ECONOMICALLY PROTECTING COMPLEX, LEGACY OPERATING SYSTEMS USING
SECURE DESIGN PRINCIPLES

Bhushan Jain

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of
Computer Science.

Chapel Hill
2022

Approved by:
Donald Porter
Saba Eskandarian
Mike Ferdman
Ketan Mayer-Patel

Cynthia Sturton

©2022
Bhushan P. Jain
ALL RIGHTS RESERVED

il

ABSTRACT

Bhushan Jain: Economically Protecting Complex, Legacy Operating Systems using Secure Design
Principles
(Under the direction of Donald Porter)

In modern computer systems, complex legacy operating systems, such as Linux, are deployed ubiqui-
tously. Many design choices in these legacy operating systems predate a modern understanding of security
risks. As a result, new attack opportunities are routinely discovered to subvert such systems, which reveal
design flaws that spur new research about secure design principles and other security mechanisms to thwart
these attacks. Most research falls into two categories: encapsulating the threat and redesigning the system
from scratch. Each approach has its challenge. Encapsulation can only limit the exposure to the risk, but
not entirely prevent it. Rewriting the huge codebase of these operating systems is impractical in terms of
developer effort, but appealing inasmuch as it can comprehensively eliminate security risks. This thesis
pursues a third, understudied option: retrofitting security design principles in the existing kernel design.
Conventional wisdom discourages retrofitting security because retrofitting is a hard problem, may require the
use of new abstractions or break backward compatibility, may have unforeseen consequences, and may be
equivalent to redesigning the system from scratch in terms of effort.

This thesis offers new evidence to challenge this conventional wisdom, indicating that one can economi-
cally retrofit a comprehensive security policy onto complex, legacy systems. To demonstrate this assertion,
this thesis firstly surveys the alternative of encapsulating the threat to the complex, legacy system by adding a
monitoring layer using a technique called Virtual Machine Introspection, and discusses the shortcomings
of this technique. Secondly, this thesis shows how to enforce the principle of least privilege by removing
the need to run setuid-to-root binaries with administrator privilege. Finally, this thesis takes the first steps
to show how to economically retrofit secure design principles to the OS virtualization feature of the Linux
kernel called containers without rewriting the whole system. This approach can be applied more generally to

other legacy systems.

iii

TABLE OF CONTENTS

LIST OF TABLES ... e e e e viii
LIST OF FIGURES . .. e e e e e X
1 INTRODUCGTION . ..ttt e e e e 1
1.1 Security Design PrinCiples e e 4
1.2 Security Properties and Mechanisms in a Secure Systemc..ccoeiuiiiineineenenn.. 6
L3 SUMMALY . ..ottt ettt e e et e e e et e e 8
2 ENCAPSULATING SECURITY THREATS USING VIRTUAL MACHINE INTROSPECTION .. 10

2.1 BacKground.t 12
2.2 Bridges Across the Semantic Gapuintintirtnt it 14
2.2.1 Learning and ReCONStrUCHONvutntt e e e e e een 14
2.2.1.1 Hand-crafted Data Structure Signaturescvivirenrenrannn. 15

2.2.1.2 Source Code ANalySiS.ouuvuiittnei it 16

2.2.1.3 Dynamic Learningo.oiuiiuiiueiii e 17

2.2.2 Code IMPIantingouuintintit ettt e 18

2.2.3 Process Outgrafting.ouoiniiu it 18
2.2.4 Kernel Executable INtegrityoouiniiniiii i 19
2.24.1 The (Write @ Execute) Principle ..., 21

2242 Allow-listing Codecouinin i e 21

2243 Object Code HOOKS .. .ouvneeit i 21

2.3 Prevention vs. DEteCtiONottt ettt et e 22
2.3.1 Asynchronous vs. Synchronous Mechanisms.............c.oooiiiiiiiii ... 23

v

3

2.3.2 Hardware-assisted IntroSpectionouiiuiiin i, 24

2321 SnapshOttingououin i 24

2.3.2.2 SNOOPING . . e ettt ettt e e e e e e 26

2.3.3 Memory Protection: A Necessary Property for Prevention 26

2.4 Attacks, Defense, and Trust.t e 27
2.4.1 Kernel Object HOOKINGintietiii it e e e eens 28
24.1.1 Text Section HOOKSoouiui i 28

2.4.1.2 Data Section HOOKSovuiu i 28

2.4.2 Dynamic Kernel Object Manipulationooiiiiiiiiiireiinnnnennnnnns. 29

2.4.3 Direct Kernel Structure Manipulation.............ouvitiiiinentiiiennennnnnnn. 32

2.4.4 The Semantic Gap is Really Two Problemsc. i ... 33

2.5 Toward an Untrusted OS e 34
2.5.1 Paraverification.ouie ittt e 35

2.5.2 Hardware Support for SECUTitYintint it e 36

2.5.3 Reconstruction from Untrusted SOUICesc..ouiuiiiiiiiiiiiiiiii ., 36

2.6 Under-explored ISSUES ut ettt ettt et et 37
2.6.1 Scalability ... e 37

2.0, PIIVACY . ettt 38

2.7 SUMMATY . ..ottt ettt ettt e e e et e e e e e e e e 38
RETROFITTING LEAST PRIVILEGE PRINCIPLE ONTO SETUID-ROOT BINARIES 40
3.1 OVEIVIEW ..ttt et et ettt e e e e e e 42
3.2 Background.oo.ii e 45
3.2.1 The Setuid Bit.oui 45

3.2.2 Capabilities, LSMs, and SELINUX.ovuiitii e 47

3.2.3 Setuid Installation StatiStiCSuvuttn ettt e 49

3.3 Setuid POLiCY StUAYottt 50
331 NetWOIK ..o e 53

3.3.1.1 Raw and Packet Sockets ...t 53

3.3.1.2 Point-to-point Protocol (PPP)o 54

33,13 Bind ..o 54

3.3.2 0 MOUNL .ottt et e e e 55

3.3.3 UID Switching and Delegationc.ouitiititiiii i eineneanann, 55

3.3.4 File System PermisSSionsuinuuuiitit it i it 57

3.3.5 Interface Designontiii i e 59

3.3.6 Limitations and DiSCUSSIONouuiuinii i 60

3.4 Evaluationt e 60
3.4.1 Performance Overheads.ot 62

3.4.2 Security Evaluationouiuintiei et 63

343 Functional Testingutnttt ettt et e 65

344 Toward Zero Setuid-To-Root Binariesooiiiiiiiiiiiiininneenen., 65

3.4.5 Design Principles for Protection Mechanisms in Protego............................ 66

3.5 Related WOtk ..o 67
3.0 SUMMATY . ..ottt ettt ettt et et e e et e e e e e e e e 68

RETROFITTING COMPLETE MEDIATION AND MEMORY PROTECTION TO

ISOLATE LINUX CONTAINERS oot 69
A1 OVEIVIEW ..ottt ettt et e et et e e 70
4.2 Hardware Support for Memory ISolationoiiiiiiiiiini i, 72
4.3 Memory Layout Redesign to Leverage Hardware Supportcciiiiiiiiin.... 73
4.4 Scheduling and INteImUPLSottt et et e e 75
4.5 Implementation Detailso.iiuii e 77
4.6 EValUation e 78
4.6.1 Memory Footprint Overhead 79
4.6.2 Startup TIMEot e 80
4.6.3 Developer EffOrt. 80
4.6.4 Effect of VMEXIT on Execution Time ..., 81

vi

4.6.5 Prevent [llegal MemOry ACCESS.ttt ettt eieaens 82

4.6.6 Design Principles for Protection Mechanisms in This Solution 83

477 Future WOTK 85
477.1 Filesystem DeSi@nottt e 85

472 NetWork Designouit e e e e e e e 86

4.8 DISCUSSION . ettt ettt e et e e e e e e 88
4.9 Related WOrKo e 89
4.9.1 Isolating Drivers from the Core Kernel, 89
4.9.1.1 Kernel Wrappingouuinteteti et i i e 89

4.9.1.2 Virtualizationo et e 89

4.9.1.3 User-mode DIivers.o.on et 90

49.1.4 Software Fault Isolation (SFI)o .. 90

4.9.1.5 Language-based Protection...............ooviiiriiiiiiiiiiiinennannnn.. 90

492 Virtnalizing RIng 0 e 91

4.9.3 Design Points on the Spectrum Between VMs and Containers....................... 92

4.9.4 Other Related Work i e 95
49.4.1 Non-uniform Virtual Address Spacecooiiiiiiiiiiiiian... 95

4.9.4.2 Containers as Packaging Instead of a Virtualization Technique 95

49.4.3 Leveraging Virtualization Hardware for More Than Virtual Machines 96

410 SUMIMALY . ..ottt ettt e e e e e e e 96
5 CONCLUSION .ot e e e e e e e et 97
BIBLIOGRAPHY . ..o e e e e 98

vii

2.1

22

23

24

3.1

32

33

34

35

3.6

3.7

3.8

39

LIST OF TABLES

Size and documented vulnerabilities of a representative bare-metal hypervisor
(Xen) and legacy OS (Linux). Code sizes were calculated based on Xen 4.4 and
Linux 3.13.5. CVEs were collected for all versions of these code bases over the

period from 01/01/2006 to 03/03/2014. i e 11
VMI techniques, monitor placement (as illustrated in Figure 2.1, and their underly-

INE tUSE ASSUMPLIONS. .+ 1\ttt ettt ettt ettt et e e et et et e et e et et e a e et ee e ieareneenenns 20
VMI attacks, defenses, and underlying trust assumptions.oeveeerenreneennn.. 27
Trust Models. (/ indicates the layers that are trusted.)ccoooiiiiiiiieiaea.. 34
Summary of TeSULLS.o 42

Lines of code written or changed in Protego, including kernel, trusted services, and
command-line Utilities. oot e 44

Percent of systems that install packages containing setuid-to-root binaries, as
reported by the Debian and Ubuntu ’popularity contest’ surveys. Average is
weighted by the total number of systems reporting in each survey. 48

Part I: System abstractions used by commonly installed setuid utilities on recent
Debian and Ubuntu systems. The table identifies the common thread of inconsistent
kernel policies and system policies for these abstractions, discusses the underlying
security concerns, and how Protego unifies system and kernel policies....................... 51

Part II: System abstractions used by commonly installed setuid utilities on recent
Debian and Ubuntu systems. The table identifies the common thread of inconsistent
kernel policies and system policies for these abstractions, discusses the underlying
security concerns, and how Protego unifies system and kernel policies....................... 52

Protego overheads compared to Linux with AppArmor. Unless otherwise noted,
tests measure execution time in microseconds (lower is better). A few tests measure
bandwidth in MBps or Kbps, where higherisbetter............... ..., 61

Historical vulnerabilities in setuid-to-root binaries (total, and those that lead to
privilege escalation). In Protego, these utilities and the vulnerable code would be
deprivileged and would not lead to a privilege escalation. Dashes are placed in
the “Total” column for a CVE that spans multiple packages; the package totals are
repOTted 1N OtNET TOWS. . ..ottt e e e e e et 63

Gcov coverage of command-line setuid binariesoiiiiiii ... 65

System abstractions used by setuid binaries in packages not included in the Sec-
tion 3.3 study. Abstractions below the double line need to be addressed in future
R0} 4P 66

viii

4.1

4.2

4.3

4.4

Start-Up times for a VM and @ CONtAINeT.ooutiti i eenn 70
Memory footprint overhead for native clone, MicroVM, and our solution. 80
Startup time for native clone, MicroVM, and our solution.coooviiiiiin... 80
Developer effort for Linux kernel, MicroVM, and our solution.ccovou.... 80

iX

2.1

3.1

4.1

4.2

4.3

4.4

4.5

4.6

LIST OF FIGURES

Monitor placement options in VMI: in a sibling VM, the hypervisor, in the guest
OS itself, or in hardware. In-guest and hardware solutions require some assistance
from the hypervisor. e 13

Comparison of the mount system call on Linux and Protego. Trusted components
are in gray. Linux places trust in the /bin/mount binary to enforce policies
specified in /et c/ fstab; this binary is called by an untrusted user. The mount
system call fails if the caller doesn’t have the CAP_SYS_ADMIN capability (i.e., is
not root). In Protego, a trusted daemon reads the policies from /etc/fstab and
configures the Protego LSM through a file in /proc. Separately, an untrusted user
can use /bin/mount, or any other binary, to issue a mount system call. The
mount system call then calls an LSM hook to check this change against system

POLICY. et e 43
Hardware-Assisted OS Virtualization (COntainers)ooueiiiineeeinnneeennn.. 70
Interrupt delivery to host and gUEStoeiniiniii e 75
Reduce VMEXITsS by servicing system calls in vmx non-root mode 81
Effect of VMEXIT on getpid () eXeCution timec.uireeireenreenrenneenneannenns. 82
Our solution prevents illegal memory access by an attackero..... 83

Container technologies on a spectrum for security, resource consumption, legacy
code reuse. The blue arrow shows the design point on the spectrum explored by
OUT SOIULION. ..ttt ettt et e e e e e e e et e et e e e 93

CHAPTER 1: INTRODUCTION

Legacy systems in production are used in more hostile environments than what the designers and
developers envisioned. Dennis Ritchie [172] said, “The first fact to face is that UNIX was not developed with
security, in any realistic sense, in mind; this fact alone guarantees a vast number of holes.” James Morris [14]
said, “On one hand, we’re doing things today with computers that were maybe pipe dreams 40 years ago, yet
we're still relying on operating systems designed decades ago.” It is almost impossible to code large, complex
systems without creating bugs. On average, about 30 bugs are introduced per 1000 lines of code written in
commercial software [100]. Some of these bugs are also vulnerabilities, as the bugs can be exploited by an
attacker to manipulate the program or gain control of the system. Just like bugs, it is almost impossible to
code large, complex systems without creating vulnerabilities.

Language or compiler-based security mechanisms can reduce the number of these vulnerabilities and
their impact, but these mechanisms do not ubiquitously work for all code. These security mechanisms
include memory safety, software fault isolation, code integrity, data-flow integrity, control-flow integrity,
address space randomization, data randomization, penetration testing, and formal verification. However,
these mechanisms do not work out-of-the-box for all code written in C. Most of these tools are effective for
application binaries or other high-level languages such as Java, but the code of, say, the Linux kernel, is too
big and complex to apply formal methods or many security mechanisms. For instance, providing memory
safety in Linux is such a daunting task, that security researchers only recently started running Rust code
inside Linux [187].

Saltzer and Schroeder devised design principles to help developers design systems and applications
with security as the prime objective [175]. These secure design principles are economy of design, fail-safe
defaults, complete mediation, open design, separation of privilege, least privilege, least common mechanism,
and psychological acceptability. Modern OSes were designed and initially implemented for much less hostile
environments than in modern deployments, so it is unsurprising that early design and implementation choices
deviate from these principles at several points. Thus, taking the Linux kernel as a running example, the early

stages of design and implementation of a legacy OS like Linux did not adhere to all of these security design

principles. Moreover there has been a lot of resistance to add security features in Linux, especially from
Linus Torvalds, the founder of Linux, who famously said “I don’t trust security people to do sane things.” [13]

With the benefit of several intervening decades of research on programming languages and security,
designers and developers of new applications or systems with security as the primary objective can leverage
programming language tools and security design principles. But, to improve the security of legacy codebases,
there are one of the three options: (1) accept the risk, (2) try to encapsulate the risk to limit the exposure [114],
or (3) rewrite the legacy code while following the new techniques and the security design principles [128].
However, these options are either hard or not practical. Firstly, the Linux kernel code is too big to even
completely know the risk. Secondly, encapsulation can only limit the exposure to the risk, not completely
prevent it. Finally, it is not practical to rewrite over 27 million lines of Linux. Approaches for hardening a
legacy codebase must scale in terms of developer effort.

A better approach to protecting a legacy system like Linux would be to retrofit these security design
principles in the existing kernel design, if we had economical and practical techniques. But alas, this is an
open problem. We also need to rethink the design of the legacy system code to maintain the old abstractions
and interfaces for backward compatibility, but make the code adapt to security design principles.

The thesis of this dissertation is that security design principles can be economically, and practically
enforced on complex, legacy kernel code, without the need to rewrite the whole operating system. First,
Chapter 2 will show how encapsulation of threats in the Linux kernel is handled using virtual machine
introspection, and the limitations of the technique. Second, Chapter 3 will show how to reduce privilege
escalation vulnerabilities in the Linux kernel by making just a few isolated changes, and rethinking the design
to enforce the least privilege principle. Finally, Chapter 4 will use the security design principles and compiler
tools to provide memory isolation for the containers feature of the Linux Kernel.

The first technical contribution of the thesis is a survey of virtual machine introspection techniques
from more than 100 papers over 12 years, and organize the VMI design space to create a framework that
can help reason about design choices while building new systems. Threats in the Linux kernel are often
neutralized or contained by encapsulating the Linux kernel into a virtual machine, and monitoring that virtual
machine for unusual behavior. Virtual machine introspection (VMI) adds a hypervisor layer and monitors
the kernel after moving it into a VM. Some of these VMI solutions inspect the memory of a virtual machine
by executing concurrently, and often asynchronously with the VM. These asynchronous VMI solutions

passively monitor and detect attacks on the VM after the fact. On the other hand, some VMI solutions are

synchronous, mediating guest operations inline to prevent security policy violations by protecting the VM
memory. This thesis observes that all VMI solutions that prevent an attack are based on the secure design
principle of complete mediation and the technique of memory protection. However, an attacker can also
change the kernel data objects and the interpretation of kernel data structures to show the monitor a view of
the system different from reality. This thesis observes that this stronger attack is often obviated by generous
threat models, rendering encapsulation an imperfect solution.

The second technical contribution of the thesis is to enforce the Least Privilege Principle on the untrusted
user by removing the need to run special setuid-to-root binaries with escalated privileges, and without
changing the user experience. Unprivileged users of modern Unix systems access safe subsets of otherwise
privileged system functionality through trusted, setuid-to-root binaries. The problem with setuid-to-root
binaries is that they violate the Least Privilege Principle (LPP) [175], and create opportunities for privilege
escalation attacks. Chen et al. [70] show that many privilege escalation attacks go through setuid-to-root
binaries, even on SELinux [145] or AppArmor [28]. A study of 28 most popular setuid-to-root binaries,
which account for all setuid-to-root binaries installed on roughly 89.5% of the Debian and Ubuntu systems
surveyed using the Lintian reports [32], revealed that only eight system calls and two other system interfaces
underlie the vast majority of root privilege requirements. This thesis solves this problem by designing and
implementing a simple, efficient framework for migrating policies from setuid-to-root binaries into the kernel
as linux security module (LSM) policies, obviating the need for these binaries to run with escalated privileges
in nearly all situations, and removing a source of privilege escalation.

The third technical contribution of the thesis is to give containers VM-like memory isolation properties
by economically isolating the memory of containers without sacrificing the containers’ lighter weight. Docker
and Linux containers (LXC) have been gaining popularity as a solution to trade off security isolation for
efficiency and compatibility across different OS distributions. For instance, Google has adopted Docker
for their cloud model to compete with Amazon cloud services [154]. Like VMs, containers encapsulate
the threats in the Linux kernel, but containers are a more lightweight and faster alternative to VMs. VMs
consume a lot of extra resources like memory footprint and take a while to start up, as they are booting a
whole new Operating System.

Although containers are lighter weight than virtual machines, they are more susceptible to attacks than
VMs due to the design choice to share the same kernel in the host as well as the guest. The OS virtualization

isolates containers using namespace by creating container-specific copies of selected global kernel objects,

such as process descriptor list, and redirecting the use of these objects to the appropriate container-specific
copy. The host exposes the system call interface to the container framework. Thus, the same system call
vulnerabilities that can be exploited by an userspace application are exposed in containers. The problem is
that by exploiting the host kernel vulnerabilities, the guest can access the whole host kernel, including the
memory belonging to other guests as well as the host. To give containers isolation properties comparable
to VMs, we need to redesign the kernel to provide the guest with access to only the necessary parts of host
memory, and use complete mediation to enforce memory protection in the kernel. We take the first steps to
show how the design principles for protection mechanisms and compiler tools can be retroactively fitted on
the huge Linux kernel code by slightly rethinking the design, and making small changes.

Section 1.1 describes the security design principles and the Section 1.2 describes security mechanisms
that complement these principles. In addition to following the security design principles, these security

mechanisms are also necessary to build secure systems.

1.1 Security Design Principles

There is no way to build a perfectly secure system, mainly because of the difficulty in proving that no
unauthorized actions can occur in the system. Even in systems designed and implemented with security as
a prime objective, design and implementation flaws can allow a malicious user to circumvent the access
constraints. For any system, the effectiveness of protection mechanisms is based on the system’s ability
to prevent security violations and unauthorized access. However, it is very difficult to guarantee that all
unauthorized accesses are denied. Almost all security systems are built for a threat model that excludes a few
threats. It is often possible to crash a system or deny system access to other users using a sophisticated attack.
New vulnerabilities are often discovered in systems designed long ago.

In the absence of a methodical technique to build secure systems, Saltzer and Schroeder described a
few design principles based on empirical evidence and experience. These design principles can guide the
design and implementation of a system without security flaws. The security design principles are discussed

as follows:

* Separation of Privilege: This principle requires that access is granted based on two or more conditions
to enforce multi-factor authentication. Linux doesn’t inherently support multi-factor authentication,

but relies on third-party applications to provide this feature.

Least Privilege: This principle states that every program and every user of the system should operate
using the least set of privileges necessary to complete the job. A monolithic kernel like Linux violates
this principle by running all its code at the privileged level, and due to features like setuid-to-root

binaries that allow unprivileged users to use privileged kernel operations.

Least Common Mechanism: This principle minimizes the number of mechanisms common to more
than one user and is depended on by all users. Trusted computing base (TCB) is an ubiquitously used
security metric to count the number of lines of code that is trusted by the system. Thus, enforcing least
common principle can reduce the TCB to minimum. Linux violates this principle because any kernel
data can be accessed anywhere in the kernel code. Thus, all 27.8 million lines of kernel code and data

are common to all users and processes, and part of the TCB.

Economy of Mechanism: This principle requires that the design and implementation of a system
are kept as small as possible. A monolithic kernel like Linux violates this principle by adding all the

drivers and subsystems to the kernel.

Fail-safe Defaults: This principle requires that the access is based on permission instead of exclusion.
Linux follows this principle by using discretionary access control, which allows access only based on

the identity of the user.

Complete Mediation: This principle states that every access to every object must be checked for
authority. By convention, Linux design requires kernel developers to correctly check for authority, and

sometimes these checks are missing, thus violating the complete mediation principle.

Open Design: This principle requires that the design is not secret. Linux follows this principle by

making its code open source.

Psychological Acceptability: This principle states that it is essential that the human interface be
designed for ease of use, so that users routinely and automatically apply the protection mechanisms
correctly. For some security mechanisms in Linux like SELinux, policies are written in such a
specialized format, that only an expert can write a correct SELinux policy. Assessing this aspect of
Linux is out of scope, as it would likely require user studies orthogonal to this thesis, but this thesis

maintains ease of use by not changing any existing user interfaces.

1.2 Security Properties and Mechanisms in a Secure System

Although the above security design principles are crucial to creating a secure system, there are also
some standard security properties and mechanisms that complement these principles. These properties and
mechanism are commonly used in modern security literature [192], and tend to reflect more recent and

specific techniques than the above security design principles.

* Non-executable Data: A control-flow-hijack exploit executes the attacker-specified malicious code.
The Non-executable Data policy can prevent this attack by making data memory pages, like the stack

or the heap, non-executable using the executable bit for memory pages in the hardware.

* Memory Safety: Memory safety is a property of some programming languages that prevents program-
mers from introducing certain types of bugs related to how the memory is used. All memory corruption
exploits can be stopped by enforcing memory safety. However, both spatial and temporal errors must
be prevented to achieve complete memory safety. Type-safe languages enforce the memory safety
by checking object bounds at array accesses and using automatic garbage collection to prevent the

programmer from explicitly destroying objects.

* Code Integrity: A Code Integrity policy ensures that program code is never overwritten. To achieve
Code Integrity, all memory pages containing code are set to read-only using the hardware support

present in all modern processors.

» Data Integrity: Data Integrity protects against control data hijacking and non-control data attacks, but
not against covert channels that leak information. Although Data Integrity prevents data corruption,
it only protects against invalid memory writes, not reads. Data Integrity is a weaker property than
memory safety, because Data Integrity solutions enforce an approximation of spatial memory safety,

and do not enforce temporal safety.

» Data-flow Integrity: Data-Flow Integrity (DFI) checks load/store instructions to detect the corruption
of any data before it gets used. DFI restricts reads based on the last instruction that wrote the read
location. For example, the policy ensures that the flag representing the supervisor mode was last

written by the store instruction from the source code, and not by some attacker-controlled store. The

policy also ensures that the return address used by a return was last written by the corresponding call

instruction.

Control-flow Integrity: Control-flow Integrity (CFI) is a policy that detects and prevents attacks by
restricting control-flow transfers to a limited set of allowed destinations. CFI statically determines
the valid targets of not only calls, but also function returns, and thus enforces the resulting static
control-flow graph. To prevent all control-flow hijacks, not only returns, but indirect calls and jumps

have to be protected as well.

Address Space Randomization: Address Space Layout Randomization (ASLR) is a memory address
randomization technique, which randomly arranges the position of different code and data memory
areas. The attacker cannot reliably divert control-flow if the address in the virtual memory space is not

fixed. ASLR is the most comprehensive currently deployed protection against hijacking attacks.

Data Space Randomization: Data Space Randomization (DSR) randomizes the representation of data
stored in memory instead of the location of the data. It encrypts all variables, including pointers, and
uses different keys. The code is instrumented to encrypt and decrypt variables when they are stored and
loaded from memory. The protection of this mechanism is stronger, because encrypting all variables

protects against control-flow hijacks, as well as data-only exploits.

Formal Verification: Formal verification generally proves that an implementation satisfies a model, or
specification, of the program’s expected behavior. Assuming the specification is written to preclude
insecure behavior (for some definition of secure), a formally-verified codebase will also be secure.
Formal verification is a “holy grail” for developers; as E.W. Dijkstra pithily observed, “program testing
can be used very effectively to show the presence of bugs but never to show their absence” [3]. Using

formal verification, a developer can actually prove the absence of bugs in her program.

Penetration Testing: Penetration testing is an empirical alternative to formal verification. The
developers can recruit a team of expert attackers that test likely attack vectors. One of the successful
examples of this type of security evaluation is the annual hacking contest Pwn2Own [34]. However,
the cost of “bug bounties” can be high. For example, Google offered $1 million to hackers who can

produce zero-day exploits against its Chrome browser [30].

* Auditing: Auditors can do a code review to check for any vulnerabilities, but is a labor-intensive
process. Auditing ensures that proper security standards are met, which should reduce the existence of
vulnerabilities in the code. While the goal of penetration testing is to find vulnerabilities, the goal of

the auditor is to ensure safe practices are followed to prevent vulnerabilities.

» System Hardening: In addition to the above mechanisms, system hardening is a process of reducing
the available attack surface. This includes using features like seccomp to prevent certain system calls
from being accessed. More broadly, it involves only running the absolute minimum code needed for

functionality, and removing unnecessary code or binaries from a system.

Often, figuring out how to apply the security design principles in a given context is not straightforward.
Actually applying these principles is not as simple as typing some command or using a well-known tool;
these principles require some creativity to even apply at all, and the manifestation looks different in different
contexts. Additionally, depending on the context, enforcing the security mechanisms and properties can help
adhere to one or more security design principles. For instance, memory safety can help achieve the principle
of complete mediation, and following the economy of mechanism principle can help with auditing and formal

verification.

1.3 Summary

This chapter showed how security was not a primary concern while designing legacy, complex sys-
tems. This chapter briefly described the security design principles and language or compiler-based security
mechanisms. This chapter argued that retrofitting security design principles in the existing kernel design is
a better solution than accepting the risk, encapsulating the risk, or rewriting the legacy code from scratch.
This chapter briefly described how the thesis shows that encapsulating the risk is an incomplete solution,
economically reduces privilege escalation vulnerabilities in Linux, and provides memory isolation for the
containers feature of Linux. Finally, this chapter observes that applying the security design principles in a
given context requires creativity, and the manifestation looks different in different contexts.

Chapter 2 observes how encapsulating the threats to the Linux kernel in a Virtual Machine is an imperfect
solution. Chapter 3 discusses how to enforce the principle of least privilege in the Linux kernel by removing

the need for running setuid-to-root binaries with elevated privileges. Chapter 4 demonstrates how we can

economically retrofit security design principles and security mechanisms to a huge, complex codebase such

as the Linux kernel. Finally, chapter 5 summarizes this thesis document.

CHAPTER 2: ENCAPSULATING SECURITY THREATS USING VIRTUAL MACHINE
INTROSPECTION

Virtualization has the potential to greatly improve system security by introducing a sensible layering—
separating the policy enforcement mechanism from the component being secured. Most legacy OSes are both
monolithic and burdened with a very wide attack surface. A legacy OS, such as Linux, executes all security
modules in the same address space and with the same privilege level as the rest of the kernel [206]. When
this is coupled with a porous attack surface, malicious software can often load code into the OS kernel that
disables security measures, such as virus scanners and intrusion detection. As a result, users have generally
lost confidence in the ability of the OS to enforce meaningful security properties. In public multi-tenant
cloud computing, for instance, customers’ computations are isolated using virtual machines rather than OS
processes.

In contrast, hypervisors generally have a much narrower interface. Moreover, bare metal, or Type I [164],
hypervisors generally have orders of magnitude fewer lines of code than a legacy OS. Table 2.1 summarizes
the relative size of a representative legacy OS (Linux 3.13.5), and a representative bare-metal hypervisor
(Xen 4.4), as well as comparing the number of reported exploits in both systems over the last 8 years. Perhaps
unsurprisingly, the size of the code base and API complexity are strongly correlated with the number of
reported vulnerabilities [185]. Thus, hypervisors are a much more appealing foundation for the trusted
computing base of modern software systems.

