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Necrotizing enterocolitis: Bench
to bedside approaches and
advancing our understanding of
disease pathogenesis
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Necrotizing enterocolitis (NEC) is a devastating, multifactorial disease mainly
affecting the intestine of premature infants. Recent discoveries have
significantly enhanced our understanding of risk factors, as well as, cellular
and genetic mechanisms of this complex disease. Despite these
advancements, no essential, single risk factor, nor the mechanism by which
each risk factor affects NEC has been elucidated. Nonetheless, recent
research indicates that maternal factors, antibiotic exposure, feeding,
hypoxia, and altered gut microbiota pose a threat to the underdeveloped
immunity of preterm infants. Here we review predisposing factors, status of
unwarranted immune responses, and microbial pathogenesis in NEC based
on currently available scientific evidence. We additionally discuss novel
techniques and models used to study NEC and how this research translates
from the bench to the bedside into potential treatment strategies.
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Introduction

Necrotizing enterocolitis (NEC) is a gastrointestinal disease that commonly affects

preterm infants and is a major cause of morbidity and mortality in neonatal intensive

care units (NICUs). Despite the advancements made in providing neonatal intensive

care in recent years, NEC remains a devastating disease in NICUs. Approximately

7%–8% of premature infants in the NICU are diagnosed with NEC, with mortality

rates approaching 20%–30% (1, 2). Of those that survive, many suffer from

detrimental long-term effects on the intestines, growth, and neurodevelopment (3, 4).

NEC is characterized by inflammation and necrosis in the intestines, and often

presents with a distended abdomen and blood in the stool (5, 6). Currently, NEC is

treated with either a medical or surgical approach. The medical approach for the

milder stages of NEC, consists of cessation of feedings, stomach decompression,

antibiotics, frequent monitoring, and supportive care. Surgery is required if the infant

experiences gangrene or intestinal perforation, and this treatment approach carries a
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higher rate of mortality (7). These treatment approaches have

not changed in several decades and novel approaches to

prevent or treat NEC are desperately needed.

Research into identifying the etiology of NEC has revealed

that the most prominent risk factor is infant prematurity (8,

9). Approximately 9 of 10 infants diagnosed with NEC are

born premature (gestational ages 22–37 weeks), with the most

severe cases typically manifesting in very low birth weight

(VLBW) preterm infants with a birth weight of <1,500 grams.

Although cases of NEC have been observed in full-term

infants, VLBW infants maintain the highest chances of

contracting and succumbing to NEC (10).

This increased occurrence and fatality in premature infants

has been attributed in part to their underdeveloped innate and

adaptive immune systems, as well as decreased diversity of the

gut microbiome compared to those of full-term infants (11,

12). Research suggests that intestinal immaturity and

undeveloped immunity of preterm infants allows pathogens to

bypass the epithelial cell layer to induce inflammation (13).

One of the ways to decrease NEC incidence is to provide

maternal breast milk to infants. Human milk oligosaccharides

(HMOs) and immunoglobins (Ig), such as immunoglobulin A

(IgA), are present in breast milk and have been shown to

protect against NEC (14, 15). The components in breast milk

help prevent the onset of NEC and shift the infant’s gut

microbial composition, which in turn bolsters the immune

response (16). While we have some idea of the factors that

contribute to and the factors that protect against the disease,

the specific mechanisms that lead to the pathogenesis of NEC

are not fully understood.

In this review, we examine factors that may contribute to

NEC and associated pathogenesis, including the role that the

mucosal immune response and the microbiome play in

disease. Furthermore, we outline the various in vitro and in

vivo NEC models used to demonstrate these findings and

explore how these conclusions can lead to the development of

preventative measures and treatments designed for NEC.
Factors that may contribute to NEC

Although the etiology of NEC has yet to be completely

elucidated, there are a multitude of factors, before and after

birth, that can predispose infants to NEC. Maternal health

status can provide substantial insight into an infant’s risk of

contracting NEC. According to a review of NEC risk factors

in infants, variables such as maternal age, intrapartum

antibiotics, incomplete steroid exposure, and maternal high

neutrophil to lymphocyte ratio (NLR) are significant

prognostic factors (9). Several observational studies have

examined these factors in detail. A retrospective case control

study with 97 matched pairs of infants showed a significantly
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higher odds ratio for antenatal ampicillin exposure for infants

who later developed NEC than control infants (17).

Considering antenatal steroid exposure, it has been

established that this treatment reduces morbidities and

improves overall neonatal survival. However, an incomplete

course of antenatal steroids or no steroid exposure has been

associated with higher rates of more severe NEC (18). In a

separate retrospective cohort study, an elevated maternal NLR

(indicative of systemic inflammation) was significantly

associated with the development of NEC (19). It is critical to

note that blood NLR is a key diagnostic and prognostic

indicator for disease states such as diabetes, obesity,

hypertension, and heart disease, which are marked by

inflammation. As such, the positive association between

elevated maternal NLR and NEC suggests a possible

relationship between NEC and placental vascular dysfunction

caused by these disease states.

Preeclampsia, a serious complication of pregnancy, is also

associated with an increased risk of NEC in preterm infants.

Although the pathogenesis of preeclampsia remains unclear, it is

theorized that the placental ischemia, abnormal hemostasis,

leukocyte activation, and dysregulated nitric oxide metabolism

associated with preeclampsia seem to be core components that

may contribute to NEC development in preterm infants (20).

