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ABSTRACT

Edward Kim: Automatic Dynamic Parallelotope Bundles for Reachability of Non-linear Dynamical Systems
(Under the direction of Parasara Sridhar Duggirala)

Reachable set computation is an important technique for the verification of safety properties of dynamical

systems. In this thesis, we investigate reachable set computation for discrete non-linear systems based on

parallelotope bundles. The crux of the reachability algorithm relies on computing an upper and lower bound

on the supremum and infimum respectively of a non-linear function over a rectangular domain. Bernstein

Expansion of a polynomial function has been explored as a traditional method for computing these bounds

efficiently. In light of this, we aim to improve the traditional parallelotope-based reachability method by

removing the manual step of parallelotope template selection in order to make the procedure fully automatic.

Furthermore, we show that adding templates dynamically during computations can improve accuracy. To

this end, we investigate two techniques for generating template directions. The first technique approximates

the dynamics as a linear transformation and generates templates using this transformation. The second

technique uses Principal Component Analysis (PCA) of sample trajectories for generating templates. We have

implemented our approach in a Python-based tool called Kaa, which uses two types of global optimization

solvers, the first using Bernstein polynomials and the second using the Kodiak library. We demonstrate

the improved accuracy of our approach on several standard nonlinear benchmark systems, including a

high-dimensional COVID19 model. Finally, we explore a potential application of the Bernstein expansion

technique to real-time reachability. We present evidence of several hurdles and barriers against effectively

utilizing our Bernstein coefficient pruning method.
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CHAPTER 1

Introduction

One of the most widely-used techniques for performing safety analysis of non-linear dynamical systems is

reachable set computation. For instance, reachability analysis has found a panoply of applications in formally

verifying the safety properties of Cyber-physical Systems (CPS), such as autonomous vehicles (Althoff,

2010), F-16 aircraft (Heidlauf et al., 2018), and CPS systems governed by Neural Network Controllers (Tran

et al., 2019; Fan et al., 2020; Bak, 2021). The reachable set is defined to be the set of states visited by at

least one of the trajectories of the system starting from an initial set and propagated forward in time by a

fixed number of steps. Computing the exact reachable set for non-linear systems is challenging due to several

reasons: First, unlike linear dynamical systems whose solutions can be expressed in closed form, non-linear

dynamical systems generally do not admit such a nice form. Second, computationally speaking, current tools

for performing non-linear reachability analysis are not very scalable. This is also in stark contrast to several

scalable approaches developed for linear dynamical systems (Duggirala and Viswanathan, 2016; Bak and

Duggirala, 2017). Finally, computing the reachable set using various set representations involves wrapping

error which may be too conservative for practical use. That is, the over-approximation acquired at a given

step would increase the conservativeness of the over-approximation for all future steps.

One of the several techniques for computing the over-approximation of reachable sets for discrete

non-linear systems is encoding the reachable set through parallelotope bundles. Here, the reachable set is

represented as a parallelotope bundle, an geometric data structure representing an intersection of several

simpler objects called parallelotopes. One of the advantages of this technique is its exploitation of a special

form of non-linear optimization problem to over-approximate the reachable set. The usage of a specific form

of non-linear optimization mitigates many drawbacks involved with the scalability of non-linear analysis.

However, wrapping error still remains to be a problem for reachability using parallelotope bundles. An

immediate reason stems from the responsibility of the practitioner to define the template directions specifiying

the parallelotopes. Often times these template directions are selected to be either the cardinal axis directions

1



or some directions from octahedral domains. However, it is not certain that the axis-aligned and octagonal

directions are optimal for computing reachable sets over general non-linear dynamics. Additionally, even

an expert user of reachable set computation tools may not be able to ascertain a suitable set of template

directions for computing reasonably accurate over-approximations of the reachable set. Picking unsuitable

template directions would only cause the wrapping error to grow, leading to the aforementioned issue of

overly conservative reachable sets.

In this thesis, we investigate techniques for generating template directions automatically and dynamically,

which is the culmination of several publications in different venues (Kim and Duggirala, 2020; Kim et al.,

2021; Geretti et al., 2021). Specifically, we propose a method where instead of the user providing the template

directions to define the parallelotope bundle, he or she specifies the number of templates whose template

directions are to be generated by our algorithm automatically.

To this end, we study two techniques for generating the said template directions. First, we compute a local

linear approximation of the non-linear dynamics and use the linear approximation to compute the template

directions. Second, we generate a set of trajectories sampled from within the reachable set and use Principal

Component Analysis (PCA) over these trajectories. We observe that the accuracy of the reachable set can be

drastically improved by using templates generated using these two techniques. To address scalability, we

demonstrate that even when the size of the initial set increases, our template generation algorithm returns

more accurate reachable sets than both manually-specified and random template directions. We experiment

with our dynamic template generation algorithm’s effectiveness on approximating the reachable set of high-

dimensional COVID19 dynamics proposed by the Indian Supermodel Committee (National Supermodel

Committee , 2020). The results were published in an ACM blogpost detailing the utility of reachable set

computation in modeling disease dynamics (Bak et al., 2021b).

Finally, we investigate an application of Bernstein expansion-based reachability to the real-time domain.

We attempt to pre-compute the relevant Bernstein coefficients over the entire domain and prune the coefficients

which do not appear as either a maximum or minimum coefficient. The idea is to decrease the total number

of coefficients the reachability algorithm has to compute in order to gain a speedup. However, we show that

there are several obstacles which hinder the utility of our pre-processing step.
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1.1 Related Work

Reachable set computation of non-linear systems using template polyhedra and Bernstein polynomials

was first proposed in (Dang and Salinas, 2009). In (Dang and Salinas, 2009), Bernstein polynomial represen-

tation is used to compute an upper bound of a special type of non-linear optimization problem. This enclosing

property of Bernstein polynomials has been actively studied in the area of global optimization (Nataray and

Kotecha, 2002; Garloff, 2003; Nataraj and Arounassalame, 2007). Furthermore, several heuristics have been

proposed for improving the computational performance of optimization using Bernstein polynomials (Smith,

2009; Muñoz and Narkawicz, 2013).

Several improvements to this algorithm were suggested in (Dang and Testylier, 2012; Sassi et al., 2012)

and (Dang et al., 2014) extends it for performing parameter synthesis. The representation of parallelotope

bundles for reachability was proposed in (Dreossi et al., 2016) and the effectiveness of using bundles for

reachability was demonstrated in (Dreossi, 2017; Dreossi et al., 2017). However, all of these papers used

static template directions for computing the reachable set. In other words, the user must specify the template

directions before the reachable set computation proceeds.

Using template directions for reachable set has been proposed in (Sankaranarayanan et al., 2008) and later

improved in (Dang and Gawlitza, 2011). Leveraging the Principal Component Analysis of sample trajectories

for computing reachable set has been proposed in (Stursberg and Krogh, 2003; Chen and Ábrahám, 2011;

Seladji, 2017). More recently, connections between optimal template directions for reachability of linear

dynamical systems and bilinear programming have been highlighted in (Gronski et al., 2019). For static

template directions, octahedral domain directions (Clarisó and Cortadella, 2004) remain a popular choice.

3



CHAPTER 2

Preliminaries

We begin with some preliminaries pertaining to reachability and parallelotopes. The definition of

Bernstein polynomials and their enclosure properties will be stated. Finally, an outline of the reachability

algorithm given by (Dreossi et al., 2016) for polynomial dynamical systems will be presented.

2.1 Basic Definitions

As stated in the previous section, this thesis pertains to the reachability analysis of dynamical systems.

Roughly speaking, a dynamical system describes the behavior of states governed by a set of differential

equations. The states of the system evolve according to the flow of time and the vector field induced by the

governing differential equations.

Towards introducing more terminology, the state of a system, denoted as x, lies in a domain D ⊆ Rn

where the solutions to the differential equations are defined. In the reachability analysis literature, there are

several definitions for dynamical systems which appear depending on the authors’ taste for formalisms. Here

is a more rigorous definition appearing in (Dang and Maler, 1998):

Definition 2.1. A continuous dynamical system is a tuple 〈X, f〉 where X = Rn is finite-dimensional

Euclidean space and f is a continuous function on X . A point (state) of x0 ∈ X evolves according to a

trajectory ξ(t) : R+ → X such that the following hold:

ξ(0) = x0

dξ(t)

dt
= f(ξ(t)) ∀t ∈ R+

(2.1)

♦
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Note that, by a simple separation of variables argument and an initial value of ξ(0) = x0, Equation 2.1 yields

the following form for ξ:

ξ(t) = x0 +

∫ t

0
f(ξ(τ)) dτ (2.2)

However, many members of the research community choose to simply express the system as:

x′ = f(x) (2.3)

for a continuous function f : Rn → Rn. We restrict our attention to a discretized version of this definition

for this thesis:

Definition 2.2. A discrete-time dynamical system is denoted as

x+ = f(x) (2.4)

where f : Rn → Rn is a function and x+ denotes the evolved output state. ♦

In other words, the function f takes input a state of the system and outputs the next step of the system

evolved according to the dynamics. The function f generally represents a discretized version of some

specified continuous dynamical system. Here, a discrete-time dynamical system is considered to be linear if

its dynamics can be expressed as

x+ = Ax, A ∈ Rn×n

Otherwise, we deem the system to be non-linear. Hence, in particular, a non-linear function f cannot be

expressed as some matrix A ∈ Rn×n.

Examples of prominent non-linear dynamical systems include the Lotka-Volterra predator-prey model

(Wangersky, 1978), the Fitz-Hugh Neuron model (FitzHugh, 1961), and the recently introduced COVID19

disease model (National Supermodel Committee , 2020). Throughout this thesis, we discretize any continuous

dynamics through the well-known Euler method. Thus, up to some error term of bounded degree, we can

turn any non-linear system into the form given by Equation 2.4.
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Example 2.1. The SIR Epidemic model is a 3-dimensional dynamical system governed by the following

continuous dynamics:


s′ = β · si

i′ = β · si− γ · i

r′ = γ · i

(2.5)

where s, i, r represent the fractions of a population of individuals designated as susceptible, infected, and

recovered respectively. There are two parameters, namely β and γ, which influence the evolution of the

system. β is labeled as the contraction rate and 1/γ is the mean infective period. Discretizing Equation 2.5

according to the Euler method yields the dynamics:


sk+1 = sk − (β · skik) ·∆

ik+1 = ik + (β · skik − γ · ik) ·∆

rk+1 = rk + (γ · ik) ·∆

Figure 2.1: Discretized Dynamics of SIR model

Here, ∆ is the discretization step and the index k ∈ N simply represents the current step. Note the non-linear

terms skik which preclude the expression of the dynamics as a linear transformation of the input state

variables. ♦

We can now give a discretized version of a trajectory as presented in Definition 2.1. The trajectory of a

system that evolves according to Equation 2.4, denoted as ξx0 , is a sequence x0, x1, . . . where xi+1 = f(xi).