This chapter focuses on systems that aim to assure the functionality required by applications using
a legacy software stack, secured through techniques such as virtual machine introspection (VMI) [98].
A number of research projects observe that a sensitive application component, such as a random number
generator or authentication module, requires little functionality, if any, from the OS, yet are vulnerable to
failures of the OS [150, 151]. These projects are beyond the scope of this chapter, which instead focuses
on systems that leverage virtualization to ensure security properties for applications that require legacy OS

functionality.

10

Codebase Lines of code
Xen hypervisor 4.4 0.50 Million
Linux kernel 3.13.5 12.01 Million

Codebase No. of CVE
Xen hypervisor 24
Linux kernel 903

Table 2.1: Size and documented vulnerabilities of a representative bare-metal hypervisor (Xen) and legacy
OS (Linux). Code sizes were calculated based on Xen 4.4 and Linux 3.13.5. CVEs were collected for all
versions of these code bases over the period from 01/01/2006 to 03/03/2014.

VMI has become a relatively mature research topic, with over 100 projects. This chapter distills key
design points from previous work on VMI—providing readers and system designers with a framework for
evaluating design choices.

Moreover, we observe an unfortunate trend in the literature: many papers do not explicate their assump-
tions about the system, trusted computing base, or threat models. Although an attentive reader can often
discern these facts, this trend can create confusion within the field. Thus, this survey carefully explicates the
connection between certain design choices and the fundamental trust assumptions underlying these designs.
One particularly salient observation is that all current solutions to the semantic gap problem [71] implicitly
assume the guest OS is benign. Although this is a reasonable assumption in many contexts, it can become a
stumbling block to the larger goal of reducing the size of the trusted computing base.

Finally, after identifying key design facets in previous work, this chapter identifies promising under-
explored regions of the design space. The chapter discusses initial work in these areas, as well as the
applicability of existing techniques and more challenging threat models.

The contributions and insights of this work are as follows:

* A thorough survey of research on VMI, and a distillation of the principal VMI design choices.

* An analysis of the relationship between design choices and implicit assumptions and trust. We observe
that existing solutions to the semantic gap problem inherently trust the guest OS, often in direct

contradiction to the underlying motivation for using VM introspection.

* The observation that the semantic gap problem has evolved into two separate issues: an engineering

challenge and a security challenge. Existing solutions address the engineering challenge.

* Identifying a connection between techniques that protect memory and prevent attacks.

11

» Exploring the applicability of current techniques to new problems, such as removing the guest OS from

the trusted computing base without removing OS functionality.

* Identifying additional points in the design space that are under-explored, such as hardware-support for

mutual distrust among system layers and dynamic learning from an untrusted OS.

2.1 Background

The specific goals of VM introspection systems vary, but commonly include identifying if a malicious
loadable kernel module, or rootkit, has compromised the integrity of the guest OS [163]; identifying malicious
applications running on the system [142]; or ensuring the integrity or secrecy of sensitive files [113]. In these
systems, a monitor tracks the behavior of each guest OS and either detects or prevents policy violations. Such
a monitor may be placed in the hypervisor, a sibling VM, in the guest itself, or in the hardware, as illustrated
in Figure 2.1. This process of looking into a VM is Virtual Machine Introspection (VMI).

A fundamental challenge to using VMI for security policy enforcement is that many desirable security
policies are expressed in high-level, OS abstractions, such as files and processes, yet the hypervisor only has
direct visibility into hardware-level abstractions, such as physical memory contents and hardware device
operations. This disparity in abstractions is known as the semantic gap.

As an example of how the semantic gap creates challenges for introspection, consider how a hypervisor
might go about listing the processes running in a guest OS. The hypervisor can access only hardware-level
abstractions, such as the CPU registers and contents of guest memory pages. The hypervisor must identify
specific regions of guest OS memory that include process descriptors, and interpret the raw bytes to reconstruct
semantic information, such as the command line, user id, and scheduling priorities.

As a result of the semantic gap, much of the VMI development effort goes into reconstructing high-level
semantic information from low-level sources. VMI tools attempt to reconstruct a range of information,
including the set of running processes, sensitive file contents, and network sockets. For brevity, we limit
this chapter to memory introspection, where the hypervisor draws inferences about guest behavior from the
contents of memory and CPU registers. A range of work has also introspected disk contents [120, 193, 212]
and network traffic [106, 124]; at this boundary, we limit discussion to in-memory data structures, such as

those representing file metadata (inode) or a socket (sk buff).

12

App | App | App . Sibling

| | Guestos| |-
:' \ "I

/ \ w 7~ - .
N Hypervisor

[/

‘ 3\ Hardware

Figure 2.1: Monitor placement options in VMI: in a sibling VM, the hypervisor, in the guest OS itself, or in
hardware. In-guest and hardware solutions require some assistance from the hypervisor.

As we discuss in the next section, many of these semantic reconstruction techniques rely on fragile
assumptions or are best-effort. Unfortunately, errors in reconstructing semantic information can be exploited
by malware to trick an introspection-based security monitor.

Continuing our example of listing processes in a guest OS, a typical introspection strategy would be
to identify the definition of a process descriptor (e.g., a task_struct on Linux) from the source code,
and then walk the list of runnable processes by following the global root of the process list init_task,
overlaying this structure definition over the relevant memory addresses. This strategy faces a number of
challenges. First, one must either assume all process descriptors are in this list—even in a compromised or
malicious OS—or one must detect hidden processes, using techniques such as scanning all of guest memory
looking for potential process descriptors or detecting inconsistencies between the currently loaded page

tables and the purported process descriptor [121]. Hidden process detection [113] faces additional challenges,

13

such as false positives from scanning memory during a critical section which temporarily violates some
internal invariant the introspection tool is checking. In order to prevent the guest OS from using a hidden
process descriptor, the introspection must identify all context switching code in the kernel, possibly including
dynamically loaded code that manually context switches a hidden process. Finally, a rootkit might hide itself
in a subtle and unexpected manner, such as loading itself as a thread in the address space of a benign system
process, or placing its code in the memory image of a common library and scheduling itself by changing the
address of a signal handling function.

These subtleties make robustly bridging the semantic gap quite a challenge. The next section organizes

current strategies to solve this problem.

2.2 Bridges Across the Semantic Gap

Modern OSes are complex systems consisting of thousands of data structures, and many instances of
each type. A typical running instance of the Linux kernel was found to have a core set of 29,488 data structure
instances belonging to 231 different types that enable scheduling, memory management, and 1/0 [169]. Each
of these structures consists of many fields. For instance, a task_struct in Linux 3.10 contains more than 50
fields [19], many of which are pointers to other structures. A key ingredient to any solution to the semantic
gap problem is reconstruction of kernel data structures from memory contents.

This section begins with explaining techniques to reconstruct kernel data structures (2.2.1), followed by
additional introspection techniques that do not directly reconstruct data structures (§2.2.2-2.2.3), and then
techniques that assure the integrity of the kernel binary (§2.2.4). As the section explains each technique, it
highlights the underlying trust assumption(s)—most commonly that the guest OS is benign. We will revisit
these trust assumptions as we explain VMI attacks and defenses (§2.4). as well as discussing how one might

adapt VMI to a stronger threat model where these assumptions do not hold (§2.5).

2.2.1 Learning and Reconstruction

Data structure reconstruction generally relies on a learn and search methodology. A learning phase is
used to extract information relevant to data structures, generally a data structure signature. A signature can

be used to identify and reconstruct data structure instances within kernel memory contents. Signatures are

14

created using techniques such as expert knowledge, source analysis, or dynamic analysis—each described in
this subsection (§2.2.1.1-2.2.1.3).

A second search phase identifies instances of the data structure. The two most common search strategies
are to either linearly scan kernel memory or to traverse data structure pointers, starting with public symbols.
Depending on the OS, public symbols may include debugging symbols or the dynamic linking tables exposed
to loadable kernel modules. It is arguable which approach is more efficient, since many kernel data structures
can have cyclic or invalid pointers, but may require traversing less total memory. However, the linear scan of
kernel memory has the advantage that it is robust to “disconnected” structures or other attempts to obfuscate
pointers. Both techniques can observe transient states when searching concurrently with OS operation,
discussed further in §2.3.1.

Several linear scanning techniques limit the search space by introspecting on the kernel memory
allocators—either by interpreting allocator data structures [113] or by placing debugging breakpoints on
the allocator [169]. OS kernels commonly use a different slab or memory pool for each object type; this
information can be used to further infer data structure types. An advantage of leveraging heap-internal
information for search is more easily identifying transient data structures which have been freed but may
be pointed to—a challenge for other search approaches. An inherent risk of this approach is missing data
structures allocated in an unorthodox manner.

Searching overheads. In practice, searching for data structures in a kernel memory snapshot can take
from tens of milliseconds [113] up to to several minutes [63]. Thus, most systems reduce overheads by
searching periodically and asynchronously (§2.3.1). Periodic searches fundamentally limit these approaches
to detecting compromises after the fact, rather than preventing policy violations. Moreover, these approaches
can only reliably detect compromises that make persistent changes to a data structure. Transient malware can
race between two searches of kernel memory.

The rest of this subsection describes the three major approaches to learning data structure signatures.

2.2.1.1 Hand-crafted Data Structure Signatures

Introspection and forensic analysis tools initially used hand-crafted signatures, based on expert knowledge
of the internal workings of an OS. For instance, such a tool might generate the list of running processes,
similar to ps, by walking a global task list in Linux. Examples of this approach include Memparser [16],

KNTLIST [12], GREPEXEC [6] and many others [2, 4, 5, 8, 15, 17, 18, 21, 22, 176, 177].

15

The most sophisticated frameworks for hand-crafted reconstruction use a wide range of subtle invariants
and allow users to develop customized extensions. FACE/Ramparser [80] is a scanner that leverages invariants
on values within a data structure, such as enumerated values and pointers that cannot be null. Ramparser
can identify running processes (task_struct), open network sockets (struct_sock), in-kernel socket buffers
(sk_buff), loaded kernel modules (struct module), and memory-mapped and open files for any given process
(vm_area_struct). Similarly, Volatility [20] is a framework for developing forensics tools that analyze memory
snapshots, with a focus on helping end-users to write extensions. Currently, Volatility includes tools that
extract a list of running processes, open network sockets and network connections, DLLs loaded for each
process, OS kernel modules, system call tables, and the contents of a given process’s memory.

Hand-crafting signatures and data structure reconstruction tools creates an inherent limitation: each
change to an OS kernel requires an expert to update the tools. For instance, a new version of the Linux
kernel is released every 2—3 months; bugfix updates to a range of older kernels are released as frequently as
every few weeks. Each of these releases may change a data structure layout or invariant. Similarly, different
compilers or versions of the same compiler can change the layout of a data structure in memory, frustrating
hand-written tools. Hand-written tools cannot keep pace with this release schedule and variety of OS kernels

and compilers; thus, most introspection research has instead moved toward automated techniques.

2.2.1.2 Source Code Analysis

Automated reconstruction tools may rely on source code analysis or debugging information to extract
data structures definitions, as well as leverage sophisticated static analysis and source invariants to reduce
false positives during the search phase. Examples of source code analysis tools include SigGraph [140],
KOP [63], and MAS [82].

One basic approach to source analysis is to identify all kernel object types, and leverage points-to
analysis to identify the graph of kernel object types. Kernel Object Pinpointer (KOP) [63] extended a
fast aliasing analysis developed for non-security purposes [109], with several additional features, including:
field-sensitivity, allowing KOP to differentiate accesses made to different fields within the same struct; context-
sensitivity, differentiating different uses of union types and void pointers based on type information in
code at the call sites; as well as inter-procedural and flow-insensitive analysis, rendering the analysis robust

to conditional control flow, e.g., 1 f statements. In applying the static analysis to a memory snapshot, KOP

16

begins with global symbols and traverses all pointers in the identified data structures to generate a graph of
kernel data structures.

A key challenge in creating this graph of data structures is that not all of the pointers in a data structure
point to valid data. As a simple example, the Linux dcache uses deferred memory reclamation of a
directory entry structure, called a dentry, in order to avoid synchronization with readers. When a dentry
is on a to-be-freed list, it may point to memory that has already been freed and reallocated for another
purpose; an implicit invariant is that these pointers will no longer be followed once the dent ry is on this list.
Unfortunately, these implicit invariants can thwart simple pointer traversal. MAS [82] addresses the issue of
invalid pointers by extending the static analysis to incorporate value and memory alias checks.

Systems like MAS [82], KOP [63] and LiveDM [169] also improve the accuracy of type discovery by
leveraging the fact that most OSes create object pools or slabs for each object type. Thus, if one knows
which pages are assigned to each memory pool, one can reliably infer the type of any dynamically allocated
object. We hasten to note that this assumption can be easily violated by a rootkit or malicious OS, either by
the rootkit creating a custom allocator, or allocating objects of greater or equal size from a different pool
and repurposing the memory. Thus, additional effort is required to detect unexpected memory allocation
strategies.

SigGraph [140] contributed the idea that the graph structure of the pointers in a set of data structures can
be used as a signature. As a simple example, the relationships of pointers among task_struct structures
in Linux is fundamentally different than among inode structures. SigGraph represents graph signatures in a
grammar where each symbol represents a pointer to a sub-structure. This signature grammar can be extended
to encode arbitrary pointer graphs or encode sub-structures of interest. SigGraph is designed to work with a

linear scan of memory, rather than relying on reachability from kernel symbols.

2.2.1.3 Dynamic Learning

Rather than identifying code invariants from kernel source code, VMI based on dynamic analysis learns
data structure invariants based on observing an OS instance [45, 88, 140].

By analogy to supervised machine learning, the VMI tool trains on a trusted OS instance, and then
classifies the data structures of potentially untrusted OS instances. During the training phase, these systems
often control the stimuli, by running programs that will manipulate a data structure of interest, or incorporating

debugging symbols to more quickly discern which memory regions might include a structure of interest.

17

Tools such as Daikon [92] are used to generate constraints based on observed values in fields of a given data
structure.

Several dynamic systems have created robust signatures, which are immune to malicious changes to
live data structure instances [88]. More formally, a robust signature identifies any memory location that
could be used as a given structure type without false negatives. A robust signature can have false positives.
Robust signatures are constructed through fuzz testing during the training phase to identify invariants which,
if violated, will crash the kernel [88, 140]. For instance, RSFKDS begins its training phase with a guest in a
clean state, and then attempts to change different data structure fields. If the guest OS crashes, this value is
used to generate a new constraint on the potential values of that field. The primary utility of robust signatures
is detecting when a rootkit attempts to hide persistent data by modifying data structures in ways that the
kernel doesn’t expect. The key insight is that these attempts are only fruitful inasmuch as they do not crash

the OS kernel. Thus, robust signatures leverage invariants an attacker cannot safely violate.

2.2.2 Code Implanting

A simpler approach to bridging the semantic gap is to simply inject code into the guest OS that reports
semantic information back to the hypervisor. For example, Process implanting [104] implants and executes
a monitoring process within a randomly-selected process already present in the VM. Any malicious agent
inside the VM is unable to predict which guest process has been replaced and thus the injected code can run
without detection. Rather than implant a complete process, SYRINGE [62] implants functions into the kernel,
which can be called from the VM.

A challenge to implanting code is ensuring that the implanted code is not tampered with, actually
executes, and that the guest OS components it uses report correct information. SIM [183] uses page table
protections to isolate an implanted process’s address space from the guest OS kernel. Section 2.2.4 discusses
techniques to ensure the integrity of the OS kernel. Most of these implanting techniques ultimately rely on

the guest kernel to faithfully represent information such as its own process tree to the injected code.

2.2.3 Process Outgrafting

In order to overcome the challenges with running a trusted process inside of an untrusted VM, process

outgrafting [188] relocates a monitoring process from the monitored VM to a second, trusted VM. The trusted

18

VM has some visibility into the kernel memory of the monitored VM, allowing a VMI tools to access any
kernel data structure without any direct interference from an adversary in the monitored VM.

Virtuoso [87] automatically generates introspection programs based on dynamic learning from a trusted
VM, and then runs these tools in an outgrafted VM. Similarly, OSck [113] generates introspection tools from
Linux source which execute in a monitoring VM with a read-only view of a monitored guest.

VMST [96] generalizes this approach by eliminating the need for dynamic analysis or customized tools;
rather, a trusted, clean copy of the OS runs with a roughly copy-on-write view of the monitored guest.
Monitoring applications, such as ps, simply execute in a complete OS environment on the monitoring VM;
each system call executed actually reads state from the monitored VM. VMST has been extended with an
out-of-VM shell with both execute and write capabilities [97], as well as accelerated by using memoization,
trading some accuracy for performance [174]. This approach bridges the semantic gap by repurposing
existing OS code.

The out-grafting approach has several open problems. First, if the monitoring VM treats kernel data as
copy-on-write, the monitoring VM must be able to reconcile divergences in the kernel views. For example,
each time the kernel accesses a file, the kernel may update the inode’s at ime. These atime updates will
copy the kernel data, which must be discarded for future introspection or view of the file system will diverge.
VMST does not address this problem, although it might be addressed by an expert identifying portions of the
kernel which may safely diverge, or resetting the VM after an unsafe divergence. Similar to the limitations
of hand-crafted introspection tools, each new OS variant may require hand-updates to divergent state; thus,
automating divergence analysis is a useful topic for future work. Finally, this approach cannot handle policies

that require visibility into data on disk—either files or swapped memory pages.

2.2.4 Kernel Executable Integrity

The introspection approaches described above assume that the executable kernel code does not change
between creation of the introspection tools and monitoring the guest OS. Table 2.2 lists additional assumptions
made by these techniques.

In order to uphold the assumption that the kernel has not changed, most hypervisor-based security
systems must also prevent or limit the ability of the guest OS to modify its own executable code, e.g., by
overwriting executable pages or loading modules. This subsection summarizes the major approaches to

ensuring kernel binary integrity.

19

Monitor

Technique Assumptions Placement Systems

* Expert knowledge of OS [2.4.5.6.8
Hand-crafted data internals for known kernel Sibling VM, 12,15, 16,
structure signatures version hypervisor, or 17,18, 21,
(Expert knowledge) * Guest OS is not actively hardware 22,176,

malicious 177]
* Benign copy of OS for training
* OS will behave similarly
. during learning phase and

Automated learning monitoring Sibling VM, [45, 63, 82,
and reconstruction hypervisor, or 38 140
(SO}HCC ar.la.lysis or * Security-sensitive invariants hardware ’ 16’9] ’
offline training) can be automatically learned

 Attacks will persist long

enough for periodic scans

Code implanting * Malicious guest schedules Guest with
(VM.M Protects o monitoring tool and reports hypervisor 62, 104,
monitoring agent inside information accurately protection 183]
guest OS)
Process outgrafting « Live, benign copy of OS
(Reuse. m.onltorlng t.ools behaves identically to Sibling VM [87, 96, 97,
from sibling VM with monitored OS 188]
shared kernel memory)

* Initial benign version of
Kernel 1
. erne' executable monitored OS [142, 160,
integrity (Protect Hypervisor 171, 181
executable pages and * Administrator can allow-list 202’] ’

other code hooks) safe modules

Table 2.2: VMI techniques, monitor placement (as illustrated in Figure 2.1, and their underlying trust
assumptions.

20

2.2.4.1 The (Write © Execute) Principle

The W @ X principle prevents attacks that write the text segment by enforcing a property where all
the pages are either writable or executable, but not both at the same time. For instance, SecVisor [181] and
NICKLE [171] are hypervisors that enforce the W ¢ X principle by setting page table permissions on kernel
memory. SecVisor will only set executable permission on kernel code and loadable modules that are approved
by an administrator, and prevent modification of this code.

Although non-executable (NX) page table bits are ubiquitous on modern x86 systems, lack of NX support
complicated the designs of early systems that enforced the W & X principle. Similarly, compilers can mix
code and data within the same page, although security-conscious developers can also restrict this with linker

directives.

2.24.2 Allow-listing Code

As discussed above, SecVisor and NICKLE policies require a notion of approved code, which is
represented by an allow-list of code hashes created by the administrator.

Patagonix [142] extends this property to application binaries, without the need to understand the structure
of processes and memory maps. Patagonix leverages no-execute page table support to receive a trap the first
time data from a page of memory is loaded into the CPU instruction cache. These pages are then compared
against a database of allow-listed application binary pages.

Although allow-listing code can prevent loading unknown modules which are the most likely to be
malicious, the approach is limited by the administrator’s ability to judge whether a driver or OS kernel is

malicious a priori.

2.2.4.3 Object Code Hooks

A practical limitation of the W @& X principle is that many kernels place function pointers in data objects
that must be writable. These function pointers are used to implement a crude form of object orientation. For
instance, the Linux VFS allows a low-level file system to extend generic routines for operations such as
reading a file or following a symbolic link.

Lares [160] implemented a simple page-protection mechanism on kernel object hooks, but incurred

substantial performance penalties because these executable pointers are in the same page as fields which the

21

guest kernel must be able to write, such as the file size and modification time. HookSafe [202] addresses this
problem by modifying OS kernel code to relocate all hooks to a read-only, shadow memory space. All code
that calls a hook must also check that the requested hook is in the shadow memory space, and a policy must
approve before a code is added to the hook section. The hook redirection and checking code is in the kernel’s
binary text, and is read-only. HookSafe identifies locations where hooks are called through dynamic learning
(§2.2.1); this could likely be extended with static analysis for more complete coverage.

Ultimately, these techniques are approximating the larger property of ensuring control flow integrity
(CFI) of the kernel [35]. Ensuring CFI is a broad problem with a range of techniques. For instance, Program
Shepherding [127] protects the integrity of implanted functions [62] (§2.2.2), using a machine code interpreter
to monitor all control transfers and guarantee that each transfer satisfies a given security policy. Discovering

efficient CFI mechanisms is a relevant, but complimentary problem to VML

2.3 Prevention vs. Detection

Some introspection tools prevent certain security policy violations, such as execution of unauthorized
code, whereas others only detect a compromise after the fact. Clearly, prevention is a more desirable goal, but
many designs accept detection to lower performance overheads. This section discusses how certain design
choices fundamentally dictate whether a system can provide detection or prevention.

Prevention requires a mechanism to identify and interpose on a low-level operation within a VM that
violates a system security policy. Certain goals map naturally onto hardware mechanisms, such as page
protections on kernel code or hooks [160, 171, 181, 202]. Other goals, such as upholding data structure
invariants the kernel code relies upon, are open questions.

As a result, violations of more challenging properties are currently only detected after the fact by VMI
tools [45, 86, 87, 96, 113, 140, 142, 162, 163, 169, 174, 183]. In general, there is a strong connection between
approaches that periodically search memory and detection. Periodic searching is a good fit for malware that
persistently modifies data structures, but can miss transient modifications. To convert these approaches to
prevention techniques would require interposing on every store, which is prohibitively expensive. Moreover,
because some invariants span multiple writes, even this strawman approach would likely yield false negatives

without even deeper analysis of the code behavior.

22

Current detection systems usually just power off a compromised VM and alert an administrator. Several
research projects identify how systems can recover from an intrusion or other security violation [65, 89,
125, 126]. In general, general-purpose solutions either incur relatively high overheads to track update
dependencies (35% for the most recent general-purpose, single-machine recovery system [126]), or leverage
application-specific properties. Improving performance and generality of recovery systems is an important

direction for future work.

2.3.1 Asynchronous vs. Synchronous Mechanisms

Synchronous mechanisms mediate guest operations inline to prevent security policy violations, or receive
very low latency notification of changes. All prevention systems we surveyed [160, 171, 181, 183, 202] use
synchronous mechanisms, such as page protection or code implanting. Several low-latency detection systems
use customized hardware, discussed further in §2.3.2. A few systems also use synchronous mechanisms
on commodity hardware for detection [132, 142, 169], but could likely lower their overheads with an
asynchronous mechanism.

Asynchronous mechanisms execute concurrently with a running guest and inspect its memory. These
systems generally introspect into a snapshot of memory [45, 86, 140, 162] or a read-only or copy-on-write
view of guest memory [87, 96, 113, 118, 163, 174]. All surveyed asynchronous systems detect rootkits after
infection through passive monitoring.

On one hand, the synchronous systems gain a vantage point over their counterparts against transient
attacks but increase the overhead for the guest OS being protected. On the other hand, asynchronous systems
introduce lower monitoring overhead but miss cleverly built transient attacks; asynchronous systems are also
limited due to the inherent race condition between the attacker and the detection cycle.

Synchronous and asynchronous mechanisms make fundamental trade-offs across the performance,
frequency of policy-relevant events, risk, and assumptions about the behavior of the system. Synchronous
mechanisms tend to be more expensive, and are generally only effective when the monitored events are
infrequent, such as a change in the access pattern to a given virtual page. The cost of an asynchronous search
of memory can also be quite high (ranging from milliseconds [113] to minutes [63]), but the frequency can be
adjusted to an acceptable rate—trading risk for performance. Both synchronous and asynchronous systems
make potentially fragile assumptions about the system to improve performance, such as knowing all hook

locations or assuming all objects of a given type are allocated from the same slab. These risks could be

23

reduced in future work by identifying low-frequency events that indicate a policy violation, are monitorable
without making fragile assumptions about the system, and introduce little-to-no overheads in the common
case.

A final issue with executing introspection concurrently with the execution of an OS is false positives
arising because of transient states. In general, an OS may violate its own invariants temporarily while
executing inside of a critical section. A correct OS will, of course, restore the invariants before exiting the
critical section. If an introspection agent searches memory during a kernel critical section, it may observe
benign violations of these invariants, which will resolve quickly. Approaches to this problem include simply
looking for repeated violations of an invariant (leaving the system vulnerable to race conditions with an
attacker), or only taking memory snapshots when the OS cannot be in any critical sections (e.g., by preempting

each CPU while out of the guest kernel).

VMI systems face fundamental trade-offs between performance and risk, often making fragile

assumptions about the guest OS.

2.3.2 Hardware-assisted Introspection

Several research prototypes have employed customized hardware for introspection [132, 144, 157], or
applied existing hardware in novel ways [42, 162, 200]. The primary division within the current design space
of hardware-assisted introspection is whether the introspection tool uses memory snapshots or snoops on a

bus. Snooping can monitor memory regions at finer granularity than page protections, reducing overheads.

2.3.2.1 Snapshotting

One strategy for hardware-assisted introspection is using a PCI device to take RAM snapshots, which are
sent to a second machine for introspection (monitored and monitor, respectively). For instance, Copilot [162]
adds an Intel StrongARM EBSA-285 Evaluation Board to the monitored machine’s PCI bus. The PCI device
on the monitored machine uses DMA requests to retrieve a snapshot of host RAM, which is sent to the
monitor machine upon request over an independent communication link. The monitor periodically requests
snapshots and primarily checks that the hash of the kernel binary text and certain code pointers, such as the

system call table, have not changed from known-good values.

24

Unfortunately, a memory snapshot alone isn’t sufficient to robustly reconstruct and interpret a snapshot.
Of particular importance is the value of the cr 3 register, which gives the physical address of the root of the
page tables. Without this CPU register value, one cannot reliably reconstruct the virtual memory mapping.
Similarly, a system can block access to regions of physical memory using an IOMMU [39, 58].

HyperCheck [200] augments physical memory snapshots with the contents of the cr 3 register, using the
CPU System Management Mode (SMM) [9]. SMM is an x86 CPU mode designed primarily for firmware,
power management, and other system functions. SMM has the advantage of protecting the introspection code
from the running system as well as giving access to the CPU registers, but must also preempt the system
while running (i.e., this is a synchronous mechanism). The processor enters SMM when the SMM interrupt
pin (SMI) is raised, generally by the Advanced Programmable Interrupt Controller (APIC). The hypervisor
is required to create SMI interrupts to switch the CPU to SMM mode. Upon entering SMM, the processor
will launch a program stored in system management RAM (SMRAM). SMRAM is either a locked region of
system DRAM, or a separate chip, and ranges in size from 32 KB to 4 GB [9] Outside of SMM, SMRAM
may not be read or written. Within SMM, the integrity checking agent has unfettered access to all RAM and
devices, and is not limited by a IOMMU or other attacks discussed previously. Unfortunately, SMM mode
also has the limitation that Windows and Linux will hang if any software spends too much time in SMM,
bounding the time introspection code can take.

HyperSentry [42] further refines this model by triggering an SMI handler from an Intelligent Platform
Management Interface (IPMI) device. IPMI devices generally execute system management code, such as
powering the system on or off over the network, on a device hidden from the system software.

A limitation of any SMM-based solution, including the ones above, is that a malicious hypervisor could
block SMI interrupts on every CPU in the APIC, effectively starving the introspection tool. For VMI, trusting
the hypervisor is not a problem, but the hardware isolation from the hypervisor is incomplete.

Each of these systems focus on measuring the integrity of system software—e.g., checking that the
executable pages have a known-good hash value. At least in SMM mode, more computationally expensive
introspection may be impractical. Because all of these operations operate on periodic snapshots, which may
visibly perturb memory access timings, a concern is that an adversary could predict the snapshotting interval
and race with the introspection agent. In order to ensure that transient attacks cannot race with the snapshot

creation, more recent systems have turned to snooping, which can continuously monitor memory changes.

25

2.3.2.2 Snooping

A number of recent projects have developed prototype security hardware that snoops on the memory
bus [132, 144, 157]. These systems have the useful function of efficiently monitoring writes to sensitive
code regions; unlike page protections, snooping systems can monitor writes at the finer granularity of cache
lines, reducing the number of needless checks triggered by memory accesses adjacent to the structure being
monitored. These systems can also detect updates to memory from a malicious device or driver by DMA,
which page-level protections cannot detect.

Although most prototypes have focused on detecting modifications to the kernel binary itself, KI-Mon
also watches for updates to object hooks [132], and there is likely no fundamental reason other solutions
could not implement this.

