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Abstract

Background

Maintaining patient privacy when geocoding and linking residential address information with

neighborhood-level data can create challenges during research. Challenges may arise

when study staff have limited training in geocoding and linking data, or when non-study staff

with appropriate expertise have limited availability, are unfamiliar with a study’s population

or objectives, or are not affordable for the study team. Opportunities for data breaches may

also arise when working with non-study staff who are not on-site. We detail a free, user-

friendly protocol for constructing indices of the neighborhood risk environment during multi-

site, clinic-based cohort studies that rely on participants’ protected health information. This

protocol can be implemented by study staff who do not have prior training in Geographic

Information Systems (GIS) and can help minimize the operational costs of integrating geo-

graphic data into public health projects.

Methods

This protocol demonstrates how to: (1) securely geocode patients’ residential addresses in

a clinic setting and match geocoded addresses to census tracts using Geographic Informa-

tion System software (Esri, Redlands, CA); (2) ascertain contextual variables of the risk

environment from the American Community Survey and ArcGIS Business Analyst (Esri,

Redlands, CA); (3) use geoidentifiers to link neighborhood risk data to census tracts
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containing geocoded addresses; and (4) assign randomly generated identifiers to census

tracts and strip census tracts of their geoidentifiers to maintain patient confidentiality.

Results

Completion of this protocol generates three neighborhood risk indices (i.e., Neighborhood

Disadvantage Index, Murder Rate Index, and Assault Rate Index) for patients’ coded census

tract locations.

Conclusions

This protocol can be used by research personnel without prior GIS experience to easily cre-

ate objective indices of the neighborhood risk environment while upholding patient confi-

dentiality. Future studies can adapt this protocol to fit their specific patient populations and

analytic objectives.

Introduction

In the United States (US), disadvantaged and socially disordered neighborhoods–those charac-

terized by structural racism that leads to scarcity of resources, poverty, low high school com-

pletion rates, racial minority segregation, and/or violence–can have direct and indirect

negative effects on health [1–5]. For example, individuals residing in disadvantaged and disor-

dered neighborhoods are more likely to experience multiple stressors [6, 7] and increased risk

of chronic disease such as heart disease, hypertension, and HIV [3, 8–12] compared to resi-

dents of more advantaged and less disordered neighborhoods. Despite the well-established

and growing literature surrounding neighborhood effects on health [13, 14], the methods that

drive this research vary widely and continue to change over time [15–19]. Thus, there is moti-

vation to develop new, accessible and reproducible tools that perform consistently across stud-

ies and can be adapted to diverse research objectives.

Geocoding (assigning a latitude and longitude coordinate to a postal address) is one avail-

able tool that is increasingly used in public health [20, 21] to help researchers characterize

neighborhood environments and assess how individual-level health outcomes vary due to dif-

ferences in these environments. However, challenges can arise when using geocoding in

research studies that rely on participants’ protected health information (PHI), which includes

residential address information [22]. Some of the current geocoding approaches rely on shar-

ing de-identified health data outside of the setting in which the data were originally generated

so that external mapping experts can conduct in-depth analysis [23]. Alongside potentially

incurring additional costs to a project, this “out of house” data sharing approach can create

opportunities for data breaches when residential address locations can potentially be identified

from published maps via techniques such as reverse geocoding [24], spatial re-engineering

[25] and digital scanning [25]. Other geocoding approaches rely on online, cloud-based ser-

vices [26] such as Google Maps, ArcGIS Online, Census Geocoder, or OpenStreetMap [27,

28], which can create additional opportunities to unlawfully access PHI if cloud-based geocod-

ing is conducted behind an identifiable Internet Protocol (IP) address.

Protecting geocoded patient address data can present additional challenges during multisite

clinic-based cohort studies. Multisite studies must frequently choose between performing geo-

coding and data linkages “in-house” to protect participants’ PHI or involving the external
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expertise of a geoscientist with specific knowledge of geographic information systems (GIS).

