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Fast, highly accurate, and reliable inference of the sky origin of gravitational waves would enable real-
time multimessenger astronomy. Current Bayesian inference methodologies, although highly accurate and
reliable, are slow. Deep learning models have shown themselves to be accurate and extremely fast for
inference tasks on gravitational waves, but their output is inherently questionable due to the blackbox
nature of neural networks. In this work, we merge Bayesian inference and deep learning by applying
importance sampling on an approximate posterior generated by a multiheaded convolutional neural
network. The neural network parametrizes Von Mises-Fisher and Gaussian distributions for the sky
coordinates and two masses for given simulated gravitational wave injections in the LIGO and Virgo
detectors. We generate skymaps for unseen gravitational-wave events that highly resemble predictions
generated using Bayesian inference in a few minutes. Furthermore, we can detect poor predictions from the
neural network, and quickly flag them.
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I. INTRODUCTION

Gravitational waves (GWs) have immensely advanced
our understanding of physics and astronomy since 2015
[1–4]. These GWs are observed by the Hanford (H) and
Livingston (L) interferometers of the Laser Interferometer
Gravitational Wave Observatory (LIGO) [5] and the
Advanced Virgo (V) interferometer [6]. The collaboration
between these three detectors has enabled triple-detector
observations of GWs [2], making it possible to do proper
sky localization of their astrophysical sources. This addi-
tional detector changes the sky distribution from a broad
band to a more narrow distribution [2].
Better early sky localization capabilities would allow

for real-time multimessenger astronomy (MMA), observ-
ing astrophysical events through multiple channels—
electromagnetic transients, cosmic rays, neutrinos—only
seconds after the GW is detected. MMA is limited to GWs

originating from binary neutron star (BNS) and neutron
star-black hole mergers. According to current literature, it is
unlikely that binary black holes (BBHs) emit an electro-
magnetic counterpart during their merger [7,8]. Currently,
astrophysicists try to collect the non-GW channels in the
weeks after the event. A notable example is GW170817
[9,10]. This process takes an enormous amount of effort,
while the obtained data quality is often suboptimal. Having
all channels observed for the full duration of the event
would be a major leap forward. Real-time MMA would
enable a plethora of new science, e.g., unraveling the
nucleosynthesis of heavy elements using r- and s-processes,
more accurate and novel tests of general relativity,
and a deeper understanding of the cosmological evolution
[11–13]. As aforementioned, real-time MMA relies on the
generation of a skymap and it imposes two limits on the
methodology used to obtain one. First, it needs to be swift
in order to allow observatories to turn toward an event’s
origin, preferably only seconds after its observation.
Second, the skymap needs to be as accurate as possible
since telescopes have a limited area they can observe.
Below we present current approaches in generating sky-
maps for GW events.
Most GW software libraries [14,15] use Bayesian infer-

ence methods—in particular Markov chain Monte Carlo

*alex.kolmus@ru.nl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW D 106, 023032 (2022)

2470-0010=2022=106(2)=023032(11) 023032-1 Published by the American Physical Society

https://orcid.org/0000-0002-0304-8152
https://orcid.org/0000-0001-7597-0579
https://orcid.org/0000-0002-3398-5235
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.023032&domain=pdf&date_stamp=2022-07-29
https://doi.org/10.1103/PhysRevD.106.023032
https://doi.org/10.1103/PhysRevD.106.023032
https://doi.org/10.1103/PhysRevD.106.023032
https://doi.org/10.1103/PhysRevD.106.023032
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


(MCMC) and nested sampling [16]—to construct the
posterior over all GW parameters. These methods asymp-
totically approach the true distribution given a sufficient
number of samples [17]. Although theoretically optimal, a
chain with around 106 to 108 samples is required [14] to
closely approximate the true posterior distribution for a GW
event. Even when using BILBY [18]—a modern Bayesian
inference library made for GW astronomy—to perform the
inference for a single BBH event, takes hours to produce
[19]; BNS events take even longer. Bayesian inference is the
most accurate method available for GW posterior estima-
tion, but its run-time is prohibitively long when it comes
to MMA.
To overcome the speed limitations of the Bayesian