Overall, preeclampsia reduces placental perfusion, which can

lead to fetoplacental hypoxia and the pathogenesis of

intrauterine growth restriction (IUGR). Both IUGR and reduced

placental support, as indicated by abnormal patterns in

antenatal umbilical dopplers, can impose increased risks for

later NEC development (20, 21). Additionally, maternal diabetes

mellitus (DM) poses a significant risk of NEC to infants, as

determined by a retrospective study of low birthweight infants

born to mothers with and without DM (21, 22).

Birth route may also provide insight into an infant’s risk of

developing NEC due to the impact that birth route has on the

infant microbiome. However, the effects of Cesarean section

(C-section) on the risk of NEC development are highly

contested. A recent retrospective review discovered that

delivery by C-section (and the presence of an umbilical

arterial catheter) is associated with a decreased risk of NEC,

possibly due to a decreased stress burden on the neonate

during the C-section birthing process as compared to vaginal

birth (23). A secondary analysis of data from a randomized

controlled trial found no significant association between C-

section in extreme preterm delivery and the onset of NEC

(24). In contrast, another national case-control study

established a positive association between C-section and the

risk of NEC (25). Thus, there is conflicting data describing

the relationship between C-sections and NEC incidence in

neonates. Such disparities in data further indicate that NEC is

a multifactorial condition and additional studies are required

to delineate the maternal conditions that may predispose an

infant to the disease.
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Infant prematurity, characterized by both low birth weight

and gestational age, is one of the most important risk factors

for the development of NEC. Several studies have established

that infants with a lower gestational age have a greater risk of

developing NEC, along with higher mortality and surgical

need (26, 27). Another retrospective study reported a higher

NEC incidence in preterm infants that are small for

gestational age (SGA) (28). While NEC pathogenesis in SGA

neonates has not been completely explained, it has been

proposed that gastrointestinal (GI) tract ischemia can

contribute to NEC pathogenesis in preterm infants. Immature

development of the GI tract can prime a “leaky” gut barrier

susceptible to bacterial translocation due to incomplete

formation of tight junctions, impaired peristalsis, and a thin

mucus layer (29). The reduced structural integrity of the gut

barrier can further decrease the uptake of essential nutrients

for growth, exacerbating the effects of NEC.

Different types of infant nutrition can impact the

pathogenesis of NEC. The nutritional requirements of preterm

infants usually cannot be sustained solely with breast milk or

standard formula—bovine and human-milk-based fortifiers

are often needed to provide additional proteins, fats, vitamins,

and minerals for adequate growth and development. However,

some studies suggest that bovine milk-based infant formulas

are positively associated with a higher risk of NEC, reviewed

in (30). Although the exact link between bovine milk-based

standardized formulas and NEC pathogenesis is not clear, one

theory suggests that in the absence of the protective factors

found in breast milk, infants receiving formula are at an

increased incidence of NEC. This may render the gut more

susceptible to the overgrowth of pathogenic microbes, such as

the family of Gram-negative Enterobacteriaceae, and the

initiation of widespread pro-inflammatory responses to

bacterial translocation across the gut barrier (31). In contrast,

the administration of maternal breast milk has been

conclusively established to decrease NEC incidence (32). It

has been long-established that human milk is the ideal source

of nutrition for both premature and full-term infants. Several

studies have demonstrated that there is a clear benefit to

maternal human milk or donor human milk in the absence of

maternal milk, reviewed in (33). Premature infants who

received human milk have a demonstrably lower incidence of

NEC than those who did not (34).

Intestinal dysbiosis, or the imbalance of a healthy gut

microbial composition, has also been implicated as a

predisposing factor to NEC. It is known that the gut

microbiome of preterm infants has considerably reduced

bacterial diversity and increased vulnerability to pathogens

as compared to full-term infants (35). Additionally, there is

a positive association between early antibiotic use and NEC

onset, which supports the intestinal dysbiosis hypothesis

(36). There have also been reports of immune dysregulation

in conjunction with intestinal dysbiosis, particularly
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concerning heightened toll-like receptor 4 (TLR4) signaling

and downstream inflammatory responses (37). Taken

together, the pathogenesis of NEC is multifactorial and

complex, rendering the root pathophysiology of NEC

largely unanswered.
Immunological status of infants with
NEC

Immature intestinal immune defense is among several factors

associated with the high morbidity and mortality rates of NEC.

Alteration of key innate and adaptive immune responses leads

to dysfunction in intestinal barrier thus resulting in an

increased inflammatory response (Figure 1) (38–40). The onset

of NEC has been linked to low birth weight and gestational

age, so while all infants have immature innate immunity,

premature infants are also born with undeveloped adaptive

immune systems. To make up for this weakened immunity, the

transfer of maternal milk components, including secretory IgA

(sIgA), as well as placental immunoglobulin G (IgG), provide

protection to newborns until their own adaptive immune

defenses can develop (15). In formula-fed premature infants,

the levels of transferred maternal immune defenses are

significantly reduced, potentially increasing their susceptibility

of developing NEC (41).

In this section, we summarize the current scientific evidence

of the innate and adaptive immune responses in infants with

NEC. Specifically, we discuss how NEC pathogenesis relates to

the vertical transfer of immunity from mother to child,

alteration in physical barriers, and immunity guarding the

gastrointestinal tract.
Maternal antibody transfer

Newborns do not cultivate a fully mature immune system

until a few years after birth (42). To compensate, maternal

IgG and IgA antibodies are donated from the placenta and

maternal breast milk (if provided) to protect against

pathogens and the development of NEC (15). Maternal IgG

transfer to the fetus across the syncytiotrophoblast depends

on the IgG-FcRn (neonatal Fc receptor) interaction. The

expression of IgG-FcRn begins during the first trimester (12

weeks) of pregnancy and continues to rise until between 17

and 41 weeks gestation. The majority of placental IgG transfer

occurs after 28 weeks of gestation. IgG levels reach 50%

maternal concentration between 28 and 33 weeks gestation

and will rise above maternal levels by 20%–30% at term (43,

44). It is possible that low IgG levels in preterm infants may

predispose these infants to develop NEC.

