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Abstract: Background: Functional brain networks (FBNs) derived from resting-state functional MRI
(rs-fMRI) have shown great potential in identifying brain disorders, such as autistic spectrum disorder
(ASD). Therefore, many FBN estimation methods have been proposed in recent years. Most existing
methods only model the functional connections between brain regions of interest (ROIs) from a single
view (e.g., by estimating FBNs through a specific strategy), failing to capture the complex interactions
among ROIs in the brain. Methods: To address this problem, we propose fusion of multiview FBNs
through joint embedding, which can make full use of the common information of multiview FBNs
estimated by different strategies. More specifically, we first stack the adjacency matrices of FBNs
estimated by different methods into a tensor and use tensor factorization to learn the joint embedding
(i.e., a common factor of all FBNs) for each ROI. Then, we use Pearson’s correlation to calculate the
connections between each embedded ROI in order to reconstruct a new FBN. Results: Experimental
results obtained on the public ABIDE dataset with rs-fMRI data reveal that our method is superior to
several state-of-the-art methods in automated ASD diagnosis. Moreover, by exploring FBN “features”
that contributed most to ASD identification, we discovered potential biomarkers for ASD diagnosis.
The proposed framework achieves an accuracy of 74.46%, which is generally better than the compared
individual FBN methods. In addition, our method achieves the best performance compared to other
multinetwork methods, i.e., an accuracy improvement of at least 2.72%. Conclusions: We present
a multiview FBN fusion strategy through joint embedding for fMRI-based ASD identification. The
proposed fusion method has an elegant theoretical explanation from the perspective of eigenvector
centrality.

Keywords: functional brain network; fusion; tensor factorization; autism spectrum disorder

1. Introduction

Autism spectrum disorder (ASD) refers to a range of neurodevelopmental conditions
characterized by social impairment, language difficulty, abnormal behavior, etc. [1–4].
Without timely and effective treatment, children with ASD tend to suffer from lifelong
physical and mental health problems [5,6], resulting in a considerable burden on their
families and society. Previous research has shown that early intervention can lead to
positive outcomes for people with ASD later in life [7–10]. Therefore, accurate early
detection of ASD is crucial in clinical practice.

Resting-state functional magnetic resonance imaging (rs-fMRI), as a rapidly develop-
ing, non-invasive neuroimaging technology [11,12], offers great potential for the detection
of ASD in its early stages [13–15]. Considering that ASD affects normal neural connectivity
between different brain regions of interest (ROIs), it is generally necessary to first estimate
a functional brain network (FBN) based on fMRI and then treat it as a feature or biomarker
to automatically distinguish subjects with ASD from normal controls (NCs) [16–18].
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Over the past few decades, researchers have proposed a number of approaches
to estimate FBNs from fMRI [19,20]. Several classic methods for FBN estimation in-
clude Pearson’s correlation (PC), sparse representation (SR) [21], mutual information
(MI) [22,23], and correlation’s correlation (CC) [24]. In particular, these methods generally
model the relationships between ROIs from different perspectives/views. For example,
the PC method measures full correlation among ROIs, the SR strategy captures partial
correlations, the MI method models nonlinear relationships, and the CC strategy encodes
high-order relationships among ROIs.

Although they can estimate FBNs well in some scenarios, these methods only consider
the association between ROIs from a single perspective, thus failing to capture the complex
interactions among ROIs in the brain. To obtain effective representations of brain fMRI,
several previous studies attempted to fuse multiview FBNs derived from rs-fMRI using dif-
ferent FBN estimation strategies [25–30]. For instance, Jie et al. [25] proposed thresholding
of brain FBNs constructed using the PC method to generate multiple thresholded FBNs,
followed by a multiple-kernel learning method to combine features of these FBNs for clas-
sification. Huang et al. [26] first constructed multiple FBNs for each subject with different
levels of sparsity by setting different regularization parameters of an l2,1-paradigm-based
group-constrained sparse regression model. Then, they used a multi-kernel support vec-
tor machine (SVM) for classification based on selected features of each individual FBN.
Gan et al. [27] proposed the construction of multiview FBNs by varying k values using the
k-nearest neighbor (k-NN) algorithm, followed by an L1-SVM for joint ROI selection and
disease diagnosis based on the fused features of those multiview FBNs. Despite achiev-
ing good performance in fMRI-based brain disease diagnosis, these methods generally
obtain multiview FBNs by setting different thresholds based on a single FBN estimation
method, which essentially only model the same type of interconnections among ROIs at
different levels.

In this paper, we propose a novel multiview FBN fusion method for fMRI-based
ASD diagnosis, which can capture common and complementary fusion information from
multiple views through a joint embedding strategy. Specifically, we first construct mul-
tiview FBNs based on several different strategies. We then model these FBNs through a
third-order tensor in which each slice of the tensor represents the adjacency matrix (used
to describe a certain relationship between ROIs) of an FBN from a single view. We fur-
ther employ tensor decomposition [31] to learn the joint embedding of multiview FBNs
in a latent space to capture view-shared and complementary features of fMRI data. Fi-
nally, we calculate the correlations between ROIs in the embedding space to obtain a new
FBN for each subject, followed by a classification module for automated ASD diagnosis.
Experimental results on rs-fMRI views of 184 subjects from the ABIDE dataset demonstrate
the effectiveness of the proposed method in computer-aided ASD diagnosis.