The kth element in this sequence xk is denoted as ξx0(k).

Definition 2.3. Given an initial set Θ ⊆ Rn, the reachable set at step k, denoted as Θk is defined as

Θk = {ξx(k) | x ∈ Θ} (2.6)

6



If we set the number of steps to be some n ∈ N, we say the reachable set is

Θ =
n⋃
i=1

Θi (2.7)

♦

Example 2.7 gives the plot of the reachable set of the discretized SIR model presented in Figure 2.1.

2.2 Parallelotope-based Reachability

2.2.1 Parallelotopes

The heart of our reachability algorithm relies on geometric objects called parallelotopes. In this section,

we define parallelotopes and two representations for them.

Definition 2.4. A parallelotope P ⊂ Rn is captured by the tuple 〈Λ, c〉 where Λ ∈ R2n×n is a matrix and

c ∈ R2n is a column vector. We impose the condition that Λi+n = −Λi for all 1 ≤ i ≤ n such that

x ∈ P if and only if Λx ≤ c. (2.8)

♦

We deem Λ as the template direction matrix where Λi denotes the ith row of Λ called the ith template

direction. The column vector c is called the offset vector with c(i) denoting the ith element of c. If we unpack

Equation 2.8, we can re-express the inequalities as a conjunction of half-space constraints. If we define

cu = [c(1), c(2), · · · , c(n)]T and cl = [c(n+ 1), c(n+ 2), · · · , c(2n)]T , then Equation 2.8 tells us that, for

1 ≤ i ≤ n:

Λix ≤ cu(i) (2.9)

−Λix ≤ cl(i) (2.10)

Additionally, the definition of the paralleotope above requires that for each of n “positive” directions, there

must exist a corresponding “negative” direction. This is encoded into the template matrix Λ by the condition

Λi+n = −Λi. However, by the observation made above, we only need to keep the positive directions and
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divide our offset vector into equal components with the top half encoding the offsets for the positive directions

and the bottom half encoding the offsets for the negative directions. The bottom half must be multiplied by a

negative sign to account for Inequality 2.10. Combining these remarks yields the half-space representation of

parallelotope P .

Definition 2.5. The half-space representation of parallelotope P is tuple 〈Λ, cl, cu〉 where Λ ∈ Rn×n and

cl, cu ∈ Rn such that

P = {x | cl ≤ Λx ≤ cu} (2.11)

In a more explicit form:

P =
n∧
i=1

[cl(i) ≤ Λi · x ≤ cu(i)] (2.12)

♦

In particular, as a bounded intersection of n pairs of parallel half-spaces, it is convex.

Example 2.2. Consider the 2D plane, namely R2. We can construct a two simple examples of parallelotopes.

First, if we define our parallelotope’s template directions to be the rows of the matrix:

Λ =

1 0

0 1

 (2.13)

We see that our template directions will be the vectors [1, 0]T , [0, 1]T . Suppose now we set our upper and

lower offsets to be:

cl = [−1,−1]T , cu = [1, 1]T (2.14)

Then by Definition 2.5, the half-space representation is given by:

−1

−1

 ≤
1 0

0 1


x
y

 ≤
1

1

 (2.15)
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[0, 1]

[1, 0][−1, 0]

[0,−1]

O

Figure 2.2: Plot of the axis-aligned parallelotope of Example 2.2.

Accordingly, by Equation 2.12, the bounded region in space will be the intersection of the following linear

constraints:

−1 ≤ x ≤ 1

−1 ≤ y ≤ 1

(2.16)

This is exactly the scaled unitbox [−1, 1] × [−1, 1]. In fact, we can easily generalize this to a general

n-dimensional system by considering the template direction matrix Λ = In where In is the n× n identity

matrix and two offset vectors cl, cu of length n. This would yield the shifted n-dimensional unitbox:

[cl(1), cu(1)]× [cl(2), cu(2)]× · · · × [cl(n), cu(n)] (2.17)

It is worth noting that axis-aligned box on the 2D plane above would give the representation:

Λ =



1 0

0 1

−1 0

0 −1


, c = [2, 2,−1,−1]T (2.18)

if we were to convert the half-space representation above into the form defined in Equation 2.8. From here on

out, we refer to parallelotopes defined by the n axis-aligned directions as the axis-aligned parallelotopes. For

a visual plot of above axis-aligned parallelotope, see Figure 2.2. The template directions are displayed as
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normal vectors to the pairs of parallel planes defining the parallelotope. O represents the origin (0, 0) and

each side of a grid cell represents one unit of distance.

♦

Example 2.3. We can also consider the axis-aligned directions rotated 45◦ counter-clockwise. This would

yield the two diagonal directions [1, 1]T , [−1, 1]T . Suppose we set the upper and lower offsets to be

cu = [1, 1]T and cl = [−1,−1]T respectively. Then once again by Definition 2.5:

−1

−1

 ≤
 1 1

−1 1


x
y

 ≤
1

1

 (2.19)

The bounded region in R2 will be the conjunction of the linear inequalities:

−1 ≤ x+ y ≤ 1

−1 ≤ y − x ≤ 1

(2.20)

In general, we define diagonal directions are defined to be vectors created by adding and subtracting distinct

pairs of unit axis-aligned vectors from each other. As a matter of convenience however, we refer to diagonal

parallelotopes as those defined by a combination of axis-aligned and diagonal directions. This definition will

be useful when we consider parallelotopes defined by unconventional directions (i.e those template directions

which are neither axis-aligned nor diagonal). To see a visual plot of the diagonal parallelotope, see Figure 2.3.

Note the manner in which the template directions and their negative counterparts define parallel planes and

the parallelotope’s definition as the intersection of the postive and negative half-spaces of all pairs of parallel

planes. Again, O represents the origin (0, 0) and each side of a grid cell represents one unit of distance.

♦

Alternatively, a parallelotope can also be represented in a generator representation.

Definition 2.6. The generator representation of a parallelotope P is a tuple of vectors 〈v, g1, . . . , gn〉

such that v, g1, · · · gn ∈ Rn. The vector v is called the anchor and the gi are called the generators. The

parallelotope is defined as the set:

P := {x | ∃α1, . . . , αn ∈ [0, 1], x = v +
n∑
i=1

αigi}
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[1, 1]

[−1,−1]

[−1, 1]

[1,−1]

O

Figure 2.3: Plot of the rotated parallelotope of Example 2.3.

♦

Remark 2.1. This is esstentially a convex representation of the parallelotope, which shares many similarities

to Zonotopes (Girard, 2005; Althoff et al., 2010) and Star sets (Duggirala and Viswanathan, 2016). The

most general definition of so-called template polyhedra in Rn is a tuple 〈Λ, c〉 such that Λ ∈ Rm×n for some

m ∈ N and c ∈ Rn. The polyhedron is defined by the conjunction of linear inequalities:

m∧
i=1

Λi · x ≤ ci (2.21)

It follows that parallelotopes are template polyhedra with m = 2n such that Λi+n = −Λi for 1 ≤ i ≤ n.

Several verification tasks of hybrid automata with template polyhedra have been investigated in the reachability

literature. See (Dang and Gawlitza, 2011; Gronski et al., 2019; Sankaranarayanan et al., 2008) for more on

related topics. ♦

There is a simple method to convert from the half-space representation of P to its equivalent generator

representation. The algorithm is sketched in Algorithm 2.5. Line 1 ascertains the lower-most corner vertex

of the input parallelotope. This vertex will be our anchor. The first loop starting at Line 2 finds all of the

vertices which are incident to the lower-most vertex through an boundary edge. There will be exactly n of

these incident vertices. The ith incident vertex can be computed by replacing the value stored in index i of the

lower offset vector cl with the value stored in the corresponding index i of upper offset vector cu. Intuively,

this process can be visualized as following the lower half-space boundary for each pair of parallel planes

until we reach the intersection of the boundary with several other upper half-space boundaries. See Figure
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O

v

g1 g2

Figure 2.4: Plot of the generator representation for Example 2.3. The vertex v represents the anchor while the two vectors g1, g2 are
the generator vectors.

2.4 for a plot of this on the diagonal example considered in Example 2.3. Finally, the second loop starting at

line eight calculates the generator vectors which will span the paralleltope through a convex combination

ᾱ ∈ [0, 1]n. Note that the anchor is simply shifting the generator vectors gi from the origin to the point

required to properly span P .

There also exists a procedure to perform the reverse direction, namely to convert from the generator

representation to the half-space representation. However, we will not require this procedure for this thesis.

Refer to (Dang et al., 2014) for a more detailed exposition of these conversions.

Remark 2.2. Notice that for a parallelotope P , the generator representation also defines an affine transfor-

mation that maps [0, 1]n to P . We refer to this affine transformation associated to P as TP : [0, 1]n → P

when necessary. ♦

Example 2.4. Let us return to the axis-aligned box considered in Example 2.2. To obtain the anchor,

we end up with the trivial solution x = 1, y = 1 by adhering to Step 1. Hence, the anchor is set to

v = (1, 1). Subsequently, we solve for the two other vertices by following Step 2 to obtain x = 2, y = 1

and x = 1, y = 2. By Step 3, this would imply that the two generators are g1 = (2, 1)− (1, 1) = (1, 0) and

g2 = (1, 2)− (1, 1) = (0, 1). Now combine the anchor and generators to get the generator representation for

this paralellotope:

P = (1, 1) + α1 · (1, 0) + α2 · (0, 1) α1, α2 ∈ [0, 1] (2.22)

This is exactly the unit box [0, 1]2 with its corner at the origin shifted to (1, 1). ♦
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Input: Parallelotope P = 〈Λ, cl, cu〉 in Half-Space Representation
Output: Generator Representation of P = 〈a, g1 · · · , gn〉

1 v0 ← SolveLinearEq(Λ, cl)
2 for i← 1 to n do
3 µj ← cl
4 µj [i]← cu[i]
5 vi ← SolveLinearEq(Λ, µi)

6 end
7 a← v0

8 for i← 1 to n do
9 gi ← vi − v0

10 end
11 return 〈a, g1, · · · , gn〉

Figure 2.5: Half-Space to Generator Representation Conversion Algorithm.

