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ABSTRACT

DANIEL R KORN: Exploration of Domain-Specific Knowledge Graphs For Testable Hypothesis
Generation

(Under the direction of Alexander Tropsha and Rada Chirkova)

In the span of a decade, we have brought about a fundamental shift in the way we structure,

organize, store, and conceptualize biomedical datasets. Data which had previously been siloed has

been gathered, organized, and aggregated into central repositories, interlinked with each other by

categorizing these vast sums of knowledge into well defined ontologies. These interlinked databases,

better known as knowledge graphs, have come to redefine our ability to explore the current state of

our knowledge, answer complex questions about how objects relate to each other, and invent novel

connections in vastly different research disciplines.

With these knowledge graphs, new ideas can be quickly formulated, instead of relying

upon the insight of a single scientist or small team of experts, these ideas can be made leveraging

the vast historical catalog of research progress that has been captured in biomedical databases.

Knowledge graphs can be used to propose hypotheses which narrow the nearly infinite array of

possible explorations which can link any pair of ideas to only those which have some historical

and practical considerations. In this way, we hope to utilize these knowledge graphs to produce

hypotheses, promote those which are viable, and provide them to biomedical experts.

In this work, we aim to develop methodologies to produce meaningful hypotheses using

these graphs as inputs. We approach this problem by (i) utilizing intrinsic mathematical properties

of the intermediate nodes along pathways, (ii) translating existing biomedical ideas into graphical

structures, and (iii) incorporating niche domain-specific biomedical datasets to explore domain

problems. We have shown the ability of these methods to produce practical and useful hypotheses

and pathways which can be utilized by experts for immediate exploration.
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“The most merciful thing in the world, I think, is the inability of the human mind to

correlate all its contents. We live on a placid island of ignorance in the midst of black

seas of infinity, and it was not meant that we should voyage far. The sciences, each

straining in its own direction, have hitherto harmed us little; but some day the piecing

together of dissociated knowledge will open up such terrifying vistas of reality, and of

our frightful position therein, that we shall either go mad from the revelation or flee

from the light into the peace and safety of a new dark age.”

– H.P. Lovecraft
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CHAPTER 1

Introduction

Accessing, storing, and exploring large amounts of interconnected data has problems that

have been actively studied in computer science. The creation and querying of massive relational

databases are a field of intense interest and research, frequently allowing users to find relational

information from a database nearly instantly. However, these relational databases are not as effective

when users have extremely diverse data, with highly complex relationships between different data

types.(Robinson et al., 2015)

Biologists, chemists, geneticists, and many other branches of life and medical scientists

have worked for many centuries building up the scientific knowledge surrounding the human body.

Each new generation slowly builds up on the discoveries and knowledge of the previous, collecting

new data, discovering new compounds, building more elaborate and precise tools to complete

experiments. It is through this slow deliberate exploration that we as a species have conquered

plagues, endemic diseases which were once seen as a death sentence like tuberculosis can now be

treated with a variety of readily available drugs.

Two biomedical papers are submitted to the PubMed repository every minute, with more

than a million papers being published each year, and even keeping up with the novel research in a

specialized field can be a full-time task for researchers (Landhuis, 2016). As the amount of research

increases, it becomes less likely for any one researcher to be able to understand the entirety of new

research, even just in their specialized field, let alone in the broader domains. One major issue with

biomedical research is the siloization of results and the repeating of existing studies due to the lack

of discoverability of results (Denton et al., 2021; Rodriguez-Esteban, 2022).
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1.1 Knowledge Graphs

Accessing, storing, and exploring large amounts of interconnected data has are problems

that have been actively studied in computer science. The creation and querying of massive relational

databases is a field of intense interest and study; frequently allowing users to nearly instantly

find relational information from a database. For many generations, these databases have served

as the solution to nearly every large-scale data processing problem in the field. However, these

relational databases are not as effective when users have extremely flexible data, with highly diverse

relationships between different data types (Webber, 2012).

When processing data which may need to express very dynamic linkages between complex

data types which are often updated, a graph database may be more desirable. Well maintained

graph database software, such as Neo4J(Team, 2022), SPARQL(Harris et al., 2013), and Apache

TinkerPop(Rodriguez, 2015), have already seen a large amount of use in both industrial and

academic settings. These databases differ by seperating data into two broad categories, objects

(nodes) and relationships between those objects (edges). These nodes may have an arbitrary number

of labels and properties attached to them, enable large flexibility in the types of data that can be

represented. Logically representing data as nodes within that graph, and edges as the linkages

between data (Hogan et al., 2021; Robinson et al., 2015).

An ontology is a conceptual level description of a particular domain, encompassing the

level of detail that information should take and of ways in which different entities can relate with

each other(Ehrlinger and Wöß, 2016). In knowledge graphs, the choice of ontology and of how

the knowledge is represented is critical. Nodes in the knowledge graph represent ideas and entities

from the real world; a knowledge graph may contain a node for the University of North Carolina at

Chapel Hill (UNC-Chapel Hill), an instance of a university that should serve as the node’s class.

Similarly, edges in knowledge graphs serve to represent how these entities interact, i.e., how they

capture facts and statements about relationships between entities. For instance, we can represent the
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statement ”UNC-Chapel Hill is located in North Carolina” as two nodes: UNC-Chapel Hill and

North Carolina, joined via an edge which states their relationship, in this case, located in.

The idea of one large dataset collecting all information in the world is a powerful one. We

can see formulations of this idea from the initial foundations of the internet, with the notion of a

semantic web powered by XML and RDF being prevalent in the 1990s(Berners-Lee et al., 2001).

This semantic web aimed to provide one universal way to link all the data being produced all over

the internet. By interlinking different datasets together, this web would create a unified dataset

that encapsulates all knowledge. Ultimately, the semantic web failed to succeed, the semantic web

has received criticism for multiple reasons. 1) Its use being too niche, 2) the logistical difficulties

of getting so many large and disparate organizations to agree on a common ontology, 3) lack of

computational power and storage to handle such a large database.(Hogan, 2020) Still, the idea of

modern knowledge graphs and graph database architecture has its roots in the philosophy of the

semantic web project.

It was not until truly massive datasets with diverse nodes and complex relationships became

practical to collect and construct that the utility of graph databases became more apparent. We can

view the rise of knowledge graphs as parallel with big data, which is defined as the ability to rapidly

collect, capture, store, and distribute large volumes of information.(Gandomi and Haider, 2015)

The age of ”big data” began sometime in the early 2010’s. However, the exact date is contentious,

as corporations, government agencies, and non-profits all began pivoting goals to information

aggregation and dissemination.(Gandomi and Haider, 2015) Without this abundance of data, the

creation of large knowledge graphs would still be as infeasible as it was when attempted during

the age of the semantic web. Other changes also needed to be done to enable knowledge graphs.

Organizations were created whose sole purpose was to create and maintain knowledge graphs,

allowing maintainers to act as the foremost authority. These maintainers have the final say in:

(1) The target domain of a specific knowledge graph, and (2) The level of ontological rigor the

database would have. Additionally, the National Institutes of Health (NIH) created the National

Center for Advancing Translational Sciences (NCATS), which oversees and standardizes nascent

3



Figure 1.1: This figure shows a simplified version of the creation of a knowledge graph. The color
of each node represents a different ontological category (for example, blue nodes could represent
diseases, and pink nodes represent symptoms, etc). On the left most side of the picture, we present
four databases each consisting of connections for how objects of a singular ontological type relate
to another ontological class (an example of such a database may be Malacards, which provides
information on how the presence of genes relates to occurrence of genetic diseases). In the middle
we have an ontological normalization step, in which all nodes are brought into the same vocabulary.
And finally the end result is a graph of interconnected nodes, uniting the information from each of
the databases.

work on heterogeneous biomedical data integration.(Austin, 2016) These advances have created an

environment where large-scale domain-specific knowledge graphs have gone from impossible to

real, allowing the development of extremely powerful tools.

Many other private and non-profit organizations have developed valuable and exciting

knowledge graphs in the last decade. Google leverages an internal private knowledge graph

called ”Knowledge Vault” to provide semantic results for web searches.(Dong et al., 2014) The

Knowledge Vault claims to have 45 million entities and 271 million ”confident facts” captured

about these entities. YAGO (Yet Another Great Ontology) is a knowledge graph produced by Max-

Planck-Institute in Germany.(Suchanek et al., 2007) The graph mines connections from WordNet

and Wikipedia, producing extensive collections of facts and entities from community-sourced

documentation. Wikidata is produced by the Wikimedia Foundation, a non-profit organization

devoted to the creation and preservation of human knowledge.(Malyshev et al., 2018) Wikidata
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Figure 1.2: Here we show the Google ”Knowledge Panel” for Fred Brooks, the founder of the UNC
Computer Science Department. This panel was generated by Googling the query “Who is Fred
Brooks?” and the aim of knowledge panels are to present a high level overview of a topic. This panel
was generated from the internal “Knowledge Vault”(Dong et al., 2014) graph at Google.(Google,
2021b,a)

enables users to create and append facts about entities and knowledge from the world; it presently

has 61 million entities and 750 million facts that relate to these entities.(Waagmeester et al., 2020)

Google’s “Knowledge Panels” are possible the most publicly available use of knowledge

graphs. By taking advantage of their Knowledge Vault;(Dong et al., 2014) Google is able to provide

fast answer to user questions without directing them to another website.(Google, 2021b,a) These

panels show up on the in response to user queries which can be answered with factual information.

In Figure 1.2 we show an example of one of Google’s Knowledge Panels for the Fred Brooks, who

invented the 8-bit byte and founded the UNC Department of Computer Science in 1964, among

many other life achievements. This panel was created in response to a user search of the question

“Who is Fred Brooks?”
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Although the terms ”graph database” and ”knowledge graph” are sometimes used inter-

changeably in the literature, there are many important distinctions between the two. Graph databases

refer to the functional creation of data in a system with some graph structure. This structure may be

utilized for fast retrieval and complex queries. On the other hand, knowledge graphs are collections

of specific information put together in a graph structure. Knowledge graphs can often be powered

by a graph database software, such as Neo4J(Webber, 2012), but may also be released as flat text

files. For example, Amazon’s Drug Repurposing Knowledge Graph (DRKG)(Ioannidis et al., 2020)

was released as a series of RDF. Another trait of knowledge graphs is that they often provide

confidence values for their connections, typically values between 0 (low confidence) and 1 (absolute

confidence). In a traditional database, uncertain data are considered highly undesirable and must be

purged and cleaned, leaving a dataset of 100% accurate information. Conversely, this uncertainty of

linkage is a key trait of knowledge graphs, where information on what is true and how ideas relate

is often open to interpretation. These confidence values enable users to make complex judgements

on how different nodes may relate to each other.

Many other use cases of knowledge graphs exist. Siemens employs knowledge graphs to

improve their engineering and manufacturing practices.(Hubauer et al., 2018) Cyber security has

also benefitted greatly from the use of knowledge graphs, and graph databases in general. SEPSES

(Semantic Processing of Security Event Streams) provides an interlinked repository of cybersecurity

attacks, vulnerabilities, and known intrusions.(Kiesling et al., 2019) Graph databases have also

played a key role in the evolving field of fraud detection, enabling both heuristic and machine

learning based approaches to flag suspicious activity.(Jiang et al., 2019; Sadowski and Rathle, 2014)

Knowledge graphs have also been created interlinking researchers, research interests, and historical

discoveries.(Oldman and Tanase, 2018)

With the large amount of data for a specific domain area that has been accumulated, the

challenge becomes to derive practical knowledge from these data. Certain graph databases serve

a critical function as data retrieval systems, serving as a repository to enable users to collect and

analyze known information for a specific question or quickly retrieve all the current information
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and relationships for some queried entity. But to domain experts, it is often important to find novel

connections within the data. The question can be stated bluntly “What can we derive from this

database?” These users seek to go beyond simply utilize graph databases as knowledge repositories

and instead create novel discoveries by leveraging existing data. We hope that reformulate the

introduction of knowledge graphs will enable more complex handling of data .

Some initiatives have been created to help aid in the creation and organization of data.

FAIR Principles, which stands for Findability, Accessibility, Interoperability, and Reusability, aim

to be a general purpose (Wilkinson et al., 2016). As stated by Wilkinson et al. in the outline of

these principles: “Good data management is not a goal in itself, but rather is the key conduit leading

to knowledge discovery and innovation, and to subsequent data and knowledge integration and

reuse by the community after the data publication process.” Issues with how results of academic

endeavors are shared with the world, typically through a publication, do not facilitate easy transfer

of knowledge or ability to integrate results into other database. The FAIR project hopes to enforce

database rules and guidelines on all government funded research projects. Similar efforts have been

created in Europe, such as Open PHACTS (Pharmacological Concept Triple Store), a project which

hopes to unite the discoveries of academic and industry into a centralized database (Williams et al.,

2012). The aim is to create a data commons which information from the public sector, the private

sector, and individuals are all entered into and accessible to everyone.

1.2 Biomedical Knowledge Graphs

General knowledge graphs have great potential as general question answer tools. As

discussed above, Google utilizes knowledge graphs in their search algorithm to provide high quality

answers to user queries, and they have been utilized for various other fields, such as cyber security

and engineering.

The field of bioinformatics encompasses dozens of disciplines and further within those, hun-

dreds of subdisciplines.(Can, 2014; Luscombe et al., 2001) Biology, chemistry, genetics, proteomics,

statistics, and many other fields all play a critical role in the continued discovery and advancement
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of human medical knowledge. Specialists from each of these groups may find discoveries specific

to their skill set and purview which inspire and enable those in other disciplines. This feedback loop

of different disciplines pushing knowledge in other areas forward is critical for the complex realm

of the human body.

There exists a large number of biomedical databases in the public domain right now which

provide detailed, accurate, and high-quality information for different information. These databases

are often extremely specific to a subdiscipline of the biomedical field. An example of one such

database is MetalPDB, this database contains information purely on how specific metals interact

with proteins in the human body.(Andreini et al., 2013; Putignano et al., 2018) The narrow focus of

these databases on a niche problem space could be viewed to create silos of information. But the

breadth of knowledge is so massive, keeping a narrow focus enables maintainers of these databases

to maintain high levels of quality and avoid errors which may occur from tracking information

which they have no expertise in.

Other biomedical databases which are helpful to show to explore the field are ChEMBL

(available at https://www.ebi.ac.uk/chembl/).(Gaulton et al., 2017; Mendez et al., 2012)

The ChEMBL database is a collection of information on over two million chemical compounds.

Each compound is given an ontological identifier unique to the ChEMBL database; for example

“aspirin” has the identifier CHEMBL25 (https://www.ebi.ac.uk/chembl/compoun

d report card/CHEMBL25/). Within the ChEMBL database, each of these identifiers can be

queried to provide information on existing knowledge surrounding the chemical. Some of the fields

ChEMBL provides are:

1. Synonyms – A list of all names which may refer to the same chemical. Includes specific

brand names (such as Viagra, Prozac, Wellbutrin) and generic names.

2. FDA Approval Status – The drug’s approval by the Federal Drug Administration (FDA).

This includes what phase of clinical trial a drug has been tried in.
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3. SMILES String – The simplified molecular-input line-entry system (SMILES) string are

character based representation of chemical structure.(Weininger, 1988)

4. Drug Indications – The medical conditions a drug has been documented to treat.

5. Drug Mechanisms – How a drug is believed to function, this topic is covered in greater

deal in Section 3.2 (Clinical Outcome Pathways).

Some of these fields provide linkages to other databases. For each drug indication a

compound has, ChEMBL provides not only information on what indication a drug treats, when

this was discovered, and what sources provide it’s information, it also provides a linkage to the

Medical Subject Headings ontology (MeSH)(Lipscomb, 2000). To further our example, in the drug

indications of CHEMBL25 (aspirin), we can find an entry for Fever with D005334 the identifier

for fever in the MeSH Ontology (https://id.nlm.nih.gov/mesh/D005334.html).

Ontological identifiers for biomedical entities, such as ChEMBL and MeSH identifiers,

provide the foundation for our biomedical knowledge graphs, serving as the nodes in the graph. The

linkages between these datasets through interaction of these entities; such as in the above example

CHEMBL25 (aspirin) treats D005334 (fever) enable us to connect nodes through biomedically

relevant edges.

We present in Figure 1.3 an example of a biomedical knowledge graph. This example

comes from the ROBOKOP biomedical knowledge graph (Section 1.5.1). In this example we see

an interleaving of various different node types and relationships. In this graph we see an example

of drug→ gene connection, drug→ disease connections, gene→ biological process, biological

process→ disease. Each edge in the graph provides a label describing the connection between the

two nodes, and in Neo4J extra properties may be added to edges.

Omics data aims to encapsulate all branches of science which end with the phrase “-

omics”, such as genomics, proteomics, epigenomics, etc. The aims of such a standard would be to

facilitate simplistic sharing over broad categories of research and researchers (Chervitz et al., 2011).

Historically these standards have been scattered and spotty, localized to academic groups without
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Figure 1.3: An example subset from the Reasoning Over Biomedical Objects linked in Knowledge
Oriented Pathways (ROBOKOP) biomedical knowledge graph (Section 1.5.1). This graph shows
the interconnected pathways surround the drug metformin. Nodes of brown color represent drug
nodes, nodes with green color represent genes, nodes with pink color represent diseases, and nodes
with teal color represent biological processes. This graph was generated by the Neo4J interface with
the query ‘MATCH (d:disease)–(b:biological process or activity)–(g:gene)–(c:chemical substance)
WHERE d.name=“type 2 diabetes mellitus”AND c.name=“metformin” RETURN *’

enforced support when publishing data. As more interests, such as governmental agencies projects

like PrecisionFDA (Olson et al., 2022) and large scale projects have been made to aggregate these

data, the demand for extensive standards which cover all potential experiments have become more

coveted.

1.3 Hypothesis Generation

The problem of generating novel connections utilizing a database has been previously

studied. As applied to knowledge graphs, hypothesis generation is the process of finding unknown

connections between entities through the automated exploration of a database.(Spangler et al., 2014)

Hypothesis generation can take multiple forms, depending on the source dataset and the form of

question the user wants answered. If a user is performing genomics studies, it may be as simple
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Figure 1.4: A visualization of hypothesis generation. In this figure we show how novel edges may
be infer on the resultant graph from Figure 1.1. We take as an input an existing knowledge graph. A
hypothesis generation process looks to create edges between nodes not yet known to be connected.
These newly generated hypothesizes are represented in the right image by the bold yellow arrows.

as a database returning a list of genes. In the space of knowledge graphs, the result of hypothesis

generation take the form of pathways of biomedical objects, where each node and edge along the

pathways contributes to an overall hypothesis. A user may query with just a source node seeking all

possible connections in the graph, or more manageably, they will query with two nodes (a source

and tail) and seek to elucidate the connection between two objects.

This exploration is critical to the field of drug discovery and repurposing (Section 1.4);

many drugs and diseases are known to be related, but with the underlying biological mechanisms of

this interaction are unknown. Hypothesis generation provides us a methodology to explain these

unknown mechanisms and relationships, providing domain-experts greater detail to existing drug

disease mechanisms.

We present an example visualization of hypothesis generation in Figure 1.4. In this figure

we show how an existing knowledge base could be used to generate new potential connections.

These connections are visualized with the large yellow arrows, which link hitherto unconnected

nodes as candidates for exploration of connections.
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1.4 Drug Repurposing

One specific use case in which hypothesis generation (Section 1.3) may be of note and use

is that of drug repurposing. Drug repurposing is the act of taking a compound known for treatment

of one disease and repurposing that compound for the treatment of another disease.(Pushpakom

et al., 2019) This provides us with multiple benefits: (1) drugs which are known to treat another

disease have often already gone through an extensive FDA approval safety screening process, (2)

these drugs are already being made at a large scale which greatly lessens the effort to providing

them to patients, and (3) extensive real world studying of mechanisms of actions (MOA) of these

drug has been conducted.

Drug repurposing has provided multiple very major advancements in treatments of various

real-world diseases. Sildenafil is probably the most famous example of drug repurposing (more

commonly known by its brand name Viagra).(Polamreddy and Gattu, 2019) Initially approved as

a treatment for hypertension (high blood pressure), sildenafil ultimately was found effective as a

treatment of erectile dysfunction.(Boolell et al., 1996) Sildenafil was also repurposed as a treatment

of pulmonary arterial hypertension.(Galiè et al., 2005)

Often the diseases which are treated through drug repurposing are rare diseases, these

are diseases which affect fewer than 1 in 200,000 people as defined in the United States or 1 in

2,000 as defined in the European Union.(Valdez et al., 2016) Rare diseases by their very nature

affect few patients, some of these conditions afflict fewer than a dozen people in the entire world,

and they are discussed in much greater detail in Section 4.5.2. It becomes increasingly difficult

to conduct meaningful clinical trials and FDA approval on such small patient groups. However,

drug repurposing provides these patients access to treatment that may be otherwise impossible to

justify, but reusing existing and well-studied drugs. One such example of this is David Fajgenbaum,

who was diagnosed with idiopathic Castleman’s disease. When he didn’t respond well to known

treatments, he and his care team were able to repurpose the drug sirolimus to put his Castleman’s

into remission.
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The NIH has created an entire division, the National Institute for Aging, which aims to

work on treatments for Alzheimer’s Disease and Related Dementia (ADRD). In order to facilitate

the discovery of treatments, they created the Drug Repurposing for Effective Alzheimer’s Medicines

(DREAM) initiative.(Desai et al., 2020; Thambisetty and Aging, 2021) Clinical trials for Alzheimer’s

Disease have consistently failed.(Mehta et al., 2017) More than 100 compounds have been entered

into a government sponsored trial, but all haven’t met FDA safety and efficacy standards; the result

has been loss of billions of dollars and a lack of tools to combat ADRD. There is a dataset containing

longitudinal (over a substantial period of time) clinical data for over 20 million older Americans,

containing both their medication and history and their current ADRD prognosis. This shows one

of the primary benefits of drug repurposing. When generating hypotheses through computational

models, analyzing these historical clinical data allow researchers to use observational validate some

drug repurposing hypothesis; finding individuals who have taken already approved drugs in the past

and investigating their likelihood of getting Alzheimer’s. This methodology is not a substitute for a

full clinical trial, but enables faster pruning of unpromising candidates early.

1.5 Specific Biomedical Knowledge Graphs

1.5.1 ROBOKOP

The Renaissance Computing Institute (RENCI) is a collaborative effort between UNC-

Chapel Hill, Duke University, and the North Carolina State University. RENCI focuses on de-

veloping practical and novel software and infrastructure for solving large problems.(Ahalt, 2017)

One of the outcomes of this work is the knowledge graph called Reasoning Over Biomedical

Objects linked in Knowledge Oriented Pathways (ROBOKOP).(Morton et al., 2019) ROBOKOP

serves as an interface for expert users to query and discover novel information in the field of

bioinformatics. ROBOKOP is powered by a large and heterogeneous knowledge graph built from

over twenty biomedical data sources, capturing over 9 million distinct biomedical concepts. Using

state-of-the-art knowledge graph research was critical in the development of this graph.
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Neo4J provides the underlying architecture which ROBOKOP is built on top. The Neo4J

graph database software provides many features which enable ROBOKOP to aid biomedical research.

One main benefit is the ability of nodes to have multiple labels; such as the drug “minoxidil”, which

contains the labels named thing, biological entity, molecular entity, and chemical substance. The

flexibility of these labels enables end users to query more broadly when desired, such as asking for

any biological entity which fits a specific parameters, and more narrowly, such as asking for a gene,

phenotype, or chemical with certain properties.

Another feature of Neo4J used in ROBOKOP is the ability for arbitrary data to be attached

to any node or edge. This enables either a boolean, integer, string, or list to be mapped to keys,

similar to relational databases. For minoxidil, one such item is a boolean flag which indicates if the

drug has been approved for use by the FDA. These flags enable fast and narrow queries for various

pathways in ROBOKOP. One particularly useful case of this is for edges linking nodes, a list of

publications which support the edge is included, which enables biomedical researchers to quickly

cross reference why an edge is included in a knowledge graph and potentially enable a survey of

existing literature into a problem.

We have catalogued and provided a table of the 38 databases underlying the ROBOKOP

database in Table 1.1. Each of these databases represents specialized expert knowledge in some

domain of bioinformatics, often summarizing thousands of hours of intense research. Additionally,

each of these datasets must be curated and standardized to fit an ontology. The breadth and scope of

the various datasets integrated into one central repository is notable, combining resources like the

Genome-wide association studies (GWAS) (Buniello et al., 2019), which gathers information on

the genetics in human with specific diseases, PubChem (Kim et al., 2021; Li et al., 2010) which

provides information on over 100 million chemical compounds, and Comparative Toxicogenomics

Database (CTD) (Davis et al., 2021; Mattingly et al., 2003) a dataset of toxic compounds and the

specific regions of the human body they disrupt.
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1.5.2 HetioNet

The HetioNet knowledge graph is an integrated network of twenty-nine different biomedical

databases; consisting of genes, diseases, and drugs.(Himmelstein and Baranzini, 2015; Himmelstein

et al., 2017) This graph was developed by Himmelstein et al. with the specific intention of being

used for drug repurposing tasks (Section 1.4).

The HetioNet knowledge graph is significantly smaller and more focused then the ROBOKOP

(Section 1.5.1) graph. HetioNet contains 47 thousand nodes and 2.3 million edges; an order of

magnitude less than ROBOKOP (which has 9 million nodes and 255 million edges). The smaller

nature of the graph makes it much more focused and less noisy, but also removes many of the

unexpected connections which may be found in a larger graph. This makes it a useful secondary

dataset for testing novel knowledge graph methodologies.

A catalog with references of the twenty-nine databases which compose the HetioNet graph

can be found at https://git.dhimmel.com/rephetio-manuscript/.

1.6 Federated Knowledge Graphs

Federated database systems are database which serve as a collection of multiple other

databases, with each database run independently of the others.(Risch, 2009) A federated database

system take one of two forms; loosely coupled and tightly coupled. A loosely coupled architecture

requires the user to interact with all databases within a federated system and maintain knowledge

of all component databases. A tightly coupled architecture takes the form of a singular controller

database, which a user interacts with; and several peripheral databases which support the controller.

In a tightly coupled system, when a user makes a query, the controller manages the query of all

constituent elements; this enables many distinct databases to be queried while a user must only

maintain knowledge of a singular endpoint.

A promising new branch of research is being developed in Federated Knowledge Graph,

that is Knowledge Graphs which access knowledge by querying multiple other databases. These
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databases have complex tradeoffs from traditional single database knowledge graphs. A primary

downside of a federated approach is speed, queries which used to be fully answerable from a single

machine now require multiple API queries to ensure complete accuracy of the solutions. Another

issue which becomes more pressing in a federated space is that of ontological choice. Administrators

of federated knowledge graphs must be careful that all databases which they interact with are using

the same level of ontology; additionally, all peripheral databases must be ensured to be compliant

with the ontology of the controller or ontological normalization must be performed by the controller

when submitting queries and processing replies.

Presently, at RENCI, work is being done on the creation of federated knowledge graph

systems. Strider(Wang, 2021) federated knowledge graph has been created in association with the

biomedical translator program. The Strider federated knowledge graph integrates over 33 knowledge

provides into a singular access point and ontology. This Strider system will at runtime query each

of these 33 providers to find connections between different biomedical objects. This enables the

result graph to be as up to date as possible given the current state of knowledge, as long as the API

of the queried datasets have been updated, that state will be reflected in the Strider result.

Federated systems do not come without drawbacks. Traditional graph databases gain a

great deal of speed and efficiency by having the entirety of its data on a singular system. When

transitioning to a federated approach, issues of network latency, query response time, and failed

queries start to become prevalent. With these issues, a primary failure of federated systems versus

non-federated is speed. Queries can often go from taking tens of seconds to multiple minutes to

return a response to an end user.

Because of the speed issues, these databases become much less able to be used in many

applications. The need to query and allow all subsequent databases to return a response and

dynamically building results is just too onerous for time constraints. Any procedure which can help

sort and filter the results of these graphs and restrict them can greatly aid in speeding up their result

time.
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1.7 Specific Aims

The main goal of my studies is to develop approaches for leveraging specialized domain

knowledge when mining knowledge graphs to enable mechanistically valuable and testable hypoth-

esis generation in specialized domains. To achieve this objective, we have the following specific

aims.

The first specific aim is ”Leverage properties of knowledge graphs to further knowledge

extraction.” In this aim, we will explore how the degree of nodes in a knowledge graph can be

utilized for complex hypothesis generation. We focus on issues of node degree, representation of

certain nodes in existing hypothesis generation algorithms. Furthermore we explore the creation of

novel path ranking algorithms and provide implementations in Neo4J that can help address these

problems.

The second specific aim is ”Querying semantically relevant graph patterns for hypothesis

generation.” In this aim, we explore the idea of how users interact with the knowledge graph. We

introduce the concept of semantically meaningful graph patterns, which are combinations of nodes

that provide insight into particular domains. We implement these ideas in the biomedical domain

as “Clinical Outcome Pathways”. We further explore how to algorithmically generate Clinical

Outcome Pathways for knowledge graphs.

The third specific aim is ”Extending general biomedical knowledge graphs to specific

problem domains.” In this aim, we seek to utilize methodologies from Aims One and Two in the

subfield of biomedical knowledge graphs. We explore how the biomedical field provides unique

computational and engineering challenges and potential solutions to these issues. In addition, we

study problem specialized knowledge graphs and knowledge graphs that may be constructed to

solve very narrow problems. We introduce two focused biomedical knowledge graph which extend

the ROBOKOP knowledge graph; COVID-KOP and SCENT-KOP.
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1.8 Existing Approaches

This section describes the existing strategies for hypothesis generation using knowledge

graphs. In each of these approaches, we assume we have two objects, or two nodes, which are

sought to be explored. These two nodes are then tested in some way, and results are provided to an

expert for their connectedness. Existing approaches often treat the graph as irrelevant of context,

and fail to incorporate expert users into any form of feedback loop. These approaches can be broadly

classified into two categories:

1. Global Optimization Methods

2. Deep Learning Methods

1.8.1 Approach 1: Global Optimization Methods

Global optimization methods are methods which define some function which represents

the mathematical optimally way to capture relationships between nodes in a graph (Goyal and

Ferrara, 2018). These formulations can be viewed as an optimal way to relate each node to each

other in some geometric space (typically by minimizing eucluidan distance in some way). Once

properly formulated, the nodes and edges of a graph simply need to be input into this methodology

to generate an optimization problem for the graph. Once this problem has been formulated, it can

be solved with well studied solution methodologies such as Runga-Kutta (Ausiello et al., 2012).

Methods such as Local Linear Embeddings(Sam T. and Saul, 2000) and Laplacian Eigen-

maps(Belkin and Niyogi, 2002) are examples of global optimization methods. These methods

operate by attempting to place vector representations of nodes near vectors of all its neighbors.

The idea is that by capturing all local clusters of behavior, global behavioral patterns will emerge.

By structuring the target embedding as constrained optimization problems, these methods can

efficiently and consistently achieve the same results.

Unfortunately, these methods are computationally unfeasible for large graphs. These graphs

can have hundreds of millions of nodes and billions of edges. These methods as they do not scale
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well in number of edges in a graph (Goyal and Ferrara, 2018). The embedding of every node affects

the embedding of each other node, which must be truly calculated to achieve the global solution

to the problem. These computational restrictions have made these methods untenable for modern

knowledge graphs.

1.8.2 Approach 2: Deep Learning Methods

Deep learning has become a common blanket term for a family of approaches to data

science and statistical inference problems in the last decade. In this family, large amounts of high

quality data is fed into a neural network. The architecture of these neural networks can vary wildly

Graphics compute units (GPUs) are core components of the deep learning approach.

Leveraging the rapid advancements in quality, availability, and capability of GPUs has enabled

much of the deep learning revolution. GPUs have transformed from niche hardware used to

enable high speed graphic calculations for video games to being a cornerstone of high performance

computing and deep learning. Recent GPUs have ten times, and even a hundred times, more

memory then GPUs of five years ago. Additionally, single GPUs can have several hundred parallel

processors. An extreme example is the Nvidia V100 Volta, which has 640 parallel cores.

For almost all forms of deep learning on graphs, the representation of the graph is substan-

tially simplified for the learning process. Fully representing an interconnected graph is too complex,

and the vast majority of deep learning processes require inputs of finite size. To accommodate this

limitation, random walk samples of the graph are taken. This provides a finite fingerprint for the

state of the graph. Additionally, given a sufficient amount of samples, random walks should fully

capture the transition probabilities for moving from one node to another.

A more practical way to perform machine learning for knowledge graphs is to avoid

learning directly on the graph, as described above. The alternative approach is to find a lower

dimensional space which we may then use to represent the nodes (and relationships) of the graph.

This process is referred to as graph embedding. In the process of graph embedding, we take a

standard adjacency matrix representation of the graph and convert all nodes to a vector of some user
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specified length s, where s is substantially less then n. As discussed further below, methods provide

different properties for how embedding vectors relate to each other.

The new generation of graph embedding methods leveraged work from the Natural Lan-

guage Processing (NLP) space in capturing semantic meaning from natural language. Initially begun

with DeepWalk algorithms (Perozzi et al., 2014), and later extended into the famous Word2Vec

algorithms (Grover and Leskovec, 2016), these works were trained on an extremely large corpus of

English text; leveraging Skip-Gram Neural Networks to learn a model of language. These works

have provided breakthroughs in NLP space by enabling the vectorization of words into a “semantic

space” (Grover and Leskovec, 2016). The claimed ability of this “semantic space” was to place

words of similar meaning near each other in this high-dimensional space, and words which are

dissimilar are embedded far apart. A famous example of the Word2Vec’s ability to capture semantic

ideas was the following example: when looking at embedded vectors for the words King, Queen,

Man, and Woman, it was seen that the following held King - Man + Woman = Queen (Drozd

et al., 2016). The algorithm was able to capture the internal semantic relationship of how the

meaning of King and Queen differ by gender. The ability for a computer to capture higher order

semantic relationships from direct observation of text with no interference of human experts is

a very powerful result. Although further research has countered that many of these bold claims

of the powers semantic embedding may be the results of misreadings of the data or the result

of ill-designed experiments (Gonen and Goldberg, 2019; Nissim et al., 2020), these models still

provide the backbone of much of the progress in the exploration of computational understanding of

how ontological entities relate to each other.

Node2Vec is a popular graph embedding method (Grover and Leskovec, 2016), adapting

the work done for Word2Vec into the graph space. Node2Vec randomly walks the input graph,

treating each walk through the graph as a unique “sentence”. It then attempts to place all nodes in

these “sentences” near each other, by extensively training a neural network. This approach avoids

many of the complexity issues of the global approaches, by allowing the graph to be discretized as

sentences instead of attempting to capture all the relationships. GraphSage builds upon Node2Vec.
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GraphSage inductively builds out information about the graph, starting at a few nodes and slowly

constructing a more complex understanding of how nodes relate to each other by building out and

defining more regions of the graph as it grows.(Hamilton et al., 2017) Additionally, some work has

been done on changing the random walks which power graph embedding algorithms. Meta-context

Aware Random Walks (MARU) (Jiang et al., 2020).

Translational embeddings serve as a further development of stochastic machine learning

models. These models began with TransE, which was published in 2014 by Wang et al (Wang et al.,

2014). Further work on this problem has lead to the creation of a whole family of translational

graph embedding models. Some examples of this family include: TransA (Xiao et al., 2015),

TransR (Lin et al., 2017), TransD (Ji et al., 2015), TranSparse (Ji et al., 2016), MTransE (Chen

et al., 2017). The intuition for these methods is in utilizing the node and edge labels of knowledge

graphs. The methods treat nodes similarly to Node2Vec, attempting to capture how nodes can be

represented in an embedding space by training a neural network. But, simultaneously, to learning

node embeddings, it also considers the edges that connect these nodes; the algorithm tries to capture

these edges as mathematical transitions between the embedded nodes. Training additional neural

networks on the edges of a graph, representing both nodes and edges in one unified space. By

capturing the meaning of both nodes and edges at once, these algorithms further understanding of

the underlying structures and meaning of the knowledge graph.

Another approach to hypothesis generation from knowledge graphs is to utilize machine

learning methods classify nodes and edges. These methods can take the form of various statistical

prediction tools, such as regression, support vector machines (SVMs), neural networks. These

approaches try to represent and find patterns on the nodes and relationships between nodes. An

immediate issue presents itself with this approach, as these graphs can contain millions of nodes

and extremely complex relationships between these nodes. Let us define the number of nodes in a

graph as n. If we imagine a scenario in which we performed machine learning methods directly

on an adjacency matrix for a graph, sometimes referred to as One-Hot encoding, each node would
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require n binary values to represent it. That requires our machine learning algorithm to be able to

deal with millions of binary input values where the majority of these values will be zero.

Hypothesis generation may utilize graph embedding techniques. The current work for

utilizing hypothesis generation is based upon translational embeddings (Wang et al., 2014). These

embeddings seek to embed nodes as points in hyperspace, and simultaneously capture edges as

mathematical operations which move from one node to another. To generate hypothesis, translational

embeddings are generated for a graph. Once these embeddings have been created, the embeddings

are systemically searched for two nodes which potentially could be connected by an edge operation,

but presently are not linked (Akujuobi et al., 2020; Sosa et al., 2020; Sybrandt et al., 2020). Work

leveraging graph embeddings for hypothesis generation has been focused on the space on biomedical

knowledge graphs. Automatic graph-mining and transformer based hypothesis generation approach

(AGATHA)(Sybrandt et al., 2020) was created to enable faster drug discovery pipelines, it utilized

PyTorch-BigGraph (PYBG)(Lerer et al., 2019), finding embeddings for all nodes in a knowledge

graph knowledge graph, and then optimizing known mechanistic connections (Sybrandt et al.,

2020).

1.9 Scope

The scope of this thesis is concerned with biomedical knowledge graphs. We aim to provide

solutions to problems encountered in our exploration of knowledge graphs. All solutions and tools

presented in this thesis should be general to all knowledge graphs, but we have verified their efficacy

only in biomedical situations.

Our scope does not include the task of constructing an entire knowledge graph, although

we do explore the task of constructing specialized variants of biomedical knowledge graphs in

Chapter 4.

We give three reasons for focusing primarily on biomedical knowledge graphs.

1. The biomedical field presents the most obvious case for highly interactive ontological

data. Many centuries of work have been spent cataloging the human body, it’s genome,
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diseases, their symptoms, and how those symptoms relate back to the body. In this case,

we fortunately have much of the heavy lifting of building ontological classification done

for us.

2. The existence of high quality biomedical knowledge graphs provide us a datasets on which

to conduct real world experiments on the efficacy of our methods.

3. Our group and collaborators are constructed of many individuals with extensive biomedical

expertise. Verifying the significance of particular patterns and pathways requires domain

expertise so we are able to leverage the expertise provided to us. These individuals are

thanked in the Acknowledgements Section.

1.10 Thesis Statement

As the quality and complexity of knowledge graphs improve, the ability to utilize these

graphs for high quality hypothesis generation also improves. We seek to further the hypothesis

generative capabilities of knowledge graphs. Leveraging the inherent mechanistic patterns of

biomedical knowledge graphs, we seek to enable the generation of high quality and useful biomedical

hypotheses.

1.11 Dissertation Overview

The remainder of this dissertation is organized into the following chapters.

• Chapter 2 describes the issues of ranking in knowledge graph pathways. We explore the

ranking issue and attempt to tackle it through utilizing the degrees along the pathways.