Because these snooping devices aim to be very lightweight, they cannot then check data structure
invariants or code integrity, but instead signal a companion snapshotting device (as discussed above) to do
these checks. However, a specific memory event triggering asynchronous checks is a clear improvement
over periodic snapshots, in both efficiency and risk of races with the attacker. A small complication with
snooping-triggered introspection is that invariants often span multiple cache lines, such as next .prev ==
next in a doubly-linked list. If an invariant check is triggered on the first write in a critical section, the
system will see many false positives. KI-Mon addresses this by waiting until the system quiesces. However,
quiescence is an OS-kernel-specific convention, and can be violated by an adversarial kernel.

We note that these systems do not use commodity hardware, but are implemented in simulators or FPGAs.
Section 2.5.2 argues that this is a promising area of research that deserves more attention, but more work
has to be done to demonstrate the utility of the approach before it will be widely available. Similarly, these
systems have initially focused on attack detection, but it would be interesting to extend these systems to

recovering from a detected attack.

Snooping is useful for finer-grained memory monitoring.

2.3.3 Memory Protection: A Necessary Property for Prevention

We end this section by observing that all prevention systems employ some form of memory protection to

synchronously interpose on sensitive data writes. For example, HookSafe [202] and Lares [160] use memory

26

Attack

Defense

Trust Assumption

Write text Segment

KOH (code and
hooks)

DKOM (heap)

DKSM

Hypervisor-enforced
W e X

Memory protect hooks
from text section
modification, or
allow-list loadable
modules.

Identify data structure
invariants, detect
violations by scanning
memory snapshots.

Prevent Bootstrapping
through KOH or ROP.

Initial text segment benign.

Pristine initial OS copy and administrator’s ability
to discern trustworthy kernel modules.

* Guest kernel exhibits only desirable behavior
during training, or source is trustworthy.

 All security-relevant data structure invariants
can be identified a priori.

* All malware will leave persistent modifications
that violate an invariant.

 All invariants can be checked in a single search.

¢ Attackers cannot win races with the monitor.

OS is benign; behaves identically during training
and classification.

Table 2.3: VMI attacks, defenses, and underlying trust assumptions.

protection to guard against unexpected updates to function pointers. In contrast, it isn’t clear how to convert
an asynchronous memory search from a detection into a prevention tool. The most likely candidate is with
selective, fine-grained hardware memory bus snooping, described above. Thus, if attack prevention is a

more desirable goal than detection after-the-fact, the community should focus more effort on discovering

lightweight, synchronous monitoring mechanisms.

All current prevention systems rely on synchronous memory protection.

2.4 Attacks, Defense, and Trust

This section explains the three major classes of attacks against VMI, known defenses against those

attacks, and explains how these attacks relate to an underlying trust placed in the guest OS. These issues are

summarized in Table 2.3.

27

24.1 Kernel Object Hooking

A Kernel Object Hooking (KOH) attack [11] attempts to modify function pointers (hooks) located in
the kernel text or data sections. An attacker overwrites a function pointer with the address of a function
provided by the attacker, which will then allow the attacker to interpose on a desired set of kernel operations.
In some sense, Linux Security Modules provide similar hooks for security enhancements [206]; the primary
difference is that KOH repurposes other hooks used for purposes such as implementing an extensible virtual
file system (VFS) model. The defenses against KOH attacks generally depend on whether the hook is located

in the text or data segment.

2.4.1.1 Text Section Hooks

The primary text section hooks are the system call table and interrupt descriptor table. For instance, an
attacker could interpose on all file open calls simply by replacing the pointer to the sys_open () function
in the system call table.

In older OSes, these hooks were in the data segment despite not being dynamically changed by most
OSes. In order to prevent malware from overwriting these hooks, most kernels now place these hooks in
the read-only text segment. As discussed in §2.2.4.1, a sufficient defense is hypervisor-imposed, page-level

Write & Execute permissions.

2.4.1.2 Data Section Hooks

Kernel data section hooks are more difficult to protect than text section hooks. Data section hooks place
function pointers in objects, facilitating extensibility. For instance, Linux implements a range of different
socket types behind a generic API; each instantiation overrides certain hooks in the file descriptor for a given
socket handle.

The fundamental challenge is that, although these hooks generally do not change during the lifetime of
the object, they are often placed in the same page or even cache line with fields that do change. Because
most kernels mix hooks which should be immutable with changing data, most hardware-based protection
mechanisms are thwarted.

In practice, these hooks are very useful for rootkits to hide themselves from anti-malware tools inside the

VM. For instance, the Adore-ng [76] rootkit overrides the 1ookup () and readdir () functions on the

28

/proc file system directory. Process listing utilities work by reading the sub-directories for each running
process under /proc; a rootkit that overrides these functions can filter itself from the readdir () system
call issued by ps.

In order to defend against such attacks, the function pointers need to be protected from modification once
initialized. Because of the high-cost of moderating all writes to these data structures, most defenses either
move the hooks to different locations which can be write-protected [202], or augment hooks in the kernel
with checks against an allow-list of trusted functions [163].

Trust. Protecting the kernel code from unexpected modifications at runtime is clearly sensible. Underly-
ing these defenses is the assumption that the kernel is initially trusted, but may be compromised later. The
more subtle point, however, is that all of the VMI tools discussed in §2.2 assume that the kernel text will not
change. Thus, preventing text section modification is effectively a prerequisite for current VMI techniques.

Defenses against KOH on data hooks generally posit trust in the ability of an administrator to correctly
identify trustworthy and untrustworthy kernel modules. Dynamic kernel module loading requires changing the
kernel control flow by writing to the code hooks. As explained in Section 2.2.4, KOH defenses [142, 171, 181]
assume that kernel modules are benign in order to provide some meaningful protections without solving the

significantly harder problem of kernel control flow integrity in the presence of untrusted modules.

KOH defenses generally assume benign kernel modules.

Finally, we note that some published solutions to the KOH data section problem are based on best-effort
dynamic analysis, which can miss hooks that are not exercised. There is no fundamental reason this analysis
should be dynamic, other than the unavailability of source code. In fact, some systems do use static analysis

on the source code to identify code hooks [113], which can identify all possible data section hooks.

2.4.2 Dynamic Kernel Object Manipulation

Manipulating the kernel text and code hooks are the easiest attack vector against VMI; once KOH
defenses were developed, attackers turned their attention to attacks on the kernel heap. Dynamic Kernel
Object Manipulation (DKOM) [59] attacks modify the kernel heap through a loaded module or an application
accessing /dev/mem or /proc/kcore on Linux. DKOM attacks only modify data values, and thus are

distinct from modifying the control flow through function hooks (KOH).

29

A DKOM attack works by violating latent assumptions in unmodified kernel code. A classic example
of a DKOM attack is hiding a malicious process from a process listing tools, such as ps. The Linux kernel
tracks processes in two separate data structures: a linked list for process listing and a tree for scheduling. A
rootkit can hide malicious processes by taking the process out of the linked list, but leaving the malicious
process in the scheduler tree. The interesting property is that loading a module can be sufficient to alter the
behavior of unrelated, unmodified kernel code, because any module can write to any kernel data structure.

DKOM attacks are hard to prevent because they are a metaphorical needle in a haystack of expected
kernel heap writes. As a result, most practical defenses attempt to identify data structure invariants — either
by hand, static, or dynamic analysis — and then detect data structure invariant violations asynchronously.
Because an attacker can create objects from any memory, not just the kernel heap allocator, data structure
detection is also a salient issue for detecting DKOM attacks (§2.2.1). Thus, a robust, asynchronous DKOM
detector must search all guest memory, increasing overheads, and tolerate attempts to obfuscate a structure.

Trust. DKOM defenses introduce additional trust in the guest beyond a KOH defense, and make several
assumptions which an attacker can could be violated by an attacker. Most DKOM defenses work by
identifying security-related data structure invariants. Because it is difficult for the defender to ever have
confidence that all security-relevant invariants have been identified, this approach will generally be best-effort
and reactive in nature. Deeper source analysis tools could yield more comprehensive invariant results, but
more research is needed on this topic. Many papers on the topic focus on a few troublesome data structures,
such as the task_struct, yet Linux has several hundred data structure types. It is unclear whether any
automated analysis will scale to the number of hiding places afforded to rootkits by monolithic kernels, or
whether detection tools will always be one step behind attackers. That said, even a best-effort defense has
value in making rootkits harder to write.

Another problematic assumption is that all security-sensitive fields of kernel data structures have invari-
ants that can be easily checked in a memory snapshot. For instance, one might assume that any outgoing
packets come from a socket that appears in the output of a tool such as netstat (or a VMI-based equivalent).
Yet a malicious Linux kernel module could copy packets from the heap of an application to the outgoing IP
queue—a point in the networking stack which doesn’t maintain any information about the originating socket
or process. Thus, memory snapshots alone couldn’t easily identify an inconsistency between outgoing packets
and open sockets, especially if the packet could have been sent by a different process, such as a process with

an open raw socket. Although the problem in this example could be mitigated with continuous monitoring,

30

such monitoring would substantially increase runtime overheads; in contrast, most DKOM defenses rely on
infrequent scanning to minimize overheads. In this example, the data structure invariant spans a sequence of

operations, which can’t be captured with one snapshot.

A single snapshot cannot capture data structure invariants that span multiple operations.

Third, DKOM defenses cement trust that the guest kernel is benign. These defenses train data structure
classifiers on a clean kernel instance or derive the classifiers from source code, which is assumed to only
demonstrate desirable behavior during the training phase. This approach is similar to using symbolic execution
to verify that a cryptographic client’s message sequence is consistent with its known implementation [74].
Although we hasten to note that this assumption may be generally reasonable, it is not beyond question that
an OS vendor might include a backdoor that such a classifier would learn to treat as expected behavior.

In order to ensure that the guest kernel is benign, DKOM defenses generally posit a KOH defense.
Learning code invariants is of little use when an attacker can effectively replace the code. The interesting
contrast between KOH and DKOM defenses is that DKOM defenses can detect invalid data modifications even
in the presence of an untrustworthy module, whereas common KOH defenses rely on module allow-listing.
Thus, if a DKOM defense intends to tolerate untrusted modules, it must build on a KOH defense that is robust

to untrusted modules as well, which may require substantially stronger control flow integrity protection.

KOH defenses are a building block for DKOM defenses, but often make different trust assumptions

about modules.

Finally, these detection systems explicitly assume malware will leave persistent, detectable modifications
and implicitly assume malware cannot win races with the detector. DKOM detectors rely on invariant
violations being present in the view of memory they analyze—either a snapshot or a concurrent search using
a read-only view of memory. Because DKOM detectors run in increments of seconds, short-lived malware
can easily evade detection. Even for persistent rootkits, a reasonably strong adversary may also have access
to similar data structure classifiers and aggressively search for invariants missed by the classifier.

If a rootkit can reliably predict when a DKOM detector will view kernel memory, the rootkit has the
opportunity to temporarily repair data structure invariants—racing with the detector. Reading a substantial
portion of guest memory can be is highly disruptive to cache timings—stalling subsequent writes on coherence
misses. Similarly, solutions based on preempting the guest OS will leave telltale “lost ticks” on the system

clock. Even proposed hardware solutions can be probed by making benign writes to potentially sensitive

31

addresses and then observing disruptions to unrelated I/O timings. Given the long history of TOCTTOU
and other concurrency-based attacks [60, 209], combined with a likely timing channel induced by the search
mechanism and recent successes exploiting VM-level side channels [211], the risk of an attacker successfully
racing with a detector is concerning. More recent works show vulnerability of SGX to several types of side
channel attacks, such as traditional cache timing and page table side channel attacks that reveal page-level
memory accesses [55, 103, 179, 198, 201, 208], as well as speculative attacks [68, 129] that use the side

channels as a way of retrieving information.

DKOM defenses are potentially vulnerable to race conditions within their threat model. ‘

2.4.3 Direct Kernel Structure Manipulation

Direct Kernel Structure Manipulation (DKSM) attacks [44] change the interpretation of a data structure
between training a VMI tool and its application to classify memory regions into data structures. Simple
examples of a DKSM attack include swapping two fields within a data structure or padding the structure with
garbage fields so that relative offsets differ from the expectation of the VMI tool.

Because most VMI tools assume a benign kernel, a successful DKSM attack hinges on changing kernel
control flow. DKSM attack can be broken down to 2 attack vectors: 1) change in-memory kernel code
and 2) compile malicious code into the kernel. In order to change the in-memory kernel code, DKSM
needs to manipulate control flow. If KOH attacks cannot be used to bootstrap the DKSM attack, the DKSM
attacker needs to employ return-oriented programming [143]. As discussed above, a number of successful
countermeasures for KOH attacks have been developed, as have effective countermeasures to return-oriented
programming, including G-Free [159], “Return-Less” kernels [137], and STIR [203].

Trust. DKSM is somewhat of an oddity in the literature because it is effectively precluded by a
generous threat model. However, a realistic threat model might allow an adversarial OS to demonstrate
different behavior during the data structure training and classification phases—analogous to “split-personality”

malware that behaves differently when it detects that it is under analysis.

DKSM is a reasonable concern obviated by generous threat models.

32

2.4.4 The Semantic Gap is Really Two Problems

Under a stronger threat model, the DKSM attack effectively leverages the semantic gap to thwart security
measures. Under DKSM, a malicious OS actively misleads VMI tools in order to violate a security policy.

In the literature on VM introspection, the semantic gap problem evolved to refer to two distinct issues: (1)
the engineering challenges of generating introspection tools, possibly without source code [87, 96, 174], and
(2) the ability of a malicious or compromised OS to exploit fragile assumptions underlying many introspection

designs in order to evade a security measure [113, 140, 169, 181, 202]. These assumptions include:

* Trusting that the guest OS is benign during the training phase, and will not behave differently under

monitoring.
* All security-sensitive invariants and hooks can be automatically learned.
» Attacks will persist long enough to be detected by periodic searches.

* Administrators can allow-list trustworthy kernel modules.

Most papers on introspection focus on the first problem, which has arguably been solved [87, 96, 174],
yet interesting attacks leverage the second issue, which is still an open problem, as is reliable introspection
under stronger threat models.

Unfortunately, before this work was published, the literature do not clearly distinguish these problem
variations, and only a close reading indicate which one a given paper is addressing. This confusion is only
exacerbated when one attempts to place these papers next to each other in the context of attacks and defenses.
That said, we do believe that the overall path of starting with a weak attacker and iteratively strengthening the
threat model is a pragmatic approach to research in this area; the issue is ambiguous nomenclature.

We therefore suggest a clearer nomenclature for the two sub-problems: the weak and strong semantic
gap problems. The weak semantic gap is the largely solved engineering challenge of generating VMI tools,
and the strong semantic gap refers to the challenge of defending against an adversarial, untrusted guest OS.
A solution to the open strong semantic gap problem would not make any assumptions about the guest OS
being benign during a training phase or accept inferences from guest source code as reliable without runtime
validation. The strong semantic gap problem is, to our knowledge, unsolved, and the ability to review future
work in this space relies on clearer delineation of the level of trust placed in the guest OS. A solution to the

strong semantic gap problem would also prevent or detect DKSM attacks.

33

App Guest OS Hypervisor Challenge Solutions

vV vV Weak Semantic Gap Layered Security, VMI. Incrementally reduce
trust in the guest OS.

vV Strong Semantic Gap Difficult to solve. Need techniques that can
learn from untrusted sources and detect
inconsistencies during VMI.

vV vV Untrusted guest OS Paraverification. Application trust bridges the
semantic gap.
vV v Untrusted cloud Support from trusted hardware like SGX
hypervisor [10, 152].
vV Untrusted guest OS Fine grained support from trusted hardware
and hypervisor needed.

Table 2.4: Trust Models. (y/ indicates the layers that are trusted.)

The weak semantic gap is a solved engineering problem. The strong semantic gap is an open security

problem.

Thenceforward, new VMI literature [83, 133, 166, 210] adopted the nomenclature of weak and strong

semantic gap, and new research [84, 115] is making progress to solve the strong semantic gap.

2.5 Toward an Untrusted OS

Any solution to the strong semantic gap problem may need to remove assumptions that the guest OS can
be trusted to help train an introspection tool. As illustrated in Section 2.2, most existing introspection tools
rely on the assumption that the guest OS begins in a benign state and its source code or initial state can be
trusted. Over time, several designs have reduced the degree to which they rely on the guest OS. It is not clear,
however, that continued iterative refinement will converge on techniques that eliminate trust in the guest.

Table 2.4 illustrates the space of reasonable trust models in virtualization-based security. Although a lot
of effort in VMI has gone into the first row (the weak semantic gap), the community should focus on new
directions likely to bridge the strong semantic gap (second row), as well as adopt useful techniques from
research into the other rows.

This section identifies promising approaches to the strong semantic gap, based on insights from the

literature.

34

2.5.1 Paraverification

Many VMI systems have the implicit design goal of working with an unmodified OS, or limiting
modifications to the module loader and hooks. The goal of introspecting on an unmodified guest OS often
induces trust in the guest OS to simplify this difficult problem. Specifically, most VMI tools assume the guest
OS is not actively malicious and adheres to the behavior exhibited during the learning phase.

This subsection observes that, rather than relax the threat model for VMI, relaxing the requirement of an
unmodified OS may be a more useful stepping stone toward an untrusted OS. By analogy, although initial
hypervisors went through heroic efforts to virtualize unmodified legacy OSes on an ISA very unsuitable
for virtualization [57], most modern OSes now implement paravirtualization support [46]. Essentially,
paravirtualization makes small modifications to the guest OS that eliminate the most onerous features to
emulate. For instance, Xen allowed the guest OS to observe that there were inaccessible physical pages,
substantially reducing the overheads of virtualizing physical memory. The reason paravirtualization was a
success is that it was easy to adopt, introduced little or no overheads when the system executes on bare metal,
and dramatically improved performance in a VM.

Thus, we expect that light modifications to a guest OS to aid in introspection could be a promising
direction. Specifically, we observe that the VirtualGhost [81] and InkTag [114] system introduced the idea
of paraverification, in which the guest OS provides the hypervisor with evidence that it is servicing an
application’s request correctly. The evidence offered by the guest OS is easily checked by the hypervisor
without trusting the guest OS. For instance, a trusted application may request a memory mapping of a file, and,
in addition to issuing an mmap system call, also reports the request to the hypervisor. When the OS modifies
the application’s page tables to implement the mmap system call, the OS also notifies the hypervisor that this
modification is in response to a particular application request. The hypervisor can then do an end-to-end
check that (1) the page table changes are applied to an appropriate region of the application’s virtual memory,
(2) that the CPU register values used to return to the application are sensible, and (3) that the contents of these
pages match the expected values read from disk, using additional metadata storing hashes of file contents.

We hasten to note that the goals of InkTag and Virtual Ghost are different from VMI—ensuring a trusted
application can safely use functionality from a malicious OS. This problem has also been explored in a
number of other papers [72, 139]. Moreover, InkTag leverages the trusted application to bridge the semantic

gap—a strategy that would not be suitable for the types of problems VMI aims to solve. Nonetheless, forcing

35

an untrusted OS to aid in its own introspection could be fruitful if the techniques were simple enough to

adopt.

Rather than relaxing the threat model for VMI, relax strict limits on guest modifications.

2.5.2 Hardware Support for Security

As we observe in §2.3.3, memory protection or other synchronous notification mechanisms appear to
be a requirement to move from detection to prevention. Unfortunately, the coarseness of mechanisms in
commodity hardware introduce substantial overheads. §2.3.2 summarizes recent work on memory monitoring
at cache line granularity—a valuable approach meriting further research.

An interesting direction taken by Intel is developing a mutual distrust model for hardware memory
protection, called Software Guard Extensions (SGX) [40, 112, 117, 152]. SGX allows an OS or hypervisor
to manage virtual-to-physical OS mappings for an application, but the lower-level software cannot access
memory contents. SGX provides memory isolation of a trusted application from an untrustworthy software
stack. Similar memory isolation has been provided by several software-only systems [72, 114], but at a
substantial performance cost attributable to frequent traps to a trusted hypervisor. Finally, we note that in
order for an application to safely use system calls on an untrusted OS, a number of other problems must be
addressed [66, 114].

In the context of introspection or the strong semantic gap, hardware like SGX can also be useful for
creating a finer-grained protection domain for code implanted in the guest OS 2.2.2. However, we also note
that SGX introduces the problem of malware getting in the trusted execution environment and hiding from the
OS [178, 179, 180]. More fine-grained memory protection and monitoring tools are needed from hardware

manufacturers to help solve the strong semantic gap.

Fine-grained memory protection and monitoring hardware can reduce overheads and trust.

2.5.3 Reconstruction from Untrusted Sources

Current tools that automatically learn data structure signatures assume the OS will behave similarly

during training and classification (§2.4.2). Among the assumptions made in current VMI tools, this is one

36

that potentially has the best chance of being incrementally removed. For example, one approach might train
the VMI classifiers on the live OS, and continue incrementally training as the guest OS runs.

Another approach would be to detect inconsistencies between the training and classification stages of
VMILI. By analogy, distributed fault tolerance systems are often built around the abstraction of a proof of
misbehavior, where a faulty participant in the protocol generates signed messages to different participants
that contradict one another [38, 138]. Similarly, one approach to assuring learning-based systems is to
look for proof of misbehavior in the guest OS. For instance, Lycosid detected inconsistencies between the
cr3 register and the purported process descriptor’s cr3 value [121]. A proof of misbehavior may also
include inconsistencies in code paths or data access patterns between the training and classification phases of

introspection.

VMI should detect inconsistent behavior over the life of an OS, not just between training and

classification.

2.6 Under-explored Issues

Based on our survey of the literature on VMI, we identify a few issues that deserve more consideration in

future work.

2.6.1 Scalability

Many VMI designs are fairly expensive, especially designs that run a sibling VM on a dedicated core for
analysis. For example, one state-of-the-art system reports overheads ranging from 9.3—500x [96]. There is
a reasonable argument why high VMI overheads might be acceptable: the average desktop has idle cores
anyway, which could be fruitfully employed to improve system security. However, this argument does not
hold in a cloud environment, where all cores can be utilized to service additional clients. In a cloud, customers
will not be pleased with doubling their bill, nor would a provider be pleased with halving revenue.

It is reasonable to expect that VMI would be particularly useful on a cloud or other multi-VM system.
Thus, future work on VMI must focus not only on novel techniques or threat models, but also on managing

overheads and scalability with increasing numbers of VMs.

VMI research must measure multi-tenant scalability.

37

Another strategy to mitigate the costs of asynchronous scanning is to adjust the frequency of the scans—
trading risk for performance. For instance, a recent system measured scanning time at 50ms, and could keep
overheads at 1% by only scanning every 5s [113]. Similarly, one may cache and reuse introspection results
to trade risk of stale data for better scalability [174]. An interesting direction for future work is identifying

techniques that minimize both overheads and risk.

2.6.2 Privacy

VMI has the potential to create new side-channels in cloud systems. For instance, after reading application
binaries, Patagonix [142] queries the NSRL database with the binary hash to determine the type of binary
that is running on the system. This effectively leaks information about the programs run within a VM to an
outside observer, undermining user privacy.

More generally, VMI has the potential for one guest to observe different cache timings based on the
behavior of another guest. Consider a VMI tool that does periodic memory scans of multiple VMs on a
cloud system, one after another. The memory scan or snapshot will disrupt cache timings of the guest under
observation by forcing exclusive cache lines to transition back to a shared, read-only mode §2.4.2. Based on
its own cache timings, the VM can observe the frequency of its periodic scans. Because the length of a scan
of another VM can also be a function of what the VM is doing, changes in time between scans of one VM
can indicate what is happening in another VM on the same system.

Although it is unclear whether this example side channel is exploitable in practice, the example raises the
larger issue that VMI projects should be cognizant of potential side channels in a multi-VM system. Richter
et al. [170] present initial work on privacy-preserving introspection, but more work is needed. An ideal

system would not force the user to choose between integrity or privacy risks.

VMI designs should evaluate risks of new side channels.

2.7 Summary

Virtual machine introspection is a relatively mature research topic that has made substantial advances
since the semantic gap problem was posed. However, efforts in this space should be refocused on removing

trust from the guest OS in service of the larger goal of reducing the system’s TCB. Moreover, future VMI

38

solutions should balance innovative techniques and security properties with scalability and privacy concerns.
We have observed that the lessons from previous work is guiding new efforts to adapt existing techniques
and develop new techniques to bridge the strong semantic gap. The main takeaway from this chapter is that
encapsulating the threat using a VM, and then relying on the VMI to neutralize that threat is an incomplete
solution due to the strong semantic gap. Finally, this chapter observes that all VMI solutions that prevent
an attack are based on the secure design principle of complete mediation and the technique of memory

protection.

39

CHAPTER 3: RETROFITTING LEAST PRIVILEGE PRINCIPLE ONTO SETUID-ROOT
BINARIES

Unprivileged users of modern Unix systems access safe subsets of otherwise privileged system function-
ality through trusted, setuid-to-root binaries. For instance, the mount utility executes with administrative
privilege, allowing unprivileged users to mount a CD-ROM or USB Flash device without involving a human
administrator. Because the mount binary must issue the mount () system call, which requires root privilege
(or the CAP_SYS_ADMIN capability), the mount binary is inadvertently empowered to issue many more
privileged system calls. For instance, if an attacker can exploit an input parsing bug in mount, she might
be able to change the root user’s password, install a rootkit, or replace the contents of the /et c directory.
Chen et al. [70] show that many privilege escalation attacks go through setuid-to-root binaries, even on
SELinux [145] or AppArmor [28]. This attack surface is ubiquitous; e.g., 99.99% of surveyed systems install
mount (§3.2.3).

The problem with setuid-to-root binaries is that they violate the Least Privilege Principle (LPP) [175],
and create opportunities for privilege escalation attacks. As a result, most major Linux distributions had
ongoing, but incomplete efforts to prune unnecessary setuid-to-root binaries [93, 197] (§3.2.1). Although
these efforts have made substantial progress in reducing the number of setuid-to-root binaries, they leave a
small core of “unavoidable” trusted binaries that continue to violate least privilege.

Previous research efforts [52, 101, 108, 130, 199, 205], as well as hardened Linux configurations, such
as SELinux and AppArmor, have only considered least privilege on these utilities from the perspective of the
administrator, not the untrusted user. In the case of mount utilities, systems like AppArmor attempt to limit
the effects of a compromised mount to arbitrarily changing the file system tree. When the administrator
executes mount with least privilege, she can only corrupt the file system tree, not change passwords (directly)
or configure the network device. In contrast, least privilege for an unprivileged user should restrict that user
to only mounting allow-listed devices and directories (e.g., /cdrom); even on AppArmor, a bug in mount
could allow an unprivileged user to make arbitrary changes to the file system tree. SELinux further restricts
mount to specific users and mountpoints, but still trusts mount to correctly map devices and options to

these mountpoints. In this example, least privilege on these utilities can only be enforced by the OS kernel,

40

and policies must be expressed not just in terms of the user requesting a system call, but also in terms of the
objects of the requested call.

This chapter presents a simple, efficient framework for migrating policies from setuid-to-root binaries
into the kernel, obviating the need for these privileged binaries in nearly all situations. We study the 28 most
commonly installed binaries on Debian and Ubuntu Linux, which account for all setuid-to-root binaries on
roughly 89.5% of systems surveyed (§3.2.3).

One essential insight from the study is that only eight system calls and a few other system interfaces
underlie the vast majority of root privilege requirements. These system calls export functionality that is
required by unprivileged users, yet required administrative privilege. For these system calls, this chapter
proposes enforcing more expressive policies that more closely match the policies encoded in setuid binaries
and configured by administrators. We present a prototype, called Protego, which extends the AppArmor [28]
Linux Security Module (LSM) [206]. Protego changes only 715 lines of Linux kernel code, and adds
additional trusted utilities to keep the kernel policy synchronized with legacy, policy-relevant configuration
files, such as /etc/sudoers. In addition to these 8 system calls, a few additional system abstractions
must be adjusted to remove privilege. Although Protego extends AppArmor, any security-hardened Linux
variant could adopt these techniques.

An underlying motivation for setuid-to-root binaries is flexibility. When the kernel adopts a new
abstraction, system developers may not understand precisely what the safe subsets of functionality are, or
which subsets any real application will require. The underlying assumptions are that the setuid binary can be
patched faster than the OS kernel, and that some experience may be required before a sufficient and minimal
policy language can be defined. This chapter observes, however, that almost all setuid binaries are using
abstractions that are decades old with very well-understood policies, and that modern kernels have flexible
infrastructures for security policy enforcement [206]. Thus, there is no compelling reason to prefer setuid
binaries to dynamically configurable policies enforced by a kernel security module.

The contributions of this work are as follows:

* A study of the policies encoded in setuid-to-root binaries on current Linux systems, considering

privilege from the perspective of the non-administrative user.

41

Net lines of code de-privileged. 12,717
Percentage of deployed Ubuntu and Debian systems that can eliminate the setuid bit. 89.5%

Historical exploits that would be unprivileged on Protego. 40/40
Performance overheads. <7.4%
System calls changed. 8

Table 3.1: Summary of results.

* Identifying a set of straightforward changes to Linux which would obviate the need to violate the least
privilege principle on most systems. Our prototype reduces the trusted computing base of Ubuntu

Linux by 12,717 lines.

* Evaluating these changes on Linux, demonstrating that setuid-to-root binaries can be deprivileged
with minimal overheads, minimal changes to trusted code, and no loss of functionality for users. For

instance, a Linux kernel compilation on Protego is less than 2% slower than on unmodified Linux.

Thus, this chapter demonstrates that most deployed systems can uphold the Least Privilege Principle at

minimal costs. Section 3.4.4 surveys the expected effort to remove setuid-to-root altogether.

3.1 Overview

Protego executes setuid-to-root binaries without privilege. A fairly wide range of packages (currently 82)
containing setuid-to-root binaries use only a small number of system calls (8), system files, and devices that
require root privilege. Protego centralizes the policies currently encoded in this disparate collection of trusted
binaries by instead adding Linux Security Module (LSM) hooks (§3.2.2) that apply equivalent policies in the
kernel. Protego is an extension of AppArmor on Linux 3.6.0.

