a process from the rest of the process. Wedge [53] creates privilege separation and isolation among

sthreads, which otherwise share the address space of the same Linux process. Wedge also helps developers

refactor existing applications into multiple isolated compartments. Shreds [73] provide isolated compartments

of code and data within a process using the architectural support for memory domains in ARM CPUs, a

compiler toolchain, and kernel support. SpaceJMP [90] makes address spaces first-class objects separate

from processes. In SpaceJMP, applications can use memory larger than the available virtual address bits

allow, maintain pointer-based data structures beyond process lifetime, and share large memory objects among

processes. SpaceJMP does not support applications that require isolation or privilege separation within a

process, because a SpaceJMP context switch is not associated with a mandatory control transfer.

lwCs [141] provide in-process isolated contexts, privilege separation, and snapshots. lwCs are fully

independent of threads, require no compiler support, and rely on page-based hardware protection only. Each

lwC has its own virtual address space, set of page mappings, file descriptor bindings, and credentials. Within

a process, a thread executes within one lwC at a time and can switch between lwCs.

4.9.4.2 Containers as Packaging Instead of a Virtualization Technique

In addition to being a virtualization technique, Containers are also referred to as a packaging technique.

First Docker, and more recently Kubernetes introduce toolchains that make managing and orchestrating the

containers easier. These tools do not actually run the container, but handle the image building, orchestration,

and management of the container instances. The Kubernetes Container Runtime Interface (CRI) defines an

API between Kubernetes and the container runtime. The container runtime implements the Open Container

Initiative (OCI) specifications for images and containers. The OCI also provides an implementation of

the spec called runc, which is a tool for spawning and running containers. Thus, any new virtualization

technique for containers just needs to implement their own OCI compliant runtime which can communicate

with Kubernets using CRI, and Kubernetes can manage the orchestration of containers on that virtualization

technology.

95

4.9.4.3 Leveraging Virtualization Hardware for More Than Virtual Machines

Dune [48] pioneered the new idea of a kernel applying VT-x to individual processes, rather than a VMM

applying VT-x to entire guest operating systems. Dune thereby gives processes direct access to privileged

hardware, which is leveraged by IX [50] to improve the I/O performance for network packets. IX separates

the data and control plane for the TCP/IP stack, and moves the control plane to the userspace, which manages

the network devices, made manageable in the userspace using Dune.

The solution in this chapter also uses the same idea of applying VT-x to individual containers, which are

seen as just another process by the host. However, the goals of our solution and Dune or IX differ completely,

even though the underlying idea is similar.

4.10 Summary

This chapter takes the first steps to demonstrate a new approach to economically isolate containers in a

complex, legacy operating system such as the Linux kernel. Our solution isolates each guest’s memory into

the memory namespace, and protects the memory namespace using second-level hardware page tables. This

chapter redesigned the memory subsystem of the Linux kernel to logically isolate the memory of each guest

on a separate set of pages. The lighter weight of containers is maintained by sharing the OS between the

container and the host, and the memory isolation of VMs is provided by isolating the memory namespace

using a second set of page tables like EPT. Finally, this chapter also showed how the design choices are

guided by secure design principles.

This chapter also takes the first steps to demonstrate how to retrofit security on existing kernel design,

but observes that retrofitting security requires creatively rethinking the design. The implementation of the

network and the file system design is left as the future work, but it is not expected to significantly skew the

results in section 4.6. Thus, due to incomplete prototype, this chapter is a significant step in the direction of

achieving the best of both the container and the VM world, but it is a long way to go to achieve that goal.

96

CHAPTER 5: CONCLUSION

This thesis shows that encapsulating the threats in a complex, legacy operating system like Linux using

virtual machines is an imperfect solution, because the strong semantic gap is often obviated by generous

threat models. This thesis demonstrates two instances of a better approach to protecting a legacy system

like Linux by using economical and practical techniques to retrofit security design principles in the existing

kernel design. This thesis economically removed a source of privilege escalation in the Linux userspace

by changing only 715 lines of code in the kernel to design and implement a simple, efficient framework

for migrating policies from setuid-to-root binaries into the kernel. This thesis obviated the need for these

setuid-to-root binaries to run with escalated privileges in nearly all situations, and de-privileged about 12,717

lines of trusted code. Finally, this thesis takes the first steps to economically isolate the memory of containers,

and protect the host as well as the guest memory to achieve the goal of VM-like memory isolation properties

for containers. This thesis first logically isolates the memory of containers, and then physically isolates that

memory using virtualization hardware.

This thesis notes that it is not trivial or mechanical to just apply security design principles arbitrarily to

any code. There is an art to this process of finding structural pinch points, that one can then leverage and

creatively enforce security design principles, but finding them requires some skill and luck.

97

BIBLIOGRAPHY

[1] Cve - search results. https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=
namespace+privilege+escalation. (Accessed on 08/09/2022).

[2] Draugr. Online at https://code.google.com/p/draugr/.

[3] E.W. Dijkstra archive: On the reliability of programs. https://www.cs.utexas.edu/users/
EWD/transcriptions/EWD03xx/EWD303.html.

[4] FatKit. Online at http://4tphi.net/fatkit/.

[5] Foriana. Online at http://hysteria.sk/˜niekt0/foriana/.

[6] GREPEXEC: Grepping Executive Objects from Pool Memory). Online at http://uninformed.
org/?v=4&a=2&t=pdf.

[7] https://www.kernel.org/doc/documentation/x86/x86 64/mm.txt. https://www.kernel.org/
doc/Documentation/x86/x86_64/mm.txt. (Accessed on 08/29/2022).

[8] idetect. Online at http://forensic.seccure.net/.

[9] Intel 64 and IA-32 Architectures Developer’s Manual: Vol. 3B.

[10] Intel Software Guard Extensions (Intel SGX) Programming Reference.

[11] Kernel object hooking rootkits (koh rootkits). http://my.opera.com/
330205811004483jash520/blog/show.dml/314125.