For many institutions, the former “in-house” approach will be limited to the GIS knowledge of

research personnel [23, 29]. For the latter approach, involving an external geospatial collabora-

tor can require lengthy approvals from the governing Institutional Review Board (IRB) which

can delay timely data collection [23]. An external GIS specialist may also be unfamiliar with a

site’s specific patient population(s), which can introduce errors during data merging and anal-

yses. Lastly, ensuring comparable levels of geocoding accuracy can be difficult if or when the

same geocoding techniques are not uniformly applied across sites.

To address these challenges, we present a publicly available geocoding protocol for charac-

terizing the neighborhood risk environment that can be implemented during multisite clinical

cohort studies working with PHI. The protocol can be understood and implemented by staff

without prior GIS experience to geocode patients’ residential addresses, link these addresses to

crime and socioeconomic data, and create anonymized coded census tracts to construct objec-

tive indices of the neighborhood risk environment. The process of anonymizing census tracts

via this protocol can enable analyses to be performed at the individual-level while ensuring a

patient’s PHI is not linked to census-designated geoidentifiers. This protocol is informed by

our prior experience [30] geocoding and linking patient data from two HIV clinic-based

cohorts in the United States [31–33] and offers a standardized, user-friendly tool that can be

adapted for future studies.

Materials and methods

This protocol follows two main phases based on our work [30]. Phase 1 includes (1) geocoding

patients’ residential addresses and joining geocoded addresses to census tracts, and (2)

abstracting indicators of neighborhood crime and socioeconomic disadvantage at the census

tract level. Phase 2 includes (1) linking the aforementioned patient- and neighborhood-level

data by census tract, and (2) creating coded census tracts to anonymize the census tract within

which a patient lives. All data in this protocol are illustrative and do not include any actual

patient information. Fig 1 summarizes the geocoding and data linkages process.

The full geocoding and data linkages protocol is provided in S1 File and publicly available

on the protocols.io platform at dx.doi.org/10.17504/protocols.io.b3dvqi66 [PROTOCOL

DOI].

Phase 1: Geocoding and data abstraction

1A. Geocoding residential addresses and joining geocoded addresses to census tract

boundaries. Objective: Geocode patients’ residential addresses and link the geocoded address

locations to US census tracts

Requirements: Esri ArcGIS 10.5.1 or later; StreetMap Premium Software for Esri ArcGIS

10.5.1 or later (annual license required)

Detailed instructions: Part 3 of S1 File

To begin implementing this protocol, residential address information should be abstracted

from patient medical records and saved locally (e.g., on a secure server protected by the clinic’s

firewall) as an Excel Comma-Separated Values (CSV) file. Address information should con-

tain, at minimum, the street address, city, state, and zip code for each patient record. Parts 1

and 2 of the protocol (S1 File) provide instruction for formatting residential address informa-

tion and preparing to geocode.

Clinic-based research staff should use the latest available version of ArcGIS Desktop and

StreetMap Premium (Esri, Redlands, CA) to geocode patients’ residential addresses within a

computing environment that meets security requirements for storing PHI [21, 34]. If an
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address cannot initially be geocoded, a rematch should be run in ArcMap and a suggested

address with a minimum match score of 85% should be selected [35, 36]. The match score

indicates how closely a residential address matches the geospatial reference data in ArcGIS,

where a score of 100% indicates a perfect match. Addresses outside of the study state or Post

Office Boxes cannot be assumed to approximate a patient’s neighborhood environment and

should not be geocoded.

The geographic coordinates for each patient’s residential address should then be joined to a

data layer of census tract boundaries by performing a spatial join in ArcMap. Geocoded

addresses linked to census tract boundaries should be abstracted from the ArcMap Attribute

Table and reformatted in Excel to include the minimum data fields required to for census tract

identification.