In addition to the transfer of maternal IgG, transfer of

maternal IgA through breast milk, also protects infants from
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FIGURE 1

Diagrammatic overview of factors predispose premature infants to NEC and dysregulation of immunity contributing to the diseased state.
Figure created with Biorender.com and affinity designer.
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NEC. Originating from IgA+ plasma cells in the gut and

educated by gut microbiota, IgA in the intestine can bind to

pathogens and aid in their clearance. The ability of bacteria

to bind to IgA was negatively correlated to NEC

development, and the reduced stool bacterial diversity

known to precede NEC was associated with a higher amount

of unbound Enterobacteriaceae (15). Taken together, this

data suggests that the absence of sIgA creates higher

susceptibility to infections as well as delayed gut microbiota

maturation which leads to gastrointestinal inflammatory

diseases such as NEC.
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Breast milk components

As the primary source of nutrition, breast milk ensures

proper growth and development for newborns. Human milk is

composed of micro and macronutrients, bioactive components,

growth factors, antibodies, and HMOs (45). HMOs, in

particular, play an important role in shaping microbiome

composition and modulating neonatal immunity. HMOs act as

natural prebiotics, functioning as soluble decoy receptors or

antiadhesives to block the adhesion of pathogens to epithelium.

They also enhance commensal growth and limit pathogen
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growth (46). HMOs are non-digestible sugars, composed of five

basic monosaccharide units: glucose, fucose, d-galactose, N-

acetylglucosamine, and sialic acid (47, 48). These

monosaccharide units are joined by glycosidic linkage to

generate a variety of HMOs with different functions. HMOs

are indigestible in the human upper digestive tract and remain

intact while in the colon. Colonic microbes secrete enzymes to

utilize these HMOs as nutrition (49, 50). Many of the

commensals that degrade HMOs for fuel are members of the

Bifidobacterium genus, mostly beneficial bacteria for infant

health. Specific examples are B. longum and B. breve that are

usually prominent in the digestive tract of breastfed infants.

In addition, Bacteroides species possess an excellent capacity to

metabolize dietary polysaccharides to host-derived mucus-

associated glycans. A study by Sodhi and colleagues has shown

that HMOs 2′-fucosyllactose (2′-FL) and 6′- sialyllactose (6′- SL)
can reduce NEC severity through TLR4 inhibition (51). 2′-FL also

suppresses lipopolysaccharide (LPS) induced inflammation during

Escherichia coli (E. coli) invasion of intestinal epithelial cells (52).

Similarly, Masi et al. found significantly lower disialyllacto-N-

tetraose (DSLNT) in the maternal milk given to infants prior to

NEC development (53). Furthermore, authors reported that low

DSLNT in milk was also associated with a significantly lower

relative abundance of Bifidobacterium sp. and higher Enterobacter

cloacae in the stool of infants prior to NEC (53). Fractions of

HMOs were also shown to decrease mucus penetrability and

bacterial attachment by enhancing the expression of Mucin 2

(MUC2) in a mouse model of NEC (54).

Other milk factors such as casein, a highly glycosylated breast

milk protein, promotes intestinal defenses by increasing goblet cell

numbers, enhancingMuc2 expression, and Paneth cell activity (55,

56). Additional factors found in breast milk include lactoferrin and

lysozymes that possess antipathogenic properties. Enteral

supplementation of lactoferrin has been shown to decrease the

likelihood of late-onset bacterial and fungal sepsis in preterm

infants, but meta-analysis has shown there was no significant

decrease in NEC in infants who were received lactoferrin (16).

Breastmilk platelet activating factor-acetyl hydrolase (PAF-AH)

potentially protects preterm newborns from NEC (57). Similarly,

interleukin-10 (IL-10) found in breast milk has been found

protective against developing NEC in premature infants (58). In

addition to IL-10, maternal transforming growth factor beta

(TGF-β) provides protection by helping to increase IgA locally

in the gut (59). Growth factors found in breast milk, such as

insulin-like growth factor (IGF) and epidermal growth factor

(EGF), support intestinal health and may protect against the

development of NEC (60–65).
First line defense of the intestinal barrier

Mucus is one of the first lines of intestinal host defense.

Mucus is produced by goblet cells, which are found in the
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crypts of Lieberkühn. The colonic mucus layer is divided into

two layers, an outer, penetrable layer, and an inner,

impenetrable layer. This contrasts with the mucus in the small

intestine (SI) which is single layered and penetrable by

bacteria. A protective layer of mucus keeps bacteria in the SI

away from the intestinal epithelium by antimicrobial proteins

(AMPs) secreted by Paneth cells (66). Studies have found

defective and a significantly lower number of goblet and

Paneth cells in the SI of infants with NEC compared to NEC

(67). Using HT29-MTX-E12, a mucus secreting cell line, Hall

and colleagues reported that breast milk significantly lowered

the adherence and internalization of NEC-associated

pathogenic E. coli into the mucus compared to infant

formula, suggesting that breast milk enhances mucus integrity

(68). Clostridium difficile (C. difficile), a known gut pathogen,

also influences mucus production and composition (69).