[12] Kntlist. Online at http://www.dfrws.org/2005/challenge/kntlist.shtml.

[13] Linus torvalds: ’i don’t trust security people to do sane things’ — zdnet. https:
//www.zdnet.com/article/linus-torvalds-i-dont-trust-security-
people-to-do-sane-things/. (Accessed on 07/31/2022).

[14] Linux security, then and now — esecurity planet. https://www.esecurityplanet.com/
trends/linux-security-then-and-now/. (Accessed on 07/31/2022).

[15] lsproc. Online at http://windowsir.blogspot.com/2006/04/lsproc-released.
html.

[16] Memparser. Online at http://www.dfrws.org/2005/challenge/memparser.shtml.

[17] PROCENUM. Online at http://forensic.seccure.net/.

[18] Red Hat Crash Utility. Online at http://people.redhat.com/anderson/.

[19] The Linux Cross Reference. Online at http://lxr.linux.no/.

[20] The Volatility framework. Online at https://code.google.com/p/volatility/.

[21] Volatilitux. Online at https://code.google.com/p/volatilitux/.

[22] Windows Memory Forensic Toolkit. Online at http://forensic.seccure.net/.

98

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=namespace+privilege+escalation
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=namespace+privilege+escalation
https://code.google.com/p/draugr/
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
http://4tphi.net/fatkit/
http://hysteria.sk/~niekt0/foriana/
http://uninformed.org/?v=4&a=2&t=pdf
http://uninformed.org/?v=4&a=2&t=pdf
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
http://forensic.seccure.net/
http://my.opera.com/330205811004483jash520/blog/show.dml/314125
http://my.opera.com/330205811004483jash520/blog/show.dml/314125
http://www.dfrws.org/2005/challenge/kntlist.shtml
https://www.zdnet.com/article/linus-torvalds-i-dont-trust-security-people-to-do-sane-things/
https://www.zdnet.com/article/linus-torvalds-i-dont-trust-security-people-to-do-sane-things/
https://www.zdnet.com/article/linus-torvalds-i-dont-trust-security-people-to-do-sane-things/
https://www.esecurityplanet.com/trends/linux-security-then-and-now/
https://www.esecurityplanet.com/trends/linux-security-then-and-now/
http://windowsir.blogspot.com/2006/04/lsproc-released.html
http://windowsir.blogspot.com/2006/04/lsproc-released.html
http://www.dfrws.org/2005/challenge/memparser.shtml
http://forensic.seccure.net/
http://people.redhat.com/anderson/
http://lxr.linux.no/
https://code.google.com/p/volatility/
https://code.google.com/p/volatilitux/
http://forensic.seccure.net/

[23] The openldap project. http://www.openldap.org/project/, Aug. 1998.

[24] netfilter. http://www.netfilter.org/, Dec. 2001.

[25] The automounter autofs. http://www.autofs.org/, Sep. 2002.

[26] Py-notify. http://home.gna.org/py-notify/, Dec. 2008.

[27] SOCK RAW Demystified. http://www.sock-raw.org/papers/sock_raw, May 2008.

[28] AppArmor. http://wiki.apparmor.net/index.php/Main_Page, Jun. 2011.

[29] Kernel mode setting. https://wiki.archlinux.org/index.php/Kernel_Mode_
Setting, Jan. 2011.

[30] Chrome owned by exploits in hacker contests, but google’s $1m purse still safe — wired. March 2012.

[31] Debian Popularity Contest. http://popcon.debian.org/by_inst, Feb. 2013.

[32] Lintian Reports : setuid-binary. http://lintian.debian.org/tags/setuid-binary.
html, Feb. 2013.

[33] Ubuntu Popularity Contest. http://popcon.ubuntu.com/by_inst, Feb. 2013.

[34] Pwn2Own 2016: Windows, OS X, Chrome, Edge, Safari all hacked - gHacks tech news. March 2016.
(Accessed on 04/25/2017).

[35] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity. In CCS, pages
340–353, 2005.

[36] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf Neugebauer, Phil
Piwonka, and Diana-Maria Popa. Firecracker: Lightweight virtualization for serverless applications.
In 17th usenix symposium on networked systems design and implementation (nsdi 20), pages 419–434,
2020.

[37] Kavita Agarwal, Bhushan Jain, and Donald E Porter. Containing the hype. In Proceedings of the 6th
Asia-Pacific Workshop on Systems, pages 1–9, 2015.

[38] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe Martin, and Carl
Porth. BAR Fault Tolerance for Cooperative Services. In SOSP, pages 45–58, 2005.

[39] AMD. AMD I/O Virtualization Technology (IOMMU) Specification Revision 1.26. White Paper,
AMD: http://support.amd.com/us/Processor_TechDocs/34434-IOMMU-Rev_1.
26_2-11-09.pdf, Nov 2009.

[40] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative technology for cpu based
attestation and sealing. HASP ’13, 2013.

[41] Apple. Mac OS X Server V10.6 - Open Directory Administration. White Pa-
per, Apple: http://manuals.info.apple.com/MANUALS/1000/MA1180/en_US/
OpenDirAdmin_v10.6.pdf, August 2009.

[42] Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xiaolan Zhang, and Nathan C. Skalsky.
Hypersentry: enabling stealthy in-context measurement of hypervisor integrity. In CCS, pages 38–49,
2010.

99

http://www.openldap.org/project/
http://www.netfilter.org/
http://www.autofs.org/
http://home.gna.org/py-notify/
http://www.sock-raw.org/papers/sock_raw
http://wiki.apparmor.net/index.php/Main_Page
https://wiki.archlinux.org/index.php/Kernel_Mode_Setting
https://wiki.archlinux.org/index.php/Kernel_Mode_Setting
http://popcon.debian.org/by_inst
http://lintian.debian.org/tags/setuid-binary.html
http://lintian.debian.org/tags/setuid-binary.html
http://popcon.ubuntu.com/by_inst
http://support.amd.com/us/Processor_TechDocs/34434-IOMMU-Rev_1.26_2-11-09.pdf
http://support.amd.com/us/Processor_TechDocs/34434-IOMMU-Rev_1.26_2-11-09.pdf
http://manuals.info.apple.com/MANUALS/1000/MA1180/en_US/OpenDirAdmin_v10.6.pdf
http://manuals.info.apple.com/MANUALS/1000/MA1180/en_US/OpenDirAdmin_v10.6.pdf

[43] Ahmed M Azab, Kirk Swidowski, Rohan Bhutkar, Jia Ma, Wenbo Shen, Ruowen Wang, and Peng
Ning. Skee: A lightweight secure kernel-level execution environment for arm. In NDSS, volume 16,
pages 21–24, 2016.

