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ISOMORPHISM CLASSES OF DRINFELD MODULES OVER

FINITE FIELDS

VALENTIJN KAREMAKER, JEFFREY KATEN, AND MIHRAN PAPIKIAN

Abstract. We study isogeny classes of Drinfeld A-modules over finite fields k

with commutative endomorphism algebra D, in order to describe the isomorphism
classes in a fixed isogeny class. We study when the minimal order A[π] of D occurs
as an endomorphism ring by proving when it is locally maximal at π, and show
that this happens if and only if the isogeny class is ordinary or k is the prime
field. We then describe how the monoid of fractional ideals of the endomorphism
ring E of a Drinfeld module φ up to D-linear equivalence acts on the isomorphism
classes in the isogeny class of φ, in the spirit of Hayes. We show that the action is
free when restricted to kernel ideals, of which we give three equivalent definitions,
and determine when the action is transitive. In particular, the action is free and
transitive on the isomorphism classes in an isogeny class which is either ordinary
or defined over the prime field, yielding a complete and explicit description in these
cases.

1. Introduction

Let Fq be a finite field with q elements. Let A = Fq[T ] be the ring of polynomials
in indeterminate T with coefficients in Fq, and let F = Fq(T ) be the fraction field
of A. Given a nonzero prime ideal p of A, we denote Fp = A/p. Let k ∼= Fqn be a
finite extension of Fp. We consider k as an A-field via γ : A! A/p !֒ k.
Let τ be the Frobenius automorphism of k relative to Fq, that is, the map α 7! αq.

Let k{τ} be the noncommutative ring of polynomials in τ with coefficients in k and
commutation rule τα = αqτ , α ∈ k. A Drinfeld module of rank r ≥ 1 over k is a ring
homomorphism φ : A! k{τ}, a 7! φa, such that

φa = γ(a) + g1(a)τ + · · ·+ gn(a)τ
n, n = r degT (a).

(Note that φ is uniquely determined by φT .) An isogeny u : φ ! ψ between two
Drinfeld modules over k is a nonzero element u ∈ k{τ} such that uφa = ψau for all
a ∈ A (or equivalently such that uφT = ψTu).
The endomorphism ring E := Endk(φ) of φ consists of the zero map and all isogenies

φ ! φ; it is the centralizer of φ(A) in k{τ}. It is known that E is a free finitely
generated A-module with r ≤ rankA E ≤ r2. We introduce a special element, π = τn,
the so-called Frobenius of k. Note that π lies in the center of k{τ}, and hence belongs
to E .
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Isogenies define an equivalence relation on the set of isomorphism classes of Drinfeld
modules over k. The isogeny class of φ is determined by the minimal polynomial of π
over F = φ(F ), cf. [16, Theorem 4.3.2]. Since the properties of these polynomials are
well understood, it is known how to classify Drinfeld modules over finite fields up to
isogeny.
In this article, we investigate the isomorphism classes within a fixed isogeny class.

This is an important and difficult question in the theory of Drinfeld modules, which
can be approached from different viewpoints, cf. [14, 10]. Our approach is inspired
by the work of Waterhouse [17] in the case of abelian varieties over finite fields and is
partly aimed at producing efficient algorithms for explicitly computing a representa-
tive of each isomorphism class. We refer to Section 6 for a more in-depth comparison
of our results to known results for abelian varieties.

When E is commutative, the endomorphism ring of a Drinfeld module isogenous
to φ is an A-order in F (π) containing A[π]. We start by investigating the natural
question of when A[π] itself is an endomorphism ring of a Drinfeld module isogenous
to φ. We prove the following:

Theorem A. Let φ be a Drinfeld module over k such that Endk(φ) is commutative.
Then A[π] is the endomorphism ring of a Drinfeld module isogenous to φ if and only
if either φ is ordinary or k = Fp.

Next, we study isogenies from φ to other Drinfeld modules using the ideals of E .
Let I E E be a nonzero ideal. Since k{τ} has a right divison algorithm, we have
k{τ}I = k{τ}uI for some uI ∈ k{τ}. This element defines an isogeny uI : φ ! ψ,
where ψ is the Drinfeld module determined by ψT = uIφTu

−1
I and is also denoted by

I ∗ φ. The map I 7! I ∗ φ induces a map S from the linear equivalences classes of
ideals of E to the isomorphism classes of Drinfeld modules isogenous to φ. Generally,
S is neither injective nor surjective.
It was observed by Waterhouse [17] in the setting of abelian varieties that S is

injective when restricted to ideals of a special type, called kernel ideals. Kernel ideals
were introduced in the context of Drinfeld modules by Yu [18]. In Sections 3 and 4, we
revisit Yu’s definition, give two other equivalent definitions, and prove several general
facts about kernel ideals. We also give an explicit example (Example 3.10) of a rank 3
Drinfeld module φ and an ideal I E Endk(φ) which is not kernel; as far as we know,
this is the first such explicit example in the published literature.
In general, we have that Endk(I ∗ φ) ⊇ uIOIu

−1
I

∼= OI , where

OI := {g ∈ F (π) | Ig ⊆ I}.

(Equality holds when I is a kernel ideal; cf. Lemma 4.2.) Note that OI is an overorder
of E , so S can be surjective only when E is the smallest order among the endomorphism
rings of Drinfeld modules isogenous to φ. When E is a Gorenstein ring, we prove that
any isogeny φ! ψ such that Endk(ψ) ∼= OI for some (necessarily kernel) ideal I E E
arises from the map S via I 7! I ∗ φ = ψ. In other words, when E is Gorenstein,
the image of S is the set of isomorphism classes in the isogeny class of φ whose
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endomorphism rings are overorders of E . Since A[π] is a Gorenstein ring, we arrive
at the following:

Theorem B. Assume that either k = Fp or the isogeny class that we consider is
ordinary, so that there is a Drinfeld module φ with Endk(φ) = A[π]. Then the map
I 7! I ∗ φ from the linear equivalences classes of ideals of A[π] to the isomorphism
classes of Drinfeld modules isogenous to φ is a bijection.

In [15], an algorithm is presented for computing the ideal class monoid of an order
in a number field. In an ongoing project, we are working on adapting that algorithm
to orders in function fields. Since for a given ideal I E E computing I ∗ φ is fairly
straightforward, Theorem B combined with this algorithm will provide an efficient
method for computing explicit representatives of isomorphism classes of all Drinfeld
modules isogenous to φ such that Endk(φ) ∼= A[π]. Let us mention that Assong [2]
has recently described a brute-force algorithm to list isomorphism classes, based on
a theoretical classification in terms of j-invariants and “fine isomorphy invariants”,
and implemented this for certain examples of isogeny classes of Drinfeld modules of
rank 3. Our methods involve fractional ideals in endomorphism rings rather than
invariants and explicit expressions for the coefficients of the Drinfeld module.

The outline of the paper is as follows. Section 2 contains our analysis of local
maximality of A[π] at π, including a key result (Theorem 2.6) for the proof of The-
orem A. Section 3 gives the definitions of kernel ideals and proves their equivalence,
and Section 4 gives properties of kernel ideals and proves that every ideal is a kernel
ideal when E is Gorenstein (Proposition 4.5). Section 5 contain our main results: we
find which endomorphism rings can occur in a fixed isogeny class (Proposition 5.1),
study the injectivity and surjectivity of the map I 7! I ∗ φ (Theorem 5.3), and prove
when A[π] occurs as an endomorphism ring (Corollary 5.2), to obtain Theorem B
(cf. Corollary 5.4). Finally, Section 6 contains a comparison between the results ob-
tained in this paper and results from the literature ([17, 6, 5]) on abelian varieties
over finite fields.