• Chapter 3 outlines our conception of Clinical Outcome Pathways (COPs), a specific

combination of node and edge labels which are useful for the problem of drug discovery

and drug repurposing (Section 1.4). We then explore the generalization of this idea in

through our conceptualization of semantic query pattern , in which experts attempt to build

specific combinations of nodes and edge labels to find meaningful patterns in knowledge.
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• Chapter 4 describes the advancements made in specialized niche-domain knowledge

graphs. Producing biomedical knowledge graphs for unique discipline specific problems

and how we can leverage these knowledge graphs to uncover hypothesis in these niche

cases.

• Chapter 5 concludes the work and discusses the implications of future progress in the

combinations of biomedical and computational research, especially regarding access to

care and ontologies.
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Table 1.1: A catalogue of the sources ROBOKOP uses to gather their biomedical data. Each of these
sources is queried, and must be normalized into various different standard ontology for biomedical
objects. The ultimate result of this integration can be viewed at https://robokop.renci.
org/.

Aeolus (Banda et al., 2016) AmiGO (Carbon et al., 2009) Bio2RDF (Belleau et al.,
2008)

BioGRID (Oughtred et al.,
2021; Stark et al., 2006)

CHEBI (Hastings et al., 2016) Chem2Bio2RDF (Chen et al.,
2010a)

ChEMBL (Mendez et al.,
2012, 2019)

ClinGen Allele Registry
(Pawliczek et al., 2018)

ClinVar (Landrum et al., 2014)

Comparative Toxicogenomics
Database (CTD) (Davis et al.,
2021; Mattingly et al., 2003)

DrugCentral (Avram et al.,
2021; Ursu et al., 2017)

Drugbank (Wishart et al.,
2008)

Ensembl (Howe et al., 2021;
Hubbard et al., 2002)

GTEx (Lonsdale et al., 2013) Genome-wide association
studies (GWAS) (Buniello
et al., 2019)

Gene Ontology (GO) (Gene
Ontology Consortium, 2021)

HUGO Gene Nomenclature
Committee (HGNC) (Povey
et al., 2001; Tweedie et al.,
2021)

Human Metabolome Database
(HMDB) (Wishart et al., 2009,
2007)

Human Phenotype Ontology
(HPO) (Robinson et al., 2008)

KEGG (Kanehisa et al., 2002) MeSH (Lipscomb, 2000)

Monarch API (Biolink) (Mc-
Murry et al., 2016; Shefchek
et al., 2020)

MONDO (Mungall et al.,
2017)

Mouse Genome Informatics
(MGI) (Bult et al., 2019; Smith
et al., 2019)

Mychem.info (Wu et al., 2022) NCBI Gene (Coordinators,
2016)

Online Mendelian Inheritance
in Man (OMIM) (Amberger
et al., 2015, 2019)

Orphanet database (Nguen-
gang Wakap et al., 2020)

PANTHER (Mi et al., 2021) PharmGKB (Whirl-Carrillo
et al., 2012, 2021)

Pharos (TCRD) (Nguyen et al.,
2017)

PubChem (Kim et al., 2021; Li
et al., 2010)

PubMed (Canese and Weis,
2013)

QuickGO (Binns et al., 2009) UniChem (Chambers et al.,
2013)

UniProtKB (Bateman, 2019)

mygene.info (Wu et al., 2013;
Xin et al., 2016)

myvariant.info (Xin et al.,
2016)
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CHAPTER 2

Promiscuity Path Scores

2.1 Introduction

Research and development processes in drug discovery are notoriously time- and labor-

intensive, often requiring billions of dollars for a single compound to reach the market (Pushpakom

et al., 2019). As a result, the gap between existing treatments and medical needs has been steadily

growing. Drug repurposing (also known as drug repositioning) is a strategy for exploring new uses

for FDA-approved drugs that are beyond the original medical indication for the drugs (Pushpakom

et al., 2019; Corsello et al., 2017; Singh et al., 2020; Oprea and Mestres, 2012). This approach has

the potential to significantly reduce the costs and risks of discovering new drugs, by enabling new

treatments to be generated faster and at lower prices to both the companies and patients (Parvathaneni

et al., 2019). The growing ease of access to large-scale biomedical knowledge graphs (KGs), e.g.,

(Morton et al., 2019; Nelson et al., 2019; Himmelstein et al., 2017), has offered researchers major

opportunities for developing computational drug-repurposing approaches (Luo et al., 2017; Zhu

et al., 2020), which promise to further improve the efficiency of drug repurposing. Notably, rare

diseases (Sosa et al., 2019; Zhang et al., 2021) and COVID-19 (Zhang et al., 2021; Zhou et al.,

2020; Wang et al., 2020; Zhang et al., 2021; Yan et al., 2021) have been some of the recent popular

targets of computational drug repurposing.

The process of drug repurposing can be viewed as consisting of two stages: (1) identification

of candidate drugs for a given disease, and (2) clinical trials of the candidates to test their viability.

In this thesis we consider computational approaches that apply to the first stage of the process. Our

specific interest is in developing approaches for automatic discovery and refinement (via ranking)
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of candidate drug-treats-disease facts from biomedical KGs. Each such fact is a hypothesis that

a given drug can treat the disease of interest. We focus on the problem of reducing the time and

labor costs involved in drug repurposing, by developing approaches that automatically (i) discover

potentially viable drug-treats-disease hypotheses, and (ii) rank the resulting hypotheses, thus

enabling biomedical experts to effectively cut the collection of hypotheses down to a manageable

list of the most promising candidates to undergo clinical trials.

The computational approaches to discovering and ranking drug-treats-disease hypotheses

that we introduce in this chapter are based on the process of inference of new information in

KGs. Recall that biomedical KGs are designed to store state-of-the-art biomedical information

in computer-tractable ways. Specifically, biomedical concepts are represented in KGs as (typed)

nodes, while connections are represented as named edges between the nodes, see, e.g., (Bizon

et al., 2019). Two sources of information in KGs about biomedical concepts and connections are

(1) publicly accessible biomedical databases that provide high-quality expert-curated information,

such as DrugCentral (Ursu et al., 2016) or Pharos (Nguyen et al., 2017), and (2) text mining on

biomedical publications (Lee et al., 2020). As a simple example, two KG nodes, penicillin

of type drug and infection of type disease, taken together with a directed treats edge

between the nodes, form the KG triple (penicillin, treats, infection). This KG triple

captures the information that penicillin treats infections (Fleming, 1929).

Inference of new information from a given biomedical KG works via derivation of latent

connections between nodes in the KG, that is, of knowledge that is justified by the information in

the KG and can be represented as a graph edge, but is not already explicitly present in the graph.

This can be viewed as the problem of hypothesis generation (Section 1.3). The approaches that we

introduce focus on inference of latent treats edges between drug and disease nodes in KGs. As

discussed above, such inference can result in potentially viable hypotheses that could be further

analyzed and tested by experts for drug repurposing.

Exploration of latent connections in (originally) knowledge bases and (later) KGs goes back

decades, all the way to Swanson (Swanson, 1986) using in 1986 a network of research-paper citations
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Figure 2.1: The computational approaches to discovering and ranking drug-treats-disease hypotheses
that we introduce in this chapter are based on the process of inference of new information in
KGs. Recall that biomedical KGs are designed to store state-of-the-art biomedical information
in computer-tractable ways. Specifically, biomedical concepts are represented in KGs as (typed)
nodes, while connections are represented as named edges between the nodes, see, e.g., (Bizon
et al., 2019). Two sources of information in KGs about biomedical concepts and connections are
(1) publicly accessible biomedical databases that provide high-quality expert-curated information,
such as DrugCentral (Ursu et al., 2016) or Pharos (Nguyen et al., 2017), and (2) text mining on
biomedical publications (Lee et al., 2020). As a simple example, two KG nodes, penicillin
of type drug and infection of type disease, taken together with a directed treats edge
between the nodes, form the KG triple (penicillin, treats, infection). This KG triple
captures the information that penicillin treats infections (Fleming, 1929).

to find underexplored relationships between biomedical entities. The methodology of “Swanson’s

ABC triangle” (Baker and Hemminger, 2010), see Figure 2.1 for an illustration, generalizes the

approach of (Swanson, 1986) into a well-accepted inference technique. The methodology applies

to triangle-shaped subgraphs of biomedical KGs with concept nodes A, B, and C and edges ab

from A to B and bc from B to C, with a missing edge between A and C. (Recall that such an

“ABC triangle” would be represented in the KG via two KG triples, (A, ab, B) and (B, bc, C).) The

objective of the inference is to use such “ABC triangles” to infer in the KG an edge relationship, ac,

between the nodes A and C, where ac would be justified by the path from A to C (via B) through

the edges ab and bc that form the triangle subgraph, provided certain conditions hold on the node

and edge names on the path. (We will turn to a discussion of the required conditions shortly.) In
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case of success, the inference would add to the KG an inferred KG connection represented by the

KG triple (A, ac, C).

Figure 2.1 presents an illustration. Part (a) of the figure shows a particular pattern of

Swanson’s ABC triangle (Swanson, 1986; Baker and Hemminger, 2010): The triangle pattern

requires node A (node B, node C, respectively) to be of type drug (of type disease, of

type disease, respectively), and requires the edge ab (edge bc, respectively) to be named

negatively correlated with (correlated with, respectively). In a given biomed-

ical KG, this pattern would apply to those subgraphs of the KG whose node types and edge names

match those specified by the nodes and solid edges in the pattern. Figure 2.1(b) shows one such

specific instance, in the ROBOKOP KG (Morton et al., 2019), of the graph pattern of Figure 2.1(a),

as follows: The node of type drug in the pattern is instantiated with magnesium, first node of

type disease – with hypertension, and second node of type disease – with migraine

disorder. The solid edges going from magnesium through hypertension to migraine

disorder have the same names in the graph pattern in Figure 2.1(a) and in the pattern instance in

Figure 2.1(b). As argued in (Baker and Hemminger, 2010), the existence of such a pattern instance

in a biomedical KG would warrant the derivation of the inferred treats connection between

magnesium and migraine disorder, shown in Figure 2.1 via dashed edges. The inferred

treats edge would justify biomedical experts in studying further whether magnesium can be

repurposed to treat migraine disorder.

As mentioned above, inference of a latent connection in a biomedical KG would succeed if

the path presenting the inference opportunity satisfies certain conditions. Conditions of interest to us

in this chapter can be summarized as the path mechanistically justifying the inference of the latent

connection, that is, the path representing the biological processes involved with the interactions

between the source and target entities of the path. Consider, for instance, the generic path pattern

that is shown in solid lines between the drug source and the disease target in Figure 2.1(a); it shows a

drug-disease connection via another disease that is negatively correlated with the drug and correlated

with the disease target. Suppose that biomedical experts believe that this path pattern is rooted
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in real-life biomedical processes and is thus worth considering as a justification when deciding

whether the given drug treats the given disease. In this case, we say that in each specific instance in

a given KG of this path pattern, see, e.g., the solid-line path in Figure 2.1(b), the inference of the

treats edge, shown via a dashed line in the figure, is mechanistically justified by the solid-lines

path, due to it being an instance of the expert-approved path pattern.

In this chapter we are interested in working with paths that mechanistically justify inference

of the treats edges between the nodes for the drugs and diseases of interest in biomedical KGs.

Indeed, the existence of each such path enables us to infer the drug treats disease candidate

hypothesis for the drug-disease pairs of interest. As discussed above, these hypotheses can then be

offered to biomedical experts for further selection by hand of the most promising drug-repurposing

candidates to undergo clinical trials. The computational task of discovering drug treats

disease candidate hypotheses from biomedical KGs would be trivial if all path patterns that can

mechanistically justify inference of the treats edge between drugs and diseases of interest were

known. (If this were the case, the computational hypothesis-ranking task would not be a problem

either, provided that biomedical experts could rank the known paths, ahead of time, from the most

trustworthy to the least.)

It is true that some path patterns that could mechanistically justify inference of connections

in biomedical KGs have been described in the literature, see, e.g., (Baker and Hemminger, 2010;

Capuzzi et al., 2018). At the same time, formal studies of such path patterns have just begun (see

Section 3.2). This means that at this point, not all path patterns that have the potential to lead to

viable drug-treats-disease hypotheses have been discovered. We thus focus our efforts

on the research objective of effectively and efficiently finding ways to computationally discover

new path patterns that could be helpful in computational drug repurposing. To the best of our

knowledge, this research objective has not been considered in the literature. Further, achieving it is

not straightforward. Indeed, a brute-force approach to discovering new useful path patterns would

be to (i) discover all possible paths in a given biomedical KG between drugs and diseases of interest,

and then (ii) present the resulting paths to biomedical experts, so that they could choose paths that
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can mechanically justify the derivation of the treats connection between the drugs and diseases.

Unfortunately, this straightforward approach does not scale, due to the number of candidate paths

that can be discovered being, in the worst case, exponential in the number of nodes and edges even

in the immediate vicinity of the drugs and diseases of interest. (E.g., the total number of paths with

at most three edges that could be discovered from the ROBOKOP KG for the magnesium-migraine

combination is 20,842.) Clearly, in general it is likely to be time- and labor-intensive for biomedical

experts to study all the candidate paths that arise for a given drug-disease pair from the given

biomedical KG.

To address the computational complexity of the problem of automatically discovering new

path patterns that could be helpful in drug repurposing, we propose to focus on KG nodes called

hubs. Hubs, a known phenomenon in KGs and other networks (Newman, 2010), are defined as

nodes that have an exceptionally high degree (defined as the number of adjacent edges) compared

to the other graph nodes. Examples include celebrities on social media networks (Lim and Datta,

2012) and “central authority” web sites on the World Wide Web (Kleinberg, 1999). We will be

referring to hub nodes in biomedical KGs as promiscuous nodes; this terminology has arisen

from the notion of promiscuous drugs (Overington et al., 2006), that is, drugs known to interact

with multiple biological targets. The promiscuous-node phenomenon in biomedical KGs reflects

real-world research, in which certain concepts, e.g., diabetes, become extensively studied and, in

some cases, perhaps even overstudied, thus leading to an abundance in the KG of connections of

various kinds to these nodes, while other more complex or less promising concepts could remain

underexplored (Resnik, 2001).

Suppose a biomedical researcher aims to understand the connection between drug atorvastatin

and heart disease (as seen in Figure 2.2). Recall that the real-world drug-disease connection

that researchers seek to uncover is mechanistic. Thus, in their evaluation of the drug-disease paths

returned from the KG the researchers are likely to prioritize pathways through biomedical entities

that deal directly with the biological process involved with the interactions between the entities

(Dwyer et al., 2005; Röhl, 2012; Sand, 2018). As suggested by the experimental results reported in

31



Figure 2.2: A visualization of potential differentiation in a researcher’s mind between various
knowledge-graph pathways for a drug-disease relationship of interest. The drug-disease pair
can induce a “space of associations” in the researcher’s mind, creating a preconceived reasoning
framework. When viewing pathways discovered between the drug and disease nodes in a knowledge
graph, the researcher can prioritize pathways of interest based on whether the intermediate nodes in
the pathway fit into the preconceived framework. The promiscuity values and scores introduced in
this chapter can help the researcher by automatically prioritizing those pathways whose intermediate
nodes potentially fit into the relevant research context.

this chapter, such mechanistically justified pathways often go through intermediate KG nodes in the

immediate drug-disease neighborhood that do not have excessive linkage with the rest of the KG;

that is, these intermediate nodes are unlikely to be promiscuous.

As it turns out, promiscuous nodes can complicate the inference process. Indeed, they often

dominate the results of KG queries and can also become overly central to embedding methodologies

(Cai et al., 2018; Goyal and Ferrara, 2018; Wang et al., 2017). This effect may cause difficulties

for analysts in their efforts to find meaningful paths in a biomedical KG between nodes of interest

(e.g., from a drug node to a disease node), as well as in implementing graph embeddings (Jain

et al., 2021). Based on these observations, in our proposed algorithms for automatically discovering

new path patterns that could be helpful in drug repurposing we focus on prioritizing paths that

do not traverse promiscuous nodes. We believe that this approach follows the intuition for how

biomedical experts evaluate pathways discovered by KG analysis. Consider Figure 2.2, in which we

sketch our understanding of the possible mental model. Suppose a biomedical researcher aims to

understand the connection between drug atorvastatin and heart disease. Recall that the
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Figure 2.3: A visualization of the potential differentiation between various knowledge-graph
pathways for a drug-disease pair of interest shown in the center of the figure. In the inner (green)
“association cloud,” we show nodes with strong associations with the drug-disease mechanism of
action. The drug-disease pathways that stay in this inner cloud could be of interest to biomedical
experts. In the outer (orange) “association cloud,” we show nodes with weaker connections to the
drug-disease mechanism of action. The drug-disease pathways that traverse this outer cloud could
be of less interest to the experts.

real-world drug-disease connection that researchers seek to uncover is mechanistic. Thus, in their

evaluation of the drug-disease paths returned from the KG the researchers are likely to prioritize

pathways through biomedical entities that deal directly with the biological process involved with

the interactions between the entities (Dwyer et al., 2005; Röhl, 2012; Sand, 2018). As suggested

by the experimental results reported in this chapter, such mechanistically justified pathways often

go through intermediate KG nodes in the immediate drug-disease neighborhood that do not have

excessive linkage with the rest of the KG; that is, these intermediate nodes are unlikely to be

promiscuous.

This intuition is further summarized in Figure 2.3. In the core of the figure, we have a

drug-disease pair that a biomedical researcher may be interested in exploring. The inner cloud

around the core contains nodes that have a strong association with mechanisms that relate the drug

to the disease; we label drug-disease pathways through these nodes as useful because of their close

mechanistic relationship to the drug and disease of interest. In contrast, in the outer cloud around

the drug-disease pair we find nodes that have a weaker association with the mechanisms that relate
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the drug to the disease. Promiscuous nodes will often fall into this category. We refer to pathways

that go through this outer cloud as noisy, as they are less relevant to the mechanistic drug-disease

relationship.

Building on the intuition sketched in Figures 2.2 and 2.3, we have developed and im-

plemented algorithms that automatically discover promiscuous-node-avoiding paths between the

given drug and disease nodes in a given biomedical KG. Our algorithms are general and domain

independent (that is, they can be applied to tasks other than drug repurposing), and have the ad-

vantage of not having to use any user-specified languages or external help from, e.g., embedding

models. Instead, they exploit existing node properties in the given knowledge graph. Our algorithms

also automatically rank the discovered paths by the maximal degree of their intermediate nodes,

which we refer to as promiscuity score. The resulting ranked lists can be offered to biomedical

experts, as aids in helping them to decide on the mechanism of action of the drugs on the diseases in

question. The experts’ decisions can further influence the downstream drug-repurposing workflow,

with potentially clinical studies scheduled for the most promising drugs based on the quality of the

mechanistic justifications provided by the discovered drug-disease pathways.

Our specific contributions, as presented in this chapter, are as follows.

• To achieve the research objective of effective and efficient computational discovery of

novel path patterns in biomedical KGs that could be helpful for drug repurposing, we

propose to focus on paths in KGs that avoid traversing promiscuous graph nodes;

• We introduce path-discovering algorithms that effectively and efficiently prioritize paths

that avoid traversing promiscuous nodes in the given biomedical KG, thus increasing

the likelihood of discovering paths that mechanistically justify the drug-treats-disease

connection between the given drugs and diseases;

• We report the results of a case study for comparing multiple KG-derived paths between the

drugs of interest and the diseases that the drugs could treat; our observations suggest that
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the proposed algorithms have the potential to solve the challenges of promiscuous nodes

in computational drug repurposing with KGs;

• We report results for differentiating between positive and negative drug-disease pairs, i.e.,

those in which the drug could treat the disease and those in which it could not, respectively;

the results suggest that the proposed algorithms show promise in differentiating between

positive and negative drug-disease pairs; and

• We report results for classifying positive and negative drug-disease pairs by a classifier

trained with promiscuity scores introduced in this chapter; our findings show that the

classifier has the potential to successfully distinguish positive and negative drug-disease

pairs.

To summarize, our findings suggest that the general domain-independent algorithmic

approaches introduced in this chapter have the potential to address effectiveness and efficiency

challenges in task-guided computational path discovery, in the biomedical domain and conceivably

beyond.

Chapter outline. We discuss related work in Section 2.1.1. Section 2.2 presents the

preliminaries and our research tasks and hypotheses. Section 2.3 introduces our proposed approaches.

We discuss the case study in Section 2.4. Section 2.5 details the implementation of the proposed

approach and the results of the experiments. In Section 2.6 we discuss the limitations of our methods.

Finally, Section 2.7 concludes the chapter.

2.1.1 Related Work

The scale-free network model of (Barabási and Albert, 1999) helps explain why promis-

cuous nodes may be seen in knowledge graphs (KGs). The model states that the distribution of

edges in a network can be described by the relationship P (k) ∼ kγ; here, P (k) is the probability

that a randomly sampled node has degree k, with fixed-value γ ∈ (2, 3). According to Barabási and

Albert (Barabási and Albert, 1999), scale-free graphs arise when two conditions are satisfied
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1. Growth: in which a graph may gain more nodes over time, and

2. Preferential attachment: by which nodes that already have many edges will gain more

edges.

Although there has been some controversy as to whether scale-free networks are common in certain

disciplines, they appear to be prevalent in the biomedical domain (Broido and Clauset, 2019).

Indeed, biomedical KGs reflect biomedical research, which satisfies both conditions of (Barabási

and Albert, 1999). Specifically, biomedical research demonstrates growth: As more research is

conducted, more ideas and concepts are discovered and introduced in the biomedical field (Doğan

et al., 2021). Further, biomedical research exhibits preferential attachment: as certain key concepts

tend to be explored more readily than others (Resnik, 2001).

Heuristic methods for finding mechanistically justified pathways between drug and disease

nodes in KGs, such as the Swanson’s ABC triangle (Swanson, 1986; Baker and Hemminger, 2010)

discussed in Section 2.1, traditionally rely on user insight for hypothesis generation. Being labor

intensive, such approaches cannot scale to massive biomedical KGs. In this chapter, we focus on

discovering more robust and scalable approaches for domain analysts to find meaningful pathways,

in drug repurposing and possibly beyond.

Research into mechanisms of drug action is a long-standing area of study for pharmacists.

Traditional methods for representing how drugs treat diseases, such as drug targets and mechanisms

of action, have given rise to better understanding of some drug-disease relationships. Biomedical

KGs can be used to scale up and speed up discovery of such mechanisms. As an example, the study

of Clinical Outcome Pathways (COP) (Capuzzi et al., 2018; Korn et al., 2022) for drug-disease pairs

is an effort to robustly define how a drug and disease relate through a series of KG nodes and edges.

Consider, for instance, a Swanson’s ABC triangle (Swanson, 1986; Baker and Hemminger, 2010) in

which node A stands for drug, node B stands for target, and node C stands for disease.

The meaning of such a COP is that the drug might treat the disease by acting on certain intermediate

target nodes linked to the disease (Capuzzi et al., 2018). Starting at the point at which a patient

takes the drug, such a COP represents the chain of bio-molecular events as a series of nodes and
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edges; this chain is expected to ultimately lead to the resolution of the disease state. COP pathways

can provide drug researchers with insights into how drugs and diseases interact, and could be very

useful for finding novel drug-disease connections for drug repurposing. The concept of promiscuity

score that we introduce in this chapter may prove useful as a metric for ranking COPs generated

with biomedical KGs. For more information on COPs please see Section 3.2.

To efficiently find meaningful pathways in biomedical KGs, we explore methods that

incorporate path-scoring metrics. Path-ranking (PR) algorithms, such as those of (Mazumder and

Liu, 2017; Lao et al., 2011), have been proposed to solve KG-completion problems. The main idea

of using PR algorithm to complete a KG is in finding paths between two entities in the KG and

in then using those paths as features to train a model for predicting missing relations between the

nodes. Given an entity-pair (s, t), a typical PR-based method performs random walks over the given

KG to find paths with fixed length starting from s and ending at t (Lao et al., 2011; Gardner et al.,

2013, 2014; Li et al., 2014). In addition, Mazumder and Liu (2017) utilized the Word2vec model

(Mikolov et al., 2013) for contextual feature training, proposing context-aware PR (Mazumder and

Liu, 2017) to find paths. Observe that using random walks or embedding methods for finding paths

would be affected by promiscuous nodes. Indeed, random walks naturally gravitate towards nodes

of high degree and away from nodes with low connectivity. In our research project, we focus on

developing more robust approaches to finding meaningful pathways in biomedical KGs.

Other scoring metrics for paths in biomedical KGs have also been developed, see, e.g.,

(Thafar et al., 2020; Bordes et al., 2013; Zhang et al., 2021). Such metrics typically rely on external

sources or embeddings to get path scores. Consider DTiGEMS (Thafar et al., 2020), a method

that relies on specific interactions between node types to develop weights for connections; these

weights are then multiplied together to provide a final score. Other methods, such as Translational

Embeddings (TranSE) (Bordes et al., 2013), rely on embedding nodes and edges of the knowledge

graph, and leveraging the embeddings to find how likely an undiscovered connection is to occur.

Zhang et al. (Zhang et al., 2021) developed a path-scoring system that utilizes cosine-similarity

values from Word2Vec (Mikolov et al., 2013) models. This path-scoring mechanism relies on
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word-embedding models built over the names and identifiers of nodes in the graph. This approach

limits the use case to words that are known and commonly used in data sets that a language model

may ingest.

Drug repurposing with KGs can be performed via inferring latent connections from path-

ways in KGs (Sosa et al., 2019). As previously discussed, we choose to not use graph-embedding

tools for finding KG pathways that mechanically justify the latent drug-treats-disease

connections. This is due not only to the dependence of the quality of embeddings on data-set

characteristics (Jain et al., 2021), but also to the computational time and memory required to digest

entire KGs in the deployment of embedding tools, see, e.g., (Hou et al., 2022). In particular, such

approaches are not practical for domain experts when studying a specific pathway.

Work by Doğan et al focuses on mining the CROssBAR biomedical network (Doğan

et al., 2021), which has been created to infer biological mechanisms from the available biomedical

knowledge. The CROssBAR KG gets enhanced by adding edges inferred using a methodology

based on machine learning. In their study, the authors of (Doğan et al., 2021) differentially weigh

nodes with high degree, to which they refer as “hub nodes,” – another example of a research team

finding KG nodes of high degree to be an issue in their analysis.

The work of Binder et al (Binder et al., 2022) presents another example of biomedical

researchers encountering an issue with node promiscuity in KGs. In their project, the authors of

(Binder et al., 2022) sought to use machine learning on a protein KG with the aim of identifying

genes in which point mutations are associated with Alzheimer’s Disease. The approach taken was

to vectorize pathways in the KG of choice, and to feed the resulting vectors into a GraphML model

optimized with XGBoost. The authors of (Binder et al., 2022) created a custom variable DWPC

(Degree Weighted Path Counts) for each gene. This metric is multiplicative in the inverse of the

degree of each node, in an effort to dampen the effects of promiscuous nodes on the model. This

is an example of machine-learning approaches accounting for node promiscuity when training

predictive models.
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Curation of data sets, including purging of irrelevant and inaccurate data from databases,

is a studied field commonly referred to as data cleaning (Ganti, 2009). The term “KG refinement”

(Paulheim, 2017) refers to the task of locating and removing errors from already existing KGs.

In this current project, we do not attempt to modify any information in the given KGs with our

proposed approaches. Instead, we work with the given KGs without changing them, and organize

the pathways output by our approaches in terms of utility to biomedical experts. In searching

meaningful pathways in KGs, the proposed approaches base their actions on information about

node degrees. To the best of our knowledge, using node degrees as a scoring metric for finding

pathways in the way presented has not been proposed before.

2.2 Problem Statement

In this section we review the preliminaries and describe our research tasks, hypotheses, and

study objectives.

2.2.1 Preliminaries

To formalize the problem of knowledge-graph (KG) path searching, we first define knowl-

edge graphs, as follows:

Definition 2.1. Knowledge Graph. A knowledge graph (KG) G is defined as a tuple G =

(V,E, TV , TE, ζ, ξ), in which: (i) V is the set of nodes v1, v2, ..., vn, with each node representing

a data entity (e.g., a specific drug or disease); (ii) E is the set of (directed or undirected) edges

e1, e2, ..., em, with each edge representing a relationship between two data entities represented by

nodes in V (e.g., a drug treats a disease); (iii) TV is the set of predefined node types (e.g., drug

or disease); (iv) TE is the set of predefined edge types (e.g., treats); (v) ζ is a node type

mapping function ζ : V → TV ; and (vi) ξ is a link (edge) type mapping function ξ : E → TE . The

degree of a node v in a KG G, denoted degree(v), is the number of the edges that are adjacent to v

in G.
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A KG in which |TV |+ |TE| > 2 is called a heterogeneous graph, while a KG with |TV | = 1

and |TE| = 1 is referred to as homogeneous. In our study we focus on heterogeneous KGs.

We define paths (pathways) as follows:

Definition 2.2. Path. A path p(s,t,l) = (s, v1, v2, . . . , vl−1, t) of length l (l ≥ 1) in a KG G =

(V,E, TV , TE, ζ, ξ) is defined as a sequence of nodes that starts at a source node s ∈ V , ends at a

target node t ∈ V , and passes through l − 1 intermediate nodes v1, . . . , vl−1 in V , such that (s, v1)

(v1, v2), . . . , (vl−1, t) all are edges in E.

In this chapter we consider the task of computational path discovery between the specified

source (s) and target (t) nodes in a given KG G. The discovered paths should satisfy certain

computational criteria, detailed next, to be considered as viable candidates for mechanistically

justifiable paths between the given s and t. Once they are ranked based on their computed viability,

the candidate paths are presented to biomedical experts; the experts make the final determination on

whether each path is mechanistically justifiable for the given source and target.

2.2.2 The Objective Functions

For a specified pair (s, t) of source (s) and target (t) nodes in a given KG G, we are

interested in automatically discovering paths from s to t in G such that all the intermediate nodes

on each path are low-promiscuity nodes in G. To formalize this objective, we specify promiscuity

scoring as follows.

Given nodes s and t in a KG G, consider a path p(s,t,l) = (s, v1, v2, . . . , vk, t) from s to t of

length l in G. The promiscuity value of the path p(s,t,l) is the maximum degree of all the intermediate

nodes v1, . . . , vk in p(s,t,l):

ψ(p(s,t,l)) = max(degree(v1), degree(v2), ..., degree(vk)). (2.1)

Now consider all possible paths p(s,t,k) of length k from node s to node t in a KG G.

We define the l-promiscuity score ΦG(s, t, k) of the node pair (s, t) in G as the minimum of the
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promiscuity values of all these paths:

ΦG(s, t, k) = min
p(s,t,k)∈G

ψ(p(s,t,k)). (2.2)

In the case in which there are no paths of length k from s to t, we define ΦG(s, t, k) to be positive

infinity +∞.

2.2.3 The Research Goal, Research Tasks, and Hypotheses

Our guiding assumption in this study is that KG paths with lower promiscuity values tend to

be more valuable in helping biomedical experts determine the meaning of the relationship between

the entities represented by the source and target nodes on the paths. Thus, given a source node s

and a target node t in a KG G, as well as a path length k of interest, our overall research goal is to

develop and test effective and efficient computational approaches for automatic discovery of paths

p(s,t,k) of length k between s and t such that the promiscuity values of these paths, see Eq. (2.1), are

as close to the l-promiscuity score ΦG(s, t, k) for s and t, see Eq. (2.2), as possible. In the simplest

case, our objective is to discover all the paths of length k from s to t whose promiscuity value

is exactly ΦG(s, t, k). (By the definition given in Eq. (2.2), at least one such path always exists

unless ΦG(s, t, k) = +∞.) In general, we are interested in discovering up to a specified number, l,

of paths of length k from s to t, such that the promiscuity value of each path is within the top k

minimal-value positions among the the promiscuity values of all possible paths of length k from s

to t in G. That is, we would like to discover up to l paths of length k from s to t such that all the

other paths of length k from s to t have promiscuity values at least as high as the promiscuity values

of the discovered paths. (In the special case in which the total number of possible paths of length

k from s to t is lower than l but ΦG(s, t, k) ̸= +∞, we are interested in returning all the possible

paths.)

Our proposed computational approaches for automatic discovery of low-promiscuity paths

between KG nodes of interest are presented in Section 2.3. To test these computational approaches,
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we address in Sections 2.4–2.5 the following research tasks, by validating their associated hypothe-

ses:

• Our research task 1 is to determine, for fixed-length paths from disease nodes to drug

nodes in biomedical KGs, whether the intermediate nodes in the paths with low promiscuity

values (low-promiscuity paths) are more associated with the drugs treating the diseases

than the paths with high promiscuity values (high-promiscuity paths). The associated

hypothesis 1 is as follows: For a given drug-disease node pair, focusing on low-promiscuity

KG paths between the drug and disease nodes tends to produce more meaningful (i.e., more

supported by scientific evidence) paths than focusing on high-promiscuity paths. In Section

2.4 we provide a qualitative analysis by a domain expert of both low- and high-promiscuity

paths for two use cases; the analysis validates by domain-expert verification the hypothesis

for these use cases.

• Research task 2 is to determine whether the l-promiscuity scores ΦG(s, t, l) for positive

node-pairs in biomedical KGs tend to be significantly lower than the promiscuity scores

for negative node-pairs. We define positive node-pairs (entity-pairs) as pairs in which the

entities for the source and target nodes are meaningfully connected by existing scientific

evidence, and negative node-pairs as pairs whose source and target nodes are not associated

with each other in this sense. (For example, in presence of scientific evidence that a drug

can treat a disease we will label the drug-disease node-pair as “positive.”) Our hypothesis

2 is as follows: (1) The values of l-promiscuity scores tend to be significantly different

between the given positive and negative node-pairs; and (2) the mean l-promiscuity score

for a given set of positive node-pairs tends to be lower than the mean l-promiscuity score

for a given set of negative node-pairs. In Section 2.5 we report the resuls of experiments

that verify this hypothesis for ground-truth sets of node-pairs via mean l-promiscuity

scores for the sets and p-values obtained from statistical tests.
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• Research task 3 is to determine whether a classifier trained by l-promiscuity scores

ΦG(s, t, l) in biomedical KGs could correctly predict whether a given node-pair is positive

or negative. Accordingly, hypothesis 3 is as follows: Given l-promiscuity scores for

testing node-pairs in a biomedical KG and the ground-truth (positive or negative) labels for

the pairs, a classifier trained on a training set of positive and negative node-pairs in the KG

tends to correctly predict whether the testing node-pairs are positive or negative. In Section

2.5 we report the resuls of experiments that verify this hypothesis for a binary random

forest classifier (Ho, 1995) via the precision, recall, accuracy, and F1-score metrics.

• Finally, our research task 4 is to determine whether l-promiscuity scores ΦG(s, t, l) in

biomedical KGs can be used as a pruning methodology in evaluating queries in federated

(i.e., non-centralized) biomedical KGs. The associated hypothesis 4 is as follows: When

comparing pruning approaches based on k-promiscuity scores to simple alternative pruning

methods, the pruning effectiveness will be higher in the scenario using k-promiscuity

scores, while the computational overhead involved will not be significant. In Section

2.5 we report the results of experiments with the Strider federated KG1 that support this

hypothesis.

2.3 Algorithms for Finding Paths and Computing Promiscuity Scores

In this section we introduce two computational approaches for finding paths and calculating

promiscuity scores (as defined in Section 2.2.2) for pairs of nodes of interest in a given knowledge

graph (KG). Given a KG G, source and target nodes s and t in G, a desired path length l, and a

desired number of paths k, each of the two algorithms returns the l-promiscuity score ΦG(s, t, l)

along with the top-k least promiscuous paths from s to t in G.

1. https://github.com/ranking-agent/strider
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2.3.1 The Naı̈ve Algorithm

The first of the proposed approaches, which we call the naı̈ve algorithm, explores all paths

between the source and target nodes s and t by walking the KG G in the depth-first manner. That is,

we perform a depth-first search (DFS) (Tarjan, 1972) of the graph G by following each path from s

to t of length l. As the naı̈ve algorithm builds each path of length l from s to t in G, it keeps track

of the highest node degree seen along the path as the current proxy for the promiscuity value of the

path. (See Section 2.2.2 for the definition.) Once a path from the source node s has reached the

target node t, both the path and its promiscuity value are recorded, as long as the path is among the

k least promiscuous paths (i.e., paths with the lowest promiscuity values) from s to t seen thus far in

G. This way the algorithm is guaranteed to output the k least promiscuous paths2 in the increasing

promiscuity-value order after all the paths from s to t have been explored. The top-ranked path

returned by the algorithm is the path whose promiscuity value is the l-promiscuity score ΦG(s, t, l).

In the search for paths of length l from s to t in the KG G, each node n of G gets assigned

three attributes: n.depth, n.score, and n.parent. The value of n.depth represents the depth at

which the node lies in the current path p, i.e., the first non-source node in p has depth 1, the second

has depth 2, etc. The value of n.score is the maximum degree of all the nodes along the path p

from s to n. In other words, it is the promiscuity value of the portion of p between s and n. Finally,

n.parent stores the node immediately preceding n along the path p. Once a complete path p(s,t,l)

from s to t is found, its promiscuity value ψ(p(s,t,l)) is stored in the attribute p.score.

We present the pseudocode for the naı̈ve approach in Algorithm 1. As mentioned, the

algorithm takes in five inputs: the graphG, the source node s, the target node t, the path length l, and

the desired number of output paths k. The algorithm performs iterative DFS with a last-in-first-out

(LIFO) queue Q to facilitate the search. A minimum priority queue paths is used to store the k least

2. The algorithm explores all possible paths from s to t in G. If the total number of such paths is lower than k, then
the algorithm returns all the paths, in the order ranked by their promiscuity values. The algorithm returns an empty
output in case there are no paths from s to t in G.
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Algorithm 1: Naı̈ve algorithm for finding ΦG(s, t, k) and the (up to) l least promiscuous
paths p(s,t,k) in G

Data: Knowledge graph G, source node s and target node t in G, path length k, number k
of paths from s to t to return.

Result: The l-promiscuity score ΦG(s, t, l) and a sorted list of the k least promiscuous
paths of length l from s to t.

1 begin
2 Q← InitializeQueue(Q,G, s); // LIFO queue
3 ΦG(s, t, k)← +∞ ; paths← empty queue of length k; // min priority

queue keyed on p.score
4 while Q ̸= ∅ do
5 m← Q.pop();
6 Q, paths← ExtendPath(G, s, t,m, k,Q, paths);

7 if paths not empty then
8 ΦG(s, t, k)← paths[1].score;

9 return ΦG(s, t, k), paths;

promiscuous paths3 seen at any time during the search. The priority queue is keyed on p.score to

enable efficient insertion when new paths are found.

The LIFO queue Q is created in line 2; it is initialized with all the neighbors of the node s,

as these are the first nodes on any path from s to t in G. For each node n in Q, n.depth, n.score,

and n.parent are set appropriately to 1, 0, and s, respectively. The priority queue paths is created

in line 3 as an empty queue of length k.

The main loop for searching G is shown in lines 4–6. In each iteration, the node m from

the front of the queue Q is popped (line 5), and its path is extended appropriately (line 6) by calling

the procedure ExtendPath sketched in Algorithm 2. (We will provide details on ExtendPath

shortly.) Once the queue Q is empty, there are no more paths to consider, so the k least promiscuous

paths have been finalized and are stored in the priority queue paths. The value of ΦG(s, t, l) is

extracted in line 8 as the promiscuity score of the first path in the priority queue paths, i.e., the

score of the least promiscuous path. The promiscuity score ΦG(s, t, l) and the k least promiscuous

paths are returned in line 9 as the result of Algorithm 1.