[44] Sina Bahram, Xuxian Jiang, Zhi Wang, Mike Grace, Jinku Li, Deepa Srinivasan, Junghwan Rhee, and
Dongyan Xu. Dksm: Subverting virtual machine introspection for fun and profit. In SRDS, pages
82–91. IEEE Computer Society, 2010.

[45] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. Automatic inference and enforcement of kernel data
structure invariants. In ACSAC, pages 77–86, 2008.

[46] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of virtualization. In SOSP, pages 164–177, 2003.

[47] Securing Debian Manual: Bastille Linux. http://www.debian.org/doc/manuals/
securing-debian-howto/ch-automatic-harden.en.html#s6.2, Apr. 2012.

[48] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and Christos Kozyrakis.
Dune: Safe user-level access to privileged cpu features. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), pages 335–348, 2012.

[49] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and Edouard
Bugnion. IX: A Protected Dataplane Operating System for High Throughput and Low Latency. In
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pages 49–65,
Broomfield, CO, October 2014. USENIX Association.

[50] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and Edouard
Bugnion. Ix: A protected dataplane operating system for high throughput and low latency. In 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pages 49–65, 2014.

[51] Nikhil Bhatia. Performance Evaluation of Intel EPT Hardware Assist. VMware ESX white paper),
October 2012.

[52] M. Bishop. Managing Superuser Privileges under UNIX. Technical report, Research Institute for
Advanced Computer Science, NASA Ames Research Center, 1986.

[53] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge: Splitting applications into
reduced-privilege compartments. USENIX Association, 2008.

[54] Herbert Bos and Bart Samwel. Safe kernel programming in the oke. In 2002 IEEE Open Architectures
and Network Programming Proceedings. OPENARCH 2002 (Cat. No. 02EX571), pages 141–152.
IEEE, 2002.

[55] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and Ahmad-
Reza Sadeghi. Software grand exposure:{SGX} cache attacks are practical. In 11th USENIX Workshop
on Offensive Technologies (WOOT 17), 2017.

[56] Bjorn Bringert. Executable based access control. Technical report, Chalmers University of Technology,
2003.

[57] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Sugerman, and Edward Y. Wang.
Bringing virtualization to the x86 architecture with the original vmware workstation. ACM TOCS,
30(4):12:1–12:51, November 2012.

100

http://www.debian.org/doc/manuals/securing-debian-howto/ch-automatic-harden.en.html#s6.2
http://www.debian.org/doc/manuals/securing-debian-howto/ch-automatic-harden.en.html#s6.2

[58] Thomas Wolfgang Burger. Intel Virtualization Technology for Directed I/O (VT-d): Enhancing
Intel platforms for efficient virtualization of I/O devices. http://software.intel.com/en-
us/articles/intel-virtualization-technology-for-directed-io-vt-
d-enhancing-intel-platforms-for-efficient-virtualization-of-io-
devices/, February 2009.

[59] James Butler and Greg Hoglund. Vice–catch the hookers. Black Hat USA, 61:17–35, 2004.

[60] Xiang Cai, Yuwei Gui, and Rob Johnson. Exploiting unix file-system races via algorithmic complexity
attacks. In Oakland, pages 27–41, 2009.

[61] Tyler Caraza-Harter and Michael M Swift. Blending containers and virtual machines: a study of
firecracker and gvisor. In Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, pages 101–113, 2020.

[62] Martim Carbone, Matthew Conover, Bruce Montague, and Wenke Lee. secure and robust monitoring
of virtual machines through guest-assisted introspection. In RAID, pages 22–41. Springer-Verlag,
2012.

[63] Martim Carbone, Weidong Cui, Long Lu, Wenke Lee, Marcus Peinado, and Xuxian Jiang. Mapping
kernel objects to enable systematic integrity checking. In CCS, pages 555–565, 2009.

[64] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado, Periklis Akritidis, Austin Don-
nelly, Paul Barham, and Richard Black. Fast byte-granularity software fault isolation. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, pages 45–58, 2009.

[65] Ramesh Chandra, Taesoo Kim, Meelap Shah, Neha Narula, and Nickolai Zeldovich. Intrusion recovery
for database-backed web applications. In SOSP, pages 101–114, 2011.

[66] Stephen Checkoway and Hovav Shacham. Iago attacks: Why the system call api is a bad untrusted rpc
interface. In ASPLOS, 2013.

[67] Stephen Checkoway and Hovav Shacham. Iago attacks: Why the system call api is a bad untrusted rpc
interface. ACM SIGARCH Computer Architecture News, 41(1):253–264, 2013.

[68] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H Lai. Sgxpectre
attacks: Leaking enclave secrets via speculative execution. arXiv preprint arXiv:1802.09085, 2018.

[69] Hao Chen, David Wagner, and Drew Dean. Setuid demystified. In USENIX Security, pages 171–190,
2002.

[70] Hong Chen, Ninghui Li, and Ziqing Mao. Analyzing and Comparing the Protection Quality of Security
Enhanced Operating Systems. In NDSS, 2009.

[71] Peter M. Chen and Brian D. Noble. When virtual is better than real. In HotOS, pages 133–. IEEE
Computer Society, 2001.

[72] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A. Waldspurger,
Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating systems. In ASPLOS, pages 2–13, 2008.