2. Local maximality at π of the Frobenius order

As in the introduction, let A = Fq[T ] and F = Fq(T ), and let k = Fqn be a finite
A-field, i.e., a field equipped with a homomorphism γ : A! k. We denote t = γ(T ).
Let p E A be the kernel of A. Then p is a maximal ideal such that Fp := A/p = Fqd

is a subfield of Fqn . We call d the degree of p; note that d divides n. By slight abuse
of notation, we denote the monic generator of p in A by the same symbol.
Let φ : A ! k{τ} be a Drinfeld module of rank r, and let π = τn. The results

about the endomorphism algebra of φ that we use in this section are well-known and
can be found, for example, in [9, 14, 18], but for the convenience of a single reference
and consistency of notation, we will refer to [16].
Let K := Fq(π) be the fraction field of Fq[π] ⊆ k{τ} and define

k(τ) = k{τ} ⊗Fq[π] K.
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Then k(τ) is a central division algebra over K of dimension n2, split at all places of K
except at (π) and (1/π), where its invariants are 1/n and −1/n, respectively; see [16,
Proposition 4.1.1]. Extend φ to an embedding φ : F ! k(τ). Then

E := Endk(φ) = Centk{τ}(φ(A)),

D := Endk(φ)⊗φ(A) φ(F ) = Centk(τ)(φ(F )),

where CentR(S) = {x ∈ R | xs = sx for all s ∈ S} denotes the centralizer of a
subset S of a ring R. To simplify the notation, we will denote φ(A) by A and φ(F )
by F , with φ being fixed. Let

A′ := Fq[π],

F̃ := F (π) = Fq(φT , π).

Let B be the integral closure of A in F̃ . There is a unique place p̃ in F̃ over the

place (π) of K; see [16, Theorem 4.1.5]. Let F̃p̃ := F̃ ⊗K Fq((π)) be the completion

of F̃ at p̃, and let Bp̃ be the ring of integers of F̃p̃.

Definition 2.1. Given an A-order R in B containing π, let

Rp̃ := R⊗Fq [π] FqJπK ⊆ Bp̃.

We say that R is locally maximal at π if Rp̃ = Bp̃; cf. [1, Definition 3.1].

Remark 2.2. Suppose E is commutative. Then E can be considered as an A′-order

in F̃ . It is observed in [18, p. 164] and [1, p. 514] that E is locally maximal at π.
Therefore, for A[π] to be an endomorphism ring of a Drinfeld module isogenous to φ
it is necessary for A[π] to be locally maximal at π. We investigate this condition in
this section; later we will show that it is also sufficient; cf. Proposition 5.1.

Let m(x) be the minimal polynomial of π over F , so that F̃ ∼= F [x]/(m(x)). Note
that π ∈ E is integral over A, so the polynomial m(x) is monic with coefficients
in A and A[π] ∼= A[x]/(m(x)). To analyze the local maximality of A[π], it will be
convenient to change the perspective and express A[π] as a quotient of A′[x]. To
do so, consider T and π as two independent indeterminates over Fq. Then consider
m(π) ∈ Fq[T, π] = A′[T ] as a polynomial m̃(T ) in indeterminate T with coefficients
in A′.

Lemma 2.3. We have:

(1) m̃(T ) is irreducible in K[T ] and has degree [F̃ : K] in T .
(2) The leading coefficient of m̃(T ) is in F

×
q .

(3) Let m̄(T ) ∈ Fq[T ] be the polynomial obtained by reducing the coefficients of

m̃(T ) modulo π. Then, up to an F×
q -multiple, m̄(T ) is equal to p[F̃ :K]/d.

Proof. By [16, Theorem 4.2.7], the degree in T of m(0) is strictly larger than the
degrees of the other coefficients of m(x). Hence, the leading term of m̃(T ) is the
leading term of m(0) ∈ A, so its leading coefficient is in F×

q . Moreover, by [16,
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Theorem 4.2.2 and Theorem 4.2.7], up to an F×
q -multiple, m(0) is equal to p

[F̃ :F ]·n
r·d .

Using [16, (4.1.3)], we get

(m(0)) = p
[F̃ :K]

d .

Thus, degT m̃(T ) = [F̃ : K]. Since F̃ is obtained by adjoining a root of m̃(T ), the

equality degT m̃(T ) = [F̃ : K] implies that m̃(T ) is irreducible over K. Finally, note
that m̄(T ) = m(0), which completes the proof of the lemma. �

Lemma 2.4. The following hold:

(1) The ideal M of A[π]p̃ generated by π and p is maximal.
(2) A[π]p̃/M ∼= Fp.
(3) The completion Ap is a subring of A[π]p̃.

Proof. We have

A[π]p̃ = A[π]⊗Fq[π] FqJπK
∼= Fq[π][T ]/(m̃(T ))⊗Fq[π] FqJπK (by Lemma 2.3)
∼= FqJπK [T ]/(m̃(T )).

(Note that F̃ ∼= K[T ]/(m̃(T )) and, because there is a unique place in F̃ over π, [16,
proof of Theorem 2.8.5] implies that m̃(T ) remains irreducible over Fq((π)).)
The element π of A[π]p̃ is not a unit. Now

A[π]p̃/(π) ∼= Fq[T ]/(m̄(T )) ∼= A/p[F̃ :K]/d.

This shows that p is also not invertible in A[π]p̃ and

A[π]p̃/(π, p) ∼= A/p.

This proves (1) and (2).
Next, note that A[π]p̃ is an order in Bp̃ (because A[π] is an order in B). Hence A[π]p̃

is open and closed with respect to the p̃-adic topology on Bp̃. In particular, A[π]p̃ is
complete. Now the topology on A induced by the embedding A! A[π]! Bp̃ is the
p-adic topology. Hence A !֒ Bp̃ extends to an embedding Ap !֒ Bp̃. Since A[π]p̃ is
complete, the image of Ap lies in A[π]p̃. This proves (3). �

Let

[F̃p̃ : Kπ] = eK · fK ,
[F̃p̃ : Fp] = eF · fF ,

where Fp (resp. Kπ) denotes the completion of F (resp. K) at p (resp. (π)), and
where e and f denote the ramification index and the residue degree of the correspond-
ing extension, respectively.

Proposition 2.5. A[π] is locally maximal at π if and only if one of the following
holds:

• fF = 1 and eF = 1;
• fF = 1 and eK = 1.
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Proof. Let ordp̃ be the normalized valuation on F̃ corresponding to the place p̃. Then

eK = ordp̃(π),

eF = ordp̃(p).

Suppose that A[π]p̃ = Bp̃. Then, using the notation of Lemma 2.4, we have M = p̃

and Fp̃ := Bp̃/p̃ = A[π]p̃/M = Fp. Since π and p generate M, at least one of them
must have ordp̃ equal to 1. Hence, either eK = 1 or eF = 1. Next, fF , by definition,
is the degree of the extension Fp̃/Fp. Hence fK = 1.
Conversely, suppose that one of the given conditions holds. Then the residue field

of Bp̃ is Fp and either p or π is a uniformizer of Bp̃. By the structure theorem of local
fields of positive characteristic, we have Bp̃ = FpJpK or Bp̃ = FpJπK. On the other
hand, by Lemma 2.4,

Fp ⊆ Ap
∼= FpJpK ⊆ A[π]p̃,

and p, π ∈ A[π]p̃. Hence Bp̃ ⊆ A[π]p̃, which implies that Bp̃ = A[π]p̃. �

Theorem 2.6. Let H be the height of φ (see [16, Lemma 3.2.11] for the definition).
Then

⌈ n

H · d
⌉
≤ [F̃ : K]

d
,

with equality if and only if A[π] is locally maximal at π.