Major contributions of this work are summarized as follows.
First, we propose fusion of multiview FBNs for fMRI-based ASD analysis based on

different functional network estimation methods. Since these estimation methods naturally
incorporate different prior knowledge among brain ROIs (such as partial correlation or
sparsity prior), our method is expected to capture these rich and diverse relationship be-
tween ROIs, generating more reliable FBNs compared with conventional methods. Second,
the proposed multiview FBN fusion is implemented in a low dimensional embedding space
through tensor decomposition (rather than in the original high dimensional space of FBNs).
This helps model the deal with potential common and complementary information among
multiview FBNs and also eliminates some redundant information conveyed in different
FBNs. In addition, the obtained common features of multiview FBNs naturally caters to an
elegant theoretical explanation, i.e., the eigenvector centrality, which is a popular metric to
evaluate the importance of nodes (i.e., ROIs) [32]. This will improve the interpretability of
the proposed method in detecting disease-related functional connectivity abnormalities,
thereby enhancing its utility in clinical practice.
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The rest of this article is organized as follows. In Section 2, we briefly review four
traditional methods for estimating FBNs. In Section 3, we introduce the materials and
the proposed method. In Section 4, we describe the experimental setting and report
experimental results. In Section 5, we discuss the influence of several key components
of the proposed method and visualize discriminative functional connectivity features
identified by our method in automated ASD diagnosis. Finally, we conclude this paper in
Section 6.

2. Related Work

In this section, we briefly review several classical methods for functional brain network
(FBN) estimation from four different perspectives, i.e., Pearson’s Correlation (PC), sparse
representation (SR), mutual information (MI), and correlation’s correlation (CC).

2.1. Pearson’s Correlation

As reported in previous studies [33–36], Pearson’s correlation (PC) is one of the most
widely used methods for FBN estimation based on fMRI data. It measures the full correlation
between paired ROIs. For each subject, we suppose that the brain is parcellated into n ROIs
according to a given atlas. The average blood-oxygenation-level-dependent (BOLD) signal
of the i-th ROI is denoted as xi ∈ Rv (i = 1, · · · , n), where v is the number of time points in
the signal. The edge weight (wij) for the i-th and the j-th ROIs in a PC-based FBN can be
calculated as follows:

wij =
(xi − x̄i)

T(xj − x̄j)√
(xi − x̄i)T(xi − x̄i)

√
(xj − x̄j)T(xj − x̄j)

(1)

where x̄i and x̄j are the mean of xi and xj, respectively. Generally, an FBN constructed
by PC is a dense network [37], which may include noisy or useless edges. In practice, a
threshold operation is usually employed to sparsify edges in the estimated FBN [25].

2.2. Sparse Representation

In contrast to the PC method, which measures the full correlation between two ROIs,
sparse representation (SR) captures partial correlation by regressing out the confounding
effect from other ROIs. Additionally, with the l1 regularizer, the use of SR can naturally
result in a sparse FBN. Specifically, the edge weight (wij ) of the SR-based FBN can be
calculated as follows:

min
wij

n

∑
i=1

(‖xi −∑
j 6=i

wijxj‖2) + λ ∑
j 6=i
| wij|1

s.t. wii = 0, ∀i = 1, · · · , n

(2)

where the first term in Equation (2) is a data-fitting term for modeling partial correlation
between ROIs, the second term is an l1 regularizer used to encode the sparsity prior of the
FBN, and λ is the regularized parameter for controlling the balance between two terms in
the objective function. The constraint Wii = 0 is used to avoid trivial solutions.

2.3. Mutual Information

The mutual information (MI) method measures shared information in time series data
of two ROIs [22,23]; the edge weight (Wij) in an MI-based FBN can be calculated as follows:

wij = ∑
i

∑
j

p(xi, xj) log
p(xi, xj)

p(xi)p(xj)
(3)

where p(xi, xj) is the joint probability distribution of xi and xj, and p(xi) and p(xj) are the
marginal probability distributions of xi and xj, respectively. In contrast to PC and SR, MI
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methods tend to capture non-linear relationships between ROIs. In particular, Wij= 0 if xi and
xj are independent or, equivalently, p(xi, xj) = p(xi)p(xj).

Table 1. Demographic and clinical information of subjects at the NYU site from the ABIDE dataset [38].
Values are reported as mean ± standard deviation. M/F: male/female; MMSE: Mini-Mental Exami-
nation; GCDR: Global Clinical Dementia Rating; FIQ: Full-Scale Intelligence Quotient; VIQ: Verbal
Intelligence Quotient; PIQ: Performance Intelligence Quotient.