[73] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu. Shreds: Fine-grained
execution units with private memory. In 2016 IEEE Symposium on Security and Privacy (SP), pages
56–71. IEEE, 2016.

101

http://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/
http://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/
http://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/
http://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/

[74] Andrew Chi, Robert A Cochran, Marie Nesfield, Michael K Reiter, and Cynthia Sturton. A system to
verify network behavior of known cryptographic clients. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 177–195, 2017.

[75] Russell Coker. Benchmarking Mail Relays and Forwarders. In OSDC Conference, 2006.

[76] Jonathan Corbet. A new adore root kit. Linux Weekly News, March 2004. http://lwn.net/
Articles/75990/.

[77] Jonathan Corbet. File-based capabilities. http://lwn.net/Articles/211883/, November
2006.

[78] Jonathan Corbet. Rootless X. http://lwn.net/Articles/341033/, July 2009.

[79] Russ Cox, Eric Grosse, Rob Pike, Dave Presotto, and Sean Quinlan. Security in Plan 9. In USENIX
Security, pages 3–16, 2002.

[80] Andrew Cristina, Lodovico Marziale, Golden G. Richard Iii, and Vassil Roussev. Face: Automated
digital evidence discovery and correlation. In Digital Forensics, 2005.

[81] John Criswell, Nathan Dautenhahn, and Vikram Adve. Virtual ghost: Protecting applications from
hostile operating systems. ACM SIGARCH Computer Architecture News, 42(1):81–96, 2014.

[82] Weidong Cui, Marcus Peinado, Zhilei Xu, and Ellick Chan. Tracking rootkit footprints with a practical
memory analysis system. In USENIX Security, pages 42–42, 2012.

[83] Thomas Dangl, Benjamin Taubmann, and Hans P Reiser. Agent-based file extraction using virtual
machine introspection. In Nordic Conference on Secure IT Systems, pages 174–191. Springer, 2020.

[84] Thomas Dangl, Benjamin Taubmann, and Hans P Reiser. Rapidvmi: Fast and multi-core aware active
virtual machine introspection. In The 16th International Conference on Availability, Reliability and
Security, pages 1–10, 2021.

[85] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell, and Vikram Adve. Nested
kernel: An operating system architecture for intra-kernel privilege separation. In Proceedings of
the Twentieth International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 191–206, 2015.

[86] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: malware analysis via hardware
virtualization extensions. In CCS, pages 51–62, 2008.

[87] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke Lee. Virtuoso:
Narrowing the semantic gap in virtual machine introspection. In Oakland, pages 297–312, 2011.

[88] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Giffin. Robust signatures
for kernel data structures. In CCS, pages 566–577. ACM, 2009.

[89] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen. Revirt:
enabling intrusion analysis through virtual-machine logging and replay. In OSDI, 2002.

[90] Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan Milojicic, Reto Achermann, Paolo Faraboschi,
Wen-mei Hwu, Timothy Roscoe, and Karsten Schwan. Spacejmp: programming with multiple virtual
address spaces. ACM SIGPLAN Notices, 51(4):353–368, 2016.

102

http://lwn.net/Articles/75990/
http://lwn.net/Articles/75990/
http://lwn.net/Articles/211883/
http://lwn.net/Articles/341033/

[91] Ulfar Erlingsson, Martı́n Abadi, Michael Vrable, Mihai Budiu, and George C Necula. Xfi: Software
guards for system address spaces. In Proceedings of the 7th symposium on Operating systems design
and implementation, pages 75–88, 2006.

[92] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S.
Tschantz, and Chen Xiao. The daikon system for dynamic detection of likely invariants. Sci. Comput.
Program., 69(1-3):35–45, December 2007.

[93] Fedoraproject Wiki: Features/RemoveSETUID. https://fedoraproject.org/wiki/
Features/RemoveSETUID, Apr. 2011.

[94] D.F. Ferraiolo and D.R. Kuhn. Role-based access control. In 15th National Computer Security
Conference, pages 554–563, 1992.

[95] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, Andrew Warfield, Mark Williamson, et al. Safe
hardware access with the xen virtual machine monitor. In 1st Workshop on Operating System and
Architectural Support for the on demand IT InfraStructure (OASIS), pages 1–1. Boston, USA;, 2004.

[96] Yangchun Fu and Zhiqiang Lin. Space traveling across vm: Automatically bridging the semantic gap
in virtual machine introspection via online kernel data redirection. In Oakland, pages 586–600. IEEE
Computer Society, 2012.

[97] Yangchun Fu and Zhiqiang Lin. Exterior: using a dual-vm based external shell for guest-os introspec-
tion, configuration, and recovery. In VEE, pages 97–110, 2013.

[98] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based architecture for intrusion
detection. In NDSS, pages 191–206, 2003.

[99] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J Elphinstone, Volkmar Uhlig,
Jonathon E Tidswell, Luke Deller, and Lars Reuther. The sawmill multiserver approach. In Proceedings
of the 9th workshop on ACM SIGOPS European workshop: beyond the PC: new challenges for the
operating system, pages 109–114, 2000.

[100] Alorie Gilbert. Fixing the sorry state of software - cnet. https://www.cnet.com/news/
fixing-the-sorry-state-of-software/, October 2002. (Accessed on 08/23/2021).

[101] V.D. Gligor, C.S. Chandersekaran, R.S. Chapman, L.J. Dotterer, M.S. Hetch, Wen-Der Jiang, A. Johri,
G.L. Luckenbaugh, and N. Vasudevan. Design and implementation of Secure Xenix. IEEE Transactions
on Software Engineering, SE-13(2):208 – 221, Feb. 1987.

[102] David B Golub, Guy G Sotomayor, and Freeman L Rawson III. An architecture for device drivers
executing as user-level tasks. In USENIX MACH III Symposium, pages 153–172, 1993.

[103] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache attacks on intel sgx. In
Proceedings of the 10th European Workshop on Systems Security, pages 1–6, 2017.