approaches, Singer and Price developed BAYESTAR in
2016 [20], an algorithm that can output a robust skymap
for a GW event within a minute. BAYESTAR realizes this
speedup in two ways. First, it exploits the information
provided by the matched filtering pipeline used in the
detection of GWs. The inner product between time strain
and matched filters contains nearly all of the information
regarding arrival times, amplitudes and phases, which are
critical for skymap estimation. Second, Singer and Price
derive a likelihood function that is semi-independent from the
mass estimation and does not rely on direct computation of
GW waveforms, allowing for massive speedups and paral-
lelization. Although BAYESTAR is fast, its predictions tend
to be broader and less precise than those made by BILBY [21].
Deep learning (DL) algorithms have shown themselves to

be exceptionally quick and powerful when handling high-
dimensional data [23,24]. Therefore, they are an interesting
alternative to the Bayesian methods. Several papers have
proposed methods to estimate the GW posterior, including
the skymap, using DL algorithms. Examples of such
algorithms are Delaunoy et al. [25] and Green and Gair
[26]. Delaunoy et al. [25] use a convolutional neural
network (CNN) to model the likelihood-to-evidence ratio
when given a strain-parameter pair. By evaluating a large
amount of parameter options in parallel, they can generate
confidence intervals within a minute. The reported con-
fidence intervals are slightly wider than those made by
BILBY. A completely different approach was taken by Green
and Gair [26]. They showcase complete 15-parameter
inference for GW150914 using normalizing flows. They
apply a sequence of invertible functions to transform an
elementary distribution into a complex distribution [27]
which, in this case, is a BBH posterior. Within a single
second, their method is able to generate 5,000 independent
posterior samples that are in agreement with the reference
posterior [28]. A Kolmogorov-Smirnov test confirms that
these samples are very closely resemble the samples that are
drawn from the exact posterior. Both DL methods are fast
and seem to be accurate for the 100—1000 simulated GW
events they have been evaluated on.However, thesemethods
have a few issues: (1) they are both susceptible to changes in

the power spectral density (PSD) and signal-to-noise ratio
(SNR), (2) both are close in performance to BILBY but do not
match it, (3) they can act unpredictably outside of the trained
strain-parameters pairs and, even within this space, they can
act unpredictably due to the blackbox nature of neural
networks (NNs). Issues (1) and (2) have been addressed for
the normalizing flow algorithm in a recent paper by Dax
et al. [29], however the robustness guarantees remain behind
those of traditional Bayesian inference.
Our method tries to bridge the gap between Bayesian

inference and DL methods, allowing for fast inference
while still guaranteeing optimal accuracy. It is to be noted
that combining Bayesian inference and DL methods has
recently gained traction in the GW community, see for
example reference [30]. The goal of our algorithm is to
restrict the parameter space such that, via sampling, one can
quickly obtain an accurate skymap. We use a multiheaded
CNN to parametrize an independent sky and mass distri-
bution for a given BBH event. The model is trained on
simulated precessing quasicircular BBH signals resembling
the ones observed by the HLV detectors. The parametrized
sky and mass distributions are Gaussian-like and are
assumed to approximate the sky and mass distributions
generated by Bayesian inference. Using the parametrized
sky and mass distributions, we construct a proposal
posterior in which all other BBH parameters are uniformly
distributed. By using importance sampling we can then
sample from the exact reference posterior. This implies that
we effectively match the performance of Bayesian infer-
ence in a short time span, without exploring the entire
parameter space. We stress that this work is a proof of
concept to show the promises of combining NNs and
Bayesian inference. More flexible DL models and BNS
events will be considered in future studies.
This paper is organized as follows. Section II discusses

the model architecture and importance sampling scheme.
Section III details the performed experiments, including the
model training. Section IV covers the results of these
experiments and subsequently assesses the performance of
the model and importance sampling scheme by comparing
it with skymaps generated using BILBY for a nonspinning
BBH system. Conclusions and future endeavors are speci-
fied in Sec. V.