Dataset Class Gender (M/F) Age (Years) FIQ VIQ PIQ

ABIDE ASD 68/11 18.58± 11.45 107.92± 3.15 105.81± 1.23 108.81± 2.10
NC 79/26 19.13± 11.85 113.15± 2.45 113.13± 1.15 115.07± 2.08

2.4. Correlation’s Correlation

The abovementioned methods, independent of linearity, calculate direct (or low-
order) relationships between ROIs. Recent studies have shown that high-order interaction
information between ROIs generally plays an auxiliary role in the early diagnosis of brain
diseases [39,40]. Several methods for estimating high-order FBNs have been proposed in
recent years [24,40,41], among which the correlation’s correlation (CC) method is widely
used due to its simplicity [24] . The CC method generally involves two sequential steps.
(1) PC is used to estimate a low-order FBN with the adjacency matrix W = {wij}n

i,j=1 for
each subject. (2) Each column of the matrix (W) is treated as a new feature vector to calculate
the high-order edge weights (Hij), again using PC as shown in Equation (1). In this way,
the CC method is expected to capture high-order relationships between paired ROIs.

3. Materials and Methods

In this section, we first describe the data used in our study and then propose a
multiview FBN fusion method for automated ASD diagnosis, including its motivation,
model formulation, and implementation details.

3.1. Data Preparation

In this study, we use rs-fMRI data from the largest site (i.e., NYU) of the ABIDE
initiative [38], including 79 subjects with ASD and 105 normal controls (NCs). All the
preprocessed fMRI data can be freely obtained on the ABIDE website (http://fcon_1000
.projects.nitrc.org/indi/abide/ (accessed on 10 October 2022)). The demographic informa-
tion of all subjects involved in this work is reported in Table 1.

The rs-fMRI data in the ABIDE dataset were obtained on a clinical routine 3.0 Tesla
Allegra scanner using a standard echo-planar imaging sequence. The imaging parameters
are shown as follows: TR/TE, 2000/15 ms; number of slices, 33; flip angle, 90◦; voxel
size, 3× 3× 4 mm3. To ensure signal stability, the first 10 volumes of each subject were
removed from the rs-fMRI time course. The remaining volumes were then processed by the
Data Processing Assistant for rs-fMRI-based (DPARSF) toolbox according to a recognized
pipeline: (1) slice timing correction and head motion correction; (2) registration of the
Montreal Neurological Institute (MNI) space with a resolution of 3× 3× 3 mm3; (3) regres-
sion of the nuisance signal, including ventricular, white matter, global signal, and motion
parameters [42]; and (4) filtering with a 0.01–0.1 Hz band-pass filter to reduce the effects
of heartbeat and respiration. Then, based on the automated anatomical labeling (AAL)
atlas [43], the brain is parcellated into 116 regions of interest (ROIs), and the representative
BOLD signal is extracted by the averaging strategy [44] from each ROI.

3.2. Proposed Method
3.2.1. Motivation

Researchers have found that resting-state functional magnetic resonance imaging
(rs-fMRI)-derived functional brain networks (FBNs) are a powerful tool for measuring and
mapping brain activity [45]. Previous FBN estimation methods generally model connections

http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/abide/
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between ROIs from a single perspective, thus encoding single prior information. The brain
is a complex system, and FBNs estimated from a single perspective may have difficulty in
capturing the subtle disruptions between ROIs caused by neurological disorders [26]. There-
fore, we attempt to fuse multiview FBNs to provide a more comprehensive representation
of the brain using shared and complementary information from different perspectives.

The most natural approaches for multiview network fusion are averaging, minimiza-
tion, and maximization. Intuitively, these strategies should reduce the discriminative
information of multiview FBNs. For example, averaging edge weights, especially those
with positive and negative signs, easily leads to mutual cancellation of edge weights due to
their opposite signs. Similarly, minimization and maximization are prone to result in more
negative or positive connection weights, possibly leading to the loss of important edge
weights, thus degrading the discriminative ability of fused FBNs. To verify this ability, we
calculate the interclass distance of FBNs between the ASD group and the NC group, based
on four different estimation methods (based on the data described in Section 3.1, the FBN
matrices of all training subjects are obtained using different estimation methods, and the
upper triangles of such matrices are pulled into vectors; then, all vectors are grouped into
two categories (i.e., normal and patient) according to their known labels). Then, all vectors
of each class are averaged separately as representative vectors of each class. Finally, we
calculate the Euclidean distance between the representative vectors of the two classes as the
final interclass distance. The results are shown in Table 2, based on which we can conclude
that the fusion FBNs using the averaging, maximization, and minimization schemes obtain
a relatively smaller interclass distance.

Table 2. Interclass FBN distance between ASD patients and normal controls based on different
methods. Aver: averaging fusion; Min: minimization fusion; Max: maximization fusion.