[104] Zhongshu Gu, Zhui Deng, Dongyan Xu, and Xuxian Jiang. Process implanting: A new active
introspection framework for virtualization. In SRDS, pages 147–156, 2011.

[105] Nicholas Mc Guire. Linux kernel gcov - tool analysis. http://dslab.lzu.edu.cn:
8080/docs/2006summerschool/team1/teama/Documentation/howtos/der_
herr_gcov.pdf, 2006.

103

https://fedoraproject.org/wiki/Features/RemoveSETUID
https://fedoraproject.org/wiki/Features/RemoveSETUID
https://www.cnet.com/news/fixing-the-sorry-state-of-software/
https://www.cnet.com/news/fixing-the-sorry-state-of-software/
http://dslab.lzu.edu.cn:8080/docs/2006summerschool/team1/teama/Documentation/howtos/der_herr_gcov.pdf
http://dslab.lzu.edu.cn:8080/docs/2006summerschool/team1/teama/Documentation/howtos/der_herr_gcov.pdf
http://dslab.lzu.edu.cn:8080/docs/2006summerschool/team1/teama/Documentation/howtos/der_herr_gcov.pdf

[106] Robert T. Hall and Joshua Taylor. A framework for network-wide semantic event correlation, 2013.

[107] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schönberg, and Jean Wolter. The
performance of µ-kernel-based systems. ACM SIGOPS Operating Systems Review, 31(5):66–77, 1997.

[108] M.S. Hecht, M.E. Carson, C.S. Chandersekaran, R.S. Chapman, L.J. Dotterrer, V.D. Gilgor, Wen-Der
Jiang, A. Johri, G.L. Luckenbaugh, and N. Vasudevan. UNIX without the Superuser. In USENIX
Security, pages 243 –256, June 1987.

[109] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using cla: a million lines of c code in a
second. In PLDI, pages 254–263, 2001.

[110] Jorrit N Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S Tanenbaum. Minix 3: A highly
reliable, self-repairing operating system. ACM SIGOPS Operating Systems Review, 40(3):80–89,
2006.

[111] Jorrit N Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S Tanenbaum. Fault isolation
for device drivers. In 2009 IEEE/IFIP International Conference on Dependable Systems & Networks,
pages 33–42. IEEE, 2009.

[112] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan Del Cuvillo. Using
innovative instructions to create trustworthy software solutions. In HASP, 2013.

[113] Owen S. Hofmann, Alan M. Dunn, Sangman Kim, Indrajit Roy, and Emmett Witchel. Ensuring
operating system kernel integrity with OSck. In ASPLOS, pages 279–290, 2011.

[114] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett Witchel. Inktag:
secure applications on an untrusted operating system. In ASPLOS, pages 265–278. ACM, 2013.

[115] Sanghyun Hong, Alina Nicolae, Abhinav Srivastava, and Tudor Dumitraş. Peek-a-boo: Inferring
program behaviors in a virtualized infrastructure without introspection. Computers & Security, 79:190–
207, 2018.

[116] Galen Hunt, Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Orion Hodson, James Larus, Steven
Levi, Bjarne Steensgaard, David Tarditi, and Ted Wobber. Sealing os processes to improve dependabil-
ity and safety. ACM SIGOPS Operating Systems Review, 41(3):341–354, 2007.

[117] PLC INTEL. Intel software guard extensions programming reference, 2014.

[118] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy malware detection through vmm-based
”out-of-the-box” semantic view reconstruction. In CCS, pages 128–138, 2007.

[119] Karen Johnson, Jeffrey B. Zurschmeide, John Raithel, Terry Schultz, and Bill Tuthill. IRIX admin:
Backup, security, and accounting. Technical report, Silicon Graphics, Inc., 2005.

[120] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Geiger: Monitoring the
buffer cache in a virtual machine environment. In ASPLOS, ASPLOS XII, pages 14–24, 2006.

[121] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. VMM-based Hidden
Process Detection and Identification Using Lycosid. In VEE, pages 91–100, 2008.

[122] Michael Kerrisk. CAP SYS ADMIN: the new root. http://lwn.net/Articles/486306/,
March 2012.

104

http://lwn.net/Articles/486306/

[123] Michael Kerrisk. User namespaces progress. https://lwn.net/Articles/528078/, Dec.
2012.

[124] D. Kienzle, N. Evans, and M. Elder. NICE: Network Introspection by Collaborating Endpoints. In
Communications and Network Security, pages 411–412, 2013.

[125] Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich. Recovering from intrusions in distributed
systems with DARE. In APSYS, pages 10:1–10:7, 2012.

[126] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Intrusion recovery using selective
re-execution. In OSDI, pages 1–9, 2010.

[127] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. Secure execution via program
shepherding. In USENIX Security, pages 191–206, 2002.

[128] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dham-
mika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. seL4: Formal verification of an OS kernel. In SOSP, 2009.

[129] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre attacks: Exploiting speculative execution.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 1–19. IEEE, 2019.

[130] S. Kramer. LINUS IV — An Experiment in Computer Security. In Oakland, pages 24–33, 1984.

[131] Michael Larabel. A NVIDIA Tegra 2 DRM/KMS Driver Tips Up. http://www.phoronix.com/
vr.php?view=MTA4NjA, Apr. 2012.

[132] Hojoon Lee, Hyungon Moon, Daehee Jang, Kihwan Kim, Jihoon Lee, Yunheung Paek, and
Brent ByungHoon Kang. Ki-mon: a hardware-assisted event-triggered monitoring platform for
mutable kernel object. In USENIX Security, pages 511–526, 2013.

[133] Tamas Lengyel, Thomas Kittel, George Webster, Jacob Torrey, and Claudia Eckert. Pitfalls of virtual
machine introspection on modern hardware. In 1st Workshop on Malware Memory Forensics (MMF).
Citeseer, 2014.

[134] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Unmodified device driver reuse and
improved system dependability via virtual machines. In OSDI, volume 4, pages 17–30, 2004.

[135] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Pat Pannuto, Prabal Dutta, and
Philip Levis. Multiprogramming a 64kb computer safely and efficiently. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 234–251, 2017.