Example 2.5. Parallelotope P is given in half-plane representation as 0 ≤ x− y ≤ 1, 0 ≤ y ≤ 1. This is a

parallelotope with vertices at (0, 0), (1, 0), (2, 1), and (1, 1). The template directions of the parallelotope P

are given by the directions [1,−1] and [0, 1]. The half-space representation in matrix form is given as follows:

0

0

 ≤
1 −1

0 1


x
y

 ≤
1

1

 . (2.23)

To compute the generator representation of P , we need to compute the anchor and the generators. The

anchor is obtained by solving the linear equations x− y = 0, y = 0. Therefore, the anchor a is the vertex at

origin (0, 0) To compute the two generators of the parallelotope, we compute two vertices of the parallelotope.

Vertex v1 is obtained by solving the linear equations x − y = 1, y = 0. Therefore, vertex v1 is the vertex

(1, 0). Similarly, vertex v2 is obtained by solving the linear equations x− y = 0, y = 1. Therefore, v2 is the

vertex (1, 1). The generator g1 is the vector v1 − a, that is (1, 0) − (0, 0) = (1, 0) The generator g2 is the

vector v2 − a, that is (1, 1) − (0, 0) = (1, 1). Therefore, all the points in the paralellotope can be written

as (x, y) = (0, 0) + α1 · (1, 0) + α2 · (1, 1), α1, α2 ∈ [0, 1]. Figure 2.6 portrays a visual plot of the derived

generator representation. ♦

The reachable set will be expressed an intersection of parallelotopes. These parallelotopes will be

encoded into a parallelotope bundle.
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v g1

g2

Figure 2.6: Plot of the generator representation for Example 2.5. The vertex v represents the anchor while the two vectors g1, g2 are
the generator vectors.

Definition 2.7. A parallelotope bundle Q is a set of parallelotopes {P0, . . . , Pm} such that

Q =

m⋂
i=1

Pi

. ♦

Remark 2.3. There is a slight abuse of notation above where we refer to the parallelotope bundle Q as both

the set of parallelotopes and the region in Rn of the intersection of all the parallelotopes Pi. To specify the

set of parallelotopes which consists the bundle, we will write

P(Q) = {P0, . . . , Pm}

♦

This parallelotope bundle will be the geometric data structure enclosing the region we compute to be the

over-approximation of the exact reachable set. Observe that Q can be expressed as the conjunction of all the

linear constraints defining each parallelotope Pi ∈ P(Q).
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2.2.2 Bernstein Polynomials

In this section, we define Bernstein polynomials and state some of their enclosure properties. A multi-

index i of length n is defined as tuple of n elements i = (i1, · · · , in) such that each ik ∈ N. Furthermore, we

order the multi-indices as follows: if i and j are two multi-indices of length n, then

i ≤ j ⇐⇒ ik ≤ jk, 1 ≤ k ≤ n

Finally, we generalize the product of binomial coefficients over multi-indices as:

(
i

j

)
:=

n∏
k=1

(
ik
jk

)

Given two multi-indices i and d of size n, where i ≤ d, the Bernstein basis polynomial of degree d and

index i is defined as:

B(i,d)(x) = βi1,d1(x1)βi2,d2(x2) . . . βin,dn(xn). (2.24)

where for i, d ∈ N and x ∈ R:

βi,d(x) =

(
d

i

)
xi(1− x)d−i (2.25)

Let p : Rn → R be a real polynomial of degree at most d. We can express p as a linear combination of

monomials of degree at most d:

p(x) =
∑
i≤d

ai · xi

where xi represents the monomial xi11 x
i2
2 · · ·xinn . One of the most important properties of Berstein polynomi-

als is that the Bernstein basis polynomials of degree d span the vector space of real multivariate polynomials

of degree at most d: In other words, given a polynomial p(x1, . . . , xn) =
∑

j∈J ajxj where J is a set of

multi-indices iterating through the degrees found in p with aj ∈ R, then p(x1, . . . , xn) can be converted

into its counterpart under the Bernstein basis, p(x1, . . . , xn) =
∑

j∈J bjBj where bj are the corresponding

Bernstein coefficients.
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Property 2.1. Every real polynomial p of degree at most d can be represented as linear combination of

Bernstein basis polynomials of degree d:

p(x) =
∑
i≤d

bi · B(i,d)(x) (2.26)

where bi denotes the ith Bernstein Coefficient:

bi =
∑
j≤i

(
i
j

)(
d
j

) · aj (2.27)

The primary advantage of the Bernstein representation of a polynomial p(x1, ..., xn) is that an upper

bound on the supremum and lower bound on the infimum of p(x1, ..., xn) in [0, 1]n can be computed purely

by observing the coefficients of the polynomial in the Bernstein basis. Specifically, the upper and lower

bounds of p(x1, . . . , xn) over [0, 1]n are bounded by the Bernstein coefficients. We state this as a property

without proof.

Property 2.2. (Enclosure Property) Let p : Rn → R be a real multivariate polynomial of degree d, and

let p(x) =
∑

i≤d bi · B(i,d)(x) be the Bernstein expansion of p, then

min
i≤d
{bi} ≤ inf

x∈[0,1]n
p(x) ≤ sup

x∈[0,1]n
p(x) ≤ max

i≤d
{bi}

As mentioned earlier, a parallelotope P can also be represented as an affine transformation Tp from

[0, 1]n to P . Therefore, upper bounds on the suprenum of a polynomial function p over P is equivalent to

upper bound of p ◦ Tp over [0, 1]n. A similar argument follows for the lower bound on the infimum. The

crux of the reachability algorithm involves exploiting this property of Bernstein polynomials to approximate

the solution of certain non-linear optimization problem involving polynomial predicates over the unitbox,

[0, 1]n. We will cover this algorithm in the upcoming section. For a more rigorous exposition on Bernstein

polynomials and Property 2.2, refer to (Garloff, 2003).

2.2.3 The Static Algorithm

We will end with an outline of the static algorithm first investigated in works (Dang and Testylier, 2012;

Dreossi et al., 2016). As mentioned in the previous section, the building block of the reachability algorithm
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relies on approximate solutions to a non-linear optimization problem over the unit-box domain. Consider a

non-linear function h : Rn → R. The most general form of this optimization problem can be expressed as:

max h(x) (2.28)

s.t. x ∈ [0, 1]n.

In the static algorithm, the user manually specifies the number of parallelotopes and a set of static

directions for each parallelotope. In other words, the user must specify the template matrix Λ and its

corresponding offset vector c for each parallelotope P = 〈Λ, c〉 contained in the bundle before the computation

begins.

We now proceed to formally describe the static algorithm. First, a small remark on the template matrix of

the parallelotopes Pi contained in some bundle Q. It is possible that some of the parallelotopes share the same

template matrix directions. In other words, for Pi = 〈ΛPi , cPi〉, Pj = 〈ΛPj , cPj 〉 such that Pi, Pj ∈ P(Q),

there could exist some k such that ΛPi
k = Λ

Pj

k as row vectors. Thus, a more compact method of encoding

the bundle is by taking the distinct template directions as rows of a new template matrix ΛQ along with its

corresponding offset vector cQ. To distinguish between the distinct parallelotopes contained in the bundle,

we add a new matrix called the bundle index matrix, T Q ∈ Np×n, such that T Qi is a vector of row indices of

ΛQ which specify the template directions defining parallelotope Pi ∈ P(Q). The number of rows will thus

be the number of distinct parallelotopes contained in the bundle p = |P(Q)|.

Remark 2.4. If none of the paralleotopes Pi ∈ P(Q) share common template directions, then ΛQ will

simply be the template direction matrices {ΛP }P∈P(Q) concatenated along their rows. This will generally be

the matrix generated by the dynamic algorithm we will outline in a future section. ♦

Example 2.6. Set our space to be R2. Consider the parallelotope bundle Q containing three individual

parallelotopes P0, P1, P2 with the following template direction matrices:

ΛP0 =

1 0

0 1

 , ΛP1 =

1 0

1 1

 , ΛP2 =

 0 1

−1 1


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Input: Dynamics f , Initial Parallelotope bundle Q, Step Bound S, Template Directions Matrix ΛQ,
Bundle Index Matrix T Q

Output: Reachable Set Overapproximation Θk for each step k
1 Q0 ← Q
2 for k ← 1 to S do
3 Qk ← TransformBundle (f , Qk−1, Λ)
4 Θk ← Qk
5 end
6 return Θ1 . . .ΘS

7

8 Proc TransformBundle(f , Q, ΛQ):
9 Q′ ← {}; cu ← +∞; cl ← −∞

10 for P ∈ P(Q) do
11 〈a, g1, · · · , gn〉 ← ComputeGeneratorRepresentation ((P ))
12 GP ← ΛQi · f(a+

∑n
i=1 αigi)

13 for each ΛQi in ΛQ do
14 c′u[i]← min{optBox(GP), c′u[i]} (Equation 2.32)
15 c′l[i]← max{−1× optBox(−1× GP), c′l[i]}
16 end
17 end
18 Construct parallelotopes P ′1, . . . , P

′
k from ΛQ, c′l, c

′
u and indexes from T Q

19 Q′ ← {P ′1, . . . , P ′k}
20 return Q′

Figure 2.7: Reachable set computation using manual and static templates.

The associated template direction matrix and bundle index matrix for Q will then be defined as follows:

ΛQ =



1 0

0 1

1 1

−1 1


, T Q =


0 1

0 2

1 3



♦

Another input to the algorithm is the initial parallelotope bundle, given as Q. When the initial set is a box, P0

will be defined by the axis-aligned template directions.

The output of the algorithm is, for each step k, the set Θk, which is an over-approximation of the

reachable set at step k, Θk ⊆ Θk. The total over-approximation of the reachable set for a finite number of

steps n will be Θ = ∪nk=1Θk. The high-level pseudo-code is written in Algorithm 2.7.
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The algorithm simply calls TransformBundle for each step, producing a new parallelotope bundle

computed from the previous step’s bundle. To compute the image of Q, the algorithm computes the upper and

lower bounds of f(x) with respect to each template direction ΛQi . Since computing the maximum value of

f(x) along each template direction over the intersection of the entire bundle Q in one shot is computationally

difficult, the algorithm instead computes the maximum value over each of the constituent parallelotopes and

uses the minimum of all these maximum values.

The TransformBundle operation works as follows. Consider a parallelotope P in the bundle Q.