3. See footnote 2.
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Algorithm 2: Procedure ExtendPath
Data: KG G; source and target nodes s t; current node m in G; path length l; queue Q;

least promiscuous paths paths.
Result: The queue Q and the extended least promiscuous paths paths.

1 begin
2 pathScore← max{degree(m),m.score};
3 N ← neighbors of m in G;
4 if m.depth = k then
5 if t ∈ N then

// we have found a path of length l from s to t
6 p = extractPath(s, t,m); p.score = pathScore;
7 paths.insert(p); // sorted-order insertion

8 else
9 for n ∈ N do

10 n.depth← m.depth+ 1;
11 n.score← pathScore;
12 n.parent← m;
13 Q.push(n);

14 return Q, paths;

The procedure ExtendPath, shown in Algorithm 2, takes as input the graph G, the source

node s, the target node t, the current node under consideration m, the path length k, the LIFO queue

Q, and the priority queue paths. The current node m was found by exploring some path p of the

form (s, v1, v2, . . . , vk,m). Ideally, p will eventually extend to the target node t, so we compute the

score of this path so far pathScore, see line 2, as the maximum between the degree of node m and

m.score, which is the maximum node degree of v1, v2, . . . , vk.

Lines 4–5 check to see if we have found a complete path of length k to the target node t.

If so, we extract the path p from s to t by repeatedly following the parent attribute of each node,

starting with node m, until the start node s is reached (line 6). The promiscuity score of this path

p.score is set to the previously computed pathScore. We insert the newly found path p into the

priority queue paths (line 7). Note that this insertion will place p in its appropriate spot in the

priority queue sorted by the path scores, unless p.score is greater than the scores of the k paths

currently in paths. In the latter case, p is not inserted into the queue, since p is not among the l least

promiscuous paths explored so far. If, however, we have not yet reached depth l (line 8), then each
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neighbor n of m is pushed onto Q with the appropriate values for n.depth, n.score, and n.parent,

see lines 10–13. Either Q or paths may have been updated by Algorithm 2, so both are returned in

line 14.

Putting Algorithms 1–2 together appropriately completes the DFS approach and produces

as a final result the promiscuity value ΦG(s, t, k). The runtime of the naı̈ve algorithm is that of

depth first search, i.e., O(bl+1), where l is the path length and b is the branching factor of the KG G,

i.e., the maximum degree of any node in G.

2.3.2 The Improved-Efficiency Algorithm

Algorithm 3: Fast algorithm for finding the promiscuity score ΦG(s, t, k)

Data: Knowledge graph G, source node s and target node t in G, path length k, number l of
paths from s to t to return.

Result: The k-promiscuity score ΦG(s, t, k) and a sorted list of the l least promiscuous
paths of length k from s to t.

1 begin
2 Q← InitializeQueue(Q,G, s); // LIFO queue
3 paths← empty queue of length k; // priority queue keyed on p.score
4 ΦG(s, t, k)← +∞; paths[l].score← +∞;
5 while Q ̸= ∅ do
6 m← Q.pop();
7 if degree(m) < paths[k].score then
8 Q, paths← ExtendPath(G, s, t,m, k,Q, paths);

9 if paths not empty then
10 ΦG(s, t, k)← paths[1].score;

11 return ΦG(s, t, k), paths;

We now introduce an improved-efficiency algorithm for finding paths p(s, t, k) and the

promiscuity score ΦG(s, t, k). The algorithm leverages the fact that to find promiscuity scores, we

may not need to explore nodes of high degree. By maintaining the lowest promiscuity score of

all paths seen so far, we can prune paths whose scores are guaranteed to be higher. Therefore, we

eliminate the need to completely explore all paths between s and t. By simply exploring nodes in

order of ascending node degree, as opposed to depth-first order, we are guaranteed that the first path
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of length k that we find from source node s to target node t will be the path of lowest promiscuity.

Therefore, we eliminate the need to continue exploring all other paths between s and t. These

claims will be explored in greater detail in Section A.1.3.

Algorithm 3 shows the pseudocode for this approach, which is very similar to that of

Algorithm 1 introduced in Section 2.3.1. The key difference occurs within the main loop of lines 5–

8. Once we pop the node m from the front of the queue Q, we compare its degree to paths[l].score,

i.e., to the score of the lth least promiscuous path explored so far. (The value of paths[k].score is

initialized to +∞ to account for all the cases in which paths has fewer than l paths.) If the degree

of m is greater than or equal to paths[l].score, then there is no need to continue exploring this path

further, as it is guaranteed by m’s existence to have a promiscuity value that is at least as high as the

lth least promiscuous path. Thus, we only call the procedure ExtendPath of Algorithm 2 on m if

the degree of m is less than paths[l].score, see lines 7–8. Effectively, this prunes all the paths that

include the node m whose degree exceeds the l-highest known promiscuity score.

The runtime of the improved-efficiency algorithm is in O(b ∗ pl−1 ∗ lg(b ∗ pl−1)). This

runtime shares its worst case with DFS; indeed, if no path can be found between s and t, an

exponential number of potential paths must be explored. Recall that the runtime of DFS can be

described as linear with respect to the number of nodes and edges, or as exponential with respect

to the branching factor. We choose to describe it with respect to the branching factor, because

this allows us to incorporate the path length l and the promiscuity score p of the first path from s

to t that is found in Algorithm 3. We note in particular that the runtime is inherently dependent

on the promiscuity score of the first path found, as this determines the amount of pruning that is

done throughout the rest of the search. Observe that p is likely to be significantly less than b, the

branching factor of G, in all cases but the worst case. Thus, the improved-efficiency algorithm

is likely to provide a substantial speedup over the naı̈ve algorithm. We explore this claim in our

experiments, see Section 2.5.5.

The improved algorithm leverages the fact that we only need to analyze nodes with low

degree to find minimum promiscuity. If we sort nodes by degree before popping them off the queue
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for analysis, we can guarantee that we have found the path with the smallest promiscuity score

much earlier than the naı̈ve algorithm. In fact, since the number of neighbors of a node is directly

tied to its degree, the promiscuity score serves as an upper bound on the number of paths we must

examine. The runtime of our improved algorithm is O(b ∗ pk−1 ∗ lg(b ∗ pk−1)).

2.3.3 Breadth-First Search

Not surprisingly, both the naı̈ve algorithm and the improved-efficiency algorithm have

breadth-first search (BFS) (Moore, 1959) equivalents. We note first that the DFS and BFS versions

of the naı̈ve algorithm have the same runtime. However, the runtime of the BFS version of the fast

algorithm is O(b ∗ ΦG(s, t, k)
k); in particular, this is better than the runtime of the DFS version

discussed in Section 2.3.2. Unfortunately, the BFS version of the improved-efficiency algorithm has

exponential memory requirements in the worst case. Thus, in our work we opt for the DFS version,

which has linear memory requirements while still offering a speedup over the naı̈ve algorithm.

2.3.4 Implementation for the Case Study and Experiments

In this section we outline an implementation of the proposed computational approaches;

we used this implementation both in the case study presented in Section 2.4 and in the experiments

discussed in Section 2.5. For the implementation we chose the format of Neo4j4 plugins due to their

usability, efficiency, and portability advantnages. Neo4j plugins are written in Java and compiled

as Jars, and are called in the Neo4j graph database-management system (DBMS) in ways that are

similar to user-defined functions in SQL. Within the plugin code, our implementations of both the

naı̈ve algorithm of Section 2.3.1 and of the improved-efficiency algorithm described in Section

2.3.2 can conveniently access through the provided Neo4j APIs the graph data sets that we used in

the case study and in the experiments reported in Sections 2.4–2.5.

4. https://neo4j.com
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The plugin that we have developed to implement the proposed algorithms is publicly

available; it can be installed via downloading the packaged Jar off of our Github5. After the Jar is

placed into the plugins directory of the Neo4j graph DBMS, the algorithms can be run from the

Neo4j Cypher browser using the CALL command. We discuss this implementation in more detail in

Section A.3.

2.4 Case study

In this section we study how the promiscuity value of a path correlates with its biomedical

value. To this end, we present some examples of paths in the ROBOKOP KG (Morton et al.,

2019) that connect expert-selected drug-disease pairs. For each such drug-disease pair, the drug

is known to be commonly used to treat the disease; we consider whether the intermediate nodes

along each path are associated with the drug’s treatment of the disease. Pathways reflecting the

drug’s treatment mechanism are more meaningful to biomedical experts, since they can be used to

understand the connection between the drug and disease, see Section 2.1. Accordingly, we rate the

extracted pathways by their promiscuity values, and compare the promiscuity value of each path to

its biomedical value.

We hypothesize that paths with low promiscuity values would be more meaningful to

biomedical experts than other paths, see research task 1 in Section 2.2.3. Following the reasoning

presented in Section 2.1 and illustrated via Figure 2.3, we expect lower-promiscuity paths to contain

intermediate nodes falling into the same biological context as the drug and disease endpoints,

see Section 2.1. On the other hand, higher-promiscuity paths would include more divergent

intermediates nodes that are not as closely related to the drug and disease endpoints. Intermediate

nodes in the same biological context are more relevant to the drug-disease pairs, and are therefore

expected to reflect the drug’s treatment mechanism in a meaningful way. In this case study, we

found evidence corroborating the hypothesis that low-promiscuity paths tend to be more meaningful

to biomedical experts.

5. https://github.com/DnlRKorn/promiscuity-procedure
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2.4.1 Case-Study Setup

In this case study we used our implementation of Algorithm 3, see Section 2.3.4, to generate

in the ROBOKOP KG6 both low- and high-promiscuity pathways connecting ten well-studied drug-

disease pairs that each have a well-known treatment relationship. (The version of the ROBOKOP

KG (Morton et al., 2019) that we used contains over 610,000 nodes of 35 types and over 8M

relationships of 145 types.) As inputs to the algorithm, for each drug-disease pair we used the

ROBOKOP KG as the input graph G, the drug as the source node s, and the corresponding disease

as the target node t, with path lengths l ∈ {2, 3, 4} and no bound k on the number of paths, as we

wanted to extract paths of both low and high promiscuity. We present the results for paths of length

3 only; the results for paths of lengths 2 and 4 are similar to those shown.

We sorted the paths returned by Algorithm 3 according to their promiscuity values, and

presented the top-5 least promiscuous paths (i.e., the paths with the five lowest promiscuity values)

and top-5 most promiscuous paths to the biomedical expert on our team. The expert evaluated

each path qualitatively from the biomedical perspective, labeling each path as either meaningful or

noisy. In the context of the hypothesis presented in the beginning of this section (see also research

task 1 and the associated hypothesis 1 in Section 2.2.3), we asked the expert to classify paths as

meaningful when the information provided by the intermediate connections in the path is relevant to

the drug’s treatment of the target disease and provides meaningful insights into the drug-disease

connection. Otherwise, we asked the expert to classify the path as noisy.

In alignment with the hypothesis put forward for this study, our expectation was that

the biomedical expert would find the low-promiscuity paths to be meaningful and paths of high

promiscuity to be noisy. To this end, we evaluate the expert’s analysis using the correlation score for

each drug-disease pair. We define the correlation score between a drug and disease as the proportion

of paths that were classified by the expert according to our expectation, i.e., the total number of both

meaningful low-promiscuity paths and noisy high-promiscuity paths out of the ten paths returned by

Algorithm 3 for each drug-disease pair.

6. http://robokopkg.renci.org/browser/
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Table 2.1: The correlation scores of 10 drug-disease pairs, i.e., the proportion of of the five least
promiscuous paths and five most promiscuous paths that were classified by our biomedical expert
as either meaningful low-promiscuity paths or noisy high-promiscuity paths.

Drug (s) Disease (t) Correlation

Atorvastatin Cardiovascular Disease 1.0
Pregabalin Epilepsy 0.9
Dimethyl Fu-
marate

Multiple Sclerosis 1.0

Enzalutamide Prostate Cancer 1.0
Esomeprazole Gastroesophageal Reflux Disease 1.0
Ibrutinib B-Cell Chronic Lymphocytic

Leukemia
1.0

Pemetrexed Mesothelioma 0.5
Pomalidomide Plasma Cell Myeloma 0.8
Rivaroxaban Pulmonary Embolism 0.7
Sitagliptin Type 2 Diabetes Mellitus 0.9

The ten selected drug-disease pairs, along with their correlation scores, are presented in

Table 2.1. We first notice that half of the drug-disease pairs have the correlation score of 1.0, and

eight out of the ten have the correlation score of at least 0.8; that is, our hypothesis is true in most of

these cases. At the same time, there are some cases for which the hypothesis does not hold. The

biomedical expert indicated that this mainly occurred when the intermediate nodes on the paths were

generic highly connected nodes, e.g., nodes that describe the drug’s molecular structure, certain

genes involved each in many processes, and highly repurposed drugs that are still relevant to the

drug-disease relationship.

In the remainder of this section we present the expert’s detailed analysis for three drug-

disease pairs: (1) atorvastatin and cardiovascular disease (Section 2.4.2); (2) pregabalin and

epilepsy (Section 2.4.3); and (3) pemetrexed and mesothelioma (Section 2.4.4). In the exposition,

we explore some of the paths used in the case study for these drug-disease pairs and explain

the reasoning used by the biomedical expert to classify them. Recall that our goal is to study

whether low-promiscuity paths are more likely to include well-supported academic evidence for

their intermediate nodes/edges (i. e., are more likely to be biomedically meaningful) than high-

promiscuity paths. We present our reasoning for why the results for these three pairs align with the
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Table 2.2: A sampling of the length-3 paths from atorvastatin to cardiovascular disease; score stands
for the promiscuity value of the pathway.

s v1 v2 t Score

Atorvastatin idiopathic spontaneous
coronary artery dissec-
tion

non-inflammatory vas-
culopathy

Cardiovascular
Disease

30

Atorvastatin idiopathic spontaneous
coronary artery dissec-
tion

aortic aneurysm, famil-
ial thoracic 8

Cardiovascular
Disease

30

Atorvastatin anti-neutrophil cytoplas-
mic antibody-associated
vasculitis

predominantly small-
vessel vasculitis

Cardiovascular
Disease

40

Atorvastatin anti-neutrophil cytoplas-
mic antibody-associated
vasculitis

microscopic polyangi-
itis

Cardiovascular
Disease

40

Atorvastatin rare disorder with ptosis fluticasone Cardiovascular
Disease

366

hypothesis that low-promiscuity paths are likely to be meaningful and high-promiscuity paths are

likely to be noisy.

2.4.2 Exploration of Atorvastatin and Cardiovascular Disease

This section discusses characteristics of paths between the drug atorvastatin and the disease

cardiovascular disease that were analyzed by the expert. (Some of these paths are presented in Table

2.2.) Atorvastatin, brand name Lipitor, belongs to a class of drugs called statins. Statins inhibit the

HMG-CoA reductase enzyme, thus slowing the rate-limiting step in the body’s pathway to produce

cholesterol and other lipids (Lea and McTavish, 1997). Atorvastatin effectively lowers lipid levels

in patients with high cholesterol, and is often prescribed to improve the condition of patients with

cardiovascular diseases and patients with dysregulated lipid metabolism (hyperlipidemia) (Nelson,

2013).

The intermediate nodes v1 and v2 of the first four paths presented in Table 2.2 all belong

to the same category of biological entities as “cardovascular disease” and “atorvastatin,” as these

entities are all related to the heart and the cardiovascular system. Thus, these entities are relevant

53



Table 2.3: Some of the length-3 paths from pregabalin to epilepsy; score stands for promiscuity
value.

s v1 v2 t Score

Pregabalin body dysmorphic disor-
der

somatoform disorder Epilepsy 32

Pregabalin Spinocerebellar atrophy carbidopa, levodopa
drug combination

Epilepsy 44

Pregabalin congenital aortic valve
stenosis

endocardial fibroelasto-
sis

Epilepsy 56

Pregabalin gamma-amino acid gamma-amino-beta-
hydroxybutyric acid

Epilepsy 68

Pregabalin uremia Alpha 2-HS Glycopro-
tein AHSG

Epilepsy 431

to the relationship between atovastatin and cardiovascular disease, and their corresponding paths

were classified by the expert as meaningful. These first four paths have low promiscuity values

between 30 (the promiscuity score for the pair) and 40.

On the other hand, consider the intermediate nodes of the final path shown in Table 2.2.

Intermediate node v1, “rare disorder with ptosis,” describes conditions involving facial-nerve damage

that can result in ptosis, i.e., drooping of the eyelid (Finsterer, 2003). One such condition is the rare

disorder myasthenia gravis (MG) (Conti-Fine et al., 2006), an autoimmune disorder that damages

nerves connected to facial muscles. Intermediate node v2, “fluticasone,” is a corticosteroid used

to manage nasal allergy symptoms, asthma, and chronic-obstructive pulmonary disease (COPD)

(Harding, 1990). These nodes have no obvious meaning relevant to “cardiovascular disease,” and

therefore do not describe well the relationship between atorvastatin and cardiovascular disease; as

a result, this path was classified as noisy. Again, this aligns with our ecxectation, as the promiscuity

value of this final path is significantly higher (366) than those of the other four paths presented

(30–40).

54



2.4.3 Exploration of Pregabalin and Epilepsy

This section discusses characteristics of paths between the drug pregabalin and the disease

epilepsy; some of the paths are presented in Table 2.3. Pregabalin, brand name Lyrica, is thought

to work by binding to presynaptic voltage-gated ion channels in the brain, thereby inhibiting the

release of several excitatory neurotransmitters (Ben-Menachem, 2004). This inhibition of neuronal

transmission reduces the likelihood of seizures in epileptic patients and dampens neuropathic pain

(Ben-Menachem, 2004; Frampton and Foster, 2005).

The first path presented in Table 2.3 connects pregabalin to epilepsy through “body dys-

morphic disorder” and “somatoform disorder.” A somatoform disorder occurs when a physical

symptom or distress presents itself without a clear medical reason (Oyama et al., 2007). The patient

truly experiences the symptom, but often the symptom is exacerbated because of the patient’s

anxiety or obsession with the symptom. Body dysmorphic disorder (Bjornsson et al., 2010) could

reasonably fall into this category, and psychogenic non-epileptic seizures are also possible due to

somatization, although much more rarely than epileptic seizures (Reuber et al., 2003). Importantly,

both intermediate nodes in this path are within the ontological/biological space of neurological

conditions, just as “pregabalin” and “epilepsy” are, so this path was classified as meaningful. The

low promiscuity value (32) of this path aligns with our expectation.

The second path in Table 2.3, which also has low promiscuity value (44), connects prega-

balin to epilepsy through “spinocerebellar atrophy” and “carbidopa, levodopa combination.” These

intermediate nodes refer to a drug combination used to treat Parkinson’s disease (Block et al., 1997).

Again, as both intermediate nodes remain within the realm of neurological conditions, this path was

classified as meaningful.

The third path contains intermediate nodes “congenital aortic valve stenosis” and “encardial

fibroelastosis,” both of which are related to cardiovascular conditions as opposed to neurological

ones. Although the promiscuity value of this path (56) is relatively low, the intermediate nodes

and the overall pathway do not help us to understand the connection between pregabalin and

epilepsy. Thus, this path was classified as noisy and does not align with the previously presented
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(a) Pregabalin
(b) Gamma-Aminobutyric Acid
(GABA)

(c) Gamma-Amino-Beta-Hydroxybutyric Acid
(GHB)

Figure 2.4: Pregabalin (a), Gamma-Amino Acids, like GABA (b), and Gamma-Amino-
Hydroxybutyric Acids, like GHB (c), are all closely-related structural analogs with anti-epileptic
properties

hypothesis. Here, the intermediate nodes are ontologically/biologically divergent from “pregabalin”

and “epilepsy” and are less likely to meaningfully describe the drug-disease relationship. This

represents one example of how the expected pattern might fail; such cases were rare in our case

study overall.

The fourth path connects “pregabalin” to intermediates “gamma amino acid” and “gamma-

amino-hydroxybutyric acid.” As show in Figure 2.4, these three molecules are close structural

analogs based on the backbone of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA).

The two intermediate nodes are also molecules with anti-epileptic activity (Snead III and Gib-

son, 2005). Thus, these nodes remain very close to “pregabalin” and “epilepsy” in the ontolog-

ical/biological space, and the path was classified as meaningful. The promiscuity value for this

pathway is relatively low (68), as expected.

In the final pathway presented in Table 2.3 “pregabalin” is connected to “epilepsy” through

“uremia” and “Alpha 2-HS Glycoprotein (AHSG)”. Uremia, or uremic pruritus, is a condition

of neuropathic pain associated with kidney diseases (Mettang and Kremer, 2015). The protein

alpha 2-HS glycoprotein (AHSG) is involved in controlling the calcification of vascular tissue

(Jahnen-Dechent et al., 2001). AHSG is reduced in the serum of patients with chronic renal disease

(Kishore et al., 1983), and mice deficient in this protein experienced increased renal calcification

(Westenfeld et al., 2007), indicating that this gene may be important in uremia and other kidney

diseases. However, neither “uremia” nor “Alpha 2-HS Glycoprotein (AHSG)” fall within the

ontological/biological space of neurological conditions, and these divergent nodes are unlikely to
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Table 2.4: Some of the length-3 paths from pemetrexed to mesothelioma; score stands for promiscu-
ity value.

s v1 v2 t Score

Pemetrexed malignant pleural
mesothelioma

pleural epithelioid
mesothelioma

Mesothelioma 55

Pemetrexed organic heterocyclic
compound

Risedronic acid Mesothelioma 39618

Pemetrexed organic heterocyclic
compound

gefitinib Mesothelioma 39618

Pemetrexed organic heterocyclic
compound

Temsirolimus Mesothelioma 39618

Pemetrexed organic heterocyclic
compound

atrazine Mesothelioma 39618

help describe the pregabalin-epilepsy relationship, so this path was classified as noisy. The high

promiscuity value (431) of this path aligns with the hypothesis that higher values indicate more

divergent realms of knowledge; however, it should be noted that the source of the high value is

likely the degree of the “AHSG” gene node. Genes tend to be involved with numerous biological

pathways, drug interactions, and diseases, so they often have large node degrees in the ROBOKOP

graph; therefore, paths including genes often have relatively high promiscuity values.

2.4.4 Exploration of Pemetrexed and Mesothelioma

This section discusses characteristics of paths between the drug pemetrexed and the disease

mesothelioma; some of the paths are presented in Table 2.4. Pemetrexed, brand name Alimta, is a

member of the anti-folate drug class (Visentin et al., 2012). Pemetrexed mimics the structure of

folate (vitamin B9) and inhibits three folate-dependent enzymes necessary for the biosynthesis of

nucleotides (Adjei, 2004). Therefore, pemetrexed interferes with DNA synthesis in rapidly dividing

cancer cells and helps treat mesothelioma (Adjei, 2004; Peake, 2009).

The first path between pemetrexed and mesothelioma shown in Table 2.4 contains “malig-

nant pleural mesothelioma” and “pleural epithelioid mesothelioma.” Both terms are subclasses of

the mesothelioma disease, and therefore fall within the same reasoning space as the the drug and
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disease. The corresponding promiscuity value for the path is low (55), demonstrating adherence to

the promiscuity-value pattern observed in the other cases.

In the second path, pemetrexed and mesothelioma are linked by “organic heterocyclic

compound” and “Risedronic acid”. Although the first term, “organic heterocyclic compound”,

accurately describes pemetrexed as a chemical entity, “organic heterocyclic compound” is a highly

promiscuous node that is responsible for the high promiscuity value of the path (39618). The

second term, “Risedronic acid”, was identified as a potential treatment for mesothelioma by a

drug-repositioning study (Dell’Anno et al., 2021) so the term remains relevant to the drug/disease

pair. While both “organic heterocyclic compound” and “Risedronic acid” are technically within the

pemetrexed-mesothelioma ontological/biological reasoning space, the promiscuity value (39618) is

too high, and thus this path does not fit the expected promiscuity-value pattern.

Paths 3-5 also do not fit the expected pattern. Each of these paths contains “organic

heterocyclic compound” and a chemical substance (gefitinib, temsirolimus, and atrazine) as inter-

mediate nodes. Gefitinib and temsirolimus have been tested for potential anti-mesothelioma activity

(Govindan et al., 2005; Vazakidou et al., 2015), and atrazine has been studied for associations with

incidence of cancer (Rusiecki et al., 2004). These three chemical entities fall in the pemetrexed-

mesothelioma ontological/biological reasoning space, but all three paths have a high promiscuity

value (39618) because of the degree of “organic heterocyclic compound”. Thus, these paths do not

fit the expected promiscuity-value pattern.

Those paths in Table 2.4 that do not fit the expected promiscuity-value pattern highlight an

important consideration about promiscuity values of paths. Nodes of certain types, e.g., ”organic

heterocyclic compound,” are inherently promiscuous because they relate to many other entities

across the whole biomedical space. Such entities should be accounted for by experts in their

exploration of paths. While the connection of these highly promiscuous nodes may be accurate, the

information may not be useful for acquiring biomedical knowledge. This use case highlights a lack

of low-promiscuity connections between pemetrexed and mesothelioma in the ROBOKOP KG, as

the lowest-ranked paths still contain extremely promiscuous nodes. For the proposed algorithms
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to work, the underlying knowledge graph must contain information linking the drug and disease

of interest. Thus, this use case in the study shows a circumstance in which merely taking the five

lowest-promiscuity paths would not be sufficient. At the same time, the large promiscuity values

(39618) of paths 2–5 between pemetrexed and mesothelioma would alert any biomedical expert to

treat these paths with suspicion.

2.5 Experimental Results

In this section we present the experimental results that address research tasks 2–4 and the

corresponding hypotheses articulated in Section 2.2.3. In summary, the results of our experiments

corroborate the three hypotheses and suggest that the proposed algorithmic approaches have value

in the computational toolbox of experts in the biomedical domain.

2.5.1 The Data Sets, Data Selection, and Experimental Setup

In the experiments for research tasks 2 and 3 of Section 2.2.3 we used two real-world

biomedical knowledge graphs (KGs), HetioNet7 (Section 1.5.2) and ROBOKOP (Section 1.5.1).8

The version of HetioNet (Himmelstein et al., 2017) that we used contains 47,031 nodes of 11 types

and over 2.2M relationships of 24 types. The version of the ROBOKOP KG (Morton et al., 2019)

that we used contains over 610,000 nodes of 35 types and over 8M relationships of 145 types. The

proposed algorithms have been implemented as described in Section 2.3.4. All the experiments

were performed on a server with 32 GBs of memory, 1TB of SSD storage, and an eight-core Intel

i7-4770 3.40 GHz CPU. The server ran the Ubuntu 18.04.5 LTS operating system and used the

Neo4j9 graph DBMS version 4.2.1.

Our federated-graph experiments for research task 4 of Section 2.2.3 were performed on

Strider, 10 an “autonomous relay agent” within the National Center for Advancing Translational

7. https://neo4j.het.io/browser/

8. http://robokopkg.renci.org/browser/

9. https://neo4j.com

10. https://github.com/ranking-agent/strider
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Sciences (NCATS) Biomedical Data Translator program. The distributed KG stored in Strider

has approximately 14M nodes and approximately 233M edges, and is accessible via the Strider

knowledge portal that enables access to 33+ knowledge providers using a singular entry point and

a unified KG data model. In response to a user query, Strider dynamically generates the answer

graphs and returns them to the user in the form of JSON documents. The largest constituent KGs

available through Strider are COVID-KOP (Korn et al., 2020), RTX-KG2 (Wood et al., 2021), and

SPOKE (Nelson et al., 2019).

Recall that studying the utility of the proposed approaches in drug-repurposing applications

was a primary target of this project. Accordingly, in setting up the experiments, for each given

(drug,disease) node pair we selected paths for either the treats connection in ROBOKOP

or the “Compound treats Disease” (CtD) connection in HetioNet. To perform research tasks 2

and 3, we also needed to generate positive and negative drug-disease node pairs. For the positive

samples, we randomly sampled the existing “treats”-connected (drug,disease) node pairs in

the selected KGs. Specifically, let n be the drug node, and m be the disease node; the triples we

selected would be (n,treats,m) over the ROBOKOP KG and (n,CtD,m) over HetioNet. For

the negative (i.e., “not treats”) samples, we independently sampled n from all possible drug nodes

and m from all possible disease nodes, and then made sure that we did not accidentally include any

positive node pairs, see (Yang et al., 2020) for the details.

2.5.2 Node-Edge Ratio Analysis

We start the analysis by confirming that the selected KGs actually display the promiscuity

phenomenon, and are therefore relevant to the experiments and to the case study presented in

Section 2.4. Since scale-free networks (Barabási, 2016) are our model for KGs with promiscuity

nodes, we checked that the selected KGs exhibit the Pareto principle, a phenomenon present in

many scale-free networks. To this end, Figure 2.5 shows the relative cumulative distribution of the

node degree in the HetioNet and ROBOKOP KGs. To compute this distribution, we define Nx to be
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Figure 2.5: Relative cumulative frequency distribution of the node degrees in the ROBOKOP (a)
and HetioNet (b) knowledge graphs. The logarithmic x-axes represent the node degrees in each
graph, and the y-axes represent the ranges of the relative cumulative frequencies given by Equations
(2.4)–(2.5). The upper (dashed blue) line represents the relative cumulative frequency of the nodes
whose degree is less than x (RCFN) in each graph, see Equation (2.4); the lower (solid orange) line
represents the relative cumulative frequency of the edges with an endpoint whose degree is less than
x (RCFE), see Equation (2.5).

the set of all nodes in a KG whose degree is at most x:

Nx = {n ∈ N | degree(n) ≤ x} . (2.3)

Then, we introduce the definition of relative cumulative frequency of nodes (RCFN) in a KG. We

define RCFN as the proportion of nodes in the KG whose degree is at most x. (Here, N is the set of

all nodes in the KG.)

RCFN(x) =
|Nx|
|N |

. (2.4)

Finally, we define relative cumulative frequency of edges (RCFE) in a KG as half of the total number

of edges adjacent to the nodes whose degree is at most x. (Half the total number of edges is used to

avoid double-counting edges, i.e., counting an edge once from each endpoint.) Here, E is the set of

all edges in the KG.

RCFE(x) =
1
2

∑
n∈Nx

degree(n)

|E|
. (2.5)

These formulae allow us to analyze the distribution of edges in a given KG among its nodes. Figure

2.5(a) shows that in the ROBOKOP KG, nodes (blue dotted line) that have fewer than 110 neighbors

comprise 80% of all unique nodes in the KG, but only account for 20% of the edges (orange solid
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line). This implies that the remaining 20% of the nodes, which have more than 110 neighbors each,

account for the remaining 80% of the edges. This phenomenon is often referred to as the 80/20 rule

or Pareto principle (Sanders, 1987), in which a small portion of a population contributes a large

number to some total. In the case of the HetioNet KG, the proportions are not precisely 80/20,

potentially due to the smaller size of the graph, but the Pareto principle is still evident, see Figure

2.5(b). These high-degree nodes are precisely the promiscuous “hubs” that we concern ourselves

with in this work. We see this as a confirmation that the KGs chosen for our experiments are, in

fact, impacted by the promiscuity phenomenon.

2.5.3 Study of Promiscuity Scores for Positive and Negative Node Pairs for the Treats

Connection

Recall (Section 2.2.3) that our hypothesis associated with research task 2 is that the

l-promiscuity scores ΦG(s, t, l) for positive node pairs for the treats connection in biomedical KGs

tend to be significantly lower than the promiscuity scores for negative node pairs for the treats

connection. To test this hypothesis, we did experiments with the node pairs that had been sampled

from the ROBOKOP and HetioNet KGs as described in Section 2.5.1.

To determine whether the l-promiscuity scores ΦG(s, t, l) for the sampled positive node

pairs are significantly lower than the scores for the negative node pairs, we used two-sample t-tests

(Rice, 2006). For each node pair (s, t) we found paths of different lengths l from the drug source

s to the disease target t. Then for each fixed value of l we separated the promiscuity scores

obtained for the positive and negative node pairs into two groups, and used a two-sample t-test to

check if the mean promiscuity scores from the two groups are significantly different.

We calculated the promiscuity scores as outlined above for 100 positive and 100 negative

node pairs for each length l between the values of 2 and 6 (inclusively). To ensure that the existence

of the connection between the drug and disease nodes did not bias the scores, we removed the

relevant treats edges from the Neo4j database before each calculation for the positive node pairs,

reintroducing the edges after the completion of the calculation.
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The experimental results are shown in Tables 2.5–2.6. We can see that almost all the

reported p-values are significantly lower than the standard cutoff value of 0.0511 for all the values of

length l, indicating significant differentiation between the mean promiscuity scores for the positive

and negative node pairs in both KGs for each value of l. Observe that all the mean promiscuity

scores for the positive node pairs are lower than the corresponding mean negative scores for both

HetioNet and ROBOKOP. These results corroborate the claim that the underlying drug-disease

connections are at least somewhat reflected by the promiscuity scores.

In Tables 2.5–2.6, we see p-values below 0.05 in most cases; however, in the case of length

l = 2 on ROBOKOP, we see the p-value 0.053. This high p-value could have been caused by the

relatively larger standard deviation for that path length on ROBOKOP. The high variance could

stem from the somewhat surprising sparsity of length-2 paths in that KG. Indeed, we found that

the drug and disease nodes in many of the positive and negative samples in ROBOKOP are not

connected by paths with a single intermediate node in each (i.e., length-two paths). Looking deeper

into this situation, we found that 30% of our sampled positive node pairs had no length-two path

connections, and neither had 82% of the negative node pairs. When gathering data for our analysis,

whenever we sampled an unconnected node pair, we would re-sample until we found a connected

pair. This procedure could have led to a biased result for length-two paths.

Despite the slightly larger p-value for length-two path cases in ROBOKOP, the value is

still very close to 0.05. (Note that other studies in the literature use 0.1 as their criteria for rejecting

the null hypothesis in tests.) In addition, there is a much higher variation in the promiscuity scores

for ROBOKOP as compared with HetioNet. This effect is aligned with the fact that ROBOKOP is

significantly larger than HetioNet (610K vs 40K nodes).

To summarize, the experiments reported in this section corroborate, via the ROBOKOP

and HetioNet KGs, the hypothesis associated with research task 2 of Section 2.2.3 node pairs for

the treats connection in biomedical KGs.

11. If the p-value of a two-sample t-test was less than 0.05, we take it to represent that the mean values of the groups
are significantly different.
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Table 2.5: The means (standard deviations) of the promiscuity scores of the 100 sampled positive
and 100 sampled negative drug-disease node pairs for the HetioNet KG, along with the p-values of
two-sample t-tests run on the two distributions.

Path length (l) The positive pairs The negative pairs The p-values

2 158 (115) 384 (288) <.00001
3 70 (32) 125 (59) <.00001
4 68 (22) 88 (28) <.00001
5 53 (24) 66 (15) <.00001
6 53 (11) 61 (12) 0.005

Table 2.6: The means (standard deviations) of the promiscuity scores of the 100 sampled positive
and 100 sampled negative drug-disease node pairs for the ROBOKOP KG, along with the p-values
of two-sample t-tests run on the two distributions.

Path length (l) The positive pairs The negative pairs The p-values

2 516 (822) 3,210 (13,800) 0.053
3 108 (124) 2,260 (5,700) <.00001
4 143 (213) 891 (3,060) 0.017
5 67 (68) 172 (154) <.00001
6 61 (42) 112 (69) 0.005

2.5.4 Node-Pair Prediction

In Section 2.5.3 we saw that l-promiscuity scores ΦG(s, t, l) for positive node pairs for the

treats connection can be significantly lower than l-promiscuity scores for negative node pairs for

the same connection. We now study whether the score difference between the positive and negative

pairs is strong enough to allow us to use the scores to find positive treats connections between

nodes for drugs and diseases of interest. In other words, in this section we focus on research task 3

formulated in Section 2.2.3, that is, on determining whether a classifier trained by l-promiscuity

scores ΦG(s, t, l) can correctly predict positive and negative node pairs for some criterion. We

consider this task for the treats connection between the drugs and diseases of interest.

Similarly to our experimental setup for research task 2 (see Section 2.5.3), for task 3 we

used the sampling procedure described in Section 2.5.1 to find the positive and negative node

pairs with their corresponding l-promiscuity scores. For this experiment we sampled a total of 500
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positive and 500 negative node pairs. The positive (negative, respectively) node pairs were collected

into the set P (the set N , respectively).

In training a classifier, using a single attribute (feature), such as the promiscuity score for a

particular path length for a node pair, is unlikely to lead to adequate prediction quality. To address

this problem, our strategy in classifier training was to use multiple l-promiscuity scores, one score

for each value of path length l within a range of lengths, as the features for each drug-disease node

pair. For example, a node pair (s, t) could have ΦG(s, t, 3), ΦG(s, t, 4), ΦG(s, t, 5), and ΦG(s, t, 6)

as its features. The ground-truth positive class labels (with value 1 in our experimental setup) were

assigned to the positive node pairs, and the negative class labels (with value 0) were assigned to

the negative node pairs. In this experiment we excluded the cases of path length l = 2 due to the

sparsity of length-two paths in the ROBOKOP KG, see Section 2.5.3 for a discussion.

For the experiments, we used the promiscuity-score features and the corresponding ground-

truth class labels to train a binary random-forest classifier (Ho, 1995). That is, we used the

promiscuity scores as the independent variables and the ground-truth labels as the dependent

variables in training the classifier. The classifier that we used had been generated using the default

parameters of the Python Scikit-Learn machine-learning library (Pedregosa et al., 2011).

To be more specific, given the training set and testing set of drug-disease node pairs, the

input data for the classifier training were the promiscuity scores ΦG(s, t, 3), ΦG(s, t, 4), ΦG(s, t, 5),

and ΦG(s, t, 6) for each pair and the corresponding ground-truth labels, 1 for the positive pairs and

0 otherwise. In the testing process, only the promiscuity scores ΦG(s, t, 3), ΦG(s, t, 4), ΦG(s, t, 5),

and ΦG(s, t, 6) would be provided for each node pair in the test set, and the classifier would predict

whether the pair has the positive or negative class label. In the sequel we will denote the predicted

class of node pair p by class(p).

To evaluate the classification quality, we computed the precision and recall as defined in Eq.

(2.6)–(2.7). The former metric indicates the proportion of total classifier-predicted positive node

pairs that are true positive node pairs, and the latter indicates the proportion of total true positive

node pairs that are predicted positive node pairs.
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precision =
|{p ∈ P : class(p) = positive}|

|{p ∈ P ∪N : class(p) = positive}|
. (2.6)

recall =
|{p ∈ P : class(p) = positive}|

|P|
. (2.7)

Further, we computed accuracy as defined in Eq. (2.8), to indicate the proportion of

correctly predicted node pairs. We also computed the F1-score, which is the harmonic mean of

precision and recall, see Eq. (2.9).

accuracy =
|{p ∈ P : class(p) = positive} ∪ {p ∈ N : class(p) = negative}|

|P ∪ N|
. (2.8)

F1-score =
2 · precision · recall
precision+ recall

. (2.9)

From the drug-disease node pairs sampled as discussed above, we randomly selected 80%

as the testing data set and used the remaining 20% of the pairs as the training data. The results

of the random-forest classifier for these data are presented in the confusion-matrix form in Tables

2.7–2.8. Based on these results, for the HetioNet KG we obtained a precision of 0.72, a recall of

0.8, an accuracy of 0.75, and an F1-score of 0.76. For the ROBOKOP KG, the results provided a

precision value of 0.87, a recall of 0.81, an accuracy of 0.845, and an F1-score of 0.84.