[136] Henry M. Levy. Capability-Based Computer Systems. Digital Press, Bedford, Massachusetts, 1984.

[137] Jinku Li, Zhi Wang, Xuxian Jiang, Michael Grace, and Sina Bahram. Defeating return-oriented rootkits
with ”return-less” kernels. In EuroSys, pages 195–208, 2010.

[138] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha. Secure untrusted data repository
(SUNDR). In OSDI, pages 9–9, 2004.

[139] David Lie, Chandramohan A. Thekkath, and Mark Horowitz. Implementing an untrusted operating
system on trusted hardware. In SOSP, pages 178–192, 2003.

105

https://lwn.net/Articles/528078/
http://www.phoronix.com/vr.php?view=MTA4NjA
http://www.phoronix.com/vr.php?view=MTA4NjA

[140] Zhiqiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian Jiang. Siggraph: Brute
force scanning of kernel data structure instances using graph-based signatures. In NDSS. The Internet
Society, 2011.

[141] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby Bhattacharjee, and
Peter Druschel. Light-weight contexts: An os abstraction for safety and performance. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), pages 49–64, 2016.

[142] Lionel Litty, H. Andrés Lagar-Cavilla, and David Lie. Hypervisor support for identifying covertly
executing binaries. In SS, pages 243–258, 2008.

[143] Limin Liu, Jin Han, Debin Gao, Jiwu Jing, and Daren Zha. Launching return-oriented programming
attacks against randomized relocatable executables. In TRUSTCOM, pages 37–44, 2011.

[144] Ziyi Liu, JongHyuk Lee, Junyuan Zeng, Yuanfeng Wen, Zhiqiang Lin, and Weidong Shi. Cpu
transparent protection of os kernel and hypervisor integrity with programmable dram. In ISCA, pages
392–403, 2013.

[145] P. Loscocco and S. Smalley. Integrating flexible support for security policies into the Linux operating
system. In USENIX, 2001.

[146] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit Sati, Kenichi
Yasukata, Costin Raiciu, and Felipe Huici. My vm is lighter (and safer) than your container. In
Proceedings of the 26th Symposium on Operating Systems Principles, pages 218–233, 2017.

[147] Valentin JM Manès, Daehee Jang, Chanho Ryu, and Brent Byunghoon Kang. Domain isolated kernel:
A lightweight sandbox for untrusted kernel extensions. computers & security, 74:130–143, 2018.

[148] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer, Carlo Contavalli,
Michael Dalton, Nandita Dukkipati, William C Evans, Steve Gribble, et al. Snap: A microkernel
approach to host networking. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 399–413, 2019.

[149] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Architecture for User-level Packet
Capture. In USENIX Security, pages 259–270, 1993.

[150] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil Gligor, and Adrian
Perrig. Trustvisor: Efficient tcb reduction and attestation. In Oakland, pages 143–158, 2010.

[151] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi Isozaki. Flicker:
An execution infrastructure for tcb minimization. In EuroSys, pages 315–328, 2008.

[152] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas
Shanbhogue, and Uday R. Savagaonkar. Innovative instructions and software model for isolated
execution. In Workshop on Hardware and Architectural Support for Security and Privacy, pages
10:1–10:1. ACM, 2013.

[153] Fabrice Mérillon, Laurent Réveillere, Charles Consel, Renaud Marlet, and Gilles Muller. Devil: An idl
for hardware programming. In Proceedings of the 4th conference on Symposium on Operating System
Design & Implementation-Volume 4, 2000.

[154] Cade Metz. Google Embraces Docker, the Next Big Thing in Cloud Computing. WIRED, June 2014.
http://www.wired.com/2014/06/eric-brewer-google-docker/.

106

http://www.wired.com/2014/06/eric-brewer-google-docker/

[155] Microsoft. TCP/IP Raw Sockets. http://msdn.microsoft.com/en-us/library/
windows/desktop/ms740548%28v=vs.85%29.aspx, 2012.

[156] MITRE. Common Vulnerabilities and Exploits Database. http://cve.mitre.org/, Feb. 2013.

[157] Hyungon Moon, Hojoon Lee, Jihoon Lee, Kihwan Kim, Yunheung Paek, and Brent Byunghoon Kang.
Vigilare: toward snoop-based kernel integrity monitor. In CCS, pages 28–37, 2012.

[158] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel, Zhaofeng Li, Gerd Zellweger, and
Anton Burtsev. {RedLeaf}: Isolation and communication in a safe operating system. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), pages 21–39, 2020.

[159] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda. G-free: defeating
return-oriented programming through gadget-less binaries. In ACSAC, pages 49–58, 2010.

[160] Bryan D. Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. Lares: An architecture for secure
active monitoring using virtualization. In Oakland, pages 233–247, 2008.

[161] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy, Thomas
Anderson, and Timothy Roscoe. Arrakis: The Operating System is the Control Plane. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), pages 1–16, Broomfield,
CO, October 2014. USENIX Association.

[162] Nick L. Petroni, Jr., Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copilot - a coprocessor-
based kernel runtime integrity monitor. In USENIX Security, pages 13–13, 2004.

[163] Nick L. Petroni, Jr. and Michael Hicks. Automated detection of persistent kernel control-flow attacks.
In CCS, pages 103–115. ACM, 2007.

[164] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third generation
architectures. CACM, 17(7):412–421, July 1974.

[165] Summary about POSIX 1.e. http://wt.tuxomania.net/publications/posix.1e/,
Feb. 1999.

[166] Sergej Proskurin, Julian Kirsch, and Apostolis Zarras. Follow the whiterabbit: Towards consolidation
of on-the-fly virtualization and virtual machine introspection. In IFIP International Conference on
ICT Systems Security and Privacy Protection, pages 263–277. Springer, 2018.

[167] Niels Provos. Improving host security with system call policies. In USENIX Security, pages 257–272,
2002.

