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Abstract

Despite the prominent use of complex survey data and the growing popularity of machine

learning methods in epidemiologic research, few machine learning software implementa-

tions offer options for handling complex samples. A major challenge impeding the broader

incorporation of machine learning into epidemiologic research is incomplete guidance for

analyzing complex survey data, including the importance of sampling weights for valid pre-

diction in target populations. Using data from 15, 820 participants in the 1988–1994 National

Health and Nutrition Examination Survey cohort, we determined whether ignoring weights in

gradient boosting models of all-cause mortality affected prediction, as measured by the F1

score and corresponding 95% confidence intervals. In simulations, we additionally assessed

the impact of sample size, weight variability, predictor strength, and model dimensionality.

In the National Health and Nutrition Examination Survey data, unweighted model perfor-

mance was inflated compared to the weighted model (F1 score 81.9% [95% confidence

interval: 81.2%, 82.7%] vs 77.4% [95% confidence interval: 76.1%, 78.6%]). However, the

error was mitigated if the F1 score was subsequently recalculated with observed outcomes

from the weighted dataset (F1: 77.0%; 95% confidence interval: 75.7%, 78.4%). In simula-

tions, this finding held in the largest sample size (N = 10,000) under all analytic conditions

assessed. For sample sizes <5,000, sampling weights had little impact in simulations that

more closely resembled a simple random sample (low weight variability) or in models with

strong predictors, but findings were inconsistent under other analytic scenarios. Failing to

account for sampling weights in gradient boosting models may limit generalizability for data

from complex surveys, dependent on sample size and other analytic properties. In the

absence of software for configuring weighted algorithms, post-hoc re-calculations of
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unweighted model performance using weighted observed outcomes may more accurately

reflect model prediction in target populations than ignoring weights entirely.

Introduction

Machine learning is rapidly gaining traction in epidemiology and related disciplines [1–10],

but several challenges continue to impede its widespread integration into the field [1,11]. One

challenge that has received little attention is how to use machine learning to analyze data from

complex surveys such as the National Health and Nutrition Examination Survey (NHANES).

NHANES and other national surveys have a long history in epidemiology and are widely

utilized for research purposes, national surveillance initiatives, and clinical reference values

(e.g., growth standards) [12,13]. Their prominence stems in large part from their population-

based sampling designs, which allow estimates computed from these data to be generalized to

target populations. However, the generalizability of results from complex survey data to target

populations hinges on utilizing appropriate analytic methods. Such methods include the use of

sampling weights as well as the incorporation of design variables that account for any depar-

tures from simple random sampling, including differential selection probabilities, stratifica-

tion, and geographic clustering [14]. Many currently available software packages for

implementing popular machine learning procedures have given inadequate consideration to

the implications of using these models to analyze complex survey data. Unlike conventional

statistical software packages, which are well-equipped to account complex survey designs,

machine learning software implementations offer no or limited options for handling complex

samples. For example, the documentation for the popular ‘SuperLearner’ R package states that

the optional observation weights are passed to the algorithms, but many of the built-in wrap-

pers ignore or are unable to use the provided weights [15].

Little is known about how ignoring complex survey design elements, including sampling

weights, in machine learning analyses affects the generalizability of conclusions drawn from

the algorithms to target populations. We assessed whether specifically accounting for survey

sampling weights affects the performance of gradient boosting, a powerful ensemble classifica-

tion algorithm. We first conducted a ‘real world’ case study using NHANES III data to predict

all-cause mortality, assessing the impact of incorporating the survey weights in various stages

of the model configuration and evaluation process. We then conducted a series of simulations

to determine if the impact of accounting for the weights varies under certain theoretical sce-

narios for sample size, predictor strength, survey weight variability, and model dimensionality.

Our study is one of the few that has investigated the implications of implementing machine

learning methods with complex survey data. The study findings highlight the importance of

implementing weighted algorithms and provide novel information on how recalculating

model performance post-hoc with weighted outcome data may offer practical advantages in

the absence of software for configuring weighted algorithms.