We now recall hypothesis 3 formulated in Section 2.2.3: Given l-promiscuity scores for

testing-set node pairs in a biomedical KG and the ground-truth (positive or negative) labels for

the pairs, a classifier trained on a training set of positive and negative node pairs for the treats

connection in the KG tends to correctly predict whether the testing-set node pairs are positive or

negative. In the above experiment, we saw an overall good performance for the prediction task on

the HetioNet and ROBOKOP KGs, with the prediction result for ROBOKOP looking better than

the prediction result for HetioNet. This could be the result of the smaller size of the HetioNet KG,
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Table 2.7: The confusion matrix for the results of the binary random-forest classifier with the
HetioNet KG.

Predicted positive Predicted negative

Actual positive 80 20
Actual negative 31 69

Table 2.8: The confusion matrix for the results of the binary random-forest classifier with the
ROBOKOP KG.

Predicted positive Predicted negative

Actual positive 81 19
Actual negative 12 88

which has many fewer nodes and edges than ROBOKOP. This would potentially limit the ability of

intermediate pathways that may otherwise prove interesting and predictively useful to appear as

promiscuous pathways.

Figure 2.6 shows two-dimensional (2D) t-SNE (Van der Maaten and Hinton, 2008) visual-

ization plots of the promiscuity scores of the positive and negative node pairs used in the experiment.

(The t-SNE algorithm is a dimensionality-reduction technique for projecting high-dimensional

vectors onto low-dimensional spaces, to enable better understanding of the relative distances be-

tween the data points.) We used the features obtained for the node pairs (i.e., ΦG(s, t, 3) through

ΦG(s, t, 6)) as the input. In the Figure we can see a projection of the features on a 2D-space, so that

we could easily see the distances between those node pairs with regard to the promiscuity scores.

In the projections shown in Figure 2.6 it seems that in both KGs the two groups, positive

and negative, cannot be separated clearly using a simple hyperplane. At the same time, trends can be

observed in the clustering of the data, indicating weak separation between the positive and negative

node pairs. As the hypothesis-generating process for drug repurposing is an inherently difficult task

in the biomedical domain, weak separation could still be valuable to biomedical experts. We can see

that the points in two groups (positive and negative) of node pairs diverge in the opposite directions,

indicating that the proposed concept of promiscuity scores has the potential to be a significant factor

in predicting whether a drug-disease node pair is positive or not.
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(a) HetioNet (b) ROBOKOP

Figure 2.6: 2D t-SNE projections (Van der Maaten and Hinton, 2008) of the promiscuity scores of
the positive (orange circles) and negative (blue triangles) node pairs for HetioNet (a) and ROBOKOP
(b). We can observe weak separation of these two groups for both KGs. As hypothesis generation
for drug repurposing is inherently difficult, weak separation may still be of value to biomedical
experts.

2.5.5 Performance of the Proposed Approaches

In this experiment we test the performance of the algorithms presented in Section 2.3. We

focus on the execution time for (1) the naı̈ve depth-first (DFS) version of the proposed approach

(Section 2.3.1), its (2) improved-efficiency DFS version (Section 2.3.2), and (3) the improved-

efficiency breadth-first (BFS) algorithm (Section 2.3.3).

For this experiment we sampled 1000 positive drug-disease node pairs on the ROBOKOP

KGs in the way described in Section 2.5.1. Recall that in a positive drug-disease pair, a treats

edge is present in the KG between the nodes in the pair. We then measured the runtimes taken by

the three algorithms to calculate the l-promiscuity scores for paths of length l=3 between the nodes

in each sampled pair.

The total runtimes in seconds are shown in Figure 2.7. (For each promiscuity-score value in

the range shown, Figure 2.7 reports, on the logarithmic Y-axis, the average of the total runtimes for

all the node pairs with that value.) We can see that the runtimes of the naı̈ve version of the algorithm

dominate those for both improved-efficiency versions. Among those, the improved-efficiency DFS
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Figure 2.7: Runtimes in seconds for variants of the algorithms for calculating promiscuity scores
for drug-disease node pairs in the ROBOKOP KG for path length l = 3. The x-axis shows the
promiscuity scores; the y-axis is logarithmic.

Figure 2.8: Numbers of nodes dequeued for variants of the algorithms for calculating promiscuity
scores for drug-disease node pairs in the ROBOKOP KG for path length l = 3. The x-axis
shows the promiscuity scores; the y-axis is logarithmic.

algorithm is marked as “DFS” in the Figure, and the improved-efficiency BFS algorithm is marked

as “BFS.”

The above results corroborate our claim that the runtime performance of both proposed

improved-performance approaches is overall acceptable. At the same time, we found that capturing

the raw execution times as reported in Figure 2.7 is not very reliable with our original implementation

of the algorithms, as the Neo4j plugin engine introduces significant startup overhead and variance

into the execution time, especially for smaller path queries. Thus, any insights that could be gained

from the results reported in Figure 2.7 are not necessarily reliable either. To isolate the effects of the

Neo4j engine, we modified the existing plugin created as reported in Section 2.3.4, by introducing
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the ability to track the number of nodes dequeued during the runs of the algorithms. This number,

being an objective measure of the amount of computation that is needed to find the promiscuity

score for a node pair in a KG, serves as a practical proxy for the total runtime of the algorithms.

The results for the modified versions of the proposed algorithms are reported in Figure

2.8. (For each l-promiscuity-score value ΦG(s, t, l) in the range shown, Figure 2.8 reports, on

the logarithmic Y-axis, the average of the total numbers of nodes dequeued in the calculation

of ΦG(s, t, l) for all the node pairs with that value of ΦG(s, t, l).) Perhaps not surprisingly, we

can see again that the totals for the naı̈ve DFS version of the algorithm dominate those for both

improved-efficiency versions. Indeed, recall that to find the l-promiscuity score for a node pair,

the naı̈ve versions of the proposed approaches must examine all the paths of length l between the

source and target nodes in the pair, while the improved-efficiency algorithms can selectively prune

paths. Observe the upward trend in the numbers of nodes dequeued for both improved-efficiency

algorithms. Intuitively, as the value of the promiscuity score increases, the number of paths that

must be explored between the source and target nodes for a node pair tends to also increase, raising

the number of nodes that need to be dequeued.

In addition to finding that both improved-efficiency algorithms performed substantially

better in the experiment than the naı̈ve DFS method, we found that the naı̈ve algorithm would take

inordinately long to run for path lengths l = 5 and l = 6 on ROBOKOP, due to the high numbers of

possible paths in the KG for those values of l. (For instance, the algorithm ran for multiple days

for one specific drug-disease pair.) Moreover, the naı̈ve approach caused memory-overflow issues

in some of those cases. These issues did not arise for the improved-efficiency algorithms, which

were showing reasonable performance in those settings, finding the correct promiscuity scores even

in the presence of massive numbers of possible paths for some node pairs. As seen in Sections

2.5.3–2.5.4, using those approaches we were able to compute the l-promiscuity scores for a range

of values of path length l.

Returning to the results shown in Figure 2.8, we found that, on average, the naı̈ve approach

required 25000x more node-dequeue events than the improved-efficiency DFS approach and 46000x
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more dequeue events than the improved-efficiency BFS approach. This supports our hypothesis that

the proposed improved-efficiency algorithms can be substantially more efficient than their naı̈ve

versions at finding promiscuity scores and paths for node pairs in a knowledge-graph environment.

Further, the issues described in the preceding paragraph suggest that calculating promiscuity

scores for node pairs at high path lengths may be computationally infeasible without the proposed

improved-efficiency algorithms.

2.5.6 Efficiency Results for the Strider Federated Knowledge-Graph System

In our final experiment we consider the setting of distributed (as opposed to centralized)

knowledge graphs. We work with the Strider system described in Section 2.5.1 to look at the

efficiency of forming partial answers to path queries (partial paths) in individual KGs, which are

then combined into the final path-query answers that are returned to the user. We compare the

efficiency of finding partial paths with low promiscuity values using the proposed algorithms with

that of the default option of finding any partial paths. Our claim is that using low-promiscuity partial

paths in path-query answering in a federated KG system may add to the quality of the final answers

returned to the user with acceptable overhead.

Our experimental setting was as follows. As the measure of efficiency of a given query-

processing method in the Strider system, we used the number of database (i.e., individual-KG)

calls made by Strider to find partial paths during the processing of a given path query. The query-

evaluation method that we used as the baseline is the default Strider approach that we call first come

first serve (FCFS). In this approach, to find paths between a pair of graph nodes the federated KG

is explored via depth-first search, with each path being returned to the user as soon as it has been

assembled from partial paths.

The alternative query-processing method that we looked at in the experiment is based

on our proposed path-finding approaches presented in Section 2.3. We have implemented the

approaches in Python on top of the pre-existing Strider architecture. The key difference of these

approaches from the baseline is in changing the order in which Strider would explore the individual
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KGs to assemble a path query from partial paths, based on the order of node exploration prescribed

by each version of the proposed algorithm.

The BFS and DFS versions of our algorithms provide a tradeoff between memory usage

and the number of nodes dequeued and explored by each version. In the federated-KG setting, the

number of node dequeues translates into the number of database calls. Our focus in this experiment

was on minimizing the number of database calls in the computation of paths between a given pair of

nodes. Accordingly, we chose the improved-efficiency BFS version of the algorithm, as it requires

fewer node dequeues per path than the alternatives.

For the experiment we sampled 100 positive and 100 negative drug-disease pairs. In

contrast with the negative pairs, the positive pairs comprised drugs and diseases that have an

explicitly stated treats relationship in the Strider federated KG. For each drug-disease pair, we

asked Strider to return n answer paths using either our improved-efficiency BFS approach or the

baseline approach, with n ranging between 1 and 40. (See Figure 2.9.) The path length for the

improved-efficiency BFS approach was set to l = 3.

The results of the experiment are presented in Figure 2.9, which shows the difference in

the number of database calls required to construct the set of n answer paths for each value of n

between 1 and 40. (For each value of n in the range shown, Figure 2.9 reports the average of the

total numbers of database calls performed in the calculation of the n answer paths for all the node

pairs tested with that value of n.) For instance, for n = 5 we see that, on average, it takes the

improved-efficiency BFS algorithm 128 database calls to build the five answer paths. This is a 21%

increase over the (on average) 106 database calls made by the baseline FCFS approach. Recall that

the partial paths discovered by the proposed approaches may be of higher biomedical interest to

experts; the overhead for the discovery of such partial paths at n = 5 in our experiment is 21%. We

envision that in future implementations of federated knowledge graphs, multiple algorithms for

construction of partial paths may be presented to the user, enabling a tradeoff in query performance

versus quality of the answers. Note that, as the number n of user-requested answer paths increases,

the performance advantage of the baseline FCFS approach over the proposed improved-efficiency
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Figure 2.9: Numbers of database calls required to construct in the Strider federated KG the specified
number of answer paths for the 200 sampled drug-disease pairs. The results are shown for the
proposed improved-efficiency BFS algorithm (blue dashed line) and for the baseline FCFS algorithm
(orange solid line).

BFS algorithm tapers off. This is due to the sets of partial paths having higher overlaps between the

two approaches, as the ever higher shares of all the possible distinct partial paths are returned from

the individual KGs in the Strider federation in the construction of the path answers.

2.6 Limitation

In this chapter, we discuss how the issues of high promiscuity in pathways could negatively

impact drug discovery with KGs. Despite the exceptional performance of pathways with low

promiscuity in our tasks, some other real-world problems might have more interesting results on

pathways with high promiscuity. As we discussed in Section 2.1, in the case of “Dirty drugs (Roth

et al., 2004),” their benefit comes from their high interactivity with genes.

For example, if the problem is close to a popular entity, e.g. COVID-19, the promiscuity

score would be extremely high as long as the pathway regarding the target entity passes through this

node. In such case, a pathway with a low promiscuity score does not provide a more meaningful path

as compared to a high scoring pathway. For these examples, the promiscuous nodes are required

for the returned pathways to be of interest to the researchers, and thus our methodology would be

inappropriate for these cases.
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It’s possible to think about the example in citation network: for two paths with the same

pattern Author-Paper-Author, the higher promiscuity path might represent the more citations on

the collaborative paper, while the lower promiscuity path might represent the lesser citations on

the collaborative paper between the same two authors. In this case, the lower-score path does not

represent more meaningful path. However, in the same case, if the papers also connect more author

nodes. The promiscuity will be more meaningful for the same path because it represents a paper

was collaborated by fewer authors and we found this target Author. In this case, the lower-score

path do represent more meaningful path.

2.7 Conclusion

In the context of finding mechanistically justified drug-disease paths in knowledge graphs

(KGs), we focused in this thesis on the challenge of processing of promiscuous KG nodes, that

is, nodes that are associated with numerous relationships that may not be unique or indicative of

the node properties. Specifically, the presence of promiscuous nodes on drug-disease graph paths

can dilute the semanticity of the paths. To address the promiscuous-node challenge, we introduced

the notion of promiscuity values and scores for nodes and paths in KGs, and presented a suite of

algorithms that return to the user the specified number of paths with the lowest promiscuity values

between the given pair of nodes. We reported the results of a case study that indicate that paths

with low promiscuity values could be meaningful and of interest for biomedical experts in drug

repurposing. We also presented experimental results that suggest that the proposed algorithms

can be efficient even in distributed KGs, as well as effective at discriminating between related and

unrelated drug-disease pairs and at predicting drug-repurposing relationships between drugs and

diseases. As the proposed algorithms are domain- and task-independent, we are currently looking

into the potential of their application to other tasks and domains, as well as into modifying the

approaches to make them effectively applicable to other scenarios.
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2.8 Future Work

One aspect of the promiscuity algorithm we discussed in the introduction was the utility of

our algorithm working on generalized biomedical knowledge graphs without modification, such as

ROBOKOP. The construction of dynamic specialized knowledge graphs which remove all nodes

commonly thought to be promiscuous may produce interesting results. This method would either

need to fork an existing graph database and create an entirely new database with only nodes that

may produce interesting pathways. Another approach may be a dynamic filtering step, which at

runtime of the process, takes in the source biomedical knowledge graph and generates a subset of

the graph; with some pruning algorithm removing undesired nodes.

The embedding methods discussed in the related work section rely on neighborhoods of

nodes and random walks to determine which how nodes should relate to each other. This leads

to nodes with more neighbors dominating embedding of graphs. The dominance of promiscuous

nodes can be viewed as a version of the “friendship paradox”, which is a phenomenon in social

networks which cause the average person to have fewer friends then their friends.(Field, 1991)

Similarly, a node will likely have a much smaller degree than that of its neighbors. These nodes end

up dominating the embedding, forcing all nodes to cluster near nodes with the highest degree. In

many cases, this is a desired phenomenon of existing embedding algorithms, as large central nodes

with many edges should be important to the meaning of the graph.

We theorize that the problem with current embedding methods relates to their methods of

sampling the graph. Node2Vec and its derivative methods use a random walk.(Grover and Leskovec,

2016) This node2vec random walk provides the user with parameters which enable it to be biased

and interpolated in either a “Depth-First Search” and a “Breath-First Search” manor.

An interesting approach towards tackling this friendship paradox issue would be intro-

ducing a graph embedding methodology which can account for these promiscuous nodes. In this

methodology, the embedding random walks could be restricted to either heavily down-weight

promiscuous nodes and ignore them entirely. Once such an algorithm exists, it would be exciting
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to explore how the embeddings produced differ from traditional embeddings. Exploration of rare

diseases pathways, with complex understudied mechanisms are a prime area which such methods

could provide utility.

2.8.1 Embedding Methods

In existing random walk based graph embedding algorithms, a collection of random walks

are utilized as the primary method of constructing, updating, and representing the underlying graph.

Through this representation, nodes of small degree are underrepresented due to natural biasing

which occurs during random walks, in which the neighborhoods of nodes of low degree become

absorbed by promiscuous nodes. We aim to correct for this to construct embeddings which more

fully capture information about low degree nodes.

In seeking to address the issue of biased random walks around promiscuous nodes we

seek to make the following modifications to existing graph embedding algorithms. The primary

objective is to increase the information surround smaller nodes with fewer degrees and prevent the

leakage away of random walks seen in Figure 2.10. In the existing node2vec embedding algorithms

there exists a sampling step for the generation of random walks. This sampling would select with

knowledge of promiscuous nodes to more fully represent knowledge graph nodes.

We seek to control the effect of promiscuous nodes from embedding methodologies.

To enable higher order clustering for hypothesis generation, we propose the creation of a novel

embedding methodology PAEV (Promiscuity Aware Embedding Vectors). This embedding method

will be designed around the goal of promoting connections with small local clusters of nodes, and

to algorithmically ignoring promiscuous nodes. Our algorithm will leverage a variety of weighting

functions to down-weight the effect of promiscuous nodes, including quadratic, gaussian, and

cut-off filters to control the effect of promiscuous nodes on embeddings of its neighbors.

In our exploration of promiscuity filtered pathways, we found novel connections. By

utilizing these insights, this embedding algorithm will hopefully provide a unique way to view

the complexity of modern knowledge graphs. Once the PAEVs have been created for nodes of a
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graph; they can be utilized by clustering methods, such as SLINK(Sibson, 1973) and k-Means(Likas

et al., 2003). Finding these clusters should indicate nodes existing in similar areas of a graph, and

hopefully these groups have interesting mechanistical similarity which can be further analyzed and

utilized by domain experts. An ideal case would be these clusters enabling the creation of high-level

categories for ontological objects in a field. Giving further understanding to mechanistic behaviors

in these domains.
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Figure 2.10: In this figure we show a simple example of a random walk between two cliques of
nodes. On the left we see a 4-clique and on the right a 10 clique. We have one node from each
clique with an edge between them. We simulate the probabilities of traversing any node in a uniform
random walk. In (a) we take the first step in selecting the node in the 4-clique with an edge to the
10-clique. In (b), we see the probabilities on the second step of the random walk. (c) shows the
probabilities of the third step. (d) shows this process run nearly to convergence, the eightieth step.
We see that as this random walk runs further along, the probabilities of walking nodes are leeched
away from the 4-clique until they are almost entirely gathered in the 10-clique.
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CHAPTER 3

Semantic Graph Pathways

3.1 Introduction

Exploration of biomedical knowledge graphs has become a challenging and evolving

problem. These graphs have been developed and deployed at large scale use, examples can be seen

such as ROBOKOP (Section 1.5.1) and HetioNet (Section 1.5.2). For the first time in the history of

biomedical science, we have gathered a large collection of information on drug/disease interactions

into a singular interoperable database. This provides us a chance to try expanding our definitions of

how drugs and diseases interact. By using these databases a knowledge source to draw from, we can

seek to describe these interactions through complex pathways which traverse a knowledge graph.

Traditionally the effect drugs have on the human body have been classified in two ways.

The first is by what biological target it interacts with and the second is by the Mechanism of Action

(MOA). Wermuth defines biological targets as “molecular structures, chemically definable by at

least a molecular mass, that will undergo a specific interaction with chemicals that we call drugs

because they are administered to treat or diagnose a disease.”(Van den Broeck, 2015) The target for

many drugs is well defined, as the process can be validated through an assay of the drug against the

target. Targets are useful and convenient as they provide a high-level classification of chemicals

which concerns how they affect the human body.

This way of representing queries is very useful in enabling our ability to utilize knowledge

graphs for more complex forms of hypothesis generation. Domain experts can easily create query

patterns from their own specialized knowledge in a field. creating patterns that may have particularly

important meaning when answered by a well-maintained knowledge graph.
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Chapter 2 explored the problem of finding meaningful pathways in a knowledge graph

utilizing the graph environment with little context for node and relationship labels. The promiscuity

algorithm proposed within that chapter helped produce pathways of biomedical relevance. This

chapter addresses the semantic query problem. We seek to explore the path search problem from

a different angle. As utilization of biomedical knowledge graphs increases, we see that existing

paradigms for exploring the pathways of these graphs in a semantically meaningful fashion is

insufficient. Existing strategies for pathway exploration in knowledge graphs rely upon either

patterns found through machine learning or those created by domain-experts working on the graphs.

We claim that integrating the efforts of these domain-experts will help to fully capture the underlying

semantic meaning contained in these graphs.

Here, we seek to to go in depth in capturing the semantic meaning in one important

biomedical case, that of drug → disease mechanisms. In Section 3.2, we describe the Clinical

Outcome Pathway, a complex metapath constructed to help elucidate the relationships between

drugs and diseases explore biomedical knowledge graphs.

In Section 3.3 we treat Clinical Outcome Pathways as a case study in building complex

metapaths. We then explore the broader implications of constructing metapaths on top of a

knowledge graphs, and how we can generalize pathways in knowledge graphs to capture semantic

meaning. We formalize the concept as the idea of semantically query patterns.

3.2 Clinical Outcome Pathways

Semantically meaningful graph patterns have been defined in the abstract case as a “domain-

specific knowledge captured in the format of a semantic graph, which, when analyzed in the context

of the domain, has semantic meaning.” But to define a flexible pattern that can be leveraged to get

domain knowledge is a substantial challenge. The challenge comes from several factors

1. Domain-specific knowledge contains a great deal of complexity and edge cases. Capturing

this information into a single entity, such as a graph pattern, is a difficult task,
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2. Domain-specific knowledge graphs have only been in existence for a few years and have

only recently been of high enough quality for such an exercise to be fruitful, and

3. Integration between the computational community who create these tools and Subject

Matter Experts (SMEs) who could benefit from these tools has been lacking.

By working with domain experts in the biomedical field, we have created a semantic graph

pattern of interest for the bioinformatics community. Our goal is to create this pattern that other

domain experts may use as a guide, applying a similar methodology to their own fields to create

novel semantically relevant graph patterns that may be integrated with future computer science

research.

3.2.1 Related Work

The term Clinical Outcome Pathway has been used in the literature on occasion. For

instance, in 2017, the National Center for Advancing Translational Sciences (NCATS) used the

term COPs in a ‘Request For Applications’ announcement.(for Advancing Translational Sciences,

2017) In 2018, we used this term in an application note on Chemotext,(Capuzzi et al., 2018) an

online tool for uncovering relationships between ontological terms in the scientific literature, as

annotated in PubMed. In addition, a simplified instance of a COPs was implemented in ROBOKOP

(Section 1.5.1) to support the elucidation of biological pathways of relevance to drug effects. This

implementation of the COP took the form of a query through through the knowledge graph of the

form:

(Chemical)→ (Gene)→(Biological Process)→ (Cell)→ (Anatomical Entity)→

→ (Phenotypic Feature)→ (Disease)
(3.1)

We show an example ROBOKOP COP query in Figure 3.1. To explore how to generate

this query, please go to the link: https://robokop.renci.org/simple/question/.
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Figure 3.1: An example Clinical Outcome Pathway (COP). This COP aims to explore the connection
between insulin and type two diabetes. This COP reflects the version currently implemented into
the ROBOKOP graph database.

Within that webpage, follow the option Template, and select the template “COP for $name1$

($identifier1$) and $name2$ ($identifier2$)?”

3.2.2 Introducing Clinical Outcome Pathways

Historically, the groupings of drugs by chemical class, primary target(s), and/or mechanism

of action (MOA), have served as a convenient means of classifying drug effects and corresponding

indications.(Avram et al., 2021; Kinney et al., 2019; Mestres et al., 2008) Here, we propose a more

informative description of a chain of chemical-biological interactions underlying clinical effects of

drugs, which we formally describe as Clinical Outcome Pathways (COP).

The term COPs has been used occasionally in recent literature. For instance, in 2017, the

National Center for Advancing Translational Sciences (NCATS) used the term in a ‘Request For

Applications’ announcement.(for Advancing Translational Sciences, 2017) In 2018, we used this

term in an application note on Chemotext, (Capuzzi et al., 2018) an online tool for uncovering

relationships between ontological terms in the scientific literature, as annotated in PubMed. However,

to the best of our knowledge, this paper presents the first attempt to define COP as an overarching

biomedical concept. Furthermore, we implemented a specific type of COP-based queries in

ROBOKOP (Reasoning Over Biomedical Objects linked in Knowledge-Oriented Pathways), (Bizon

et al., 2019) (Section 1.5.1) which is a database of biomedical knowledge organized as a knowledge

graph and designed, in part, to support the elucidation of biological pathways of relevance to drug

effects.

Although the systematic study of COPs has been lacking, a similar concept of ‘Adverse

Outcome Pathways’ (AOPs) has been commonly employed in regulatory chemical toxicology “to
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support chemical risk assessment based on mechanistic reasoning (Organisation for Economic

Cooperation and Development, 2020).” An AOP is defined as “a model that identifies the se-

quence of biochemical events required to produce a toxic effect when an organism is exposed to

a substance”.(of Health et al., 2021) Principally, AOP has served to formalize and standardize

the description of the key processes that link a ‘molecular initiating event’ (MIE, i.e., the initial

interaction of an exogenous molecule with an organism) with a downstream ‘adverse outcome’

(AO, i.e., the observable adverse response to the exogenous molecule at the whole-body level).

The increased use of AOPs has enabled the rapid advancement of chemical toxicology research

via more specific and detailed descriptions of toxic phenomena.(Tollefsen et al., 2014) Multiple

examples of AOPs can be found in the AOP Wiki,(Society for Advancement of AOPs, 2021) and in

the Organization for Economic Co-operation and Development (OECD) library.(Organisation for

Economic Cooperation and Development, 2020)

Principally, AOPs have served to formalize and standardize the description of the key

processes that link a ‘molecular initiating event’ (MIE; i.e., the initial interaction of an exogenous

molecule with an organism) with a downstream ‘adverse outcome’ (AO) (i.e., the observable

adverse response to the exogenous molecule at the whole-body level). The increased use of AOPs

has enabled rapid advancement of chemical toxicology research via more specific and detailed

descriptions of toxic phenomena.(Tollefsen et al., 2014) Multiple examples of AOPs can be found

in the AOP Wiki,(Society for Advancement of AOPs, 2021) and the Organization for Economic

Co-operation and Development (OECD) library.(Organisation for Economic Cooperation and

Development, 2020)

A similar concept of ‘Therapeutic Outcome Pathway’ (TOP) was discussed recently.(Morgan

et al., 2016) It was introduced in a specific context as a means to help guide the development of

personalized in vitro CSRA (chemosensitivity and resistance assays) platforms and discussed,

along with AOP, as a general means to identify key microenvironment components and assay

readouts/endpoints that could help in predicting therapeutic response and drug resistance. Another

related concept of ‘Clinical Pathway’ (CPW) was discussed in the literature as well (Kinsman et al.,
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2010) as a tool or framework to support evidence-based, organized clinical decision-making and

effective patient care plan.(Kinsman et al., 2010)

We define COP by analogy to the AOPs, but in the broader context of systems chemical

biology(Oprea et al., 2007) and clinical pharmacology as opposed to chemical toxicology. We

formalize the COP as a sequence of biological events initiated by the exposure of a patient to a

drug (a molecular initiating event) and leading, through a series of functionally linked perturbations

at different levels of biological organization, to a specific, observable clinical outcome. By this

definition, COP shares some elements with the above concepts of MOA, TOP and CPW but it is

broader and more inclusive linking molecular, biochemical, and therapeutic events in a comprehen-

sive pathway of drug action. Most importantly, as we discuss in the later part of this paper, COP can

be elucidated computationally by mining biomedical knowledge graphs(Bizon et al., 2019) paving

the way for instructive generation of novel drug discovery and repurposing hypotheses.

3.2.3 Defining Clinical Outcome Pathways

We define COP as a chain of functionally connected biological events with each ele-

ment of the chain corresponding to a common term as defined in biomedical ontologies such as

MeSH(Lipscomb, 2000) or MONDO(Mungall et al., 2017). Using AOP as an inspiration, three key

elements comprise COPs: (1) ‘Molecular Initiating Event’ (MIE) (2) Intermediate Event(s); and (3)

Clinical Outcomes. The three components are further defined as follows:

1. ‘Molecular Initiating Event’ (MIE):

(a) ligand-target interaction(s)

2. Intermediate Event(s) include a chain of some or all of functionally connected biological

processes such as:

(a) gene expression,

(b) protein production,
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(c) receptor signaling pathways,

(d) metabolic pathways,

(e) protein-protein interaction,

(f) cell-cell interaction, or

(g) tissue function

3. Clinical Outcomes such as:

(a) reduction in disease symptom(s),

(b) clinical pharmacology assays results showing normal values, or

(c) complete relapse of the disease.

We have provided a visualization of the Clinical Outcome Pathway elements in Figure 3.2.

In this figure, we construct a COP as a graph like entity, where interactions begin and end. We must

find a chain of events which enable a drug to find

To illustrate the concept, COPs for several drugs with their US Federal Drug Administration

(FDA) approved indications are shown in Figure 3.3. Here we show three examples of FDA-

approved drugs and the established information for how they interact with the human body. We see

that COPs will naturally arise if we arrange the interacts as we have. These three pairs are drug

and disease pairs which would be common to many pharmacists: (1) metformin and diabetes; (2)

natalizumab and multiple sclerosis; and (3) diazepam and anxiety disorders. In the columns of the

figure, we present a Clinical Outcome Pathway divided up into four components, the first column is

the FDA approved compound, the second is the molecular initiating event, the third column is the

chain of intermediate events, and the fourth column is the clinical outcome. Each of these columns

are interconnected via a blue arrow, showing the flow of effect from each stage to the next. All three

of the selected examples (diazepam, metformin, and natalizumab) demonstrate how well-established

pharmacological profiles of drugs can be readily mapped onto the COPs framework.

85



Figure 3.2: A visualization of the three pieces of the Clinical Outcome Pathway. The teal block on
the left represents the MIE (Molecular Initiating Event). The green block in the middle represents
the potential IEs (Intermediate Events). The orange block on the right represents the potential COs
(Clinical Outcomes).

Figure 3.3: Examples of COPs for three US FDA–approved drugs (metformin, natalizumab, and
diazepam). COPs were elucidated using scientific literature that details the pharmacology of each
drug.(Calcaterra and Barrow, 2014; Hutchinson, 2007; Rena et al., 2017)
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3.2.4 Explanatory and Prospective Value of COP

We shall illustrate the COP concept using several pharmacotherapy case studies. For

instance, two drugs that belong to the same pharmacological class often do not yield identical

clinical outcomes. This case is exemplified by the functional selectivity of µ-opioid agonists,

which may cause (potentially, lethal) respiratory depression in patients with chronic pain who

are prescribed opioid analgesics. Recent studies(Pedersen et al., 2020) have demonstrated that

functionally selective µ-opioid agonists are less likely to induce respiratory depression when

compared to non-functionally selective µ-opioid agonists. These outcomes are observed presumably

because the functionally selective agonists activate µ-opioid receptors without concomitantly

stimulating β-arrestin signal transduction pathways, unlike the non-functionally selective agonists.

In contrast to MOA based classification of µ-opioid agonists, COP highlights the underlying

distinctions between drugs of the same class in the chain of events causing differential therapeutic

outcomes (in this case, selective µ-opioid receptor agonism). Consideration of these distinctions is

also essential for the study of poly-pharmacology, which is highly relevant to drug discovery and

clinical applications such as the treatment of schizophrenia.(Roth et al., 2004)

Any drug may also have multiple COPs, with distinct therapeutic outcomes of relevance to

different diseases, which effectively implies the popular concept of drug repurposing.(Blatt et al.,

2014) Thus, validation of a novel COP hypothesis linking an approved drug to a new indication

could drive innovation in drug repurposing. A recent real-world clinical observation involving

patients infected with COVID-19 illustrates the importance of employing the COPs framework

for supporting drug repurposing. Physicians observed that patients who had been infected with

COVID-19 and also had a history of heartburn that was treated with the over-the-counter drug

Pepcid, had a lower mortality rate when compared to similar patients who had not been previously

treated with Pepcid.(Freedberg et al., 2020) To explain these observations, it was hypothesized

that famotidine, which is the active pharmaceutical ingredient in Pepcid, might improve clinical

outcomes of COVID-19 because it is an antagonist of histaminergic H2 receptors. It was proposed

that binding of famotidine to H2 receptor leads to subsequent inhibition of mast cell activation in

87



human lung tissue, thus effectively blocking or diminishing the ‘cytokine storm’ that is believed to

be a contributing factor to COVID-19–related mortality.(Malone et al., 2021) The authors of this

hypothesis did not use the term COP, but effectively, the hypothesis can be described in the form of

COP as follows:

Molecular Initiating Event: famotidine → histaminergic H2 receptor antagonism→

Intermediate Events: inhibition of mast cell activation→ cytokine level reduction→

Clinical Outcome: decreased COVID-19–related mortality

(3.2)

The divergence between the COPs for famotidine as a treatment for its approved indication,

gastroesophageal reflux disease (GERD),(Sabesin et al., 1991) and its hypothesized indication,

COVID-19 infection, is depicted in Figure 3.4.

We sought to explore how the flexible nature of COPs enable them to provide rich complex

pathways through ontological space. We note that nowhere in the definition are we limiting ourselves

to a singular pathway. It is possible and often very revealing to present multiple pathways together

to the user. We present one such case in Figure 3.4. In this case we show how the drug Famotidine

inhibits two different diseases. In the topmost pathway, we explore how the Famotidine works

to treat gastroesophageal reflex disorder (GERD).(DrugBank, 2021) This process occurs when

famotidine inhibits the gene HRH2. The inhibition of HRH2 then causes the parietal cells to

decrease pump activity. This pump activity leads to an overall pH increase in the stomach lumen

(the inner lining of the stomach). Finally, this increase of pH alleviates the symptoms of GERD.

This presents one pathway for how Famotidine’s interaction with HRH2 can help treat a disease.

On the bottom pathway of Figure 3.4 we explore how famotidine reduces COVID-19

morality.(Square, 2020) Similar to the top pathway, the molecular initiating event is that famotidine

inhibits HRH2. But from that starting event, the overall sequence of events diverges drastically. The

inhibition of HRH2 causes the mast cells in the body to decrease their degranulation (the response

to wounding of the cell). This reduction in degranulation helps to reduce pulmonary edema (a
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Figure 3.4: Example of two putative divergent COPs leading to two plausible clinical outcomes for
the US FDA–approved drug famotidine: the top pathway corresponds to the approved indication for
famotidine, gastroesophageal reflex disorder (GERD); the bottom pathway corresponds to a recently
proposed hypothesis to explain the clinical observation that famotidine reduces COVID-19–related
mortality and thus, can be repurposed as a treatment for this disease.

build-up of excessive lung fluid).(Liu et al., 2021) Ultimately, this process leads to the prevention of

acute respiratory distress syndrome (ARDS), a condition where fluid leaks into the lungs. ARDS is

a known serious complication of COVID-19 that is fatal, especially in the elderly or who have other

conditions which raise their risk factor, such as diabetes and hypertension.(Gibson et al., 2020)

3.2.5 Computational Elucidation of COP

When investigating how drug (e.g., famotidine) application could lead to specific clinical

outcomes (e.g., reduction of GERD symptoms or prevention of ARDS in patients with COVID-19)

(See Figure 2), different aspects of processes that we collectively regard as COP can be searched for,

which requires concordant analysis of diverse knowledge sources. These sources should include

data on known biological drug targets, pathways, organs and tissues, disease phenotypes, and other

biochemical entities related to pharmacology and pathophysiology of diseases. Furthermore, these

sources should be integrated into a harmonized framework with standardized ontology to enable

their efficient utilization.
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For the last two decades, the size of the biomedical knowledge base has increased exponen-

tially.(Lu, 2011) Efforts to consolidate this knowledge and represent it within a readily-interpretable

user interface have yielded some success. Through knowledge extraction protocols and the develop-

ment of robust ontologies, it is now possible to construct a high-order approximation of the current

scope of biomedical knowledge that can be structured and stored in well-organized databases inte-

grated into biomedical knowledge graphs.(Nicholson and Greene, 2020) Such graphs can be mined

to explore potential COPs, as implemented in ROBOKOP(Bizon et al., 2019), providing insight

into the pathways behind drug action. These elucidated COPs are theoretical upon conception, and

therefore serve primarily as a means of hypotheses generation that can be validated in a clinical

setting.

Mining of biomedical knowledge graphs can aid in drug discovery and repurposing efforts,

as illustrated by the recent well-publicized use of a commercial knowledge graph to identify

Baricitinib as a repurposed drug candidate for COVID-19(Richardson et al., 2020) and the discovery

of drug combinations with synergistic and antagonistic against SARS-CoV-2.(Bobrowski et al.,

2021) Notably, the relationships between various biochemical entities (drugs, genes, pathways,

etc.) within COPs can be directly translated into respective graph representations, with biochemical

entities as nodes and the functional relationships between them as edges that can be labeled

by predicates describing the relationship between two specific nodes. Massive collections of

biomedical data organized into knowledge graphs have been developed and curated in multiple

research laboratories. These knowledge graphs can be queried to identify sub-graphs corresponding

to COP. For example, scientific queries formulated in a plain language such as: “how does diazepam

reduce anxiety in patients with a generalized anxiety disorder?” can be translated into a ‘query

pattern’ with the original query terms (“diazepam” and “anxiety”) forming the flanking nodes

of the subgraph and connected by fixed or arbitrary numbers of connected intermediary nodes.

Such queries can be run against knowledge graphs such as those mentioned above to identify

‘answer subgraphs’ with specific intermediary terms. Through this process, proposed COPs with

key putative events may be matched with corresponding specific biological objects and validated
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quickly and efficiently by exploring the supporting literature, thus providing a powerful hypothesis

generation tool for drug discovery and repurposing. For modern knowledge graphs, the number of

‘answer subgraphs’ for complex COPs can be massive; therefore, an emphasis on aggregation and

ranking of these results is critical for future work. The creation of a common structured text format

(e.g., XML files, JSON files) for COPs could promote the sharing and exchange of COPs into various

databases and APIs for ranking. For instance, the publicly accessible portal ROBOKOP developed

by our team enables the automated construction of COPs for drugs of interest.(Bizon et al., 2019)

We expect that as knowledge graphs become more accessible, the generation of curated data-driven

COPs would become a commonplace of computational biomedical research and discovery. Working

towards this goal has been a key objective of the Translator Reasoner Application Programming

Interface (TRAPI) initiative from NCATS.(National Center for Advancing Translational Sciences,

2021) Below we represent two case studies of ROBOKOP-enabled computational elucidation of

COPs that can support drug repurposing.