Given a template direction ΛQi , the maximum value of ΛQi · f(x) for all x ∈ Q is less than or equal to the

maximum value of ΛPi · f(x) for all x ∈ P if ΛQi is a row in ΛP . Similar argument holds for the minimum

value of ΛQi · f(x) for all x ∈ Q. Observe that these inequalities hold by virtue of the fact that Q ⊆ P by

definition. To describe this more formally: if λQi = {P ∈ P(Q) | ΛQi = ΛPk for some k}, then

max
x∈Q

ΛQi · f(x) ≤ min
P∈λQi

max
x∈P

ΛPi · f(x) (2.29)

max
P∈λQi

min
x∈P

ΛPi · f(x) ≤ min
x∈Q

ΛQi · f(x) (2.30)

Hence, to compute the upper and lower bounds of each template direction Λif(x) for all x ∈ P , we must

find a solution to the following optimization problem:

max ΛPi · f(x) (2.31)

s.t. x ∈ P.

Note that ΛPi · f(x) is a dot product between the row vector ΛPi and the component-wise dynamics of f(x).

This is similar to the method of computing support functions over convex sets (Boyd et al., 2004).

By Definition 2.6, all the states in P can be expressed as a vector summation of an anchor and a convex

combination of generators. Let 〈v, g1, · · · , gn〉 be the generator representation of P . The optimization

problem given in Equation 2.31 would then transform as follows.

max ΛPi · f(a+ Σn
i=1αigi) (2.32)

s.t. α ∈ [0, 1]n.
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Equation 2.32 is a form of optBox(Λi · f) over [0, 1]n. One can compute an upper-bound to this non-linear

optimization by computing the Bernstein coefficients of Λi · f(a+ Σn
i=1αigi) and taking the maximum and

minimum coefficients as shown in Property 2.2. Similarly, we compute the lower-bound of Λi · f(x) for all

x ∈ P by computing the upper-bound of −1× Λi · f(x).

Remark 2.5. The original algorithm exploiting Bernstein expansion was proposed by (Dreossi et al., 2016)

and assumed polynomial dynamics i.e f is polynomial in the system variables. This is to ensure that a

Λi · f(x) is a polynomial after the composition shown in Equation 2.32. Proper Bernstein expansion of this

polynomial allows us to exploit the enclosure property of Bernstein coefficients. However, the use of other

non-linear optimization solvers, such as Kodiak (NASA, 2017), allows us to use more general dynamics

involving trigonometric and root functions. A Taylor expansion of any analytic function can also be truncated

to some suffciently large degree to admit a power series expansion. ♦

We iterate this process (i.e., computing the upper and lower bound of ΛQi · f(x)) for each parallelotope in

the bundleQ according to Equation 2.29 and Equation 2.30). Therefore, the tightest upper bound on ΛQi ·f(x)

over Q is the least of the upper-bounds computed from each of the parallelotopes. A similar argument holds

for lower bounds of ΛQi · f(x) over Q. Therefore, the image of the bundle Q will be the bundle Q′ where the

upper and lower-bounds for templates directions are obtained by solving a series of non-linear optimization

problems of the form presented in Equation 2.31.

Finally, once the loop on step two of Algorithm 2.7 halts at step S, the outputted reachable set will be the

computed over-approximations Θ1, · · · ,ΘS . As step four within the loop implies, this is simply the image

bundles Q′ returned by our TransformBundle procedure.

Example 2.7. We return to the SIR model briefly treated in Section 2.1. Figure 2.8 shows the reachable set

computed with the static algorithm and plotted using the following parameters:

• The parameters of the model are set to β = 0.34 and γ = 0.05. The discretization step is set to

∆ = 0.1.

• The parallelotope only has one static parallelotope, namely the initial box. This shows that our template

matrix for P is

ΛQ =


1 0 0

0 1 0

0 0 1

 T Q =

[
0 1 2

]
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cPl =

[
−0.79 −0.19 0

]T
cPu =

[
0.8 0.2 0

]T
• We set the number of time steps S = 300.

Figure 2.8: Projection of Reachable Set of SIR propagated 300 steps in time.

There a few points worth noting here. First, by the discussion leading to Definition 2.5, the initial set

would be the box [0.79, 0.8] × [0.19, 0.2] × 0. This can be interpreted as initializing the model such that

79− 80% of the population is susceptible (not yet infected) with 19− 20% of the population is infected. As

the simulation is beginning, no percentage of the population has recovered from the disease. Hence, the third

parameter r is set to zero. Second, since we only have the axis-aligned parallelotope in our initial bundle, the

matrix T Q will consist of only one row indicing the axis-aligned directions expressed as distinct rows in ΛQ.

♦

Example 2.8. To include an example of a higher-dimensional non-linear system, we introduce the Phospora-

ley model. The Phosphoraley model describes a certain cellular regulatory system. It is captured by seven

variables governed by the discretized dynamics stated in Figure 2.8.
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Figure 2.10: Projection of Reachable Set of the Phosporaley model propagated 300 steps in time.
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Figure 2.9: Discretized Dynamics of Phosphorlay Model.

Here, we set the two parameters α, β as α = 0.5 and β = 5. The discretization step is set to ∆ = 0.01

and we propagate the reachble set for S = 300 time steps. Additionally, the initial box is set to be

[1.00, 1.01]7 × [−100, 100]. Under these parameters, Figure 2.10 depicts the projection of the reachable set

on the first three variables x1, x2, x3. The relevant matrices are defined as:
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ΛQ =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 1 1 0 0 0



, T Q =

0 1 2 3 4 5 6

0 1 2 4 5 6 7

 (2.33)

T Q tells us that the bundle consists of the axis-aligned parallelotope (the first row T Q1 ) and another diagonal

parallelotope (the second row T Q2 ). ♦
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CHAPTER 3

Dynamic Paralleotope Bundles

In this chapter, we cover a method of generating template directions dynamically and automatically. By

dynamic, we mean that the template directions must be generated adaptively based on sampled trajectories

and/or data from the state of the system. By automatic, we mean that the template directions require no

consideration from the user to proceed with the reachable set computation. This is in contrast to the original

static algorithm treated in Section 2.2.3 where the user must input his or her own template directions to

specify the parallelotopes before the computation begans. To briefly outline the structure of this chapter, we

first expound on two techniques we utilize to dynamically generate template directions at each step. The first

method is based on local linear approximations where the algorithm approximates the dynamics as a linear

transformation based on sample trajectories. The second method is based on Principal Component Analysis

(PCA) where the algorithm runs the PCA procedure on the image points of the sample trajectories. Finally,

we cover the high-level pseudo-code of the dynamic algorithm and explain a set of parameters we feed into

the algorithm in order to improve performance and the accuracy of the outputted reachable set.

3.1 Drawbacks to the Static Algorithm

Before we embark on introducing the dynamic algorithm, let us first consider a few motivating factors.

As discussed in Section 2.2.3, the static algorithm requires template directions to be specified by the user

in order for the reachable set computation to proceed. In practice, the parallelotopes tend to be defined

by a combination of axis-aligned directions or diagonal directions. However, it is unclear whether these

template directions work reasonably well over general non-linear dynamics. This is a problem which has

profound consequences for the computation of useful over-approximations. Choosing the incorrect directions

could very well lead to an over-approximation too conservative for any practical use. Figure 3.1 portrays

a simple example of a reachable set whose wrapping error becomes explosive after a few steps. In light

of these ramifications, it is esstentially incumbent on the user to choose fruitful template directions that
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Figure 3.1: Consequences of choosing inappropriate template directions as demonstrated by the Coupled Vanderpol model. See
Section A.3 for the model definition.

control the growth of the over-approximation. Due to the inherent difficult nature of choosing these template

directions, it may be unreasonable to delegate this responsibility to a practitioner who knows little about

parallelotope-based reachability. These drawbacks to the static algorithm motivate the rationale behind the

automatic aspect of our modified algorithm.

Additionally, as the template directions are set at the beginning, these directions cannot adapt to the

dynamics as the computation executes. There may be template directions which may yield much leaner over-

approximations at an intermediate step during the computation. Hence, the ability to change the composition

of the parallelotope bundle by adding and removing parallelotopes based on a data-driven approach could

yield better over-approximations. These considerations motivate the rationale behind the dynamic aspect of

our modified algorithm.

3.2 Local Linear Approximations

Intuitively speaking, if time step is discretized to be sufficiently small, propagating trajectories according

to the non-linear dynamics f for one time step could lead to good lienar approximations of the dynamics

within a small region. To do this, we first sample a set of points in the parallelotope bundle called support

points and propagate them to the next step using the dynamics f . Support points are a subset of the vertices

of the parallelotope that either maximize or minimize the template directions over the parallelotope bundle.
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That is the support points are the set of points Psupp defined as:

Psupp =
n⋃
i=1

{max
x∈Q

ΛQi · x, min
x∈Q

ΛQi · x} (3.1)

for all template directions of the bundle ΛQi . We use the support points as a data-driven approach to determine

the best-fit linear function to use. All points are found by a straightforward linear program. To find the

approximate linear transformation, let xi denote the support points calculated by Equation 3.1. We perform

the following least-squares procedure: the objective would be to find an linear transformation A such that it

minimizes the following objective function:

min
A

∑
xi

||f(xi)−Axi||22 (3.2)

where || · ||2 is the standard Euclidean norm on Rn. If the dynamics of a system are linear, i.e., x+ = Ax, the

image of the parallelotope cl ≤ Λx ≤ cu, is the set cl ≤ Λ · A−1x ≤ cu. To see this, recall the constraint

associated to the half-space representation (Definition 2.5 and Equation 2.11). If we set our new template

directions to be Λ · A−1, the image points of A which satisfy the half-space constraint according to fixed

offset vectors cl, cu should be:

cl ≤ (Λ ·A−1)Ax ≤ cu =⇒ cl ≤ Λx ≤ cu

This is satisfied by all the points defining parallelotope P as desired. Therefore, the new template directions

will exactly define the image of P under linear dynamics. To exploit this property, given the template

directions of the initial set as T0, we compute the local linear approximation of the non-linear dynamics and

change the template directions by multiplying them with the inverse of the approximate linear dynamics.

3.3 Principal Component Analysis

The second technique for generating template directions performs Principal Component Analysis (PCA)

over the images of the support points. PCA is a standard technique in Statistical Machine Learning used to

reduction of dimensionality by performing Singular Value Decomposition (SVD) on the covariance matrix

generated by a set of data points. Since the covariance matrix is symmetric by definition (i.e A = AT ), the
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eigenvectors of this matrix will always be a orthonormal basis of the system. Using PCA is a reasonable

choice as it produces orthonormal directions that can construct a rotated box for bounding the points. To

compute the images of the trajectory points, the algorithm must first compute Psupp and propagate them one

step forward by the dynamics f . These image points fed into the PCA procedure.