Method PC SR MI CC Aver Min Max Ours

Interclass
FBN

Distance
9.20 2.52 6.41 12.26 5.88 6.87 6.02 13.24

With the aim of improved fusion of multiview FBNs, we propose a novel joint em-
bedding fusion scheme through tensor decomposition. In contrast to previous studies,
our proposed scheme is implemented in a low-dimensional joint embedding space to
construct the final FBN rather than in the original high-dimensional space of all FBNs. Such
a joint embedding not only removes redundant information, including some noises or error
correlations, but also captures the representative principle components of FBNs.

3.2.2. General Framework

In Figure 1, we show the general framework of the proposed multiview FBN fu-
sion method. First, we estimate the initial FBNs for each subject using four conven-
tional methods, i.e., PC, SR, MI, and CC. Note that many other FBN estimation methods
can also be used here, such as some improved strategies that incorporate specific prior
information [36,46,47]. Since this paper is focused on fusing multiview FBNs, we choose
four simple and representative estimation methods. Then, we stack the initially estimated
multiview FBNs into a third-order tensor and apply the tensor decomposition method
to jointly learn the common embedding of correlations in each FBN in the latent space.
Finally, in the embedding space, we utilize PC (here, we use PC due to its simplicity and
popularity. In principle, any existing method can be used to compute the correlations
among the extracted principal components of the original FBNs to construct a new FBN,
although this is outside the scope of the present study). Note that in the proposed frame-
work, joint embedding plays a core role in capturing the common information of multiple
FBNs. Therefore, we focus on the joint embedding step in the rest of this section.



J. Pers. Med. 2023, 13, 251 6 of 17

BOLD signals 

rs-fMRI data

PC

SR

MI

CC

Pn×r
×

Interactions

Multi-view FBN under 
different thresholds New FBN

...

...

...

...

①

③ ④

⑤

⑥

②

Disease diagnosis

PC

×

NC
ASD

SR
MI

CC

 Adjacency tensor

Common  matrix

Pn×r
T�r×r×m

�
n×n×m

...

Figure 1. Illustration of the proposed multiview functional brain network fusion method, including
six major parts: (1) rs-fMRI preprocessing; (2) estimation of initial functional brain networks (FBNs)
based on four strategies, i.e., Pearson’s correlation (PC), sparse representation (SR), mutual infor-
mation (MI), and correlation’s correlation (CC); (3) selection of the initial FBNs under the optimal
parameter; (4) factorization of the tensor stacked by the selected FBNs to obtain the common matrix
(P) of different FBNs; (5) construction of a new FBN based on P for each subject; and (6) disease
diagnosis.

3.2.3. Proposed Joint Embedding

The proposed joint embedding strategy aims to map the node/ROI representations
estimated by different methods into the same space to capture their potential common
information. In particular, joint embedding is implemented as follows:

arg min
P,R

1
2

m

∑
k=1

∥∥∥A(k) − PR(k)P>
∥∥∥2

F
+

α

2

m

∑
k=1

∥∥∥R(k)
∥∥∥2

F

s.t. P>P = I

(4)

where A(k) is the kth slice of tensor A stacked by FBNs estimated by different methods.
PR(k)PT is an approximate decomposition of A(k) that is defined as follows:

A(k) ≈ PR(k)P> (5)

where the matrix P ∈ Rn×r is the common factor shared among all A(k) ∈ Rn×n that
are FBNs, and pi (i.e., the ith row of P) represents the joint embedding of correlation of
the i-th ROI in all FBNs, which seamlessly captures and integrates the inherent common
information across all FBNs. Here, n is the number of ROIs, and r is the dimension of the
embedding space. R(k) ∈ Rr×r denotes the underlying interaction between ROIs of A(k). α
is the regularization parameter, and ‖.‖F is the Frobenius norm. In addition, the columns of
P are orthogonal. The regularization term is introduced to avoid overfitting and to improve
numerical stability [48,49].

In particular, the proposed model is highly scalable and can be effectively incorporated
with any number of FBNs (i.e., A(k)) constructed from different perspectives. This property
makes our method feasible to capture comprehensive and complex relationships among
brain ROIs. Interestingly, we find that this model has a clear theoretical explanation for
jointly extracted common factors (P), as introduced below.

3.2.4. Theoretical Explanation

In the proposed model, the matrix (P) is multiplied simultaneously on both sides of
Equation (5) to obtain the following equation:

A(k)P ≈ PR(k) (6)
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In graph theory, eigenvector centrality is a popular and important index to measure
the importance of nodes [32]. Its formula is listed as follows:

Ax = λx (7)

EC(i) = xi (8)

where A is the adjacency matrix of a graph, λ is the maximum eigenvalue of A, and x is the
eigenvector corresponding to λ. The ith element (EC(i)) in the eigenvector x indicates the
importance of the ith node of the graph.

According to the definition of eigenvector centrality, based on Equations (6) and (7),
the proposed joint embedding is exactly the common maximum eigenvector of multiview
FBNs, where each element indicates the importance of each ROI. Similarly, we further
generalize the definition of eigenvector centrality. That is, when r > 1, the commonality
matrix (P) is composed of the top r eigenvectors of multiple FBNs, where each ROI has r
features indicating its importance. Theoretical analysis further proves the feasibility of our
proposed method.