1B. Abstracting crime indicators from Esri’s business analyst online. Objective: Ascer-

tain neighborhood crime risk indicators for census tracts containing geocoded patient

addresses

Requirements: Esri Business Analyst Online version 5.82 or later

Detailed instructions: Part 4 of S1 File

Indicators of neighborhood crime risk should be obtained at the census tract level using the

latest available version of ArcGIS Business Analyst Online (Esri, Redlands, CA), a web-based

program offering additional de-identified census-level data (e.g., crime, business, sociodemo-

graphic). In this example protocol, two neighborhood crime indices–a Murder Rate Index and

an Assault Rate Index–are obtained from Business Analyst because of their known associations

with HIV outcomes [37–40]. Business Analyst derives its data from Applied Geographic Solu-

tions (AGS) CrimeRisk© indices (Applied Geographic Solutions, 2020B) [41, 42] which are

Fig 1. Protocol flow diagram. Visual depiction of each phase of the geocoding and data linkages protocol. ACS: American Community Survey.

https://doi.org/10.1371/journal.pone.0278672.g001
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based on FBI Uniform Crime Reports and local police departments. Other crime indices

include, but are not limited to, Rape, Burglary, and Motor Vehicle Theft Indices and composite

indices of Personal, Property, and Total Crime. Alternative crime indices can be selected from

Business Analyst to reflect a study’s specific neighborhood environment.

Within Business Analyst, the geography should be set to census tracts and each census tract

within the study state should be selected. Using the SmartMap Search feature, data for the rele-

vant crime indicators should be selected and downloaded as a CSV file. Downloaded data will

contain a numeric census tract identifier and data for the relevant index. This process will

need to be repeated in stages because Business Analyst does not permit data abstraction for all

census tracts at one time.

1C. Abstracting socioeconomic indicators from data.census.gov. Objective: Ascertain

neighborhood socioeconomic data for census tracts containing geocoded patient addresses

Requirements: American Community Survey Five-Year Estimates from the US Census

Bureau

Detailed instructions: Part 5 of S1 File

Census tract level-indicators of socioeconomic disadvantage should be obtained using the

US Census Bureau’s American Community Survey (ACS) 5-year estimates that most closely

align with the study period (i.e., the most recent 5-year estimates for prospective studies or ear-

lier 5-year estimates for retrospective studies) [43]. Compared to single-year and three-year

estimates, ACS 5-year estimates provide increased statistical reliability of the data particularly

for smaller geographic areas and subpopulations [44]. In this example protocol, three socioeco-

nomic indicators–unemployment, high school education, and poverty–are obtained from ACS

based on their known associations with HIV outcomes [37–40]. Alternative socioeconomic

indicators can be selected from the more than 20,000 variables available in ACS [43].

Using the Advanced Search option in data.census.gov, the relevant Table ID number should

be entered and all census tracts within the study state should be selected and downloaded as a

CSV file. Identifying the Table that contains study-specific variables can be done by typing the

subject area of interest into the Explore Census Data search box at data.census.gov. Down-

loaded data will contain a numeric census tract identifier, a census tract label, and data for rele-

vant socioeconomic indicator(s). In this example protocol, only percentage estimates of each

indicator are preserved for data linkages but other formats (e.g., total or median estimates) can

be selected from the downloaded data.

Phase 2: Data linkages & anonymizing census tracts

2A. Linking geocoded addresses and abstracted neighborhood risk data by census

tract. Objective: Link abstracted socioeconomic and crime risk data to each census tract con-

taining a geocoded patient address

Requirements: Macro-enabled Excel File (S2 File)

Detailed instructions: Part 6 of S1 File

In this step, four CSV files from Phase I should be linked using the Macro-enabled Excel

file (version 2019) developed for this protocol. (S2 File) The first file will contain geocoded

patient address information, the second file will contain census tract-level crime risk data, the

third file will contain census tract-level poverty and unemployment data (or other study-spe-

cific socioeconomic data), and the fourth file will contain census-tract level education data (or

other study-specific socioeconomic data). The geoidentifiers and associated data in these four

files should be copied into the relevant sheets in the Excel file and the customized Macro-

s–“ACSMatcher” and “CrimeMatcher”–should be run to link all data by census tract. Census

tracts containing geocoded addresses may include missing data for some or all neighborhood
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risk indicators depending on the data available in ACS and Business Analyst at the time of

abstraction. Though not required for this protocol, users wishing to edit or reference the cod-

ing of the ACSMatcher and/or CrimeMatcher Macros can do so by clicking “Macros”, “View

Macros” and then “Edit” in S2 File.