3.2.6 Repurposing of Metformin for Chordoma

Metformin is an FDA-approved drug for managing type 2 diabetes.(Bailey, 2017) There

have been several reports based on large scale observational and cohort studies suggesting its

use for treating multiple diseases, including various cancers.(Pryor and Cabreiro, 2015) Using

terms “metformin” and “cancer” to query ROBOKOP, we found that there were multiple links

between this drug and chordoma, a rare type of bone cancer that usually develops in the bones of

skull or spine.(Frezza et al., 2019) Figure 3.5A shows the relationships between the nodes in the

answer graphs, and Figure 3.5B details multiple connections between metformin, genes, pathways,

cells, and chordoma. As a prime example, we focused on the catalase (CAT) gene since it was

related to only two types of cells (osteoblast and somatic cell). ROBOKOP provides linkages to

published papers or other type of data that support edges between nodes in the answer graphs and

enable interpretation of these graphs. Thus, Dai et al.(Dai et al., 2014) reported that metformin

increases CAT activity in mice without increasing its expression. Another study(Schreurs et al.,
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Figure 3.5: Possible COPs linking metformin to chordoma. A) Question graph for the metformin-
chordoma COP; B) Complete knowledge graph of the ROBOKOP query showing multiple rela-
tionships between metformin, genes, biological pathways or activities, and cells to an anatomical
entity, phenotypic feature, and chordoma. C) Putative COP of metformin and chordoma showing
that metformin increases CAT activity, which is involved in osteoblast differentiation in the mus-
culoskeletal system. Increased osteoblast differentiation has been shown to reduce abnormality in
the musculoskeletal system, lowering the growth of sarcoma cells. To replicate this analysis, the
user might go to https://robokop.renci.org/ and select “Ask a quick question.” Then,
select “Template” and pick the first option “What is the COP for name1 and disease1?” Set the
drug to “metformin,” and the disease to “chordoma.” The answered query can be found in this link:
https://bit.ly/3vFNzx6.

2020) provided support for an edge between CAT and “osteoblast” nodes, reporting that ex-vivo

osteoblast colony growth rate was 95% greater in transgenic mice with human mitochondrial CAT

than in the wild-type mice. Lastly, an increase in proper osteoblast differentiation has been shown

to reduce the development of chordoma cells since this type of tumor, along with other sarcomas, is

characterized by uncontrolled proliferation and maintenance of undifferentiated osteoblasts.(Marie

et al., 2015)

Metformin is currently in clinical trials for treating different types of sarcomas,(Longhi and

Rizzoli, 2021; Molenaar et al., 2017) and similar reasoning could be put forward as a hypothesis
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for metformin as potential treatment for chordoma as well. Figure 3.5C illustrates the underlying

COP elucidated with the standard ROBOKOP query. Notably, the answer graph can be translated

into a statement explaining the COP hypothesis: Metformin increases the activity of catalase that

leads to proper osteoblast differentiation, potentially reducing the uncontrolled proliferation and

maintenance of undifferentiated osteoblasts in sarcomas, including chordoma.

3.2.7 Imatinib – Gastrointestinal Stromal Tumor – Asthma Repurposing

Imatinib is an FDA-approved kinase inhibitor used to improve the prognosis of patients

with chronic myeloid leukemia (CML).(Capdeville et al., 2002) Imatinib is also used to treat gas-

trointestinal stromal tumor (GIST).(Lopes and Bacchi, 2010) In 2017, a clinical trial demonstrated

that imatinib was effective in treating severe asthma.(Cahill et al., 2017b) Imatinib was first identi-

fied as a selective inhibitor of BCR-ABL kinase.(Capdeville et al., 2002) It was later found that

this drug binds to several kinases, including KIT.(Buchdunger et al., 2000) Here, we employed

ROBOKOP to elucidate the COPs of imatinib that involve KIT inhibition and result in treating

CML, GIST, and asthma. This process is vital and involved in three biological pathways identified

in ROBOKOP: multicellular organism development, hemopoiesis, and erythrocyte differentiation.

Figure 3.6A shows the COP linking imatinib and CML. As the first MIE, imatinib inhibits the activ-

ity of KIT,(Buchdunger et al., 2000) which reduces megakaryocyte-erythroid progenitor cells in the

bone marrow. As a result, imatinib inhibits nuclei proliferative signals, which induce leukemic cell

apoptosis. Figure 3.6B shows the COP of imatinib and GIST. The majority of KIT proto-oncogene

mutations found in GISTs patients induce constitutive kinase activation, inhibiting apoptosis and

stimulating cancerous cell proliferation.(Lee et al., 2006) The inhibition of KIT in the enteric smooth

muscle cell GIST patients induces cell apoptosis.(Lee et al., 2006) Figure 3.6C shows the COP

relating imatinib and asthma. KIT is also present in lung mast cells and was hypothesized as a basis

of the pathobiology of severe refractory asthma,(Fuehrer et al., 2009) which is characterized by

an adverse response to traditional glucocorticoid asthma treatment.(Cahill et al., 2017b) Imatinib

reduces airway hyperresponsiveness, a physiological marker of severe asthma, and airway mast-cell
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Figure 3.6: COPs for imatinib CML, GIST, and asthma involving KIT. A) Imatinib and CML; B)
Imatinib and GIST; C) Imatinib and asthma; D) Integrated COP. To replicate this analysis, the user
might go to https://robokop.renci.org/ and select “Ask a quick question.” Then, click
on “Template” and select “What is the COP for name1 and name2?” The answered query can be
found in these links: A) https://bit.ly/3fXrGTm B) https://bit.ly/2TnGQcH C)
https://bit.ly/3pbl7AP.
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numbers and activation in patients with severe asthma.(Cahill et al., 2017a) Integrated COP for

Imatinib – KIT – . . . – CML/GIST/Asthma is shown in Figure 3.6D.

3.2.8 COPS - Final Remarks

We have defined the COP as a chain of key events [MIE -¿ Intermediate Event(s) -¿

Clinical Outcome] linked in mechanistic pathways that underly therapeutic outcomes of drug

action. We presented several examples to illustrate both manual and automated elucidation of

COP in characterizing drug-disease relationships and drug repurposing potential. We posit that

the formalized structure of COPs, coupled with their elucidation via mining of large biomedical

knowledge graphs, will deepen our understanding of the biological pathways of drug action and

facilitate the generation of testable hypotheses to accelerate and advance drug discovery and

repurposing efforts.

3.3 Semantic Query Patterns

3.3.1 Introduction

Knowledge graphs (KGs) represent real-world facts using nodes to describe ontological

entities and edges to describe relationships linking those entities. The elementary unit of a KG is

the (node,edge, node) triple structure. This representation provides straightforward mod-

eling of domain-specific knowledge, such as how biological concepts interact with each other, or

how different individuals relate to each other. An example in the biomedical domain would be

(influenza,correlated with,chills); taken from the biomedical knowledge graph

ROBOKOP (Bizon et al., 2019).

The construction of KGs is enabled by domain-specific ontology. An ontology is a

formalized specification that describes sets of entities in a specific way that places them into a

specific category (Ehrlinger and Wöß, 2016; Feilmayr and Wöß, 2016; Uschold and King, 1995).

Ontologies will have different levels of complexity based upon their described purpose; as an

example, the MeSH ontology (Lipscomb, 2000) is used to tag papers when they are submitted to
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academic publications, as this is a very broad range of topics it must cover, this ontology often

trades granularity for generality. One example is the term D007501, which simply represents

the concept of Iron. Another ontology, such as Chemical Entities of Biological Interest (ChEBI)

(Hastings et al., 2016), aims to capture nuanced details of chemical compounds. In this ontology

we can locate the entities: CHEBI:82664, CHEBI:29033, and CHEBI:29034. Each of these

entities represents a slightly different atomic form of iron atoms with a different electrical charge.

Such detailed representation would be unnecessary for citations in papers, but is very necessary in

representing chemical space. The ontologies that a knowledge graph chooses to use to represent

its nodes and edges can drastically affect what it represents well and what it represents poorly,

which depends greatly on the goals and use cases of the graph. Some choices may lead to an overly

granular representation that is difficult to explore, or an overly general representation that lacks

detail (Uschold and King, 1995).

Furthermore, knowledge graphs provide extraordinary utility towards the generation of

new knowledge from the analysis of existing knowledge. This process, called hypothesis generation

(Gettys and Fisher, 1979), enables the generation of potential (node, edge, node) triples, which

while not presently in a knowledge graph, have a high likelihood of being true. This process is also

commonly referred to as KG-mining (Paulheim, 2017). These hypotheses enable domain experts to

direct their exploration of new ideas from the domain of all possible hypotheses to those that are

likely given the current evidence in a field.

Unfortunately, due to the vast amount of knowledge the scientific community has accumu-

lated, modern KGs tend to be extremely large and complex, making it difficult to extract meaningful

hypotheses (Ronfeldt and Arquilla, 2020). These graphs gain their power from the number and

breadth of their connections, often with the number of nodes and edges in these graphs numbering

in the billions. Therefore, when exploring how specific nodes in such a graph are connected, the

results of even simple meta-path queries may contain millions of potential pathways, many of which

may not contribute to the specific case an expert is exploring. Work discussing these spurious

pathways can be found in relation to the over representation of hub nodes (Jain et al., 2021).
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Figure 3.7: An example of two semantic pathways. On the top is a semantic pathways linking a
drug and a disease; through some genetic factor. On the bottom is a semantic pathway for capturing
actors and directors that have collaborated in a film.

Meta-paths are collections of node and edge labels that can express high levels of meaning

when applied to a knowledge graph. We see an example of these pathways in Figure 3.7. In this

figure, we see two pathways both with the same superficial structure (three nodes forming a simple

chain), but the labels and, thus, the information that can be understood from using these pathways

is very different. The top pathway represents a biological meta-path, while the bottom pathway is

relevant to film. This represents how these pathways are contextual, and the importance of what

graphs they will query. In knowledge graphs, nodes represent real life concepts and the ontological

classification of these concepts. An example of a node from a knowledge graph may be aspirin,

which would have the label Chemical. However, in ontological space the nodes are “concept labels”,

such as Movie, Chemical, or Gene. The edges in ontological space are relationships that describe

how two concepts may relate to each other. When viewed in this way, these meta-paths capture how

categories of objects can relate to each other. These can be used to extract information; we see an

example of this in the bottom pattern of Figure 3.7, which when queried against a knowledge graph

of films, will produce a list of actors and directors that have collaborated together on movies. Once
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these collections of node and edge labels have been generated, pattern matching processes can be

used to find matching patterns in the graph (Gallagher, 2006). In previous studies, these collections

of node and edge labels have been referred to as “query patterns” and “meta-paths” (Dong et al.,

2017; Binder et al., 2022).

An ideal case of hypothesis generation in knowledge graphs would entail an expert carefully

looking at all possible pathways that link different entities in a graph and deciding which pathways

have potential of leading to a novel discovery. Unfortunately, this would be impossibly labor-

intensive as the number of potential linkages in a graph could be in the millions (Alves et al., 2022).

Thus,kms62kms the majority of approaches to knowledge graph mining rely upon automated mining

using statistical methods, such as embedding methods like Node2Vec(Grover and Leskovec, 2016)

and TranSE (Wang et al., 2014). Machine learning approaches attempt to automate the process of

discovery without expert curation, sifting through the billions of potential pathways in a knowledge

graph and providing those of interest to a user. It is difficult to validate the results produced by

these methods. Additionally, the state of possible meta-paths is exponential in the size of the node

labels, and is much larger than those with true semantic meaning, making the likelihood of finding

semantically meaningful meta-paths low.

Expert constructed meta-paths serve as a heuristic methods for hypothesis generation, in

which specific combinations of node and edge labels are deemed as predictive and informative

by expert users. One such example of this type of meta-path comes from the Clinical Outcome

Pathway (COP) methodology (Capuzzi et al., 2018; Korn et al., 2022), which aimed to categorize

the biological linkages between drugs and disease (COPs are discussed in more detail in Section

3.3.2). An issue with these meta-paths is they can only be applied to a specific knowledge graph

for one particular use case. Presently the only way to find these semantic pathways is with the

meticulous work of domain experts. All possible pathways that may cause two concepts to relate

must be documented in the formalization of these paths, such as the case with COPs and AOPs.

Once completed, these robust formalizations must be shared with the broader community. The

extensive time committed to the construction of these pathways creates significant restrictions.
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When developing meta-pathways, experts have two options for constructing them. The first option

is to develop a generic pathway, i.e., one that is not built to conform to any one ontology, but instead

uses general concepts; this is the case with COPs. When a user wants to query a graph with this

pathway, they must first build a mapping from the pathway concepts to the ontology of the target

knowledge graph, which may not capture ideas or concepts they presented and is time consuming.

The second option is to tailor the semantic pathway to a specific ontology and specific knowledge

graphs. In this case, if the underlying graph is changed or experts seek to search other databases,

the patterns that the expert spent so long developing may no longer be valuable. In either case, the

significant time investment is undesirable.

We seek to implement an approach in which biomedical experts work iteratively with a

KG mining algorithm to generate, evaluate, and find meta-paths. This is because these pathway are

highly contextual to the complex nature of knowledge graphs. One of the main advances of the COP

methodology is to acknowledge this inherent complexity of the real world and attempt to capture

it. Previous work has looked at the “semantic subgraph”, a domain/task oriented regular-path

expression (Hou et al., 2022). We seek to expand upon this definition, looking to define these

expressions as an area of all possible paths; this is discussed at length in Section 3.3.4. We title the

patterns that our approach generates Semantic Query Patterns (SQPs). Our method of developing

these SQPs can be viewed as a ping-pong, where in the user attempts to find a pathway, and then

receives insight and feedback, and creates more complex pathways in response to this feedback.

By having expert users generate these SQPs for the graph, we enable more complex and dynamic

pathways to be generated. The iterative approach in the hands of an expert provides us an avenue to

apply our frameworks to novel problems and domains.

In our survey of the literature, we have found no other group that has used the term

semantic query pattern in a knowledge graph context; although many groups have adopted similar

terminology. So we feel we may use this terminology to express our conception. We have provided

a summary of works and the similar terms in the related work section (Section 3.3.1).
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In our algorithmic work, we aim to extend our existing CompactWalks methodology, with

the creation of the SQP-Hunter Algorithm (Algorithm 4), which enables domain experts to find

SQPs quickly and efficiently from a set of training data. The ultimate objective is to find a regular

pattern that gains high semantic similarity for many expert provided pairs. By choosing meaningful

pairs of nodes and well constructed knowledge graphs we claim that these regular patterns also have

semantic meaning.

To evaluate the SQPs, an evaluation metric is necessary. The recent publication of the

CompactWalks framework (Hou et al., 2022) (covered in Section 3.3.2) provides us a strong

opportunity to meaningfully evaluate these semantic queries. Instead of attempting to evaluate a

singular pathway, the CompactWalks methodology uses subsampling of a graph to evaluates entire

families of regular languages.

Our contributions are as follows.

• We have formalized the concept of semantic query patterns (SQPs), and create a theoretical

framework to fit these queries into a more generalized view of graph queries.

• We have constructed an algorithm that, using the CompactWalks framework (Hou et al.,

2022), enables expert users to generate SQPs for specific problem domains.

• We implemented this algorithm in the form of a web application that we both host and

have made open source so individuals may host their own versions.

• We tasked expert users with the creation of task-specific SQPs in the field of drug discovery

and disease research. We then explored the resulting top-performing pathways.

Chapter outline. We discuss related work in Section 3.3.1. Section 3.3.2 presents the

preliminaries for our work. Section 3.3.3 and our research tasks and hypotheses. Section 3.3.4

introduces our proposed approaches. Section 3.3.5 details the implementation of the proposed

approach, the case studies we performed, and the results of these case studies. In Section 3.3.6 we

discuss the limitations of our approach. Finally, Section 3.3.7 concludes the paper.
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Related Work

In 1979 Gettys and Fischerwork defined a broad theoretical model for the task of hypoth-

esis generation (Gettys and Fisher, 1979). They concerned themselves with issues of gathering

all possible hypotheses, statically pruning invalid theories, and observing outcomes. They also

performed psychological studies in which individuals were presented data and asked to come up

with hypotheses. As the authors stated “[the hypothesis generation] model is to be applied in those

situations in which the decision maker is attempting to generate hypotheses that will account for the

available data... During the actual experiment the subjects were told that the generation of a ‘correct’

hypothesis was not nearly as important as the generation of new hypotheses that were plausible in

the light of the data.” We are inspired by this inital work in hypothesis generation in our pursuit of

it here in regards to knowledge graphs.

In work by Angles et al., they categorized and defined a broad expressive terminology

and conceptualization for the task of querying graph databases (Angles et al., 2017). This work

specifically focuses on query languages for these graph databases. It included a large discussion

how all the disparate graph query languages (such as CYPHER (Team, 2022), SPARQL (Harris

et al., 2013), and Gremlin (Rodriguez, 2015)) all share the same underlying primitives. This work

covers how the described primitives could construct more complex queries such as those over a

path, and how to harmonize the representation into each graph query language.

There exists a breadth of work on completing the querying of graph databases for complex

queries (Barceló, 2013; Barceló et al., 2014). Specific work has been expanded upon the question of

query completion, to explore the issue of querying regular patterns over graph databases. Specific

emphasis placed upon runtime and memory concerns in some of the work, showing theoretical

concerns for different query constructions.(Barceló et al., 2014). These works completes a suite of

proofs regarding the asymptotic complexity of querying these graphs for different forms of queries.

Liang et al. covered matching semantic patterns in Heterogeneous Information Networks

(HINs) (Liang et al., 2016). This work covered the specific problem of weighted directional HINs,

where nodes represent individuals or forms of communication and edges represent relationships
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between individuals. This work introduces PROphetic HEuristic Algorithm for Path Searching

(PRO-HEAPS), which uses a pre-computation of a heuristic network and modified A∗ search to find

the Top-k shortest paths connecting two nodes. This work differs from our own because: (1) it uses

a weighted graph, while most knowledge graphs are unweighted and (2) it assumes a non-trivial

query (in the work called a “Prophet Graph”) has already been provided, while we explore the case

where a query does not exist. Further information and exploration of HINs can be found in the work

of Shi et al. (Shi et al., 2017).

The similar term “semantic graph pattern” has appeared in existing literature. Work by

Zheng et al. describes a semantic graph pattern as “a set of structures that convey equivalent semantic

meanings” (Zheng et al., 2016). In their work, they look at schema-free RDF datasets. These

semantic graph patterns occur when two distinct queries produce the same result and therefore have

equivalent meaning in the graph. They produce algorithms for mining these queries and providing

users the ability to run a single semantic query that runs multiple semantically equivalent database

queries. They do this through “semantic graph edit distance,” which is calculated by taking the

cotopic distance between two ontological types, although it is unclear if this is the actual “edit

distance” of the string representation of labels. This method assumes that the difference between

any two selected node labels or edge labels can be calculated with a numerical score, which our

method does not require.

The term semantic graph patterns has seen some use in biomedical literature in the past.

Vogt says “[semantic graph patterns when applied consistently throughout a data repository that

stores and manages phenotype descriptions, the set of templates would specify a semantic model

for phenotype data and metadata (Vogt, 2021).” Other biomedical works have also touched on this

issue. Literature by Bakal et al. (Bakal et al., 2018) explored the question of “semantic patterns”

and “semantic paths” over the SemMedDB (Kilicoglu et al., 2012) repository. We also see work

done with semantic queries in for the use in analysing the data of the elderly, collecting sensor data

from them in a network of sensors and selectively querying that data to recieve insights about the

patients condition (Culmone et al., 2014).
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We see the term “Semantic Query Pattern” used explicitly by Franke et al. in their work

on a tool for B2B transactions. In this tool a user is aided in the construction of SPARQL queries

(Franke et al., 2018). The work shows no images of the tool in a functional state and the links

provided to the tool are no longer active. This work also appears in a different domain than the field

of algorithmic based KG research.

Work by Čebirić et al. covers the idea of semantic graphs coming from RDF data, the

task of summarizing of these database (Čebirić et al., 2019). The work involves summarizing them

through reduction of information, identifying isomorphisms, linking existing graphs. It also builds

out a complex taxonomy of inputs, outputs, and methodology for grouping classifying existing

algorithms. These summarization methods aim to cover any RDF graph.

3.3.2 Preliminaries

Meta-paths

Meta-paths are collections of node and edge labels that provide information on how object

types are related (Sun and Han, 2013). The classic examples of meta-paths provided by Sun and

Han is the “author-paper-author” path and the “author-paper-venue-paper-author” path, which

provides connections between authors who published a paper together or who published in the

same venue, respectively (Sun and Han, 2013). We have also shown two examples of meta-paths

in Figure 3.7, the first of which is “drug-gene-disease,” and the second is “actor-movie-director”.

These meta-paths when pattern matched against a knowledge graph can provide specific instances

of nodes and edges that match the labels within and may give further insight into the interaction of

those particular nodes. Meta-path mining has enabled the extraction of relationships and features

of specific classes of objects from knowledge graphs (Kong et al., 2012; Shi and Weninger, 2016;

Wang et al., 2019), and serve as the foundation of the mMtapath2vec embedding framework (Dong

et al., 2017).

Specific domain and task meta-path creation frameworks have been created in recent years,

particularly in the biomedical domain. The two most prominent examples are COPs (clinical
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outcome pathways) (Capuzzi et al., 2018; Korn et al., 2022) and AOPs (adverse outcome pathways)

(Tollefsen et al., 2014; Wittwehr et al., 2017). COPs describe the therapeutic action of a drug

by relating a molecular initiating event (MIE) caused by a drug to a series of key event (KE) of

increasing biological scale, which culminate in an observed clinical outcome (CO). COPs were

developed to capture the complex relationships between drugs and diseases, attempting to develop a

more robust model than the existing mechanism of action framework, which implicitly assumes all

causes of drug-disease relationships could be captured through a singular biological mechanism,

which is oftentimes too simplistic to capture the full interaction. COPs also enable the querying

of knowledge graphs in these specific cases for hypothesis generation. AOPs were created by the

toxicology community to document how pollutants in an environment may be detrimental to the

health of humans, the pathways follow along the chain of how toxic agents are ingested, which

biological systems they interfere with, and how interference in those systems may damage human

health.

CompactWalks

Figure 3.8: A visualization of the CompactWalks methodology. Reproduced with permission from
Hou 2022 (Hou et al., 2022).

Graph embedding is the process of transforming nodes and edges of a graph and placing

them into a continuous vector space (Goyal and Ferrara, 2018). Capturing the highly diverse

and complex relationships present in a graph structure in an array of floating point numbers is a

significant challenge, both conceptually and mathematically. Nodes in graphs can exist in incredibly

complex local environments, and every neighbor of a node also exists in its own unique and complex
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local environment. Graph embedding algorithms must find a way to preserve this local complexity

of how nodes in a graph relate to one another. Once these embeddings have been created, the

embeddings of different nodes in the graph may be used to compute a similarity metric between

the values, such as euclidean or cosine. Many approaches have been constructed to perform such

embeddings of nodes in a graph, e.g., Node2Vec (Grover and Leskovec, 2016), Metapath2Vec

(Dong et al., 2017), and CompactWalks (Hou et al., 2022).

The CompactWalks framework by Hou et al. specifically aims to tackle the problem of

evaluating the performance of queries on large knowledge graphs (Hou et al., 2022). This work

expanded on the previous Metapath2Vec frameworks (Dong et al., 2017), but introduced the idea of

regular languages as a way of expressing complex queries in an efficient manner. By restricting

the graph and subsampling to only the regions of the graph expressed by the regular language, this

approach aimed to only utilize relevant areas of the graph in the generated embeddings. Ultimately

this methodology proved successful, enabling the creation of embeddings on the ROBOKOP

knowledge graph, with over 10 million nodes and 100 million edges.

By limiting the how the graph is explored in the random walk stage, CompactWalks

decomposes the problem of embedding into two distinct phases: (1) pruning of the source graph,

and (2) embedding the pruned graph. Phase (1) is enabled by a family of regular languages that

defines which pathways through the graph are valid. In phase (2), the filtered graph is then fed

into any desired embedding algorithm as an input. This methodology enables the CompactWalks

framework to operate on extremely large graphs with hundreds of millions of nodes. First, the

regular language family is translated into a graph database query language such as Cypher. Then,

the source graph is queried, leveraging the existing capabilities of graph databases, such as Neo4j,

to quickly find all pathways through a very large graph. The resulting pathways are then stitched

together into the desired subgraph. For two target nodes, the random walks can be joined together

to create a singular data set that can then be fed into a skip-gram model (Mikolov et al., 2013) (a

specific structure of neural network) to generate embeddings. We can then use a distance measure

to compare how closely related two nodes are over the space of an entire knowledge graph.
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3.3.3 Research Tasks and Hypotheses

Our overall research goal is to make the task of constructing domain-specific regular

languages that, when used to filter or query on knowledge graphs (KGs), will provide unique insight

into how particular sets of objects within that domain are connected to each other. We put forth a

general hypothesis that for any domain-specific knowledge graph, with a set of pairs of objects that

have some meaningful relationship, you could construct a meta-path that describes the relationship

between these objects, and that a domain expert will regard as enriching in the pursuit of new

knowledge.

In the context of our analysis, our main research task is to produce a family of regular

languages L; the inputs to our methodology are an embedding methodology E , a distance measure

d, a set of positive data pairs P+, and a set of negative data pairs P−. We will maximize similarity

scores for the embeddings of nodes restricted by a regular language in positive pairs, and will

minimize similarity scores for those embeddings of nodes in negative pairs. That is, the language

well suited towards similarly embedding related pairs in that domain while separating those who

are not meaningfully related. We call this regular language family a semantic query pattern.

We formalize the main research task as follows: Let N be a set of nodes from a KG G, and

E be an embedding tool that provides an embedding vector for n ∈ N . We score the relationship of

two nodes n1, n2 ∈ N using the distance function:

τ(n1, n2) = d(E(n1), E(n2)) (3.3)

The result of ranking these scores (higher rank is better) over sets of nodes is presented to

the domain expert. Let P+ = {(a1, b1), (a2, b2), . . . , (am, bm)} and P− = {(â1, b̂1), (â2, b̂2), . . . ,

(âm, b̂m)}. We seek to achieve high similarity for positive pairs τ(a1, b1),

τ(a2, b2), . . ., τ(am, bm), while achieving low similarity for negative pairs τ(â1, b̂1), τ(â2, b̂2), . . .,

τ(âm, b̂m).
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Our specific hypothesis is as follows: domain experts with a KG are able to construct an

semantic query pattern (defined in the next section, Definition 3.8) that prioritizes the discrimination

of semantically related pairs of nodes while ignoring those relationships that are not meaningful.

Moreover, this pathway will be fact rich and lead to novel assertions. That is, when the produced

regular language family L is used as an input to the CompactWalks system, the embedding vectors

produced for the positive pairs will have a high similarity score, while those embedding vectors of

negative pairs will have low similarity score. In this way the language will lead to the separation of

truly associated objects in the domain from objects that have been stated to not be related in any

way.

We will discuss the issue of pair selection and the specific problem domain of drug discovery

in Section 3.3.5.

3.3.4 Semantic Query Approach

Experts often have intuition that is very difficult to put into words. Intuition can be defined

as an underlying understanding of processes that utilizes the ability of the human mind to find

patterns that connect entities, but one is not necessarily able to explicitly verbalize these patterns

(Kuhn, 1989; Greenhalgh, 2002). As an example, a biomedical expert may have the ability to

identify that two genes operate extremely similarly in the human body, but may have no explicit

reason to explain this association; in this case, through decades of experience and study the expert

has an intuitive understanding of the field of genetics.

We seek to help experts explore and explain these underlying intuitive patterns and to help

them formalize these ideas into meta-paths over a knowledge graph. Using a collection of similar

node pairs gathered through intuitive exploration as input to our approach, we seek to explore

the semantic space and uncover an SQP that can provide mathematically describe these intuitive

patterns. With the aid of a domain-expert, these pathways may uncover the underlying mechanisms

that link objects in a domain. Using technology to bridge the gap between intuitive and explainable,
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our tool can aid in finding and making explicit the intuitive metric of similarity the expert used

when compiling their list of similar node pairs.

We propose a methodology that semi-automatically generates a regular language L for a

family of pathways through G that has semantic meaning for the subject matter of our knowledge

graph. Capturing semantic meaning is an exceedingly difficult task, so we include input from expert

users in our pathway generation task.

The objectives we seek to optimize for in this regular language L are as follows:

1. The returned semantic language L has expression length k.

2. The returned semantic language L maximizes similarity scores in the embedding approach

E for P+, the expert provided positive pairs.

3. The returned semantic language L minimizes similarity scores in the embedding approach

E for P−, the expert provided negative pairs.

This methodology works through expert interference. We undertake the task of automat-

ically generating semantic query patterns. Our approach is data-driven; we call upon domain

experts to provide positive and negative examples of relationships, and we leverage existing work on

knowledge graphs to analyze these examples. Our goal is to automate the generation of a semantic

language L, which can be tuned to various problems by simply changing what data we analyze. If

we analyze a biomedical knowledge graph G, then inputting a set of drugs known to treat diseases

should produce a COP; while inputting a set of toxins known to cause diseases should produce an

AOP. Refer back to our explanations of COPs and AOPs in Sections 3.2 and 3.3.2.

Definitions

First, we must provide a formal definition of a graph.

Definition 3.1. Graph.
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We define a graph as G = (V,E), where V is a collection of vertices, or nodes, and

E ⊆ V × V is a collection of edges linking vertices. We use |V | and |E| to denote the number of

nodes and number of edges in G, respectively.

We need to extend this definition to a knowledge graph, that is, a graphical structure used

to capture information. For example, ROBOKOP (Bizon et al., 2019) and HetioNet (Himmelstein

et al., 2017) are two knowledge graphs in the biomedical domain.

Definition 3.2. Knowledge Graph. We define a knowledge graph as K = ((V,E), TV , TE, ϕ, ψ),

where (V,E) is a graph, TV is a set of node labels, and TE is a set of edge labels. A knowledge

graph K must have a node type mapping function ϕ : V → TV and an edge type mapping function

ψ : E → TE .1 ϕ must be defined for each node v ∈ V and ψ must be defined for each edge e ∈ E.

|TV | denotes the number of node labels for G and |TE| denotes the number of edge labels for G.

K is homogeneous if |TV | = 1 and |TE| = 1.

K is heterogeneous if |TV |+ |TE| > 2.

We must also formally define a path within the graph. These pathways are strings of nodes,

and often serve as the results of queries made on the graphs.

Definition 3.3. Path. Let G be a graph. Let p be an ordered list of vertices of G. We require paths

to have at least three elements because a single-element list would just be a node, and a two-element

list would be a single edge. We say that a path p has length k if |p| = k; moreover, we can represent

p as {v1, v2, ..., vk}. We say that p is a path over G iff

∀i ∈ {1, k} : vi ∈ V and ∀i ∈ {1, k − 1} : (vi, vi+1) ∈ E

That is, p is a path over G if and only if all pairs of adjacent vertices in p have a corresponding edge

in the graph G.

1. This definition of knowledge graph assumes a mapping from an edge to a singular edge label, this definition can be
easily expanded to account for multi-label relationships.
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We say PG ⊂
∞⋃
i=3

V i is the set of all possible paths in G. More formally, PG = {p ∈
∞⋃
i=3

V i| p is a path in G}.

Here, we seek to position the possible ontological space answers may take. This is the

combination of node and edge labels that may make up any path from the graph. Such a space

encapsulates all the ways any two objects could ever be connected.

Definition 3.4. Ontological space. The ontological space is all possible patterns that may be

made up by different combinations of node labels TV and edge labels TE . The motivation here is to

define the space in which all possible meta-paths are fully represented. We more formally describe

it below.

Let Lk be a set of node and edge labels such that

Lk = (TV × TE)k × TV

That is, Lk is the set of all possible meta-paths with k node labels and k − 1 edge labels.

Combining the families Lk for all possible values of k gives us the full possible meta-paths

in G, OG. Where

OG =
∞⋃
k=3

Lk

This OG provides us a useful formalization of the space in which meta-paths exist.

Here we formalize the concept of an ontological reduction function. This function reduces

a specific instance of a path through a KG from it’s particular nodes and edges to the ontological

labels for those nodes and edges. This function acts a transition from the “real” world to the

“ontolgical” world. As an example a path may be p = (aspirin) −inhibits → (prostaglandin

synthesis) −causes→ (inflammation). This path summarizes the effect of aspirin on the condition

of inflammation. And the reduction of this function would be δ(p) ={drug,inhibits,biological

process,causes,phenotype}, this reduction broadly categorizes the effects described by the path

and the concepts they represent.
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Definition 3.5. Ontological reduction function. Let us define a function

δ : PG, ϕ, ψ → OG

Where δ takes as input a path (see Definition 3.3), a node label function ϕ, and a relation label

function ψ (see Definition 3.2). We then find the node and edge label for each component of the path.

This function can be viewed as a reduction over any path p ∈ PG, from specific nodes into an onto-

logical representation. We represent this as δ(p, ϕ, ψ) = {ϕ(v1), ψ(e1), ϕ(v2), . . . , ψ(ek−1), ϕ(vk)}.

Here we seek to generalize the idea of a query. Taking inspiration from ideas seen in finite

automata and Turing machines. We seek to represent how a user may query a graph more broadly

as a selection over possible paths in the graph. We formalize this idea as deconstructing the problem

into a function that must be able to take all possible paths from the knowledge graphs as input and

either accept or reject that path. We then may look at all possible paths in the graph and find set of

paths that would all be accepted.

We seek to present a way to represent if any path taken from the all possible paths in a

knowledge graph is interesting or useful for a particular path of exploration.

Definition 3.6. Query. Queries are filters for paths on knowledge graphs. To model this, we

describe a query as a decision function σ where

σ : PG → {accept, reject}

Here σ takes as input a path (as defined in 3.3) and evaluates the path against some pre-defined

rules. It then outputs a decision as to whether the path should be accepted or rejected based the

specific function, i.e., query.

We can further define the space of all paths that a given σ function accepts or rejects. Let

Xσ ⊂ PG be defined as

Xσ = {p ∈ PG| σ(p) is accepted}
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Xσ is the set of paths that are accepted by the function σ.

This definition is extremely broad and enables path queries to be constructed. In fact,

the stated definition of query above is undecidable. To show this, let’s say we simply construct a

function σ that takes any Turing machine M and input string x to that Turing machine. Let’s say for

any arbitrary path p, that σ(p)M,x = { True iff M halts on x }. In this case, to decide if we should

accept p, we must first solve the halting problem. Our overly broad definition of pattern is difficult

to use, so refining to a subset with more defined types of queries is desirable.

Here we seek to restrict our previously stated idea of a query. Now we limit our functions

to only those whose domain is labels in the knowledge graph. These queries are also the forms that

graph query languages such as Cypher take the form of.

Definition 3.7. Ontological query pattern. As defined in Definition 3.6, a query is a function σ

that takes as input a path and decides whether the path should be accepted or rejected. Let us define

a particular subset of these filter functions, σ̂ where

σ̂ : OG → {true, false}

That is, σ̂ takes as input a collection of node and edge labels, and instance of a path (Definition

3.3) and returns a decision for if the path has ontological labels that are accepted. Let Xσ̂ ⊂ PG be

defined as

Xσ̂ = {p ∈ PG| σ̂(δ(p, ϕ, ψ)) is true}

That is, the set of all of the paths whose ontological reduction satisfy the pattern accepted by σ̂.

In fact, we know this definition is substantially more computationally manageable. In work

by Barceló, the author proved that resolving finding a single pathway through the graph that maps

onto a set a specific set of node and edge labels is in NP (Barceló, 2013).

Finally, we seek to define the main theoretical contribution of this work. The idea here is

the semantic query pattern; these are sets of node and edge labels that have meaning when seen
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in a knowledge graph. This concept is inspired by the “semantic subgraph” from Hou et al. (Hou

et al., 2022) and the “meta-path schemes” from Dong et al. (Dong et al., 2017).

Definition 3.8. Semantic Query Pattern. Semantic Query Patterns (SQPs) are query patterns

that, when applied to a domain-specific knowledge graph, provide meaningful insights into the

underlying relationships between ontological objects. Let σ be defined as

σ : OG → {accept, reject}

Here, σ takes as input a collection of node and edge labels and returns a decision for if the labels

are allowed. Let Xσ ⊂ P be defined as

Xσ = {p ∈ P |σ(δ(p, ϕ, ψ)) is accepted}

Less formally, Xσ is the the region of path space that is approved by σ.

Examples of these can be seen in Figure 3.7; these pathways are interesting combinations

of node and edge labels that provide broad insight into the underlying principles that govern how

ideas relate to each other. Such patterns have previously been constructed in the form of COPs and

AOPs; our formalism seeks to generalize the concept into many fields.

Definition 3.9. Indicator Function The indicator function is a function which takes a boolean

value as input and returns 1 if the boolean passed in is true, or 0 if the value passed in is false.

I(x) =


1, if x

0, otherwise

Definition 3.10. Rank. The rank value is a way to quantize the performance of a prediction metric

into a integer value which places it’s performance relative to how likely the tool is to predict other

data more strongly. Let us have a reference data point x, set of data Y = {y1, y2, . . . , yn}, a target
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data point ŷ where ŷ ∈ Y , and some distance function d. To compute the rank value of x and ŷ, we

compute ∀yi ∈ Y : d(x, yj). We then order these predictions by their value. The rank is the where

d(x, ŷ) in placed into this sorted list of predictions. Another way to write this definition of rank

with the indicator function (Definition 3.9) as

rank(x, ŷ, Y ) =

|Y |∑
i=1

I(d(x, yi) ≤ d(x, ŷ))

where we simply count all data points with a smaller distance value than our target.

The mean reciprocal rank (MRR) (Radev et al., 2002) has a history of long usage in

computational research as a statistical measure of prediction quality. It provides us a singular value

over our entire dataset, and can be used to compare the performance of our algorithm over multiple

dataset sizes. MRR computes the reciprocal of each rank value for every pair. It sums each of these

reciprocal ranks and then divides by the size of the dataset.

Definition 3.11. Mean Reciprocal Rank. The MRR is a value calculated on the performance of

a set of predictions. For a set of data Y = {y1, y2, . . . , yn}, and specific data pairs P = {(x1, y1),

(x2, y2), . . ., (xm, ym)}, and set of trial we compute the rank of each of these pairs. We then take

the reciprocal of this rank value, which provides us a value between 0 and 1 which reflects the

performance of this rank.

MRR(P, Y ) =
1

|P |

|P |∑
i=1

1

rank(xi, yi, Y )
. (3.4)

Definition 3.12. Hits@k The Hits@k function (Yin et al., 2017) is a measure which takes as input

a set of pairs P = {(x1, y1), . . . , (xm, ym)} and set of data Y . We then compute how many of our

predicted pairs have a rank less than or equal to k. This value is used to show how likely we would

be to capture the true answer if we only returned the top-k results. To calculate this, we need use

the definition and notation of rank (Definition 3.10). We also need the indicator function (Definition

3.9).
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Hits@k(P, Y, k) =
1

|P |

|P |∑
i=1

I(rank(xi, yi, Y ) ≤ k). (3.5)

Algorithm Description

In our work we assume we have a knowledge graph K =((V,E), TV , TE , ϕ, ψ). Assume

we seek to find a family of semantic pathways over K connecting two specific node types: the

starting node label s and the target node label t, where s, t ∈ TV . In the COP example, s is a Drug

and t is a Disease. In the movie pathway example provided in Figure 3.7, s is an Actor and t is a

Director. We seek out a family of regular languages L that links node labels (s,t). We want these

regular languages to express high semanticity. We seek to test the performance of L on n known

pairs of specific nodes {(a1, b1), (a2, b2), . . . , (an, bn)} = P+. These are our positive training pairs.