Materials and methods

Case study

The NHANES III (1988–1994) is a population-based survey that utilized a complex, multi-

stage, stratified probability sampling design to select participants representative of the civilian,

non-institutionalized United States (U.S.) population [16,17]. Mortality status was ascertained

via linkage to the Public-use Linked Mortality Files, which includes vital statistics based on the
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National Death Index for survey participants�18 years of age from the date of survey partici-

pation through December 31, 2015 [18]. All adults�18 years of age who completed both the

household interview and physical examination components of the study were eligible for

inclusion in the present analysis (N = 17,752). We further excluded 13 individuals with insuffi-

cient identifiers to confirm their mortality status in the National Death Index and 1,919 indi-

viduals with incomplete predictor data, resulting in a final sample size of 15,820. Average

follow-up time for included participants was 21.0 years (deceased participants: 12.9 years; alive

participants: 24.0 years). Sampling weights in NHANES III were calculated using a three-stage

approach (individuals nested within households, nested within primary sampling units), start-

ing with a base weight that accounts for the survey’s targeted over-sampling of hard-to-reach

demographic groups. This base-weight was then updated for observed non-response and post-

stratified to match the U.S. non-institutionalized population demographic structure estimated

by the U.S. Census. The sampling weights in the analytic dataset ranged from 221–132,279,

with a mean of 9,565 (standard deviation = 11,820). The NHANES III received National Cen-

ter for Health Statistics Research Ethics Institutional Review Board approval and written

informed consent was obtained from all participants.

We selected 27 predictor variables from the NHANES III household interview and physical

examination datasets based on their suspected association with all-cause mortality. All predic-

tors were assessed at study enrolment and included sociodemographic characteristics [age

(continuous), sex (male, female), race/ethnicity (non-Hispanic White, non-Hispanic Black,

Mexican American, other), educational attainment (less than high school; high school, some

college, or associate’s degree; college degree or above), census region (Northeast, Midwest,

South, West), urbanicity (metro, rural), household income (above or below $20,000 per year),

marital status (married, unmarried), country of origin (born in the U.S. or not), insurance cov-

erage (insured, uninsured), health behaviors (tobacco smoke exposure (current smoker, for-

mer smoker, second-hand exposure, not exposed), self-rated general health status (excellent,

very good, good, fair, poor), use of vitamin/mineral supplements (yes, no), use of prescription

medicines (yes, no), and clinical characteristics (body mass index (continuous), systolic and

diastolic blood pressure (continuous), history of congestive heart failure (yes, no), stroke (yes,

no), asthma (yes, no), non-skin cancer (yes, no), diabetes (yes, no), hypertension (yes, no),

heart attack (yes, no), or chronic bronchitis or emphysema (yes, no), hospitalization in past

year (yes, no), five or more doctor visits in past year (yes, no)]. Each of these covariates was

measured using the NHANES III questionnaire, excepting body mass index and systolic and

diastolic blood pressure, which were measured during examination, and all analyses were

adjusted for this set of predictor variables as described.

Simulations

We created semi-synthetic simulated datasets by first resampling from our NHANES III ana-

lytic dataset. Participants were sampled randomly with replacement, with observations allo-

cated into strata proportional to their distribution in the NHANES III data structure. To

evaluate whether the impact of accounting for standard NHANES III sampling weights is

influenced by sample size, we created five resampled datasets of various sizes (i.e., n = 10,000;

5,000; 2,500; 500; 250). For each resampled dataset, we simulated the response variable using

logistic regression with β coefficients corresponding to marginal associations observed in the

real NHANES III sample.