[168] Alessandro Randazzo and Ilenia Tinnirello. Kata containers: An emerging architecture for enabling
mec services in fast and secure way. In 2019 Sixth International Conference on Internet of Things:
Systems, Management and Security (IOTSMS), pages 209–214. IEEE, 2019.

[169] Junghwan Rhee, Ryan Riley, Dongyan Xu, and Xuxian Jiang. Kernel malware analysis with un-
tampered and temporal views of dynamic kernel memory. In RAID, pages 178–197, 2010.

[170] Wolfgang Richter, Glenn Ammons, Jan Harkes, Adam Goode, Nilton Bila, Eyal De Lara, Vasanth
Bala, and Mahadev Satyanarayanan. Privacy-sensitive VM Retrospection. In HotCloud, pages 10–10,
2011.

107

http://msdn.microsoft.com/en-us/library/windows/desktop/ms740548%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms740548%28v=vs.85%29.aspx
http://cve.mitre.org/
http://wt.tuxomania.net/publications/posix.1e/

[171] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent prevention of kernel rootkits with
VMM-based memory shadowing. In RAID, pages 1–20, 2008.

[172] Dennis M Ritchie. ‘on the security of unix. UNIX Supplementary Documents, 1979.

[173] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser. Dingo: Taming device drivers. In
Proceedings of the 4th ACM European conference on Computer systems, pages 275–288, 2009.

[174] Alireza Saberi, Yangchun Fu, and Zhiqiang Lin. HYBRID-BRIDGE: Efficiently Bridging the Semantic
Gap in Virtual Machine Introspection via Decoupled Execution and Training Memoization. In NDSS,
2014.

[175] Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information in Computer System.
Proceedings of the IEEE, 63(9):1278–1308, 1975.

[176] Andreas Schuster. Pool allocations as an information source in Windows memory forensics. In IMF,
pages 104–115, 2006.

[177] Andreas Schuster. The impact of Microsoft Windows pool allocation strategies on memory forensics.
Digital Investigation, 5:S58–S64, 2008.

[178] Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical enclave malware with intel sgx. In
International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 177–196. Springer, 2019.

[179] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Malware
guard extension: Using sgx to conceal cache attacks. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 3–24. Springer, 2017.

[180] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Malware
guard extension: abusing intel sgx to conceal cache attacks. Cybersecurity, 3(1):1–20, 2020.

[181] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. Secvisor: A tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In SOSP, pages 335–350, 2007.

[182] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: A fast capability system. In
SOSP, pages 170–185, 1999.

[183] Monirul I. Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. Secure in-VM monitoring using
hardware virtualization. In CCS, pages 477–487, 2009.

[184] Ian Shields. Monitor linux file system events with inotify. http://www.ibm.com/
developerworks/linux/library/l-inotify/index.html, Sep. 2010.

[185] Yonghee Shin and Laurie Williams. An Empirical Model to Predict Security Vulnerabilities Using
Code Complexity Metrics. In ESEM, pages 315–317, 2008.

[186] Takahiro Shinagawa and Kenji Kono. Implementing A Secure Setuid Program. In Proceedings of the
Conference on Parallel and Distributed Computing and Networks, pages 301–309, 2004.

[187] Jim Slater. The isrg wants to make the linux kernel memory-safe with rust — ars
technica. https://arstechnica.com/gadgets/2021/06/lets-encrypt-parent-
org-sponsors-rust-for-linux-kernel-development/, June 2021. (Accessed on
08/23/2021).

108

http://www.ibm.com/developerworks/linux/library/l-inotify/index.html
http://www.ibm.com/developerworks/linux/library/l-inotify/index.html
https://arstechnica.com/gadgets/2021/06/lets-encrypt-parent-org-sponsors-rust-for-linux-kernel-development/
https://arstechnica.com/gadgets/2021/06/lets-encrypt-parent-org-sponsors-rust-for-linux-kernel-development/

[188] Deepa Srinivasan, Zhi Wang, Xuxian Jiang, and Dongyan Xu. Process out-grafting: An efficient
”out-of-VM” approach for fine-grained process execution monitoring. In CCS, pages 363–374. ACM,
2011.

[189] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualizing i/o devices on vmware
workstation’s hosted virtual machine monitor. In USENIX Annual Technical Conference, General
Track, pages 1–14, 2001.

[190] Michael M Swift, Brian N Bershad, and Henry M Levy. Improving the reliability of commodity
operating systems. ACM Transactions on Computer Systems (TOCS), 23(1):77–110, 2005.

[191] Michael M. Swift, Peter Brundrett, Cliff Van Dyke, Praerit Garg, Anne Hopkins, Shannon Chan, Mario
Goertzel, and Gregory Jensenworth. Improving the granularity of access control in Windows NT. In
Proceedings of the ACM Symposium on Access Control Models and Technologies, pages 87–96, 2001.

[192] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in memory. In 2013
IEEE Symposium on Security and Privacy, pages 48–62. IEEE, 2013.

[193] Vasily Tarasov, Deepak Jain, Dean Hildebrand, Renu Tewari, Geoff Kuenning, and Erez Zadok.
Improving I/O performance using virtual disk introspection. In HotStorage, pages 11–11. USENIX,
2013.

[194] Akihiro Tominaga, Osamu Nakamura, Fumio Teraoka, and Jun Murai. Problems and Solutions
of DHCP - Experiences with DHCP implementation and Operation. http://www.isoc.org/
inet95/proceedings/PAPER/127/html/paper.html, 1995.

[195] Dan Tsafrir, Dilma Da Silva, and David Wagner. The murky issue of changing process identity:
revising “setuid demystified”. USENIX ;login, 33(3):55–66, June 2008.

[196] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William Jannen, Jitin John,
Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Donald E. Porter. Cooperation and
Security Isolation of Library OSes for Multi-Process Applications. In EuroSys, pages 9:1–9:14, 2014.

[197] Ubuntu Wiki: Filesystem Capabilities. https://wiki.ubuntu.com/Security/
Features#Filesystem_Capabilities, March 2014.