2B. Creating coded census tracts. Objective: Anonymize census tracts that are linked to

neighborhood risk data and contain geocoded patient addresses

Requirements: Macro-enabled Excel File (S2 File)

Detailed instructions: Part 7 of S1 File

To minimize the risk of patients being identified from their census tract information, census

tracts that have been linked to socioeconomic and crime risk data will need to be stripped of

their census-designated geoidentifiers and assigned a randomly generated number to create

anonymized “coded” census tracts. First, for each study record in the Excel file, a random digit

should be generated using Excel’s “RAND” function. Second, each randomly generated digit

should then be ranked using Excel’s “RANK” function to convert random digits to whole inte-

gers. Third, a unique site identifier should be attached to each ranked digit using Excel’s “CON-

CATENATE” function. Assigning a site-specific identifier to the coded census tract prevents

duplication of coded census tracts across study sites. Last, each record should be stripped of its

original census tract identifiers so that only the coded census tract is preserved. Since multiple

patients may reside within the same census tract, Excel’s “Conditional Formatting” function

should be used to ensure duplicate census tracts within each clinic site are assigned the same

coded census tract identifier. Fig 2 diagrams the process for creating coded census tracts.

Creating coded census tracts ensures that (1) a single residential address cannot be identi-

fied during analysis that occurs outside of the clinic setting where the data were originally gen-

erated, and (2) the data layer cannot be mapped or visually displayed.

Fig 2. Process for creating coded census tracts during multisite study. Process for stripping census tracts containing geocoded patient address information

of their census-designated identifiers and assigning a randomly generated number to create anonymized “coded” census tracts. The design of Fig 2 was adapted

from a figure published by Brokamp et al., 2018 in the open-access journal J AmMed Inform Assoc [51].

https://doi.org/10.1371/journal.pone.0278672.g002
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The Excel file containing a study ID, coded census tract, and the linked socioeconomic and

crime risk data for each record can then be sent from each clinic site to the coordinating insti-

tution for analysis using IRB-approved (if necessary) data sharing platforms. The coordinating

institution can use the study ID assigned to each participant’s record to merge coded census

tract data from multiple sites.

Results

Successfully implementing this protocol will yield indices of neighborhood crime and generate

an index of neighborhood disadvantage at the census tract level (Table 1).

The Neighborhood Disadvantage Index represents a summation of the census-tract level z-

scores for each socioeconomic variable that have been normed to the national level. For exam-

ple, a Z-score of 1 indicates one standard deviation greater disadvantage compared to the US.

The coordinating institution can construct the Neighborhood Disadvantage Index once all site

data have been merged. (S3 File provides step-by-step instructions for how to construct the

Neighborhood Disadvantage Index.)

Crime indices are directly abstracted from Esri’s Business Analyst. These indices provide an

indication of the relative risk of a crime occurring measured against the overall risk for the US.

When a study participant’s coded census tract contains a value greater than 100 for the relevant

crime index (e.g., for the Murder Rate Index as in this example protocol), this denotes an

increased relative risk of murder or assault compared to the US. Conversely, a value less than

100 denotes a lower relative crime risk compared to the national level.

Depending on the size of the study population, continuous index data can be transformed

into risk categories (e.g., binary splits, tertiles) by using cut-points appropriate for the sample

distribution [45].

Discussion

As population health and health equity research increasingly focus on health determinants

beyond the individual-level, practical and implementable tools that characterize the

Table 1. Resulting indices of the neighborhood risk environment in example multisite study.