To explain the system design, we use the mount system call as a representative example. The mount
system call grafts a new file system onto the file system directory tree at a given location. Similarly, the
umount system call removes a file system from the directory tree. In general, changing the file system
directory tree requires root privilege, as a malicious user might mount bad configuration files over /etc or
even replace the system binaries in /bin or /sbin. Thus, the Linux kernel currently rejects any mount
or umount call from processes without administrative privilege—namely the CAP_SYS_ADMIN capability,
explained in §3.2.2.

Some mount-related binaries are setuid to root. The reason is to permit certain privileged operations

without requiring administrator privilege, such as mounting a CD-ROM at /dev/cdrom. Operational

42

sys_mount() {
if (Icapable(CAP_SYS_ADMIN))
return -EPERM,;

Kernel

User /* Parse /etc/fstab */

if (ruid==01I
user_mount_ok(args))
sys_mount(args);

letc/fstab

/bin/mount

Linux mount.

sys_mount() {
if (Isecurity_mount_ok(args))
return -EPERM;

Protego LSM

/proc/
mnt_policy

Kernel

User

/* Parse /etc/fstab */ sys_mount(args);

letc/

|
|
|
fstab |

/bin/mount
Privileged Daemon |
(backwards compatibility)| Unprivileged User

Protego mount.

Figure 3.1: Comparison of the mount system call on Linux and Protego. Trusted components are in gray.
Linux places trust in the /bin/mount binary to enforce policies specified in /et c/fstab; this binary
is called by an untrusted user. The mount system call fails if the caller doesn’t have the CAP_SYS_ADMIN
capability (i.e., is not root). In Protego, a trusted daemon reads the policies from /etc/fstab and
configures the Protego LSM through a file in /proc. Separately, an untrusted user can use /bin/mount,
or any other binary, to issue a mount system call. The mount system call then calls an LSM hook to check
this change against system policy.

constraints for these privileged functions are set by the administrator in /et c/fstab with the “user” or
“users” option. The mount utilities, e.g., mount or umount, are then responsible for checking the real UID
with which they were invoked: they are required to fail unless the file system and mount point match a “user”
entry in /etc/fstab.

Protego is based on the observation that the kernel can just as easily perform these checks in an LSM.
Both approaches are compared in Figure 3.1. For the mount system call, Protego keeps an allow-list of

allowed user mountpoints in the kernel. If a process without CAP_SYS_ADMIN calls mount, the system

43

Component Description Lines

Kernel
Linux Additional LSM hooks, /proc filesystem interface. 415
Protego LSM module Implement security policies, called by additional LSM hooks in 200
Linux.
Netfilter Extensions for raw sockets. 100
Trusted Services
Monitoring daemon Trusted process that monitors changes in policy-relevant 400
configuration files. Required only for backwards compatibility.
Authentication utility Trusted binary launched by the kernel to authenticate user 1200

sessions, password protected groups. Code refactored from
login and newgrp.

Utilities
iptables Extension for raw sockets. 175
vipw Modified to edit per-user files instead of a shared database file. +40
dmcrypt-get-device Switch to /sys to read underlying device information. 43
mount/umount, sudo, pppd Disable hard-coded root uid checks. -25

Grand Total Changed 2,598

Table 3.2: Lines of code written or changed in Protego, including kernel, trusted services, and command-line
utilities.

call will only succeed if the arguments match the allow-list. Mount utilities no longer require administrative
privilege when invoked by unprivileged users, as the policies are migrated to the kernel.

This mount allow-list can be created by either the administrator by directly adding entries to a file
in /proc, or, for convenience, we also provide a trusted daemon that reads and monitors /etc/fstab,
propagating changes to the kernel via the /proc file. Protego provides two other files in /proc for
configuration inputs using a simple grammar: a mapping of privileged ports to allowed application paths, and
an /etc/sudoers-like syntax for delegation. Policies that do not take configuration parameters are simply
hard-coded in the LSM. The underlying policy abstractions, concerns, and defaults derive from our study of
current setuid-to-root binaries (Section 3.3).

Table 3.2 details the added or modified lines of code in Protego. The only code changes we made to most
setuid utilities was removing checks that cause the binary to exit if the effective user id is not root—all policy
checks are moved into the OS kernel and the utility runs without changing its effective user id to root. In a

few cases, such as vipw, we modified these utilities to use different configuration files.

44

Backward compatibility. Protego modifies a few system configuration file formats. For example,
Protego fragments the password database to better match policy and file system permissions; the monitoring
database can keep the original database file and the new files synchronized for backwards compatibility.
Although some previously-privileged applications must make changes to adopt the newer file formats, Protego
maintains copies of the old formats for compatibility with other applications. Applications that did not
previously require privilege are unmodified on Protego.

The monitoring daemon is written with a Python library [26] based on Linux’s inot i fy file monitoring

framework [184]. The monitoring daemon is only required for backward compatibility.

Threat model. We assume that setuid binaries may have programming errors that are exploitable
through inputs carefully crafted by an adversary. We assume the adversary is an unprivileged user of a system
who aims to acquire enhanced privileges (one or more administrative capabilities, or root access, depending
on the system).

Protego’s goal is to minimize the privilege held by binaries executed by a non-administrative user. Even
if one of these binaries is compromised, the user acquires no more privilege than she already had before
executing the binary. Other privilege escalation attack vectors, such as vulnerable system daemons running

as root or bugs in system calls, are beyond the scope of this chapter.

3.2 Background

This section explains background on the setuid bit, related efforts to improve Linux security, and current

setuid installation statistics.

3.2.1 The Setuid Bit

Setuid bit vs. system call. The namespace collision between the setuid permission bit and setuid
system call can lead to some confusion. The primary mechanism to raise privilege in Linux is the setuid
permission bit (04000) in an inode’s stat field. When a setuid binary is executed, the process executes as
the binary’s owner, regardless of which user exec-ed the binary. Some privileged daemons, such as ssh,
may initially execute as root and then drop to an unprivileged user by using the setuid system call. Similarly,

setuid-to-root binaries often bound the risk of privilege escalation by dropping root privilege after completing

45

the last privileged system call, using the setuid system call. Unless otherwise specified, setuid in this chapter
refers to the bit.

Papers including “Setuid Demystified” explain how an application should use the setuid system call
to drop its privileges [69, 195]. Our primary interest is complementary: eliminating privilege altogether in
current setuid-to-root binaries, and thereby eliminating the need to securely drop privilege with the setuid

system call.

Why is setuid-to-root needed? Administrators use setuid binaries to relax hard-coded policy decisions
in the kernel, which are inconsistent with the desired system policy. Hecht et al. [108] observe that there
are three categories of system calls: (1) unprivileged calls, (2) privileged calls, and (3) calls with privileged
options. Modern Linux kernels generally enforce a stricter policy on calls with privileged options than
administrators want, limiting application functionality. For example, the mount system call fails if the caller
doesn’t have administrative privilege—even if the caller is only requesting options considered safe by system
policy. In the cases of bind and open, setuid is often used to allow an application to access a single port or
file, but trusts the binary with access to all other ports or files. These point solutions implement the desired

policy, but violate least privilege.

setgid. This chapter focuses on the setuid-to-root binaries, although similar issues could arise with
the setgid bit. We note that no Debian or Ubuntu packages currently install binaries that are setgid
to root. The delegation framework we describe in §3.3.3 provides equivalent functionality to setuid and

setgid-nonroot on Protego.

Eliminating setuid-to-root binaries. Several Linux distributions have hardening efforts that have
reduced the number of setuid-to-root binaries [93, 197]. For instance, Ubuntu has eliminated roughly 30

setuid-to-root packages between 2008-2014. These efforts have used the following major techniques:

* Consolidation. When several different packages perform similar tasks, developers create a shared

setuid helper utility, such as the sensible-mda mail server utility.

* File system permissions. Utilities such as at write to logs and other protected system files, generally
under the /var directory. Root privilege can be replaced with setuid non-root or setgid non-root by

changing permissions on these files to an unprivileged user or group.

46

» Capabilities. Linux has a coarse capability model, which we explain next. Several utilities have
replaced setuid with the similar set cap mechanism, which launches the binary with specific capabili-
ties. Although setcap can replace setuid, several setuid-to-root binaries require capabilities tantamount

to root.

These techniques are insufficient to enforce least privilege on all categories of current setuid-root binaries.

3.2.2 Capabilities, LSMs, and SELinux.

Capabilities in Linux are not pointers with fine-grained access control information, as commonly defined
in capability-based operating systems [136, 182]. Linux divides root privilege into roughly 36 capabilities,
called file system capabilities [77], which are roughly based on Trusted IRIX capabilities [119] and the
POSIX.1e draft specification [165]. All uses of the term “capability” in this chapter refer to Linux file system
capabilities.

By default, Linux gives all capabilities to a process running as root. A hardened Linux variant can
reduce the capabilities granted to the administrator for a given task, as well as limit the capabilities given to a
setuid-to-root binary.

Capabilities are designed to enforce least privilege on the administrator, but are generally too coarse
to enforce least privilege on unprivileged users. For instance, if the administrator is configuring a network
interface, the configuration utility may only run with the CAP_NET_ADMIN capability. If the configuration
utility is buggy and makes errant privileged system calls, the damage is limited to the network.

Continuing our example, CAP_NET_ADMIN is required by the setuid-to-root pppd binary so that unpriv-
ileged users may make very restricted changes to the system’s routing tables, such as creating a route if it
does not conflict with previously existing routes. Even if pppd executes only with the CAP_NET_ADMIN
capability, if pppd is compromised, the unprivileged user has substantially escalated her privileges, gaining
the ability to arbitrarily change routes, disable devices, set privileged socket options, enable multicasting, etc.
A potential solution to this problem is to bestow finer-grained capabilities on trusted binaries.

Unfortunately, developers have failed to effectively manage 36 coarse capabilities in the Linux kernel.
Most Linux developers are not security experts, but nonetheless are required to place capability checks
throughout the kernel. When in doubt, developers use the CAP_SYS_ADMIN capability. As a result, over

38% of all capability checks in Linux require this capability. Even our initial mount example requires

47

Package Ubuntu(%) Debian(%) Wt.Avg.(%)

mount 100.00 99.75 99.99
login 99.99 99.82 99.98
passwd 99.97 99.84 99.97
iputils-ping 99.87 99.60 99.85
openssh-client 99.54 99.48 99.53
eject 99.68 90.95 99.24
sudo 99.48 74.34 98.21
PPP 99.54 45.65 96.81
iputils-tracepath 99.78 13.06 95.39
mtr-tiny 99.54 11.79 95.10
iputils-arping 99.60 3.55 94.74
libc-bin 50.14 86.15 51.96
fping 27.70 12.42 26.92
nfs-common 9.76 82.89 13.46
ecryptfs-utils 11.64 0.72 11.08
virtualbox 10.56 7.78 10.41
kppp 10.11 4.97 9.85
cifs-utils 2.59 19.23 343
teptraceroute 0.33 23.38 1.50
chromium-browser 0.48 8.49 0.89

Table 3.3: Percent of systems that install packages containing setuid-to-root binaries, as reported by the
Debian and Ubuntu ’popularity contest’ surveys. Average is weighted by the total number of systems
reporting in each survey.

CAP_SYS_ADMIN. Moreover, this capability has become so permissive that it can acquire all other capa-
bilities and is described as “the new root” [122]. Finally, the mapping of capabilities to privileged tasks
is many-to-many. For instance, the X server requires 4 capabilities to set the video mode (CAP _CHOWN,
CAP_DAC_OVERRIDE, CAP_SYS_RAWIO, and CAP_SYS_ADMIN). Changing passwords requires 6 capabil-
ities: CAP_SYS_ADMIN, CAP_CHOWN, CAP_DAC_OVERRIDE, CAP_SETUID, CAP_DAC_READ_SEARCH,
and CAP_FOWNER. Linux capabilities do not enforce least privilege on the administrator, much less limit the
risk of privilege escalation by unprivileged users.

The deeper problem with Linux capabilities is that they provide an insufficient language to express
policies for unprivileged users. Linux capabilities require a subject-based policy (“allow if requester is
root”), yet most setuid-root binaries export select, safe operations on a kernel abstraction to all users—an
object-based policy. As a result, system security hinges on a cumbersome, error-prone translation of an

object-based policy onto a strictly subject-based language.

Linux Security Modules (LSMs). LSMs encapsulate sophisticated security policies from the rest

of the kernel development process by placing suitable access control hooks throughout the kernel [206].

48

Security experts can then implement more advanced policies, such as mandatory access control (MAC), by
using these hooks to override the default, discretionary access control policies. These hooks are intended to
be sufficient to implement any policy without making additional changes outside of the module. The exact
number of hooks varies (184 in Linux 3.13.5); Protego adds additional LSM hooks for system calls that are

currently hard-coded to check specific capabilities.

Security-hardened Linux variants. SELinux [145] and AppArmor [28] are implemented as LSMs, as
is Protego. SELinux provides a powerful mandatory access control (MAC) and multi-level security (MLS)
model for Linux, complete with role-based access control [94] and security type enforcement. AppArmor is
also an MLS implementation, and the default on Ubuntu. AppArmor tends to enforce coarser policies than
SELinux.

LSMs can carefully control when a process is given a capability, and can use an LSM hook to obviate
a capability check for some, but not all system calls. For example, SELinux associates capabilities with
roles, which can prevent a process from accumulating capabilities. For instance, in order to use capabilities
associated with another role, the process has to change roles, and thus relinquish the capabilities associated
with the previous role. SELinux can also replace the coarse capability checks in bind with an allocation of
low-numbered ports to types.

SELinux requires considerable policy effort to expose safe functionality to non-administrator users. For
instance, SELinux must carefully manage the CAP_NET_RAW capability and assign the capability to trusted
binaries, such as ping. This does not enforce least privilege, as CAP_NET_RAW is coarser than ping’s
safe functionality (§3.3.1). SELinux could enforce simpler and more precise policies by adopting Protego’s
strategy of considering safe functionality separately from fragmenting administrator privilege.

Tools such as VulSAN [70] analyze system attack surface, generating the path for an attacker to install a
rootkit. In many cases, the path goes through a setuid or capability-enhanced program, even on SELinux or

AppArmor.

3.2.3 Setuid Installation Statistics

To focus our efforts on removing privilege from the most commonly-installed setuid-to-root binaries, we
studied installation statistics collected by the Debian and Ubuntu distributions. The first step was to identify

all potentially installable setuid binaries in all Debian and Ubuntu 12.10 APT repositories using the Lintian

49

reports [32]. Ubuntu adopts and repackages stable versions of Debian packages, and the differences between
the distributions tend to be minor. 82 packages contain setuid-to-root binaries.

We obtained the rough frequency of installation from the popularity contest results for all the monitored
Ubuntu [33] and Debian [31] systems, based on over 2.5 million systems (2,502,647 Ubuntu and 134,020
Debian).

Table 3.3 lists the 20 most frequently installed packages, with per-distribution percentages and an average
weighted by number of installations of each distribution. We have completely investigated all popular
packages through ecryptfs-utils—indicating that roughly 89.5% of sample systems could adopt Protego with
no loss of functionality. The 62 packages not listed are installed by fewer than .89% of systems sampled;

Section 3.4.4 summarizes the additional work we foresee in deprivileging the remaining packages.

3.3 Setuid Policy Study

This section presents a detailed study of the policies encoded in the 28 most commonly installed setuid-to-
root binaries. This study identifies the system-level policy goal encoded in the binary, how the kernel policy
for a specific system call or other interface is mismatched to the policy goal, how low-level mechanisms can
be easily modified to efficiently and comprehensively enforce these policies in the kernel, and how Protego
enforces these policies.

In the interest of brevity, we do not discuss each binary in detail, but rather organize our discussion
around each interface that requires administrative privilege. Table 3.4 summarizes these results. The Protego

design is guided by two major themes from this study:

» Express and enforce object-based policies. The majority of these binaries encapsulate sensible
policies that do not map onto subject-based checks (e.g., “is this user x?”), but that can be easily
expressed as object-based policies (e.g., “may any user take this action on this object?”). For instance,
several utilities enforce fine-grained access control on network ports, and enforce policies for raw

sockets based on the protocol type (§3.3.1).

* Interface designs can thwart least privilege. In several cases, poor interface design can require
applications to have more privilege than necessary. For instance, the dncrypt-get— device utility
uses a privileged 1oct1 to report the physical device underneath an encrypted block device; additional

privilege is required because this ioctl also discloses the private key. A more subtle example of this

50

Interface Used by Kernel policy System policy Security con- Our approach
cerns
socket ping, ping6, Creating raw Users may send Raw sockets al- Allow any user
arping, mtr, or packet sock- andreceive safe, low one to send to create a raw
traceroute6.- ets requires non TCP/UDP both benign or packet socket,
iputils CAP NET_RAW. packets, such as packets (e.g., but outgoing
ICMP. ICMP) and pack- packets are sub-
ets that appear ject to firewall
to come from rules that filter
socket owned by unsafe packets.
another process.
foctl pppd Only the ad- A user maycon- Protect the in- Add LSM hooks
ministrator my figure a modem tegrity of routes that verify routes
configure mo- (if not in use) for unrelated ap- do not conflict
dem hardware or and add routes plications. with old rules
modify routing that don’t con- when requested
tables. flict with exist- by non-root
ing routes. users.
dmcrypt-get- Require CAP_~ Any user may The same Abandon this
device SYS_ADMINto read public por- ioctl dis- ioctl for a
read dmcrypt tion of dmcrypt closes both /sys file that
metadata. metadata (e.g., the physical only discloses
device set). devices and the the physical
encryption keys. devices.
bind procmail, Require CAP_- Mail server Prevent untrust- System poli-
sensible- NET_BIND._— should generally worthy applica- cies allocating
mda, exim4 SERVICE to run without root tions from run- low-numbered
bind to ports < privilege. ning on “well- ports to specific
1024. known” ports. (binary, userid)
pairs.
mount, fusermount, = Mounting or un- Any user may Protect the in- Add LSM hooks
umount mount, mounting a file mount or un- tegrity of trusted that permit any-
umount system requires mount entries in directories (e.g., one to mount an
CAP_SYS_ADMIN./etc/fstab /etc, /11ib); allow-listed file

with the “user(s)”
option.

system with safe
locations and op-
tions.

Table 3.4: Part I: System abstractions used by commonly installed setuid utilities on recent Debian and
Ubuntu systems. The table identifies the common thread of inconsistent kernel policies and system policies
for these abstractions, discusses the underlying security concerns, and how Protego unifies system and kernel
policies.

51

Interface Used by Kernel policy System policy Security con- Our approach
cerns
setuid, polkit-agent- Only allowed Permit del- Require authen- Add LSM
setgid helper-1, with egation of tication and au- hooks that
sudo, pkexec, CAP_SETUID. commands as thorization to ex- check delegation
dbus- configured by ecute as another rules encoded
daemon- administrator, user. in files like
launch- in some cases /etc/sudoers,
helper, su, require recent and a kernel
sudoedit, reauthentica- abstraction for
newgrp tion. recency.
Credential chfn, chsh, Only root can A user may Prevent wusers Fragment the
databases gpasswd, modify these change her own from accessing database to
Ippasswd, files (or read entry to update or modifying per-user or
passwd /etc/shadow). password, shell, each other’s per-group con-
etc. accounts. figuration files,
matching DAC
granularity.
Host ssh-keysign ~ Only root may Allow non-root A user should Restrict file ac-
private read the key (FS users to sign be able to ac- cess to specific
ssh key permissions) their public key quire a host key binaries instead
with the host signature with- of, or in addition
key, disabled by out copying the to, user IDs.
default. host key.
Video X Root must set Any user may An untrustwor- Linux now
driver the video card start an X server. thy application context switches
control control state, re- could misconfig- video devices
state quired by older ure another ap- in the kernel,
drivers. plication’s video called KMS.
state.
/dev/pts* pt_chown Root must Users may cre- This utility has Ignore.
terminal allocate pts ate terminal ses- been obviated
slaves slaves on pre-2.1 sions. for 17 years, but

kernels.

is still shipped.

Table 3.5: Part II: System abstractions used by commonly installed setuid utilities on recent Debian and
Ubuntu systems. The table identifies the common thread of inconsistent kernel policies and system policies
for these abstractions, discusses the underlying security concerns, and how Protego unifies system and kernel
policies.

point is the division of labor between user and kernel in the X window server (§3.3.5). Where needed,

Protego adjusts these interfaces.

52

Several of the issues raised in this study could be addressed in more than one way, and some already
have point solutions in another OS. This section strives to delineate the essential requirements of any solution
from the particular solution implemented in the Protego prototype, as well as cite existing alternative point
solutions. To the best of our knowledge, however, no system has comprehensively addressed all of the issues

requiring setuid-to-root binaries.

3.3.1 Network

Three networking tasks require privilege: creating a raw or packet socket, the point-to-point protocol

(PPP), and binding a socket to a TCP or UDP port less than 1024.

3.3.1.1 Raw and Packet Sockets

When applications program with TCP or UDP sockets, the kernel encapsulates the application-level
payload with the appropriate headers. In the rare case that an application needs to send messages with a
protocol the kernel doesn’t implement, the application must create most of the packet headers itself, using a
raw or packet socket [27]. The difference between raw and packet sockets is that raw sockets provide the IP
layer and MAC layer headers, whereas a packet socket only implements the MAC layer headers.

Linux requires the CAP _NET_RAW capability to create a raw or packet socket, because an application
can also create packets that appear to come from another application. However, a number of setuid-to-root
binaries, such as ping, allow unprivileged users to send safe packets over raw sockets.

A more precise, object-based policy, would specify which types of outgoing packets are acceptable
from unprivileged users on raw sockets. We observe that the set of all safe packets exported by setuid-
to-root binaries can be easily encoded as an allow-list in any packet filtering framework, such as Linux’s
netfilter/iptables [24], or BSD’s Berkeley Packet Filters (BPF) [149]. For instance, some BSD variants use
BPFs to sandbox binaries in a similar manner, such as ensuring the DHCP server sends DHCP packets only
to limited addresses [194].

The Protego prototype allows unprivileged programs to create raw sockets, with the caveat that these
unprivileged raw sockets are subject to additional netfilter rules. The default rules are based on the studied
setuid-to-root binaries, but the rules may be changed by the administrator through the iptables utility.
Protego implements this with modest extensions to the Linux netfilter framework, as well as adding an LSM

hook to the socket system call.

53

In Protego, a compromised network utility cannot spoof packets from a TCP or UDP socket, unlike all
current Linux variants. Also in contrast to Linux, Protego allows any unprivileged user to create her own

enhanced ping utility, as long as it conforms to system security policy.

3.3.1.2 Point-to-point Protocol (PPP)

PPP is a protocol used to establish connections over modems, including dial-up and cellular networks. In
most Linux systems, the service that manages a PPP connection (pppd) requires root privilege for two tasks:
configuring modem hardware and, potentially setting system routing tables to relay IP traffic through a PPP
link. The pppd binary is setuid root so that it can be launched on demand, because, unlike ethernet, most
PPP connections are not constantly active.

When pppd is launched as a user other than root, only certain safe configuration options are accepted,
such as compression and congestion control session parameters. An administrator can also configure pppd
to allow unprivileged users to add system routes over a ppp connection, but only if the new address ranges
were not previously reachable. If a PPP connection duplicates an existing route, a user may only create a
tty that communicates with the remote point.

We add LSM hooks to the appropriate ioct1 system calls for configuring routing tables and modem
options. Specific policies are mined from the ppp configuration file /et c/ppp/options. We also changed
the default file system permissions on /dev/ppp to be more permissive, replacing a capability check with
device file permissions.

We verified that pppd works without root privilege by connecting two machines over a crossover serial
cable, such that one serves as an internet gateway to the other. Both machines ran pppd without root privilege,
both were able to create routing table entries, and the non-gateway machine was able to connect to remote

websites.

3.3.1.3 Bind

Creating a socket that listens to a TCP or UDP port less than 1024 requires root or the CAP_NET_BIND
_SERVICE capability. For this reason, many network services run with root privilege, at least temporarily, to
set up a listening socket.

This policy reflects the notion that an administrator should be involved in setting up a service that listens

on a well-known port. For instance, one expects that a web server listening on port 80 is endorsed by the

54

administrator, but not if it is listening on port 8080. However, any privileged application can open any
privileged port; for instance, a malicious web server can also act as an email or DNS server.

The system policy goal is that specific ports should be allocated to specific application instances.
Protego uses a tuple of (binary path name, user ID) to represent an application instance, and a simple policy
configuration file, /et c/bind, which maps each TCP or UDP port less than 1024 to an application instance.
Each port may map to only one application instance.

Our strategy is a simplified version of SELinux’s approach, which allocates ports to types. Using types
to specify an application instance is sufficient, but not necessary; eliminating privilege escalation should
not hinge on adopting SELinux. Similarly, Berkeley Packet Filters can also be used to delegate access to a

privileged port; a centralized configuration has the advantage of easier auditing.

3.3.2 Mount

§3.1 explains our approach to the mount utilities as a motivating example; we will not repeat this for
brevity. We validated that unprivileged users can mount user entries in /etc/fstab but not other file
systems.

An alternative point solution used by many Linux and Unix systems is a trusted daemon (e.g., auto-
mounter [25]) that monitors accesses to allow-listed mount points, and automatically mounts them in
response to attempts to access the device. Any design that allows unprivileged users to access allow-listed
mount points is sufficient; the Protego design adds only 258 lines of trusted code to the system, whereas the

Linux automounter implementation increases the TCB by 21,674 lines, including a 79 line kernel patch.

3.3.3 UID Switching and Delegation

A process changes its user and group IDs using a family of system calls including setuid and setgid,
which require the CAP_SETUID or CAP_SETGID capabilities. These capabilities give a process the ability
to assume any user’s or group’s id. Utilities such as sudo are setuid root so that they start with administrator
privilege, validate that the invoking user is allowed to switch to the new user, and then call setuid to drop
privileges.

Because our interest is in enforcing least privilege on non-administrator users, we focus on lateral moves,

where one unprivileged user (Alice) acts for another (Bob). Most delegation utilities, such as sudo, violate

55

the principle of least authority by giving Alice the privilege to run as any user via a setuid root binary, and
then dropping back down to Bob with the setuid system call.

Ideally, Alice’s sudo process should never be able to switch to any uid other than Bob’s, and only in ways
Bob has authorized her to act for him. If sudo enforced least privilege on Alice, even if Alice compromises
her sudo process, she should never be able to switch to an unrelated user, say Charlie. Obviously, in many
cases, sudo is used to transition to root; even in this case, root privilege should only be granted to the
process after all checks have succeeded, not before. These policies are only possible if the kernel, not a user
application, validates setuid system call transitions.

Taking sudo as a representative example, there are two checks that require a trusted agent:

* Authentication: Either the current or target user’s password should be entered and checked. Utilities
like sudo check the calling user’s password to ensure that another person hasn’t sat down at an
unattended terminal. sudo only checks the password if a password has not been entered on the
terminal in the last 5 minutes. In contrast, utilities like su ask for the target user’s password as both

authentication and authorization to act as the target user.

* Authorization: The administrator may configure sudo to only allow a user to issue specific commands
as another user. For instance, Alice may allow Bob to issue the 1pr command to print with her
credentials, but sudo will not allow Bob to directly execute any other binaries as Alice. Specifying a
particular command also requires limiting inheritance of environment variables or open file descriptors,

to ensure integrity of the delegated command.

An untrusted binary should not be charged with either.

Rather than check for administrator privilege on a setuid system call, Protego enforces the policies col-
lected from the /et c/sudoers configuration file and the configuration files in the /etc/sudoers.d/
directory. Policies currently encoded in setuid binaries are explicated in additional /etc/sudoers rules.
Similar to /etc/fstab, the monitoring daemon parses these files, watches for changes, and sets the
kernel policies accordingly. Protego also requires that any user issuing a setuid system call be recently
authenticated, unless specifically countermanded by a sudoers policy with the NOPASSWD directive. We
shift the validation of command-line arguments to the kernel.

The Protego kernel tracks the last authentication time in the task_struct of each process. If a

setuid system call is issued without a recent authentication of the current user, a trusted authentication

56

service temporarily takes over the terminal and asks for the user’s password. This authentication service is
refactored from the 1ogin source code. This service can also request the password of another user or group,
according to system policy.

A challenge in restricting sudo privilege to a given binary is that policy enforcement must span two
system calls: setuid and exec. To achieve least privilege, the process privileges must not change before
the exec system call. To address this, we slightly change the behavior of setuid for restricted UID
transitions. If a process could make an exec call with at least one permissible binary, the setuid system
call’s return code (0) will indicate success to the application, but the system call will set a field in the task’s
security metadata indicating a pending setuid-on-exec and storing the pending user. When a process with the
setuid-on-exec field set issues an exec call, Protego hooks the exec system call and checks whether the
requested binary is allowed as the pending user. The authentication service may also ask for the target user’s
password at this point. If the user is not authorized to exec the requested binary as the target user, the exec
will fail with a permission denied error. This change in error behavior is difficult to avoid when enforcement
must span two system calls; in practice, our target utilities have worked correctly despite this change. We
also add appropriate restrictions on inheritance through setuid transitions, except where explicitly permitted
in the sudoers policy.

In our example of Alice acting for Bob, a setuid-to-Bob binary can provide the desired user transition. In
practice, tools like sudo are preferred because sudo is more flexible, centralizes system policy in an easy-to-
audit location, and sanitizes inputs and environment variables to reduce the application’s attack surface. An
alternative approach to implementing a least-privilege sudo might generate a set of setuid-nonroot binaries
that encode the system policies, similar to capability amplification in Hydra [207].

Protego encodes the policies of a wide range of delegation utilities as extended sudoers rules, including
su, sudoedit, dbus, policykit, and newgrp. For instance, newgrp exports password-protected groups; this
functionality can be encoded by requiring the user authenticate on a setgid system call that requests certain

groups. We omit full details of these utilities for brevity.

3.3.4 File System Permissions

Several setuid-to-root binaries require root in order to work around inconvenient file system permissions.
For instance, mail servers use root privilege to access configuration files, such as . forward, even if the

user’s permissions otherwise block access to the file. Similarly, most of the software for managing one’s local

57

account, such as passwd and chsh, requires access to a single record in a database file, but the kernel only
enforces access control at the file granularity.