Proof. We have the following equalities:

[F̃ : F ]

[F̃ : K]
=
r

n
(see [16, (4.1.3)]),

[F̃ : K] = eK · fK (see [16, (4.1.4)]),

fK = fF · d (see [16, (4.1.6)]).

On the other hand, by [16, Proposition 4.1.10],

H =
r

[F̃ : F ]
[F̃p̃ : Fp].

Hence

H =
n

[F̃ : K]
eFfF =

neFfF
eKfK

=
n

d

eF
eK
.

This implies that
n

H · d =
eK
eF
.

On the other hand,

[F̃ : K]

d
=
eKfK
d

= eK · fF .
Thus, the inequality of the theorem is equivalent to

⌈
eK
eF

⌉
≤ eK · fF .
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Since eK , eF , fF are positive integers, the above inequality always holds, with equality
if and only if fF = 1 and either eK = 1 or eF = 1. Now the theorem follows from
Proposition 2.5. �

Remark 2.7. The advantage of having the inequality of Theorem 2.6, rather than
the statement of Proposition 2.5, is that instead of computing each of eK , eF , fF
individually it combines these numbers into quantities that are easier to compute.

Corollary 2.8. If H ≤ r/[F̃ : F ], then A[π] is locally maximal at π. In particular,
if φ is ordinary, i.e., H = 1, then A[π] is locally maximal at π.

Proof. Since r/[F̃ : F ] = n/[F̃ : K], the assumption is equivalent to n/H ≥ [F̃ : K],
which implies that equality in Theorem 2.6 holds. �

Corollary 2.9. If k = Fp, i.e., d = n, then A[π] is locally maximal at π.

Proof. If k = Fp, then [F̃ : F ] = r; see [7, Proposition 2.1]. But [F̃ : F ] = r is

equivalent to [F̃ : K] = n, so [F̃ : K] = d. Therefore, the inequality of Theorem 2.6
becomes

1 =

⌈
1

H

⌉
≤ [F̃ : K]

d
= 1,

so it is an equality. �

Corollary 2.10. Assume Endk(φ) is commutative. Then A[π] is locally maximal at
π if and only if either φ is ordinary or k = Fp.

Proof. By [16, Theorem 4.1.5], Endk(φ) is commutative if and only if [F̃ : F ] = r.

Now, as in the previous proof, [F̃ : K] = n. The inequality of Theorem 2.6 becomes
⌈ n

Hd

⌉
≤ n

d
.

Since n/d is a positive integer, an equality holds if and only if either H = 1 or
n = d. �

Example 2.11. Let p = T , r = 2, and n = 3. Let φT = τ 2, so φ is supersingular. In
this case, the characteristic polynomial of the Frobenius is x2 − T 3 (since π2 = τ 6 =

φ3
T ), so [F̃ : F ] = 2. Thus, [F̃ : K] = 3. Since H = 2 and d = 1, the inequality of

Theorem 2.6 becomes strict

2 =

⌈
3

2 · 1

⌉
<

3

1
= 3.

Thus, A[π] is not maximal at π. One can also see that A[π] is not maximal at π

by directly computing A[π]p̃. Indeed, A[π] = A[T
√
T ] and B = A[

√
T ]. Since

√
T

is the unique prime over T , A[π]p̃ = AT [T
√
T ] 6= AT [

√
T ] = Bp̃. Also, note that

Endk(φ) = Fq[τ ] ∼= A[
√
T ] is the maximal A-order in F̃ .
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Example 2.12. Suppose n = 6 and d = 2. Note that [F̃ : K] is divisible by d and

divides n, (since r/[F̃ : F ] = n/[F̃ : K] and [F̃ : F ] divides r). Hence, [F̃ : K] = 2
or 6. The inequality of the theorem becomes

⌈
3

H

⌉
≤ [F̃ : K]

2
.

Hence A[π] is locally maximal at π if and only if either H = 1 or [F̃ : K] = 2.
For example, when q = 3, p = T 2 + T + 2, φT = t + τ 4, we calculate that φp =

(2t+1)τ 2 + τ 8, which tells us that H = 2. We also calculate the minimal polynomial
for T over K, which is given by m̃(x) = x6 + (π2 + 1)x3 + (π4 − π2 + 2). Hence,

[F̃ : K] = 6, so A[π] is not locally maximal at π.

Example 2.13. Suppose q = 3, n = 8, and p = T 2 + T + 2. Let

φT = t+ τ + (2t+ 1)τ 2 + 2τ 3 + τ 4.

Then, H = 2 and m̃(x) = x4 + 2x3 + 2x2 + (2π + 1)x + π2 + π + 1, so [F̃ : K] = 4.
Thus,

n

Hd
= 2 =

[F̃ : K]

d
,

so equality in Theorem 2.6 holds. In this case, A[π] is maximal at π.

The next four examples show that the quantities in Proposition 2.5 are essentially
independent of each other.

Example 2.14 (Local maximality despite eK 6= 1). Let q = 3, p = T 2 + T + 2, and
k = Fq4 . Let φT = t + τ 2. By computation, we see that H = 1 and the minimal
polynomial for T over K is given by m̃T (x) = x4 −x3+ (π+2)x2+ (π+1)x+ π2+1.

In particular, n/(Hd) = 2 and [F̃ : K]/d = 2. Therefore, A[π] is locally maximal
at π.
Notice that eK/eF = 2 and eKfF = 2 imply that eK = 2, eF = 1, fF = 1, and

fK = 2.

Example 2.15 (Local maximality despite eF 6= 1). Let q = 3, p = T 2 + T + 2, and
k = Fq4. Let φT = t + (t+ 1)τ + (t+ 2)τ 2 + τ 3. By computation, we see that H = 3
and the minimal polynomial for T over K is given by m̃T (x) = x2 + x+ 2π3 + 2. In

particular, n/(Hd) = 1/3 and [F̃ : K]/d = 1. Therefore, A[π] is locally maximal at π.
Notice that eK/eF = 1/3 and eKfF = 2 imply that eK = 1, eF = 3, fF = 1, and

fK = 2.

Example 2.16 (Not locally maximal despite fF = 1). Let q = 3, p = T 2 + T + 2,
and k = Fq6. Let φT = t+τ +(2t+1)τ 2. By computation, we see that H = 2 and the
minimal polynomial for T over K is given by m̃T (x) = x6+x3+π2+2. In particular,

n/(Hd) = 3/2 and [F̃ : K]/d = 3. Therefore, A[π] is not locally maximal at π.
Notice that eK/eF = 3/2 and eKfF = 3 imply that eK = 3, eF = 2, fF = 1, and

fK = 2.
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Example 2.17 (Not locally maximal despite eF = eK = 1). Assume d is odd, q is
odd, and n/d = [k : Fp] = 2. Then there is a supersingular Drinfeld module of rank 2
over k whose minimal polynomial is x2 + cp + c′p2, where c, c′ ∈ F×

q are such that

c2 − 4c′ is not a square in F×
q ; see [16, Example 4.3.6]. In this case, p remains inert

in F̃ , so eF = 1 and fF = 2. Since n/Hd = eK/eF and H = 2, we see that eK = 1.