Antimicrobial peptides (AMPs), such as defensins,

including human β-defensin-3 (hBD3), cathelicidins, C-type

lectin receptors (CLRs), regenerating islet-derived protein 3,

and intestinal enzymes such as phospholipase A2-IIA (PLA2)

and lysozyme are expressed in the gut epithelium and provide

protection for the intestinal mucosa from pathogenic bacteria

either by killing pathogens or by inhibiting their growth (70,

71). In addition, AMPs are involved in the immune response

and shaping the microbiome (72). Using an experimental rat

NEC model, Underwood and colleagues found increased

intestinal mRNA expression of the AMPs lysozyme, secretory

PLA2, and pancreatic-associated proteins 1 and 3 in rats with

NEC compared to either dam-fed or formula-fed rats

supplemented with the probiotic bacteria Bifidobacterium

bifidum (B. bifidum), suggesting that AMP induction is a

mucosal response to gut inflammation in NEC (73). Another

study evaluated the defensin hBD3, a small cationic

antimicrobial peptide that can exert multiple protective

properties on the gut. Using an animal NEC model, Sheng

et al., showed that hBD3 administration decreased the

incidence of NEC, reduced NEC severity (decreased pro-

inflammatory cytokines, intact intestinal barrier), and

increased the survival rate of the animals (74). Collectively,

these studies suggest a protective role for mucus and

associated AMPs in neonatal mucosal defense and intestinal

barrier function in NEC.
Complement proteins and NEC

During infection, complement proteins assist in the

phagocytosis of invading pathogens by opsonization,

generating inflammatory responses, and altering the activity of

B and T lymphocytes (75, 76). Three different pathways—

lectin, alternative, and classical—activate the complement

cascade. Previous studies have reported defective complement

protein activity in preterm infants (77, 78). More specifically,
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one study reported low complement component 3 (C3) and

complement component 9 (C9), intermediates of complement

pathways, in preterm infants (79, 80). C5a, a cleavage product

of complement component 5 (C5), is a potent

chemoattractant, anaphylatoxin, and intermediary in both the

conventional and non-canonical complement pathways. C5a

was reported to be substantially expressed in NEC cases and

could be partially responsible for inflammation in NEC. Due

to its multifaceted nature, C5a is being studied for its utility

as a clinical marker for the diagnosis of neonates with NEC

in conjunction with radiographic evidence of disease (81). In

addition, MBL-associated serine protease-2 (MASP-2), an

enzyme associated with C2 and C4 cleavage and activity, is

detected in higher concentrations in the cord blood of

premature children who are susceptible to NEC and is linked

to a threefold increased risk of developing NEC (82, 83).
Toll-like receptors and innate immune
cells in NEC

Drosophila Toll was discovered as a receptor for dorso-

ventral patterning during development and was later identified

as a participant in immunity against fungal infections (84).

Consequently, several other homologues of Toll, named Toll-

like receptors (TLRs) were discovered in mammals. TLRs

sense pathogen-associated molecular pattern molecules

(PAMPs) and danger-associated molecular patterns (DAMPs)

through their N-terminal extracellular leucine-rich repeats

(LRRs) and elicit innate immunological responses, including

the production and release of inflammatory cytokines (85). So

far, 10 different types of TLRs have been identified in humans

and 12 in mice. TLR1, TLR5, TLR6, and TLR10 are

membrane receptors that may detect extracellular ligands

while TLR3, TLR7, TLR8, and TLR9 work on subcellular

structures. For example, TLR9 is found on endosomes and

recognizes nucleic acids derived from pathogens and self-

damaged cells (85, 86). TLR2 and TLR4 are expressed on the

cell membrane as well as on subcellular structures.

TLR4 is a receptor for LPS, a component of Gram-negative

bacteria’s outer membrane that is critical for the NEC

pathogenesis (87). TLR9 binds to and is activated by

unmethylated cytosine-guanine oligodeoxynucleotides (CpG

ODNs) in bacterial genomes, and acts as antagonist of TLR4.

Activation of TLR4 in newborn mouse epithelial cells by LPS

results in undesired activation of the NF-κB pathway that leads

to damage of the intestinal mucosa through production of pro-

inflammatory cytokines, which is one of the hallmarks of NEC

(87). Several studies have shed light on the association of TLR4

with NEC (41). Recently, Liu and coworkers have shown both

TLR4 and necro apoptotic protein upregulation in both NEC

patients with NEC and animal NEC models (88). Egan et al.,

highlighted the role of TLR4 in recruiting the inflammatory
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CD4+ Th17 cells into the intestinal mucosa via activation of

cognate chemokine ligand 25 (CCL25) in NEC (89). In an

another study, Colliou et al., found a commensal

Propionibacterium bacterial strain named UF1 that can reduce

intestinal inflammation through the reduction of Th17 cell

expansion in the gut of a mouse NEC model (90). TLR4

activation significantly inhibits the β-catenin signaling that is

important for enterocyte proliferation in the ileum of newborn

mice, which further leads to apoptosis and can lead to NEC

(91). Studies have shown that activation of TLR9 can decrease

experimental NEC severity, and that TLR9 activation can

inhibit TLR4 signaling via IL-1R-associated kinase M (92, 93).