In order for a user to change her password or default shell, she should be able to modify her own
entry of the database files. However, if Alice can modify Bob’s database entry, Alice can access or modify
Bob’s account—a clear security problem. Thus, the shared database files can only be written by root.
In terms of capabilities, a process must acquire CAP_SYS_ADMIN, CAP_CHOWN, CAP _DAC_OVERRIDE,
CAP_SETUID, CAP_DAC_READ_SEARCH, and CAP_FOWNER to complete this operation—undermining the
goal of substantially limiting administrative privilege with capabilities. To permit users to modify their
credentials and preferences, passwd, chsh, and similar utilities are setuid and validate that the update does
not corrupt the entire database.

To modify one’s account with least privilege, the system must enforce access control at the granularity of
a user’s record, not the entire database. Protego splits the shared database files into per-account files. For
instance, we split /et c/passwd into one file per-user under /et c/passwds/. Each file has permissions
TW——————— , owned by the user it defines and the parent directory /etc/passwds/ has permissions
rwxr—xr—x owned by user root and group root so that unprivileged users cannot add new users to the
system. For backward compatibility, a trusted daemon monitors the per-user files and updates the legacy
/etc/passwd file (§3.1). A similar approach is taken with /etc/group and /etc/shadow.

Network directory servers, such as OSX’s Directory Server [41] or OpenLDAP [23], already enforce
record-level access control. However, such a mechanism is generally not available for the local system ac-
counts, and adds substantially more code to the system TCB (Protego changes 240 LoC, whereas OpenLDAP
Version 2.8 is 175,368 LoC).

In the case of mail delivery problems, we advocate sufficient warnings in the log to diagnose delivery
problems resulting from incorrect file permissions.

We note that users may desire finer-grained access control to prevent their password hash from leaking
from their /etc/shadows file. Protego mitigates this risk by requiring the user to reauthenticate before
reading the shadow file using the mechanisms described above (§3.3.3). The shadow file handle may not be

inherited (CLOSE_ON_EXEC).

58

3.3.5 Interface Design

A small number of utilities require root privilege because the kernel’s interface design forces otherwise
unnecessary trust on the utility. In many cases, non-security reasons naturally lead to more sensible interfaces
and obviate the need for trusted binaries. For instance, very old versions (before 2.1, or 1996) of the Linux
pseudo-terminal implementation required applications to allocate slave [sic] terminal devices, and thus
required a trusted binary to prevent applications from interfering with each other. Ultimately, allocating
slaves in the kernel was simpler all around, and obviated the need for a trusted pt _chown utility.

Similarly, the X window server is setuid to root because the X server may need to both manage the
graphics hardware as well as display the user’s composite desktop. In practice, simply drawing a screen
image to a frame buffer does not require any administrator privileges. Root privilege is required to configure
and context switch the video hardware, e.g., setting the refresh rate, screen resolution, and, most importantly,
configuring which application’s frame buffer should be displayed on the screen [29].

In practice, video card management has been migrating from the X server into the kernel. When the X
server manages the video card, developers find writing context switching code for a range of video hardware
cumbersome. The video configuration changes when a user switches from one X server to another, or from
the X server to a text console (via Ctrl-Alt-F1). The X server must correctly save and restore all state for all
supported video cards. Thus, X and video driver developers have decided that a more sensible division of
labor is for the OS kernel to manage context switching the video card. Linux now has a standard interface for
device drivers to save and restore device state, called Kernel Mode Setting (KMS) [29], introduced in Linux
2.6.29.

KMS eliminates the need for X to run as root [78], and is ubiquitous among all major device manufactur-
ers. Device drivers with KMS support have been written for chipsets manufactured by Intel, ATI (radeon),
Nvidia (nouveau driver), and others. Nvidia’s closed-source drivers have also adopted KMS [131]. We have
verified this on our own machines using the Nouveau driver and running an X server binary that is not setuid
to root.

An interesting contrast is that, unlike many setuid binaries, X and the Linux video drivers are still under
very active development. The same decision that led to a needless attack surface has caused enough practical

problems that developers are rectifying the problem for non-security reasons.

59

3.3.6 Limitations and Discussion

Our study covers a representative sample of setuid-to-root binaries, and we expect that Protego can
easily support most of the remaining setuid-to-root binaries. We note that the Protego prototype allows an
administrator to reenable the setuid bit if necessary. If the setuid bit is actually removed from all other binaries
when the bit is reenabled on the system, the only marginal difference will be that the one unsupported binary
is added to the system’s trusted computing base.

The most likely situations where the setuid bit may be required are new kernel interfaces where the
desired policy is not well understood. For instance, Linux has been gradually adding support for sandboxing
with restricted namespaces [123], beginning with version 2.6.23. Until version 3.8, the security implications
were not sufficiently understood, and sandboxing utilities, such as chromium-sandbox, had to run setuid-to-
root. The security implications are now better understood, and newer kernels allow unprivileged users to use
safe namespace configurations.

The main weakness of the Protego design is that its tools for mitigating information leaks are limited
compared to SELinux, but more powerful than unmodified Linux. Two setuid binaries need to read sensitive
data: ssh-keysign and password changing utilities. In these cases, a measure of trust is unavoidable.
Protego develops fine-grained delegation rules (§3.3.3) that allow only these trusted binaries to read specific
sensitive files. These restrictions are not as strong as SELinux roles [94, 145], but they can be combined. For
example, a keysigning role might take away network access and write permission to any file handle other
than a pipe to the parent. In comparison, Linux allows any program with root privilege to read these files.

Protego’s contributions are orthogonal to SELinux’s, and could be adopted by SELinux to mutual benefit.

3.4 Evaluation

This section aims to answer the following questions:

* What is the cost (in execution time and network throughput) of moving setuid policies into the kernel?

In particular, what cost is imposed on applications that do not use any privileged functionality?

* How does Protego affect overall system security?

* Are Protego functionality and policies identical to unmodified Linux?

60

Test Linux +/- Protego +/- % OH

Imbench
syscall (us) 0.04 0.00 0.04 0.00 0.00
read 0.09 0.00 0.09 0.00 0.00
write 0.09 0.00 0.09 0.00 0.00
stat 0.34 0.00 0.33 0.00 -2.94
open/close 1.17 0.09 1.17 0.09 0.00
mount/umnt 525.15 18.82 531.13 19.44 1.13
setuid 0.82 0.09 0.83 0.06 1.22
setgid 0.82 0.09 0.83 0.09 1.22
ioctl 2.76 0.45 2.78 0.48 0.72
bind 1.77 0.10 1.81 0.11 2.25
sig install 0.10 0.00 0.10 0.00 0.00
sig overhead 0.70 0.00 0.70 0.00 0.00
prot. Fault 0.19 0.00 0.19 0.00 0.00
fork+exit 159.00 0.99 158.00 0.40 -0.63

fork+execve 554.00 1.86 573.00 1.81 343
fork+/bin/sh 1360.00 1.33 1413.00 1.72 3.90

OKB create 5.57 0.39 5.43 0.37 -2.51
OKB delete 3.93 0.59 3.79 0.73 -3.56
10KB create 11.00 0.13 10.80 0.10 -1.82
10KB delete 5.90 0.36 5.85 0.57 -0.85
AF_UNIX 9.30 0.00 9.69 0.00 4.19
Pipe 6.73 0.00 6.88 0.00 2.23
TCP connect 18.00 0.00 18.55 0.00 3.05

Local TCP lat 19.63 0.00 20.87 0.00 6.32
Local UDP lat 16.70 0.00 17.90 0.00 7.19
Rem. UDP lat 543.60 0.00 578.30 0.00 6.38
Rem. TCP lat 588.10 0.00 631.50 0.00 7.38
BW (MB/s) 5316.60 0.00 5170.69 0.00 2.74
Postal Benchmark for Exim server
Messages/min 258.64 3.33 258.75 3.09 0.04
Kernel Compile

time(s) 764.41 436 775.39 5.28 1.44
Apache Bench

Time per request (ms, lower is better)

25 conc. reqs 0.28 0.01 0.29 0.01 3.57

50 conc. reqs 0.26 0.00 0.27 0.00 3.85

100 conc. reqgs 0.25 0.01 0.26 0.01 4.00

200 conc. reqs 1.13 0.02 1.16 0.02 2.65

Transfer rate (Kbps, higher is better)

25conc. reqs 6781.04 134.14 650629 157.34 4.05
50 conc. reqs 737521 253.56 7083.63 248.34 3.95
100 conc. reqs 7342.15 206.45 7051.54 236.78 3.96
200 conc. reqs 164290 106.46 1599.55 113.92 2.64

Table 3.6: Protego overheads compared to Linux with AppArmor. Unless otherwise noted, tests measure
execution time in microseconds (lower is better). A few tests measure bandwidth in MBps or Kbps, where
higher is better.

61

* What effort would be required to deprivilege the remaining 67 packages containing setuid-to-root

binaries?

Our baseline is an unmodified Linux 3.6.0 kernel configured to use AppArmor and iptables with no
firewall rules on Ubuntu 12.04. Protego was refactored from Linux 3.6.0. All measurements were collected
on a Dell Optiplex 790 with a 4-core 3.40 GHz Intel Core i7 CPU. The test machine has 4 GB of memory

and a 250GB, 7200 RPM SATA disk.

3.4.1 Performance Overheads

We measure the performance cost of Protego policy enforcement on applications that do not require any
privilege on Linux with both application benchmarks and the Imbench microbenchmark suite, version 3.0-a9.
We note that within a run, we use the standard Imbench configuration, which includes a number of iterations
scaled appropriately to the test case. We report the mean and 95% confidence intervals. We also measure
Linux kernel 3.6.6 compilation time and network performance using the ApacheBench benchmark, version
2.3, exercising an Apache web server, version 2.2.16.

We note that most applications which use the setuid bit are interactive, and thus difficult to meaning-
fully benchmark. The most interesting exception to this are the mail servers, so we include measurements of
exim4 server using the Postal [75] benchmark. We also extend Imbench with 5 additional tests that exercise
the system calls we modified.

In general, the overheads of Protego are low, ranging from 0-7.4%. Table 3.6 lists the measurements of
Protego, as well as overhead relative to Linux. For many system calls, Protego has no effect on the behavior
and performance is comparable. In the case of exec, for instance, Protego adds 5.78% overhead to enforce
setuid policies. A few microbenchmarks show small performance improvements commensurate with the
confidence intervals, which we believe are noise. At the macro-benchmark level, such as a Linux kernel
compile, Protego overhead is only 1.44%.

In order to enforce policies on raw network packets, we add additional netfilter rules on all outgoing
packets. To measure the impact on unprivileged applications, we compare to netfilter with no rules configured,
and the overhead ranges from 2—4% for the standard ApacheBench web service benchmark. These results

indicate that the performance overheads are acceptable.

62

Utilities Total Priv. CVE Identifiers

CVEs Esc.

ping 84 4 1999-1208, 2000-1213, 2000-1214, 2001-0499

traceroute 26 2 2005-2071, 2011-0765

mount,umount 114 2 2006-2183, 2007-5191

mtr 4 3 2000-0172, 2002-0497, 2004-1224

sendmail 84 2 1999-0130, 1999-0203

exim 21 2 2010-2023, 2010-2024

sudo 61 5 2001-0279, 2002-0043, 2002-0184, 2009-0034, 2010-
2956

sudoedit 3 1 2004-1689

newgrp 7 6 1999-0050, 2000-0730, 2000-0755, 2001-0379, 2004-
1328, 2005-0816

passwd 87 1 2006-3378

passwd, su - 1 2003-0784

su 31 2 2000-0996, 2002-0816

chsh, chfn, su, passwd - 1 2002-1616

chsh, chfn 10 2 2005-1335,2011-0721

dbus 22 1 2012-3524

pkexec, policykit 24 2 2011-1485,2011-4945

X 33 2 2002-0517, 2006-4447

capabilities 7 1 2000-0506

Table 3.7: Historical vulnerabilities in setuid-to-root binaries (total, and those that lead to privilege escalation).
In Protego, these utilities and the vulnerable code would be deprivileged and would not lead to a privilege
escalation. Dashes are placed in the “Total” column for a CVE that spans multiple packages; the package
totals are reported in other rows.

3.4.2 Security Evaluation

It is difficult to quantify the change in risk of any change to a system interface and enforcement
mechanism. To evaluate Protego we consider two rough indicators: the net change in the trusted computing
base and whether historical vulnerabilities in setuid binaries would occur in code that is now de-privileged,

or in code that moved into the OS kernel.

Trusted Computing Base. We first carefully measure the change in privileged lines of code in the
previously setuid binaries. At a high level, Protego adds 715 lines of policy checking code to the Linux
kernel, 400 lines of code in Python which monitors certain configuration files for changes, and a 1,200
line authentication utility. The authentication utility is refactored from existing trusted code in 1ogin and
newgrp. To balance this number, we also measure the lines of trusted binary code that no longer execute
with privilege—a total of 15,047. We are careful to report a conservative estimate—ignoring whitespace,
comments, standard libraries, and any code that would have executed after dropping privilege in the original

code. Thus, Protego decreases the lines of trusted code by at least 12,732.

63

One potential concern is that Protego (conceptually) migrates policy enforcement code from applications
to the kernel. We hasten to note that the policy enforcement code in the kernel is only 200 lines of
straightforward C code. Protego also expands the purview of policies enforced in the kernel; these concerns
are localized to our LSM, and generally make existing kernel policies more precise.

Similarly, one might be concerned about adding the user-level authentication service and monitoring
daemon to the trusted computing base. We note that authentication code is trusted in both systems, the only
difference is how it is invoked. Parsing configuration files can introduce new vulnerabilities, but the risk
is small, as the files are simple. This daemon is written in a managed language with regular expressions
(Python) to minimize the risks commonly associated with input parsing. The monitoring service could be
eliminated by changing additional legacy code. The code we add to the TCB is short, simple, and easily
audited.

A more subtle issue in selecting a configuration format is the risk of misconfiguration. Whenever possible,
we chose to use legacy configuration files administrators would find familiar. This choice is debatable and
largely incidental to the Protego design; one could just as easily have a single policy file, as SELinux does,
and perhaps manage this with some application to assist the administrator, all using the same underlying

/proc interfaces to the Protego LSM.

Historical Vulnerabilities. We surveyed the Common Vulnerabilities Database [156] entries for the 28
binaries this chapter studies. We found 618 total vulnerabilities over the lifespan of these utilities—40 of
which led to acquisition of root privilege, summarized in Table 3.7.

We manually analyzed these 40 privilege escalation vulnerabilities and determined that these executed
in code that now runs without privilege in Protego. Most of these vulnerabilities exploit buffer overflows,
format strings, or environment variables. Moreover, these vulnerabilities are not in code substantially similar
to the parsing, policy checking, or authentication code that we have added to Protego’s TCB.

This data indicates that the probability of new privilege escalation vulnerabilities is relatively low, but
the overall risk is still substantial. Most of the credit for the low probability of privilege escalation belongs to
efforts to drop privilege after the privileged system calls have executed. Nonetheless, our analysis indicates
that kernel support in Protego can further reduce the risk of privilege escalation.

As code matures the probability of exploitable bugs decreases. Although the most popular packages are

generally quite old, Ubuntu has added 21 setuid-to-root binaries based on new code between 2011-2014,

64

Binary Coverage % Binary Coverage %

chfn 94.4 sudo 90.1
chsh 92.7 sudoedit 90.9
gpasswd 91.3 mount 94.1
newgrp 93.5 umount 92.5
passwd 91.0 ping 96.2
su 92.2

Table 3.8: Gcov coverage of command-line setuid binaries

despite a net reduction in setuid binaries. The long-term goal of this project is to completely obviate the need

for new setuid-to-root binaries, and their considerably higher risk of exploitable bugs.

3.4.3 Functional Testing

In addition to manual functionality tests, we validate that Protego behaves equivalently to unmodified
Linux with exhaustive test scripts for setuid command line utilities. We validate that the utilities have
the same output and effects on both systems. We also use gcov [105] to measure the test coverage for
the command-line utilities in Table 3.8, which is always above 90%. Although exercising nearly all code
paths does not necessarily mean all inputs are handled equivalently on both systems, one can infer that the

functionality and policy enforcement is very likely to be equivalent.

3.4.4 Toward Zero Setuid-To-Root Binaries

This subsection surveys the remaining 67 packages (91 binaries) in Ubuntu Linux to assess how many
can likely be deprivileged on Protego and how many will require different approaches. We note that this
survey is preliminary, based on the documentation, and we have not tested these on Protego.

Table 3.9 groups the remaining binaries by the underlying interfaces that require privilege. We observe
that 77 use interfaces already addressed by Protego, but may require refinement to the policies currently

enforced. The remaining 14 binaries require privilege for:

* Namespaces (6). §3.3.6 explains that namespaces no longer require privilege in Linux kernel versions

3.8 and higher.

* System administration (3). Three binaries use privilege to reboot the system, load kernel modules, or
configure the network. Some may be able to use PolicyKit or sudo (§3.3.3), but others may require

additional consideration.

65

Interface No. of Setuid Binaries

socket 14
bind 23
mount 3
setuid,setgid 24
Video driver control state 13
chroot/namespace 6
miscellaneous 8

Table 3.9: System abstractions used by setuid binaries in packages not included in the Section 3.3 study.
Abstractions below the double line need to be addressed in future work.

* Open a custom device (5). Virtualbox includes a kernel-level virtual machine monitor, which exports
a custom device to 5 setuid binaries. These applications and the kernel module are tightly coupled, and

additional work will be required to identify a sensible policy for this device.

Thus, we are optimistic that a few additional policy abstractions can complete our ongoing effort to obviate

the need for all setuid-to-root binaries.

3.4.5 Design Principles for Protection Mechanisms in Protego

Protego applies design principles to setuid-to-root binaries in userspace, but enforcement is done in
kernel space. This thesis will now discuss how the secure design principles are followed in Protego.

Economy of Mechanism: Protego changes only 715 LoC in the kernel to enforce the least privilege
policies. Almost all the changes are made in the LSM piece of code. Thus, Protego demonstrates the use of
economy of mechanism in the Linux kernel.

Fail-Safe Defaults: Protego uses allow-list policies that explicitly allow certain functions. All other
functions not explicitly allowed by the administrator are denied by default for the untrusted user.

Complete Mediation: The LSM code is based on hooks appropriately placed throughout the kernel
to check permission before taking any action. Protego leverages this design principle followed by LSM to
ensure complete mediation for the setuid-to-root binaries.

Open Design: Protego does not have any secret algorithms. The complete code is open source.

Least Privilege: The least privilege principle states that each entity should gain exactly the right
privileges necessary to perform the function they are allowed to do, and nothing more. This principle was
violated by the setuid-to-root binaries as they gained the root privilege or all-encompassing capabilities. The
Least Privilege principle is at the core of the Protego design. Protego determines the exact privileges needed

to use one of the privileged abstractions based on the administrator policies, and enforces them in the kernel.

66

Psychological Acceptability: As the table 3.2 shows, Protego adds a monitoring daemon and the
authentication utility to maintain backward compatibility, and not change the untrusted user’s interface to

these setuid-to-root binaries.

3.5 Related Work

This section surveys related efforts to reduce the privilege of setuid binaries, which generally speaking,
either enforce least privilege on the administrator, but not regular user, or simply remove functionality from
users.

Much related work on setuid binaries attempts to mitigate the risk of privilege escalation attacks by
allocating privilege only to portions of a program (also known as privilege bracketing or privilege separation).
Systrace [167] mitigates privilege escalation attacks by localizing privilege in setuid binaries to a single
system call (e.g., the socket call in ping). Executable based access control [56] specifies which files a
trusted binary may open; this design cannot prevent an errant passwd utility from changing other users’
passwords, nor does it restrict privileged system calls unrelated to files. Protection domains within a setuid
binary have also been proposed to preventing exploits in unprivileged operations from leaking into privileged
code [186].

Secure Xenix [101, 108], and other secure Unix variants [52, 130, 199, 205] developed modern best
practices for enforcing least privilege on the administrator: fragmenting administrative privilege into roles or
capabilities, restricting the ability to create more setuid binaries, and removing the setuid bit if a binary is
overwritten. Limiting the risk of exploiting a setuid binary is complimentary to Protego’s goal of eliminating
the need for setuid binaries.

Plan 9 eliminates setuid binaries by making every OS resource a file or file system, and by prolific use
of fine-grained capabilities [79]. For instance, Plan 9 represents all networking abstractions as files with
capabilities, whereas Protego enforces finer-grained network security policies.

Although Windows has a richer access control model than Linux users and groups [191], Windows adopts
similar practices for some resources, such as requiring Administrator privilege to create a raw socket [155].

Finally, Bastille [47] simply removes the setuid flag and supported functionality from many utilities. For
instance, non-privileged users cannot mount a USB drive, ping another computer, or use the traceroute

command—functionality that could be safely reinstated on Protego.

67

Namespaces. Linux 3.8 allows unprivileged sandboxing applications, such as chromium, to create
sandboxed network, mount, user, and process namespaces [123].

Namespaces are designed for isolating untrusted binaries, and are simply the wrong tool for enforcing
least privilege when accessing shared system abstractions. Inside of a sandbox, a process can appear to have
any capability, but any externally visible operations are subject to the original user’s privilege. For instance,
network namespaces allow an unprivileged process to access a fake network interface, and send ICMP packets
within a fake network with no routes to the outside world. The major caveat is that any connection to the
outside world requires an agent outside of the sandbox with the appropriate capabilities. In our network
example, the agent would still need the CAP_NET_RAW capability to send ICMP packets out of the sandbox.
In contrast, namespaces cannot safely allow access to shared system resources, such as passwd updating the

password database.

3.6 Summary

This chapter presents a study of setuid-to-root binaries on modern systems, yielding insights into the
nature of least privilege, especially that one should consider the administrator and user separately. There is an
interplay between the division of labor between the kernel and userspace that directly impacts the need for
trust; trusted binaries are often compensating for a design flaw in the system interface. Protego demonstrates

techniques that can eliminate this long-standing attack surface without sacrificing functionality.

68

CHAPTER 4: RETROFITTING COMPLETE MEDIATION AND MEMORY PROTECTION TO
ISOLATE LINUX CONTAINERS

This chapter leverages virtualization hardware, such as Extended Page Tables (EPT) [51], to isolate the
memory of OS containers by redesigning the OS abstractions to match the hardware requirements.

OS virtualization systems like Docker and Linux Containers (LXC) have been gaining popularity for
cloud computing because of their low resource consumption. Profitability of operating a cloud is tied to how
many applications the cloud provider can pack on the same hardware. Thus, the most common cloud use-case
for containers is a multi-tenant environment, where containers of competitors may be running on the same
physical machine. The security guarantees given by the OS virtualization rely on creating container-specific
copies of selected kernel data structures and redirecting the use of these objects to an appropriate container-
specific copy. Vulnerabilities in the Linux namespace code that implements this indirection can be exploited
to gain unauthorized access to other containers’ objects. Currently, there are 15 reported vulnerabilities in the
Linux namespace code, which cause privilege escalation [1]. This is a security concern for the widespread
adoption of OS virtualization for multi-tenant cloud computing.

The multi-tenancy security concern for containers exists because the container-specific copies of kernel
objects are not isolated from each other. Containers reduce their footprint by sharing the OS kernel between
the host and the container. As a result, all containers share the vulnerability of the OS kernel. A malicious
application in a container can exploit the shared kernel to access or manipulate other containers’ kernel
objects, making multi-tenancy security difficult to implement for containers. The multi-tenancy security for
containers needs a way to control access and isolate the container-specific kernel objects.

Virtual machines provide better security isolation for the applications within the VM compared to
containers. VMs do not face the problem of isolating kernel objects because the hypervisor isolates each
VM’s memory for kernel data structures using the second set of page tables like shadow page tables or
Extended Page Tables (EPT) [51] as described in §4.2. Moreover, the interface between the hypervisor
and the guest is much narrower than the wide system call interface for containers. However, in the cloud
environment, virtual machines run a complete legacy OS for one application and thus lead to substantial

overheads in terms of memory and disk space compared to lightweight OS virtualization. Moreover, the

69

Technique time(sec)
KVM Start-Up 10.342
LXC Start-Up 0.200
FreeBSD Jail Start-Up 0.090

Table 4.1: Start-Up times for a VM and a container

i App i i App i Antaine
- Hardware (B 2 : obje
Page Tables |lt |[AO O] illi [A O Of |
— xendet
Page Tables Hos
struct mount olated addre
*root; nace, Isolated

Figure 4.1: Hardware-Assisted OS Virtualization (Containers)

boot time for VM is orders of magnitude higher than containers as shown in Table 4.1. This overhead of
booting a complete legacy OS for one application is why the cloud computing community is moving towards
containers instead of VMs.

The key insight is that memory isolation for just the container-specific kernel objects can solve the
problem of multi-tenant security for containers. Our solution repurposes the virtualization hardware to
achieve this isolation. Our solution maintains the lighter weight of containers by sharing the OS kernel

between containers and the host while providing memory isolation using a second set of page tables like EPT.

4.1 Overview

In the current Linux kernel design, containers are created by passing special flags to the clone ()
system call. The flags indicate that the kernel should create a new namespace, and the new process should
use this new namespace. Namespaces, like file handles in Unix, can be selectively inherited from a parent.

Figure 4.1 shows the overview of the new design. This thesis makes the container a first-class object

in the Linux kernel by creating all new namespaces for the new process, and protecting those namespaces

70

using a new type of hardware-supported memory namespace. Hardware virtualization features like EPT
help prevent access to container-specific kernel objects outside the memory namespace. As the hardware
protection is at page granularity, this thesis redesigns the OS to be EPT page protection-friendly for containers.
The memory allocators allocate container-specific objects at page granularity, so that the protection boundary
can naturally map to the page translation and the page protection provided by EPT. The hardware delivers all
the safe interrupts and exceptions directly to the guest, except a few unsafe interrupts like EPT fault, or triple
fault. The unsafe interrupts cause a VMEXIT, so that they can be handled by the host. The host scheduler
schedules which guest to run, but a second level of process scheduler inside the guest schedules the guest
processes.

The contributions of this work are as follows:

* A redesign of the memory allocation of guest kernel objects to be EPT page protection friendly.

* Isolate containers with VM-like EPT-based protection.

* Leverage known techniques to lower overhead and improve performance in the presence of virtualiza-

tion hardware.

Threat Model. This work follows the same threat model as a virtual machine. The host kernel is fully
trusted, however, the code running in the guest mode is not trusted. An attacker can modify the kernel code
running in the guest mode. Even in the presence of a compromised kernel in the guest mode, the guest cannot
access information about any of the other co-located guests. The guest can only access data if the host has
given explicit permission. A malicious guest cannot cause a denial of service for the co-located guests or the
host. Any attempt made by a malicious guest to access other guest data will lead to the malicious guest’s
termination.

This thesis assumes that the code to set up the EPT permissions, which is part of the host kernel, does
not have any vulnerabilities. As the code size is small (about 3K lines-of-code), the code can be formally or
manually verified. Furthermore, this thesis assumes that the hardware does not have any vulnerabilities and
our solution do not protect against hardware attacks. Side-channel attacks are out of the threat model.

Section 4.2 explains how the virtualization hardware provides memory isolation. Section 4.3 describes
the changes in the kernel memory layout to use the virtualization hardware for isolation. Section 4.4 explains

how to schedule different guests, and the different processes within those guests. Section 4.6 evaluates the

71

memory footprint, startup time, developer effort, performance, and isolation property of our solution. Section
4.7 explains how our solution can be extended to support file I/O and network access for each guest in future.

Section 4.9 discusses the related work, and Section 4.10 summarizes this chapter.

4.2 Hardware Support for Memory Isolation

In a native system, the hardware converts logical memory page numbers to physical memory page
numbers, and caches the translation in a buffer called the TLB. Virtualization uses a second level of the page
table called the Extended Page Table (EPT), that allows the host to set permissions that restrict guest access to
pages. This thesis uses this feature to occlude parts of the host kernel from being accessible in the guest mode.
This subsection will discuss in detail the need for EPT, and how the hardware address translation works.

The operating system maps logical memory page numbers (LPN) to physical memory page numbers
(PPN) by storing the mappings in the page table. When a process of any application accesses the logical
address of the memory, the hardware goes through the page table to determine the corresponding physical
address location of where the data is actually stored. Frequently access translations are cached by the
hardware system in the translation lookaside buffer also called the TLB. The TLB is a small cache on the
processor, which accelerates the memory management process by providing faster LPN to PPN mappings of
frequently accessed memory locations.

Virtual machines require 2 levels of page tables. As a virtual machine runs on a hypervisor, the guest OS
cannot access the hardware page tables like the bare-metal OS. The hypervisor gives the guest OS an illusion
that the guest OS is accessing actual physical page numbers by emulating the page tables for the guest OS.
The hypervisor actually creates its own page table called Shadow Page table, which is visible to the system
hardware. So whenever the guest OS requests for virtual address translation to physical memory address, that
request is trapped by the hypervisor, which in turn uses its shadow page tables to provide the address of the
physical memory location.

Hardware-assisted memory virtualization using EPT hardware walks the guest and the host page tables,
and reduces the number of expensive VMEXITs. In presence of EPT, the TLB cache also keeps track of
virtual memory and physical memory from the perspective of the guest OS. The TLB assigns each individual
virtual machine an address space identifier for tracking the virtual machine address space without the need to

flush the TLB cache on context switches.

72

The permissions in the EPT takes precedence over the access permissions declared in the guest page table
managed by the guest kernel. Essentially, the hardware passes the read, write, and execute permission bits in
the guest page table and the EPT through an AND gate, and uses the result to determine whether to allow the
operation or not. So, if the guest page table mapping sets write permission on a particular page, but the host
EPT disables the write permission on that page, the write access request from a guest to that page is denied.

The EPT mechanism lets the host set superseding permissions on pages accessible to guests. Our solution
leverages superseding permissions to enable EPT tables for container processes, and only allows access to

the kernel objects belonging to that particular guest container process.