We then created additional modifications to these five ‘baseline’ simulations to determine

whether the importance of accounting for sampling weights was affected by stronger vs.

weaker predictor strength (predictor β coefficients doubled and halved, respectively),
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increased vs. reduced sampling weight variability (changes to the sampling weight variance

was achieved by simulating sampling weight values from a log-normal distribution with mean

equal to the mean weight of the NHANES III sample and variance doubled and halved, respec-

tively, representing the degree of departure from a simple random sample), and reduced

dimensionality (predictor β coefficients comparable to NHANES III for a subset of 10 predic-

tors and coefficients set to zero for the remainder). In the case of the latter simulation, a subset

of the categorical variables and a subset of the continuous variables were chosen to be informa-

tive in the reduced dimensionality simulations at a comparable ratio to the full variable set.

Selection within the categorical and continuous variable sets were chosen at random. As a sen-

sitivity analysis, we also created a null simulation scenario in which all predictor β coefficients

were set to zero, for additional reassurance that a model without predictors performed as

expected (no better than chance). The resulting 35 simulations are summarized in S1 and

S2 Tables.

Gradient boosting approach

We fit gradient boosting models with the xgboost 1.3.0 package in Python Version 3.6 (Python

Software Foundation, Beaverton, Oregon). Classification trees identify a sequence of data splits

by repeatedly identifying which variable can best divide the data into groups that maximize

within-group homogeneity in the outcome relative to the previous classification system. The

xgboost ensemble approach adds additional classification trees in an attempt to improve prior

predictions (gradient boosting). This process produces an ensemble model that can be thought

of as a set of regression models, each individually tuned to minimize prediction error for dif-

ferent population strata and for different “mechanisms” (i.e., interactions between predictors)

within these strata identified as informative for the outcome by the algorithm. In the binary

case applied here, the final predicted probabilities are calculated by averaging the individual

tree linear predictors. For a more in-depth introduction to gradient boosting, we refer the

reader to the original papers by Friedman [19,20] and an applied example by Zhang et al [21].

We evaluated model performance using the F1 score. The F1 score is a percentage value and is

used to represent the harmonic mean of the models’ sensitivity and positive predictive value.

We chose the F1 score to balance the importance of detecting cases versus non-cases in a single

score for our scenario, in which cases are rare (i.e., to represent a clinically-relevant prediction

algorithm). In prioritizing this balance, the F1 score was preferable over simpler performance

metrics like log-loss, which would undesirably emphasize detecting non-cases because they are

more common. Further information on the calculation and use of the F1 score is provided in

S1 Appendix.

To improve model performance while preventing over-fitting, the gradient boosting config-

uration process requires tuning many learning (number of trees, tree depth, growth rate) and

regularization (observation and variable bagging, stopping criteria, and number-of-variable

L1/L2 penalties) hyper-parameters. To tune the hyper-parameters, we performed a random-

ized search of the hyper-parameter space in a massively parallelized computing environment

(using approximately 151,140 central processing unit hours) to identify hyper-parameter con-

figurations yielding the best predictions [22]. A brief description of these hyper-parameters

and their search space ranges is provided in S2 Appendix. We used the RandomizedSearchCV
function in the Python library SciKitLearn version 0.24.1 [23] within the National Institutes of

Health High-Performance Computing Biowulf cluster (http://hpc.nih.gov) to test 500, 000

combinations of 11 hyper-parameter sets for each simulation. To do so, we randomly sampled

from a uniform distribution covering reasonable ranges for each parameter because the hyper-

parameter space was too large for a grid search.
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We evaluated each model implementation using five-fold cross-validation and a custom

python script that enabled us to control how weights were used in the xgboost model. To vali-

date our custom script, we re-calculated F1 scores of the final model fits using the Metrics-
Weighted package version 0.5.1 in R 4.0 (R Core Team, Vienna, Austria). To calculate

performance metrics for each model, we used beta parameters derived from the out-of-fold

data for our subsequent evaluation of the survey weights, so that the prediction model used for

each observation did not use data from that observation itself. To give a sense of the sensitivity

of these metrics to changes in the underlying data, we calculated 95% percentile confidence

intervals (CI) bootstrapped at the predicted outcome probability level using the boot R

package.