In addition to TLR9, NOD2 reduces NEC severity via

suppressing TLR4 and genetic variants in NOD2 are associated

with NEC development (94, 95).
Monocytes and macrophages

Originating from myeloid cell lineage monocytes,

macrophages (Mϕ) act as a frontline guard of innate

immunity against invading pathogens. Monocytes and Mϕ

have several weapons in their arsenal to tackle incoming

threats. By recognizing molecular patterns via toll-like

receptors (TLRs), nucleotide-binding oligomerization domain-

containing proteins (NOD2), and C-type lectin receptors

(CLRs,) these cells either actively engage in phagocytosis or

secrete various cytokines and chemokines to alert and recruit

other immune cells (96). Classical monocytes (CD14+CD16−),

intermediate monocytes (CD14+CD16+), and non-classical

monocytes (CD14dimCD16+) are the three subsets of human

monocytes. In mice, monocytes are grouped based on

expression levels of lymphocyte antigen 6 complex (Ly6C+

and Ly6C−) on their cell surface (97).

Several studies have suggested that tissue infiltration and

enrichment of monocyte-derived Mϕ occur during

inflammation in NEC (98–100). Intestine monocyte-derived

Mϕ are nonproliferative, short lived and terminally

differentiated, rendering their continuous replacement

necessary for homeostasis. A study by Managlia et al.,

revealed the significance of nuclear factor kappa B (NF-κB)-

driven monocyte activation, recruitment, and differentiation in

neonatal intestines in NEC (99). They concluded that NF-κB-

mediated activation and differentiation of Ly6c+ monocytes

into Mϕ and their recruitment into the intestine are critical

for NEC development and disease progression. Olaloye and

colleagues have identified a novel subtype of inflammatory

CD16+CD163+ monocytes/Mϕ associated with infants with

NEC (100). In infants with NEC, peripheral monocyte counts

drop due to their recruitment to the damaged intestine (101).

Following recruitment, monocytes undergo differentiation to

form pro-inflammatory M1-type Mϕ (102). Monocyte-derived

M1 Mϕ in humans and in animal models have been linked to
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the severity of NEC (102, 103). Interferon regulatory factor 5

(IRF5), a factor crucial for M1 Mϕ polarization is highly

expressed in infants with NEC compared to controls.

Specifically, IRF5 deficiency significantly reduced M1

polarization, inflammation, and intestinal injury in

experimental NEC (103). Inflammation and intestinal cell

damage caused by M1 Mϕ is linked with their high level of

pro-inflammatory cytokines such as IL-1, IL-6, IL-12,

chemokines (Ccl4, Ccl5), and tumor necrosis factor (TNF)

production. By inhibiting M1 and promoting M2 polarization

of Mϕ, heparin-binding epidermal growth factor (HB-EGF)

has also been found to protect against experimental NEC (102).
Neutrophils

As one of the most abundant immune cells (nearly 70% of

total leukocytes) in human blood, neutrophils are among the

first responders in the fight against potential pathogens or

tissue damage/injury. Neutrophils eliminate pathogens either by

recruiting a wide variety of immune cells through the secretion

of cytokines, chemokines, and leukotrienes or by causing direct

damage to tissue or pathogens by releasing lytic proteases and

neutrophil extra cellular trap (NETs) (104). In addition to their

well-documented protective role, neutrophils are also able to

cause significant tissue damage through the release of reactive

oxygen species (ROS) in intestinal inflammation (105).

Early neutropenia has been associated with higher odds of

developing NEC (106). Interestingly, neutrophils in preterm

newborns have altered immunological functions, including

impaired phagocytosis. Another study by Zindl and colleagues

revealed the protective role of IL-22-producing neutrophils in

experimental colitis by increasing AMP production and

promoting mucosal repair (107). In the context of NEC, a

recent study from Mihi et al., demonstrated a protective role of

IL-22 treatment in attenuating intestinal injury and enhancing

epithelial proliferation in experimental NEC (108). This study

also found that there was a lack of IL-22 production in

preterm infants or developing mice, suggesting that

immunomodulatory treatments may help protect premature

infants from the intestinal inflammation seen in NEC.

As specialized antigen presenting cells (APCs), dendritic

cells (DCs) serve as critical link between innate and adaptive

immunity. In intestine, DCs are present in Peyer’s patches,

mesenteric lymph nodes (MLNs), and the colonic lamina

propria to provide protection against invading pathogens. To

date, several studies have highlighted the protective role of

DCs in regulating the gut inflammation; however, studies

investigating the role of DCs in NEC is limited. In one study,

which utilizes Cronobacter sakazakii (C. sakazakii) to induce

NEC in mice, Emami and colleagues have reported higher DC

recruitment in mouse gut. They found that DC recruitment to

the gut accelerated the destruction of the intestinal epithelium
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and promoted NEC onset with increased TGF-β production

(109). C. sakazakii also induced pyroptosis in the intestinal

epithelium and promoted NEC by induction of IL-1β and

Gasdermin D (GSDMD) through TLR4/MyD88 mediated

activation of the nucleotide-binding oligomerization domain

(NLRP3) inflammasome (110). Another study by Nolan and

colleagues investigated the role of aryl hydrocarbon receptor

(AhR) signaling in DCs during experimental NEC, as this

signaling pathway helps regulate intestinal immunity and

homeostasis. They found that a lack of AhR signaling in DCs

increased NEC-mediated intestinal inflammation, and that

this effect was associated with an increase in a specific subset

of macrophages in the small intestinal lamina propria (111).
Trained immunity and NEC

Adult human intestine is made of a single layer of

epithelium, covering an area of 32 m2 (112). The intestinal

epithelium is important for digesting food and absorbing

nutrients, but it is also the largest entry port for pathogens.