II. METHODOLOGY

Our inference setup is a two-step method. In the initial
step we infer simple distributions for the sky localization
and the masses of the BBH by using a neural network.
Subsequently, we apply importance sampling to these
simple distributions to compute a more accurate posterior.
The first subsection describes the role and implementation
of importance sampling. The second subsection discusses
the neural network setup and our method for distribution
estimation.
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A. Importance sampling

High-dimensional distributions in which the majority of
the probability density is confined to a small volume of the
space are hard to sample from, which results in long run
times to get proper estimates when using MCMC methods.
A well-known method to cope with this problem is
importance sampling. By using a proposal distribution q
that covers this high probability density region of the
complex distribution p one can quickly obtain useful
samples. There are two requirements when using impor-
tance sampling. First, the desired distribution p needs to be
known up to the normalization constant Z: pðλÞ ¼ 1

Z θðλÞ,
where θðλÞ is the non-normalized pðλÞ. Second, the
proposal distribution q needs to be nonzero for all λ where
p is nonzero. Importance sampling can be understood as
compensating for the difference between the distributions p
and q by assigning an importance weight wðλÞ to the each
sample λ,

wðλÞ ¼ θðλÞ
qðλÞ ; ð1Þ

where the fraction is the likelihood ratio between the—not-
normalized—p and q. The distribution created by the
reweighted samples will converge to the p distribution
given enough samples [31].
Generating accurate posteriors for GW observations

using MCMC is very time consuming, and thus importance
sampling is an interesting alternative. Importance sampling
requires us to have a viable proposal distribution. Published
posteriors for known gravitational waves show that the
probability density in the posterior is relatively well
confined for both the sky location and the two masses
[22]. AVon Mises Fisher (VMF) and multivariate Gaussian
(MVG) distribution are good first order approximations of
the sky and mass distribution respectively, and thus suitable
to use as a proposal distribution for importance sampling.
We propose to construct this proposal distribution by
assuming a uniform distribution over all nonspinning
BBH parameters, except for the sky angles which will
be represented by a VMF and a MVG distribution for the
masses. Assuming that the BBH parameters, sky angles,
and masses are independent, our proposal distribution
becomes the product of these two distributions. In the
next subsection we discuss how we create this proposal
distribution using a neural network.
Importance sampling demands a likelihood function for

the proposal distribution and the desired distribution. In the
previous paragraph we have discussed how we want to
create a proposal distribution, we will now focus on the
desired distribution p. For the likelihood function of the
GW posterior pðsjλÞ we take the definition given by
Canizares et al. [32]:

pðsjλÞ ∝ θðsjλÞ ¼ exp

�
−
hs − hðλÞjs − hðλÞi

2

�
; ð2Þ

where s is the observed strain, hðλÞ is the GW template
defined by parameters λ. The inner product is weighted by
the PSD of the detector’s noise. In practice we use the
likelihood implementation provided by BILBY named
GravitationalWaveTransient.
We now have all the parts needed to discuss how we

utilize importance sampling for a given strain s. A trained
neural network parametrizes the proposal distribution q for
the given strain. The proposal distribution generates n
samples, these samples represent possible GW parameter
configurations. For each sample we calculate the logarithm
of the importance weight,

logwðλÞ ¼ log θðsjλÞ − logqðλÞ þ C; ð3Þ

instead of the importance weight wðλÞ itself to prevent
numeric under- and overflow. The constant C is added to
set the highest logwðλÞ to zero, to prevent very large
negative values from becoming zero when we calculate the
associated likelihood. Since we normalize the weights
afterwards the correct importance weights are still obtained.
The reweighted samples represent the desired distribu-
tion p.
If the proposal distribution does not cover the true

distribution well enough, the importance samples will be
dominated by only a single to a few weights if we restrict
the run-time. We can use this as a gauge to check if the
skymap produced by the neural network and importance
sampling is to be trusted.

B. Model

Previous work done by George et al. [33] shows that
convolutional neural networks (CNN) are able to extract the
masses from a BBH event just as well as the currently-in-
use matched filtering. Furthermore, work done by Fan et al.
[34] indicates that 1D CNNs are able to locate GWorigins.
We therefore chose to use a 1D CNN to model both the
distribution across the sky for the origin of the GWs and a
multivariate normal distribution for the two masses of the
BBH system.
The network architecture of this 1D CNN is presented in

Fig. 1 and consists of four parts: a convolutional feature
extractor and three neural network heads. These heads are
used to specify the two distributions. The following
properties were tested or tuned for optimal performance:
number of convolutional layers, kernel size, dilation, batch
normalization, and dropout. The model shown in Fig. 1
produced the best result on a validation set.
The convolutional feature extractor generates a set of

features that characterize a given GW. This set of features is
passed on to the neural heads. Each head is specialized to
model a specific GW parameter. The first head determines
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the sky distribution, the second head the masses, and the
third head the uncertainty over the two masses. Below we
will elaborate on each of these heads and how they
characterize these distributions.
The first head specifies the distribution of the GWorigin.