4.3 Memory Layout Redesign to Leverage Hardware Support

There is a mismatch in granularity between the page-based EPT isolation mechanism, and the subjects of
isolation, which are instances of kernel data structures smaller than a page. The Linux kernel uses a cache
allocator to allocate memory for different kernel objects. A malicious guest container that has compromised
the host kernel can use simple pointer arithmetic to easily locate and access kernel objects belonging to other
co-located guests. As the hardware memory protection used to isolate guests works on a page boundary, to
correctly isolate kernel objects and the memory of each guest, our solution modifies the cache allocator to
allocate memory for objects of different guests from different pages.

Allocating and freeing data structures is a common operation inside any kernel. The Linux kernel uses
the cache allocator to allocate memory for different kernel objects. The cache allocator works on certain

observations:

* It is better to pool frequently used data structures, because these data structures are usually allocated

and freed often.
* Frequent allocation and deallocation can cause memory fragmentation.

* The next allocation can immediately use a freed object.

The allocator can make more intelligent decisions, if it is aware of concepts such as object size, page

size, and total cache size.

The cache allocator divides different objects into groups called caches. Each cache stores a different type

of object. Thus, there is one cache per object type. For instance, one cache is for inode objects (st ruct

73

inode), whereas another cache is for process descriptors (a free list of task_struct structures). The
kmalloc () interface uses a set of global caches for different sized objects called the memcache array.

The caches are further divided into slabs. The slabs are composed of one or more physically contiguous
pages. Typically, slabs are composed of only a single page. Each cache may consist of multiple slabs. Each
slab contains a number of objects, which are instances of the data structures. When some part of the kernel
requests a new object, the request is serviced from a partially full, or else an empty slab. This strategy reduces
fragmentation.

A malicious guest container that has compromised the host kernel can use simple pointer arithmetic to
access objects of the same type belonging to other containers. The problem with using caches for allocating
container objects is that all objects of the same type are allocated on the same page. This violates the complete
mediation security principle.

Our solution redesigns the cache allocator so that each guest object is allocated from its own separate
cache, called memory namespace. As a result, the object locations for each guest are separated on the page
boundary. However, the kmalloc kernel interface allocates objects using the global memcache array for
objects of different sizes. To isolate these dynamically allocated objects, our solution creates a separate copy
of the memcache array for each guest in its memory namespace.

In addition to the dynamically allocated objects, our solution also needs to isolate the statically allocated
data for each container located in the data section. In order to use the page-level protection, our solution
needs to consolidate all the data of a specific container on the same set of pages. Our solution uses a
per-CPU-like macro code to place per-container data on a separate page. Our solution introduces a new
macro called per-CON. The kernel developers can declare and define per-container objects using the macro
DEFINE_PERCON, and access these per-container objects using the macro PERCON. The host allocates
separate per-container page(s) for each container and map these new pages for each new container in the EPT
at the same per-CON page address.

The host cannot trust the kernel mapped in the guest address space to correctly allocate memory only
from its designated area. So, our solution developed a two-layered memory allocator such that when the
guest needs to allocate memory, the guest memory allocator checks if it has space in the pages assigned to
it. If not, the guest memory allocator requests more pages from the host memory allocator, which in turn

allocates pages from the memory assigned to the specific guest.

74

D Extended Page
I &EB I Tables

pid_gid;

Kerngl
AQ @/ schedule () schedule () Stru::or::unt
Y

S

ch Interrupt Interrupt | Lightweight
‘© Handlers Handlers i

.S kgid_t Hypervisor
c

(o]

o

Vmx non-rootmode Vmx root mode
. . VMX-preemption
timer interrupt timer interrupt

Figure 4.2: Interrupt delivery to host and guest

divide by zero, protection
fault, page fault

Thus, in our solution, all of a container’s dynamically created kernel objects are densely packed into
pages, shared only with other objects for that container. For static structures, the solution leverages link-time
directives, such as macros, to make the implementation effort trivial. This ease of retrofitting comes from
following existing coding conventions and design patterns, and any coding mistakes will be made apparent

by a hardware fault, thus achieving simple design and fail-safe defaults principles.

4.4 Scheduling and Interrupts

Linux, like most OSes, uses the timer interrupt to implement the preemption needed for preemptive
multitasking. To improve performance and avoid VMEXITs, our solution delivers safe interrupts and
expections directly to the guest. In order to ensure that a malicious guest cannot affect denial of service for
co-located guests and the host, our solution needs a way to periodically preempt the guest. In our solution
the host and the guest modes are separated by the virtualization hardware. So, when a guest is running, the
hardware delivers the timer interrupt and other safe interrupts and exceptions directly to the kernel in the
guest mode using the APIC Virtualization extension. The guest kernel uses this timer interrupt to switch
between different processes of the same guest. To maintain the fairness of execution time and avoid denial of
service attacks, our solution uses a special VM X-preemption timer interrupt, which causes a VMEXIT and is
delivered to the host. The host can then schedule the next guest or a host process.

In the current Linux design, the host schedules all processes including the containerized guest processes.

Containers isolate processes in the guest using the PID namespace. The process in the guest gets a different

75

PID when inside the container and another PID when outside the container. The PID namespace maps the 2
PIDs inside and outside the guest. The host gets to see all the guest and host processes. The host schedules
the guest as well as host processes using the same scheduler. If the selected process is a containerized process,
the host runs the corresponding guest process.

The maximum timeslice of each host, as well as the guest process, is determined by the timer interrupt.
For containers, as both the guest and the host share the same kernel irrespective of whether the guest or the
host process is running, the interrupts are handled by the host. In case of the timer interrupt, the host preempts
the running process and selects a new process to be run next based on its scheduling policy.

In our solution, even though the guest and the host share the same kernel, they are separated by the
second-level page tables. The task_struct of the guest processes in its PID namespace is allocated from a
separate slab, which is not mapped or directly accessible in the host. For the host to understand and control
what exactly is going on in the guest, the host will have to use expensive techniques such as virtual machine
introspection. This would defeat the purpose of using containers.

To solve this issue, our solution adds a second-level scheduler in the guest. Even though the host can’t
schedule individual guest processes, the host can still schedule the host process corresponding to a container.
Once the container process starts running, the first thing it does is check for interrupts or exceptions to
be handled, and then the guest scheduler chooses one of the guest processes to be run. However, now the
problem is, if the timer interrupt arrives, whether the guest or the host gets to handle that interrupt. If the
guest handles this interrupt, a malicious guest may never give control back to the host. On the other hand, if
the host handles the timer interrupt and preempts the guest, the guest can only run one process in its time
slice, thus affecting the performance.

Our solution trades off the performance and fairness using a special VMX-preemption timer interrupt
that traps out of the guest after a set amount of time. The standard timer interrupt is delivered and handled in
either guest or host, whichever is running when the timer interrupt arrives. The VMX-preemption timer is
initialized to a value that is a multiple of the timer interrupt. So, if the guest is running a few CPU-bound
processes, the guest scheduler can switch to other guest processes on receiving the standard timer interrupt.
When the preemption interrupt arrives, it gets delivered to the host, which preempts the guest, and runs
another guest or host process. The preemption timer interrupt ensures that the guest doesn’t monopolize
all the CPU time, but can run multiple processes before having to give control back to the host, thus not

sacrificing performance. As the preemption timer interrupt is a feature of the virtualization hardware, the

76

interrupt is only as expensive as a VMEXIT, which is the cost of context switching between the guest and the
host.

As our solution shares the same kernel in the host and the guest, the guest does not need a separate
interrupt descriptor table (IDT), which maps interrupt numbers to their respective handling functions. The
same code handles the host, as well as guest, interrupts in respective modes. But, the guest cannot be allowed
to handle all the interrupts, especially the hardware interrupts, and highly important ones such as triple fault
and EPT fault. Intel’s virtualization extensions allow the host to control whether interrupts are routed to the
guest or host during guest execution, using a structure called the VM control structure (VMCS).

Intel’s Advanced Programmable Interrupt Controller (APIC) is used for sophisticated interrupt redirection,
and to send interrupts between the processors. Intel has introduced APIC Virtualization extension (APICv) to
improve performance by speeding up the interrupt delivery to the guest. APICv is built on top of x2APIC,
which is available in modern CPUs. This virtualization extension allows inter-processor interrupts to be
delivered to the guest without causing VMEXIT. APICv creates a Virtual-APIC Page to enable virtualized
APIC read and write accesses without causing VMEXIT. The hardware checks for notification of interrupts. If
the notification is present, the hardware updates the guest interrupt status in VMCS. On the next VMENTRY,
the guest will know about the interrupt, and the guest will jump to the handler while in the guest mode.

Thus, in our solution, the hardware is configured to deliver the timer interrupt and other safe interrupts
and exceptions directly to the kernel in the vmx non-root mode, and deliver the VMX-preemption timer
interrupt, and unsafe interrupts to the vmx root mode for security and fairness. Adding a guest-level scheduler
increases the memory footprint slightly, but the guest scheduler is small and light-weight. Our solution
leverages performance optimization features of the virtual hardware interrupt delivery to efficiently deliver

interrupts to the vmx root and non-root mode.

4.5 Implementation Details

Our solution modifies the Linux kernel version 4.1.6 and supports running on Intel x86 processors in
64-bit long mode. The engineering needed to support AMD CPUs is straightforward. Our solution builds on
the virtualization hardware configuration code from Dune [48]. However, Dune uses a library OS to run guest
userspace code in the kernel in vmx non-root mode. In contrast, our solution only runs the kernel code in

kernel mode in vimx non-root mode and runs the guest userspace code in the userspace in vimx non-root mode.

77

Our solution also configures the virtualization hardware to deliver safe interrupts and exceptions directly to
the kernel in vimx non-root mode to avoid unnecessary VMEXITs as discussed in Section 4.4.

In our solution, guest containers are created in the same way as before — by making a clone ()
system call — except for the additional CLONE_NEWMEM flag. If the CLONE_NEWMEM flag is passed to the
clone () system call, our solution creates a new memory namespace for the child process, which initializes
new kmem_cache pointers for processes in this new memory namespace. All the subsequent objects for the
child process are allocated using these new cache pointers during the clone () processing.

Once all the data structures are created, if the new process is isolated in a new memory namespace, the
ret_from_fork routine, which is the address used by any newly created process, calls a special routine to
setup the VMCS data and the EPT tables for the new process, and then transitions to the vmx non-root mode,
and starts running the userspace code in the vmx non-root mode. The EPT mappings are made with read
and write permissions for the per-CON pages, the new kernel stack page for the guest, and all the memory
allocated in the new memory namespace. The EPT mappings are read-only for the kernel text and follow the
well-known virtual memory map of a process as explained in the kernel documentation [7].

If anything causes a VMEXIT in the vimx non-root mode, like a hypercall, the VMX-preemption timer
interrupt, an unsafe interrupt, a bug, or an attack, the control comes back to the special routine, which then
determines the reason for the VMEXIT and deals with it appropriately. The invariant enforced is that if any
change is required to shared data or objects, the vmx non-root mode kernel does a VMEXIT to ask the kernel
in the vmx-root mode to make the change, which will succeed only if the change requested is safe and fair.

The current implementation can create new memory isolated containers using the clone () system call,
create multiple guest processes within that memory namespace, switch contexts among these guest processes,
and handle system calls that don’t need VMEXITs such as getpid (). The implementation of filesystem
and network support is left as future work, which is discussed in Section 4.7. As this is not a complete

solution, some of the evaluation results may change with a complete solution as discussed in Section 4.8.

4.6 Evaluation

The goal of our solution is to keep the memory footprint overhead and startup time orders of magnitude
lower than a VM. To show that our solution is an economical solution to protect complex, legacy operating

systems, this section measures the developer effort in terms of lines of code changed. This section also

78

demonstrates the claim that the execution time will be proportional to the number of VMEXITs. And finally,
this section demonstrates that an attacker running in vmx non-root mode cannot access the data of another
co-located guest. Our solution is compared with the native clone () system call as the lower bound. Our
solution offers security similar to a VM at lower costs. So our solution will be worse than native clone () ;
the goal is to be significantly closer to clone () than the best case VM. Our solution is also compared with
a Firecracker MicroVM as the upper bound, because Firecracker MicroVM represents the state of the art in
building a lightweight VM of a full Linux guest as demonstrated in Figure 4.6.

It is important to note that the results in this section are preliminary, because our solution is an incomplete
prototype, which is compared to full-featured, production systems of Firecracker MicroVM. It is possible that
the overheads of our solution will increase as new features are added, but these results are still encouraging
because the differences are so pronounced, and there are known techniques to avoid VMEXITs to improve

performance. So, the results of a full-featured prototype are not expected to skew a lot.

4.6.1 Memory Footprint Overhead

This thesis defines the memory footprint overhead of a platform as the number of new pages allocated by
the kernel to start a guest using that particular platform. For containers, this is the number of pages allocated
to make the clone system call. For VMs, the memory footprint overhead is the number of pages allocated
by the host to start a new VM. This section uses the lightweight MicroVM on the Firecracker platform as a
representative example for virtual machines. For our solution, the memory footprint overhead is the number
of pages allocated to make the clone system call, including the pages allocated for the EPT table. For this
experiment, the native cloned process as well as the process cloned using our solution, exits without running
any instructions.

To measure the memory footprint overhead, the host initializes a counter in task_struct and incre-
ments the counter for every page allocated till do_exit () is called. The value of this counter at do_exit ()
is the memory footprint overhead. Table 4.2 shows the number of pages allocated for a container, VM, and
our solution. Although our solution allocates 161x pages compared to a native clone () system call, our

solution allocates about 40x fewer pages compared to a Firecracker MicroVM.

79

Native Clone MicroVM This Solution
Pages Allocated 5 32731 809
Normalized 1x 6546.2x 161.8x

Table 4.2: Memory footprint overhead for native clone, MicroVM, and our solution.

Native Clone +/- MicroVM +/- This Solution +/-
Startup Time (ms) 107 0 3597 30 1180 50
Normalized 1x - 33.61x - 11.02x -

Table 4.3: Startup time for native clone, MicroVM, and our solution.

Linux kernel KVM MicroVM This Solution
Lines of Code 173M 0.15M 65K (0.065M) +/-2845 (0.002 M)

Table 4.4: Developer effort for Linux kernel, MicroVM, and our solution.

4.6.2 Startup Time

In addition to the low memory footprint, another benefit of using containers is the fast startup time.
This subsection compares the startup time of our solution with the native clone () system call and the
Firecracker MicroVM. For the native clone() system call and our solution, startup time is the time to run the
first line of guest userspace code. For a Firecracker MicroVM, the startup time is the time to boot the VM.
Table 4.3 shows results with respective standard deviation. Our solution takes 11x more time than a native
clone () system call, but is 3x faster than the startup time of the Firecracker VM. The higher startup time

of our solution is due to the time required for configuration of the EPT table and the virtualization hardware.

4.6.3 Developer Effort

One of the goals of this design is to keep the developer effort minimal so that it is economical to apply our
solution to complex, legacy systems. Additionally, the fewer the lines of code added or changed, the easier it
is for auditors to audit and verify the design and code changes. The redesign of the memory subsystem caused
propagation of some mechanical changes throughout the code, such as using the memory namespace for
kernel object allocation (§4.3). Table 4.4 shows the lines of code needed to implement our solution compared
to the Firecracker MicroVM, KVM, and the Linux kernel. Our solution is orders of magnitude smaller than

MicroVM and KVM.

80

D Extended Page
Tables

>
O
O

getpid ()

Lightweight Hypervisor

struct mount
*root;

Container
 —

Vmx non-root mode Vmx root mode

Figure 4.3: Reduce VMEXITs by servicing system calls in vmx non-root mode

4.6.4 Effect of VMEXIT on Execution Time

The cost of using the virtualization hardware is that every context switch between each guest and the
host is the cost of handling a VMEXIT in the host. In order to improve performance, the goal is to avoid
VMEXITs as much as possible, and only pay the price of VMEXIT if absolutely necessary. Our solution
reduces VMEXITs by servicing most system calls in vmx non-root mode as shown in Figure 4.3. This
subsection compares the performance of the getpid () system call in native Linux with our solution. The
execution time for getpid () system call is the same in our solution as well as the native Linux because
our solution services the getpid () system call in the vmx non-root mode, without the need to cause a
VMEXIT.

According to the conventional wisdom, the fewer the VMEXITs, the better the performance efficiency.
To verify this conventional wisdom, this work modified the implementation of the getpid () system call
to make null hypercalls to the vmx root mode that returns without doing any computation. The plot of
the execution time for getpid () against the number of null hypercalls made demonstrates the effect of
VMEXITs on execution time as shown in Figure 4.4. The linear increase in the execution time shows that the
execution time is directly proportional to the number of VMEXITs. Thus, the goal of this design is to reduce

the number of VMEXITs needed, so that the performance is as close to the native performance as possible.

81

Effect of number of VMEXIT on execution time
55 23.23

Execution time
directly
proportional to
no. of VMEXITs

getpid() execution

Same as
native when 0O 100 200 300 400 500 600 700 800 900
0 hypercalls No. of VMEXITs

Figure 4.4: Effect of VMEXIT on getpid () execution time

4.6.5 Prevent Illegal Memory Access

One of the most important security invariants, based on the threat model, is that even if an attacker
controls the guest, and leverages kernel vulnerabilities to compromise the kernel, the attacker in the guest
still cannot compromise host or other co-located guests. Our solution achieves this property by only mapping
the kernel data specific to a particular guest in its EPT table, and setting correct permission values in the EPT
entries.

In order to verify that this protection isolates the host memory and co-located guest memory from a
malicious guest, this work introduces a new system call attack () that takes an address and an operation
flag to indicate read, write or execute operation to be performed at the given address. Effectively, just for
verification purpose, a rootkit is added in the guest, that allows the attacker to read, write or execute arbitrary
address. Whatever the goal of an attacker may be, the attacker can achieve it using this interface in the
absence of our solution.

When the attacker passed an address to the task_struct page containing host data structures, as well
as another guest data structure, any attempt to access these memory pages in the vmx non-root mode caused
an EPT fault, and the control was transferred to the kernel in vmx root mode, which realized that the guest
is trying to access a page that is not mapped in its EPT tables. As the page is not mapped in the guest EPT

table, it meant that the guest was not supposed to have access to this page. Clearly, this was an attempt at

82

YT [Erended e
Tables
syscall (..)

o y | Lightweight Hypervisor
g Attempt to touch Bug or Attack
‘© non-container structures detected. Kill the
€ container.
o
O

AO struct mount

*root;

Vmx non-root mode Vmx root mode

Figure 4.5: Our solution prevents illegal memory access by an attacker

breaking out of the memory isolation, and as a result, on recognizing this attempt, the host terminated the
guest without having to even resume the execution of the guest as shown in Figure 4.5.

This thesis notes that, in our solution, the attack surface of the host consists of both memory mappings
and the host API. Iago and semantic attacks [66] against this host API, and hardening that API in general are

a potential concern, but out of scope for now, since this is of a smaller size than KVM’s hypercall table.

4.6.6 Design Principles for Protection Mechanisms in This Solution

Least Privilege: In our solution, the kernel in the guest mode runs at a higher ring level than the host
kernel, which means it has a lower privilege than the host kernel. Even though our solution shares the same
kernel between the host and the guest, the guest can only read and execute the code. The guest kernel does
not have the privilege to write to data objects belonging to the host or other guests. Our solution reduces the
privilege of the kernel in the guest mode so that it can read or write data that belongs only to that guest. Our
solution assumes that the small piece of code added to the host kernel doesn’t have vulnerabilities.

Economy of Mechanism: This principle calls for a simple and small design. To that end, our solution
only add about 5K lines of code, and use well-known techniques such as virtio and exitless interrupt

delivery to reduce duplicating code. This design is already sharing the same kernel in the host and the guest.

83

The modifications that our solution did to the kernel are very modest. The layer of code that sets up the
environment to use and manage EPT, slab allocator changes, and the ring buffer for I/O and network packets
is very minimal.

Complete Mediation: This principle requires that every access to every object must be checked for
authority. Our solution only maps the relevant pages of the guest in its EPT. As a result, the hardware
automatically does the complete mediation.

Open Design: This principle requires the design to not be secret. The code, as well as design, is
open-sourced. Beyond this, none of the security properties depend on secret information remaining secret.

Separation of Privilege: When applied to computer systems, this principle requires that two or more
conditions must be met before access is permitted. Our solution has 2 levels of page tables. The userspace
program running in the guest cannot access any memory unless it is explicitly allowed by the guest kernel
page table and the host EPT for that guest. Thus even if the guest userspace program compromises the guest
kernel, it cannot compromise the host and other guest memory due to the EPT mappings.

Least Common Mechanism: The least common mechanism requires minimizing the number of shared
mechanisms to more than one entity. Virtual machines follow this principle well as the guest and the host
have their own separate copies of the kernel. Containers on the other hand break this principle by design by
sharing the same kernel code and data with all the guests and the host. This design allows sharing of code
between the host and guest, but not the data objects. This reduces the number of shared mechanisms between
the guest and the host, which may unintentionally compromise security. However, the small amount of new
code that our solution added to the kernel is in the shared TCB for all the guests and the host.

Psychological Acceptability: This principle suggests that the human interface for the system should
be a well-known specification. Our solution runs unmodified apps, so that the software developers do not
have to change their interactions with the system. Our solution supports the creation of containers with the
standard clone system call, and allow the guest programs to make system calls as in the case of containers.
Our solution only changes the internal workings of the system so as to be backward compatible with existing
mechanisms.

Fail-safe Defaults: This suggests basing the access decisions on permission rather than exclusion.
The way EPT is configured, the host can set read, write and execute permissions for the guest at the page
granularity. By default, each EPT entry is initialized so that the page is not accessible to the guest. Thus, any

type of access by the guest is allowed only if the host has given explicit permission for that access.

84

4.7 Future Work

Our solution doesn’t yet support filesystem and network. However, this section will describe the design

for filesystem and network subsystem. The implementation of these subsystems is left as future work.

4.7.1 Filesystem Design

Containers use the FS namespace and a unioning file system to isolate files on the host file system, while
the host for VMs emulate a separate virtual disk for each guest, which is accessed as a block virtio disk
device by the guest kernel. Our solution supports the standard mechanism for file system in containers of
unioning file systems and FS namespace, but to avoid giving the guest mode kernel full access to the host
disk, our solution creates a separate ring buffer for each guest, and allow guests to access the file system
using file-based abstraction and the POSIX interface over the virtio protocol. This subsection describes in
detail how our solution plans to support file I/O in the guests.

Containers isolate the guest file systems using FS namespace and a unioning file system such as AUFS.
AUFS projects to the guest a unified view of the files, which may be scattered over the host. As the entire
kernel is mapped in each container guest, all guests have access to AUFS driver, which in turn forwards the
requests to the corresponding underlying file system, such as ext4 or btrfs. Thus, guest containers can directly
access the disk contents through this indirection. The abstraction used by the guests is file-based and POSIX
interface.

Virtual machines, on the other hand, have a separate kernel in the guest, but the disk is managed by the
host kernel. The guest cannot directly access the files on the host’s disk. VMs solve this problem by having
the host emulate a virtual disk device to the guest, which is managed by a virtio block driver in the guest. The
guest finds this device during discovery at boot time, and registers the device for block io, which is used by
the guest file system. The virtio driver uses a mechanism called vring to communicate with the host emulator.
The virtio driver forwards the block io requests to the host, and the host forwards those requests to the disk
device driver. Once the disk driver returns the data to the host emulator, the emulator forwards the data back
to the virtio driver, and the virtio driver forwards it to the guest file system. Thus, the abstraction used by the
guests is block-based and the interface is block requests over a vring.

Our solution can’t just use the virtio system of virtual machines as is, because a) like containers, guests in

our solution do not go through the boot process and device discovery, and b) the virtual machine virtio system

85

is block-based, whereas containers use file-based abstraction and the POSIX interface to access files. In order
to solve this problem, our solution plans to modify the virtio infrastructure to fit the design. At the launch of
the container, our solution will create 2 vrings for each guest to keep track of the requests and responses from
the guest. This design will maintain the container’s file-based abstraction and the POSIX interface, but over a
vring like in the case of virtual machines. However, since our solution does not have a virtual device and its
driver, this design will need to create the wrappers around the vring interface in the guest and the host.

The guest side wrapper will register itself as a file system in the guest. When the guest userspace makes
file system calls, those calls get passed on to the VFS layer, which forwards it to the guest side-wrapper. The
guest-side wrapper then creates a request message, adds it to the vring, and makes a hypercall to the host for
it to service this request.

The host-side wrapper handles this hypercall, checks to see if there is a pending request, and if there is a
request, forwards it to the VFS layer of the host. Just like containers, this design plans to use the file system
namespace and AUFS to project a unified restricted view of the file system. So the VFS layer then forwards
the request to the AUFS driver in the host, which in turn services the request and returns the response back
through the call-chain to the host-side wrapper. The host-side wrapper creates the response message, adds
it to the response vring, and injects an interrupt in the guest. This interrupt is handled in the guest by the
guest-side wrapper. The guest-side wrapper collects the response and returns it back to the guest userspace
through the call chain.

The level of abstraction for our solution is files for efficiency, so that there is no need to duplicate the
block device drivers in the guests. All interactions between the guest and the disk are mediated for security,

but can be asynchronous for efficiency.

4.7.2 Network Design

Network support in VMs as well as containers is a solved problem. This subsection plans to leverage
known solutions, and adapt the solutions to fit the security requirements of the threat model. For any guest
to communicate with the host and the outside world, the host needs to provide special networking support.
Containers, as well as Virtual machines, have two mechanisms for this communication: a) single-root
input/output virtualization (SR-IOV) and b) virtual network. SR-IOV is hardware-assisted virtualization,

whereas virtual network is software-only virtualization. In the case of SR-IOV, each guest gets its own virtual

86

function, which acts as an ethernet device. In absence of SR-IOV, the host passes packets to guests using
another ring buffer and virt-net protocol, similar to the file system.

The SR-IOV is a specification that allows a PCle device to appear as multiple separate physical PCle
devices. A PCle device, such as an Ethernet port, that is SR-IOV-enabled with appropriate hardware and OS
support can appear as multiple, separate physical devices, each with its own PCle configuration space. The
SR-IOV enabled PCle device advertises physical functions (PFs) and virtual functions (VFs) to configure and
access these network devices. PFs have the ability to configure or control the PCle device via the PF, and
the ability to move data in and out of the device. VFs are similar to PFs but lack the configuration ability;
VFs only have the ability to move data in and out. Each SR-IOV device has a PF and each PF can have
multiple VFs associated with it. The VFs are created by the PF. After SR-IOV is enabled in the PF, the PCI
configuration space of each VF can be accessed by the bus, device, and function number of the PF. Each VF
has a PCI memory space, which is used to map its register set. The VF device drivers operate on the register
set to enable its functionality and the VF appears as an actual PCI device. So, to use SR-IOV in containers
or virtual machines, the host needs to configure the SR-IOV enabled device and set the number of virtual
network adapters, which are accessed using respective VFs. The guest needs to configure its network stack
against these VFs.

In case SR-IOV is not supported by the PCle device, the host connects the guest and the host using a
virtual network. For virtual machines, the host exposes a virtual PCle device to the guest. As the guest and
the host have a separate copy of the OS, they instantiate and manage their own network stacks. At boot time,
after discovering the PCle device, the guest configures its network stack against this device, and initializes
the virt-net driver to access this device. The virt-net driver functions similarly to the virt-io driver. It uses a
ring buffer to pass network packets to and from the host. Thus when a packet arrives at the host, the host
forwards that packet to the guest using the ring buffer and raises an interrupt in the guest to handle the packet.
Similarly, when the guest wants to send a packet, the virt-net driver forwards the packet to the host using the
ring buffer, and makes a hypercall for the host to handle the packets.

In the case of containers, in absence of SR-IOV support, the host creates a virtual ethernet (veth) to
connect the host and the guest. veth can be considered as a virtual network cable with connectors at both ends.
The guest network stack can be isolated from the host and the other guests using the network namespace.
The host moves one end of the veth to the guest network namespace, and the other end is connected to the

host network stack. Often the host end is connected to a bridge created in the host so that all the guests

87

can communicate with each other and the host. Unlike VMs, the container guests share the kernel, but the
network namespace instantiates a separate network stack for the container configured with its end of the veth.

Our solution plans to support the standard mechanisms for networking in containers. If a SR-IOV enabled
network adapter is present, the guest network stack is configured with the virtual functions exposed by the
device. Our solution also plans to change the driver for these devices so that the objects for a particular
guest are allocated from its memory namespace, which is isolated from the host and other guests by the
second-level page table. If SR-IOV support is missing, our solution plans to use the veth to connect the host
and the guest. However, our solution plans to change the veth driver to create the objects for each container
endpoint in a separate page, which are then mapped into that guest’s address space using EPT. Also, as the
guest and host are isolated by memory namespace, our solution plans to add a transmit and receive routine in
the veth driver code. Our solution creates another ring buffer for network packets, just like the file system,
and then plans to use the same mechanism described above to transfer the network packets between the host
and the guest.

Thus, our solution plans to adapt well known solutions for network support in VMs and containers.
The networking pass-through for guests has rapidly evolved over the last 10 years in a way storage has not,
especially as hardware like SR-IOV, and user-space solutions like Arrakis [161], IX [49], Snap [148]. Our
solution plans to use these well known techniques to isolate the packets sent and received by the guest, and

enforce complete mediation either in the hardware or the vmx root mode kernel.

4.8 Discussion

VMs can use a technique called kernel Same-page Merging (KSM) to increase the density of guests on a
particular host, and use snapshots to speed up the startup costs of VMs [37]. Although these are similar goals
to our solution, our solution’s approach can reduce the memory footprint of a guest more than the gains from
using KSM because our solution requires more fine-tuning compared to the coarse KSM approach.