To provide protection against these pathogens, “as a guard of

port”, complex and tightly controlled innate and acquired

immunity are required. Among the many different types of

immune cells involved in this protection are intraepithelial

lymphocytes (IELs). IELs are positioned between intestinal

epithelial cells and constantly patrol the epithelial barrier

(113). IEL subsets, composed of antigen-experienced T cells,

are in direct contact with enterocytes and antigens in the gut

lumen. These cells are classified based on the expression of T

cell receptor-γδ (TCRγδ)+ and TCRαβ+ (114). Approximately

60% of small intestinal IELs are TCR+ cells. γδ IEL play a

crucial role in mucosal defense by regulating the production

of IgA, clearing and repairing damaged epithelium, increasing

production of TGF-β cytokines and by decreasing IFN-γ and

TNF-α in response to stress and infection (115). The

protective role of IELs is also evident in TCRγδ-deficient

mice, as these mice have defective gut epithelial morphology

and impaired IgA production (116). When compared to non-

NEC controls, surgical NEC patients with NEC had a lower

number of γδ IELs in the ileum (116). Researchers have

shown that subsets of IELs are dependent on AhR activation

for their survival (117). However, a recent study did not find

any involvement of IELs in AhR activation-mediated

protection against NEC, indicating that the protective role of

IELs against NEC is not AhR-mediated (118).

In addition to IELs, infants with NEC also have altered

functions of some subsets of CD4+ T cells, Th17, and

regulatory T (Treg) cells (89, 119–121). Th17 cells are

strongly implicated in intestinal inflammation and are linked

with the pathogenesis of NEC. In infants with NEC, Pang and

colleagues found a lower percentage of Foxp3-expressing

Tregs with several functional defects, including the inability to
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block IL-17 expression (121). In NEC tissue, Th17 cells appear

to cause intestinal damage that is reduced by IL-17 receptor

inhibition by STAT3 activation (122). Additionally, retinoic

acid-induced polarization of CD4+ T cells towards Treg from

Th17 resulted in reduced NEC severity (123). Furthermore,

Zhao et al. reported an increased percentage of RORγt+ cells

(inflammatory Th17 and type 3 innate lymphoid cell

populations) in the intestinal lamina of mice and humans

with NEC compared to those without NEC (84). Studies have

also demonstrated a significant decrease in lamina propria

associated Treg cells in surgical NEC specimens (85, 86, 89).

In addition, a Treg/Th17 imbalance leads to the excessive

proinflammatory response preceding tissue injury and

necrosis associated with NEC development (122).
Intestinal microbiome and NEC

Although the direct association between the microbiota and

the pathogenesis of NEC is not well understood, mounting

evidence suggests a link between early gut microbiota

dysbiosis and NEC (87, 88, 90). Probiotic supplementation to

premature neonates has been shown in some studies to

decrease the incidence or severity of NEC, further establishing

the relationship between NEC and microbiota (91–94).

Early microbiota composition and its diversity in the gut of

newborn infants is mainly influenced by delivery mode,

antibiotic exposure, human milk feeding, and time spent in the

NICU. Vaginally born infants not only develop stronger

immunity but also are predominantly colonized by beneficial

microbes such as Lactobacillus sp. present in mother’s vaginal

microbiota (95). Members of Lactobacillus are well known to

prevent pathogen colonization by lowering the pH or by

secreting inhibitory compounds (124, 125). The microbiota of

infants born via C-section resemble the mothers’ skin

microbiota in early life and lack members of Bacteroides species

that are present mostly in vaginally-delivered infants (126).

In addition to delivery mode, feeding also affects microbiome

composition and diversity. Formula-fed newborns have lower

overall bacterial diversity, lesser beneficial bacterial number,

and a higher number of pathogenic bacteria like Clostridium

sp. compared to breast-fed infants (127). Clostridium sp. and

their secreted toxins can be associated with NEC severity (128,

129). Time spent in the NICU with lifesaving machines

attached to preterm infants including, ventilators, and

incubators, have also been shown to harbor pathogenic bacteria

including members of Streptococcus, Klebsiella, Staphylococcus,

Neisseria, and Enterobacteriaceae communities (130–133).

Members of the phyla Firmicutes, such as coagulase-negative

staphylococci (CoNS) and Proteobacteria are implicated in

NEC pathogenesis, however, many of their members are also

found in healthy infants (134). Higher bacterial relative

abundance from the class Gammaproteobacteria, namely C.
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sakazakii, Klebsiella sp., E. coli, and those from the phylum

Proteobacteria are also present in the feces of infants who

develop NEC (135). In addition to bacteria, viral presence is

also associated with NEC. Stool analysis from 51 infants with

NEC and 39 controls demonstrated that the presence of

adenovirus and Epstein-Barr virus are associated with NEC

severity (136). In another recent study, stool samples obtained

from 9 infants with NEC infants and 14 controls matched for

weight and gestational age, showed reduced viral beta diversity

over the 10 days before NEC onset. This study also identified

that viral NEC-associated contigs belonging to Myoviridae,

Podoviridae and Siphoviridae are associated with the time

period 0–10 d post NEC onset (137).
Models for studying NEC

In vivo

With the high prevalence of NEC, the need for effective in

vivo models has become more important in recent years. Due to

the aggressive nature of the disease and the scarcity of available

human specimens, performing experiments with human

samples is difficult and multi-center studies are typically

needed (138). As a result, animal models are commonly used

to study NEC by inducing inflammation that mimics the

intestinal damage seen in human infants.

While the conditions of in vivo experimental NEC models are

generally based on similar underlying principles, several different

animals have been used to study NEC (Figure 2). The rat’s

intestinal development is similar to a human premature infant,

making it an excellent model for investigating preventative

measures and therapeutics for NEC (139). Early studies using a

rat model concluded that the gut microbiota and the absence of

breast milk are significant factors in NEC pathogenesis (140, 141).