[198] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx. Telling your
secrets without page faults: Stealthy page {Table-Based} attacks on enclaved execution. In 26th
USENIX Security Symposium (USENIX Security 17), pages 1041–1056, 2017.

[199] Kenneth M. Walker, Daniel F. Sterne, M. Lee Badger, Michael J. Petkac, David L. Sherman, and
Karen A. Oostendorp. Confining root programs with domain and type enforcement (DTE). In USENIX
Security, pages 3–3, 1996.

[200] Jiang Wang, Angelos Stavrou, and Anup Ghosh. Hypercheck: A hardware-assisted integrity monitor.
In RAID, pages 158–177, 2010.

[201] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent Bindschaedler,
Haixu Tang, and Carl A Gunter. Leaky cauldron on the dark land: Understanding memory side-
channel hazards in sgx. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2421–2434, 2017.

109

http://www.isoc.org/inet95/proceedings/PAPER/127/html/paper.html
http://www.isoc.org/inet95/proceedings/PAPER/127/html/paper.html
https://wiki.ubuntu.com/Security/Features#Filesystem_Capabilities
https://wiki.ubuntu.com/Security/Features#Filesystem_Capabilities

[202] Zhi Wang, Xuxian Jiang, Weidong Cui, and Peng Ning. Countering kernel rootkits with lightweight
hook protection. In CCS, pages 545–554. ACM, 2009.

[203] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Binary stirring: Self-
randomizing instruction addresses of legacy x86 binary code. In CCS, pages 157–168, 2012.

[204] Dan Williams and Ricardo Koller. Unikernel monitors: extending minimalism outside of the box. In
8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16), 2016.

[205] R.M. Wong. A comparison of secure UNIX operating systems. In ACSAC, pages 322–333, 1990.

[206] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. K. Hartman. Linux security modules: General
security support for the Linux kernel. In USENIX Security Symposium, 2002.

[207] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. HYDRA: The kernel
of a multiprocessor operating system. CACM, 17(6):337–345, June 1974.

[208] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic side
channels for untrusted operating systems. In 2015 IEEE Symposium on Security and Privacy, pages
640–656. IEEE, 2015.

[209] Junfeng Yang, Ang Cui, Sal Stolfo, and Simha Sethumadhavan. Concurrency attacks. In HotPar,
pages 15–15, 2012.

[210] Chuan Yue. Teaching computer science with cybersecurity education built-in. In 2016 USENIX
Workshop on Advances in Security Education (ASE 16), 2016.

[211] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-VM side channels and
their use to extract private keys. In CCS, pages 305–316, 2012.

[212] Youhui Zhang, Yu Gu, Hongyi Wang, and Dongsheng Wang. Virtual-machine-based intrusion detection
on file-aware block level storage. In SBAC-PAD, pages 185–192, 2006.

[213] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals, Matthew Harren, George
Necula, and Eric Brewer. Safedrive: Safe and recoverable extensions using language-based techniques.
In Proceedings of the 7th symposium on Operating systems design and implementation, pages 45–60,
2006.

110

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Security Design Principles
	Security Properties and Mechanisms in a Secure System
	Summary

	ENCAPSULATING SECURITY THREATS USING VIRTUAL MACHINE INTROSPECTION
	Background
	Bridges Across the Semantic Gap
	Learning and Reconstruction
	Hand-crafted Data Structure Signatures
	Source Code Analysis
	Dynamic Learning

	Code Implanting
	Process Outgrafting
	Kernel Executable Integrity
	The (Write Execute) Principle
	Allow-listing Code
	Object Code Hooks

	Prevention vs. Detection
	Asynchronous vs. Synchronous Mechanisms
	Hardware-assisted Introspection
	Snapshotting
	Snooping

	Memory Protection: A Necessary Property for Prevention

	Attacks, Defense, and Trust
	Kernel Object Hooking
	Text Section Hooks
	Data Section Hooks

	Dynamic Kernel Object Manipulation
	Direct Kernel Structure Manipulation
	The Semantic Gap is Really Two Problems

	Toward an Untrusted OS
	Paraverification
	Hardware Support for Security
	Reconstruction from Untrusted Sources

	Under-explored Issues
	Scalability
	Privacy

	Summary

	RETROFITTING LEAST PRIVILEGE PRINCIPLE ONTO SETUID-ROOT BINARIES
	Overview
	Background
	The Setuid Bit
	Capabilities, LSMs, and SELinux.
	Setuid Installation Statistics

	Setuid Policy Study
	Network
	Raw and Packet Sockets
	Point-to-point Protocol (PPP)
	Bind

	Mount
	UID Switching and Delegation
	File System Permissions
	Interface Design
	Limitations and Discussion

	Evaluation
	Performance Overheads
	Security Evaluation
	Functional Testing
	Toward Zero Setuid-To-Root Binaries
	Design Principles for Protection Mechanisms in Protego

	Related Work
	Summary

	RETROFITTING COMPLETE MEDIATION AND MEMORY PROTECTION TO ISOLATE LINUX CONTAINERS
	Overview
	Hardware Support for Memory Isolation
	Memory Layout Redesign to Leverage Hardware Support
	Scheduling and Interrupts
	Implementation Details
	Evaluation
	Memory Footprint Overhead
	Startup Time
	Developer Effort
	Effect of VMEXIT on Execution Time
	Prevent Illegal Memory Access
	Design Principles for Protection Mechanisms in This Solution

	Future Work
	Filesystem Design
	Network Design

	Discussion
	Related Work
	Isolating Drivers from the Core Kernel
	Kernel Wrapping
	Virtualization
	User-mode Drivers
	Software Fault Isolation (SFI)
	Language-based Protection

	Virtualizing Ring 0
	Design Points on the Spectrum Between VMs and Containers
	Other Related Work
	Non-uniform Virtual Address Space
	Containers as Packaging Instead of a Virtualization Technique
	Leveraging Virtualization Hardware for More Than Virtual Machines

	Summary

	CONCLUSION
	BIBLIOGRAPHY