Since the sky is described by the surface of a 3D sphere, a
2D Gaussian distribution is an ill fit. A suitable alternative
is the Von Mises-Fisher (VMF) distribution [35] which is
the equivalent of a Gaussian distribution on the surface of a
sphere. The probability density function and the associated
negative log-likelihood (NLL) of the VMF distribution:

pðxjμ; κÞ ¼ κ

4π sinhðκÞ exp ðκx
TμÞ ð4Þ

NLLVMFðx; μ; κÞ ¼ − logðκÞ − logð1 − expð−2κÞÞ
− κ − logð2πÞ þ κxTμ; ð5Þ

where x and μ are normalized vectors inR3, with the former
being the true direction and the latter being the predicted
direction. κ is the concentration parameter, which deter-
mines the width of the distribution. It plays the same role
as the inverse of the variance for a Gaussian distribution.

We use this distribution by letting the first head output a
three-dimensional vector D ¼ ðDx;Dy;DzÞ. The norm of
D specifies the concentration parameter κ, and its projec-
tion onto the unit sphere gives the mean μ, κ ¼ jDj, and
μ ¼ D=jDj. These values together with the true direction x
are used to calculate the negative log-likelihood, which is
used as the loss function of the first head.
The second and third neural heads specify a 2D

multivariate Gaussian (MVG), which describes the possible
configurations of the masses. The means ν of the MVG are
given by the second head and the covariance matrix Σ is
specified by the third head. Given the true values of the
masses y ¼ ðm1; m2Þ the probability density function and
associated negative log-likelihood of the MVG are:

pðyjν;ΣÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ2jΣj

p exp

�
−
1

2
ðy − νÞTΣðy − νÞ

�
ð6Þ

NLLMVGðy; ν;ΣÞ ¼
1

2
ðy − νÞTΣ−1ðy − νÞ

þ 1

2
log ðjΣjÞ þ log ð2πÞ: ð7Þ

The inverse covariance term in the negative log-likelihood
can contain imaginary numbers if the covariance matrix is
not positive-definite. To ensure that the covariance matrix Σ
remains positive-definite, it is parametrized through:

Σ11 ¼ expðs11Þ ð8Þ

Σ22 ¼ expðs22Þ ð9Þ

Σ21 ¼ Σ12 ¼ tanhðs12Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ11Σ22

p
: ð10Þ

The three variables s11, s22, s12 are predicted by the third
neural head and define the covariance matrix completing
the MVG prediction of the masses. The parametrization
and implementation of the MVG is based on the work of
Russell et al. [36].
By further assuming that the sky distribution is inde-

pendent of the mass distribution, we obtain a first approxi-
mation of the posterior distribution, thereby satisfying the
requirements for importance sampling.

III. EXPERIMENTS

Experiments were performed on two different fronts:
(1) training the neural network followed by the empirical
evaluation of its performances on unseen test data, and
(2) comparing the neural network model, importance
sampling scheme, and BILBY based on several metrics
and skymaps. Below we describe the experimental details
and justify decisions we made. All experiments were
performed on a computer with a 16-core AMD Ryzen
5950X CPU, NVIDIA 3090 RTX GPU, and 64 GB of

FIG. 1. A graphical depiction of the convolutional neural
network used in this work. After each MaxPool1d and Batch-
norm1d layer a leaky ReLU activation function with an α ¼ 0.1 is
applied. The convolutional part is shown on the left and takes as
input a time series of 4096 elements with 3 channels. Conv1D(i,
o, k, d) denotes a 1D convolution with i input channels, o output
channels, kernel size k and dilation factor d. MaxPool1d(k)
denotes a 1D max pooling layer with kernel size k. The output of
the convolutions is given to three independent neural network
heads. The first head predicts the sky location parametrized as
D ¼ ðDx;Dy;DzÞ, the second head predicts the mean of the
masses of the two black holes, and the last head predicts the
uncertainty elements of the covariance matrix over the two
masses. Linear(i, o) denotes a linear transformation with i input
features and o output features. Lastly, Batchnorm1d(i) denotes a
1D batch normalization layer with i input features.
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RAM. Source code is available at https://github.com/
akolmus/swiftsky.