Further, several laboratories have used hypoxia, LPS, and

hypothermia at different time points in a day for several days to

help induce NEC in laboratory settings (142). Due to their

affordability, preterm survivability, and resistance to typical

stressors used to develop the disease, rat models are a desirable

option when investigating NEC but rats are not ideal for research

at the genomic level. Their slower development and challenges

with culturing embryonic stem cells in rats makes it difficult to

generate transgenic lines compared to mice (143, 144). These

shortcomings necessitated the creation of other types of animal

NEC models.

Although their small size makes them technically challenging

toworkwith,mice are the preferredmodel for genomic studies as it

is far easier to create transgenic colonies. Another appealing feature

of the mouse model is its experimental flexibility, with some

models successfully inducing NEC by beginning the gavage feed

at postnatal day 4 while others begin at postnatal day 7 (145,

146). However, mice delivered more than one day prior to the
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FIGURE 2

Overview of experimental models of NEC and potential treatment strategies. Figure created with Biorender.com.
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determined due date have a 100% mortality rate (147). Because of

this low viability, it is extremely difficult to use a preterm mouse

model for studies that require animals to be delivered via

cesarean section.

Pigs share many features of anatomy and physiology with

humans, rendering them one of the more popular choices

when exploring NEC pathogenesis. Additionally, the piglet’s

larger size affords the ability to study preterm neonates (148,

149). Piglets are a good model for testing preclinical drugs,

effects of various diet formulations, and pathological

manifestation on NEC (150). While it is true that hypoxia and

hypothermic stress induces histological changes that resembled

NEC in piglet models, the inflammation induced by this model

is not always contained within the lower gastrointestinal tract,

with some instances reported of inflammation spreading to the

stomach and jejunum (139, 150–152).

Rabbit NEC models are infrequently used but have been used

to study the effects of NEC that extend past the gut. Non-human

primate models, although rare and expensive, have also been used

as an experimental NEC models due to the homology to humans

in both anatomy and at the genomic level (139).
In vitro

In vivo animal models allow for limited NEC modeling as

the cellular genetics, drug metabolism, immunology, gut
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microbiomes, and HMOs can differ significantly from

humans. In vitro intestinal models used to study NEC are

briefly summarized in this section and have been covered

extensively elsewhere (153–156).

Different in vitro models such as the human epithelial cell

line Caco2, colon adenocarcinoma derived cell line HT-29,

IEC-6 and IEC-18 derived from rat SI, and most importantly,

fetus derived FHs 74-Int and H4 cells are frequently used in

in vitro NEC studies (153). These cell lines are optimized and

phenotypically mimic different regions of the gut including

ileum, duodenum, jejunum, and colon, each requiring specific

culturing conditions.

Recent scientific advancements in culturing human intestinal

organoids (enteroids) also called “mini guts”, allow investigators

to recapitulate the intestinal cell morphology that is crucial for

studying the molecular mechanisms of NEC. Enteroids derived

from LGR5+ progenitor cells of the SI and colon, allow for the

study of barrier function, gut inflammation, cell proliferation,

drug responses, and intestinal microbial interactions

characteristic of NEC (157). Further advancements of in vitro

models led to the development of a “gut-on-a-chip”, a method

which cultures intestinal cells to mimic the microenvironment

of the intestine (158, 159). The gut-on-a-chip model provides a

suitable environment to culture different human cell types

including epithelial, endothelial, and immune cells with gut

microbes together in a controlled environment, to explore gut

physiology and inflammatory changes seen in NEC, and can
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also be used as a pharmacological platform to test potential drug

treatments (160).

Though, these in vitro models excellently resemble human

intestine, several key criteria are considered in cell culture

model design. Table 1 compares common different models

and devices, specifically summarizing whether the models are

static or microfluidic, in vitro or ex vivo, cell differentiation,

cell polarity (apical out or basal out), nutrient absorption,

drug metabolism, crypt villus formation, mechanical

stimulation or peristalsis, oxygen gradient modulation,

measure trans epithelial electrical resistance (TEER), co-

culture with endothelial, vascular, and immune cells, and co-

culture with gut microbes.
Static vs. Microfluidic models

Static models are standard tissue culture models which

include “NEC-on-a-dish” 2D, 3D organoid and transwell

culture models (175). Additionally, synthetic scaffolds, and ex

vivo tissue (Ussing chambers) are used to measure live tissue

(167, 168). Static models use growth factors to differentiate

intestinal epithelial cells (IECs) and organoids, derived from

LGR5+ progenitor cells, into diverse functional intestinal cells

(163). Static models are generally less time consuming, less

expensive, and more accessible, but are relatively limited to

the degree of differentiation, co-culture, and microbiome

interactions. Typically, in static models, microbiome

interactions are limited to between 1 and 24 h based on the

model due to rapid microbial overgrowth in static conditions.