3. Kernel ideals: Definitions

We keep the notation of the previous section but from now on we assume that
E = Endk(φ) is commutative.
Let I E E be a nonzero ideal. Let k{τ} I be the left ideal of k{τ} generated by

the elements of I. Then k{τ} I is generated by a single element uI ∈ k{τ} since k{τ}
has right division algorithm. Thus, k{τ} I = k{τ} uI . It follows that

k{τ} uIφ(A) = k{τ} Iφ(A) = k{τ} I = k{τ}uI .
Therefore, uIφ(A)u

−1
I ⊆ k{τ}. If we set ψT = uIφTu

−1
I , then ψ is a Drinfeld module

over k of rank r and uI : φ! ψ is an isogeny. We denote ψ = I ∗ φ.
Let D = E ⊗A F be the division algebra of φ. Note that E = D ∩ k{τ}. Hence

k{τ} I ∩D ⊆ k{τ} ∩D = E .
This implies that

(1) k{τ} I ∩D = (k{τ} I ∩D) ∩ E = k{τ} I ∩ (D ∩ E) = k{τ} I ∩ E .
Definition 3.1. We say that I is a kernel ideal if (k{τ} I) ∩D = I. This definition
is the one in [18, p. 167].

Next, define

φ[I] =
⋂

α∈I

ker(α),

where ker(α) denotes the kernel (as a group-scheme) of the twisted polynomial α ∈
k{τ} acting on the additive group-scheme Ga,k.

Lemma 3.2. We have φ[I] = ker(uI).

Proof. Suppose α ∈ I. Then α ∈ k{τ} I, so α = fuI . Thus ker(uI) ⊆ ker(α), and
consequently ker(uI) ⊆ φ[I]. Conversely, we can write

uI = f1α1 + · · ·+ fmαm,

for suitable f1, . . . , fm ∈ k{τ} and α1, . . . , αm ∈ I. This implies that φ[I] ⊆ ker(uI).
�

Each ker(α), α ∈ I, is an E-module scheme, so φ[I] is an E-module scheme. The
annihilator AnnE(φ[I]) of this module scheme is an ideal of E . It follows immediately
from the definition that I ⊆ AnnE(φ[I]).

Definition 3.3. We say that I is a kernel ideal if I = AnnE(φ[I]). This definition is
the analogue of the definition of this concept in the setting of abelian varieties; see
[17, p. 533].
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Lemma 3.4. We have AnnE(φ[I]) = k{τ} I ∩ D, so Definitions 3.1 and 3.3 are
equivalent.

Proof. Let J := k{τ} I ∩D and J ′ := AnnE(φ[I]). Suppose u ∈ J . Then u ∈ E and
u = wuI for some w ∈ k{τ}. But wuI annihilates ker(uI) = φ[I], so u ∈ J ′. This
implies that J ⊆ J ′. Conversely, if u ∈ J ′, then by Lemma 2.1.1 in [14] we have
u = wuI for some w ∈ k{τ}. Hence u ∈ k{τ} uI ∩ E = J , so J ′ ⊆ J . �

Let φ and ψ be two Drinfeld module over k of rank r. Let l be a prime not
equal to p = charA(k). Let u : φ ! ψ be an isogeny. Then u induces a surjective

homomorphism φk̄
u
−!

ψk̄ of A-modules with finite kernel, where the notation φk̄
means that the A-module structure on k̄ is induced from φ : A ! k{τ} and likewise
for ψ. From this, we get the short exact sequence

0 −! HomAl
(Fl/Al,

φk̄) −! HomAl
(Fl/Al,

ψk̄) −! Ext1Al
(Fl/Al, ker(u)l) −! 0,

where ker(u)l denotes the l-primary part of ker(u) (this is an étale group scheme).
Note that Tl(φ) := HomAl

(Fl/Al,
φk̄) is the l-adic Tate module of φ and that

Ext1Al
(Fl/Al, ker(u)l) ∼= HomAl

(Al, ker(u)l) ∼= ker(u)l.

Hence, u induces an injective homomorphism

ul : Tl(φ) −! Tl(ψ)

whose cokernel is isomorphic to ker(u)l. On the other hand, on Vl(φ) := Tl(φ)⊗Al
Fl,

ul induces an isomorphism Vl(φ)
∼
−! Vl(ψ). Pulling back Tl(ψ) ⊆ Vl(ψ) via u−1

l we
get an Al-lattice u

−1
l Tl(ψ) in Vl(φ) which contains Tl(φ) and a short exact sequence

(2) 0 −! Tl(φ) −! u−1
l Tl(ψ) −! ker(u)l −! 0.

Following [14, (2.3.6)], we denote

(3) Hl(φ) = HomAl
(Tl(φ), Al).

Taking the Al-duals of (2), we obtain

0 −! HomAl
(u−1

l Tl(ψ), Al) −! Hl(φ) −! Ext1Al
(ker(u)l, Al) −! 0.

Note that Ext1Al
(ker(u)l, Al) ∼= HomAl

(ker(u)l, Fl/Al) ∼= ker(u)l. Hence to the isogeny u
there corresponds a canonical sublattice of Hl(φ) whose cokernel is isomorphic to
ker(u)l.
Now given a nonzero ideal I E E , we would like to describe the sublattice of Hl(φ)

corresponding to uI . Before doing so we recall an elementary result about the duals
of intersections of lattices.
Let R be a PID with field of fractions K. Let V = Kn. A lattice in V is the

R-span of a basis of V , i.e., a lattice is a free R-submodule Λ ⊆ V of rank n such that
ΛK = V . Fix a basis {e1, . . . , en} of V and define a symmetric K-bilinear pairing
〈·, ·〉 : V × V ! K by defining 〈ei, ej〉 = δij(= Kronecker symbol) and extending it
bilinearly to V ×V . We identify V ∗ := HomK(V,K) with the linear functionals on V
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and take e∗i (v) = 〈ei, v〉 as a basis of V ∗. For a lattice Λ in V , the dual lattice Λ∗ ⊆ V ∗

is the lattice defined by

Λ∗ = {f ∈ V ∗ | f(λ) ∈ R for all λ ∈ Λ}.
If we identify V ∗ with V by mapping e∗i 7! ei for all 1 ≤ i ≤ n, then

Λ∗ = {v ∈ V | 〈v, λ〉 ∈ R for all λ ∈ Λ}.
Given two lattices Λ1,Λ2 in V , it is easy to check that

Λ1 + Λ2 = {λ1 + λ2 | λ1 ∈ Λ1, λ2 ∈ Λ2}
is a lattice, and so is

Λ1 ∩ Λ2 = {λ | λ ∈ Λ1, λ ∈ Λ2}.
Lemma 3.5. We have

(Λ1 ∩ Λ2)
∗ = Λ∗

1 + Λ∗
2.

Proof. The proof is omitted since it is fairly straightforward. �

Now returning to uI , let α, β ∈ I be nonzero elements. The overlattice of Tl(φ)
corresponding to ker(α) ∩ ker(β) is α−1Tl(φ) ∩ β−1Tl(φ). The sublattice of Hl(φ)
corresponding to ker(α)l is αHl(φ), so (α−1Tl(φ))

∗ = αHl(φ). From the previous
lemma, we conclude that the sublattice of Hl(φ) corresponding to ker(α) ∩ ker(β) is
αHl(φ) + βHl(φ). Thus, the dual of u−1

I Tl(I ∗ φ) is IHl(φ) and we have proved:

Lemma 3.6. The sublattice of Hl(φ) corresponding to ker(uI)l is IHl(φ).