3.4 The Dynamic Algorithm

Observe that in general, our input dynamics are non-linear and therefore, the reachable set is generally

non-convex. On the other hand, a parallelotope bundle is always a convex set. To mitigate the drawbacks of

this discrepancy, we can improve the accuracy of this representation by considering more template directions

and more parallelotopes. To this end, we add a parameter called template lifespan, where we use the generated

linear approximation and/or PCA template directions not only from the current step but also from previous

steps. During our benchmarks, we tune each of the options (PCA / linear approximation as well as lifespan

option) to demonstrate that specific parameters generate more accurate reachable sets than those generated by

the static algorithm presented in Algorithm 2.7.

The new approach is given in Algorithm 3.2. During each step, the algorithm computes a collection of

template directions from the two techniques outlined in the previous two sections. The subroutines will be en-

coded as a subroutine labeled ApproxLinearTrans and PCA respectively. The ApproxLinearTrans

function computes the best linear approximation of the dynamics as specified in Section 3.2. The PCA func-

tion returns a set of orthogonal directions using principal component analysis of a set of points as specified in

Section 3.3. Now each subroutine will return a collection of n template directions, which in turn will specifiy

exactly one parallelotope. Hence, two parallelotopes, one generated by ApproxLinearTrans and the

other by PCA, can be added to the parallelotope bundle at each step.

There are a few subtle points to be made about the sub-routines used in Algorithm 3.2. First, the

algorithm makes use of helper function hstack, which attaches two matrices along their rows. In other

words, hstack can be visualized as two matrices with the same number of columns stacked on top of one

another. Second, we assume that the sub-routine PCA returns the orthonormal eigenvectors as rows. This

assures that the eigenvectors are rows of a template direction matrix of a parallelotope. Third, the Maximize

and Minimize sub-routines encapsulate the linear programming procedures required to compute the support

points as discussed in Equation 3.1. Both sub-routines take the feasible region as the first parameter and
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Input: Dynamics f , Initial Parallelotope P0, Step Bound S, Lifespan Parameter L
Output: Reachable Set Overapproximation Θk at each step k

1 Q0 ← {P0}
2 Λaccum ← In // Set to Identity Matrix
3

4 ΛQ0 ← ΛP0 // Init Template Directions
5 for k ← 1 to S do
6 Psupp ←GetSupportPoints (Qk−1) // Support points of Qk−1

7

8 Pprop ← PropagatePointsOneStep (Psupp, f ) // Image of support points
9

10 A← ApproxLinearTrans (Psupp, Pprop)
11 Λaccum ← Λaccum ·A−1

12 Λlin
k ← Λaccum

13

14 Λ
pca
k ← PCA(Pprop)

15 Λk ← hstack(Λlin
k ,Λ

pca
k )

16 Λtotal ← Λk
17 for i← 1 to, L do
18 // If L = 0, then skip

19 Λtotal ← hstack(Λtotal,Λk−i)

20 end
21

22 Qk ← TransformBundle (f , Qk−1,Λk)
23 Θk ← Qk
24 end
25 return Θ1 . . .ΘS

26

27 Proc GetSupportPoints(Q):
28 Psupp ← ∅
29 for P ∈ P(Q) do
30 for i← 1 to n do
31 Psupp ← Psupp ∪ Maximize(Q,ΛPi ) ∪ Maximize(Q,−ΛPi )
32 end
33 end
34 return Psupp

Figure 3.2: The Automatic, Dynamic Reachability Algorithm

the objective function as the second parameter. Finally, the subroutine TransformBundle is the same as

specified in Algorithm 2.7.

Algorithm 3.2 computes the dynamic templates for each time step k. Line 10 computes the linear

approximation of the non-linear dynamics and this approximation is used to compute the new template

directions according to this linear transformation in Line 13. The PCA directions of the images of support
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points is computed in Line 14. For the time step k, the linear approximation and PCA templates direction

matrices are given as Λlink and Λpcak , respectively. To improve the accuracy of the reachable set, we compute

the over-approximation of the reachable set with respect to not just the template directions at the current step,

but with respect to other template directions for time steps that are within the template lifespan parameter L.

Alternatively, we assign each parallelotope a parameter L which dictates the number of steps we keep the

parallelotope in the bundle after adding it in the current step.
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CHAPTER 4

Evaluations

4.1 Kaa

We evaluate the efficacy of our dynamic parallelotope bundle strategies with our tool, Kaa . Kaa is

written in Python and relies on several modules to perform reachable set computation.

Numpy: The Numpy module is used to do all matrix computations, such as matrix multiplication and matrix

inversions. It is also used to efficiently solve systems of linear equations, especially those which arise

from converting from half-space representation to generator representation (See Algorithm 2.5), and

execute the Least Squares routine required to compute the solution to Problem 3.2.

Sympy: The Sympy module is used to do all symbolic computations. The polynomials which result from per-

forming the Λi ·f(x) in Equation 2.32 are all simplified and encapsulated by the sp.Poly object. This

allows extraction of coefficients of monomial terms to become a simple call to sp.Poly.coeff monomial.

Sklearn: The Sklearn module called to perform PCA on the end-points of the sample trajectories as described

in Section 3.3. The exact method is sklearn.decomposition.PCA.

Scipy: The Scipy module offers several auxiliary routines important to the our analysis of reachable sets,

especially scipy.spatial.ConvexHull.

Matplotlib: The Matplotlib module is for all plotting of the computed reachable sets. Kaa utilizes the

library’s animation features to even animate the evolution of the parallelotope bundle as the reachable

set computation proceeds.

Multiprocessing: The multiprocessing module parallelizes all the non-linear optimization procedures re-

quired to compute the new upper and lower offsets of all the template directions of the parallelotope

bundle. This is expressed by Lines 14, 15 in Algorithm 2.7.
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Swiglpk: The swiglpk module is a simple Python wrapper over the C library, GLPK (GNU Linear Program-

ming Kit). Kaa uses swiglpk for all linear programming problems, such as those which arise from

computing the support points over a bundle (see Equation 3.1).

The original version of Kaa was created to compactify and simplify Sapo, a previous tool exploring

reachability computation with static parallelotope bundles (Dreossi, 2017). Through the expressiveness and

terseness of Python, Algorithm 2.7 was implemented in only 650 lines of code. We released as a pedagogical

tool to allow practitioners and students to easily experiment with parallelotopes-based reachability and

understand the effects of choosing different template directions (Kim and Duggirala, 2020).

To extend Kaa to handle dynamic parallelotope bundles, we replaced the original optimization procedure

leveraging Bernstein polynomials (see Section 2.2.2) to Kodiak (NASA, 2017). Kodiak is an optimization

library implemented in C++ that implements a branch-and-bound algorithm for numerical approximations. It

uses a combination of interval arithmetric and Bernstein enclosure to approximate solutions to optimization

problems of the form shown in Equation 2.28. The optimization procedure for finding the direction offets is

performed through Kodiak. We decided to use Kodiak primarily for two reasons:

1. Kodiak is very fast as a Python wrapper over the original C++ implementation. It is much faster than

Kaa’s original procedure of computing all relevant Bernstein coefficients.

2. Kodiak can handle a wider variety of dynamics, including those which feature trigonometric terms and

square root terms. This allows us to generalize beyond the polynomial dynamcis first considered by

(Dreossi et al., 2016).

To estimate volume of reachable sets, we employ two techniques for estimating the volume of individual

parallelotope bundles. For systems of dimension fewer than or equal to three, we utilize Scipy’s convex

hull routine. For higher-dimensional systems, we employ the volume of the tightest enveloping box around

the parallelotope bundle. The total volume estimate of the over-approximation will be the sum of all the

computed bundles’ volume estimates. To be specific, if ApproxVol is the routine used to approximate the

volume of a bundle, then by the notation introduced in Line 25 of Algorithm 3.2:

ApproxVol(Θ) =
∑
k

ApproxVol(Θk) (4.1)
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4.2 Benchmarks

For benchmarking, we select six non-linear models with polynomial dynamics. Since many of these

models are also implemented in Sapo, we choose benchmarks with polynomial dynamics to directly compare

the performance of our dynamic strategies with the Sapo’s static parallelotopes. To provide meaningful

comparisions, we set the number of dynamic parallelotopes to be equal to the number of static ones excluding

the initial box. Recall through the discussion in Example 2.3 that we refer to parallelotopes defined only by

axis-aligned and diagonal directions as diagonal parallelotopes. Similarly, diagonal parallelotope bundles are

parallelotope bundles solely consisting of diagonal parallelotopes. Sapo primarily utilizes static diagonal

parallelotope bundles to perform its reachability computation. Note that the initial box, which is defined only

through the axis-aligned directions, is contained in every bundle. For our experiments, we are concerned with

the effects of additional static or dynamic parallelotopes added alongside the initial box. We refer to these

parallelotopes non-axis-aligned parallelotopes.

Table 4.1 summarizes five standard benchmarks used for experimentation. The last seven-dimensional

COVID supermodel is explained in the subsequent section below. The remaining models’ dynamics can be

found in Appendix A.

Model Dimension Parameters # steps ∆ Initial Box

Vanderpol 2 – 70 0.08
x ∈ [0, 0.1]

y ∈ [1.99, 2]

Jet
Engine

2 – 100 0.2
x ∈ [0.8, 1.2]

y ∈ [0, 8, 1.2]

Neuron 2 – 200 0.2
x ∈ [0.9, 1.1]

y ∈ [2.4, 2.6]

SIR 3
β = 0.05
γ = 0.34

150 0.1

s ∈ [0.79, 0.8]

i ∈ [0.19, 0.2]

r = 0

Coupled
Vanderpol

4 – 40 0.08

x1 ∈ [1.25, 2.25]

y1 ∈ [1.25, 2.25]

x2 ∈ [1.25, 2.25]

y2 ∈ [1.25, 2.25]

COVID 7
β = 0.05
γ = 0.0
η = 0.02

200 0.08 Stated in Section 4.3

Table 4.1: Benchmark models and relevant information
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4.3 COVID19 Supermodel

We benchmark our dynamic strategies with the recently introduced COVID supermodel (Ansumali et al.,

2020), (National Supermodel Committee , 2020). This model is a modified SIR model accounting for the

possibility of asymptomatic patients. These patients can infect susceptible members with a fixed probability.

The dynamics account for this new group and its interactions with the traditional SIR groups.



S′A = SA − (βSA(A+ I)) ·∆

S′I = SI − (βSI(A+ I)) ·∆

A′ = A+ (βSI(A+ I)− γI) ·∆

I ′ = I + (βSI(A+ I)− γI) ·∆

R′A = RA + (γA) ·∆

R′I = RI + (γI) ·∆

D′ = D + (ηI) ·∆

Figure 4.1: Dynamics for the Discretized COVID19 Supermodel.