To qualitatively gauge the impact of our model configuration process on our findings, we

performed sensitivity analyses by fitting each model with the default hyper-parameters set-

tings. The final values for the 11 hyper-parameters utilized in each simulation are shown in S1

Table (weighted models) and S2 Table (unweighted models), along with the range of values

searched for each and the default values at the time.

Evaluation of survey weights

To demonstrate gradient boosting’s real-world and theoretical performance in the context of

survey weights, we used the predicted probabilities generated from the optimized gradient

boosting model configurations to calculate F1 scores under three scenarios. In Scenario One,

which represents the “gold standard” implementation, calculated F1 scores were weighted by

the distribution of observed outcomes (to estimate ‘real-world’ performance in the U.S. popu-

lation) and predicted outcomes were based on the predicted probabilities from the weighted

gradient boosting model configuration (to capture the performance of a model ‘aware’ of the

weights). Scenario One represents the valid approach for incorporating survey weights in tra-

ditional epidemiologic analyses to obtain results that generalize to the target population. In

Scenario Two, observed outcomes were based on the unweighted data (to capture ‘crude’ pre-

dictive performance in the sample), and predicted outcomes were based on the predicted

probabilities from the unweighted gradient boosting model configuration (to capture the per-

formance of a ‘crude’ model only aware of the sample). Scenario Two is included in these anal-

yses as an example of an invalid use of complex survey data; ignoring the survey weights in the

analyses does not account for differences in the distribution of effect modifiers between the

study sample and target populations and, traditionally, produces results that do not generalize

to the target population. While the F1 scores calculated for Scenarios One and Two are equiva-

lent to the fully optimized versions of the models configured with and without weights output

by the software packages we used, Scenario Three involved a modified approach. In Scenario

Three, F1 scores were calculated using assumed observed outcomes based on the weighted data

and predicted outcomes (‘real-world’ performance) where the predicted probabilities were

estimated from the unweighted gradient boosting model configuration (a model without

awareness of the sample design). Scenario Three demonstrates the real-world effect of ignoring

“true” weights when selecting the best learner and determines whether prediction based on

models that are configured naïve to weights can be generalized to target populations if the final

configured model is scored in appropriately weighted data (for instance, used to predict out-

comes in a new, representative sample). To illustrate the potential error resulting from ignor-

ing sampling weights, we calculated the difference between the F1 scores for Scenarios Two

and Three compared to the F1 score for the “gold standard” Scenario One. We performed this

comparison using the NHANES III dataset and repeated it for each simulation. Example

Python code is provided in the S1 Code.
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Results

Case study–NHANES III

The distribution of all predictors included in the gradient boosting models are shown in

Table 1, stratified by mortality status. Compared to those who remained alive, deceased partic-

ipants were older and less likely to be female. They were also less educated, poorer, and more

likely to report being a former smoker, having poor health, and experiencing adverse health

conditions.

The F1 scores for each gradient boosting model implementation in the NHANES III data

are shown in Table 2. Scenario One, the “gold standard” weighted model, resulted in an F1

score of 77.4% (95% CI: 76.1%, 78.6%). Compared to the gold standard implementation, mask-

ing the weights (Scenario Two) increased the F1 score by five percentage points (81.9%; 95%

CI: 81.2%, 82.7%). The F1 score for Scenario Three, which masked weights during the model

configuration process, but incorporated the weights during the final model re-evaluation step,

performed similarly (77.0%; 95% CI: 75.7%, 78.4%) to the gold standard. F1 scores estimated

under each design scenario are provided in S3 and S4 Tables.