For any pair (aj, bj); aj, bj ∈ V and ϕ(aj) = ϕ(bj) = s, i.e., both aj and bj should be nodes from the

knowledge graph K, and they should both have the same node label as the start label s. Additionally

aj and bj should share some meaningful domain linkage. As an example, in our first case study, we

look at drug-drug pairs (Section 3.3.5), so our start node label s = drug. Let’s look at a sample

from our training data (Section 3.3.5), (simvastatin, lovastatin). Both of these nodes

will map to the drug label, additionally, both of these drugs share a similar biological function,

hypolipidemic agent, making them useful for finding an SQP that explains the mechanistic

similarity of drug pairs. Additionally, we require a set of negative pairs P−; these also must all

have the node label s, but all negative pairs should share no meaningful domain linkage. Looking at

an example of a negative pair from our case study, (dexamethasone, levonorgestrel),

these drugs operate with the mechansims antenatal corticosteroids and endocrine

and hormonal agent respectively; these two mechanisms are vastly different and so these

drugs are not meaningfully similar to each other.

Our Algorithm 4 works as follows. In line 2, we construct a regular language family L

through combinatorially expanding the relationships between the nodes labels XV and edge labels
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Figure 3.9: A visualization of three iterations of the Ping-Pong algorithm (Algorithm 5), with the
expert passing in XV ,XE , klimit in each iteration.

XE (described in more detail below and in the function on lines 12-17). In line 3 we run the

CompactWalks algorithm, described in Section 3.3.2, on the graph K, the embedding method E ,

the constructed regular language L, the positive pairs P+, and the negative pairs P−. When we run

the CompactWalks algorithm, we receive a set of node embeddings for our positive and negative

pairs; these node embeddings should reflect the relationship of these nodes on a graph filtered by

our regular language. In line 4 we declare an empty list that will hold our constructed ranks. In the

for loop on lines 5-7, we step through each positively linked pair we have provided in our input data.

On line 6, we compute the rank (Definition 3.10) of the similarity of the nodes in the pair, compared

to all other nodes in the input dataset. This rank value is then appended to our list on line 7. This

same procedure is repeated on lines 8-10 for computing the relative ranks of the negative pairs. On

line 11, the constructed regular language family L that connects s and t through node labels XV

and edge labels XE , and the computed ranks of the positive pairs P+ and negative pairs P− are

returned to the expert user to drive further evaluations and construction of SQPs.

The RegexFamilyBuilder function is detailed on lines 12-17 of Algorithm 4. Line 13

declares the family of languages to be an empty set. The for loop on lines 14-16 walks through each
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Algorithm 4: SQP-Hunter(K, s, t, E , XV , XE , P+, P−, klimit)
Data: Knowledge graph K = ((V,E), TV , TE, ϕ, ψ), starting node label s, target node

label t, embedding algorithm E , permitted node labels XV , permitted edge labels XE ,
positive pairs P+, negative pairs P−, expression length klimit

Result: The constructed family of regular languages L that connect s and t through node
labels XV and edge labels XE , and the ranks ranks of scores of positive pairs P+

and negative pairs P− embedded via CompactWalks.
1 begin
2 L ← RegexFamilyBuilder(s, t, XV , XE , klimit); // See function on

lines 12-17.
3 V ← CompactWalks(K,E ,L,P+,P−);
4 ranks← ∅;
5 for each (n1, n2) ∈ P+ do
6 r ← rank(n1, n2, P

+,V); // Rank is the position of n1

compared to n2 relative to all other samples in P+.
7 ranks.append(r);

8 for each (n1, n2) ∈ P− do
9 r ← rank(n1, n2, P

−,V); // Rank is the position of n1

compared to n2 relative to all other samples in P−.
10 ranks.append(r);

11 return L, ranks;
12 Function RegexFamilyBuilder(s,t,XV ,XE ,klimit) :
13 L ← ∅;
14 for k ∈ {1, 2, . . . , klimit} do
15 Lk ← s(XEXV )

k(XE)t;
16 L ← L

⋃
Lk;

17 return L;

possible path length value beginning at 1 and ending at the maximum expression length klimit input

to the algorithm. Line 15 constructs a family of regular languages Lk, which contains all regular

language families with node labels XV and edge labels XE with k intermediate nodes separating

the start node and end node. Line 16 adds the newly constructed language family Lk to the existing

language collection L. Line 17 returns the constructed regular language family.

Algorithm 5 works as follows. Line 2 initializes a boolean variable that indicates whether

or not the while loop on lines 3-7 should run. We initialize it to True to guarantee that this loop

will run at least once. Line 4 seeks the following as input from the expert interacting with this
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Algorithm 5: Ping-Pong Mining(K, s, t, E)
Data: Knowledge graph K = ((V,E), TV , TE, ϕ, ψ), starting node label s, target node

label t, embedding algorithm E
Result: Family of regular languages L that connect s and t through node labels XV and

edge labels XE .
1 begin
2 ContinueIteration← True;
3 while ContinueIteration do
4 XV , XE, P

+, P−, klimit ← ExpertInput(); // Gather node/edge
labels and positive/negative pairs from expert user.

5 L, ranks← SQP-Hunter(K,s,t,E ,XV ,XE , ,P+,P−,klimit);
6 PresentToExpert(L,ranks);
7 ContinueIteration← ExpertInput(); // Allow the expert to

choose if they’re satisfied with the regular
language and it’s performance, or if they would like
to continue.

8 return L;

algorithm: a set of node labels XV , a set of edges labels XE , a set of positive pairs P+, a set of

negative pairs P−, and a pathway length klimit. By asking the user for all of these, we enable them

to experiment with how a meta-pathway they are constructing adapts to new data, or how data

adapts to a new configuration of labels (this line is the Ping stage, where the expert passes their

ideas to the algorithm). Line 5 calls Algorithm 4 on the inputs provided by the expert user. Line 6

presents the results of Algorithm 4 to the expert to use their intuition (this is the Pong stage, where

the algorithm responds to the expert). Line 7 asks the user if they are satisfied with the current

results, or if they would like another iteration of ping-pong with the algorithm. Line 8 returns the

regular language to the user once they are satisfied with their SQP.

In Figure 3.9 we see an example of Algorithm 5. In each iteration the expert passes

in XV , XE , P+, P−, and klimit. The algorithm then builds a regular language family and runs

CompactWalks with this family. The expert is then presented information on the MRR (Definition

3.11) performances of P+ and P−. In each iteration we see the regular language for k = 1 on the

left and for k = 2 on the right. In Iteration 1, the expert submits node labels XV = {a, b, c, d}

and edge labels XE = {e, f} as the first inputs to generate a regular language family . In Iteration
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2, XV = {a, b, c} and XE = {e}; the expert has removed node label d and edge label f from the

possible solutions. In Iteration 3, XV = {a, b, c} and XE = {e, g}, the expert has introduced edge

label g as a potential candidate. At this stage the expert is satisfied with the resulting family of

regular languages and concludes the trial.

3.3.5 Implementation and Case studies

We have created an implementation of the Semantic Query approach described in Section

3.3.4. We also seek to test our approach against two case studies to explore an expert user’s ability

to construct SQPs. Our implemnetation is described in Section 3.3.5. Our drug relatedness case

study is described in Section 3.3.5. Our disease relatedness case study is described in Section 3.3.5.

Web Application

We implemented our ranking methodology in a web application. We chose to implement

this software as a web app because it provides minimal friction to expert users who may want to

use it without the complexity of setting up an appropriate Python environment or running a Docker

container. As part of the Semantic Query Pattern project, we have provided an implementation of

this web tool at https://semantic-pathways.mml.unc.edu/. This tool is a universal

application for the construction of semantic query patterns against a limited set of data points. This

tool is aimed at building with existing domain specific knowledge graphs and is for use by domain

experts.

The web application was built using the Dash Python library 2. A general outline of our

methodology is as follows: (1) The expert generates a trial semantic pattern using the SQP-Hunter

web app’s interface. (2) The expert provides n positive pairs and m negative pairs. We implemented

the tool using the Python Dash library. To dynamically render our figures we used a combination

of Matplotlib and NetworkX. Whenever the user updates a selection of the source, tail, meta-path

length, node labels, or edge labels we trigger an event which renders an updated figure. If no node

2. https://plotly.com/dash/
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label or edge labels have been selected for a given location we mark it with a wildcard character (*).

An example of this generated image can be seen in Figure 3.10.

Figure 3.10: Example output of from the Semantic Query Pattern web application (hosted at https:
//semantic-pathways.mml.unc.edu/). This meta-path connects a ChemicalEntity
to a Disease through either a Gene or Pathway.

The tool provides the user with a interface for providing positive pairs of ontological

objects that are known to be similar through the expert’s intuition, and negative pairs of ontological

objects that share no similarity as far as the expert is concerned. These pairs should be of the same

ontological class. An example positive pair is betamethasone and dexamethasone, which are two

drug objects; in the biomedical space, these two drugs share a similar mechanism of action, i.e.,

their process of affecting the human body.
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We have provided a live instance of our web application running on the Google Cloud

Compute Engine. This was the instance used in our case study discussed below (Section 3.3.5).

This web application was an allocated virtual machine (VM) running with the e2-standard-2

configuration. The specifics of this configuration are as follows: 2 Intel Xeon(R) CPU@2.20GHz,

10 GB of persistent SSD storage, ephemeral IP addressing, and 8 GB of memory. The source code

for the application can be found at https://github.com/DnlRKorn/Semantic Pathw

ay Generator.

Experimental Objectives

The experimental goals of the Semantic Query Pattern project are as follows

1. To explore the intuition of experts as they develop semantic query patterns, by tracking an

expert as they develop semantic query patterns in response to data.

2. Explore how these semantic queries developed by experts perform on validation data.

3. Explore the semantic meaning of expert produced queries.

Experimental Methodology

The CompactWalks methodology enables us to apply regular language families representing

complex graph pathways onto a knowledge graph. We can then extract the subgraphs reduced by a

regular language family from a specific knowledge graph using the CompactWalks methodology is

discussed in 3.3.2 and can be viewed in Figure 3.8. Once these subgraphs have been extracted, a set

of embedding vectors specific to the extracted subgraph can be created. We may then take similarity

scores from various expert provided pairs of nodes. We have gathered pairs of nodes in the drug

discovery domain.

Our experiments are as follows.

1. For the Drug Discovery problem domain, gather n pairs of mechanistically similar drugs,

as determined by a biomedical expert. Ensure each of these drugs pairs operate under a
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shared mechanism of action (i.e. betamethasone and dexamethasone are both antenatal

corticosteroids and share a common mechanism of action). These initial ten pairs will be

our positive samples.

2. Additionally, gather n pairs of non-similar drugs. We shall use these at negative samples.

3. To validate this claim, we shall run CompactWalks on our test samples using each of the t

expert generated pathways. What we expect to see from this experiment is a monotonic

increase in the MRR of the positive test samples and a monotonic decrease in the MRR

of similarity of the negative test samples. That is, the final expert produced query should

be very selective of our test data.

4. Have a biomedical expert review the queries and their semantic performance. Describe the

semantic properties of these queries in the biomedical domain.

5. Analyze the final produced query in it’s performance on separation of our test data.

Additionally, test it’s ability to cluster the data in hyper-dimensional space using the t-SNE

algorithm (Van der Maaten and Hinton, 2008).

The expert will produce a series of increasingly semantic pathways using the tools Section

3.3.5. We expect each of these queries to of increased relevance to the task. When the expert is

satisfied with the performance we will identify their final query as our semantic query pattern.

We run this last query on the validation data, to analyze the performance of the resulting

semantic query pattern created by the expert’s ability to separate data it was not trained on. We will

also run this pathway in t-SNE (Van der Maaten and Hinton, 2008) to visualize how this final SQP

embeds the nodes and see broad statistical patterns in how they are related.

Evaluation Metrics and Parameter Settings

To evaluate the performance of CompactWalks with each pair of data we use two measures.

The rank (Definition 3.10) and MRR (Definition 3.11) (Radev et al., 2002). MRR takes the average
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of the reciprocal ranks assigned to the true target drug for the pair. MRR is defined in Definition

3.11.

To compute the rank of how similarly we embed two vector, we must first fix our start

vector. We then compute the cosine similarity (Eq 3.7) between our start vector against all other

vectors in the our dataset. In our task, the dataset consists of every unique entity provided by

our expert user in their submitted dataset. The rank is how similar our target vector is versus the

similarity of all other embedded vectors. For example, if we have start vector u and target vector v

has a rank of 4, this means that there are 3 embedding vectors in our dataset, X, which has a higher

cosine similarity to u than the value of cosine(u,v).

We compute the rank for each pair of nodes in our dataset, using the first node as the start

and the second node as the target. We can then use this set of rank values for each pair to compute

the MRR (Definition 3.11). We use MRR to get the average performance of the CompactWalks

embeddings performance for our dataset of positive pairs and negative pairs.

As an additional metric of performance, we also compute the Hits@k (Definition 3.12)

for our dataset, which further describes the performance for specific benchmark values. We use

Hits@1, Hits@3, and Hits@5.

To test the ability of our method to cluster pairs, we use normalized mutual information

(NMI) (McDaid et al., 2011; Huang et al., 2014). The NMI is a well established measure of the

ability of a methodology to cluster labeled points properly, evaluating the location of the embedding

of each point, and comparing it to an ideal cluster. Opposed to traditional mutual information

measures, NMI is bounded between 0 and 1, where larger numbers indicate better performance,

which makes it easy to compare performance from different circumstances. The equation for NMI

is as follows:

NMI(X, Y ) =
2 ∗ I(X, Y )

H(X) +H(Y )
(3.6)

Where X is a set of predicted labels for data, Y is a set of true labels for the data, I is the measure

of mutual information between the sets, and H is the measure of information entropy.
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The distance function used in our experiments for comparing the embeddings of two nodes,

which we use to compute the rank (Definition 3.10), is the cosine distance, stated as follows:

cosine(x,y) =
x ∗ y
|x||y|

=

∑
xiyi√∑

x2i ∗
√∑

y2i
(3.7)

For our parameters, we choose to set the same defaults found as optimal in the Com-

pactWalks paper. These are using the embedding algorithm E set to Node2Vec, p value=0.25, q

value=0.25, walk-lengths of l = 80, and number of walks performed per node set to 5. We tasked

our expert with producing semantic queries of lengths k = 2 and k = 3, enabling us to compare the

differences in pathways and performance for different length patterns.

For the purpose of comparison, we seek to explore how our expert generated SQPs perform

compared to an equivalent non-semantic pathway. When displaying our comparisons, generate

the SQPs of length k = 2 and k = 3; we title the most discriminatory SQPs of our case study.

We then feed these SQPs into CompactWalks and create semantic subgraphs (SS-), we title the

experiments on these subgraphs SS-k2 and SS-k3 respectively. For comparison, we create non-

semantic subgraphs (NS-) using meta-paths which will match pathways with any arbitrary paths of

length k = 2 for the NS-k2 case or any arbitrary paths of length k = 3 for the NS-k3 case.

Drug Relatedness Case Study

We designed a case study to explore the capabilities of generating SQPs in the specific task

of drug relatedness. The meta-paths generated here would seek out a way to elucidate relationships

which explain how drugs of similar mechanisms interact. We tasked a biomedical expert and

co-author of this study with selecting pairs of mechanistically related drugs (Section 3.3.5), and

attempting to construct SQPs of length k = 2 and k = 3 using our webtool (Section 3.3.5) connected

to the ROBOKOP KG (Bizon et al., 2019). The resulting SQPs are documented in Section 3.3.5.

Additionally, utilizing the most discriminatory SQP, we performed clustering (detailed in Section

3.3.5).
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Positive Pairs Negative Pairs
Drug A Drug B Mechanism Indication Drug A Drug B
Fluoxetine Paroxetine Selective sero-

tonin reuptake
inhibitor (SSRI)

Neuropsychiatric
agent

Fluoxetine Lovastatin

Felodipine Isradipine Calcium channel
L type blocker

Cardiovascular
agent

Felodipine Chlorpro-
pamide

Nilotinib Bosutinib BCR-ABL in-
hibitor

Antineoplastic Nilotinib Brimonidine

Dexameth-
asone

Betameth-
asone

Corticosteroid Anti-
inflammatory

Dexameth-
asone

Levonor-
gestrel

Promethazine Diphen-
hydramine

Histamine recep-
tor H1 antagonist

Anti-allergic
agent

Promethazine Pantoprazole

Omeprazole Pantoprazole Proton pump in-
hibitor (PPI)

Gastrointestinal
agent

Omeprazole Diphenhyd-
ramine

Norethindrone Levonor-
gestrel

Progesterone Endocrine and
hormonal agent

Norethindrone Betameth-
asone

Apraclonidine Brimonidine Intraocular pres-
sure lowering
agent

Ophthalmic
agent

Apraclonidine Bosutinib

Glyburide Chlorpro-
pamide

Sulfonylurea Antidiabetic
agent

Glyburide Isradipine

Simvastatin Lovastatin HMG-CoA reduc-
tase inhibitor

Hypolipidemic
agent

Simvastatin Paroxetine

Table 3.1: Our ten pairs of positive and negative drug relatedness data for training. For the positive
pairs, we have included the mechanism by which these drugs interact with the body and their
indication (their use in treatment of conditions).

Drug relatedness case study data The left hand side of Table 3.1 lists the positive pairs of related

drugs which we used in the ping-pong stage of the algorithm with the biomedical domain-expert.

These pairs of drugs share both pharmacological mechanism of action and indication (disease which

a drug is prescribed by medical experts to treat). This means that these pairs should be well related

and hopefully be able to uncover interesting regular languages which can be generalized over all

the pairs. Additionally the righthand side of the Table 3.1 details the set of 10 negative pairs of

drugs. These are drugs which do not share a mechanism and indication, which means they have no

meaningful commonalities between them.
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Positive Pairs Negative Pairs
Drug A Drug B Mechanism Indication Drug A Drug B
Citalopram Escitalopram Selective sero-

tonin reuptake
inhibitor (SSRI)

Neuropsychiatric
agent

Citalopram Rosuvastatin

Nimodipine Nisoldipine Dihydropyridine
calcium channel
blocker

Cardiovascular
agent

Nimodipine Glimepiride

Imatinib Dasatinib
(Anhydrous)

BCR-ABL in-
hibitor

Antineoplastic Imatinib Carbachol

Prednisolone Hydrocort-
isone

Corticosteroid Anti-
inflammatory

Prednisolone Etonogestrel

Loratadine Olanzapine Histamine recep-
tor H1 antagonist

Anti-allergic
agent

Loratadine Esomeprazole

Lansoprazole Esomeprazole Proton pump in-
hibitor (PPI)

Gastrointestinal
agent

Lansoprazole Olanzapine

Megestrol Etonogestrel Progesterone Endocrine and
hormonal agent

Megestrol Hydrocort-
isone

Pilocarpine Carbachol Intraocular pres-
sure lowering
agent

Ophthalmic
agent

Pilocarpine Dasatinib
(Anhydrous)

Glipizide Glimepiride Sulfonylurea Antidiabetic
agent

Glipizide Nisoldipine

Atorvastatin Rosuvastatin HMG-CoA reduc-
tase inhibitor

Hypolipidemic
agent

Atorvastatin Escitalopram

Table 3.2: Our ten pairs of positive and negative data for testing. We have included the mechanism
by which these drugs interact with the body and their indication (their use in treatment of conditions).

Similarly to the description above, in Table 3.2, we have an additional pairs of related

drugs. We provide 10 pairs of positively related drugs (drugs sharing a mechanism and indication)

and 10 negatively related drugs (those not sharing a mechanism and indication). We use these pairs

to test and validate the performance of the expert produced SQPs and show we have produced a

generalized pattern useful for explaining the relatedness of other drug pairs. Comparison between

positively and negatively related pairs of drugs will demonstrate the power of generalized SQPs for

discriminating between related and unrelated entity pairs. We detail the results of this in Figure

3.11.
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Drug relatedness case study results Results of the Semantic Query Pattern experiments, pre-

sented in Figure 3.12, demonstrate the ability of the tool for assessing ”semanticity” of a given

COP pattern for a particular application or task. In the case of these experiments, the task can be

summarized as finding COP patterns which can help explain the mechanistic relationship between

drugs sharing mechanism of action (MoA) and disease indication.

Figures 3.12a and 3.12b show the MRR for each COP query pattern illustrated in Figures

3.11b and 3.11a, respectively. Difference in MRR between positive and negative drug pairs gives

an indication of how well the COP pattern is expected to differentiate additional meaningful

pairs of drugs from non-meaningful or unrelated pairs. COP pattern 10 from from figure 3.11a

demonstrated the greatest MRR difference among all other k = 3 query patterns, with MRR of

0.852 for the positive pairs and MRR of 0.227 for the negative pairs. This pattern is therefore

expected to be the most ”semantic” pathway in the context of the current task. This pattern was

also deemed highly semantic by a biomedical expert since it describes a meaningful sequence

of events of increasing biological scale and complexity between a molecular initiating event and

a clinical outcome. The least semantic k = 3 pathway, as ranked by the tool, was COP pattern

1 from Figure 3.11a. A biomedical expert reviewing this pathway agreed that this pattern was

less semantic and arguably non-COP-like because it begins with ”ChemicalEntity” connecting to

”DiseaseOrPhenotypicFeature”. This step does not constitute a molecular initiating event, so this

pattern could not be COP-like nor semantic.

Among the MRRs shown in Figure 3.11b for k = 2 query patterns, COP pattern 10

demonstrated the largest discriminatory power between positive and negative pairs with MRR of

0.666 for the positive pairs and MRR of 0.212 for the negative pairs. Interestingly, the second

intermediate node in this pattern was left undefined such that any category of entity could fill

this position. The 2nd and 3rd most semantic COP patterns (patterns 9 and 8 in figure 3.11b,

respectively) were similar to pattern 10, except for the undefined second intermediate node was

defined as “Pathway” (pattern 9) and “BiologicalProcessOrActivity” (pattern 8). A biomedical

expert concluded that patterns 8, 9, and 10 were all semantic and COP-like for the same reasons
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described for pattern 10 from Figure 3.11b. It is likely that pattern 10 was ranked most highly

by the tool because it allowed for both “Pathway” and “BiologicalProcessOrActivity” entities to

occupy the second intermediate node position, expanding the range of semantic and COP-like

answers available for mechanistic explanation of drug pairs. Pattern 1 in Figure 3.11b was ranked

least semantic by the tool and the biomedical expert again attributed this to the lack of molecular

initiating event in the pattern. This pattern seems to describe a promising rule: if disease 1 and

disease 2 share involvement of a particular gene, and a drug treats disease 1, then the same drug

should treat disease 2. However, the tool demonstrates that this rule is actually unlikely to be helpful

for the current task. This case example demonstrates the utility of the tool for pre-evaluating the

suitability of rule-based inference for a given task.

The same experiments were repeated for test set positive and negative pairs to test ability

to extrapolate results from the training set to the same task with different, but related, drug entities.

For k = 2 patterns, pattern 10 from figure 6 was also ranked most semantic (MRR of 0.642

for the positive pairs and MRR of 0.157 for the negative pairs) followed by pattern 8, then pattern 9.

Since these three patterns are most highly ranked as semantic in both the training and test sets, this

indicates the utility of these patterns for explaining new pairs.

For k = 3 patterns, pattern 10 from figure 5 was still ranked most semantic in terms of

MRR difference (MRR of 0.626 for the positive pairs and MRR of 0.246 for the negative pairs).

This result indicated that the same semantic COP pattern is generalizable to explaining relationships

between new drug pairs sharing the same MoAs and indications as those from the training set pairs.

It also indicates that explanations from this COP pattern are not sensitive to the identity of the

specific drugs.

We performed Hits@k analysis of our most discriminatory patterns against non-semantic

sampling of the graph using the CompactWalks methodology. We have labeled the most discrimina-

tory path SS-pattern, which is the pattern we used to make our semantic subgraph. We generated ten

unique embeddings by running CompactWalks ten times with a different random walk generated,
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Method Hits@
1 3 5

DeepWalk-NS-k3 0.12 0.21 0.28
DeepWalk-SS-k3 0.62 0.91 0.96
DeepWalk-NS-k2 0.14 0.25 0.3
DeepWalk-SS-k2 0.54 0.79 0.95
Node2Vec-NS-k3 0.09 0.15 0.28
Node2Vec-SS-k3 0.59 0.90 0.96
Node2Vec-NS-k2 0.16 0.25 0.33
Node2Vec-SS-k2 0.14 0.34 0.65

Table 3.3: The performance of our top performing patterns on the Hits@k metric (Definition
3.12) for our positive test pairs for the drug-relatedness case study. We compare the results on
two different methods of random walk generation, DeepWalk and Node2Vec; and on semantic
subgraphs (SS-) versus non-semantic subgraphs (NS-). To generate these results, we performed
our embeddings with CompactWalks, ran our experiment ten times, and averaged the statistical
performance.

using two different methods, DeepWalk and Node2Vec. Results of these experiments can be found

in Table 3.3.

Drug relatedness case study clustering To perform our statistical validation experiments, we

sought to evaluate the semantic performance of the highest performing patterns collected our

biomedical expert for the drug relatedness case study. These patterns can be seen in Figure 3.11.

We took the two semantic patterns are found from our approach in Section 3.3.5 on the ROBOKOP

KG. The k = 3 pattern and k = 2 pattern are the patterns with the highest discriminatory

power for length-3 and length-2 respectively. The k = 3 pattern is ChemicalEntity →

Gene → Pathway → Cell → DiseaseOrPhenotypicFeature. The k = 2 pattern is

ChemicalEntity→ Gene→ *→ DiseaseOrPhenotypicFeature.

Table 3.4 shows the node-clustering results as measured by normalized mutual infor-

mation (NMI) (Huang et al., 2014). Overall, the results for drugs indicate that embeddings with

semantic subgraphs (-SS) using paths mined by our approach (i.e., k = 3 pattern and the k = 2

pattern) outperform embeddings with baseline (-NS) using the paths of arbitrary nodes/edges with

the same number of intermediates.
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Method NMI
Drugs (Case 1) Diseases (Case 2)

Deepwalk-NS-k3 0.578 0.583
Deepwalk-SS-k3 0.805 0.727
Deepwalk-NS-k2 0.618 0.634
Deepwalk-SS-k2 0.766 0.608
Node2Vec-NS-k3 0.580 0.580
Node2Vec-SS-k3 0.803 0.733
Node2Vec-NS-k22 0.622 0.636
Node2Vec-SS-k2 0.764 0.608

Table 3.4: Normalized mutual information data from the drug relatedness case study and disease
relatedness case study. These values reflect the ability of a graph embedding method to cluster
related data. Here we present the results from both the drug-relatedness and disease-relatedness
case studies. We compare the performance of embeddings generated on the semantic subgraphs
(SS-) and the non-semantic subgraphs (NS-).

To visualize the embedding vectors of drug groups, we used the t-SNE (Van der Maaten

and Hinton, 2008) algorithm to make 2D projections of the embedding vectors with Deepwalk

and CompactWalk framework using the semantic paths that mined by our approach, see Fig. 3.13.

Each ground-truth drug cluster is shown in Fig. 3.13(b)–(c) in different shapes and colors, see Fig.

3.13(a) for the legend. Fig. 3.13(b)–(c) shows that using CompactWalks with semantic subgraphs

that built from the k = 3 drug relatedness pattern and the k = 2 drug relatedness pattern makes the

embeddings of similar drug nodes closer to each other, while making the embeddings of dissimilar

clusters more distant. The clusters in Fig. 3.13(b)–(c) are also bounded using the convex-hulls

approach (Barber et al., 1996), with 57.7% (15 in 26) for the k = 3 pattern and 61.5 % (16 in 26)

for the k = 2 pattern of the drugs in the same ground-truth category placed in the same cluster.

We sought to quantify the ability of our pathways to cluster semantically similar nodes on a

knowledge graph. We configured our CompactWalks to run for the following four settings: the k = 3

drug relatedness pattern, non-semantic paths with 3 intermediates, the k = 2 drug relatedness

pattern, and non-semantic paths with 2 intermediates. We also varied the graph exploration method,

using the DeepWalk and Node2Vec methods for generating random walks. We collected NMI values

from 100 runs for each setting and for each of the two embedding methods, and then conducted
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the two-sample t-test (Devore, 2015) for each pair of settings in ROBOKOP with each embedding

method. We found that the NMIs for the k = 3 drug relatedness pattern and k = 2 drug relatedness

pattern are significantly larger (p-value < 0.001) than the NMIs for each baseline (non-semantic

paths with the same number of intermediate nodes). Based on these results, we posit that our

approach is able to find meaningful semantic paths, such that constructing semantic subgraphs for

embedding methods could lead to more accurate outcomes of clustering tasks.

Disease Relatedness Case Study

After validating the utility of the SQP tool for assessing semanticity of COP patterns, we

sought to test its utility for a different task in the biomedical domain. For this task, we apply the

SQP tool to assess semanticity of pathways that connect diseases or harmful phenotypes to the genes

involved in their pathology. This task is particularly important for generating testable hypotheses

for the use of a certain gene as a drug target. Generating strong drug target hypotheses could help

accelerate drug target discovery, especially for rare disease with uncertain pathological mechanisms.

Disease relatedness case study data The left side of Table 3.5 describes 10 pairs of positively

related disease pairs we used for training. The diseases in each pair share similar clinical symptoms

and underlying biological mechanisms such that common genes are likely to play a role in the

pathophysiology and/or treatment of both conditions. The goal is to identify generalizable semantic

pathways to explain gene involvement in disease. Additionally the right side of the table provides

have a set of 10 negative pairs of disease. These diseases do not share known symptoms or biological

mechanisms that might connect them to a common gene with significant relevance to both diseases.

Disease relatedness case study results Similarly to the previous case study with COP patterns,

our biomedical expert constructed 10 pathways with three intermediate nodes (k = 3 pathways) and

10 pathways with two intermediate nodes (k = 2 pathways) between DiseaseOrPhenotypicFeature

and Gene nodes. These query patterns are shown in Figure 3.14. The k = 3 and k = 2 patterns are

arranged from 1 to 10 in order of increasing separation of MRR between the positive and negative
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pairs for each query. Figure 3.15 shows the MRR outcome of each test for k = 3 and k = 2 query

patterns.

For the k = 3 patterns, the pattern with greatest discriminatory power between positive and

negative pairs was pattern 10: Disease→ PhenotypicFeature→ BiologicalProcess-

OrPhenotypicFeature→ PhenotypicFeature→ Gene. For this query pattern, positive

pair MRR was 0.775 while negative pair MRR was 0.114. This pattern was also deemed to have

high semantic meaning; the disease and gene entities are both associated with phenotypic features

sharing a common biological process or activity. The two phenotypic feature nodes may be related

or identical, but in either case we can infer that the gene node is involved in the biological process

or activity related to both phenotypes, one or both of which is directly related to the disease.

For the k = 2 patterns, the pattern with greatest discriminatory power between positive

and negative pairs was pattern 10: Disease→ ChemicalEntity→ Gene→ Gene. For this

query pattern, positive pair MRR was 0.483 while negative pair MRR was 0.131. This pattern was

also deemed to have high semantic meaning; a chemical entity that is directly associated with the

disease is also affecting a certain gene. It is therefore likely that the action of the chemical on the

disease (either for good or for ill) is related to the chemical’s action on that gene. That gene is

functionally connected to another gene and we can infer that the two genes are involved in some

common activity or pathway relevant to the disease. It is therefore possible that the second gene has

a direct or indirect involvement in the disease.

The SQP Hunter tool is able to iteratively modify query patterns and trend toward greater

discriminatory power between positive and negative disease pairs, just as it is able to do so for

drug pairs. This demonstrates the wider applicability of the approach to numerous problems in the

biomedical domain, provided the problem is clearly defined and appropriate positive and negative

entity pairs are used to assess query pattern semanticity.

In the test case, we see that the pattern of increased differentiation mostly held true for the

k = 3 case (Figure 3.15d). We see with the final pattern, the differentiation is 0.38 between the

MRRs of the positive and negative samples. In the k = 2 case, our experiment had difficulty (Figure
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3.15c), with the second pathway not being able to be found at all in our test pairs. Additionally, the

performance of our experiments is less consistent on the test data pairs than on the training data

pairs. We theorize that this inconsistency may result from the issue of disease-disease relationships

being much harder to express, and ultimately being difficult to capture in meta-paths with only two

intermediate nodes. Ultimately, the test pairs still showed significant differentiation, with 0.21 MRR

on pattern 10.

We also performed Hits@k analysis of our most discriminatory patterns against non-

semantic sampling of the graph using the CompactWalks methodology. We generated ten unique

embeddings by running CompactWalks ten times with a different random walk generated. Results

of these experiments can be found in Table 3.7.

Disease relatedness case study clustering Like we saw for drug-clustering in Section 3.3.5,

Table 3.4 also shows the node-clustering results for diseases. The results for diseases indicate

that embeddings with semantic subgraphs (-SS) using path1 mined by our approach outperform

embeddings with baseline (-NS) using the paths of arbitrary nodes/edges in same lengths. However,

the path2 did not have the same performance as path1 did. Indeed, this finding mirrors results

shown in Figure 3.15c; k = 2 SQPs lacked power to discriminate between positive and negative

disease pairs compared to k = 3 SQPs.

Two semantic paths are found from our approach for ROBOKOP. For the disease relatedness

case study, the k = 3 disease relatedness pattern is Disease → PhenotypicFeature →

BiologicalProcessOrActivity→ PhenotypicFeature→ Gene. The k = 2 disease

relatedness pattern is Disease→ ChemicalEntity→ Gene→ Gene.

To visualize the embedding vectors of disease groups, we also used the t-SNE (Van der

Maaten and Hinton, 2008) algorithm to make 2D projections of the embedding vectors found using

the CompactWalk framework (with DeepWalk random explorations (Perozzi et al., 2014)) using the

most discriminatory SQP, see Fig. 3.16. Each ground-truth drug cluster is shown in Fig. 3.16(b)–(c)

in different shapes and colors, see Fig. 3.16(a) for the legend. Fig. 3.16(b)–(c) shows that using
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CompactWalks with semantic subgraphs that built from k = 3 pattern makes the embeddings of

similar drug nodes closer to each other, while making the embeddings of dissimilar clusters more

distant.

The clusters in Fig. 3.16(b)–(c) are also bounded using the convex-hulls approach (Barber

et al., 1996), with 66.7% (20 in 30) for SS-k3 and 33.3 % (10 in 30) for NS-k3 of the diseases in the

same ground-truth category placed in the same cluster.

To see if the clustering results are significantly different across the two settings (i.e., SS-

vs NS-), we collected NMIs from 100 runs for each setting and for each of the two embedding

methods, and then conducted the two-sample t-test for each pair of settings in ROBOKOP with

each embedding method. We found that the NMIs for the SS-path1 are significantly larger (p-value

< 0.001) than the NMIs for the baseline (NS-k3). However, as we saw in Table 3.4, the NMIs are

not significantly different between SS-k2 and NS-k2 for disease clustering, reflecting the poorer

discriminatory power of k=2 patterns. Based on these results, again, we posit that our approach

has the potential to find meaningful semantic paths, such that constructing semantic subgraphs for

embedding methods could lead to a higher accuracy in downstream tasks.

3.3.6 Limitations

One limitation of the semantic query pattern approach is it’s reliance upon expert users.

Two experts may generate SQPs on the same training datasets; but may ultimately result in two

drastically different meta-paths. This would reflect the differing biases of each expert, how they

interpret the relationships of the data and which node and edge labels they believe may explain

these connections. This limitation could also used for uncovering biases between the experts, and

could be analyzed by the experts and potentially combining those SQPs from two expert may result

in a stronger final pattern.

An additional limitation of our approach is that it is dependant on the data. This is a

limitation also discussed of the underlying CompactWalks approach (Hou et al., 2022). The ability

of our approach to develop pathways with discriminatory power is completely dependant upon a
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the choice of positive and negative pairs by the expert user. Although in some cases, this may be a

benefit of this method, as it places dependency completely on the data, leaving it completely flexible

to learn from very diverse sets of input data.

We aid expert users that have a goal in mind. If these users are trying to ask the right

questions, they may get the right answers. However, this presumes they have a problem they are

exploring. If the expert is still at a stage of exploration in which they have no data to build upon, our

tool cannot help them elucidate a pathway. Put another way; the SQP-Hunter reflects the intuition

of the expert for these particular pairs. The higher quality the data and stronger the connections, the

more meaningful the pathways mined will be.

3.3.7 Conclusions

We hope the production of SQPs for specific problem domains will primarily be used cases

for experts. (1) The generated patterns can be utilized to explore the underlying mechanisms by

which the provided data are linked, such as querying two datapoints in the knowledge graph and

looking at the semantic subgraphs generated through the SQP; the overlapping areas for these highly

similar compounds may unveil previously unknown information. (2) Using the generated SQP and

novel data points as a method of hypothesis generation. Once a language L has been generated, an

expert could run this query through the knowledge graph to identify candidates that may have a

semantic linkage but be as of now unidentified.

We hope that our semantic query approach and the associated implementation is of use to

domain experts, who may seek to adapt it to their new problem domains.

3.3.8 Future Work

One interesting avenue of future progress on the SQP-Hunter algorithm would be complete

automation away from the need for an expert user in the loop. One such approach could be an

algorithm that takes inspiration from evolutionary methods (Bäck, 1996). This approach would

attempt to dynamically evolve a complex query pattern just from a set of expert provided input pairs.
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Because the space of potential graph patterns is so vast, this algorithm may require a long time to

run or require a large amount of parallelizable compute power, such as a compute cluster.

A novel future approach would be more tooling for SQPs. We could develop a more

complex web tool that provides expert users with custom ways to explore their generated pathways.

Our current solution to this is to enable the experts to use Cypher to query their knowledge graph

directly. But a unique tool could provide a more tight feedback loop, giving an expert who has mined

novel semantic pathways the power to immediately search these pathways for connections between

samples of interest. Additionally, this tool could include features to aid the user’s exploration of

individual answer subgraphs by providing an answer rank based on literature co-mentions between

specific entities. This would provide expert users the ability to quickly find and explore studies

related to pathways of interests. Such a tool could enable the creation of scenarios as we saw in the

case study (Section 3.3.5) much more quickly.
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(a) Query patterns connecting ChemicalEntity to
DiseaseOrPhenotypicFeature with two intermediate
nodes (k = 3 pathways) chosen by the biomedical
expert.

(b) Query patterns connecting ChemicalEntity to
DiseaseOrPhenotypicFeature with two intermediate
nodes (k = 2 pathways) chosen by the biomedical
expert.

Figure 3.11: Query patterns generated by our biomedical expert for the drug relatedness case study.
The patterns are arranged in ascending order from 1 to 10, with 10 being the pattern with greatest
difference in MRR between positive and negative training pair sets and 1 being the pattern with the
least difference.
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(a) Mean reciprocal rank (MRR) output from Se-
mantic Query Pattern tool for positive and nega-
tive training pairs on k = 2 COP patterns.

(b) Mean reciprocal rank (MRR) output from
Semantic Query Pattern tool for positive and neg-
ative training pairs on k = 3 COP patterns.

(c) Mean reciprocal rank (MRR) output from Se-
mantic Query Pattern tool for positive and nega-
tive test pairs on k = 2 COP patterns.

(d) Mean reciprocal rank (MRR) output from
Semantic Query Pattern tool for positive and neg-
ative test pairs on k = 3 COP patterns.