A. Training and evaluating the neural model

To obtain strain-parameter pairs for training and vali-
dation, we sampled parameters from a BBH parameter prior
(see Table I) and generated the associated waveforms using
the IMRPhenomPv2 waveform model [37]. The waveforms
were generated in the frequency domain in the frequency
band of 20 to 2048 Hz. The duration of the signal is
2 seconds. Subsequently, these waveforms were projected
onto the HLV interferometers. We sampled the SNR from a
scaled and shifted Beta distribution with its peak set to 15
(see Appendix A). The luminosity distance in the prior was
set to a 1000 Mpc and scaled afterwards to match the
desired SNR. We generated Gaussian noise from the design
sensitivity PSD for each detector. Finally, the signal was
injected into the noise and an inverse Fourier transform was
applied to obtain the strains as time series. This setup
allowed us to generate an arbitrary amount of unique strain-
parameter pairs, which resulted in every training epoch
having a unique dataset.
We applied three preprocessing steps to the data. All time

series were whitened with the aforementioned PSDs. Next,
the time series were normalized. A normalizer was calculated
such that noise-only strains have mean zero and a standard
deviation of one. We found empirically that calculating a
normalizer for the noise instead of noise plus signal allowed
the neural network to converge faster and achieve lower
losses. Lastly, tomake themass distribution easier to learnwe
calculated a shift and scaling factor for the target masses such
that all target masses were between −1 andþ1. The shifting
and scaling were applied inversely to the neural network
output during importance sampling to get the correct masses.
The model was trained for 300 epochs with a batch size

of 128. During each epoch we drew 500 000 strain-
parameter pairs for training and 100 000 strain-parameter
pairs for validation. The Adam optimizer [38] was used to
optimize weights of the model in conjunction with a cosine
annealing scheme with warm restarts [39]. The learning
rate oscillated between 10−3 and 10−5 with a period of 20
epochs; weight decay was set to 10−6. Multiple hyper-
parameter configurations were tested; this configuration
obtained the best performance.
In order to benchmark the trained model, an unseen test

set was generated of 100 000 strain-parameter pairs at
specific SNR values. The model was evaluated using the
mean absolute angular error (maae) and the average
90% confidence area of the predicted VMF distributions.

B. Applying and evaluating importance sampling

To evaluate the importance sampling procedure, we con-
structed a slightly simpler test set in which we restricted the
maximum spin magnitude to be zero. This was done to limit
the BILBY run-time. The importance sampling procedure

discussed in Sec. II B was applied to the first 100 strain-
parameter pairs of this test set at three different optimal SNR
values: 10, 15, and 20. For each strain-parameter pair we
generated 200 000 importance samples. In order to simulate
multiple independent runs at various time points for the same
strain-parameter pair, we subsampled from these 200 000
importance samples during the experiments.
We ran two experiments to test the convergence of the

importance sampling method. In the first experiment, we used
the importance sampling scheme as a maximum likelihood
estimator. For a given set of importance samples we chose the
sample with the highest likelihood and calculated the angle
between this sample and the true sky coordinates. In the
second experiment, we represented the probability density
function of the importance samples by a kernel density
estimator and tested how well the resulting density covered
the true right ascension. Specifically, we used a Gaussian
kernel density estimator [40] to fit the right ascension
distribution proposed by the importance samples. The log-
likelihood of the actual right ascension was used to measure
the quality of the estimated density.We removed a fewoutliers
from the second experiment, by restricting ourselves to only
the right ascension the number of outliers was reduced. These
outliers had densities that did not cover the true right ascension
at all, resulting in extreme negative log-likelihoods which
dominate the average log-likelihood. For both experimentswe
expect the metric to improve as the number of importance
samples increases, and to level after a significant number of
importance samples indicating convergence.

C. Generating skymaps

We use BILBY as a benchmark to generate skymaps for
the first ten strain-parameter pairs of the test set and for
each create a version at an SNR of 10, 15, and 20. To make
a fair comparison, the prior given to the BILBY sampler has
its spin components set to zero. Moreover, the posterior
inference was performed with standard settings, and each
run took between 2.5 and 7 hours to complete. During these
runs the live points of the sampler were saved every
5 seconds and labelled by the total number of sampled
points. These saved points were used to run the two
importance sampling experiments for BILBY.