Simulation study

The error in the F1 score when comparing Scenarios Two and Three to gold standard Scenario

One, with variation by sample size is shown in Fig 1. Scenario Two resulted in an increased F1

score compared to Scenario One, with a slightly higher error at sample sizes of 2,500–10,000

compared to sample sizes of 250–500. The error for Scenario Three was the greatest for small

sample sizes (N = 250, 500, and 2,500) and approached zero for larger sample sizes (N = 5,000

and 10,000). At a sample size of 10,000, Scenario Three resulted in F1 scores comparable to

Scenario One regardless of the other analytic factors that we varied (weight variability, predic-

tor strength, dimensionality) (Table 3).

Compared to the baseline simulation model results (Fig 1), variation by sample size differed

in simulations with higher or lower sampling weight variability between the observations.

When the weight variability was higher (Fig 2A), Scenarios Two and Three resulted in simi-

larly biased F1 scores at low sample sizes and similarly unbiased F1 scores at high sample sizes.

When weight variability was low (Fig 2B), accounting for the weights during either the model

configuration process or evaluation step had little impact.

Varying the predictor strength (Fig 3) did not alter the overall trends we observed by sam-

ple size in the baseline simulation model (Fig 1). Regardless of whether the marginal predictor

strength was stronger (Fig 3A) or weaker (Fig 3B), error in the F1 score remained even at high

sample sizes in Scenario Two, but largely diminished at high sample sizes in Scenario Three.

However, we observed an overall reduction in F1 score errors across all sample sizes for Sce-

nario Two in models with strong marginal predictors compared to those with weak marginal

predictors. Additionally, with weak marginal predictors, Scenario Three resulted in little F1

score error even at small sample sizes. The models with fewer predictor variables performed

similarly to the baseline simulation models (S1 Fig). A comprehensive list of the F1 scores for

all simulations is available in S3 Table.

Sensitivity analyses

In null models that contained no marginal predictors, the F1 score was low for all Scenarios

(S3 Table) and biased for Scenarios Two and Three compared to Scenario One for all sample

sizes (S2 Fig). Results for the model implementations using the default hyper-parameters are

shown in S4 Table. We saw similar but less consistent patterns compared to the primary

PLOS ONE Machine learning and epidemiologic methods for complex survey data

PLOS ONE | https://doi.org/10.1371/journal.pone.0280387 January 13, 2023 6 / 15

https://doi.org/10.1371/journal.pone.0280387


Table 1. Descriptive characteristics of the National Health and Nutrition Examination Survey III analytic populationa.

Overall Alive Deceased

(N = 15,820) (N = 9,683) (N = 6,137)

Median (interquartile range)

Age (years) 40 (29–56) 35 (27–44) 64 (53–73)

Body mass index (kg/m2) 25 (22–29) 25 (22–29) 27 (23–30)

Systolic blood pressure (mmHg) 118 (109–130) 114 (107–124) 133 (120–147)

Diastolic blood pressure (mmHg) 73 (67–80) 73 (66–79) 75 (68–82)

N (%)

Female 8,482 (53) 5,522 (54) 2,960 (50)

Race/Ethnicity

Non-Hispanic White 6,792 (77) 3,451 (75) 3,341 (81)

Non-Hispanic Black 4,435 (11) 2,974 (11) 1,461 (11)

Mexican American 3,986 (5) 2,807 (5) 1,179 (4)

Other 607 (7) 451 (8) 156 (5)

Education

Less than HS 6,340 (25) 3,002 (19) 3,338 (40)

HS/Some College/AD 7,519 (55) 5,282 (58) 2,237 (48)

College Degree or Above 1,961 (20) 1,399 (23) 562 (13)

Census region

Northeast 2,219 (20) 1,321 (20) 898 (20)

Midwest 3,187 (25) 1,897 (25) 1,290 (26)

South 6,798 (34) 4,077 (34) 2,721 (35)

West 3,616 (21) 2,388 (21) 1,228 (20)

Urbanicity (metro) 7,747 (48) 5,130 (50) 2,617 (44)