As an incomplete prototype is used for evaluation in Section 4.6, some of the results may change in the
future after the implementation of the filesystem and network support. This thesis expects an increase in the
number of lines of code, commensurate with the order of magnitude. Adding support for the filesystem and
the network may cause more VMEXITs, and slow down the performance of the system. In such a case, more

engineering effort will be needed to fine-tune the system to avoid VMEXITs as much as possible. Changing

88

the memory layout of some of the objects specific to the guest may have idiosyncratic effects on cache hit
ratios, which needs to be further analyzed, but is also left as future work. As the prototype is incomplete, this
thesis cannot definitively declare the problem as solved. Instead, this thesis claims this work is a significant

step in the direction of achieving the best of both the container and the VM world.

4.9 Related Work

This section discusses related work divided into 4 major groups. The first group discusses the techniques
to isolate drivers from the core kernel. Next, this section describes different options to virtualize the supervisor
mode or the ring O in the case of Intel x86. Then this section discusses other research exploring the design
points on the spectrum between VMs and containers. The section concludes with a collection of other

research works related to the solution described in this chapter.

4.9.1 Isolating Drivers from the Core Kernel

There is an area of research focused on isolating the faults in the drivers from the core kernel. This

isolation is achieved by using one of the following five techniques as also discussed by Herder et al. [111].

4.9.1.1 Kernel Wrapping

First, wrapping and interposition are used to safely run untrusted drivers inside the OS kernel. In this
technique, the idea is to interpose and verify all parameters on calls between the core kernel and device
drivers. For example, SafeDrive [213] uses wrappers to enforce type safety constraints and system invariants
for extensions written in C. Nooks [190] combines in-kernel wrapping and hardware-enforced protection
domains to trap common faults and permit recovery. Similarly, the solution in this chapter plans to interpose
and verify the I/O and network syscalls, and only allow access to the files or packets that belong to the

container.

4.9.1.2 Virtualization

Data corruption problems, which are one of the most common driver faults, can be isolated using Virtual
memory protection. However, this technique can’t catch deadlock errors caused by improper disabling of

interrupts. Virtualization can be used to run services in separate hardware-enforced protection domains.

&9

Examples of virtual machine (VM) approaches are VMware [189] and Xen [95]. However, the driver faults
can still propagate and crash the core OS. Instead, each driver needs to run in a para-virtualized OS in a
dedicated VM [134]. The client OS running in a separate VM accesses its devices by issuing virtual interrupts
to the driver OS. The solution in this chapter leverages virtualization hardware to provide memory isolation

for guests.

4.9.1.3 User-mode Drivers

One can prevent drivers from accessing privileged address space, executing privileged instructions, and
corrupting the kernel, by lowering the privilege level of drivers to user level. However, this lowering of
privilege level causes an additional trap and return to change privilege level for every call into the driver, thus
incurring a huge performance penalty. MINIX 3 [110] encapsulates untrusted drivers in a private address
space of user-mode process. Mach [102] experimented with user-mode drivers directly linked into the
application. L4Linux [107] runs drivers in a para-virtualized Linux server. SawMill Linux [99] focuses on
performance rather than driver isolation. User-mode drivers were also used in commodity systems such as
Linux and Windows. By using the virtualization hardware, the solution in this chapter effectively runs the

guest kernel at a lower privilege, but not in the userspace.

4.9.1.4 Software Fault Isolation (SFI)

Software fault isolation (SFI) such as VINO [64] provides similar the benefits to a privilege level change,
but is difficult to implement for non-contiguous range of addresses. It is cheaper to call into and out of SFI
code as compared to lowering the privilege level, but SFI code executes slower. Additionally, SFI does not
easily support recovery using copy-on-write, which is supported by hardware memory protection. XFI [91]
combines static verification with run-time guards for system state integrity and memory access control. SFI

technique is orthogonal to our solution.

4.9.1.5 Language-based Protection

Some solutions use language-based protection and formal verification to isolate drivers. OKE [54]
instruments an extension’s object code according to a policy corresponding to the user’s privileges using a
customized Cyclone compiler. Singularity [116] combines type-safe languages with protocol verification

and seals processes after loading. Redleaf [158] uses only type and memory safety of the Rust language for

90

isolation instead of the hardware address space. Tock [135] relies on Rust’s language safety for isolation of
a collection of device drivers from the kernel. The seL.4 kernel [128] formally verified the microkernel by
mapping the design onto a provably correct implementation. Devil [153] enables low-level code generation
and consistency checking. Dingo [173] reduces concurrency and formalizes protocols to simplify the
communication between drivers and the OS. Although the solution in this chapter has not been formally

verified, this thesis posits that it will be easier to do so because of its small size.

4.9.2 Virtualizing Ring 0

Some related works isolate a small piece of a Linux kernel from the rest of the kernel, and rely on
different hardware protection mechanisms to enforce the isolation. These techniques effectively de-privilege
part of the Linux kernel.

The PerspicuOS system [85] virtualizes the ring 0 hardware privilege level in x86 architecture by
turning on the Write-Protect Enable (WP) bit in the CRO register, which enforces read-only policies even
on supervisor-mode writes. The OS is divided using a nested kernel architecture that uses a small isolated
trusted piece, to remove the privilege from the rest of the kernel by enforcing memory access control. Even
though the entire operating system, including untrusted components, operate at the highest hardware privilege
level, it is de-privileged by the nested kernel such that the nested kernel manages all the page-tables, and
configures all the MMU mappings to page-table pages as read-only. Thus, PerspicuOS de-privileges outer
kernel code by replacing instances of writes to CRO with invocations of nested kernel services and restricting
outer kernel code execution to validated, write-protected code.

SKEE [43] is another system that provides an isolated lightweight execution environment at the same
privilege level of the kernel for the ARM architecture. The memory regions used by SKEE are carved out
of the memory ranges accessible to the kernel. SKEE also instruments the kernel code to remove certain
MMU control instructions that may change the memory translation tables. Thus, SKEE prevents the kernel
from managing its own memory translation tables, and forces the kernel to switch to SKEE to modify the
system’s memory layout. The switch to SKEE passes through a carefully designed switch gate so that its
execution sequence is atomic and deterministic. SKEE in turn verifies that the requested modification does
not compromise the isolation of the protected address space.

DIKernel [147] is another sandbox for kernel extensions by inserting a layer of indirection. DIKernel is

implemented by inserting a layer between the base kernel and its extensions. It intercedes all interactions

91

between the extensions and the kernel to enforce isolation and compatibility with existing extensions. This
special layer called DI-switcher has three roles. First, it enforces memory access isolation between the base
kernel and the extensions. The second role of the DI-switcher is interposition, it supervises all inter-domain
control transfers and provides a secure interface between base kernel and extensions. The third role of
the DI-switcher is to ensure compatibility with the existing extension code. Redirecting the kernel APIs
by hooking the kernel symbols, and changing the stack, heap into the isolated memory region happens
transparently without altering any existing codes or logic of the extension.

Another approach to isolating parts of the Linux kernel is to use compiler techniques. Virtual Ghost [81]
combines compiler instrumentation and run-time checks on operating system code, to create ghost memory
that the operating system cannot read or write. Virtual Ghost then interposes a thin hardware abstraction layer
in this ghost memory between the kernel and the hardware, that provides a set of operations that the kernel
must use to manipulate hardware. Even though the hardware abstraction layer runs at the same privilege level
as the rest of the kernel, unlike other solutions, Virtual Ghost uses compiler techniques rather than hardware
page protection to secure its own code and data. The OS is not able to access the secure ghost memory pages
of the hardware abstraction layer as all the OS code is first passed through LLVM bitcode form and translated
to native code by the Virtual Ghost compiler. During this phase, the compiler instruments memory access
instructions in the kernel, and adds CFI checks to prevent by-passing the instrumentation. Virtual Ghost also
extends the MMU configuration instructions in the hardware abstraction layer to ensure that a new MMU
configuration does not make ghost memory accessible to the kernel.

On the other hand, the solution in this chapter uses the x86 virtualization architecture to isolate the
guest-specific parts from the rest of the host kernel. The kernel memory layout redesign techniques used by
our solution to isolate the guest and the host kernel are orthogonal to how the isolation is enforced, whether
by virtualizing the ring 0 in hardware like x86 vt-d, in software like the PerspicuOS or SKEE, or by using

compiler techniques like Virtual Ghost.

4.9.3 Design Points on the Spectrum Between VMs and Containers

Recently, researchers have started exploring different design points on the spectrum of VMs and Contain-
ers to bridge the gap between VMs and containers in terms of security. New solutions are using library OS,
unikernel, or running a lightweight virtual machine. While these virtualization techniques try to reconcile

the security and resource efficiency of containers and virtual machines, they have to build new runtimes

92

Containers Library OS Unikernel + LibOS Unikernel MicroVM Full VM

SEREVI|E 8.

Security Spectrum |ghtVM Nabla Containers contomers Firecracker

g Worst Best @

Full VM MicroVM Unikernel + LibOS Unikernel Library oS Containers
¢+ IV
S \NE
. =) >
!gng,xg. Firecrocker nghtVM Nabla Containers “nIK c gVIsor \
Resource Spectrum

g Worst Best g

Full VM MicroVM Unikernel Unikernel + LibOS Library oS Containers

CE Ey

gg‘tg Firecracker ““IK Na"l» Contrinere
Reuse Legacy Code ' Na'iz Contpine:

Worst Best g

Figure 4.6: Container technologies on a spectrum for security, resource consumption, legacy code reuse. The
blue arrow shows the design point on the spectrum explored by our solution.

from scratch, or still use a lighter weight VM, or use the unikernel and Library OS to isolate the guests from
each other and the host. The solution in this chapter on the other hand explores a different design point
on the spectrum where instead of recreating a new image for every single application, the design leverages
the variety of features available in a stock Linux kernel, while solving most of the same problems as these
different virtualization techniques. As shown in Figure 4.6, the design point in this chapter is towards the
right side for most of the metrics compared to these virtualization techniques.

Manco et al. [146] use compiler techniques to build a lightweight VM targeted for specific applications
using unikernels. The LightVM solution provides faster boot-times by redesigning the Xen’s control plane.
They reduce the interactions with the hypervisor to the minimum by transforming the centralized operation
of Xen’s control plane to a distributed one. In addition, they use Tinyx, a compiler tool to create tailor-made,
trimmed-down Linux virtual machines for a given application. This tool creates unikernels by directly linking
a minimalistic operating system such as MiniOS with the target application. The resulting VM is typically
only a few megabytes in size and can only run the target application. This approach moves the OS in the

userspace, and only links pieces of the OS components needed by that specific application.

93

IBM’s Nabla containers [204] run a unikernel application as a process on a specialized virtual machine
monitor. They replace the general-purpose monitor, like QEMU, with Nabla Tender, which is a unikernel-
specific monitor. The idea is to improve security by reducing the number of allowed system calls. Nabla
Tender translates the hypercalls made by the unikernel into system calls, and uses a seccomp policy to block
other system calls that are not needed. Nabla Tender combined with a unikernel runs as a userspace process
on the host, and uses less than seven system calls to interact with the host. Nabla Tender acts as a library OS
to run the unikernel.

Google uses gVisor [61] in CloudML, Cloud Functions, and Google Computing Platform’s (GPC) App
Engine for sandboxing. gVisor uses Sentry, as a library OS, which is a userspace kernel implementation that
intercepts and handles the system calls from applications to the host kernel. gVisor sandboxes an application
from the host by creating a software security boundary, and restricting the system calls that an application can
use. Sentry implements most of the kernel functionality, and only uses less than 20 Linux syscalls to interact
with the host kernel. Both gVisor and Nabla use less than 10% of the Linux system calls to communicate with
the host, and sandbox an application using a specialized guest kernel in userspace like a Library OS [196].

On the other end of the spectrum is the idea to use lightweight virtual machines by stripping off
the unnecessary code and functionality in the hypervisor. AWS Lambda and AWS Fargate use Amazon
Firecracker [36], which is a hypervisor that creates lightweight virtual machines (MicroVMs) specifically
for serverless operational models in multi-tenant environment. Similar to the unikernel model, Firecracker
provisions only a small subset of the emulated devices and functionality that are absolutely necessary for
the guest operations, so that the microVMs have a much smaller attack surface, memory footprint, and boot
time compared to traditional VMs. Firecracker provisions a maximum of four emulated devices for each
microVM: virtio-block, virtio-net, serial console, and a 1-button keyboard controller used only to stop the
microVM. MicroVMs do not share files with the host, instead the VM images are exposed to the guest using
File Block Devices, and the network devices are built as tap devices over a network bridge.

Kata container [168] is another approach to build light-weight VMs by creating a highly-customized
QEMU-KVM hypervisor, called gemu-lite, to achieve high-perfomance for VM-based container. QEMU-lite
is a lightweight version of QEMU with 80% of devices and packages removed. Additionally, Kata container
reduces the boot time by using VM-Templating, which snapshots a running Kata VM instance, and uses this
snapshot to start new Kata VMs. Kata container uses Intel’s virtualization technology, similar to our solution,

but only creates light-weight VMs.

94

4.9.4 Other Related Work
4.9.4.1 Non-uniform Virtual Address Space

In the solution in this chapter, parts of the host Linux kernel are not accessible while running the guest
context due to EPT mappings, which keep guests isolated from each other. Some systems isolate parts
of a process from the rest of the process. Wedge [53] creates privilege separation and isolation among
sthreads, which otherwise share the address space of the same Linux process. Wedge also helps developers
refactor existing applications into multiple isolated compartments. Shreds [73] provide isolated compartments
of code and data within a process using the architectural support for memory domains in ARM CPUs, a
compiler toolchain, and kernel support. SpaceJMP [90] makes address spaces first-class objects separate
from processes. In SpaceJMP, applications can use memory larger than the available virtual address bits
allow, maintain pointer-based data structures beyond process lifetime, and share large memory objects among
processes. SpaceJMP does not support applications that require isolation or privilege separation within a
process, because a SpaceJMP context switch is not associated with a mandatory control transfer.

IwCs [141] provide in-process isolated contexts, privilege separation, and snapshots. 1wCs are fully
independent of threads, require no compiler support, and rely on page-based hardware protection only. Each
IwC has its own virtual address space, set of page mappings, file descriptor bindings, and credentials. Within

a process, a thread executes within one IwC at a time and can switch between IwCs.

4.94.2 Containers as Packaging Instead of a Virtualization Technique

In addition to being a virtualization technique, Containers are also referred to as a packaging technique.
First Docker, and more recently Kubernetes introduce toolchains that make managing and orchestrating the
containers easier. These tools do not actually run the container, but handle the image building, orchestration,
and management of the container instances. The Kubernetes Container Runtime Interface (CRI) defines an
API between Kubernetes and the container runtime. The container runtime implements the Open Container
Initiative (OCI) specifications for images and containers. The OCI also provides an implementation of
the spec called runc, which is a tool for spawning and running containers. Thus, any new virtualization
technique for containers just needs to implement their own OCI compliant runtime which can communicate
with Kubernets using CRI, and Kubernetes can manage the orchestration of containers on that virtualization

technology.

95

4.9.4.3 Leveraging Virtualization Hardware for More Than Virtual Machines

Dune [48] pioneered the new idea of a kernel applying VT-x to individual processes, rather than a VMM
applying VT-x to entire guest operating systems. Dune thereby gives processes direct access to privileged
hardware, which is leveraged by IX [50] to improve the I/O performance for network packets. IX separates
the data and control plane for the TCP/IP stack, and moves the control plane to the userspace, which manages
the network devices, made manageable in the userspace using Dune.

The solution in this chapter also uses the same idea of applying VT-x to individual containers, which are
seen as just another process by the host. However, the goals of our solution and Dune or IX differ completely,

even though the underlying idea is similar.

4.10 Summary

This chapter takes the first steps to demonstrate a new approach to economically isolate containers in a
complex, legacy operating system such as the Linux kernel. Our solution isolates each guest’s memory into
the memory namespace, and protects the memory namespace using second-level hardware page tables. This
chapter redesigned the memory subsystem of the Linux kernel to logically isolate the memory of each guest
on a separate set of pages. The lighter weight of containers is maintained by sharing the OS between the
container and the host, and the memory isolation of VMs is provided by isolating the memory namespace
using a second set of page tables like EPT. Finally, this chapter also showed how the design choices are
guided by secure design principles.

This chapter also takes the first steps to demonstrate how to retrofit security on existing kernel design,
but observes that retrofitting security requires creatively rethinking the design. The implementation of the
network and the file system design is left as the future work, but it is not expected to significantly skew the
results in section 4.6. Thus, due to incomplete prototype, this chapter is a significant step in the direction of

achieving the best of both the container and the VM world, but it is a long way to go to achieve that goal.

96

CHAPTER 5: CONCLUSION

This thesis shows that encapsulating the threats in a complex, legacy operating system like Linux using
virtual machines is an imperfect solution, because the strong semantic gap is often obviated by generous
threat models. This thesis demonstrates two instances of a better approach to protecting a legacy system
like Linux by using economical and practical techniques to retrofit security design principles in the existing
kernel design. This thesis economically removed a source of privilege escalation in the Linux userspace
by changing only 715 lines of code in the kernel to design and implement a simple, efficient framework
for migrating policies from setuid-to-root binaries into the kernel. This thesis obviated the need for these
setuid-to-root binaries to run with escalated privileges in nearly all situations, and de-privileged about 12,717
lines of trusted code. Finally, this thesis takes the first steps to economically isolate the memory of containers,
and protect the host as well as the guest memory to achieve the goal of VM-like memory isolation properties
for containers. This thesis first logically isolates the memory of containers, and then physically isolates that
memory using virtualization hardware.

This thesis notes that it is not trivial or mechanical to just apply security design principles arbitrarily to
any code. There is an art to this process of finding structural pinch points, that one can then leverage and

creatively enforce security design principles, but finding them requires some skill and luck.

97

BIBLIOGRAPHY

[1] Cve - search results. https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=
namespace+privilege+escalation. (Accessed on 08/09/2022).

[2] Draugr. Online at https://code.google.com/p/draugr/.

[3] E.W. Dijkstra archive: On the reliability of programs. https://www.cs.utexas.edu/users/
EWD/transcriptions/EWD03xx/EWD303.html.

[4] FatKit. Online at http://4tphi.net/fatkit/.
[5] Foriana. Online at http://hysteria.sk/~niekt0/foriana/.

[6] GREPEXEC: Grepping Executive Objects from Pool Memory). Online at http://uninformed.
org/?v=4g&a=2&t=pdf.

[7] https://www.kernel.org/doc/documentation/x86/x86_64/mm.txt. https://www.kernel.org/
doc/Documentation/x86/x86_64/mm.txt. (Accessed on 08/29/2022).

[8] idetect. Online at http://forensic.seccure.net/.
[9] Intel 64 and IA-32 Architectures Developer’s Manual: Vol. 3B.
[10] Intel Software Guard Extensions (Intel SGX) Programming Reference.

[11] Kernel object hooking rootkits (koh rootkits). http://my.opera.com/
330205811004483jash520/blog/show.dml/314125.

[12] Kntlist. Online at http://www.dfrws.org/2005/challenge/kntlist.shtml.

[13] Linus torvalds: ’i don’t trust security people to do sane things’ — zdnet. https:
//www.zdnet.com/article/linus-torvalds—i-dont—-trust-security-
people-to-do-sane-things/. (Accessed on 07/31/2022).

[14] Linux security, then and now — esecurity planet. https://www.esecurityplanet.com/
trends/linux-security-then—-and-now/. (Accessed on 07/31/2022).

[15] Isproc. Online at http://windowsir.blogspot.com/2006/04/1lsproc-released.
html.

[16] Memparser. Online at http://www.dfrws.org/2005/challenge/memparser.shtml.
[17] PROCENUM. Online at http://forensic.seccure.net/.

[18] Red Hat Crash Utility. Online at http://people.redhat.com/anderson/.

[19] The Linux Cross Reference. Online at http://1xr.linux.no/.

[20] The Volatility framework. Online at https://code.google.com/p/volatility/.

[21] Volatilitux. Online at https://code.google.com/p/volatilitux/.

[22] Windows Memory Forensic Toolkit. Online at http://forensic.seccure.net/.

98

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=namespace+privilege+escalation
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=namespace+privilege+escalation
https://code.google.com/p/draugr/
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
http://4tphi.net/fatkit/
http://hysteria.sk/~niekt0/foriana/
http://uninformed.org/?v=4&a=2&t=pdf
http://uninformed.org/?v=4&a=2&t=pdf
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
http://forensic.seccure.net/
http://my.opera.com/330205811004483jash520/blog/show.dml/314125
http://my.opera.com/330205811004483jash520/blog/show.dml/314125
http://www.dfrws.org/2005/challenge/kntlist.shtml
https://www.zdnet.com/article/linus-torvalds-i-dont-trust-security-people-to-do-sane-things/
https://www.zdnet.com/article/linus-torvalds-i-dont-trust-security-people-to-do-sane-things/
https://www.zdnet.com/article/linus-torvalds-i-dont-trust-security-people-to-do-sane-things/
https://www.esecurityplanet.com/trends/linux-security-then-and-now/
https://www.esecurityplanet.com/trends/linux-security-then-and-now/
http://windowsir.blogspot.com/2006/04/lsproc-released.html
http://windowsir.blogspot.com/2006/04/lsproc-released.html
http://www.dfrws.org/2005/challenge/memparser.shtml
http://forensic.seccure.net/
http://people.redhat.com/anderson/
http://lxr.linux.no/
https://code.google.com/p/volatility/
https://code.google.com/p/volatilitux/
http://forensic.seccure.net/

[23] The openldap project. http://www.openldap.org/project/, Aug. 1998.

[24] netfilter. http://www.netfilter.org/, Dec. 2001.

[25] The automounter autofs. http://www.autofs.org/, Sep. 2002.

[26] Py-notify. http://home.gna.org/py—-notify/, Dec. 2008.

[27] SOCK_RAW Demystified. http://www.sock—-raw.org/papers/sock_raw, May 2008.

(28]
[29]

[30]
[31]
[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

AppArmor. http://wiki.apparmor.net/index.php/Main_Page, Jun. 2011.

Kernel mode setting. https://wiki.archlinux.org/index.php/Kernel_Mode_
Setting, Jan. 2011.

Chrome owned by exploits in hacker contests, but google’s $1m purse still safe — wired. March 2012.
Debian Popularity Contest. http://popcon.debian.org/by_inst, Feb. 2013.

Lintian Reports : setuid-binary. http://lintian.debian.org/tags/setuid-binary.
html, Feb. 2013.

Ubuntu Popularity Contest. http://popcon.ubuntu.com/by_inst, Feb. 2013.

Pwn20wn 2016: Windows, OS X, Chrome, Edge, Safari all hacked - gHacks tech news. March 2016.
(Accessed on 04/25/2017).

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity. In CCS, pages
340-353, 2005.

Alexandru Agache, Marc Brooker, Alexandra lordache, Anthony Liguori, Rolf Neugebauer, Phil
Piwonka, and Diana-Maria Popa. Firecracker: Lightweight virtualization for serverless applications.
In 17th usenix symposium on networked systems design and implementation (nsdi 20), pages 419-434,
2020.

Kavita Agarwal, Bhushan Jain, and Donald E Porter. Containing the hype. In Proceedings of the 6th
Asia-Pacific Workshop on Systems, pages 1-9, 2015.

Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe Martin, and Carl
Porth. BAR Fault Tolerance for Cooperative Services. In SOSP, pages 45-58, 2005.

AMD. AMD I/O Virtualization Technology (IOMMU) Specification Revision 1.26. White Paper,
AMD: http://support.amd.com/us/Processor_TechDocs/34434-I0MMU-Rev_1.
26_2-11-09.pdf, Nov 2009.

Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative technology for cpu based
attestation and sealing. HASP *13, 2013.

Apple. Mac OS X Server V10.6 - Open Directory Administration. White Pa-
per, Apple: http://manuals.info.apple.com/MANUALS/1000/MA1180/en_US/
OpenDirAdmin_v10.6.pdf, August 2009.

Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xiaolan Zhang, and Nathan C. Skalsky.
Hypersentry: enabling stealthy in-context measurement of hypervisor integrity. In CCS, pages 38-49,
2010.

99

http://www.openldap.org/project/
http://www.netfilter.org/
http://www.autofs.org/
http://home.gna.org/py-notify/
http://www.sock-raw.org/papers/sock_raw
http://wiki.apparmor.net/index.php/Main_Page
https://wiki.archlinux.org/index.php/Kernel_Mode_Setting
https://wiki.archlinux.org/index.php/Kernel_Mode_Setting
http://popcon.debian.org/by_inst
http://lintian.debian.org/tags/setuid-binary.html
http://lintian.debian.org/tags/setuid-binary.html
http://popcon.ubuntu.com/by_inst
http://support.amd.com/us/Processor_TechDocs/34434-IOMMU-Rev_1.26_2-11-09.pdf
http://support.amd.com/us/Processor_TechDocs/34434-IOMMU-Rev_1.26_2-11-09.pdf
http://manuals.info.apple.com/MANUALS/1000/MA1180/en_US/OpenDirAdmin_v10.6.pdf
http://manuals.info.apple.com/MANUALS/1000/MA1180/en_US/OpenDirAdmin_v10.6.pdf

[43] Ahmed M Azab, Kirk Swidowski, Rohan Bhutkar, Jia Ma, Wenbo Shen, Ruowen Wang, and Peng
Ning. Skee: A lightweight secure kernel-level execution environment for arm. In NDSS, volume 16,
pages 21-24, 2016.

[44] Sina Bahram, Xuxian Jiang, Zhi Wang, Mike Grace, Jinku Li, Deepa Srinivasan, Junghwan Rhee, and
Dongyan Xu. Dksm: Subverting virtual machine introspection for fun and profit. In SRDS, pages
82-91. IEEE Computer Society, 2010.

[45] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. Automatic inference and enforcement of kernel data
structure invariants. In ACSAC, pages 77-86, 2008.

[46] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, lan
Pratt, and Andrew Warfield. Xen and the art of virtualization. In SOSP, pages 164-177, 2003.

[47] Securing Debian Manual: Bastille Linux. http://www.debian.org/doc/manuals/
securing-debian-howto/ch-automatic-harden.en.html#s6.2, Apr. 2012.

[48] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazieres, and Christos Kozyrakis.
Dune: Safe user-level access to privileged cpu features. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), pages 335-348, 2012.

[49] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and Edouard
Bugnion. IX: A Protected Dataplane Operating System for High Throughput and Low Latency. In
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pages 49-65,
Broomfield, CO, October 2014. USENIX Association.

[50] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and Edouard
Bugnion. Ix: A protected dataplane operating system for high throughput and low latency. In //th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pages 49—65, 2014.

[51] Nikhil Bhatia. Performance Evaluation of Intel EPT Hardware Assist. VMware ESX white paper),
October 2012.

[52] M. Bishop. Managing Superuser Privileges under UNIX. Technical report, Research Institute for
Advanced Computer Science, NASA Ames Research Center, 1986.

[53] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge: Splitting applications into
reduced-privilege compartments. USENIX Association, 2008.

[54] Herbert Bos and Bart Samwel. Safe kernel programming in the oke. In 2002 IEEE Open Architectures
and Network Programming Proceedings. OPENARCH 2002 (Cat. No. 02EX571), pages 141-152.
IEEE, 2002.

[55] Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and Ahmad-
Reza Sadeghi. Software grand exposure:{SGX} cache attacks are practical. In 11th USENIX Workshop
on Offensive Technologies (WOOT 17), 2017.

[56] Bjorn Bringert. Executable based access control. Technical report, Chalmers University of Technology,
2003.

[57] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Sugerman, and Edward Y. Wang.
Bringing virtualization to the x86 architecture with the original vmware workstation. ACM TOCS,
30(4):12:1-12:51, November 2012.

100

http://www.debian.org/doc/manuals/securing-debian-howto/ch-automatic-harden.en.html#s6.2
http://www.debian.org/doc/manuals/securing-debian-howto/ch-automatic-harden.en.html#s6.2

[58] Thomas Wolfgang Burger. Intel Virtualization Technology for Directed I/O (VT-d): Enhancing
Intel platforms for efficient virtualization of I/O devices. http://software.intel.com/en-
us/articles/intel-virtualization-technology—-for-directed-io-vt-
d-enhancing-intel-platforms—-for—-efficient-virtualization-of-io-—
devices/, February 2009.

[59] James Butler and Greg Hoglund. Vice—catch the hookers. Black Hat USA, 61:17-35, 2004.

[60] Xiang Cai, Yuwei Gui, and Rob Johnson. Exploiting unix file-system races via algorithmic complexity
attacks. In Oakland, pages 27-41, 2009.

[61] Tyler Caraza-Harter and Michael M Swift. Blending containers and virtual machines: a study of
firecracker and gvisor. In Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, pages 101-113, 2020.

[62] Martim Carbone, Matthew Conover, Bruce Montague, and Wenke Lee. secure and robust monitoring
of virtual machines through guest-assisted introspection. In RAID, pages 22—41. Springer-Verlag,
2012.

[63] Martim Carbone, Weidong Cui, Long Lu, Wenke Lee, Marcus Peinado, and Xuxian Jiang. Mapping
kernel objects to enable systematic integrity checking. In CCS, pages 555-565, 2009.

[64] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado, Periklis Akritidis, Austin Don-
nelly, Paul Barham, and Richard Black. Fast byte-granularity software fault isolation. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, pages 45-58, 2009.

[65] Ramesh Chandra, Taesoo Kim, Meelap Shah, Neha Narula, and Nickolai Zeldovich. Intrusion recovery
for database-backed web applications. In SOSP, pages 101-114, 2011.

[66] Stephen Checkoway and Hovav Shacham. lago attacks: Why the system call api is a bad untrusted rpc
interface. In ASPLOS, 2013.

[67] Stephen Checkoway and Hovav Shacham. Iago attacks: Why the system call api is a bad untrusted rpc
interface. ACM SIGARCH Computer Architecture News, 41(1):253-264, 2013.

[68] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H Lai. Sgxpectre
attacks: Leaking enclave secrets via speculative execution. arXiv preprint arXiv:1802.09085, 2018.