IV. RESULTS

In this section, we first discuss the performance of the
CNN. Then, the importance sampling scheme is evaluated
using the experimental setup discussed in the previous
section. Lastly, we compare sky maps generated using only
the neural network, importance sampling, and BILBY.

A. CNN

In Fig. 2 we summarize the results for the first experi-
ment: the left panel gives the mean absolute angular error
(maae) in the sky location and in the right panel we plot the
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90% confidence area of the VMF distribution. As expected,
as the SNR increases the prediction error in the sky location
decreases and the 90% confidence area becomes smaller.
The error in the mass prediction is similar to those of other
CNN approaches [33], see Appendix B, indicating that the
setup works well. We do note that the error in the sky
location seems to be quite high for SNR < 10 and that it
does not converge to zero for high SNR. We can think of
two possible explanations for the poor performance at low
SNR. First, the detection rate using either CNNs or
matched filtering pipelines at an SNR of 5 is less than
40% [33,41]. At such a low SNR, it is difficult for the
model to discern the differences in arrival time at each
detector, which explains the slightly better than random
predictions for SNR < 7. When we compare our angular
error with other CNN approaches [34,42], the average error

seems to be similar. Furthermore, Chua and Vallisneri [43]
reported that Gaussian approximations are only accurate for
high SNR (SNR > 8) and even then multimodality might
arise. Second, the sky distribution can be multimodal. This
multimodality is either due to strong noise or can be due to
a sky reflection [14]. For three detectors, there are two
viable solutions to the triangulation problem: the true sky
location and its reflection. In most cases the amplitude
information is sufficient to break the degeneracy between
the location and its reflection. However, at certain sky
angles this amplitude information does not lift the degen-
eracy and a multimodal distribution is required. For these
angles the model has a 50% chance of guessing the wrong
mode and thus having an average angular error of 90°.

FIG. 2. Characterization of the neural network in terms of
accuracy and certainty over the test. Left: the maae (mean
absolute angular error) between the sky angle predicted by the
model and the actual sky location as a function of the SNR. Right:
the average size of the 90% confidence area, expressed in degrees
squared, of the predicted VMF distributions as a function
of the SNR.

FIG. 3. Characterization of the importance sampling, with the
number of importance samples ranging from a 1 000 to 50 000.
The colors represent different SNR values with blue, green, and
red being 10, 15, and 20 respectively. Left: the maae of the
importance sample with the highest likelihood as a function of the
sample size. Right: the log-likelihood of the true right ascension
according to the kernel density estimator created by importance
samples as a function of sample size.
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B. Importance sampling

The results of the importance sampling experiments are
shown in Fig. 3. The left panel shows themaae as the number
of importance samples increases. The right panel shows the
log-likelihood of the true right ascension given by kernel
density based on a varying number of importance samples.
Themajority of the convergence in themaae seems to happen
within the first 30 000 samples. The slow convergence can
largely be attributed to strains for which themodel predicted a
wide sky distribution. When we compare this to results of
BILBY, we see that the maae of the highest likelihood sample
for all SNR is always between 1 and 8 degrees. Importance
sampling is competitive for an SNR of 20 and is close for an
SNR of 15, especially when we consider that in both cases 2
out of the 100 sky distributions were parametrized as the sky
reflection. However, importance sampling is not competitive
with BILBY in the second experiment. For all SNR
values BILBY reports log-likelihoods between 2 and 3, see
Appendix D, and importance sampling does not reach these
values. If we consider runs that show good convergence, i.e.,
where 90%of the importanceweight is not determined by less
than ten importance samples, importance sampling also
reports log-likelihoods between 2 and 3. In Appendix C
we have repeated the kernel density experiment, but only for
thewell-converged runs. These runs represent 30%of all runs,
and almost no SNR < 10 runs.