Annual household income <$20K (yes) 7,605 (32) 3,935 (27) 3,670 (47)

Married (yes) 9,363 (65) 5,875 (66) 3,488 (62)

Born in U.S. (yes) 12,765 (87) 7,499 (86) 5,266 (91)

Insurance coverage (yes) 13,146 (87) 7,534 (85) 5,612 (93)

Tobacco smoke exposure

Current smoker 3,936 (28) 2,474 (28) 1,462 (28)

Former smoker 3,896 (25) 1,816 (21) 2,080 (35)

Secondhand 1,381 (7) 1,018 (8) 363 (4)

Not exposed 6,607 (40) 4,375 (43) 2,232 (33)

General health

Excellent 2,450 (21) 1,850 (24) 600 (12)

Very good 3,844 (32) 2,684 (35) 1,160 (23)

Good 5,675 (32) 3,539 (31) 2,136 (36)

Fair 3,117 (12) 1,443 (9) 1,674 (22)

Poor 734 (3) 167 (1) 567 (7)

Congestive heart failure (yes) 569 (2) 64 (0.4) 505 (6)

Stroke (yes) 482 (2) 51 (0.4) 431 (6)

Asthma (yes) 1,086 (8) 635 (8) 451 (8)

Non-skin cancer (yes) 627 (4) 148 (2) 479 (8)

Diabetes (yes) 1,267 (5) 310 (2) 957 (13)

Hypertension (yes) 4,340 (23) 1,695 (16) 2,645 (42)

Heart attack (yes) 735 (3) 87 (0.9) 648 (10)

Chronic bronchitis/emphysema (yes) 1,121 (8) 390 (5) 731 (14)

Supplement use (yes) 5,997 (42) 3,458 (41) 2,539 (45)

(Continued)
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model implementations. The default model runs had a larger average departure of Scenarios

Two and Three from the gold standard Scenario One, with particularly large errors for simula-

tions in small samples.

Discussion

Our findings suggest that failing to account for sampling weights in gradient boosting models

of complex survey data may affect model performance in target populations, even at relatively

large sample sizes. However, depending on the study design and other analytic factors, weight-

ing may be less important to the model configuration process than might be expected in a tra-

ditional regression model. This partial correction for lack of weights may occur because the

algorithm has access to covariates that are (at least partially) correlated with the design strata.

As such, even if the model does not have access to the actual design weights, it may be able to

partially recover the design structure through selection of appropriate coefficient and interac-

tion terms (i.e., post-stratification) in place of direct weighting if model performance can be

scored in “real-world” (weighted) data. In the NHANES III dataset, we found that model per-

formance evaluated using observed outcomes from the weighted dataset was comparable

regardless of whether predicted probabilities were generated from weighted or unweighted

models. At the largest sample size assessed (N = 10,000), this finding held across the other ana-

lytic factors simulated, including various scenarios for weight variability, predictor strength,

and model dimensionality.

At small sample sizes, whether re-evaluating the models with weighted observed outcomes

mitigated the error from models configured with unweighted observed outcomes depended

on other analytic factors. Accounting for the sampling weights in either the model configura-

tion process or re-evaluation step had little impact when the variability in sampling weights

was low, suggesting that weights can potentially be ignored if there is little deviation from a

simple random sample. Additionally, our findings suggest that the impact of ignoring the

weights entirely may be negligible in models with particularly strong marginal predictors. Nei-

ther condition was met in our baseline simulations mimicking the NHANES III study design.

Table 1. (Continued)

Overall Alive Deceased

(N = 15,820) (N = 9,683) (N = 6,137)

Prescription medication use (yes) 7,377 (45) 3,298 (36) 4,079 (67)

Hospitalization in past year (yes) 2,301 (12) 1,113 (10) 1,188 (17)

5+ doctor visits in past year (yes) 3,769 (22) 1,822 (19) 1,947 (31)

a Medians and percents represent weighted distributions; frequencies are unweighted.

https://doi.org/10.1371/journal.pone.0280387.t001

Table 2. Performance of unweighted versus weighted gradient boosting model implementations using data from the National Health and Nutrition Examination

Survey III.