The system variables denote the fraction of a population of individuals designated as Susceptible to

Asymptomatic (SA), Susceptible to Symptomatic (SI), Asymptomatic (A), Symptomatic (I), Removed from

Asymptomatic (RA), Removed from Symptomatic (RI), and Deceased (D). We choose the parameters

(β = 0.25, γ = 0.02, η = 0.02) where β is the probablity of infection, γ is the removal rate, and η is the

mortality rate. The parameters are fixed based on figures shown in (Ansumali et al., 2020). The discretization

step is chosen to be ∆ = 0.1 and the initial box is set to be following dimensions: SA ∈ [0.69, 0.7], SI ∈

[0.09, 0.1], A ∈ [0.14, 0.15], I ∈ [0.04, 0.05], RA = 0, RI = 0, D = 0. The discretized dynamics are

given in Figure 4.1.

Plots of the reachable set for this model tuned to specific values of parameters β, γ, η were published in an

ACM Sigbed Blogpost detailing applications of formal methods for simulating disease dynamics (Bak et al.,

2021b). The main theme revolved around the difficulty of extracting accurate parameters from real-world
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data samples. Certainly we could attempt to estimate the parameters by analyzing real-world data. However,

minute changes in the parameters could yield estimates which would vastly overestimate or underestimate the

true population of infected or asymptomatic patients. This error is further compounded as our time horizon

increases, due to many issues pertaining to wrapping error as discussed in the introduction of this thesis (see

Section 1). Reachability analysis provides not only a method of simulating the disease dynamics in order to

provide illuminating information for policy decisions but also to demonstrate the effect of slight changes

in the parameters on the conservativeness of the outputted reachable set. See Figure 4.2 for the two plots

published in the blogpost. The Confirmed population is the sum of the number of Symptomatic (I) and

Asymptomatic (A) populations of the dynamics presented in Equation 4.1. The plots were created by dividing

the total period into two separate periods. We decided to separate the periods as the parameters presented

(a) Confirmed population from 06/21/20-08/22/20,

(b) Confirmed population from 08/22/20-10/01/20

Figure 4.2: Reachable Sets for India’s COVID19 Confirmed Population for the period 06/21/20-10/01/20
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in the original paper (Ansumali et al., 2020) were estimated separately according to these exact periods.

Furthermore, we wished to control the conservativeness of the over-approximation of the reachable set. The

red line represents the real data gathered from India during the prescribed time periods with the light blue

region representing the predicted region based on the parameters given in (Ansumali et al., 2020). Several

lines representing trajectories generated according to specific parameter values are also plotted in order to

convey the effect on the confirmed population under slight perturbations of the underlying parameters.

4.4 Comparison of Template Generation Techniques

4.4.1 Accuracy of Dynamic Strategies

The results of testing our dynamic strategies against static ones are summarized in Table 4.4. For models

previously defined in Sapo, we set the static parallelotopes to be exactly those found in Sapo. If a model is

not implemented in Sapo, we simply use the static parallelotopes defined in a model of equal dimension. To

address the unavailability of a four-dimensional model implemented in Sapo, we sampled random subsets of

five static non-axis-aligned parallelotopes and chose the flowpipe with smallest volume. A cursory analysis

shows that the number of possible templates with diagonal directions grows order O(nn) with the number of

dimensions and hence an exhaustive search on optimal template directions is infeasible.

From our experiments, we conclude there is no universal optimal ratio between the number of dynamic

parallelotopes defined by PCA and Linear Approximation directions which perform well on every single

benchmarks. In Figure 4.3, we demonstrate two cases where varying the ratio imparts differing effects.

Observe that using parallelotopes defined by linear approximation directions is more effective than those

defined by PCA directions in the Vanderpol model whereas the Neuron model shows the opposite trend.

4.4.2 Performance under Increasing Initial Sets

A key advantage of our dynamic strategies is the improved ability to control the wrapping error naturally

arising from larger initial sets. Figure 4.5 presents charts showcasing the effect of increasing initial sets on

the total flowpipe volume. We vary the initial box dimensions to gradually increase the box’s volume. We

then plot the total flowpipe volume after running the benchmark. The same initial boxes are also used in

computations using Sapo’s static parallelotopes. The number of parallelotopes defined by PCA and Linear

Approximation directions were chosen based on best performance as seen in Table 4.4. We remark that our
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(a) 5 Lin (b) 1 PCA 5 Lin

(c) 5 PCA (d) 5 PCA 1 Lin

(e) Sapo (f) Sapo

Figure 4.3: Effect of varying ratio between the number of PCA and Linear Approximation parallelotopes. The Vanderpol (left) and the
FitzHugh-Nagumo Neuron (right) phase plots are shown to illustrate differing effects of varying the PCA/LinApp ratio. The initial set
for the Vanderpol model is set to x ∈ [0, 0.05], y ∈ [1.95, 2], and the initial set Neuron model is set to x ∈ [0.9, 1.1], y ∈ [2.4, 2.6]
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Strategy Total Volume
5 LinApp 0.227911

1 PCA, 4 LinApp 0.225917
2 PCA, 3 LinApp 0.195573
3 PCA, 2 LinApp 0.188873
4 PCA, 1 LinApp 1.227753

5 PCA 1.509897
5 Static Diagonal(Sapo) 2.863307

(a) Vanderpol

Strategy Total Volume
5 LinApp 58199.62

1 PCA, 4 LinApp 31486.16
2 PCA, 3 LinApp 5204.09
3 PCA, 2 LinApp 6681.76
4 PCA, 1 LinApp 50505.10

5 PCA 84191.15
5 Static Diagonal (Sapo) 66182.18

(b) Jet Engine

Strategy Total Volume
5 LinApp 154.078

1 PCA, 4 LinApp 136.089
2 PCA, 3 LinApp 73.420

3 PCA , 2 LinApp 73.126
4 PCA, 1 LinApp 76.33

5 PCA 83.896
5 Static Diagonal (Sapo) 202.406

(c) FitzHugh-Nagumo

Strategy Total Volume
2 LinApp 0.001423

1 PCA, 1 LinApp 0.106546
2 PCA 0.117347

2 Static Diagonal (Sapo) 0.020894
(d) SIR

Strategy Total Volume
5 LinApp 5.5171

1 PCA, 4 LinApp 5.2536
2 PCA, 3 LinApp 5.6670
3 PCA, 2 LinApp 5.5824
4 PCA, 1 LinApp 312.2108

5 PCA 388.0513
5 Static Diagonal (Best) 3023.4463

(e) Coupled Vanderpol

Strategy Total Volume
3 LinApp 2.95582227 ∗ 10−10

1 PCA, 2 LinApp 2.33007583 ∗ 10−10

2 PCA, 1 LinApp 4.02751770 ∗ 10−9

3 PCA 4.02749571 ∗ 10−9

3 Static Diagonal (Sapo) 4.02749571 ∗ 10−9

(f) COVID

Figure 4.4: Tables presenting upper bounds on the total reachable set volume by strategy. The static directions are retrieved and/or
inspired from Sapo models of equal dimension for benchmarking. The best performing strategy is highlighted in bold.

dynamic strategies perform better than static ones in controlling the total flowpipe volume as the initial set

becomes larger. On the other hand, the performance of static parallelotopes tends to degrade rapidly as we

increase the volume of the initial box.

4.4.3 Performance against Random Static Templates

We additionally benchmark our dynamic strategies against static random parallelotope bundles. We

sample such parallelotopes in n dimensions by first sampling a set of n directions uniformly on the surface

of the unit (n − 1)-sphere, then defining our parallelotope using these sampled directions. We sample
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twenty of these parallelotopes for each trial and average the total flowpipe volumes. As shown in Figure

4.6, our best-performing dynamic strategies consistently outperform static random strategies for all tested

benchmarks.
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(a) Vanderpol (b) Jet Engine

(c) Neuron (d) Coupled Vanderpol

(e) SIR (f) COVID

Figure 4.5: Comparison between the performance of diagonal static parallelotope bundles and that of the best performing dynamic
parallelotope bundles as the volume of the initial set grows.
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(a) Vanderpol (b) Jet Engine

(c) Neuron (d) Coupled Vanderpol

(e) SIR (f) COVID

Figure 4.6: Comparision between random static strategies and the best performing dynamic strategies as the volume of the initial set
grows. The total reachable set volumes for random static strategies are averaged over ten trials for each system.

s
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CHAPTER 5

Applications to Real-time Reachability

In this chapter, we briefly present some experimental results on an application of the Bernstein expansion

on the realm of real-time reachability. First, we outline a few motivating factors alongside our proposed

reachability algorithm. Second, we expound on some observations and negative experimental results as well

as some early obstacles working against the efficacy of our proposed algorithm.

5.1 Motivation and Algorithm

The context of these experiments is focused towards the perspectives of real-time reachability. Roughly

speaking, the objective of an effective real-time reachability algorithm can be described as covering two

criteria:

1. The computed reachable set must be within some ε distance of the exact reachable set. We can

think of this as the constraint dictating that the computed reachable set lies within an ε bloat of the

exact reachable set. In more formal terms, if Θ denotes the exact reachable set and Θ its computed

over-approximation, then Θ ⊂ Bε(Θ) where Bε(Θ) =
⋃
x∈ΘBε(x). Here, Bε(x) denotes the ε-ball

around point x.

2. The running time to compute the over-approximation Θ must be strictly upper-bounded by some

“reasonable” time period. Here, by reasonable, we generally speak of a time constraint imposed on

real-time systems where predictable running is mandatory for proper functionality.

Recall from Sections 2.2.2 and 2.2.3 that computing the Bernstein coefficients and taking their maximum and

minimum coefficients is tantamount to bounding the solutions to non-linear optimization problems of the

form presented in Equation 2.32. As the degrees of the polynomial objective functions described by Equation

2.32 and dimensions of the system grow, the number of Bernstein coefficients also grows in exponential order.

This is evident from the Bernstein coefficient formula defined in Equation 2.26.
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To mitigate this explosive growth in coefficients, we pose the following question:

Does there exists a method for ascertaining a small subset of the basis monomials such that the

correct maximum and minimum coefficients can be computed from this subset rather the entire set of

Bernstein basis monomials?

To this end, we propose the following algorithm outlined in Algorithm 5.1 and elaborate on the individual

subroutines. In the context of these experiments, we assume the dynamics f are polynomial. This is to ensure

we have a Bernstein expansion of the composed dynamics f ◦ Tp.