EXAMPLE MIN, MAX RANGE OF INDEX DATA EXAMPLE CATEGORIZATION OF RISK LEVELS

Median Split Tertiles Quartiles

Neighborhood Disadvantage Indexa -2.36, 9.42 0 = Low risk

1 = High risk

1 = Low risk

2 = Moderate risk

3 = High risk

1 = Low risk

2 = Moderate-low risk

3 = Medium-high risk

4 = High risk

Murder Rate Indexb 16, 1109 0 = Low risk

1 = High risk

1 = Low risk

2 = Moderate risk

3 = High risk

1 = Low risk

2 = Moderate-low risk

3 = Medium-high risk

4 = High risk

Assault Rate Indexb 6, 899 0 = Low risk

1 = High risk

1 = Low risk

2 = Moderate risk

3 = High risk

1 = Low risk

2 = Moderate-low risk

3 = Medium-high risk

4 = High risk

Index data are illustrative and do not include any actual patient information.
a The range of values for the Neighborhood Disadvantage Index represents the sum of the Z-scores for each socioeconomic variable (e.g., poverty, education,

unemployment) that are normed to the national (US) level.
b At the US level, a fixed value of 100 is assigned to the murder and assault rate indices such that a value > 100 for a given census tract denotes an increased relative risk

of murder or assault, and a value < 100 denotes a lower relative risk of murder or assault compared to the national average.

https://doi.org/10.1371/journal.pone.0278672.t001
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neighborhood environment while protecting individual confidentiality are paramount. This

protocol offers a free, publicly available and user-friendly resource for generating measures of

the neighborhood risk environment during multisite studies that rely on PHI. We effectively

implemented this protocol in our prior work to identify multilevel resilience resources among

African American/Black (AA/B) adults living with HIV [30]. We found in this prior work that

despite the majority of study participants residing in more economically disadvantaged and

higher crime neighborhoods compared to the US, AA/B adults living with HIV still identified

resilience resources that helped them engage in care.

Our protocol offers four key improvements over current approaches to geocoding and data

linkages [23, 26–28]. First, an ongoing concern during clinic-based studies is the confidential-

ity of PHI. A main advantage of this protocol is that it should satisfy any site-specific security

or IRB requirements to obtain census tract-level data because all geocoding and data linkages

occur at the cohort site, which eliminates the need for PHI to leave the clinic-cohort site. Even

for census tracts containing only one geocoded address, our process for creating coded census

tracts ensures that a patient’s exact residential location cannot be known or visually displayed

while allowing census tracts to be distinguishable across multiple sites. A second challenge

during multisite studies is ensuring that geocoding and data linkages are performed systemati-

cally within and between sites. The Macros developed for this protocol provide an automated

process for linking neighborhood-level indicators to census tract identifiers regardless of the

number of participants enrolled at a given site or number of sites performing the linkages. Use

of the Macros can help reduce human error and cognitive burden. Third, this protocol draws

from the cadre of established methods [20, 21] for geocoding and linking residential data with

neighborhood information. Using simple, validated methods rather than more complex geo-

coding approaches increases the likelihood that research personnel without prior GIS training

will be able to implement this protocol with minimal oversight. Strengthening the geoanalytic

skills of on-site study staff who are directly involved in a research project negates the need to

solicit GIS expertise from non-study staff, which can help conserve time and resources and

prevent exposing PHI to a third party. Last, a key advantage of this protocol is the flexibility of

the variable/indicator selection process. As previously mentioned, the example contextual

markers of neighborhood disadvantage and crime were informed by our prior experience [30]

working with HIV clinical cohorts and evidence demonstrating associations between these

markers and HIV outcomes [37–40]. However, the same data abstraction process can be used

to select indicators of crime and neighborhood disadvantage that are study-specific.

The current protocol utilizes a Murder Rate Index and an Assault Rate Index derived from

the AGC CrimeRisk© indices. Other studies have used these indices, including to examine

associations between neighborhood crime and sexual risk-taking behaviors among Black men

living with HIV [46] and to assess for interactions between neighborhood crime, childhood

trauma and longer-term mental health outcomes [47]. This protocol also utilizes Census

Bureau ACS 5-year estimates. Prior large-scale studies have utilized ACS 5-year estimates,

including to investigate county-level disparities in COVID-19 cases and deaths among racial/

ethnic minority groups across the US [48]. These and other examples [49, 50] demonstrate

that this protocol’s design is relevant for the current field of neighborhood health effects

research and can be applied readily in future work.