3.2.5. Optimization

Several different algorithms have been developed to date to solve
Equation (4) [31,48,50]. In consideration of its generality and scalability, in this paper,
we choose the RESCAL method [31] to decompose the tensor stacked by multiview FBNs
and obtain the joint representation of multiview FBNs in the latent space. Specifically, P is

initialized by the eigenvalue decomposition of ∑k(A(k) + A(k)>), and R(k) can be initialized
by any random matrix. The detailed optimization process is introduced as follows.

(a) Update P :

The update formula of P is obtained by RESCAL-alternating least squares (RESCAL-
ALS) method [31], as shown below:

P← ∑m
k=1 A(k)PR(k)> + A(k)>PR(k)

∑m
k=1 R(k)R(k)> + R(k)>R(k) + αI

(9)

(b) Update R(k) :

The update formula of R(k) is as follows:

R(k) = V
(

S ·U>A(k)U
)

V> (10)

where U and V are the left singular value matrix and the right singular value matrix of
P = UΣVT , respectively. The sign “·” means dot product. In addition, S is defined
as follows:

S =


Σ11Σ11

(Σ11Σ11)
2+α

· · · ΣrrΣ11
(ΣrrΣ11)

2+α
...

. . .
...

Σ11Σrr

(Σ11Σrr)
2+α

· · · ∑rr Σrr

(ΣrrΣrr)
2+α

 (11)

To calculate the factor matrix, the Algorithm 1 performs alternate updates of P and all

R(k) until ∑m
k=1‖A(k)−PR(k)P>‖2

F
‖χ‖2

F
converges to a small threshold (ε) or exceeds the maximum

number of iterations. Here, χ is ∑m
k=1 A(k). After obtaining the common representation P of

multiple FBNs in the latent space, we can obtain the reconstructed FBN through PC.
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Algorithm 1 Algorithm of MJE
Input: An × n × m: adjacency tensor; α: regularization parameter; r: rank of the latent
representation; tmax: the maximum number of iterations, ε THIS Initialize: P with the r

largest eigenvectors of the Eigen decomposition of ∑k(A(k) + A(k)T
); R(k) is initialized by

any random matrices While not converged or t < tmax do
Update P according to Equation (11);
Update R(k) according to Equation (14);
t = t + 1;

check the convergence conditions:
∑m

k=1‖A(k)−PR(k)PT‖2
F

‖χ‖2
F

→ ε or t > tmax

end
Reconstruct the FBN with PC for the potential representation of each ROI by
W = PPT

Output: Restructuring the FBN: W

In summary, our proposed algorithm has the following advantages. (1) Our algorithm
fuses multiple perspectives of FBNs to provide a more comprehensive representation of
the brain by exploiting shared and complementary information from different perspective.
(2) Our algorithm is implemented in a low-dimensional embedding space. This helps to
model the potential commonality and complementary information among the multiview
FBNs and eliminate some redundant information passed between different FBNs. (3) Our
proposed algorithm provides a reasonable explanation from the perspective of eigenvector
centrality, thus enhancing its usefulness in clinical practice. (4) Although our work uses
only four typical methods to build FBNs, our framework is scalable and can be extended to
multiple FBNs.

The time complexity of updating the matrix (P) and the core tensor (R) is O(m(r3 +
nr2) + pr). Here, p = nnz(A) refers to non-zero numbers in A. The time complexity of
reconstructing the FBNs is O(nr2). Therefore, the overall time complexity of our proposed
approach is O(M(r3 + nr2) + pr + nr2).

3.2.6. Classification

With the fused FBNs for each subject, we can perform ASD vs. NC classification.
Specifically, we use edge weights of the FBN as features and a support vector machine
(SVM) with linear kernels and a default parameter (C = 1) as a classifier.

4. Experiments
4.1. Experimental Setting

As mentioned in Section 2, we choose four representative methods, i.e., PC, SR, MI,
and CC, to construct multiview FBNs. These FBNs are stacked into a tensor, and the
tensor is then decomposed to obtain shared information for the fusion of multiview
FBNs. For the PC, MI, and CC methods, their constructed FBNs are dense. Thus, we
empirically select different thresholds to remove a proportion of edges in the range of
[0%, 10%, . . . , 90%, 99%] [46,47]. For SR, the sparsity of the estimated FBN can be con-
trolled by the values of the regularization parameter that are searched in the range
of [2−5, 2−4, . . . , 24, 25] [47]. In the objective function of our method (see Equation (4)),
the range of the regularization parameter α is [0.001, 0.01, 0.1, 1, 10, 100, 1000], and the re-
duced dimension of embedding space (r) is tuned in the set of [20, 30, 40, 50, 60, 70, 80, 90,
100, 110].