Figure 3.12: Mean reciprocal rank (MRR) output from drug relatedness SQPs for positive and
negative pairs for k = 2 and k = 3 displayed in Figures 3.11b and 3.11a respectively. We compute
this for our series of test and training data. Figures 3.12a/3.12b show the respectively performance
on the training data in Table 3.1; Figures and 3.12c/3.12d show the performance of these pathways
on the test data from Table 3.2.
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(a) Ground-truth drug groups

(b) Deepwalk-CompactWalks using the k = 3 drug
relatedness pattern

(c) Deepwalk-CompactWalks using the k = 2 drug
relatedness pattern

Figure 3.13: 2D t-SNE (Van der Maaten and Hinton, 2008) projections of the embedding vectors
generated by Deepwalk (Perozzi et al., 2014) on the ROBOKOP KG. In 3.13a we have a figure and
all drugs. In 3.13b we see embeddings generated using the k = 3 drug relatedness pattern. In 3.13c
we see embeddings generated with the k = 3 pattern. The clusters are visualized using convex hulls
(Barber et al., 1996) with the predicted labels by k-means clustering (MacQueen et al., 1967).
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(a) Query patterns with three intermediate nodes (k=3
pathways) chosen by the biomedical expert.

(b) Query patterns with two intermediate nodes (k=2
pathways) chosen by the biomedical expert.

Figure 3.14: Query patterns generated by our domain-expert for the disease-relatedness case study.
The patterns are arranged in ascending order 1 to 10, with 10 being the pattern with greatest
difference in MRR between positive and negative training pair sets and 1 being the pattern with the
least difference.
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(a) Mean reciprocal rank (MRR) output from Se-
mantic Query Pattern tool for positive and nega-
tive test pairs on k = 2 COP patterns.

(b) Mean reciprocal rank (MRR) output from
Semantic Query Pattern tool for positive and neg-
ative test pairs on k = 3 COP patterns.

(c) Mean reciprocal rank (MRR) output from Se-
mantic Query Pattern tool for positive and nega-
tive test pairs on k = 2 COP patterns.

(d) Mean reciprocal rank (MRR) output from
Semantic Query Pattern tool for positive and neg-
ative test pairs on k = 3 COP patterns.

Figure 3.15: Mean reciprocal rank (MRR) output from Semantic Query Pattern tool for positive and
negative pairs for k = 2 and k = 3 displayed in Figures 3.14b and 3.14a respectively. We compute
this for our series of test and training data. Figures 3.15a/3.15b show the respectively performance
on the data in Table 3.5; Figures and 3.15c/3.15d show the performance of these pathways on the
data from Table 3.6.
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Positive Pairs Negative Pairs
Disease A Disease B Mechanism Disease A Disease B
Alzheimer’s dis-
ease

Dementia Mental deteriora-
tion

Alzheimer’s dis-
ease

Hypertensive
disorder

Type 2 diabetes
mellitus

Type 1 dia-
betes mellitus

Insulin regulation Type 2 diabetes
mellitus

AIDS

HIV infectious
disease

AIDS Immune system
dysfunction

HIV infectious
disease

Non-
alcoholic
fatty liver
disease

Heart disease Hypertensive
disorder

Cardiovascular sys-
tem disruption

Heart disease Skin cancer

Palsy Cerebral
palsy

Muscular disorder Palsy Chronic
obstructive
pulmonary
disease

Melanoma Skin cancer Epidermis dysfunc-
tion

Melanoma Type 1 dia-
betes mellitus

Synovitis Rheumatoid
arthritis

Inflammation Synovitis Headache

Asthma Chronic
obstructive
pulmonary
disease

Respiratory system Asthma Cerebral
palsy

Fatty liver disease Non-
alcoholic
fatty liver
disease

Liver dysfunction Fatty liver disease Dementia

Migraine disorder Headache Cephalic pain Migraine disorder Rheumatoid
arthritis

Table 3.5: Our ten pairs of positive and negative disease training data. Chosen by our expert for
their similar clinical symptoms or biological mechanisms. We provide the mechanism which links
the positive pairs.
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Positive Pairs Negative Pairs
Disease A Disease B Mechanism Disease A Disease B
Irritable bowel
syndrome

Crohn’s dis-
ease

Gastrointestinal sys-
tem

Irritable bowel
syndrome

Anxiety disor-
der

Panic disorder Anxiety disor-
der

Mental illness Panic disorder Intracranial
sinus throm-
bosis

Pulmonary tuber-
culosis

Tuberculosis Infectious bacterial
disease

Pulmonary tuber-
culosis

Urticaria

Coronary throm-
bosis

Intracranial
sinus throm-
bosis

Blood clotting Coronary throm-
bosis

Brain cancer

Glaucoma Cataracts Visual decay Glaucoma Hemorrhoid
Herpes simplex
virus

Genital her-
pes

Viral STDs Herpes simplex
virus

Tuberculosis

Atopic eczema Urticaria Dermal rashing Atopic eczema Genital her-
pes

Glioblastoma Brain cancer Tumors in brain Glioblastoma Crohn’s dis-
ease

Anal fistula Hemorrhoid Rectal pain Anal fistula Syphilis
Gonorrhea Syphilis Bacterial STDs Gonorrhea Cataract

Table 3.6: Our ten pairs of positive and negative test data used to validate our disease relatedness
pathways. Chosen by our expert for their similar clinical symptoms or biological mechanisms.

Method Hits@
1 3 5

DeepWalk-NS-k3 0.24 0.35 0.46
DeepWalk-SS-k3 0.42 0.6 0.67
Node2Vec-NS-k3 0.27 0.38 0.5
Node2Vec-SS-k3 0.42 0.61 0.7
DeepWalk-NS-k2 0.27 0.6 0.63
DeepWalk-SS-k2 0.12 0.5 0.65
Node2Vec-NS-k2 0.28 0.57 0.68
Node2Vec-SS-k2 0.14 0.34 0.65

Table 3.7: The performance of our top performing patterns on the Hits@k metric (Definition 3.12
for our positive test pairs for the disease-relatedness case study. Performed the CompactWalks
experiment ten times and averaged the statistical performance. We compare the performance of our
embeddings generated on our semantic subgraphs (SS-) versus those on non-semantic subgraphs
(NS-).
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(a) Ground-truth disease groups

(b) Deepwalk-CompactWalks using k = 3 disease
relatedness pattern

(c) Deepwalk using arbitrary paths of length-4 (NS-
path1)

Figure 3.16: 2D t-SNE (Van der Maaten and Hinton, 2008) projections of the embedding vectors
generated by Deepwalk (Perozzi et al., 2014) on the ROBOKOP KG for disease nodes shown in (a),
obtained with CompactWalks framework using the k = 3 pattern in (b) and arbitrary paths of with
three intermediate nodes in (c), respectively. The clusters are visualized using convex hulls (Barber
et al., 1996) with the predicted labels by k-means clustering (MacQueen et al., 1967).
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CHAPTER 4

Specialized Biomedical Knowledge Graphs

4.1 Introduction

The bioinformatics field poses a unique challenge from the computational perspective,

which inherently seeks rigid order to all information. But the nature of medicine often directly

relates to human expertise and intuition over quantifiable guidelines;(Woolley and Kostopoulou,

2013) this is baked directly into medical training in the form of residency requirements at hospitals,

true expertise in the human body does not come from the classroom from real-life training. This gap

between quantified knowledge and intuition is a particularly complex puzzle for computer scientists

to tease apart. Yet, in the past, we have seen the opposite phenomenon occur, the example of Matthew

Might, a computer scientist, utilizing computational tools to diagnosis his son, Bertrand Might, who

was born with extremely rare and complex genetic defects.(Might, 2012) Dr. Might constructed

a tool using the functional programming language Racket, and ultimately called it MediKanren.

This tool was specifically designed to tease out connections in biomedical literature for his son’s

condition.(Might, 2012) These kinds of discoveries show the potential value of computational tools,

enabling users without medical training to contribute to patient care. Bridging the gap between

these two very different worlds could lead to an explosion of new medical discoveries. Doctors have

notorious difficulties integrating computational tools into existing patient workflows.(Gawande,

2018) Although in recent years some medical schools have begun adding courses on artificial

intelligence and computation to their curriculums,(Brouillette, 2019) these courses only cover the

broad concepts and do not go into ideas such as programming and generating novel models. This
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leaves a wide gap between computational capabilities and the ability for these capabilities to be

leveraged in a meaningful manner.

We refer to the potential domain-expert users of our computational tools with expertise

(but potential limited technical ability) as a Subject Matter Expert (SME). These SMEs take on

many forms, such as doctors, nurses, geneticists, chemists, and biomedical researchers. We have

identified a large gap in SMEs ability to engage with computational methodologies. In this aim, we

seek to explore potential avenues of attack for this problem. Seeking to provide these users with

more straightforward and comfortable methods to engage with our tools. These solutions will take

different forms; software engineering projects enable large web applications with straightforward

UIs and novel tools that can enable SMEs to discover the information they were not aware of.

4.2 Specialized Biomedical Knowledge Graphs

Reasoning Over Biomedical Objects linked in Knowledge Oriented Pathways (ROBOKOP,

Section 1.5.1) is a major knowledge graph project produced by the Renaissance Computing Institute

(RENCI) located at UNC-Chapel Hill. The ROBOKOP graph database aims to capture a broad and

diverse set of biomedical data specializing in high curation and advances in interfaces that effectively

allow SMEs to ask questions of the graph. Presently ROBOKOP integrates data from over twenty

biomedical databases, capturing a variety of biomedical relationships, e.g., how chemicals interact

with genes, phenotypes associated with diseases, anatomical entities’ relationship to biological

processes. Currently, the ROBOKOP KG contains 9.4 million distinct biomedical objects and

250 million edges linking these objects. Knowledge graphs provide incredible value on gathering

information and generating hypotheses for broad information for the domain in which the graph

was created. However, attempts to answer questions for extremely specific sub-domains are difficult.

That is because knowledge graphs must choose levels of detail to represent any field. An overly

detailed representation makes the information in the graph harder to understand and increases

complexity for hypothesis generation. It is beneficial to lose some level of detail and capture a

high-level understanding of a field. We propose that by existing broad biomedical knowledge graphs
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Figure 4.1: A high level overview of the workflow for creation of specialized knowledge graphs.
The flexibility of this pipeline enables it to be utilized in multiple bioinformatics problems. It also
enables the rapid deployment of specialized graphs in response to urgent circumstances, such as
pandemics.

with information tightly related to a narrow problem domain, we can quickly and easily create

specialized biomedical knowledge graphs which provide more robust and detailed answers inside a

fixed well-defined biomedical area.

In this section, we explore the creation of knowledge graphs for these niche problem

domains. We tackle this problem by choosing an existing knowledge graphs to act as the primary

KG, a KG which serves as a primary repository of general knowledge. We then find specific

biomedical databases which can be harmonized to the ontology which the primary KG already

uses, and insert these data into our new forked KG. Depending on the desired use case, it may be

advantageous to down-weight the edges which came from the primary KG and up-weight those

edges which come from novel domain-specific datasets.
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Figure 4.1 covers the workflow we have developed for forking KGs. We see an implemen-

tation of this workflow presented in the development of the COVID-KOP KG (Section 4.3) and the

METAL-KOP KG (Section 4.4).

4.3 COVID-KOP

4.3.1 COVID-KOP - Introduction

With over 219 million cases and over 4.5 million deaths worldwide as of June 2021, and no

Food and Drug Administration (FDA) approved treatments against this virus except for several drugs

authorized for emergency use, there are continuing unprecedented global efforts to discover critical

therapeutic treatments against COVID-19.(University and Medicine, 2021) These efforts already

resulted in the identification and characterization of many SARS-CoV-2 proteins essential for virus

replication,(Bobrowski et al., 2020) the pathogenesis of COVID-19,(Mousavizadeh and Ghasemi,

2021) and nomination of many drugs for clinical trials. Thousands of papers on COVID-19 and

SARS-CoV-2 have appeared in the scientific literature since the beginning of the pandemic.(SciBite,

2021) There are many databases collecting data related to SARS-CoV-2;(of Health: Office of Data

Science Strategy, 2021) however, the scientific literature concerning SARS-CoV-2 remains the

largest repository of untapped biomedical data.(Bakken, 2020; Hunter, 2017) Knowledge graphs

provide a key aid in the fight against COVID. Years have been spent integrating dozens of different

databases into a singular source. Additionally, because the information comes from many different

disciplines, it enables users who may not have specialized knowledge from any one field to leverage

the discoveries and generate hypothesizes using those discoveries. In the COVID-KOP project,

we sought to create a specialized “fork” of the ROBOKOP knowledge graph, which incorporated

novel data relevant specifically to COVID-19 research. In doing so, we have shown that the creation

of specialized knowledge graphs for specific problem instances can lead to positive results and

increased ability to generate novel connections. Many of the edges contained in the COVID-KOP

graph were taken directly from literature, which is also noisy and may pollute a more general

biomedical knowledge graph.
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4.3.2 COVID-KOP - Datasets

The Allen Institute for AI, in association with the White House, Georgetown University,

the National Institute of Health (NIH) sought to release a large open-source corpus of biomedical

medical literature in aid of the search treatments for the COVID-19 pandemic. This dataset was titled

COVID-19 Open Research Dataset Challenge (CORD-19).(Lu Wang et al., 2020) Providing open-

source academic papers is vital for natural language processing (NLP) work to be done on academic

literature, which often involves various licenses and institutional permissions, and propriety APIs to

access the full text of documents. Providing the documents in a more convenient format, such as flat

text, and an ability to download papers in bulk was essential to our ability to create COVID-KOP.

This dataset contained over 500,000 full text academic papers detailing work on COVID-19, in

addition, existing work on epidemiology, virology, and historical pandemics have also been released

into the dataset. To extract unique connections between biomedical entities from CORD-19; we

leveraged Named Entity Recognition (NER) algorithms, which seek and identify biomedical entities

in plain text. SciBiteAI is a private company based in the United Kingdom which primarily tackles

issues of relationship identification, named entity recognition, and ontology development.(SciBite,

2021) In response to the COVID pandemic, our colleagues at SciBiteAI, a London based private

company made their NER extractions from CORD-19 available for public use. By performing

NER on the corpus of biomedical papers, and differentially weighting different sections of the

paper (terms found in the abstract should be assumed to be of much greater importance than

those in the body of the paper), we extracted relationships. These relationships were then merged

with the existing ROBOKOP database. In silico proteomics information on COVID-19 related

proteins was also incorporated into the COVID-KOP dataset. The Gene Ontology Annotations is a

biomedical database focused on cataloging human and disease proteins, and their interactions in the

body. (Ashburner et al., 2000; Gene Ontology Consortium, 2021) The data for the GO ontological

identifiers for genes and proteins have been incorporated into the standard ROBOKOP database. The

Gene Ontology Consortium provided and made publicly available information on the human proteins

Sars-CoV-2 uses to enter the human cells, and predicted human proteins which the virus may target
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after entry into human cells. This data is invaluable for enabling targeted drug discovery against the

Sars-CoV-2 virus. This data is available at http://geneontology.org/covid-19.html.

COVID-19 symptoms were also manually curated and gathered, as no comprehensive databases of

symptoms were in existence when COVID-KOP was created. The symptoms were gathered from

various online source:

1. https://www.cebm.net/covid-19/covid-19-signs-and-symptoms-

tracker/,

2. https://covid.cd2h.org/N3C,

3. https://www.hematology.org/covid-19/covid-19-and-coagulopa

thy.

Additionally, one commentary was published containing a collection of COVID-19 symptoms

which was also integrated.(Schett et al., 2020) This manually incorporation of data is a step that

is not sustainable; as it would require human intervention each time the database were seeking to

be updated. Human entry of information is also prone to error, especially in medical and clinical

domains;(Goldberg et al., 2008) but it can be necessary when gathering novel data which has yet to

be catalogued in any database.

4.3.3 COVID-KOP - Results

Figure 4.2 shows the resulting interface for the COVID-KOP web portal. Through quick

efforts on both our team and the broader scientific community we were able to integrate the novel

datasets, host, and deploy the COVID-KOP database and web portal in May 2020. This fast

turnaround time was crucial towards the databases usability to the broader scientific community, and

would not have been possible if not for the flexibility knowledge graphs provided us. Further studies

done utilizing the COVID-KOP database by our collaborators yielded significant results.(Bobrowski

et al., 2021) The goal of this study by Bobrowski et al was to utilize known mechanistic connections
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Figure 4.2: The COVID-KOP interface. The COVID-KOP tool enables users to query a fork of the
ROBOKOP knowledge graph extended with COVID specific data. This web portal can be found at
https://covidkop.renci.org.(Korn et al., 2020)

for drugs against the Sars-Cov-2 virus and then predict potential drug pairs which may, when taken

in combination, produce a substantial effect against the virus.

COVID-KOP, used in combination general bioinformatics tools ROBOKOP (Section 1.5.1)

and Chemotext (Capuzzi et al., 2018), enabled these researchers to quickly and efficiently determine

what drugs had been tested against the virus. 76 drug candidates were selected. These tools were

also used to determine the mechanisms by which these drug candidates operated. Pairs of drugs

which operated by different mechanisms of action were combined and tested.

The study ultimately produced 73 combinations of 32 drugs. These drug combinations

were tested in vitro against Sars-Cov-2 by the National Center for Advancing Translational Sciences

(NCATS).
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4.3.4 COVID-KOP – Conclusion

In response to the COVID-19 epidemic, we developed COVID-KOP, a knowledge base that

integrates the existing ROBOKOP biomedical knowledge graph with information gathered from

recently published biomedical information regarding COVID-19. The case study described here

illustrates the utility of COVID-KOP in uncovering both known and unknown inferences between

the drugs and COVID-19. COVID-KOP is freely accessible at https://covidkop.renci.o

rg/.

4.4 METAL-KOP

4.4.1 METAL-KOP - Introduction

Metal implants have been in large scale use in humans for medical purposes since the

late 1800s.(Hermawan et al., 2011) These implants have restored provided aid in healing, mobility,

and quality of life to millions of patients with major injuries. Metal implants have made major

improvements in multiple medical specializations, such as cardiovascular, with stents, orthopedics

with artificial joints and bone plates, and dentistry where metal fillings are still necessary. Unfortu-

nately, the body and metal are not intrinsically compatible. The body is a hostile environment to

metal implants, causing them to wear and degrade over time. Metal implants are also incapable of

biological functions, such as blood flow and bone conductance, making them treated by the body

as an invading organism.(Goodman et al., 2014) This causes metal implants to become home to

the phenomenon, metallosis, a poisoning of soft tissue in the body caused by a build up of metal

debris.(Oliveira et al., 2015; Romesburg et al., 2010) Often this can lead to intense inflammation in

the patient, elevated levels of metal in blood and urine samples, and in the most extreme cases local

necrosis (the death of tissue surrounding the metal implant). Metallosis produces a great toll on

both the physical and psychological state of patients, who already needing some form of implant,

are already elderly or infirm.
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4.4.2 METAL-KOP - Problem Statement

Another instance of specialized knowledge graphs is the METAL-KOP project. This

project aims to create a fork of the ROBOKOP knowledge graph (Section 1.5.1), with modification

specific to issues of metallomics. This project comes as an extension of work performed in

collaboration with the Food and Drug Administration (FDA). The aims of the collaboration were to

provide computational based approaches to identify metal compounds which may lead to metallosis.

Additionally, we wanted to create justifications and potential pathways which may explain our

hypothesizes. To help address these issues and create pathways specific for metallosis, our group

sought to create METAL-KOP, a biomedical knowledge graph with information specific and relevant

to the metallosis field.

4.4.3 METAL-KOP - Necessary Modifications

We must make modification to how the existing ROBOKOP architecture represents chemi-

cals. That is because the standard ROBOKOP presents any atomic element as a singular node, for

example, the chemical “Iron” is represented by one node chemical substance with the SMILES

string Fe. But when concerned with metals, the oxidation state of these elements is of note. We

would want to replace the nodes representing metals with multiple nodes for each common oxida-

tion state; Iron would then become IronII, IronIII, IronIV, and IronVI. We also desire to put special

properties associated with these oxidation states. Ions of the same element can have wildly different

ionic radii and electronegativities, which can enable them to have very different effects when

interacting with the human body. For example, the +2 state of cobalt, CoII, is relatively safe and

stable while the +3 state of cobalt, CoIII, is highly unstable and rapidly decomposes in an organic

environment.(Jeffery and Hutchison, 1981)

Through our own experimentation, we have found that metals are not well defined by

the MESH ontology (Lipscomb, 2000). This makes use of pre-existing tools, like Chemotext or

standard ROBOKOP, more difficult. As an example, MeSH term D007501 (https://id.nlm

.nih.gov/mesh/D007501.html) is used to represent the general concept of iron. In the
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annotation of this MeSH term we see ”Fe(II) = FERROUS COMPOUNDS, Fe(III) = FERRIC

COMPOUNDS“, where this term has been explicitly described to annotate different ionic states of

iron. Therefore we must select a different ontological representation for chemicals as our standard

representation in our Metal-KOP graph.

We have selected the Chemical Entities of Biological Interest (ChEBI) (Hastings et al.,

2016) dictionary as our primary ontology of chemical in the METAL-KOP graph. The ChEBI

dictonary aims to represent small chemical compounds accurately, which includes atomic metals.

In the ChEBI ontology we can locate: CHEBI:18248 (https://www.ebi.ac.uk/cheb

i/searchId.do?chebiId=CHEBI:18248) which represents atomic iron, CHEBI:29033

(https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:29033), which

represents IronII. Similarly we can locate CHEBI:29034 (https://www.ebi.ac.uk/cheb

i/searchId.do?chebiId=CHEBI:29034) which represents IronIII. This example shows

the importance of ontology selection based upon the specific needs of a database, knowing we need

higher resolution of metal compounds enforces that we choose a more granular representation of

small molecules for the METAL-KOP knowledge graph.

4.4.4 METAL-KOP Datasets

To achieve the goals of creating a metal focused knowledge graph, we must also integrate

biomedical databases particular specifically to metal ions. Metal PDB is a database which identifies

how proteins in the human body can bind to different metal ions.(Andreini et al., 2013; Putignano

et al., 2018) Additionally, we will include InterMetalDB which provides further information on

metal binding.(Tran and Krȩżel, 2021) To get detailed lists of metal ions we can leverage the

Comparative Toxicogenomics Database (CTD),(Davis et al., 2021; Mattingly et al., 2003) which

provides enumerated connections from elements to their ionic forms.

The METAL-KOP is still currently in development. We plan to provide access to the

METAL-KOP database to other scientific researchers and apply our own algorithms on this dataset

in the future.
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4.5 Future Work

4.5.1 TOXIC-KOP

Toxicology is the multidisciplinary study of toxic compounds, this field combines aspects

of ecology, biology, chemistry, sociology, and many others (Timbrell, 2001). The field seeks to

uncover the harmful substances around us, and develop actionable plans for the neutralization and

removal of these substances. Large governmental organizations, like the Environmental Protection

Agency (EPA) and the National Institute of Environmental Health Sciences (NIEHS) exist to ensure

safe and effective standards around which compounds may exist within consumer products, medical

devices, and introduce regulatory standards.

We aim with the TOXIC-KOP project to integrate existing datasets of toxic compounds and

their negative effects on the human biosphere into a fork of the ROBOKOP knowledge graph. This

idea already has incredible value in use of creation of Adverse Outcome Pathways (AOPs)(Society

for Advancement of AOPs, 2021).

4.5.2 Rare Disease Knowledge Graphs

Rare diseases are conditions which affect fewer than 1 in 200,000 people as defined in the

United States or 1 in 2,000 as defined in the European Union.(Valdez et al., 2016) Presently more

than 600 therapies for rare diseases have been approved by the FDA.(Federal Drug Administration,

2018) However, as of 2010, over 7,000 rare diseases have been identified, and approximately 10%

of the United States population suffer from at least one rare disease.(Valdez et al., 2016)

The drug discovery process is a lengthy one, consisting of many failures and a great deal

of uncertainty. The drug discovery pipeline usually involves target identification and validation

to detect molecules that may affect a disease state. In the discovery process, preclinical research

trials include in vitro and in vivo efficacy, safety, and pharmacokinetic profiles, and clinical trials to

establish safety and effectiveness in human subjects.(Hughes et al., 2011) Additionally, the path for

finding drugs for rare diseases is even more strenuous.
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Often, rare disease patients, with their support groups of family and friends must go through

many year ordeals just to gain a diagnosis. Many doctors are not trained in the symptoms of rare

diseases (with the large number and complex symptoms, such a process would be very difficult).

Experts and specialists are sometimes simply non-existent for a condition, forcing patients or

their support groups to become their own specialists and sometimes perform their own research.

Within this process, they need to learn about the disease simultaneously with researchers and

physicians.(Ekins and Perlstein, 2018)

One of the most famous cases is the story of Augusto and Michaela Odone, parents of

Lorenzo Odone, who dedicated their lives to discover a treatment for their son’s rare disease,

adrenoleukodystrophy (ALD), and founded The Myelin Project, a research non-profit.(Odone and

Odone, 1989) Augusto and Michaela never had any formal medical training, but they embarked on

finding a cure for ALD. Adrenoleukodystrophy is a genetic disorder that results in the demyelination

of neural fibers and degeneration of the adrenal gland, resulting in neurological instability and,

ultimately, death.(National Center for Biotechnology Information (US), 1998; Odone and Odone,

1989) It was discovered that ALD causes the accumulation of saturated, long-chain fatty acids in

the brain and adrenal cortex and leads to demyelination. Augusto and Michaela, with the help

of researchers, eventually developed a treatment to break down these long-chain fatty acids by

extracting acids from olive and rapeseed oils. This treatment was termed “Lorenzo’s Oil.(Moser

et al., 2005)” A study published in 2005 showed that, in certain cases, ALD could positively benefit

from treatment with Lorenzo’s Oil and prevent the progression of the disease.(Moser et al., 2005)

More recently, Matthew Might, a computer scientist and father of a child who has a

rare disease involving an NGLY1 deficiency, became engaged in precision medicine and drug

repurposing to find a treatment for his son’s rare disease. He discovered that his son, as a result of

the NGLY1 deficiency, also lacked N-acetylglucosamine, a vital amino sugar.(Chen et al., 2010b)

Further research proposed that NGLY1 deficiency could potentially be treated with endo-beta-N-

acetylglucosaminidase (ENGase) inhibitors.(Bi et al., 2017) A structure-based screening of a drug

database and an electrophoretic mobility shift assay revealed that several drugs, most notably proton
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pump inhibitors, could potentially be repurposed to treat NGLY1 deficiency.(Bi et al., 2017) This

research revealed the possibility of drug repurposing for rare diseases and provided a direction for

drug development and discovery for NGLY1 deficiency.

In response to the rare diseases, often computational tools provide more value than bench

work. One strong use case for the specialized knowledge graph ontology would be automating

the workflow discussed in Figure 4.1, and applying it to the thousands of rare diseases afflicting

patients. We can then mine drug repurposing hypotheses (Section 1.4) to find unique drug-disease

connections for each of these rare diseases.
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CHAPTER 5

Conclusion

The work that embodies this dissertation set out to explore how biomedical knowledge

graphs could be more productively leveraged to solve practical problems. We approached the issues

of pathway ranking, pathway generation, and the creation of novel biomedical knowledge graphs.

In Chapter 2 we looked at the issue of promiscuous nodes and created a novel ranking algorithm for

knowledge graphs through that exploration. In Chapter 3 we sought to combine existing insights in

the biochemical space, and use those insights to create specific pathways to glean information on

how different biomedical ideas may be linked. And in Chapter 4 we looked at the issues of creating

new knowledge graph, and presented case studies in different niche problem spaces; and a high

level methodology for expanding this workflow to other domains.

The field still offers many more interesting questions and challenges that will need to be

overcome in the upcoming years. Issues of accessing data, more complex and interesting ranking

algorithms (hopefully built upon our work here). Federated knowledge graphs which can link

dozens of existing biomedical KGs are on the horizon and may reshape the entire field.

In Chapter 2, we have detailed issues of hubs and promiscuous nodes in KGs. Through

the formulation of promiscuity path scores we seek to leverage connections between nodes in KGs

as a mechanism for measuring and predicting how these nodes relate. In our experimental results,

we found that these promiscuity scores had meaningful statistical difference between positive and

negative entity pairs in the knowledge graphs and their potential use in machine learning applications.

We also extended these results to the case of federated knowledge graphs, showing the viability of

promiscuity as a solid method for pruning results from these graphs, hopefully enabling them to

return more meaningful paths to users quickly.
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In Appendix 5.5, we have performed a detailed runtime and storage analysis on various

algorithms designed to compute promiscuity scores for connected source and tail nodes. We have

shown these values can be computed efficiently if the underlying promiscuity value connecting the

two nodes is small. These results are summarized in Table A.1.

In Chapter 3, we studied the task of constructing task-specific meta-paths for knowledge

graphs. In the biomedical context, we worked to develop Clinical Outcome Pathways, which catalog

and understand how drugs and diseases interact with each other. Expanding on that, we introduced

the Semantic Query Pattern idea, which constructed an expert driven approach at the construction

of more domain/task-specific meta-paths from points of related data.

In Chapter 4, we studied issues of using generalized biomedical knowledge graphs to solve

questions in niche subdomains. We sought out a general framework the creation of task specific

biomedical knowledge graphs, and processes for identifying and integrating novel biomedical

databases into these databases. We explored this fully in the COVID-KOP knowledge graph,

developed specifically in response to the COVID-19 pandemic.

5.1 Importance of Biomedical Databases

One of the foundational pillars of the translational community is the ease and accessibility

of data to mine. All knowledge graphs serve as meta sources, which aggregate existing information

from primary sources (such as those detailed in Table 1.1). Each of these sources represent hundreds

or thousands of hours of work from specialists in various domains, many of them performing the

work on a voluntary basis. Keeping these databases high quality, free, and easily accessible is

essential to the advancement of translational sciences.

5.2 Access to Medical Care

In the introduction we discussed how advances in medical science had provided humans

with the resources and tools to treat those who had been afflicted with various conditions. Ailments

which two hundred years ago would have had an extremely high mortality rate and essentially been
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a death sentence to the patient can now be treated almost all western hospitals. Tuberculosis was

a disease which at one point was a terrifying and widespread. Despite treatments of tuberculosis

being known for over a century,(Murray et al., 2015) there was much difficulty getting treatment to

patients.

Despite all our knowledge, in 2020, an estimated 10 million globally became infected with

TB and an estimated 1.4 people million died from the disease. Tuberculosis still ranks as one of

the top ten causes of infectious death globally. The majority of those infected were in Asia and

Africa; with the majority of new cases emerging from just eight countries. The global disparity in

our knowledge and our capability to treat a disease and it’s continued presence should be of heavy

concern to anyone working in medical and medical adjacent research.

Fortunately, we have seen a global decline in the infection rates of many diseases. There

have been major victories for the medical community in recent times, such as the eradication

of smallpox.(Fenner, 1982) We have shown the effectiveness of the global medical community,

producing major multi-decade long health projects which have resulted in improved quality of life

and an overall reduction in infection for the global population.

We have a duty as researchers and scientists to advance the goals of a healthy world. By

democratizing the science of discovery and focusing on repurposing, not only of patented complex

pharmaceuticals, but of all chemicals, whether they be made in a lab or found in tree bark, through

efforts like drug repurposing (Section 1.4), we can take long existing pharmaceutical agents, many

of which have readily accessible low-cost generic versions, and give these treatments further utility

by finding all of their potential uses. This also serves as a way to escape the massive (and rising)

costs of discovering novel pharmaceuticals, which must be passed onto the patients; or in the case

of low patient rare diseases, is financially untenable.

5.3 Meta-research

The main concerns of this thesis have been in the applications of the work of others. The

approaches discussed within our work is very high level, operating on knowledge graphs which serve

160



as the aggregation of collective thousands of hours of work from primary researchers, uncovering

and labeling the specific biomedical entities, which we capture as nodes and further on, finding how

these entities affect one another, which we capture as edges. We are in essence, performing research

on how to further explore the research of others. It seems likely that as time moves forward and the

ability to make meaningful discoveries in primary research become harder and more sporadic, more

research man hours will be driven into “meta-research”, that is, intuiting connections from that

which already has been discovered.

One core issue, that is apparent from the nature of this problem, is that meta-research

will always be derivative, it is impossible to truly uncover new knowledge, all we discover are

interesting hypotheses and potential ideas. We’ve argued here that many of these hypotheses have

incredible merit which make them worthy of further exploration, but all output generated still

requires verification. Until primary research is pursued which reinforces our hypotheses, the output

from our methods don’t provide

Ensuring the discoveries made are actionable is always key. Making sure that when these

algorithms are being used to generate hypotheses, there is a road map for taking the potential

research discoveries and verifying them.

This requires large scale collaboration, which is something we as computer science often

have difficulty with. It is often easiest to view our datasets as provided from an oracle who we are

complete separated from. This separation has been reinforced in a systemic fashion, where data is

viewed as the only necessary aspect to computational research. Models may be built, trained, and

tested all on entirely upon a sterile data, with no input from those who work in the fields to see if

these models make sense, if there may be issues with the datasets.

5.4 Future Work

Details of future work specific to each of my aims are detailed in Sections 2.8, 3.3.8,

and 4.5. We see great potential novel research projects which could be launched as an extension

of this thesis. Projects which expand upon the mathematical ideas of promiscuity, expand upon
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drug-disease connections even further, or present new tooling for domain-experts could be fruitful.

Additionally, we see applying the ideas found in this thesis to other non-biomedical domains to be a

promising avenue for future research.

5.5 Concluding Remarks

We see great potential in the use of biomedical knowledge graphs in both the theoretical

case and practical practical applications. By gathering such diverse knowledge into one central

location, we have potentially unlocked new avenues for research, and will accelerate the generation

of new research hypothesis. Hopefully in the coming decades, knowledge graphs will see increased

adoption across many disciplines, and will revolutionize how we approach asking questions and

potentially all research questions as one of finding links in the web of ideas.
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APPENDIX A

PROMISCUITY ANALYSIS

A.1 Promiscuity Analysis

A.1.1 Promiscuity Algorithm

In the earlier section, we looked at a version of psuedocode for the promiscuity algorithm

which returns paths. In this section, we seek much more specific narrow goals of making claims of

the runtime of a more focused version of the promiscuity algorithm.

We have developed an algorithm for the promiscuity analysis of graphs. This algorithm

takes in two nodes, which we call the source and a tail; and looks for a pathway through the graph

from the source to the tail. We utilize a naive, breadth first search (BFS) and depth first search

(DFS), for a fixed path length, seek the least promiscuous nodes which connect these nodes in the

graph. The node degrees of the least promiscuous pathway serve as a score for how strongly the

two nodes are related. For example, if an extremely promiscuous pathway must be taken through a

node like diabetes, we theorize that the linkage between the nodes may be spurious; unlike the case

in which a pathway is discovered that has nodes of a lower degree.

Definition A.1. Knowledge Graph. A knowledge graph (KG) G is defined as a tuple G =

(V,E, TV , TE, ζ, ξ), in which: (i) V is the set of nodes v1, v2, ..., vn, with each node representing

a data entity (e.g., a specific drug or disease); (ii) E is the set of (directed or undirected) edges

e1, e2, ..., em, with each edge representing a relationship between two data entities represented by

nodes in V (e.g., a drug treats a disease); (iii) TV is the set of predefined node types (e.g., drug

or disease); (iv) TE is the set of predefined edge types (e.g., treats); (v) ζ is a node type

mapping function ζ : V → TV ; and (vi) ξ is a link (edge) type mapping function ξ : E → TE . The

degree of a node v in a KG G, denoted degree(v), is the number of the edges that are adjacent to v

in G.
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Let us assume we are provided a knowledge graph according to the Definition A.1, G =

(V,E), a source node represented as s ∈ V , and a tail node be represented as t ∈ V . Define

k as a hyperparameter which represents the length of the intermediate path. Let L be path of

length k which connects s and t; so L = {v1, v2, . . . , vk} where the nodes of L are in the graph,

v1, v2, . . . , vk ∈ V , and pairs of nodes exist within the edges ofG, (v1, v2), (v2, v3), . . . , (vk−1, vk) ∈

E, and (s, v1), (vk, t) ∈ E. This means that the graph can be traversed following the nodes in L

starting at s and progressing over all nodes in L until the tail node t is reached.

Definition A.2. Path. We define a set of nodes L = {v1, v2, . . . , vk} such that v1, v2, . . . , vk ∈ V

as a be path of length k which connects nodes s and t over Graph G = (V,E) iff we have three

properties.

1. There are k nodes in L, that is |L| = k.

2. The nodes of L are in the set of vertices for graph G, that is ∀vi ∈ L : vi ∈ V .

3. All pairs of sequential nodes in L must in the set of edges for G, that is ∀vi−1, vi ∈ L :

(vi−1, vi) ∈ E.

4. The start node s must be connected to the first node v1 in L, (s, v1) ∈ E.

5. The final node in path L, vk must have a connection to the tail node t, (vk, t) ∈ E.

All of these rules taken in concert means that the graph can be traversed following the nodes in L,

starting at s and progressing over all nodes in L until the tail node t is reached. To take the path

from s over all nodes in L to t will take k + 1 “hops”, or k intermediates.1

Definition A.3. Promiscuity Value. The promiscuity value for a path L on G is defined as

promiscuity(L) = max{degree(v1), degree(v2), ..., degree(vk)}

1. This definition differs from our definition of Path provided in Chapter 2 (Definition 2.2). In that definition, we
defined the length of the path by the number of edges, while here we define it by number of intermediate nodes. This
is done for convince of notation in the following proofs. To convert between this definition to those of Definition 2.2
simply increase all path lengths by 1.
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Figure A.1: An example of three pathways connecting a source and tail node. We calculate the
Promiscuity Value (Definition A.3) for each of these pathways.

This metric measures the nodes of highest degree over an entire path.

Definition A.4. Promiscuity Score. The promiscuity score is a measure for any two nodes, which

will be referred to as a source node s and tail node t, over a graph G for a provided path length k.

This measure is global, that is, it is constant over the entire graph. We define the score as follows

τ(s, t, k) = min{Promiscuity(L) : ∀L ∈ G s.t. s L−→ t}

This metric measures the lowest achievable promiscuity score for all paths of length k connecting

nodes s and t. If no path of length k exists which connects s and t we define τ(s, t, k) =∞

In the following sections we present three versions of an algorithm for computing the

lowest promiscuity score τ(s, t, k) (Definition A.4). The promiscuity score is the maximum value

of all degrees for each node along a pathway.
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First in Section A.1.2, we explore a naive algorithm (Algorithm 6) which walks the graph

in breath first manner, searching all paths between the source and tail. This algorithm keeps

constant track of the highest degree it has seen on the current path it is walking. Whenever a path

from the source node s to the tail node t is found, the promiscuity value (Definition A.3) of that

path is checked against the current lowest promiscuity score we have seen in the execution of the

algorithm, if the value is lower we update (line 17). This algorithm is a direct recreation of BFS

with fixed length k. b is the branching factor of the graph G, which represents the maximal number

of neighbors a node may have. The runtime of the naı̈ve algorithm is O(bk+1).

We explore an improvement to this algorithm in Section A.1.3. Our improvements to our

ability to quickly identify this promiscuity this promiscuity score leverages the fact that we only

need to analyze nodes with low degree to find minimum promiscuity. The second version of the

promiscuity algorithm (Algorithm 7) leverages the fact that we only need to analyze nodes with low

degree to find minimum promiscuity. If we sort nodes by degree before popping them off the queue

for analysis, we can guarantee we have found the path with the smallest promiscuity score much

earlier than the naı̈ve algorithm. In fact, since the number of neighbors of a node is directly tied to

its degree, the promiscuity score serves as an upper bound on the number of paths we must examine.

The runtime of our improved algorithm (Algorithm 7) is O(b ∗ pk−1 ∗ lg(b ∗ pk−1)) (Theorem A.3).