Let Ok be the ring of integers of the unramified extension Fk of Fp with residue
field k. Let Hp(φ) be the Dieudonné module of φ as defined in [14, Sec. 2.5]. Re-
call that Hp(φ) is a free Ok-module of rank r equipped with a τdeg(p)-linear map
fφ,p : Hp(φ)! Hp(φ) such that

{
pHp(φ) ⊆ fφ,p(Hp(φ)) ⊆ Hp(φ),

dimk(Hp(φ)/fφ,p(Hp(φ))) = 1.

Let
H(φ) =

∏

lEA

Hl(φ),

where the product is over all primes of A, including p. According to [14, Lemma
2.6.2], there is a bijection between the kernels of isogenies u : φ ! ψ and sublattices
M =

∏
lEAMl ⊆ H(φ) such that Ml = Hl(φ) for all but finitely many primes l and

Mp is a free Ok-submodule of rank r of Hp(φ) such that

(4)

{
pMp ⊆ fφ,p(Mp) ⊆Mp,

dimk(Mp/fφ,p(Mp)) = 1.

The quotient
∏

l 6=p(Hl(φ)/Ml) defines a unique finite étale k-subscheme Gp ⊆ Ga,k in

φ(A)-modules. Similarly, the quotient Ok-moduleHp(φ)/Mp endowed with the τdeg(p)-
linear map induced by fφ,p defines a unique k-subscheme Gp ⊆ Ga,k in φ(A)-modules.
The quotient of φ by Gp ×Gp is the isogeny corresponding to M .
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Proposition 3.7. The sublattice of H(φ) corresponding to uI is IH(φ) :=
∏

l IHl(φ).

Proof. We already proved this for l 6= p. On the other hand, Hp(φ) is the contravariant
Dieudonné module, so uI(Hp(I ∗φ)) is the submodule generated by all αHp(φ), α ∈ I.
Hence uI(Hp(I ∗ φ)) = IHp(φ). �

Definition 3.8. Let I be a nonzero ideal of E . We say that I is a kernel ideal if for
any ideal J E E the inclusion JH(φ) ⊆ IH(φ) implies J ⊆ I.

Lemma 3.9. Definitions 3.3 and 3.8 are equivalent.

Proof. Note that by the previous discussion, JH(φ) ⊆ IH(φ) if and only if φ[I] ⊆ φ[J ].
Suppose I is a kernel ideal in the sense of Definition 3.3 and φ[I] ⊆ φ[J ]. Then

J ⊆ AnnE φ[J ] ⊆ AnnE φ[I] = I.

Hence I is a kernel ideal in the sense of Definition 3.8.
Conversely, suppose that I is a kernel ideal in the sense of Definition 3.8. Denote

J = AnnE φ[I]. We have I ⊆ J , and we need to show that this is an equality. For
any α ∈ J , ker(α) contains φ[I], so φ[I] ⊆ φ[J ]. This implies JH(φ) ⊆ IH(φ). Hence
J ⊆ I. �

The next example shows that in general not every ideal of E is a kernel ideal.

Example 3.10. Let q = 2, p = T 4 + T + 1, and n = d = 4. Set φT = t + t3τ 2 + τ 3.
The minimal polynomial of π is given by

m(x) = x3 + Tx2 + x+ p.

We algorithmically compute, cf. [8], that an A-basis for E is given by e1, e2, e3, where

e1 = 1, e2 = π + 1, e3 =
(π + 1)2

T + 1
.

We also compute that

e2e3 = e3e2 = (T + 1)3 + (T + 1)e3,

e22 = (T + 1)e3,

e23 = (T + 1)3 + (T + 1)2e2 + (T + 1)e3.

Let l = T + 1. We observe that an argument similar to the argument in [8, Example
4.12] implies that El is not Gorenstein.
Consider the ideal I = (e2, e3) in E . An arbitrary element of I is of the following

form:

(a1 + a2e2 + a3e3)e2 + (b1 + b2e2 + b3e3)e3

= (a3 + b2 + b3)(T + 1)3 + (a1 + b3(T + 1)2)e2 + (b1 + (a3 + b2 + b3)(T + 1))e3,

where ai, bi ∈ A. Hence

I = A(T + 1)3 + Ae2 + Ae3.
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In k{τ}, we have

e2 = 1 + τ 4

e3 = t3 + t2 + t+ (t3 + t2 + 1)τ 2 + (t3 + t)τ 3 + (t3 + t2)τ 4 + τ 5.

These polynomials satisfy the equation

w = ue2 + ve3,

where

w := t3 + t+ 1 + (t3 + t2)τ + (t+ 1)τ 2 + τ 3,

u := (t3 + t2)2 + (t3 + t2)τ,

v := t3 + t2.

We also have

φ(T+1)2 = (t2 + 1) + t3τ 2 + (t2 + t+ 1)τ 3 + τ 4 + tτ 5 + τ 6

= (t+ (t2 + 1)τ + (t2 + t)τ 2 + τ 3)w.

Hence, (T + 1)2 ∈ k{τ}w ⊆ k{τ} I. But I ∩ A = (T + 1)3A, so (T + 1)2 6∈ I. This
proves that I is not a kernel ideal.

4. Kernel ideals: Properties

We keep the notation and assumptions of the previous section. In particular, φ is
a Drinfeld module over k such that E := Endk(φ) is commutative, and D := E ⊗A F .
The next lemma is the analogue of [17, Theorem 3.11].

Lemma 4.1. Let I and J be nonzero ideals in E .
(1) If I = Ju for some u ∈ D, then I ∗ φ ∼= J ∗ φ.
(2) If I ∗ φ ∼= J ∗ φ and I, J are kernel ideals, then I = Ju for some u ∈ D.

Proof. (1) Let k{τ} I = k{τ} uI and k{τ} J = k{τ} uJ . By definition, (I ∗ φ)T =
uIφTu

−1
I and (J ∗ φ)T = uJφTu

−1
J . We have

I ∗ φ ∼= J ∗ φ ⇐⇒ cuIφTu
−1
I c−1 = uJφTu

−1
J for some c ∈ k×

⇐⇒ u−1
J cuI ∈ D

⇐⇒ cuI = uJu for some u ∈ D.

If I = Ju, then uI = uJu, so I ∗ φ ∼= J ∗ φ.
(2) Now assume that I ∗ φ ∼= J ∗ φ, or equivalently cuI = uJu. Then

k{τ} cuI = k{τ}uI = k{τ} I
and

k{τ} uJu = k{τ} Ju.
Note that k{τ} Ju ∩D = (k{τ} J ∩D)u, so if I and J are kernel ideals, then

Ju = (k{τ} J ∩D)u = k{τ} Ju ∩D = k{τ} I ∩ E = I.

�
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Let

(5) OI := {g ∈ D | Ig ⊆ I}
be the (right) order of I in D. The next lemma is the analogue of [17, Proposition
3.9].

Lemma 4.2. Let I be a nonzero ideal in E and write k{τ} I = k{τ} uI with uI ∈ k{τ}.
(1) We have uIOIu

−1
I ⊆ Endk(I ∗ φ).

(2) If I is a kernel ideal, then uIOIu
−1
I = Endk(I ∗ φ).