C. Generating skymaps

As a final test, we generated skymaps using the neural
network, importance sampling, and BILBY on the same
signals. Three representative skymaps are shown in Fig. 4.
The skymaps generated by the neural network are sig-
nificantly more spread out than those generated by
importance sampling and BILBY. As we explained in the
previous sections, this might be due to the neural network
overestimating the uncertainty and having difficulty
extracting the exact signal from the detector noise. The
skymaps generated by importance sampling and BILBY

resemble each other quite a lot, their peak intensities are in
the same position and the sky distributions occupy
roughly in the same area. However, the importance
sampling skymaps are grainy and sometimes do not cover
the complete area that BILBY does. As can be seen in the
bottom row of Fig. 4, when the predicted VMF distribu-
tion has its peak intensity on the correct position the
importance sampling creates better looking sky maps.
This improvement is due to the increased number of
significant importance samples. These results indicate that
a larger number of significant importance samples is
needed, which is to be expected with only 5 minutes
of run-time. Within only 1%–4% of the BILBY run-time
we are already able to recover the essentials of the
skymaps.

FIG. 4. Examples of predicted skymaps by our neural network (left), importance sampling after 100 000 steps or roughly 5 minutes of
computing time (middle), BILBY at convergence (right). The BILBY runs took at least 3 hours to complete. The true sky location is
indicated in red. The shown skymaps were generated for signals with an SNR of 15. The number of significant importance samples, and
hence the quality of the sky maps, increases as we go from the top row to the bottom row.
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V. CONCLUSION

In this paper, we produced skymaps for simulated BBH
events using an importance sampling scheme that turns an
approximate skymap made by a neural network into a
skymap that represents the exact Bayesian posterior dis-
tribution. Experiments show that our method is competitive
with BILBY and can produce the essentials of the skymap
within 4%of the BILBY run-time.However, in some cases the
proposal distributions made by the neural network are too
crude, which hampers the efficiency of the importance
sampling scheme. If the sampling efficiency is improved
further, importance sampling could be used as a quick
alternative to BILBY or LALInference for inferring the GW
posterior. Currently, theDLmodel has only been trained and
tested on simulated noise with a given PSD. We expect that
providing theDLmodelwith various PSD representations as
input into the model during training, as was done in [29],
should allow the model to interpret the real world signals
correctly regardless of the noise profile. In future work, we
will also considermore advanced deep learningmodels such
as normalizing flows to infer more accurate posterior
distributions and apply the model to real measurements.
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APPENDIX A: TRAINING DETAILS

Here we show the priors used for data generation (see
Table I) and the SNR distribution during training
(see Fig. 5).

APPENDIX B: MASS ESTIMATION
PERFORMANCE

In Fig. 6, we show the mean relative error of the
estimated masses over the test set. This figure closely
resembles Fig. 5 in [33]. Any differences are due to the
difference in setup. The main differences are that our
priors include spins and that we do not use a stationary
sky origin.

FIG. 5. Scaled and shifted Beta distribution that acts as the SNR
sampling distribution during training and validation. The vertical
axis represents the probability density function of this Beta
distribution, the horizontal axis represents the SNR value.

TABLE I. The priors used for the data generation. The
luminosity distance in the prior was set to a 1000 Mpc and
scaled afterwards to match the desired SNR.

Parameter Prior Minimum Maximum Unit

Masses (constraint) � � � 20 80 M⊙
Chirp mass Uniform 10 100 M⊙
Mass ratio Uniform 0.25 1.0 � � �
Spin magnitudes Uniform 0 0.95 � � �
Spin polar angles Sine 0 π rad
Spin azimutal angles Uniform 0 2π rad
Right ascension Uniform 0 2π rad
Declination Cosine −0.5π 0.5π rad
Binary inclination angle Sine 0 π rad
Coalescence phase angle Uniform 0 2π rad
Polarization angle Uniform 0 2π rad
Time Shift Uniform −0.1 0.1 s
Luminosity distance � � � 1000 1000 Mpc

FIG. 6. The mean relative error of the estimated masses by the
neural network on the test set as a function of the optimal SNR. It
is almost identical to the Fig. 5 in [33].
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APPENDIX C: IMPORTANCE
SAMPLING

We redid the importance experiment with only well
converged runs, see Fig. 7, the shown log-likelihood
values are close to those reported by BILBY.

APPENDIX D: BILBY RUN

For thirty BILBY runs, ten per SNR value, we repeated
the experiments reported in Sec. III B. Below we
show the results for one of the ten samples. The angular
error as a function of the number of samples is shown in
Fig. 8, the likelihood of the true right ascension
as a function of the number of samples is shown
in Fig. 9.
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