Gut-on-a-chip microfluidic devices use soft lithography to

layer polydimethylsiloxane (PDMS) or micromilling to

produce luminal and vascular channels separated by a porous

membrane (reviewed in (176). Short term ex vivo microfluidic

devices can evaluate live tissue conditions under constant flow

(169, 170). The luminal flow in a microfluidic model

enhances differentiation and 3D villus and crypt-villus like

topography where adjacent air channels are regulated to

mimic peristalsis through mechanical stimulation, thus

providing a major advantage over static models. The NEC

microbiome and HMO interactions, drug metabolism, and

tissue integrity assays can be measured within the microfluidic

chip system (177, 178). A major advantage of the microfluidic

flow is that it reduces the static overgrowth of microbes, in

turn reducing the limitations on the microbial co-culturing

time to more than 7 days, depending on the specifics of the

model. Gut-on-a-chip models can additionally be cultured

under oxygen gradient modulation. Intestinal disease

pathology is increased by lower oxygen gradients which

induce Hif1-α signaling (179). Oxygen gradients under

aerobic, hypoxic, and anaerobic culturing conditions have also

been applied to resemble microbial intestinal environments

under inflammatory conditions (176).
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Treatments for NEC

The several known risk factors of NEC discussed in this

review provide promising treatment targets for NEC

(Figure 2). One such treatment is IL-22, a cytokine belonging

to the IL-10 family that is involved in epithelial cell

regeneration, maintenance of gut barrier integrity, and

tempering intestinal inflammation by mediating the

microbiome (180). Given the observations of the versatile

roles that IL-22 plays in gastrointestinal physiological

processes and pathologies, especially as a stabilizer of

intestinal homeostasis, there is a strong foundation to

investigate the role of IL-22 in the context of NEC

pathogenesis. As mentioned above, a recent study by Mihi

et al., showed that neonatal mice and humans lack intestinal

IL-22 production during NEC and supplemental

administration of IL-22 attenuated experimental NEC severity,

decreased intestinal inflammation, and enhanced intestinal

epithelial repair (108). Additionally, IL-22 administration

induced the expression of antimicrobial genes such as Reg3γ

and fucosyltransferase 2 (Fut2). The AMP Reg3γ has been

shown to protect the intestinal mucosa against pathogenic

infections by limiting their expansions. Given this protective

role of IL-22 in the experimental murine model of NEC, it is

imperative that IL-22 administration be further investigated as

a therapeutic for infants with NEC (108).

Another study by Cho et al., highlighted the importance of

another cytokine, IL-37 in attenuating the inflammation in NEC

(181). The study found that transgenic IL-37 pups were

completely protected from inflammation caused by IL-1β, IL-

6, TNF, and IL-17F compared to wild-type mice. In addition,

IL-37 treatment restored the expression of cytokines Il4, Il13,

and Il33 to baseline levels. Further, authors found that IL-37-

mediated protection against NEC is largely achieved through

modulation of the TLR repertoire (reducing TLR4 expression

and inducing TLR5, TLR7, TLR9, and TLR13), and

prevention of NEC-induced dysregulation of adaptive

immunity (181).

Another promising treatment modality is the use of TLR4

inhibitors to mediate intestinal injury propagated by NEC.

Hackam and colleagues have published several studies

indicating that expression of TLR4 and members of its gene

family render the premature intestine more susceptible to

inflammation. Therefore, exploring TLR4 modulation or

inhibition as a model for NEC treatment may be valuable.

Lien et al., and Tidswell et al., noted the synthetic inhibitor

eritoran tetrasodium (E5564) bound well to TLR4 (182, 183).

Based on the structure of this inhibitor, an in silico search

and screening of small molecule libraries conducted by

Hackam and colleagues pinpointed a family of TLR4

inhibitors that reduces intestinal inflammation in

experimental NEC (184, 185). Particularly, the compound
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C17H27NO9 (C34), a 2-acetamidopyranoside, significantly

reduced NEC incidence in animal models and decreased

TLR4 signaling ex vivo in resected ileum from infants with

NEC (185). Indeed, these findings indicate C34 and its

analogs are lead compounds for TLR4 inhibition that can

provide therapeutic value and improve clinical treatments for

NEC. In a recent study Lu et al., showed that activation of

AhR either by its ligand indole-3-carbinol or by breast milk

components prevented experimental NEC through inhibition

of TLR4 signaling (118).

Stem cell therapy is another treatment option currently

being explored because of anti-inflammatory properties with a

focus on bone marrow-derived mesenchymal stem cells (BM-

MSCs). Several studies have demonstrated that BM-MSCs

extracted from mice, rats, and humans significantly reduce

both NEC incidence and severity (186–188).

Amniotic fluid-derived stem cells (AF-MSCs) have also

been investigated as a potential source for NEC treatment. A

study by Zani et al., established that intraperitoneal injections

of AF-MSCs in a murine model are significantly associated

with a reduction in the incidence and severity of NEC and

improved gut barrier function (5). Subsequent confirmatory

studies verified that AF-MSC injections decrease histologic

injury in experimental NEC models (189). Thus, there is

indication that AF-MSCs have considerable beneficial effects

as an inflammatory modulator and should be examined

further as a therapeutic for NEC.

Experimental results of supplementation with probiotics

and potentially fecal microbiota transplant (FMT) has also

shown promising outcomes to treat NEC, however,

appropriate donor selection, screening of FMT material, and a

dosing strategy still need to be standardized (190–192).
Conclusion

NEC is a common gastrointestinal disease in premature

infants associated with high morbidity and mortality. In

recent years, substantial progress has been made to delineate

the molecular mechanisms underlying the pathogenesis of

NEC. The holistic approaches with scientific advancement to

understand the risk factors predisposing an infant to NEC,

including maternal, genetic, nutritional, and immunological
Frontiers in Pediatrics 13
changes in infants, clearly hold the potential to improve and

lead to development of preventative measures and treatments

to combat NEC. Although translating fundamental

experimental discoveries to the bedside in the NICU is

substantially challenging, continuous scientific efforts and

collaborations between those working “at the bench” making

discoveries in laboratories with those clinicians “at the

bedside” caring for infants with NEC can lead to ground-

breaking discoveries and transform the management of this

devastating disease.
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