Proof. (1) Let u ∈ OI . By definition, u ∈ D, so it commutes with φT in k(τ).
Therefore,

(uIuu
−1
I )(uIφTu

−1
I ) = uIuφTu

−1
I = uIφTuu

−1
I = (uIφTu

−1
I )(uIuu

−1
I ).

On the other hand, because u ∈ OI , we have

k{τ} uIu = k{τ} Iu ⊆ k{τ} I = k{τ} uI .
Thus, k{τ} uIuu−1

I ⊆ k{τ}, so uIuu−1
I ∈ k{τ}. It follows that (uIuu−1

I ) ∈ Endk(I ∗φ).
Hence uIOIu

−1
I ⊆ Endk(I ∗ φ).

(2) Now let w ∈ Endk(I ∗ φ). Then w ∈ k{τ} and w(uIφTu
−1
I )w−1 = uIφTu

−1
I .

This implies that u−1
I wuI ∈ D. We have

k{τ} I(u−1
I wuI) = k{τ} uI(u−1

I wuI) = k{τ}wuI ⊆ k{τ} uI = k{τ} I
Assume I is a kernel ideal. Then k{τ} I ∩D = I and

(k{τ} I(u−1
I wuI)) ∩D = (k{τ} I ∩D)(u−1

I wuI) = I(u−1
I wuI),

where the first equality follows from the fact that u−1
I wuI ∈ D. We see that

I(u−1
I wuI) ⊆ I,

so u−1
I wuI ∈ OI . This proves that Endk(I ∗ φ) ⊆ uIOIu

−1
I , which combined with the

reverse inclusion proved earlier implies that Endk(I ∗ φ) = uIOIu
−1
I . �

The next lemma is the analogue of [17, Theorem 3.15].

Lemma 4.3. Assume E is the maximal A-order in D. Then every nonzero ideal of
E is a kernel ideal.

Proof. First, consider a nonzero principal ideal αE . We have k{τ}αE = k{τ}α.
Suppose u = gα ∈ k{τ}α and u ∈ D. Then g = uα−1 ∈ D and g ∈ k{τ}, so g ∈ E .
Therefore, u ∈ αE . This implies that

αE ⊆ k{τ}α ∩D ⊆ αE ,
so (k{τ} (αE)) ∩D = αE , i.e., αE is a kernel ideal.
Now let I E E be an arbitrary nonzero ideal. Since E is maximal, there is an ideal

J E E such that IJ = αE is principal. We have

(k{τ} I ∩D)J ⊆ k{τ} IJ ∩D = IJ,
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where the last equality follows from the earlier considered case of principal ideals.
Now I ′ := k{τ} I ∩D is an ideal of E , and we have I ′J ⊆ IJ . Multiplying both sides
by J−1 ⊆ D, we get I ′ ⊆ I. Since I ⊆ I ′, we have I ′ = I, so I is a kernel ideal. �

Definition 4.4. We say that E is Gorenstein if El := E ⊗AAl is a Gorenstein ring for
all primes l E A, i.e., HomAl

(El, Al) is a free Al-module of rank 1; cf. [4].

Note that the maximal A-order in D is Gorenstein, so the next proposition implies
Lemma 4.3.

Proposition 4.5. If E is Gorenstein then every nonzero ideal of E is a kernel ideal.

Proof. Let I and J be nonzero ideals of E such that JHl(φ) ⊆ IHl(φ). Assume l 6= p.
Because El is Gorenstein, Tl(φ) is a free El-module of rank 1; cf. [8, Theorem 4.9].
But then, again because El is Gorenstein, Hl(φ) = HomAl

(Tl(φ), Al) is also a free
El-module of rank 1; cf. [8, Def. 4.8]. Hence, the inclusion JHl(φ) ⊆ IHl(φ) implies
that Jl ⊆ Il, where Jl := J ⊗A Al and Il := I ⊗A Al.
At p we consider the decomposition

(6) Hp(φ) = Hc
p(φ)⊕H ét

p (φ)

of the Dieudonné module into its connected component Hc
p(φ) and maximal étale

quotient H ét
p (φ). Let

(7) Dp := D ⊗F Fp =
⊕

ν|p

Dν ,

where the sum is over the places of F̃ = D lying over p and Dν is the completion
of D at ν. There is a natural isomorphism (cf. [14, Theorem 2.5.6])

Ep ≃ End(Hp(φ)),

where End(Hp(φ)) denotes the ring of endomorphisms of Hp(φ) compatible with the
action of the Frobenius fφ,p. By [14, Corollary 2.5.8], the splitting (7) induces a
compatible splitting Ep = Ep̃ ⊕ E ′

p such that

Ep̃ ≃ End(Hc
p(φ)),(8)

E ′
p ≃ End(H ét

p (φ)) ≃ EndAp[Gk](Tp(φ)).(9)

Here Ep̃ is the completion of E in Bp̃, and E ′
p = ⊕jEj is a direct sum of finitely many

local rings corresponding to places ν 6= p̃ lying over p, and Tp(φ) = lim
 −

φ[pn](k̄)
denotes the p-adic Tate module of φ. By [18, Corollary, p. 164] we have that Ep̃ = Bp̃

is maximal, hence a DVR, which implies that Hc
p(φ) is a free Ep̃-module. Further,

since E ′
p is Gorenstein by assumption, one can apply the argument in the proof of [8,

Theorem 4.9] to (9) to conclude that H ét
p (φ) is a free E ′

p-module. Combining these
statements yields that JHp(φ) ⊆ IHp(φ) also implies that Jp ⊆ Ip.
Finally, consider Il as an Al-submodule of D⊗F Fl for any place l including p. Then

J =
⋂

l

(D ∩ Jl) ⊆
⋂

l

(D ∩ Il) = I.

Hence I is a kernel ideal by Definition 3.8. �
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5. Endomorphism rings and ideal actions

We keep the notation and assumptions of the previous section. In particular, φ is
a Drinfeld module over k of rank r such that E = Endk(φ) is commutative.

Given an A-order R in F̃ = D = E⊗AF and a prime l✁A, we denote Rl = R⊗AAl.
Also, given a prime ν of B, we denote by Bν the completion of B at ν and by Rν the
completion of R in Bν .
The following result is modeled on [17, Porism 4.3].

Proposition 5.1. Let R be an A-order in D containing π. Then there is a Drinfeld
module ψ in the isogeny class of φ such that Endk(ψ) = R if and only if R is locally
maximal at π.

Proof. This is proved in [3, Theorem 1.5]. We present a slightly different argument.
If R is the endomorphism ring of a Drinfeld module isogenous to φ, then R con-

tains π and is locally maximal at π by [18, Corollary, p. 164].
Conversely, assume R is locally maximal at π. It is enough to show that there is

a Drinfeld module ψ in the isogeny class of φ such that Endk(ψ)l = Rl for all the
primes l of A.
Pick any Drinfeld module φ0 in the isogeny class. For any l 6= p, it follows from

our assumptions that the rational Tate module Vl(φ0) is free of rank 1 over Dl. It
therefore contains lattices L with any order OL = {x ∈ D : xL ⊆ L} (cf. (5)), and,
identifying Vl(φ0) ≃ Dl, we see that such a lattice is Galois invariant if and only if its
order contains π.
For any prime l 6= p, we view both Endk(φ0)l = Endk(φ0)⊗ Al ≃ EndAl[Gk](Tl(φ0))

and Rl as lattices in Vl(φ0). Hence, both Endk(φ0) and R are maximal at all but
finitely many primes l. In particular, there exist only finitely many primes, l1, . . . , ln
say, at which Endk(φ0)l 6= Rl.
The lattice Rl1 has order {x ∈ D : xRl1 ⊆ Rl1} = Rl1 , and so does its dual R∗

l1
≃

Rl1. As in (3), let Hl1(φ0) denote the dual of Tl1(φ0) and consider the intersection
Hl1(φ0) ∩ R∗

l1
. This is an order contained in R∗

l1
and we consider the index χ :=

χ(R∗
l1
/(Hl1(φ0) ∩ R∗

l1
)), which is a product of non-zero A-ideals. We have

χ · R∗
l1
⊆ Hl1(φ0) ∩ R∗

l1
⊆ Hl1(φ0)

by definition. So we have obtained an integral lattice Ll1 := χ ·R∗
l1
inside Hl1(φ0), or

equivalently, a lattice in Vl1(φ0) containing Tl1(φ0), with order

{x ∈ D : xχR∗
l1
⊆ χR∗

l1
} = {x ∈ D : xR∗

l1
⊆ R∗

l1
} = Rl.