Since only 184 subjects are involved in our experiments, we use leave-one-out (LOO)
cross validation (CV) to obtain the final classification accuracy, as shown in Figure 2. In
addition, we perform an inner loop of LOOCV to determine the optimal parameter values
based on the training data. Specifically, we select the features of 182 subjects contained
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in a training set of 183 subjects to train the classifier and leave one subject to validate the
performance of the trained classifier. The accuracy values of the 183 runs are recorded,
and the parameter with the highest classification accuracy is selected as the parameter result
of one cycle. Finally, the frequency of occurrence of each parameter is calculated, and the
parameter with the highest frequency of occurrence is taken as the optimal parameter for
the four different methods. The initial FBN corresponding to the optimal parameter is used
as one of the FBNs to be fused at the end.

Inner Loo

Dataset

Training Subset

Validation Set

Optimal 
Parameter

Classififcation 
Result

LOO

Parameter Selection

t-test,SVM

t-test,SVM

Test 
Set

Training 
Set

Figure 2. The cross-validation mechanism used in our experiments includes the internal LOO method
to determine the best parameters and the external LOO method to obtain classification results.

We report the classification performances of different methods on seven evalua-
tion metrics, i.e., accuracy (ACC), specificity (SPE), sensitivity (SEN), positive predic-
tive value (PPV), negative predictive value (NPV), class-balanced accuracy (BAC), and
the area under the receiver operating characteristic curve (AUC), calculated as follows
ACC = TP+TN

TP+FP+TN+FN , SPE = TN
TN+FP , SEN = TP

TP+FN , BAC = SEN+SPE
2 , PPV = TP

TP+FP ,
and NPV = TN

FN+TN , respectively, where TP, TN, FP, and FN are the number of correctly pre-
dicted patients, correctly predicted normal controls, normal controls predicted as patients,
and patients predicted as normal controls, respectively.

4.2. Comparison Methods

We compare the proposed method with several state-of-the-art fusion methods, in-
cluding shallow fusion and deep fusion strategies. The comparison methods are as follows:

• MNER [26]: This method uses the sparse regression model with group constraints to
generate multiple sparse FBNs with different sparsity levels, followed by multiview
FBN fusion via a multiview learning method.

• LORTA [46]: This method assumes that FBNs have similar but not necessarily the same
topology across subjects. It is implemented in a two-step learning framework. First,
the FBNs are estimated according to conventional methods. Then, the estimated FCNs
of all subjects are stacked into a tensor and refined by low-rank tensor approximation.

• BMGF [27]: This method aims to fuse a fully connected FBN and a 1-nearest neigh-
bor (1NN) FCN, taking into account the effects of intersubject variability and cross-
subject heterogeneity.

• GraphCGC-Net [51]: This method is a unified three-stage graph learning framework
for brain disease diagnosis. First, it constructs a coarsened graph to obtain a critical
graph structure using supervised multigraph clustering. A graph GAN is then used to
generate the realistic brain networks based on the coarsened graph. It further finetunes
the pretrained GCN by combining the generated and original graphs into a mixed
training dataset.

• MVS-GCN [30]: This method is a prior brain structure learning-guided multiview
graph convolution network framework. It first constructs multiview coarsened brain
network structures that are consistent for all the subjects and then implements mul-
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titask graph embedding learning to capture the intrinsic correlations among differ-
ent views.

• MFC-PL [52]: This method trains DNN models through unsupervised and supervised
training steps to learn abstract feature representations of low-order and high-order
FC patterns. Then, the learned multilevel abstract FC features are combined, and an
ensemble classifier is trained on the fused features for brain disease classification.

• BrainGC-Net [53]: This method improves the classification performance of the graph
through three mechanisms. First, a priori subnetwork structure regularization is
proposed to guide the pooling process and ensure accurate subnetwork identification.
Then, a graph GAN model that focuses on both embedding and graph space is
proposed based on the structure of α-GAN. In addition, a domain-consistent GCN
model is proposed to alleviate the gap that exists between the real graph and the
domain of the generated graph.

Among the abovementioned methods, MNER [26], LORTA [46], and BMGF [27] are
shallow fusion methods, whereas GraphCGC-Net [51], MVS-GCN [30], MFC-PL [52], and
BrainGC-Net [53] are deep fusion approaches.

In the experiments, for a fair comparison we adjust the above methods with parameters
to obtain the best classification performance for them. The divisions of training and testing
data are identical. In our method, we use edge weights of FBNs as the features for ASD vs.
NC classification for each competing method. Because the adjacency matrix of the FBN is
symmetric (because the SR model yields an asymmetric FBN, we symmetrize the FBN using
the simple strategy of W ← (W +W>)/2), we only consider the upper triangular elements
of the adjacency matrix, resulting in 6670 features for each participant. Furthermore, we
employ a t-test to select more discriminative features by empirically setting the value of p
to 0.01, 0.05, 0.001, and 0.005. Finally, an SVM with linear kernels and default parameters is
used to perform the classification tasks.