[69] Hao Chen, David Wagner, and Drew Dean. Setuid demystified. In USENIX Security, pages 171-190,
2002.

[70] Hong Chen, Ninghui Li, and Ziqing Mao. Analyzing and Comparing the Protection Quality of Security
Enhanced Operating Systems. In NDSS, 2009.

[71] Peter M. Chen and Brian D. Noble. When virtual is better than real. In HotOS, pages 133—. IEEE
Computer Society, 2001.

[72] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A. Waldspurger,
Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating systems. In ASPLOS, pages 2—13, 2008.

[73] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu. Shreds: Fine-grained
execution units with private memory. In 2016 IEEE Symposium on Security and Privacy (SP), pages
56-71. IEEE, 2016.

101

http://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/
http://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/
http://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/
http://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/

[74] Andrew Chi, Robert A Cochran, Marie Nesfield, Michael K Reiter, and Cynthia Sturton. A system to
verify network behavior of known cryptographic clients. In /4th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 177-195, 2017.

[75] Russell Coker. Benchmarking Mail Relays and Forwarders. In OSDC Conference, 2006.

[76] Jonathan Corbet. A new adore root kit. Linux Weekly News, March 2004. http://lwn.net/
Articles/75990/.

[77] Jonathan Corbet. File-based capabilities. http://lwn.net/Articles/211883/, November
2006.

[78] Jonathan Corbet. Rootless X. http://lwn.net/Articles/341033/, July 2009.

[79] Russ Cox, Eric Grosse, Rob Pike, Dave Presotto, and Sean Quinlan. Security in Plan 9. In USENIX
Security, pages 3—-16, 2002.

[80] Andrew Cristina, Lodovico Marziale, Golden G. Richard Iii, and Vassil Roussev. Face: Automated
digital evidence discovery and correlation. In Digital Forensics, 2005.

[81] John Criswell, Nathan Dautenhahn, and Vikram Adve. Virtual ghost: Protecting applications from
hostile operating systems. ACM SIGARCH Computer Architecture News, 42(1):81-96, 2014.

[82] Weidong Cui, Marcus Peinado, Zhilei Xu, and Ellick Chan. Tracking rootkit footprints with a practical
memory analysis system. In USENIX Security, pages 42-42, 2012.

[83] Thomas Dangl, Benjamin Taubmann, and Hans P Reiser. Agent-based file extraction using virtual
machine introspection. In Nordic Conference on Secure IT Systems, pages 174—191. Springer, 2020.

[84] Thomas Dangl, Benjamin Taubmann, and Hans P Reiser. Rapidvmi: Fast and multi-core aware active
virtual machine introspection. In The 16th International Conference on Availability, Reliability and
Security, pages 1-10, 2021.

[85] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell, and Vikram Adve. Nested
kernel: An operating system architecture for intra-kernel privilege separation. In Proceedings of
the Twentieth International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 191-206, 2015.

[86] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: malware analysis via hardware
virtualization extensions. In CCS, pages 51-62, 2008.

[87] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke Lee. Virtuoso:
Narrowing the semantic gap in virtual machine introspection. In Oakland, pages 297-312, 2011.

[88] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Giffin. Robust signatures
for kernel data structures. In CCS, pages 566-577. ACM, 2009.

[89] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen. Revirt:
enabling intrusion analysis through virtual-machine logging and replay. In OSDI, 2002.

[90] Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan Milojicic, Reto Achermann, Paolo Faraboschi,
Wen-mei Hwu, Timothy Roscoe, and Karsten Schwan. Spacejmp: programming with multiple virtual
address spaces. ACM SIGPLAN Notices, 51(4):353-368, 2016.

102

http://lwn.net/Articles/75990/
http://lwn.net/Articles/75990/
http://lwn.net/Articles/211883/
http://lwn.net/Articles/341033/

[91] Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and George C Necula. Xfi: Software
guards for system address spaces. In Proceedings of the 7th symposium on Operating systems design
and implementation, pages 75-88, 2006.

[92] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S.
Tschantz, and Chen Xiao. The daikon system for dynamic detection of likely invariants. Sci. Comput.
Program., 69(1-3):35-45, December 2007.

[93] Fedoraproject Wiki: Features/RemoveSETUID. https://fedoraproject.org/wiki/
Features/RemoveSETUID, Apr. 2011.

[94] D.F. Ferraiolo and D.R. Kuhn. Role-based access control. In [5th National Computer Security
Conference, pages 554-563, 1992.

[95] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, Andrew Warfield, Mark Williamson, et al. Safe
hardware access with the xen virtual machine monitor. In /st Workshop on Operating System and
Architectural Support for the on demand IT InfraStructure (OASIS), pages 1-1. Boston, USA;, 2004.

[96] Yangchun Fu and Zhiqgiang Lin. Space traveling across vm: Automatically bridging the semantic gap
in virtual machine introspection via online kernel data redirection. In Oakland, pages 586—-600. IEEE
Computer Society, 2012.

[97] Yangchun Fu and Zhigiang Lin. Exterior: using a dual-vm based external shell for guest-os introspec-
tion, configuration, and recovery. In VEE, pages 97-110, 2013.

[98] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based architecture for intrusion
detection. In NDSS, pages 191-206, 2003.

[99] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J Elphinstone, Volkmar Uhlig,
Jonathon E Tidswell, Luke Deller, and Lars Reuther. The sawmill multiserver approach. In Proceedings
of the 9th workshop on ACM SIGOPS European workshop: beyond the PC: new challenges for the
operating system, pages 109—114, 2000.

[100] Alorie Gilbert. Fixing the sorry state of software - cnet. https://www.cnet.com/news/
fixing-the-sorry-state-of-software/, October 2002. (Accessed on 08/23/2021).

[101] V.D. Gligor, C.S. Chandersekaran, R.S. Chapman, L.J. Dotterer, M.S. Hetch, Wen-Der Jiang, A. Johri,
G.L. Luckenbaugh, and N. Vasudevan. Design and implementation of Secure Xenix. IEEE Transactions
on Software Engineering, SE-13(2):208 — 221, Feb. 1987.

[102] David B Golub, Guy G Sotomayor, and Freeman L. Rawson III. An architecture for device drivers
executing as user-level tasks. In USENIX MACH III Symposium, pages 153-172, 1993.

[103] Johannes Gotzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Miiller. Cache attacks on intel sgx. In
Proceedings of the 10th European Workshop on Systems Security, pages 1-6, 2017.

[104] Zhongshu Gu, Zhui Deng, Dongyan Xu, and Xuxian Jiang. Process implanting: A new active
introspection framework for virtualization. In SRDS, pages 147-156, 2011.

[105] Nicholas Mc Guire. Linux kernel gcov - tool analysis. http://dslab.lzu.edu.cn:
8080/docs/2006summerschool/teaml/teama/Documentation/howtos/der_
herr_gcov.pdf, 2006.

103

https://fedoraproject.org/wiki/Features/RemoveSETUID
https://fedoraproject.org/wiki/Features/RemoveSETUID
https://www.cnet.com/news/fixing-the-sorry-state-of-software/
https://www.cnet.com/news/fixing-the-sorry-state-of-software/
http://dslab.lzu.edu.cn:8080/docs/2006summerschool/team1/teama/Documentation/howtos/der_herr_gcov.pdf
http://dslab.lzu.edu.cn:8080/docs/2006summerschool/team1/teama/Documentation/howtos/der_herr_gcov.pdf
http://dslab.lzu.edu.cn:8080/docs/2006summerschool/team1/teama/Documentation/howtos/der_herr_gcov.pdf

[106] Robert T. Hall and Joshua Taylor. A framework for network-wide semantic event correlation, 2013.

[107] Hermann Hirtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schonberg, and Jean Wolter. The
performance of p-kernel-based systems. ACM SIGOPS Operating Systems Review, 31(5):66-77, 1997.

[108] M.S. Hecht, M.E. Carson, C.S. Chandersekaran, R.S. Chapman, L.J. Dotterrer, V.D. Gilgor, Wen-Der
Jiang, A. Johri, G.L. Luckenbaugh, and N. Vasudevan. UNIX without the Superuser. In USENIX
Security, pages 243 —256, June 1987.

[109] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using cla: a million lines of ¢ code in a
second. In PLDI, pages 254-263, 2001.

[110] Jorrit N Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S Tanenbaum. Minix 3: A highly
reliable, self-repairing operating system. ACM SIGOPS Operating Systems Review, 40(3):80-89,
2006.

[111] Jorrit N Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S Tanenbaum. Fault isolation
for device drivers. In 2009 IEEE/IFIP International Conference on Dependable Systems & Networks,
pages 33-42. IEEE, 2009.

[112] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan Del Cuvillo. Using
innovative instructions to create trustworthy software solutions. In HASP, 2013.

[113] Owen S. Hofmann, Alan M. Dunn, Sangman Kim, Indrajit Roy, and Emmett Witchel. Ensuring
operating system kernel integrity with OSck. In ASPLOS, pages 279-290, 2011.

[114] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett Witchel. Inktag:
secure applications on an untrusted operating system. In ASPLOS, pages 265-278. ACM, 2013.

[115] Sanghyun Hong, Alina Nicolae, Abhinav Srivastava, and Tudor Dumitras. Peek-a-boo: Inferring
program behaviors in a virtualized infrastructure without introspection. Computers & Security, 79:190—
207, 2018.

[116] Galen Hunt, Mark Aiken, Manuel Fahndrich, Chris Hawblitzel, Orion Hodson, James Larus, Steven
Levi, Bjarne Steensgaard, David Tarditi, and Ted Wobber. Sealing os processes to improve dependabil-
ity and safety. ACM SIGOPS Operating Systems Review, 41(3):341-354, 2007.

[117] PLC INTEL. Intel software guard extensions programming reference, 2014.

[118] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy malware detection through vmm-based
“out-of-the-box” semantic view reconstruction. In CCS, pages 128-138, 2007.

[119] Karen Johnson, Jeffrey B. Zurschmeide, John Raithel, Terry Schultz, and Bill Tuthill. IRIX admin:
Backup, security, and accounting. Technical report, Silicon Graphics, Inc., 2005.

[120] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Geiger: Monitoring the
buffer cache in a virtual machine environment. In ASPLOS, ASPLOS XII, pages 14-24, 2006.

[121] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. VMM-based Hidden
Process Detection and Identification Using Lycosid. In VEE, pages 91-100, 2008.

[122] Michael Kerrisk. CAP_SYS_ADMIN: the new root. http://lwn.net/Articles/486306/,
March 2012.

104

http://lwn.net/Articles/486306/

[123] Michael Kerrisk. User namespaces progress. https://lwn.net/Articles/528078/, Dec.
2012.

[124] D. Kienzle, N. Evans, and M. Elder. NICE: Network Introspection by Collaborating Endpoints. In
Communications and Network Security, pages 411-412, 2013.

[125] Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich. Recovering from intrusions in distributed
systems with DARE. In APSYS, pages 10:1-10:7, 2012.

[126] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Intrusion recovery using selective
re-execution. In OSDI, pages 1-9, 2010.

[127] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. Secure execution via program
shepherding. In USENIX Security, pages 191-206, 2002.

[128] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dham-
mika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. selL4: Formal verification of an OS kernel. In SOSP, 2009.

[129] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre attacks: Exploiting speculative execution.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 1-19. IEEE, 2019.

[130] S. Kramer. LINUS IV — An Experiment in Computer Security. In Oakland, pages 24-33, 1984.

[131] Michael Larabel. A NVIDIA Tegra 2 DRM/KMS Driver Tips Up. http://www.phoronix.com/
vr.php?view=MTA4NjA, Apr. 2012.

[132] Hojoon Lee, Hyungon Moon, Daehee Jang, Kihwan Kim, Jihoon Lee, Yunheung Paek, and
Brent ByungHoon Kang. Ki-mon: a hardware-assisted event-triggered monitoring platform for
mutable kernel object. In USENIX Security, pages 511-526, 2013.

[133] Tamas Lengyel, Thomas Kittel, George Webster, Jacob Torrey, and Claudia Eckert. Pitfalls of virtual

machine introspection on modern hardware. In /st Workshop on Malware Memory Forensics (MMF).
Citeseer, 2014.

[134] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Gotz. Unmodified device driver reuse and
improved system dependability via virtual machines. In OSDI, volume 4, pages 17-30, 2004.

[135] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Pat Pannuto, Prabal Dutta, and
Philip Levis. Multiprogramming a 64kb computer safely and efficiently. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 234-251, 2017.

[136] Henry M. Levy. Capability-Based Computer Systems. Digital Press, Bedford, Massachusetts, 1984.

[137] Jinku Li, Zhi Wang, Xuxian Jiang, Michael Grace, and Sina Bahram. Defeating return-oriented rootkits
with “return-less” kernels. In EuroSys, pages 195-208, 2010.

[138] Jinyuan Li, Maxwell Krohn, David Mazieres, and Dennis Shasha. Secure untrusted data repository
(SUNDR). In OSDI, pages 9-9, 2004.

[139] David Lie, Chandramohan A. Thekkath, and Mark Horowitz. Implementing an untrusted operating
system on trusted hardware. In SOSP, pages 178-192, 2003.

105

https://lwn.net/Articles/528078/
http://www.phoronix.com/vr.php?view=MTA4NjA
http://www.phoronix.com/vr.php?view=MTA4NjA

[140] Zhigiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian Jiang. Siggraph: Brute
force scanning of kernel data structure instances using graph-based signatures. In NDSS. The Internet
Society, 2011.

[141] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby Bhattacharjee, and
Peter Druschel. Light-weight contexts: An os abstraction for safety and performance. In /12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), pages 4964, 2016.

[142] Lionel Litty, H. Andrés Lagar-Cavilla, and David Lie. Hypervisor support for identifying covertly
executing binaries. In SS, pages 243-258, 2008.

[143] Limin Liu, Jin Han, Debin Gao, Jiwu Jing, and Daren Zha. Launching return-oriented programming
attacks against randomized relocatable executables. In TRUSTCOM, pages 37-44, 2011.

[144] Ziyi Liu, JongHyuk Lee, Junyuan Zeng, Yuanfeng Wen, Zhiqgiang Lin, and Weidong Shi. Cpu
transparent protection of os kernel and hypervisor integrity with programmable dram. In ISCA, pages
392-403, 2013.

[145] P. Loscocco and S. Smalley. Integrating flexible support for security policies into the Linux operating
system. In USENIX, 2001.

[146] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit Sati, Kenichi
Yasukata, Costin Raiciu, and Felipe Huici. My vm is lighter (and safer) than your container. In
Proceedings of the 26th Symposium on Operating Systems Principles, pages 218-233, 2017.

[147] Valentin JM Manes, Dachee Jang, Chanho Ryu, and Brent Byunghoon Kang. Domain isolated kernel:
A lightweight sandbox for untrusted kernel extensions. computers & security, 74:130-143, 2018.

[148] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer, Carlo Contavalli,
Michael Dalton, Nandita Dukkipati, William C Evans, Steve Gribble, et al. Snap: A microkernel
approach to host networking. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 399-413, 2019.

[149] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Architecture for User-level Packet
Capture. In USENIX Security, pages 259-270, 1993.

[150] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil Gligor, and Adrian
Perrig. Trustvisor: Efficient tcb reduction and attestation. In Oakland, pages 143-158, 2010.

[151] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi Isozaki. Flicker:
An execution infrastructure for tcb minimization. In EuroSys, pages 315-328, 2008.

[152] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas
Shanbhogue, and Uday R. Savagaonkar. Innovative instructions and software model for isolated

execution. In Workshop on Hardware and Architectural Support for Security and Privacy, pages
10:1-10:1. ACM, 2013.

[153] Fabrice Mérillon, Laurent Réveillere, Charles Consel, Renaud Marlet, and Gilles Muller. Devil: An idl
for hardware programming. In Proceedings of the 4th conference on Symposium on Operating System
Design & Implementation-Volume 4, 2000.

[154] Cade Metz. Google Embraces Docker, the Next Big Thing in Cloud Computing. WIRED, June 2014.
http://www.wired.com/2014/06/eric-brewer-google-docker/.

106

http://www.wired.com/2014/06/eric-brewer-google-docker/

[155] Microsoft. TCP/IP Raw Sockets. http://msdn.microsoft.com/en-us/library/
windows/desktop/ms740548%28v=vs.85%29.aspx, 2012.

[156] MITRE. Common Vulnerabilities and Exploits Database. http://cve.mitre.org/, Feb. 2013.

[157] Hyungon Moon, Hojoon Lee, Jihoon Lee, Kihwan Kim, Yunheung Paek, and Brent Byunghoon Kang.
Vigilare: toward snoop-based kernel integrity monitor. In CCS, pages 28-37, 2012.

[158] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel, Zhaofeng Li, Gerd Zellweger, and
Anton Burtsev. {RedLeaf}: Isolation and communication in a safe operating system. In /4th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), pages 21-39, 2020.

[159] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda. G-free: defeating
return-oriented programming through gadget-less binaries. In ACSAC, pages 49-58, 2010.

[160] Bryan D. Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. Lares: An architecture for secure
active monitoring using virtualization. In Oakland, pages 233-247, 2008.

[161] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy, Thomas
Anderson, and Timothy Roscoe. Arrakis: The Operating System is the Control Plane. In //th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), pages 1-16, Broomfield,
CO, October 2014. USENIX Association.

[162] Nick L. Petroni, Jr., Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copilot - a coprocessor-
based kernel runtime integrity monitor. In USENIX Security, pages 13—13, 2004.

[163] Nick L. Petroni, Jr. and Michael Hicks. Automated detection of persistent kernel control-flow attacks.
In CCS, pages 103—-115. ACM, 2007.

[164] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third generation
architectures. CACM, 17(7):412-421, July 1974.

[165] Summary about POSIX l.e. http://wt.tuxomania.net/publications/posix.le/,
Feb. 1999.

[166] Sergej Proskurin, Julian Kirsch, and Apostolis Zarras. Follow the whiterabbit: Towards consolidation
of on-the-fly virtualization and virtual machine introspection. In IFIP International Conference on
ICT Systems Security and Privacy Protection, pages 263-277. Springer, 2018.

[167] Niels Provos. Improving host security with system call policies. In USENIX Security, pages 257-272,
2002.

[168] Alessandro Randazzo and Ilenia Tinnirello. Kata containers: An emerging architecture for enabling
mec services in fast and secure way. In 2019 Sixth International Conference on Internet of Things:
Systems, Management and Security (IOTSMS), pages 209-214. IEEE, 2019.

[169] Junghwan Rhee, Ryan Riley, Dongyan Xu, and Xuxian Jiang. Kernel malware analysis with un-
tampered and temporal views of dynamic kernel memory. In RAID, pages 178-197, 2010.

[170] Wolfgang Richter, Glenn Ammons, Jan Harkes, Adam Goode, Nilton Bila, Eyal De Lara, Vasanth
Bala, and Mahadev Satyanarayanan. Privacy-sensitive VM Retrospection. In HotCloud, pages 10-10,
2011.

107

http://msdn.microsoft.com/en-us/library/windows/desktop/ms740548%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms740548%28v=vs.85%29.aspx
http://cve.mitre.org/
http://wt.tuxomania.net/publications/posix.1e/

[171] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent prevention of kernel rootkits with
VMM-based memory shadowing. In RAID, pages 1-20, 2008.

[172] Dennis M Ritchie. ‘on the security of unix. UNIX Supplementary Documents, 1979.

[173] Leonid Ryzhyk, Peter Chubb, Thor Kuz, and Gernot Heiser. Dingo: Taming device drivers. In
Proceedings of the 4th ACM European conference on Computer systems, pages 275-288, 2009.

[174] Alireza Saberi, Yangchun Fu, and Zhigiang Lin. HYBRID-BRIDGE: Efficiently Bridging the Semantic
Gap in Virtual Machine Introspection via Decoupled Execution and Training Memoization. In NDSS,
2014.

[175] Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information in Computer System.
Proceedings of the IEEE, 63(9):1278-1308, 1975.

[176] Andreas Schuster. Pool allocations as an information source in Windows memory forensics. In IMF,
pages 104-115, 2006.

[177] Andreas Schuster. The impact of Microsoft Windows pool allocation strategies on memory forensics.
Digital Investigation, 5:5S58-S64, 2008.

[178] Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical enclave malware with intel sgx. In
International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 177-196. Springer, 2019.

[179] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Malware
guard extension: Using sgx to conceal cache attacks. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 3—24. Springer, 2017.

[180] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Malware
guard extension: abusing intel sgx to conceal cache attacks. Cybersecurity, 3(1):1-20, 2020.

[181] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. Secvisor: A tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In SOSP, pages 335-350, 2007.

[182] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: A fast capability system. In
SOSP, pages 170-185, 1999.

[183] Monirul I. Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. Secure in-VM monitoring using
hardware virtualization. In CCS, pages 477-487, 2009.

[184] Ian Shields. = Monitor linux file system events with inotify. http://www.ibm.com/
developerworks/linux/library/l-inotify/index.html, Sep. 2010.

[185] Yonghee Shin and Laurie Williams. An Empirical Model to Predict Security Vulnerabilities Using
Code Complexity Metrics. In ESEM, pages 315-317, 2008.

[186] Takahiro Shinagawa and Kenji Kono. Implementing A Secure Setuid Program. In Proceedings of the
Conference on Parallel and Distributed Computing and Networks, pages 301-309, 2004.

[187] Jim Slater. The isrg wants to make the linux kernel memory-safe with rust — ars
technica. https://arstechnica.com/gadgets/2021/06/lets—encrypt—-parent-
org-sponsors—-rust—for-linux—-kernel-development/, June 2021. (Accessed on

08/23/2021).

108

http://www.ibm.com/developerworks/linux/library/l-inotify/index.html
http://www.ibm.com/developerworks/linux/library/l-inotify/index.html
https://arstechnica.com/gadgets/2021/06/lets-encrypt-parent-org-sponsors-rust-for-linux-kernel-development/
https://arstechnica.com/gadgets/2021/06/lets-encrypt-parent-org-sponsors-rust-for-linux-kernel-development/

[188] Deepa Srinivasan, Zhi Wang, Xuxian Jiang, and Dongyan Xu. Process out-grafting: An efficient
”out-of-VM” approach for fine-grained process execution monitoring. In CCS, pages 363-374. ACM,
2011.

[189] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualizing i/o devices on vmware
workstation’s hosted virtual machine monitor. In USENIX Annual Technical Conference, General
Track, pages 1-14, 2001.

[190] Michael M Swift, Brian N Bershad, and Henry M Levy. Improving the reliability of commodity
operating systems. ACM Transactions on Computer Systems (TOCS), 23(1):77-110, 2005.

[191] Michael M. Swift, Peter Brundrett, Cliff Van Dyke, Praerit Garg, Anne Hopkins, Shannon Chan, Mario
Goertzel, and Gregory Jensenworth. Improving the granularity of access control in Windows NT. In
Proceedings of the ACM Symposium on Access Control Models and Technologies, pages 87-96, 2001.

[192] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in memory. In 2013
IEEE Symposium on Security and Privacy, pages 48—62. IEEE, 2013.

[193] Vasily Tarasov, Deepak Jain, Dean Hildebrand, Renu Tewari, Geoff Kuenning, and Erez Zadok.
Improving I/O performance using virtual disk introspection. In HotStorage, pages 11-11. USENIX,
2013.

[194] Akihiro Tominaga, Osamu Nakamura, Fumio Teraoka, and Jun Murai. Problems and Solutions
of DHCP - Experiences with DHCP implementation and Operation. http://www.isoc.org/
inet95/proceedings/PAPER/127/html/paper.html, 1995.

[195] Dan Tsafrir, Dilma Da Silva, and David Wagner. The murky issue of changing process identity:
revising “setuid demystified”. USENIX ;login, 33(3):55-66, June 2008.

[196] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William Jannen, Jitin John,
Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Donald E. Porter. Cooperation and
Security Isolation of Library OSes for Multi-Process Applications. In EuroSys, pages 9:1-9:14, 2014.

[197] Ubuntu Wiki: Filesystem Capabilities. https://wiki.ubuntu.com/Security/
Features#Filesystem_Capabilities, March 2014.

[198] Jo Van Bulck, Nico Weichbrodt, Riidiger Kapitza, Frank Piessens, and Raoul Strackx. Telling your
secrets without page faults: Stealthy page {Table-Based} attacks on enclaved execution. In 26¢h
USENIX Security Symposium (USENIX Security 17), pages 1041-1056, 2017.

[199] Kenneth M. Walker, Daniel F. Sterne, M. Lee Badger, Michael J. Petkac, David L. Sherman, and
Karen A. Oostendorp. Confining root programs with domain and type enforcement (DTE). In USENIX
Security, pages 3-3, 1996.

[200] Jiang Wang, Angelos Stavrou, and Anup Ghosh. Hypercheck: A hardware-assisted integrity monitor.
In RAID, pages 158-177, 2010.

[201] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yingian Zhang, XiaoFeng Wang, Vincent Bindschaedler,
Haixu Tang, and Carl A Gunter. Leaky cauldron on the dark land: Understanding memory side-
channel hazards in sgx. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2421-2434, 2017.

109

http://www.isoc.org/inet95/proceedings/PAPER/127/html/paper.html
http://www.isoc.org/inet95/proceedings/PAPER/127/html/paper.html
https://wiki.ubuntu.com/Security/Features#Filesystem_Capabilities
https://wiki.ubuntu.com/Security/Features#Filesystem_Capabilities

[202] Zhi Wang, Xuxian Jiang, Weidong Cui, and Peng Ning. Countering kernel rootkits with lightweight
hook protection. In CCS, pages 545-554. ACM, 20009.

[203] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhigiang Lin. Binary stirring: Self-
randomizing instruction addresses of legacy x86 binary code. In CCS, pages 157-168, 2012.

[204] Dan Williams and Ricardo Koller. Unikernel monitors: extending minimalism outside of the box. In
8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16), 2016.

[205] R.M. Wong. A comparison of secure UNIX operating systems. In ACSAC, pages 322-333, 1990.

[206] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. K. Hartman. Linux security modules: General
security support for the Linux kernel. In USENIX Security Symposium, 2002.

[207] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. HYDRA: The kernel
of a multiprocessor operating system. CACM, 17(6):337-345, June 1974.

[208] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic side
channels for untrusted operating systems. In 2015 IEEE Symposium on Security and Privacy, pages
640-656. IEEE, 2015.

[209] Junfeng Yang, Ang Cui, Sal Stolfo, and Simha Sethumadhavan. Concurrency attacks. In HotPar,
pages 15-15, 2012.

[210] Chuan Yue. Teaching computer science with cybersecurity education built-in. In 20716 USENIX
Workshop on Advances in Security Education (ASE 16), 2016.

[211] Yingian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-VM side channels and
their use to extract private keys. In CCS, pages 305-316, 2012.

[212] Youhui Zhang, Yu Gu, Hongyi Wang, and Dongsheng Wang. Virtual-machine-based intrusion detection
on file-aware block level storage. In SBAC-PAD, pages 185-192, 2006.

[213] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals, Matthew Harren, George
Necula, and Eric Brewer. Safedrive: Safe and recoverable extensions using language-based techniques.
In Proceedings of the 7th symposium on Operating systems design and implementation, pages 45-60,
2006.

110

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Security Design Principles
	Security Properties and Mechanisms in a Secure System
	Summary

	ENCAPSULATING SECURITY THREATS USING VIRTUAL MACHINE INTROSPECTION
	Background
	Bridges Across the Semantic Gap
	Learning and Reconstruction
	Hand-crafted Data Structure Signatures
	Source Code Analysis
	Dynamic Learning

	Code Implanting
	Process Outgrafting
	Kernel Executable Integrity
	The (Write Execute) Principle
	Allow-listing Code
	Object Code Hooks

	Prevention vs. Detection
	Asynchronous vs. Synchronous Mechanisms
	Hardware-assisted Introspection
	Snapshotting
	Snooping

	Memory Protection: A Necessary Property for Prevention

	Attacks, Defense, and Trust
	Kernel Object Hooking
	Text Section Hooks
	Data Section Hooks

	Dynamic Kernel Object Manipulation
	Direct Kernel Structure Manipulation
	The Semantic Gap is Really Two Problems

	Toward an Untrusted OS
	Paraverification
	Hardware Support for Security
	Reconstruction from Untrusted Sources

	Under-explored Issues
	Scalability
	Privacy

	Summary

	RETROFITTING LEAST PRIVILEGE PRINCIPLE ONTO SETUID-ROOT BINARIES
	Overview
	Background
	The Setuid Bit
	Capabilities, LSMs, and SELinux.
	Setuid Installation Statistics

	Setuid Policy Study
	Network
	Raw and Packet Sockets
	Point-to-point Protocol (PPP)
	Bind

	Mount
	UID Switching and Delegation
	File System Permissions
	Interface Design
	Limitations and Discussion

	Evaluation
	Performance Overheads
	Security Evaluation
	Functional Testing
	Toward Zero Setuid-To-Root Binaries
	Design Principles for Protection Mechanisms in Protego

	Related Work
	Summary

	RETROFITTING COMPLETE MEDIATION AND MEMORY PROTECTION TO ISOLATE LINUX CONTAINERS
	Overview
	Hardware Support for Memory Isolation
	Memory Layout Redesign to Leverage Hardware Support
	Scheduling and Interrupts
	Implementation Details
	Evaluation
	Memory Footprint Overhead
	Startup Time
	Developer Effort
	Effect of VMEXIT on Execution Time
	Prevent Illegal Memory Access
	Design Principles for Protection Mechanisms in This Solution

	Future Work
	Filesystem Design
	Network Design

	Discussion
	Related Work
	Isolating Drivers from the Core Kernel
	Kernel Wrapping
	Virtualization
	User-mode Drivers
	Software Fault Isolation (SFI)
	Language-based Protection

	Virtualizing Ring 0
	Design Points on the Spectrum Between VMs and Containers
	Other Related Work
	Non-uniform Virtual Address Space
	Containers as Packaging Instead of a Virtualization Technique
	Leveraging Virtualization Hardware for More Than Virtual Machines

	Summary

	CONCLUSION
	BIBLIOGRAPHY