Finally, we explore an alternative improvement on the naive algorithm in Section A.1.4.

Our improvements here aims to find the promiscuity score using a small memory footprint. The

third version of the promiscuity algorithm (Algorithm 8) . The runtime of our improved algorithm

is O(bk−1 ∗ p ∗ lg(p+ (k − 1)b)) (Theorem A.4).

A.1.2 Naive First Search Promiscuity Score Algorithm

Here we describe a simple variation on a breadth first search graph search algorithm which

finds paths of length k between nodes s and t. First we append all neighbors of the source node s

onto the queue, in the loop on lines 3-6. For each path it explores, it simply keeps track of the largest

node degree seen along said path, stored on the queue as scoren. When a path with a promiscuity
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Algorithm 6: Naive algorithm for finding the promiscuity score τ(s, t, l).
Data: Graph G, source node s and target node t in G, path length l, number of paths k
Result: The promiscuity score τ(s, t, l) and the k least promiscuous paths of length l from

s to t
1 begin
2 Q← Queue(); // LIFO Queue
3 for n ∈ neighbors(s) do
4 depthn ← 1;
5 scoren ← degree(n);
6 Q.append(scoren, depthn, n);

7 τ(s, t, k)←∞;
8 while Q ̸= ∅ do
9 scoren, depthn, n← Q.pop(); // Gets next node on queue.

10 if depthn < k then
11 for m ∈ neighbors(n) do
12 depthm ← depthn + 1;
13 scorem ←MAX{scoren, degree(m)};
14 Q.append(scorem, depthm,m);

15 if depthn == k then
16 if n ∈ neighbors(t) then
17 τ(s, t, k)←MIN{τ(s, t, k), scoren};

18 return τ(s, t, l);

value lower than the lowest score seen so far is found, we update the current promiscuity score on

line 17.

Lemma A.1. Every path (Definition A.2) of length k will be explored by the by the while loop on

lines 8-17 in Algorithm 6. By explored we mean that the promiscuity value will be calculated and

line 17 will be executed.

Proof. Proof by contradiction, assume there is some path (as defined in Definition A.2) W =

{w1, w2, . . . , wk} of length k which connects s and t. Assume this path is not explored by the while

loop on lines 8-17. Let us consider the inductive case that each node in this path was not placed

on the queue. Base case: Assume that node w1 was not placed on the queue. Since W is a path,

this means that (s, w1) ∈ E. Since this is the case, w1 must be placed on the queue with depth 1

in the loop on lines 3-6. Inductive case: Assume i ∈ {1, 2, . . . , (k − 1)}: wi was placed on the
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queue with depth i. Since there is no case in which the while loop on lines 8-17 may terminate

before all nodes have been dequeued, at some point during the execution of the algorithm wi must

be dequeued. Since we have assumed W is path, by Definition A.2, (wi, wi+1) ∈ E, additionally

we have assumed the depth of i < k, when wi is dequeued, we shall pass the check on line 10 and

run loop on lines 11-14. This loop must append wi+1 onto the queue with depth i+ 1.

Hence, by induction, wk must be placed onto the queue with depth k.

At some point during the execution of Algorithm 6, wk must be dequeued with depth

k. When this occurs the check on line 15 will be run. Since W is a path, by Definition A.2,

(wk, t) ∈ E, so we shall pass the check on line 16. Which will then cause line 17 to be executed for

path W . Hence it cannot be the case that there is some path W of length k between s and t which is

unexplored when Algorithm 6 terminates.

Lemma A.2. For any path (Definition A.2) W = {w1, w2, . . . , wk} of length k connecting s and t,

when wk is dequeued on line 9, the scorewk
value will reflect the promiscuity value (Definition A.3)

of path W .

Proof. Let r = promiscuity(W ). That is r = max{degree(w1), degree(w2), . . . , degree(wk)}.

We seek to show when wk is dequeued on line 9, scorewk
will be equal to r. Let us perform

induction over all of the elements path W .

Base case: w1 is placed onto the queue with depth 1 and scorew1 = max{degree(w1)}. This is

because since W is a path, (s, w1) ∈ E. So w1 is appended to the queue in the for loop on lines 3-6.

In this loop scorew1 is calculated on line 5 as degree(w1).

Inductive case: Assume i ∈ {1, 2, . . . , (k − 1)}: wi is dequeued from the queue with depth i and

scorewi
= max{degree(w1), degree(w2), . . . , degree(wi)}

We seek to show that wi+1 will be placed onto the queue with depth value i+ 1 and

scorewi+1
= max{degree(w1), degree(w2), . . . , degree(wi), degree(wi+1)}
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Since we have assumedW is path, by Definition A.2, (wi, wi+1) ∈ E, additionally we have assumed

the depth of i < k, so when wi is dequeued, we shall pass the check on line 10 and run loop on lines

11-14. Since wi+1 is a neighbor of wi, we shall calculate scorewi+1
on line 13. This calculation is

scorewi+1
= max{scorewi

, degree(wi+1)}, which we can expand to be

scorewi+1
= max{max{degree(w1), degree(w2), . . . , degree(wi)}, degree(wi+1)}

Which is equivalent to

scorewi+1
= max{degree(w1), degree(w2), . . . , degree(wi), degree(wi+1)}

.

Hence, by inducting along all nodes in W , wk will be placed onto the queue with

scorewk
= max{degree(w1), degree(w2), . . . , degree(wk)} = promiscuity(W )

Theorem A.1. Algorithm 6 is complete, that is, for any nodes s and t and path length k, we shall

return τ(s, t, k), the promiscuity score (Definition A.4). If no path can be found between s and t of

length k, we shall return∞.

Proof. We know that by definition of promiscuity score (Definition A.4) there is some path L =

{v1, v2, . . . , vk} such that the promiscuity value (Definition A.3) τ(s, t, k) = promiscuity(L).

Following the statement of Lemma A.1, we know all paths of length k must be explored by

Algorithm 6, that is line 17 must run. Therefore L must be explored during the execution of

Algorithm 6.

Following the statement of Lemma A.2, we know scorevk must have value promiscuity(L). So

when vk is dequeued, line 17 will be executed to set the current promiscuity score tracked by the
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algorithm to scorevk = τ(s, t, k). Since no path may have promiscuity value lower than τ(s, t, k),

the tracked value cannot be set any lower. So Algorithm 6 shall return τ(s, t, k) on line 18.

A.1.3 Breadth First Search Promiscuity Value Algorithm

Algorithm 7: Breadth First Search Algorithm for finding the promiscuity score τ(s, t, l).
Data: Graph G, source node s and target node t in G, path length k
Result: The promiscuity score τ(s, t, k) from s to t over graph G

1 begin
2 Q← PriorityQueue(); // min priority queue keyed on scoren
3 for n ∈ neighbors(s) do
4 depthn ← 1;
5 scoren ← degree(n);
6 Q.append(degree(n) : scoren, depthn, n);

7 τ(s, t, k)←∞;
8 tneighbors ← BuildHashMap(neighbors(t));
9 while Q ̸= ∅ do

10 scoren, depthn, n← Q.extractMin();
// Gets node on queue with lowest promiscuity score.

11 if degree(n) > τ(s, t, k) then
12 return τ(s, t, k) ;

13 if depthn < k then
14 for m ∈ neighbors(n) do
15 depthm ← depthn + 1;
16 scorem ←MAX{scoren, degree(m)};
17 Q.append(degree(m) : scorem, depthm,m);

18 if depthn == k then
19 if n ∈ tneighbors then
20 τ(s, t, k)←MIN{τ(s, t, k), scoren};

21 return τ(s, t, k);

In this algorithm, we aim to improve on the naive approach (Algorithm 6). We perform

three critical optimizations in our improved version of the algorithm. First, the queue on line 2 is

a priority queue keyed on the degree of each node. The second is we build up a hashmap of the

neighbors of the tail node t on line 8, which is then utilized in the check on line 19. Third, we

introduce a new condition in the while loop on lines 9-20. This condition is on lines 11-12, and
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it states that if the degree of the dequeued node is larger than the currently recorded promiscuity

score τ(s, t, k), we should return. I claim that if we fall into this case, we have found the optimal

promiscuity score, which we prove in Theorem A.2.

Theorem A.2. The promiscuity algorithm is guaranteed to return the optimal promiscuity score

τ(s, t, k) (Definition A.4) over G = (V,E) for any nodes s, t ∈ V and any value k. If no path exists

between s and t, we shall return∞.

Proof. Let G = (V,E) be a graph, s ∈ V be a source node, t ∈ G be a tail node, and k be some

non-negative integer. Let us call the value returned by Algorithm 7 when run on s, t, t, and G

returns value r. Let p be the true minimal promiscuity value for s and t over G with path length k.

If it is the case that no path can be found between s and t, we say that p = ∞ (as per Definition

A.4).

Let it be the case that r ̸= p, that is the returned value of Algorithm 7 is inconsistent with

our expected result. There must be one of two cases: Case 1: There does not exist a path of length

k which connects s and t, thus the minimal promiscuity value p =∞. Case 2: There does exist a

path of length k between s and t.

Case 1: There does not exist a path of length k which connects s and t. In this case the

minimal promiscuity value p =∞. If the value of p were not infinity, it implies there exists a path

connecting s and t (by definition of Promiscuity in Definition A.4. Since r ̸= p, r must be some

value which is not infinity. Therefore line 20 must run at least one time during the runtime of the

algorithm, as that is the only place in the entire algorithm for which the return value τ(s, t, k) is

updated. Let us call the node for which line 20 runs vk. For any dequeued node, line 20 can only

run if vk has both (1) a depth value of k (line 18) and (2) t is a neighbor of vk (line 19). However, if

that is the case, then vk must have been put on the queue

exists on some path of length k which connects s and t, which we have assumed does not

exist. Hence, it cannot be the case that r is any value other than infinity if no path of length k

connects s and t.
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Case 2) There does exist a path of length k which connects s and t. Since there is at least

one path which connects s and t, it cannot be the case that p = ∞. By definition of promiscuity

there must exist some path L = {v1, v2, . . . , vk} which connects s and t such that promiscuity(L)=p.

We know r ̸= p so we have either r < p or r > p. We shall refer to these as Case 2a and Case 2b

respectively.

Case 2a) Assume the promiscuity algorithm returns some value r such that r < p. It must

be the case that for some node wk, line 20 of the algorithm ran and set the value of τ(s, t, k) to r.

Since line 20 ran for node wk, it must be the case that the depth value of node wk was k (or else

the check on line 18 would fail). It must be the case that both scorewk
= r. Since wk was placed

on the queue with scorewk
= r, it must be the case that another node enqueued it; which we shall

call wk−1. This node must have had a depth of k − 1 and it must be the case that (wk−1, wk) ∈ E.

When line 16. Therefore, we know that τ(s, t, k), as defined on line 20, was set to r, which implies

that both degree(wk) ≤ r and that the scorewk
of wk−1 was less than or equal to r.

Inductive Step: Assume that node wi places wi+1 on the queue with a scorewi+1
less than

or equal to r, and with a depth value i + 1. Let us define the node which enqueued wi as wi−1.

It must be the case that there exists an edge (wi−1, wi) ∈ E. It must also be the case that 1) the

scorewi−1
≤ scorewi

≤ r and that 2) degree(wi) ≤ r. If either of these were not the case, then

scorewi
> r.

By induction, we know there must be a whole chain of nodesW = {w1, w2, w3, . . . , wk−1, wk}

of increasing depth value where

∀i ∈ [1, k]: degree(wi) ≤ r

∀i ∈ [1, k − 1]: (wi, wi+1) ∈ E
(A.1)

Additionally, we know that the only way a node of depth 1 may be placed on the queue

is in lines 3-6, which may only enqueue neighbors of the source node. Hence, (s, w1) ∈ E.

Therefore, W is a valid path of length k connecting the source and tail. And Promiscuity(W ) =

max(degree(w1), degree(w2), . . . , degree(wk)) ≤ r. But promiscuity(W ) ≤ r < p, which violates
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our assumption that p was the minimal promiscuity value for all paths of length k connecting s and

t. Hence, we cannot return a value r which is less than p.

Case 2b) Assume the promiscuity algorithm returns some value r such that r > p. Let a

path with promiscuity value p be represented by L = {v1, v2, . . . , vk}. Additionally, let the path

which set best score to r be represented by W = {w1, w2, . . . , wk}. It must be the case that either

1) vk is dequeued before wk or 2) vk is dequeued after wk. If 1) then vk must set the τ(s, t, k) to

a value less than or equal to p, and line 20 will not update the value of τ to r, since r > p. So,

r would not be returned, and it must be the case that 2) vk is dequeued after wk. We know that

Promiscuity(W ) = max(degree(w1), degree(w2), . . . , degree(wk)) = r. Hence, there must be at

least one node in path W with degree(wi) = r. But the queue defined on line 2 of the algorithm is a

priority queue keyed on the degrees of nodes, and we know that, by definition of promiscuity,

∀j ∈ {1, k} : degree(vj) ≤ p < r = degree(wi). (A.2)

Hence, all nodes in path L must be enqueued and dequeued before wi is dequeued. Since wi

precedes wk on path W , wi must be dequeued before wk. So, it cannot be the case that vk is

dequeued after wk.

Therefore, the algorithm may not return value r > p.

Since for inputs s and t and τ(s, t, k) = p Algorithm 7 may not return r < p by the proof

shown in Case 2a) and Algorithm 7 may not return r > p by the proof shown in Case 2b); it must

be the case that Algorithm 7 returns r = p.

Theorem A.3. The Breadth First Search Variant of the promiscuity algorithm (Algorithm 7) is

guaranteed to have a worst case runtime of O(b ∗ pk−1 ∗ lg(b ∗ pk−1)).

To show Theorem A.3 we must first prove two lemmas.
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Lemma A.3. No node with degree larger than p, where p is the promiscuity value for source node

s and tail node t over graph G = (V,E) with path length k, may be dequeued during execution of

Algorithm 7 and not cause the algorithm to terminate on line 12.

Proof. Here we show that any node we dequeue and run line 12 for must have degree at most

p, where p is the promiscuity value for source s and tail t over graph G with path length k. By

definition of promiscuity score (Definition A.4) there must exist some path L = {v1, v2, . . . , vk}

which connects s and t such that promiscuity(L) = p. Let us assume at any point during the

execution of the while loop on lines 9-20 we dequeue a node z, where degree(z) > p, but we do not

return on line 12. Since two nodes may not be dequeued at once, it must be the case that either Case

1) z was dequeued before vk was dequeued or Case 2) z was dequeued after vk was dequeued.

Assume Case 1 is true, that is z was dequeued before vk was dequeued. Either a) vk is

still in the queue or b) vk was never enqueued. We know that since vk is part of path L; that

degree(vk) ≤ p; if this were not the case, the promiscuity score of path L could not be p (by

Definition A.3). If vk is in the queue, then it must be dequeued before z since we have a priority

queue keyed on degrees of nodes, and degree(vk) ≤ p ≤ degree(z) Hence, it must be the case that

vk has not yet been enqueued.

If vk was never enqueued, then vk−1 cannot have been enqueued and dequeued, as line 14-17

would have resulted in vk being added to the queue. By the same argument above, degree(vk−1) ≤ p,

hence it must be dequeued before z, so it must also have never been added to the queue. Continuing

this argument in the same manner, it must be the case that all nodes in the path L were never placed

onto the queue, as they all must have a degree less than p. But v1 is a neighbor of the source node,

s, by the definition of a promiscuous path. So, v1 must be enqueued onto the queue during lines

3-6. Hence, this cannot be the case. Therefore it is impossible that z was dequeued before vk was

dequeued.

Assume Case 2 is true z was dequeued after vk was dequeued and does not cause our

algorithm to terminate at line 12. Therefore, it must be the case that τ(s, t, k) is set to a value greater

than degree(z). But we have assumed vk was dequeued. We know by definition of a promiscuous
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path that (vk, t) ∈ E, so line 24 must run when vk is dequeued and set τ(s, t, k) to p < degree(z).

So it cannot be the case that z was dequeued after vk was dequeued.

Hence, we have shown Lemma 1: no node with degree larger than p may be dequeued and

not cause the algorithm to terminate.

Lemma A.4. The maximum number of nodes which may ever be placed onto the queue declared

on line 2 of Algorithm 7 is
b(pk − 1)

(p− 1)
.

Proof. It is helpful to analyze the number of nodes on the queue in terms of their “depth” values.

All neighbors of the source node are assigned a depth value of one when enqueued in lines 3-6.

Each subsequent node is given a depth value of more than its parents depth value. No nodes may

have a depth value greater than k as the only location where nodes with a depth value greater than

one maybe enqueued are on lines 14-17, in this loop, we enqueue all neighbors, m, of the currently

dequeued node, n onto the queue with a depth of n plus one. This loop may only run if the depth of

n passes the check on line 13, which states that depthn < k. We will now use induction to discuss

the number of nodes which can be present on the queue for each depth value.

Base Case: The maximum number of neighbors of our source node is the branching factor

of our graph b. Since the only way for a node to be enqueued with depth value one is the loop on

lines 3-6. the maximum number of nodes on the queue with depth value one is b ∗ p1−1 = b.

Inductive Step: Assume the queue has at most b ∗ (pi−1) nodes with depth number i− 1. In

the worst case, each node with depth i− 1 will be dequeued. Additionally, in the worst case, every

node that is dequeued will add the maximum number of nodes possible and continue execution of

the algorithm (because by Lemma A.3, if a node has more than p neighbors, it cannot be dequeued

without terminating the algorithm). As stated on line 15, each of these newly enqueued nodes will

have depth (i− 1) + 1. Hence, in the worst case, the queue will have b ∗ (pi−1) ∗ p = b ∗ pi nodes

with depth i.
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Combining the fact that the maximum depth of nodes which can be placed on the queue is

k and , the worst-case number of nodes on the queue will be:

k∑
i=1

# nodes with depth i =
k∑

i=1

b ∗ pi−1 =
b(pk − 1)

(p− 1)

Proof. We seek to prove Theorem A.3 (the Breadth First Search Variant of the promiscuity algorithm

(Algorithm 7) is guaranteed to have a worst case runtime of O(b ∗ pk−1 ∗ lg(b ∗ pk−1)) ).

First, we must discuss the run times of a priority queue. We require only two priority queue

operations for our algorithm, Insert and Extract-Min. Using a Fibonacci heap implementation, a

priority queue can be implemented to have amortized run times of Insert in Θ(1) time and Extract-

Min in Θ(lg(n)) time (Cormen et al., 2009, Chapter 19). Since we are looking at the worst case run

time over the entire execution of the algorithm, it is appropriate to use these amortized run times, as

the priority queue will be accessed many times and it’s execution time will perform as a summation

of the average.

Next, we must discuss runtime of the construction of hash maps, also referred to as hash

tables (Cormen et al., 2009, Chapter 11). In this scheme, we process keys we seek to insert and

search through a hash function which spreads it evenly amongst a predefined search space. Under

this scheme, with well chosen hash functions, we will have a search time of O(1) and a memory

requirement of O(x) where x is the size of the search space. Additionally, with well chosen hash

functions, this hash map will take O(x) to construct.

Line 2 declares a priority queue and takes O(1) time.

The loop in lines 3-6 of the BFS algorithm iterates by the number of neighbors of s, so

it will execute degree(s) times. Lines 4 and 5 both declare variables and take O(1) time. Line 6

requires us to insert into a priority queue, using a Fibonacci heap this will also be a O(1) operation.

The number of neighbors of s is constrained by the bounding factor b of the graph. Therefore the

runtime of this loop is O(b ∗ (1 + 1 + 1)) = O(b).
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Line 7 takes O(1) time to declare a single variable.

The return statement on line 21 takes constant runtime.

We now seek to get analyze the runtime of the while loop on lines 9-20. First line 10 extracts

the minimum node from the priority queue, this will take time O(ln(x)) where x is current size of

the priority queue. We know by Lemma A.4 that the maximum number of nodes on the queue can

be
b(pk − 1)

(p− 1)
. So the worst case execution time for line 10 is O(lg(

b(pk − 1)

(p− 1)
)) = O(lg(b ∗ pk−1)).

For convince, let us refer to the dequeued node as n. Lines 11-12 are both constant time operations.

The check on line 13 is constant time. The loop on lines 14-17 follows the same execution pattern

as lines 3-6, iterating over each neighbor of the dequeued node, with each operation on lines 15,16,

and 17 taking constant time, therefore for any dequeued node n, the runtime of this loop will be

O(degree(n)). We know from Lemma A.3 that all nodes on the queue must have degree less than

or equal to p, so in the worst case this loop will take O(p). The check on line 18 takes constant

time. The performance of line 19 will depend on the specific hash map, but under well chosen hash

functions this check will have runtime of O(1). The update on line 20 has a constant runtime.

To help us further analyze the runtime of the while loop on lines 9-20, it is useful to

calculate two values, the maximum number of nodes on the queue with depth 1, 2, . . . , (k − 1)

and the number of nodes on the queue with depth k. Using the proof from Lemma A.4, we know

each { # of nodes with depth i} = b ∗ pi−1. So the number of nodes with depth 1, . . . , (k − 1) is∑k−1
i=1 b ∗ pi−1 =

b(pk−1 − 1)

(p− 1)
and the maximum number of nodes with depth k is b ∗ pk−1.

The runtime of the loop for nodes with depth less than k requires the dequeuing of the

priority queue on line 10, which takes O(lg(b ∗ pk−1)) time. It will pass the check on line 13

requires execution of the loop on lines 14-17. This loop requires O(p) execution time for each node

dequeued. So the contribution to the runtime from these nodes is

177



O({ # of nodes with depth 1, 2, . . . , (k − 1)} ∗ {execution time of while loop})

=O((
b(pk−1 − 1)

(p− 1)
) ∗ (p+ lg(b ∗ pk−1)))

=O((b ∗ pk−2) ∗ (p+ lg(b ∗ pk−1))

=O(b ∗ pk−1 + b ∗ pk−2 ∗ lg(b ∗ pk−1))

(A.3)

The runtime of the loop for nodes with depth k still requires the dequeuing of the priority

queue on line 10, which takes O(lg(b ∗ pk−1)) time. It will fail the check on line 13, but pass

the check on line 18. So we must execute lines 19, 20, which both take constant time. So the

contribution to the runtime from these nodes is

O({ # of nodes with depth k} ∗ {execution time of while loop})

=O((b(pk−1)) ∗ (1 + lg(b ∗ pk−1)))

=O(b ∗ pk−1 ∗ lg(b ∗ pk−1))

(A.4)

So the final runtime of the while loop on lines 9-20 is

O({ # of nodes with depth 1, 2, . . . , (k − 1)} ∗ {execution time of while loop})

+O({ # of nodes with depth k} ∗ {execution time of while loop})

=O(b ∗ pk−1 + b ∗ pk−2 ∗ lg(b ∗ pk−1)) +O(b ∗ pk−1 ∗ lg(b ∗ pk−1))

=O(b ∗ pk−1 + b ∗ pk−2 ∗ lg(b ∗ pk−1) + b ∗ pk−1 ∗ lg(b ∗ pk−1))

=O(b ∗ pk−1 ∗ lg(b ∗ pk−1))

(A.5)

So the final worst case execution of the algorithm will be constant time operations from

lines 2, 7, 21, O(b) execution time for the loop on lines 3-6, O(b) execution time for constructing
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the hashmap on line 8, and O(b ∗ pk−1 ∗ lg(b ∗ pk−1)) execution time for the loop on lines 9-20. So

the final execution time will be

O(1 + 1 + 1 + b+ b+ b ∗ pk−1 ∗ lg(b ∗ pk−1))

=O(b ∗ pk−1 ∗ lg(b ∗ pk−1))

(A.6)

where most of the execution time will be dominated by the processing of nodes of depth k

within the while loop.

A.1.4 Depth First Search Promiscuity Value Algorithm

We now seek to discuss the other variant of the promiscuity algorithm, Algorithm 8. In this

version of the algorithm, we prioritize nodes with higher depth values for exploration first; when

nodes have tied depth values, the node with the lower degree should be chosen. This variant of the

algorithm will have a higher runtime in the majority of cases, but has lower complexity in memory

usage which may make it attractive in certain cases. This version has also been implemented, as

described in the Implementation section (Section A.3).

Lemma A.5. No node with depth of one AND degree larger than p, may be dequeued and not cause

the algorithm to terminate on line 12. Where p is the promiscuity value (as defined in Definition

A.3) for source s and tail t over graph G with path length k and depth being the length of path.

Proof. Proof by contradiction. Let us assume it is the case that a node, w1, is dequeued with

depth of one, and degree(w1) > p. We know that by definition of promiscuity score (Definition

A.4) there is some path L = {v1, v2, . . . , vk} such that the promiscuity value (Definition A.3)

τ(s, t, k) = promiscuity(L). It must be the case that since both v1 and w1 have a depth value of

one, they are neighbors of s. So these nodes will be placed onto the queue in the for loop on lines

3-6.
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Algorithm 8: Depth First Search Algorithm for finding the promiscuity score τ(s, t, l).
Data: Graph G, source node s and target node t in G, path length k
Result: The promiscuity score τ(s, t, k) from s to t over graph G

1 begin
2 Q← PriorityQueue(); // min priority queue keyed on scoren
3 for n ∈ neighbors(s) do
4 depthn ← 1;
5 scoren ← degree(n);
6 Q.append(depthn, scoren, n);

7 τ(s, t, k)←∞;
8 tneighbors ← BuildHashMap(neighbors(t));
9 while Q ̸= ∅ do

10 depthn, scoren, n← Q.pop();
// Gets node on queue with lowest promiscuity score.

11 if degree(n) > τ(s, t, k) then
12 return τ(s, t, k) ;

13 if depthn < k then
14 for m ∈ neighbors(n) do
15 depthm ← depthn + 1;
16 scorem ←MAX{scoren, degree(m)};
17 Q.append(depthm, scorem,m);

18 if depthn == k then
19 if n ∈ tneighbors then
20 τ(s, t, k)←MIN{τ(s, t, k), scoren};

21 return τ(s, t, k);

We’ll now show that Algorithm 8 must dequeue and execute on all nodes in path L before

dequeuing w1 through induction.

Base Case: It must be the case that node v1 must be dequeued before node w1 by line

10. This is because as degree(v1) ≤ promiscuity(L), so degree(v1) ≤ p which entails that

degree(v1) < degree(w1). Since depthv1 < k and v2 is a neighbor of v1, line 13 will be passed

and v2 will be added onto the queue with depth 2 in the for loop on lines 14-17.

Inductive Case: Assume node vi with depthvi = i ≥ 2 has been placed onto the queue.

It must be the case that this node is dequeued before w1 is dequeued. This is because depthvi >
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depthw1 , which by construction of our priority queue, means it gets priority. It must be the case that

either (1) depthvi < k or (2) depthvi = k.

Case (1): If depthvi < k, since node vi+1 is a neighbor of vi, in the for loop on lines 14-17

vi+1 will be placed onto the queue with depthvi+1
= i+ 1.

Case (2): If depthvi = k, the check on line 18 will be passed, additionally, since we know

L is a path from s to t, the check on line 19 will also pass. So finally line 20 will be called and

update the currently tracked value τ(s, t, k) to p.

Since all nodes in path L must be dequeued before w1 can be dequeued, this will result in

τ(s, t, k) being set to p. In this case, when w1 is dequeued, when the check on line 11 is reached, it

will succeed and line 12 will be executed, terminating the algorithm.

Lemma A.6. It is impossible for two nodes to be placed onto the queue with any depth value i and

with different parent nodes (the parent is the node which was dequeued when the node was placed

onto the queue).

Proof. All nodes with depth one must be placed on the queue by the source node s. Let us assume

it is the case that depth i ≥ 2.

Proof by contradiction: Let it be the case that was have two nodes on the queue vi, wi, with

depth i. Let it also be the case that vi has parent vi−1 and wi has parent wi−1 and vi−1 ̸= wi−1

Lemma A.7. The maximum number of nodes which may be placed onto the priority queue in

Algorithm 8 with depth value of one is b.

Proof. The only place we may place nodes with a depth value of one onto the queue is in the loop

in lines 3-6. The number of nodes which may be placed onto the queue is bound by the number

of neighbors of s. In the worst case, s will have a degree of b. Therefore the maximum number of

nodes with depth one that can be placed on the queue is b.

Lemma A.8. The maximum number of nodes which may be placed onto the priority queue at one

time in Algorithm 8 with depth value of 2 is p.
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Proof. Using the statement of Lemma A.5 (No node with depth of one AND degree larger than p,

may be dequeued and not cause the algorithm to terminate on line 12). Let us assume we know that

each node of depth one which is dequeued in the while loop on lines 9-20. The only place nodes

of depth 2 may be added to the queue is on line 17. This line will run for each neighbor of our

dequeued node, which we know to have degree less than or equal to p. Additionally by lemma A.6,

we know that it is impossible for there to be two different parents to place nodes with depth 2 on the

queue. So there may only be p nodes with depth 2 on the queue at all times.

Lemma A.9. The maximum number of nodes which may be placed onto the priority queue in

Algorithm 8 with depth value of {3, 4, . . ., k-1, k} is b.

Proof. The argument here is the same argument as in Lemma A.8. Except it does not have any

restriction on number of nodes is the bounding factor b. Let us assume a node u with depth i is

dequeued in the while loop on lines 9-20. We know that u must have maximal degree b. So each

neighbor of u will be enqueued with depth i+ 1, which means at most b nodes with depth i+ 1 will

be enqueued. No further nodes of depth i+ 1 can be enqueued until all nodes of this depth have

been dequeued and processed. This is because when we dequeue a node on line 10, we dequeue

nodes of higher degree first, and by line 15, all nodes enqueued must have a depth value greater

than the node currently dequeued.

Lemma A.10. The maximum number of nodes which may be placed onto the priority queue in

Algorithm 8 is O((k − 1) ∗ b+ p).

Proof. The statement of lemma A.10 follows from the statements of Lemma A.7, Lemma A.8, and

Lemma A.9. Knowing that no nodes with depth value greater than k may ever be placed on the

queue, we simply sum the maximum number of nodes which may be placed on the queue for each

depth value. Thus we get
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{Maximum # of nodes on the queue}

={Maximum # of nodes on the queue with depth 1}

+{Maximum # of nodes on the queue with depth 2}

+{Maximum # of nodes on the queue with depth 3, 4, . . . , k}

=b+ p+ (k − 2) ∗ b

=(k − 1) ∗ b+ p

(A.7)

Lemma A.11. The maximum number of nodes of depth i that may be explored (enqueued and

subsequently dequeued) is O(p ∗ bi−1)-1 (for i greater than or equal to 2).

Proof. Proof by induction. Base case. Let depth value i = 2. As we have discussed in lemma A.7,

lemma A.8, and lemma A.9, we know the number of nodes with depth 1 which may be placed onto

the queue is b. Additionally, we know that each of those nodes may be dequeued and place p nodes

of depth 2 onto the queue (which would be b ∗ p total nodes). Since we can establish no restriction

on the degree size of nodes depth 2, each of these nodes may place b nodes onto the queue. So we

would in the worst case see O(p ∗ b) = O(p ∗ b2−1 nodes of depth 2 placed on the queue.

Inductive step. Let’s assume we place and explore O(bi−2 ∗ p) nodes of depth i− 1 on the

queue. Each of these nodes may place b nodes onto the queue with depth i, which would need to

be explored. Therefore we would have O(b ∗ bi−2 ∗ p) = O(bi−1 ∗ p) nodes of depth i placed and

explored on the queue.

Theorem A.4. The runtime of the DFS variant of the Promiscuity Algorithm (Algorithm 8) is

O(bk−1 ∗ p ∗ lg(b ∗ (k − 1) + p))

Proof. This argument has a very similar structure to that of Theorem A.3. First it is important to

assume we use a Fibonacci heap for the priority queue implementation, which can be implemented
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to have amortized run times of Insert in Θ(1) time and Extract-Min in Θ(lg(n)) time (Cormen et al.,

2009, Chapter 19).

Similarly we must look at the time to build and construct hash tables/hash maps. We know

the time to construct hashmap isO(x) where x is the size of the search space, and with a well chosen

hash function, the search time for the hashmap will be O(1) (Cormen et al., 2009, Chapter 11).

Line 2 declares a priority queue and will take O(1) time.

The loop on lines 3-6 will be executed for each neighbor of s, so degree(s) times. Lines

4 and 5 are both variable declarations and take O(1) time. Line 6 will take O(1) to execute on a

Fibonacci heap. So this loop will take O(degree(s)) = O(b) time to execute.

Line 7 is a variable declaration and takes O(1) time.

Line 8 is requires building a hashmap for each neighbor of t, which will takeO(degree(t)) =

O(b) time to execute.

The return statement on line 21 will take constant time to execute.

So the runtime for all lines not within the while loop is

O({runtime of line 2}) +O({runtime of lines 3-6})

+O({runtime of line 8}) +O({runtime of line 21})

=O(1) +O(b) +O(b) +O(1)

=O(b)

Now we shall analyze the runtime of the while loop on lines 9-20.

Line 10 will pop the current top node of the priority queue. This will take Θ({size of queue}).

We know by lemma A.10 that the maximum size of the priority queue is O(b ∗ (k − 1) + p). So the

runtime of this line is O(lg(b ∗ (k − 1) + p)).2

Line 11 is a comparison which will take O(1) time.

Line 12 is a return statement which will take O(1) time.

2. We could do a more nuanced analysis of the runtime of line 10 based on the depth levels of the nodes we’re
exploring, as the queue will only have O(p+(k− 1) ∗ b) nodes when we are exploring nodes at depth k, but accounting
for this does not affect our final result.
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Line 13 is a comparison which will take O(1) time.

Let us refer to the dequeued node as n. The for loop on lines 14-17 will only execute for

dequeued nodes with depth values depthn ∈ {1, 2, . . . , k − 1}. It will execute for each neighbor

n. Line 15 is a variable creation and will take O(1) time. Line 16 is a maximum operation

which takes O(1) time. Line 17 is an append which takes O(1) time. So this loop will take

O(degree(n) ∗ 1) = O(b) time to execute.

Line 18 is a comparison which will take O(1) time to compute.

Lines 19 and 20 will only execute for nodes with depthn = k. Line 19 will take O(1) time

to execute with a well constructed hashmap. Line 20 is a variable update which takes O(1) time to

execute.

Combining all the above statements, for nodes with depth ∈ {1, 2, . . . , k − 1} the while

loop on lines 9-20 will take

O({Runtime of line 10}) +O({Runtime of line 11}) +O({Runtime of line 12})

+O({Runtime of line 13}) +O({Runtime of lines 14-17}) +O({Runtime of line 18})

=O(lg(p+ b ∗ (k − 1))) +O(1) +O(1)

+O(1) +O(b) +O(1)

=O(lg(b ∗ (k − 1) + p) + b)

(A.8)

And for nodes with depth= k the while loop on lines 9-20 will take
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O({Runtime of line 10}) +O({Runtime of line 11}) +O({Runtime of line 12})

+O({Runtime of line 13}) +O({Runtime of line 18}) +O({Runtime of lines 19-20})

=O(lg(p+ b ∗ (k − 1))) +O(1) +O(1)

+O(1) +O(1) +O(1)

=O(lg(b ∗ (k − 1) + p))

(A.9)

We’ll now count how many nodes we explore at different depths.

We explore at most O(b) nodes with depth 1.

We must now look at how many nodes of depths ∈ {2, . . . , k − 1} we may explore in the

execution of this Algorithm. Looking at the result of lemma A.11, we know for depth value i, the

maximum number of nodes we may explore is O(p ∗ bi−1). So the number of nodes we explore is

k−1∑
i=2

O(p ∗ bi−1) =

k−2∑
i=1

O(p ∗ bi) = O(
p(bk − b2)
(b− 1)b

) = O(p ∗ bk−2)

So combining the two statements above, for depths ∈ {1, 2, . . . , k − 1} we explore

O({Nodes with depth 1}) + O({Nodes with depths ∈ {2, . . . , k − 1}}) = O(b) + O(p ∗ bk−2) =

O(p ∗ bk−2) nodes.

By lemma A.11 we know the maximum number of nodes of depth k we can explore is

O(p ∗ bk−1).

So the runtime of the while loop on lines 9-20 will take
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O({Number nodes explored of depth ∈ {1, 2, . . . , k − 1}})

O({Runtime for nodes of depth ∈ {1, 2, . . . , k − 1}})

+O({Number nodes explored of depth= k})

∗O({Runtime for nodes of depth= k})

=O(p ∗ bk−2)

∗O(lg(p+ b ∗ (k − 1)) + b)(using Eq A.8)

+O(p ∗ bk−1)

∗O(lg(p+ b ∗ (k − 1)))(using Eq A.9)

=O(p ∗ bk−2 ∗ lg(b ∗ (k − 1) + p) + p ∗ bk−1)(runtime for handling all nodes with depths 1-(k-1))

+O(p ∗ bk−1 ∗ lg(b ∗ (k − 1) + p))(runtime for handling all nodes with depth k)

=O(p ∗ bk−2 ∗ lg(b ∗ (k − 1) + p) + p ∗ bk−1 + p ∗ bk−1 ∗ lg(b ∗ (k − 1) + p))

=O(p ∗ bk−1 ∗ lg(b ∗ (k − 1) + p))

(A.10)

Thus we find the desired result. Here we notice the same phenomenon as we saw in the

runtime of the BFS Algorithm (Algorithm 7), where the runtime is completely dominated by the the

nodes of the greatest depth.

A.2 Promiscuity Worst Case Memory Usage and Runtime Summary

Here we seek to summarize the results from the previous sections.

In Table A.1 we summarize all of the results for runtime and memory usage of all three

approaches we described.

In comparing the results we see some interesting results. In the case where no path can be

found, Algorithm 6, Algorithm 7 and Algorithm 8 reduce to a very poor runtime (O(bk ∗ lg(bk))),
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Algorithm Runtime Memory Usage
Naive Approach (Algorithm 6) O(bk ∗ lg(b)) O(bk)

BFS Optimized Approach (Algorithm 7) O(b ∗ pk−1 ∗ lg(b ∗ pk−1)) O(b ∗ pk−1)
DFS Optimized Approach (Algorithm 8) O(bk−1 ∗ p ∗ lg(p+ (k − 1)b)) O(b ∗ (k − 1) + p)

Table A.1: A summary of runtimes and memories for the various algorithms for calculating
promiscuity.

which is actually worse than the naive approach. This is due to the fact that while both algorithms

would need check all possible paths between the source and tail, Algorithm 7 must take more time

constructing, and dequeuing nodes from the priority queue.

A.3 Implementation

Neo4J is the underlying graph database software which powers multiple of the largest

biomedical knowledge graphs. This software library enables users to create large queryable data

structures. Both ROBOKOP (Section 1.5.1) and HetioNet (Section 1.5.2) have Neo4J deployments

of their knowledge graphs.

Neo4J enables users to extend the database software with custom code. This process is

analogous to the “User-defined Functions” (UDFs) commonly utilized in the relational database

community for SQL. In Neo4J the custom user code are called Procedures. These procedures can

be directly invoked utilizing the Cypher language for any server. The process of installing plugins

to servers is simple and flexible, as it takes advantage of the interoperability of the Java code base.

To integrate any plugin into a new database, a user simply needs to download the source

code for the algorithm (https://github.com/DnlRKorn/promiscuity-procedure)

and compile it using any Java SDK to a JAR file. The JAR file must then be inserted into the

$NEO4J HOME/plugins directory, and the server restarted.
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