4.3. Results
4.3.1. Initial FBN Parameter Selection

In Figure 3, we report the optimal parameter choices for the four different methods
based on a t-test with p-values of 0.01, 0.05, 0.001, and 0.005. Figure 3 shows that when
the p-values are 0.01, 0.05, 0.001, and 0.005, the thresholds selected for PC are 40%, 80%,
80%, and 80%; the regularization parameters selected for SR are 20, 23, 2−4, and 2−1;
the thresholds for MI are 90%, 70%, 50%, and 70%; and the thresholds for CC are 70%, 20%,
70%, and 80%, respectively.
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Figure 3. Frequencies of the optimal p values selected in an inner loop for the four different methods
based on a t-test with p = {0.01, 0.05, 0.001, 0.005}. The horizontal axis indicates the multiple thresh-
olds for the different methods, and the vertical coordinates indicate the frequencies of occurrence of
the different thresholds.

4.3.2. Results of ASD Identification

We report the results of all methods in the task of ASD vs. NC classification in
Table 3. Based on the results presented in Table 3, we report the following observa-
tions. First, the proposed method outperforms the state-of-the-art methods in most cases.
Specifically, in comparison with the three shallow fusion-based methods (i.e., MNER [26],
LORTA [46], and BMGF [27]), the proposed method improves the performance by 3.81%,
5.98%, and 8.16%, respectively, in terms of ACC and by 8.40%, 7.43%, and 11.16%, re-
spectively, in terms of AUC. This may benefit from the proposed joint embedding-based
fusion, which captures more discriminative information of multiview FBNs from different
views. Another possible reason is that our approach takes into account the complementary
information of FBNs generated by different estimation methods. We can also see that
our method compares to achieves better classification performance than the four deep
fusion methods (i.e., GraphCGC-Net [51], MVS-GCN [30], MFC-PL [52], and BrainGC-
Net [53]), with improvements of 2.72% and 6.53% in terms of ACC and AUC, respectively.
This is possible because deep fusion methods tend to rely on a large amount of data [51],
whereas this study includes a limited number of subjects. Overall, the results show that our
multigraph fusion approach is feasible because it can exploit common and complementary
information between multiple FBNs obtained by different estimation FBN methods.
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Table 3. Classification results (mean ± standard deviation) of six methods in the task of ASD vs. NC
classification, with best results shown in bold.

Method ACC (%) SEN (%) SPE (%) BAC (%) PPV (%) NPV (%) AUC (%)

MNER [26] 70.65 58.82 74.29 66.66 61.98 74.29 73.32
LORTA [46] 68.48 71.70 64.10 67.90 64.93 74.29 74.29
BMGF [27] 66.30 60.76 70.48 65.62 60.76 70.48 70.56
GraphCGC-

Net [51] 71.74 63.83 78.26 71.05 75.00 78.26 77.42

MVS-
GCN [30] 67.93 58.23 75.24 66.73 63.89 70.54 71.14

MFC-PL [52] 66.74 56.54 74.95 65.75 63.10 63.10 69.70
BrainGC-
Net [53] 77.43 59.30 51.20 58.52 59.17 64.30 74.83

Ours 74.46 64.56 81.90 73.23 72.86 75.44 81.72

5. Discussion

In this section, we investigate the influence of model parameters, multiview FBN
fusion effectiveness, and the number of FBNs. Then, we visualize the most discriminative
features identified by our method in automated ASD identification.

5.1. Sensitivity to Parameters

In this paper, we use the joint embedding strategy, which employs two parameters,
i.e., the regularization parameter (α) and the embedding space dimension (r). We now
discuss the effect of these two parameters on ASD vs. NC classification and report the
experimental results of our method using different parameter values in Figure 4. In the
experiments, we fix one parameter to observe the influence of another parameter on the
classification results. Figure 4a shows the results of our method with different values of α
when the embedding space dimension (r) is 50. It can be observed that our method achieves
optimal classification performance when α = 10. When the regularization parameter (α) is
very large (e.g., α = 100), the classification performance gradually decreases. The possible
reason is that when α is too large, our model pays focuses excessively on the regularization
terms and ignores the data-fitting term in the fusion model (see Equation (4)). In Figure 4b,
we report the influence of the embedding space dimension (r) (when α = 10). As shown
in Figure 4b, our proposed method achieves good performance when r falls within the
range of [40, 50] but does not produce satisfactory results when r = 110. The reason may be
that when the embedding space dimension (r) is too large, some noise may be included,
negatively affecting classification performance.
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Figure 4. Classification results (ACC and AUC) of our proposed method according to different
parameters based on a t-test with a p-value of 0.001. (a) Influence of the regularization parameter
(α) on the model classification results; (b) effect of the embedding space dimension (r) on the model
classification results.