Similar constructions yield sublattices Lli of Hli(φ0) for all i = 2, . . . , n. At all
other l 6= p we set Ll = Hl(φ0).
At p, write Dp = ⊕ν|pDν = Dp̃ ⊕ (⊕ν 6=p̃Dν) =: Dp̃ ⊕ D′

p, cf. (7). In this case, we

have that the rational Dieudonné module H ét
p (φ0)⊗ Fp = ⊕ν 6=p̃(Hp(φ0)⊗ Fp)ν is free

over D′
p, where each summand (Hp(φ0)⊗ Fp)ν is free over Dν , and therefore contains

lattices with any order. Comparing End(φ0)ν and Rν at each ν 6= p̃ over p as lattices
in Dν , and adjusting the former if necessary via an analogous procedure to that in the
previous paragraph, yields a sublattice ⊕ν 6=p̃Lν of H

ét
p (φ0). At p̃, we set Lp̃ = Hc

p(φ0).
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By the dictionary between sublattices of H(φ0) =
∏

lEAHl(φ0) and isogenies, the
quotient of

∏
l 6=pHl(φ0) × Hp(φ0) by

∏
l 6=p Ll ×

∏
ν|p Lν yields a finite A-invariant

subgroup G; cf. [14, Section 2.6]. The quotient φ0/G in turn yields a Drinfeld
module ψ isogenous to φ0, for which Endk(ψ)l = Rl at all places l 6= p of A, and
Endk(ψ)ν = Rν at all primes ν|p of F̃ with ν 6= p̃. Finally, by [18, Corollary, p. 164],
Endk(ψ) is locally maximal at π, so we also have Endk(ψ)p̃ = Rp̃. �

Corollary 5.2. The ring A[π] is the endomorphism ring of a Drinfeld module isoge-
nous to φ if and only if either φ is ordinary or k = Fp.

Proof. By Proposition 5.1, A[π] is the endomorphism ring of a Drinfeld module in
the isogeny class of φ if and only if A[π] is locally maximal at π. On the other
hand, Corollary 2.10 states that A[π] is locally maximal at π if and only if either φ is
ordinary or k = Fp. �

We saw in Section 3 that, given a Drinfeld module φ over k and an ideal I E

E = Endk(φ), we can construct an isogenous Drinfeld module ψ = I ∗ φ, which is
determined by ψT = uIφTu

−1
I and which satisfies Endk(ψ) ⊇ uIOIu

−1
I ≃ OI ⊇ E by

Lemma 4.2.(2).

Theorem 5.3. Consider the isogeny class of a Drinfeld module φ over k with com-
mutative endomorphism algebra.

(1) The map I 7! I ∗ φ defines an action of the monoid of fractional ideals of E
up to linear equivalence on the set of isomorphism classes of Drinfeld modules
in the isogeny class of φ whose endomorphism ring is the order of an E-ideal
(and hence an overorder of E).

(2) Upon restricting to kernel ideals, the action is free.
(3) If E is Gorenstein, then the action is also transitive on the set of all Drinfeld

modules whose endomorphism ring is the order of an E-ideal. In other words,
if E is Gorenstein, then every submodule M of H(φ) is of the form IH(φ) for
some nonzero ideal I E E .

Proof. (1) By Lemma 4.1.(1), we may consider the fractional ideals of E up to linear
equivalence. The trivial ideal I = E , considered as a k{τ}-ideal, is generated by the
trivial element, so E ∗φ = φ for any φ. For two ideals I, J it follows from the definition
and commutativity that (I · J) ∗ φ = I ∗ (J ∗ φ). As remarked above, for any ideal I,
the Drinfeld modules φ and I ∗ φ are isogenous via the generator uI of k{τ}I.
(2) This follows from Lemma 4.1.(2).
(3) The proof is inspired by [17, Proofs of Theorem 4.5 and Theorem 5.1]. Suppose
that φ and ψ are isogenous and that R := Endk(ψ) is the order of an E-ideal, i.e.,
R ≃ OI for some ideal I E E . We may write ψ = φ/G where the finite subgroup
scheme G is the kernel of the isogeny. We want to show that ψ ∼= I ∗ φ. Since I is a
kernel ideal by Proposition 4.5, by Proposition 3.7 this amounts to showing that the
sublattice corresponding to the isogeny φ ! ψ with kernel G is IH(φ), up to linear
equivalence. (Note also that the Drinfeld module I ∗φ indeed has endomorphism ring
uIOIu

−1
I ≃ OI by Lemma 4.2.(2).)
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By the dictionary between lattices and isogenies given above, the kernel G gives rise
to a sublattice of Nl ⊆ Hl(φ) such that Hl(φ)/Nl ≃ Gl for each l 6= p and a sublattice
Np ⊆ Hp(φ) satisfying (4) such that Hp(φ)/Np ≃ Gp. The lattice Np in Hp(φ) is
both a free left Ok-module and a right Ep-module; by the splittings of Ep = Ep̃ ⊕ E ′

p

and Hp(φ) = Hc
p(φ)⊕ H ét

p (φ) in (6) and their compatibility in (8) and (9), we must
have that Np = Np̃ ⊕ N ′

p splits as well, where Np̃ is a sublattice of Hc
p(φ) and an

Ok ⊗ Ep̃-module, and N ′
p is a sublattice of H ét

p (φ) and an Ok ⊗ E ′
p-module.

As remarked in the proof of Proposition 4.5, the Gorenstein property implies that
Hl(φ) is free over El of rank 1 for all l 6= p, and H ét

p (φ) is free over E ′
p. Hence, any

sublattice of Hl(φ) is of the form Il · Hl(φ) for some local ideal Il E El, and any
sublattice of H ét

p (φ) is of the form I ′p ·H ét
p (φ) for some ideal I ′p E E ′

p. Since G is finite,
we know that Il = El for all but finitely many l; note also that there are only finitely
many ν 6= p̃ over p that contribute to I ′p. Recall that Ep̃ is maximal by [18, Corollary,
p. 164], hence a PID, so again any sublattice of Hc

p(φ) = (Hp(φ))p̃ is of the form
Ip̃ ·Hc

p(φ) for a local principal ideal Ip̃ E Ep̃. Note that at all places, we may scale the
ideal generators to lie in the local endomorphism ring. We conclude that

Np =
(
Ip̃ ·Hc

p(φ)
)
⊕
(
I ′p ·H ét

p (φ)
)
= Ip ·Hp(φ)

for some local ideal Ip = Ip̃ ⊕ I ′p of Ep.
These local ideals Ip and Il for all l 6= p, i.e., local integral lattices, are the local-

izations of a global lattice (again since Il = El for all but finitely many l), which is
closed under the action of E since it is so everywhere locally by construction. Hence,
it is a global ideal I, as we had to show. �

Corollary 5.4. Suppose that E = A[π] (so that either φ is ordinary or k = Fp, by
Lemma 5.2). Then the action I 7! I ∗ φ of the monoid of fractional ideals of A[π] is
free and transitive on the isomorphism classes in the isogeny class of φ.