Scenario Model configuration Model evaluation F1 Score (%) Errora

One Weighted Weighted 77 REF

Two Unweighted Unweighted 82 +5

Three Unweighted Weighted 77 -0

a Difference in F1 score compared to model trained and scored with weighted data. All displayed values were rounded to the 3rd decimal place after errors were

calculated from unrounded F1 scores. Displayed errors may therefore be nominally different than would be expected if calculated from the displayed F1 scores.

https://doi.org/10.1371/journal.pone.0280387.t002
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In these simulations, the error associated with failing to account for the sampling weights dur-

ing the model configuration process was not mitigated by incorporating the weights in the re-

evaluation step at smaller sample sizes as it was at the largest sample size (N = 10,000).

To our knowledge, only one other paper has examined the implications of implementing

machine learning methods with complex survey data [24]. In their study, Toth and Eltinge

assessed the effects of ignoring sampling weights when applying a recursive partitioning algo-

rithm and concluded that the weighted estimator was substantially less biased than the

unweighted estimator. However, the authors’ analysis focused on a simple, single-tree algo-

rithm. Our findings provide evidence that their conclusion may also extend to more flexible

ensemble recursive partitioning algorithms such as gradient boosting, but not necessarily

under all study conditions. Toth and Eltinge also found that the asymptotic consistency of pre-

dictions derived from weighted recursive partitioning algorithms may fail in the case of

Fig 1. Performance of unweighted versus weighted gradient boosting model implementations by sample size (baseline

simulations).

https://doi.org/10.1371/journal.pone.0280387.g001
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extreme clustering relative to small sample sizes, suggesting that tree models may split small

data into clusters and effectively ‘memorize’ the study design structure instead of learning the

underlying population’s joint variable distributions. While the goal of the present paper was to

evaluate the effect of failing to account for sampling weights in gradient boosting models,

more in-depth investigations of other survey design elements—such as stratification and geo-

graphic clustering—in the context of ensemble and other machine learning algorithms are

warranted.

Our findings may be specific to the evaluation metric we used, and it should be noted that

there is currently no consensus regarding the most appropriate evaluation metric for

Table 3. Performance of gradient boosting models configured and evaluated under different analytic scenarios, holding sample size constant at N = 10,000.

F1 Score (%) F1 Score (%)

Study design feature Scenario Onea

(gold standard)

Scenario Twob Errord,f Scenario Threec Errore,f

High variability in weights 81 79 -2 80 -1

Low variability in weights 80 80 -0 80 -0

Strong marginal predictors 85 89 +4 84 -1

Weak marginal predictors 58 66 +9 58 +1

Fewer marginal predictors (10) 68 74 +6 68 +1

No marginal predictors 32 28 -4 25 -7

NHANES III, National Health and Nutrition Examination Survey III.
a Scenario One: Gradient boosting model configured and evaluated on weighted data (gold standard model).
b Scenario Two: Gradient boosting model configured and evaluated on unweighted data.
c Scenario Three: Gradient boosting model configured on unweighted data and evaluated on weighted data.
d Difference in F1 score for Scenario Two compared to Scenario One.
e Difference in F1 score for Scenario Three compared to Scenario One.
f All displayed values were rounded to the 3rd decimal place after errors were calculated from unrounded F1 scores. Displayed errors may therefore be nominally

different than would be expected if calculated from the displayed F1 scores.

https://doi.org/10.1371/journal.pone.0280387.t003

Fig 2. Performance of unweighted versus weighted gradient boosting model implementations by weight variability and sample

size.

https://doi.org/10.1371/journal.pone.0280387.g002
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unbalanced data. We selected the F1 score because it and the related precision-recall plot have

been shown to have advantages compared to the area under the curve (AUC) in the presence

of class imbalance [25,26] although the Mathews correlation coefficient may offer additional

advantages [27]. Evaluating other performance metrics was beyond the scope of this proof-of-

concept analysis and is another avenue for future research.