Alongside this protocol, other efforts have aimed to develop standardized protocols for con-

textualizing neighborhood environments in research. The Decentralized Geomarker Assess-

ment for Multi-Site Studies (DeGAUSS) software is one example tool that can facilitate

reproducible geocoding while maintaining patients’ confidentiality [51]. The software is free

and does not expose PHI to an intermediary party. However, to the best of our knowledge,

DeGAUSS was tested during an initial proof-of-concept study but has yet to be extended to
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research requiring the anonymization of census tracts. The Women’s Interagency HIV Study

(WIHS) [52] has also developed several versions of its geocoding protocol for PHI [53, 54] to

help evaluate relationships between neighborhood-level poverty and disease control among

women living with or at risk for chronic illness [55]. The WIHS protocol relies on Federal

Information Processing Standards (FIPS) codes to define geographies across 10 cohort sites.

FIPS codes have been published in census products for over 30 years and are widely used in

public health geocoding [56]. In comparison, the current protocol uses census-derived identi-

fiers because not all statistical geographic areas are covered by FIPS codes and a census-derived

identifier can encompass both FIPS and Census Bureau codes [56]. The geocoding protocol

developed for the Jackson Heart Study (JHS) [57] has also demonstrated considerable accuracy

as a geocoding tool, retrospectively geocoding nearly 99% of the JHS cohort after address data

were not obtained at baseline. The JHS protocol relied on georeferencing participants to cen-

sus block groups while the current protocol utilizes census tracts which contain a greater num-

ber of residents, thereby minimizing the risk of identifying enrolled patients [58].

A limitation of this protocol is its reliance on the Esri StreetMap Premium annual license.

The license can incur additional study costs if the product is not readily available at the institu-

tion or if geocoding activities span more than one year. Researchers choosing to include crime

risk data in the neighborhood risk indices could also incur costs if additional Business Analyst

credits (i.e., the currency used by ArcGIS) need to be purchased to facilitate the download of

large amounts of data. However, the number of credits consumed by downloading data from

Business Analyst for this protocol is quite small (e.g., 10 credits needed for a single download

compared to the 6,000–10,000 credits included with an annual license [59]). Affiliates of any

institution that licenses Esri software should have access to all data (including census-tract

level crime risk data) within ArcGIS Business Analyst Online for no additional fee. Another

limitation is that patient address information is derived from medical records rather than

direct self-report. Thus, the percentage of records that can be matched to census tract bound-

aries will be predetermined by the data available in patients’ medical records. This protocol is

also limited to measuring the physical neighborhood environment using objective data from

the US census and other sources (e.g., Business Analyst), even though self-report can more

accurately characterize neighborhood exposures in some instances [60, 61]. Also, while the

anonymization of census tracts serves to safeguard PHI, it prohibits patients’ locations from

being mapped or visually displayed. For studies aiming to map patients’ census tract locations

or perform spatial analyses of disease dynamics, other methods may be more appropriate [62–

64]. Finally, while this protocol has been successfully implemented by research personnel with

minimal or no prior GIS experience [30, 65], other project teams may wish to identify a GIS

expert prior to study start who is available to answer protocol implementation questions if or

when they arise.

Conclusions

This step-by-step geocoding and data linkage protocol addresses some of the common chal-

lenges of working with PHI and offers an adaptable resource to help assess neighborhood-level

health impacts during multisite studies. Such resources can support population health research

and multilevel interventions that aim to mitigate adverse neighborhood effects on health.

Supporting information

S1 File. Geocoding and data linkages protocol for protected health information (v2021).

(PDF)
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S2 File. Macro-enabled excel file. Macro-enabled Excel file that can be used to (1) Link census

tracts containing patient geocoded addresses to indicators of neighborhood crime and socio-

economic disadvantage using the census tract geoidentifier, and (2) Assign randomly gener-

ated identification numbers to census tracts and strip them of geoidentifiers to maintain

patient confidentiality.

(XLSM)

S3 File. Instructions for neighborhood disadvantage index construction.

(PDF)
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