1. Parition Domain into Grid Cells:

We first partition the domain into grid cells of equal dimension. Naturally the entire domain is infinite, so

we must restrict the domain into a bounded box of sufficiently large dimension. This box must bound the

reachable set computed for a finite number of steps forward. These grid cells will act as constraints to

feed into our generator representation.

2. Initialize Generator Representation:

For each of the cells computed in the previous step, we set the anchor vertex and generator vector

components to their corresponding grid cell dimension. In other words, we constrain the parallelotope to

be contained within the cell through the generator representation. Formally speaking, suppose we have a

grid cell G in n-dimensional Euclidean space Rn of the form G = [l1, u1]× [l2, u2]× · · · [ln × un]. To

constrain our parallelotope P = 〈a, g1, · · · , gn〉 to be contained within g, it suffices to set the component

variables such that a, g1, · · · , gn ∈ G. For example, to set a ∈ G, the constraints should be initialized as

below:

a(i)← [l1, u1] a(2)← [l2, u2] · · · a(n)← [ln, un] (5.1)

In Algorithm 5.1, this is executed in Line 4.

3. Perform the Functional Composition:

As stated in Equation 2.32, the non-linear optimization predicate should be Λi · f for fixed template

direction Λi. Under the assignments of the variables according to Equation 5.1 and interval arithmetic, we

have the polynomial Λi · (f ◦ Tp) where the coefficients are intervals rather than real values.
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Input: Total Domain D, Number of grid cells g, Dynamics f , Template Direction Matrix Λ
Output: G sets of monomials each indiced by a grid cell

1 // Partition domain into equally-sized G grid cells
2 G←ComputeGridCells (D, g)
3 for grid cell G ∈ G do
4 RG ← ComputeGridGeneratorRep (f,G)
5 for template direction Λi in Λ do
6 BG,i ←ComputeBernsteinCoeffIntervals (Λi, RG)
7

8 // Find the max/min intervals and any overlaps
9 mG,Λi,max ← ComputeMaxIntervalMonomials (BG,i)

10 mG,Λi,min ← ComputeMinIntervalMonomials (BG,i)
11 end
12 end
13 M = {mG,Λi,max}G∈G,i ∪ {mG,Λi,min}G∈G,i
14 returnM
15

16 Proc ComputeBernsteinCoeffIntervals (Λi, RG):
17 P ← Λi ·RG // Compute predicate (Eq 2.32)
18 return BernsteinCoeffIntervals (P)
19

20 Proc ComputeGridGeneratorRep (f ,G):
21 a← G
22 for i← 1 to n do
23 gi ← G
24 end
25 return a+

∑n
i=1 αigi // Generator Representation where coefficients

are instead intervals spanning grid cell
26

Figure 5.1: Bernstein coefficient interval pre-computation algorithm.

4. Compute Bernstein Coefficient Intervals:

Now with our computed polynomial with interval coefficients, we can compute the Bernstein coefficient

intervals using the formula displayed in Equation 2.26. By our initialization scheme above, this computa-

tion will yield intervals such that the Bernstein coefficients computed from any parallelotope contained

in grid cell P ⊆ G should lie within their respective coefficient intervals. Let {bi}i∈IG,Λi
be the set of

computed coefficient intervals where IG,Λi is an index of degrees which depend on the grid cell G and

template direction Λi. For the sake of clarity, we shall just denote this index set as I .

5. Find the Maximum/Minimum Interval:

Using the coeffcient intervals {bi}, we find the maximum and minimum interval by simply plucking
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the interval which has the largest upper-bound and the interval which has the smallest lower-bound. If

bi = [li, ui], then

Imax := IG,Λi,max = arg max
i∈I

ui (5.2)

Imin := IG,Λi,min = arg min
i∈I

li (5.3)

Note that Imax, Imin are the degrees of the Bernstein basis monomials whose intervals dominate the

others. Additionally, we add all the intervals which overlap with the maximum and minimum intervals:

mG,Λi,max = {i ∈ I | bi ∩ bImax 6= ∅}

mG,Λi,min = {i ∈ I | bi ∩ bImin
6= ∅}

(5.4)

6. Store into Lookup Table:

The maximum and minimum intervals and their associated degrees are stored into a lookup table indiced

by each grid cell G and template direction Λi in Λ.

The required modifications to the reachability algorithm now turn out to be simple. Instead of computing

all of the Bernstein coefficients, the algorithm first determines the grid cells with non-empty overlap with

the parallelotope in question (FindOverlapsWithGrid). It then queries the monomials stored for each

overlapping grid cell G: mG,Λi max,mG,Λi min in respect to the template direction Λi. Lines 18 and 27 of

Algorithm 5.2 reflect this operation. The retrival itself is called on Lines 6 and 7. The rest of the reachability

algorithm follows exactly as the logic of Algorithm 2.7.

5.2 Experimental Results

We move onwards to the experimental results and observations. Our experiments were limited to the

Vanderpol Model (Appendix Section A.1). A few parameters are required to be stated for posterity:

• We attempted to run the modified reachability algorithm for seven steps.

• We partitioned the domain and fixed the initial set for each model according to the parameters listed in

Table 5.1.
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Input: Dynamics f , Bundle Q, Template Directions Matrix ΛQ, Max/Min Monomial Lookup Table
M, Grid Partition G

Output: New parallelotope bundle Q′

1 Proc TransformBundle(f , Q, ΛQ,M, G):
2 Q′ ← {}; cu ← +∞; cl ← −∞
3 for P ∈ P(Q) do
4 〈a, g1, · · · , gn〉 ← ComputeGeneratorRepresentation (P )
5 for each ΛQi in ΛQ do
6 c′u[i]← min{RetreiveMaxMonomials (P,M,G), c′u[i]}
7 c′l[i]← max{RetreiveMinMonomials (P,M,G), c′l[i]}
8 end
9 end

10 Construct parallelotopes P ′1, . . . , P
′
k from ΛQ, c′l, c

′
u and indexes from T Q

11 Q′ ← {P ′1, . . . , P ′k}
12 return Q′

13

14 Proc RetreiveMaxMonomials (P, M, G):
15 O ← FindOverlapsWithGrid (P,G)
16 Pmax ← ∅
17 for grid cell G ∈ O do
18 {mG,Λi,max}i =M.lookup(G)
19 Pmax ← Pmax ∪ {mG,Λi,max}i
20 end
21 return Pmax

22

23 Proc RetreiveMinMonomials (P, M, G):
24 O ← FindOverlapsWithGrid (P,G)
25 Pmin ← ∅
26 for grid cell G ∈ O do
27 {mG,Λi,min}i =M.lookup(G)
28 Pmin ← Pmin ∪ {mG,Λi,min}i
29 end
30 return Pmin

Figure 5.2: Modified Reachability Algorithm

During the course of experimentation, several observations hinting towards major obstacles hindering

any trivial speed-up have been discovered for the Vanderpol model. We list those obstacles below.

5.2.1 Discrepancy of Degrees

This issue arises when we determine the maximum and minimum intervals and their associated monomials

during the pre-computation step. We will demonstrate this phenomenon as such:
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Model Domain Initial Set # of Grid Cells
Vanderpol [−3, 3]× [−3, 3] [0.001, 0.005]× [1.995, 2] 1600

Table 5.1: Parameters for Vanderpol Model used during Real-time Reachability Experiments

Recall that the generator representation for a parallelotope P would yield the linear transformation

TP : [0, 1]→ P which looks like

TP (x, y) = q + g0 · x+ g1 · y

for an anchor (base) vertex q and two generator vectors g0, g1. The composition with the generator represen-

tation would be tantamount to substituting the symbolic expressions as follows:

x← q0 + g00 · x+ g10 · y (5.5)

y ← q1 + g01 · x+ g11 · y (5.6)

The components of the composed mapping f ◦ T will individually look like:

(f ◦ T )0 = q1 + g01 · x+ g11 · y (5.7)

(f ◦ T )1 = (1− (q0 + g00 · x+ g10 · y)2) ∗ (q1 + g01 · x+ g11 · y)− (q0 + g00 · x+ g10 · y) (5.8)

If you inspect the polynomial (f ◦T )1, the square times another linear factor of x, y gives us a polynomial

of degree (3, 3). Suppose we calculate the non-linear optimization objective function as: Λi · (f ◦ TP ) where

we set Λi = [0, 1]T (i.e the y-axis aligned vector), then the polynomial will be precisely be (f ◦ T )1, which

has degree (3, 3).

However, the following occurs during the reachability algorithm: the actual polynomial computed

for template direction Λi = [0, 1]T , that is the polynomial computed naturally during the parallelotope

reachability algorithm, actually has degree lower than (3, 3). Furthermore, the maximum and/or minimum

degrees pre-computed are actually of higher degree than the degree of the polynomial computed during the

progression of the algorithm. This means that the pre-computed degrees and their coefficients will never

show up in the Bernstein expansion of the polynomial arising after the composition shown in Equation 2.32.

To see this, recall Property 2.1.
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Consider the output presented in Figure 5.3 computed with just the axis-aligned parallelotope over the

VanderPol model with a grid parition of 40× 40. We run the algorithm for one step and display the output

during the optimization procedure for template direction Λi = [0, 1]T . During the first step, the maximum

degree is a lone monomial:

Returned set of Maximum Monom from Lookup Table:

[((3, 3), 2.18359741950000)]

This means that the actual monomial with the maximum Bernstein coefficient:

Actual Max Monom Deg: (2, 0)

was pruned out during the pre-computation phase. Frequently, the maximum or minimum intervals and

their overlaps dominate the degree of the polynomial computed after composition during the reachability

computation. To see this, note the anchor and generator vectors computed for the generator representation:

BASE VERTEX: [0.005, 2.0]

GENERATORS: [[-0.004, 0.0], [0.0, -0.0049999999999999]]

The generators are axis-aligned, meaning that several degrees are annihilated during the composition

Λi · (f ◦ TP ) due to the zero components. Hence, during our pre-processing stage, we consider a more

general set of monomial degrees which may not reflect the relevant degree statistics found during the actual

computation phase. This poses the issue of being privy to the degrees supplied to algorithm before execution

begins. In other words, we are uncertain about how the interactions of the functional composition with the

generator representation affect the degree of the resulting polynomial. If the degree is smaller than that of the

monomial with the maximum/minimum coefficient interval or its overlaps, then it will appear during our

reachability algorithm. This untowardly results in either a gross conservative error or an exception indicting

that too many monomials were pruned out. This error becomes further compounded if higher degree terms

are wiped out by the zero factors in the computed generator or if the wrapping error becomes worse.