The flexibility of gradient boosting requires carefully tuning many hyper-parameters that

represent scaling factors for various components of the model growth and regularization pro-

cess [3,28–30]. A strength of our analysis is our model configuration approach, which opti-

mizes the hyper-parameter set using a randomized, multidimensional grid search [22].

Although computationally intensive, we prioritized a more comprehensive model tuning

approach to mitigate the chance of generating spurious findings due to likely differences

between the optimal hyper-parameter set for the various model implementations. For the

same reason, our findings may be specific to our hyper-parameter optimization approach and

may not hold if little effort is made to appropriately tune the models. Indeed, our sensitivity

analysis using the default hyperparameter settings for all model implementations produced

less consistent results and generally performed poorer, underscoring the importance of tuning

when implementing gradient boosting.

Our study is not without limitations. We chose to use gradient boosting as a test case

because of its computational efficiency and good performance relative to other tree-based algo-

rithms [31,32]. This approach shows good real-world performance in data mining competi-

tions such as Kaggle [33], but the search for optimal model hyperparameters can be

computationally intensive and unoptimized models can be prone to overfitting [29]. To miti-

gate potential overfitting, we explicitly tuned the models’ regularization hyperparameters and

utilized five-fold cross-validation. Although five folds are commonly used for cross-validation,

some have called for additional cross-folds for gradient boosting, particularly when used with

small sample sizes [28]. We considered additional folds but ultimately prioritized increased

computational efficiency, which was a major challenge we faced in implementing our analysis

given the numerous simulations and tens of millions of individual model runs involved.

Fig 3. Performance of unweighted versus weighted gradient boosting model implementations by predictor strength and sample

size.

https://doi.org/10.1371/journal.pone.0280387.g003
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Results from our null models, which yielded uniformly poor F1 scores, offered some reassur-

ance concerning potential overfitting, as did our observation that F1 scores increased with

increasing predictor strength. In clinical and other practical applications of gradient boosting,

using more than five folds for cross-validation should be strongly considered.

Our experience implementing this study and its key findings indicate that epidemiologic

research may benefit from more readily available (and validated) software options for weight-

ing machine learning analyses of complex survey data, along with clear tutorials for model

configuration. In the absence of accessible software packages for implementing weighted algo-

rithms, post-hoc calculation of performance metrics on weighted data may represent the best

alternative for the average user when generalizability is a priority. However, such results

should be interpreted with caution, particularly at small sample sizes, and future studies should

be conducted to confirm our findings across a range of algorithms. NHANES and other

national surveys continue to play an important role in epidemiologic research. As the popular-

ity of machine learning increases, failure to give more attention to appropriately analyzing

complex survey data may represent a missed opportunity to leverage these powerful

approaches.

Conclusions

Failing to account for sampling weights in gradient boosting models of complex survey data

affects prediction, dependent on sample size and other analytic properties. In the absence of

software for configuring weighted algorithms, our findings indicate that post-hoc re-calcula-

tions of unweighted model performance using weighted outcome data may produce more

accurate predictions for the target population and therefore produce less biased results than

ignoring survey weights entirely. Additional research is warranted to confirm these results for

gradient boosting models. While outside the scope of this work, further investigation is also

needed to expand our understanding on how to appropriately use and implement other

machine-learning algorithms, including deep learning methods, with complex survey data. In

addition to post-hoc recalculation approaches such as ours, such investigations may give con-

sideration to techniques for directly incorporating weights into the analyses [34,35] and model

explanation methods (e.g., Shapley additive explanations) depending on the analytic method

and software availability.
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