5.2. Influence of Proposed Fusion Strategy

In this section, we compare the proposed multiview FBN fusion approach with its de-
generated single-view variants (i.e., PC, SR, MI, and CC) based on LOOCV.
The comparison results are reported in Table 4. As shown in Table 4, our proposed multi-
view FBN fusion method is superior to the other four methods in terms of performance
in most cases. For example, with p-values of 0.001, and 0.005, our method achieves an
accuracy of 74.46%, 8.16%, and 5.44% higher than the second-best method (i.e., CC and
PC), respectively. These results further confirm that considering the rich and comple-
mentary information in multiview FBNs (as we do in this work) helps boost fMRI-based
classification performance.

Table 4. Classification results (mean ± standard deviation) of the proposed method and four single-
view methods (i.e., PC, SR, MI, and CC) based on different p-values involved in the t-test. CV: cross
validation.

CV p-Value Method ACC (%) SEN (%) SPE (%) BAC (%) PPV (%) NPV (%) AUC (%)

LOOCV

p = 0.01

PC 66.85 65.82 67.62 66.72 60.47 72.45 74.56
SR 66.31 49.37 79.05 64.21 63.93 67.48 71.78
MI 57.07 36.71 72.38 54.54 50.00 60.32 57.18
CC 65.76 58.23 71.43 64.83 60.53 69.44 72.68

Ours 73.91 65.82 80.00 72.91 71.23 75.68 75.68

p = 0.05

PC 67.39 59.49 73.33 66.41 62.67 70.64 71.79
SR 59.78 46.84 69.52 58.18 53.62 63.48 58.64
MI 55.43 41.77 65.71 53.74 47.83 60.00 62.69
CC 66.85 58.23 73.33 65.78 62.16 70.00 69.99

Ours 66.30 60.76 70.48 65.62 60.76 70.48 70.56

p = 0.001

PC 66.30 65.82 66.67 66.24 59.77 72.16 70.17
SR 63.04 51.90 71.43 61.66 57.75 66.37 64.48
MI 64.13 62.03 65.71 63.87 57.65 69.70 72.56
CC 70.11 64.56 74.29 69.42 65.38 73.58 78.52

Ours 74.46 64.56 81.90 73.23 72.86 75.44 81.72

p = 0.005

PC 69.02 68.35 69.52 68.94 62.79 74.49 73.25
SR 67.39 48.10 81.90 65.00 66.67 67.72 70.61
MI 55.43 41.77 65.71 53.74 47.83 60.00 62.69
CC 69.57 63.29 74.29 68.79 64.94 72.90 77.37

Ours 74.46 68.35 79.05 73.70 71.05 76.85 76.85
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5.3. Influence of Number of FBNs

Based on the averaging fusion and our proposed method, we evaluate the influence of
the number of FBNs on the classification performance with a p-value of 0.001 in Table 5.
With different numbers of FBNs to be fused, we iterate different FBN combinations. Then,
the classification accuracy of the different combinations with the same number of FBNs
are averaged as the final results. Table 5 shows that our method obtains consistently better
performance than the averaging fusion method, with a steady improvement as the number
of FBNs increases. This may be because the proposed joint embedding fusion method can
capture more complementary information than the averaging strategy.

Table 5. Influence of the number of FBNs based on a t-test with a p-value of 0.001.

Method Number of FBNs

Two-View FBNs Three-View FBNs Four-View FBNs

Averaging Fusion 62.74% 63.99% 64.77%

Ours 71.73% 72.14% 74.41%

5.4. Identified Discriminative Features

As mentioned in the previous section on the experimental setting, we use functional
connections between ROIs as fMRI features to distinguish subjects with ASD from NCs.
To visualize the disease-associated features, we select the most discriminative (i.e., top 52)
features based on a t-test with a p-value of 0.001, as shown in Figure 5. The width of each
arc represents the discriminative power of the corresponding functional connection. The
colors of the arcs are generated randomly to provide visual clarity. As shown in Figure 5,
the ROIs associated with the most discriminative features include the right–middle frontal
gyrus, the right hippocampus, and the right amygdala. Some of these ROIs have been
widely reported in previous studies on ASD diagnosis [54–56]. The result further confirms
that our approach is reliable to discover fMRI biomarkers for automated ASD identification.
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Hide All Figure 5. The most discriminative features detected by the proposed method in ASD vs. NC
classification based on an AAL template. This figure was created using circularGraphtool (http:
//www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph (accessed on 10 October
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6. Conclusions

In this paper, we present a multiview FBNs fusion strategy through joint embedding
for fMRI-based ASD identification. In contrast to traditional fusion strategies, the proposed
method first stacks all differently estimated FNBs into a tensor and then performs tensor
factorization to learn joint embedding to capture the potential common information across
multiview FBNs. In addition, the obtained common representation naturally caters to an
elegant theoretical explanation of eigenvector centrality. Experimental results obtained on
the rs-fMRI data of 184 subjects show that the proposed approach achieves competitive
performance relative to several existing methods for ASD disease diagnosis. In the future,
we will generalize the proposed scheme to deep learning models, as these methods only
focus on capturing the multilinear common relationships among multiview FBNs and
ignore their potential nonlinear relationships.
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