One immediate thought could be adding templates which have non-axis-aligned template directions like

[−1, 1]T . However, due to the ways higher degree terms can cancel each other out when simplifying after the

functional composition, the degree of the polynomial after the composition could still be smaller than that of

the maximum and minimum monomial and its overlaps.
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-----------------------------------
Computing Step 0

-----------------------------------

BASE VERTEX: [0.005, 2.0]
GENERATORS: [[-0.004, 0.0], [0.0, -0.0049999999999999]]
....
....
-------------------------------------
Stats for Template Direction: [0. 1.]
-------------------------------------

Queried Max Monom Deg: (3, 3)
Queried Min Monom Deg: (0, 0)

Actual Max Monom Deg: (2, 0)
Actual Min Monom Def: (0, 1)

Actual Composed Poly:
0.0004*x - 0.00499999999999989*y
+ 0.1*(1 - 2.5e-5*(1 - 0.8*x)**2)*(2.0 - 0.00499999999999989*y)
+ 1.9995

Total Poly Degree: [2, 1]

Returned set of Maximum Monom from Lookup Table:
[((3, 3), 2.18359741950000)]

Returned set of Minimum Monom from Lookup Table:
[((0, 0), 2.19949500000000)]

Set of ALL basis degrees and true Bernstein coeffs:
[((0, 0), 2.199495),
((0, 1), 2.1939950125000003),
((1, 0), 2.1996990000000003),
((1, 1), 2.1941990025000004),
((2, 0), 2.1998998000000003),
((2, 1), 2.1943998005000007)]

Difference between Queried Max Coeff and Actual Max Coeff:
-0.0163023804999995

Difference between Queried Min Coeff and Actual Min Coeff:
0.00549998749999991

Figure 5.3: Output for First step of Reachability algorithm with the Vanderpol Model.
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To recapitulate, it appears that pre-computing the Bernstein coefficients and the subsequent analysis on

their outputted intervals can overly skew the effect of “non-relevant coefficients”. These coefficients can only

be pruned once the generator representation of the specific parallelotope is computed and the exact degree of

the composed polynomial is determined.

5.2.2 Contributions of Many Overlapping Cells

Another obstacle stems from the observation that parallelotopes which have great overlap with many grid

cells yield the full list of Bernstein coefficients. Hence, there is no speed-up gained in these cases. Consider

the output displayed in Figure 5.4 for step 4 of the reachable set computation. The main point to take here

lies within the printed values of returned set of monomials from the lookup table:

Returned set of Maximum Monom from lookup_table:

[((0, 1), 2.48598940176842),

((1, 2), 2.13075300161303),

((2, 1), 2.49645813555339),

...

((3, 3), 1.77817608667862)]

From Step 4 onwards, the lookup table returns the full list of monomials of degree less than (3, 3) i.e all the

relevant monomials during the pre-computation stage. We tested this even for reachability computations

lasting more than five steps. The full set of Bernstein coefficients are always returned after a certain step. For

the Vanderpol model initialized with our parameters, this point would be around step 4 or 5.

As the wrapping error becomes worse, so does the utility of our lookup table. A guess is that as the

conservativeness of our reachable becomes greater, it overlaps with more cells of the domain. This results in

a cascading effect where the reachability algorithm is required to take into account more monomials as it

progresses. In light of the discussed observations, we speculate that the utility of our pruning method hinges

on the careful control of the reachable set error. If the error becomes too great, we end of computing all of

the coefficients, negating any benefits of a speed-up.
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------------------------------------
Computing Step 4
------------------------------------

------------------------------------
Stats for Template Direction: [0. 1.]
------------------------------------

Chosen Max Monom Deg: (3, 0)
Chosen Min Monom Deg: (0, 3)
...
Returned set of Maximum Monom from lookup_table:
[((0, 1), 2.48598940176842),
((1, 2), 2.13075300161303),
((2, 1), 2.49645813555339),
((3, 1), 2.50156197271691),
((0, 2), 2.12608267690468),
((2, 2), 2.13534845254406),
((1, 0), 2.85178155552809),
((3, 2), 2.13986902969777),
((1, 3), 1.77023872465550),
((1, 1), 2.49126727857056),
((0, 3), 1.76617595204093),
((2, 0), 2.85756781856273),
((3, 0), 2.86325491573606),
((2, 3), 1.77423876953473),
((3, 3), 1.77817608667862)]

Returned set of Minimum Monom from lookup_table:
[((0, 1), 2.48598940176842),
((3, 1), 2.50156197271691),
((2, 2), 2.13534845254406),
((1, 0), 2.85178155552809),
((3, 2), 2.13986902969777),
((1, 3), 1.77023872465550),
((0, 0), 2.84589612663217),
((0, 3), 1.76617595204093),
((3, 0), 2.86325491573606),
((2, 3), 1.77423876953473),
((3, 3), 1.77817608667862)]

Difference between Queried Max Coeff and Actual Max Coeff:
0.00568709717333471

Difference between Queried Min Coeff and Actual Min Coeff:
-0.719813449727491

Figure 5.4: Example of Wrapping Error Obstacle Demonstrated for Step 4 for Vanderpol Model.
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CHAPTER 6

Conclusion

In this thesis, we covered a specific technique to perform reachability analysis over non-linear dynamical

systems through leveraging parallelotope bundles. A particular non-linear optimization problem determines

the offset of template directions required to express the reachable set. We presented the original algorithm

utilizing static template directions. We then investigated two techniques for generating templates dynamically

and automatically: the first using linear approximation of the dynamics, and the second using PCA. We

demonstrated that these techniques improve the accuracy of the reachable set of several benchmarks by an

order of magnitude when compared to static or random template directions. Finally, we experimented with

potential applications of the Bernstein expansion technique to real-time reachability. We found that several

hurdles and barriers arise to effectively utilizing the pruning method developed in the pre-processing phase.

Several remarks on ideas towards improvement of the methods we developed are listed below:

1. Koopman linearization techniques for computing alternative linear approximation template directions

with other optimization methods could yield interesting modifications to Algorithms 2.7 and 3.2 (Bak

et al., 2021a).

2. The use of a massively-parallel implementation using HPC hardware, such as GPUs, for optimizing

over an extremely large number of parallelotopes and their template directions is also an immediate

extension. This is inspired by the approach behind the recent tool PIRK (Devonport et al., 2020).

3. Simply taking the intervals which dominate all the other intervals may be too crude to properly yield

an effective speed-up. Are there any other methods of adding basis monomials to the lookup table

which take into account the degree discrepancies outlined in Section 5.2.1?
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APPENDIX A

ADDITIONAL BENCHMARK MODEL DEFINITIONS

A.1 Vanderpol Oscillator

The Vanderpol Oscillator is a classical two-dimensional non-linear dynamical system governed by the

following dynamics: 
x′ = y

y′ = µ · (1− x2) · y − x
(A.1)

We set µ = 1 in our experiments. The dynamics were gathered from (Aachen, 2014).

A.2 Jet Engine

The Jet Engine model is specifically the Moore-Greitzer model. The dynamics are given as follows:


x′ = −y − 1.5 · x2 − 0.5 · x3 − 0.5

y′ = 3 · x− y
(A.2)

These dynamics were studied in (Aylward et al., 2008), and the dynamics were gathered from (Aachen, 2014).

A.3 Coupled Vanderpol

This model couples two Vanderpol Oscillators together, resulting in an non-linear ODE of four variables



x′1 = y1

y′1 = (1− x2
1) · y1 − x1 + (x2 − x1)

x′2 = y2

y′2 = (1− x2
2) · y2 − x2 + (x1 − x2)

(A.3)

This model was investigated in (Rand and Holmes, 1980), and the dynamics were gathered from (Aachen,

2014)

52



A.4 Neuron Model

The FitzHugh-Nagumo Model describes the electrical activity of a neuron. The dynamics are given by

the two-dimensional non-linear ODE:
x′ = x− x3 − y + 7/8

y′ = 0.08 · (x+ 0.7− 0.8 · y)

(A.4)

The model was first studied in (FitzHugh, 1961) and its reachability analysis using Bernstein expansion is

considered in (Dang and Testylier, 2012).

53



BIBLIOGRAPHY

Aachen, R. (2014). Benchmarks of continuous and hybrid systems.

Althoff, M. (2010). Reachability analysis and its application to the safety assessment of autonomous cars.
PhD thesis, Technische Universität München.

Althoff, M., Stursberg, O., and Buss, M. (2010). Computing reachable sets of hybrid systems using a
combination of zonotopes and polytopes. Nonlinear analysis: hybrid systems, 4(2):233–249.

Ansumali, S., Kaushal, S., Kumar, A., Prakash, M. K., and Vidyasagar, M. (2020). Modelling a pandemic
with asymptomatic patients, impact of lockdown and herd immunity, with applications to sars-cov-2.
Annual Reviews in Control.

Aylward, E. M., Parrilo, P. A., and Slotine, J.-J. E. (2008). Stability and robustness analysis of nonlinear
systems via contraction metrics and sos programming. Automatica, 44(8):2163–2170.

Bak, S. (2021). nnenum: Verification of relu neural networks with optimized abstraction refinement. In NASA
Formal Methods Symposium, pages 19–36. Springer.

Bak, S., Bogomolov, S., Duggirala, P. S., Gerlach, A. R., and Potomkin, K. (2021a). Reachability of black-box
nonlinear systems after Koopman operator linearization.

Bak, S. and Duggirala, P. S. (2017). Simulation-equivalent reachability of large linear systems with inputs. In
International Conference on Computer Aided Verification, pages 401–420. Springer.

Bak, S., Kim, E., and Duggirala, P. S. (2021b). Covid infection prediction using cps formal verification
methods.

Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.
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Muñoz, C. and Narkawicz, A. (2013). Formalization of Bernstein polynomials and applications to global
optimization. Journal of Automated Reasoning, 51(2):151–196.

NASA (2017). Kodiak, a C++ library for rigorous branch and bound computation. https://github.
com/nasa/Kodiak.

Nataraj, P. S. and Arounassalame, M. (2007). A new subdivision algorithm for the Bernstein polynomial
approach to global optimization. International journal of automation and computing, 4(4):342–352.

55

https://github.com/nasa/Kodiak
https://github.com/nasa/Kodiak


Nataray, P. and Kotecha, K. (2002). An algorithm for global optimization using the Taylor–Bernstein form as
inclusion function. Journal of Global Optimization, 24(4):417–436.

National Supermodel Committee (2020). Indian Supermodel for Covid-19 Pandemic.

Rand, R. and Holmes, P. (1980). Bifurcation of periodic motions in two weakly coupled van der pol oscillators.
International Journal of Non-Linear Mechanics, 15(4-5):387–399.
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