Proof. Since we consider the fractional ideals up to linear equivalence, we may without
loss of generality consider only integral A[π]-ideals. Since A[π] is Gorenstein (cf. [8,
Proposition 4.10]), every A[π]-ideal is a kernel ideal by Proposition 4.5. The statement
now follows from Theorem 5.3 since every endomorphism ring is an overorder of A[π];
note that all such overorders occur as endomorphism rings by Proposition 5.1. �

Remark 5.5. (1) The ideal action already appears in [11, Section 3] in a slightly
different setting: fix an A-order O and consider the Picard group Pic(O),
i.e., the quotient group of invertible O-ideals modulo principal ideals. Hayes
shows that Pic(O) acts on the isomorphism classes of Drinfeld modules whose
endomorphism ring contains O. Invertible O-ideals are proper and therefore
have order O; so this statement is consistent with the statement Endk(I ∗φ) ⊇
uIOIu

−1
I

∼= OI which we prove in Lemma 4.2.
(2) It follows from Theorem 5.3 that the number of isomorphism classes in the

isogeny class is bounded below by the sum of the class numbers of the overorders
of E and that equality holds if E is minimal and Bass, so that every overorder
is Gorenstein. For rank 2 Drinfeld modules, this result can also be found
in [10, §6] where the class numbers are given as products involving Dirichlet
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characters. In higher rank, analogous expressions for the class numbers of the
orders in D could be given.

(3) The problem of describing endomorphism rings of Drinfeld modules has been
considered by several authors, see e.g. [1, 9, 18]. Explicit algorithms to com-
pute endomorphism rings were developed in [7] for Drinfeld modules of rank 2
over Fp and in [8] for any Drinfeld module with commutative endomorphism
algebra; in [12], the existence of an effective general algorithm is shown.

6. Comparison with abelian varieties over finite fields

There are striking resemblances of the theory of Drinfeld modules over finite fields
with the theory of abelian varieties over finite fields. Isogeny classes of such abelian
varieties are also determined by the minimal or characteristic polynomial of their
Frobenius endomorphism π, and it is an important open problem to describe the
isomorphism classes within a fixed isogeny class. Indeed, precisely when the varieties
are ordinary or defined over the prime field Fp, there exist categorical equivalences
between isomorphism classes of abelian varieties over Fq and certain Z[π, π̄]-ideals,
where π̄ = q/π is the dual of the Frobenius, also called the Verschiebung.
First, consider an isogeny class of simple ordinary abelian varieties over Fq deter-

mined by a Frobenius endomorphism π. It is known that any ordinary variety A/Fq
admits a (Serre-Tate) canonical lifting Ã to the Witt vectors W = W (Fq), which

may be embedded into C. In [6], Deligne shows that the functor A 7! H1(Ã ⊗W C)
induces an equivalence of categories between isomorphism classes in the isogeny class
determined by π and free Z-modules of rank 2 dim(A) equipped with an endomor-
phism F acting as π and an endomorphism V such that FV = q playing the role
of Verschiebung; these modules are often called Deligne modules. On the other
hand, complex abelian varieties AC are determined by lattices via the equivalence
AC 7! AC(C) ∼= Cg/Λ induced from complex uniformization, and when AC has CM
through a CM-type Φ, we may write Λ = Φ(I) for some fractional End(AC)-ideal I.
In this way, we may associate a fractional ideal I to each ordinary abelian variety
A/Fq, since each variety over Fq has CM and therefore so does its canonical lifting Ã.
Linearly equivalent fractional ideals yield homothetic lattices and hence isomorphic
abelian varieties, and homomorphisms between abelian varieties are described by
quotient ideals. Put differently, fractional ideals up to linear equivalence act on the
isomorphism classes in the ordinary isogeny class.
By comparison, it should follow with a similar proof that ordinary Drinfeld modules

over k admit a canonical lifting to C∞ of A-characteristic zero. On the one hand,
Drinfeld modules over C∞ admit a analytic uniformization by a lattice Λ ⊆ C∞ (where
homothetic lattices describe isomorphic Drinfeld modules), which yields a bijection
between lattices in C∞ and Drinfeld modules over C∞. On the other hand, the ideal
action φ 7! I∗φmay be defined for arbitrary Drinfeld modules over any A-field (i.e., of
any characteristic). Indeed, as alluded to above, the Picard group of fractional ideals
of an order O up to linear equivalence acts simply transitively on the isomorphism
classes of Drinfeld modules over C∞ with CM by O. Ideals of E may be embedded
in C∞ as lattices, and every lattice Λ ⊆ C∞ yields an ideal χ(Λ/E)Λ E E . One can
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show that if uI : φ ! I ∗ φ is an isogeny and φ corresponds to the lattice Λ, then
I ∗ φ corresponds to the lattice I−1Λ, where I−1 = (E : I). This shows that, like for
abelian varieties, the ideal action for ordinary Drinfeld modules can equivalently be
described in terms of lattices via analytic uniformization on the lifted modules.
Next, consider an isogeny class of simple abelian varieties over Fp, determined by

a characteristic polynomial of π which does not have real roots, to ensure the endo-
morphism rings are all commutative. In [5], the authors show that such an isogeny
class contains an element Aw with minimal endomorphism ring, i.e., EndFp

(Aw) =
Z[π, π̄], which is Gorenstein. They then use this variety to show that the functor
A 7! Hom(A,Aw) induces a contravariant equivalence between isomorphism classes
in the isogeny class and reflexive Z[π, π̄]-modules, which are in turn equivalent to
finite free Z-modules with an endomorphism F acting as π and an endomorphism V
such that FV = p which plays the role of π̄. When the varieties are also ordinary,
the authors also prove that their functor is equivalent to that of Deligne.
By comparison, for Drinfeld modules over k = Fp, the existence of an isomorphism

class φw with minimal endomorphism ring Endk(φw) = A[π] is guaranteed by Corol-
lary 2.9 and Lemma 5.2. The functor φ 7! Homk(φ, φw) from isomorphism classes in
the isogeny class of φw to reflexive A[π]-modules can be proven to be fully faithful by
using Tate’s theorems for Drinfeld modules and mimicking the proof of fully faithful-
ness in [5, Theorem 25]. Essential surjectivity follows from the main result in [13],
when we view an A[π]-module as an A-matrix with characteristic polynomial deter-
mined by that of π. Moreover, suppose that φ = I ∗ φw for some (necessarily kernel)
ideal I E E = A[π] and recall that φT = uI(φw)Tu

−1
I for uI ∈ k{τ} with k{τ}I =

k{τ}uI . Then, using that A[π] = Endk(φw) = {v ∈ k{τ} : v(φw)T = (φw)Tv}, we see
that

Homk(φ, φw) = {u ∈ k{τ} : uφT = (φw)Tu}
= {u ∈ k{τ} : uuI(φw)T = (φw)TuuI}
= {u ∈ k{τ} : uuI ∈ A[π]}
= k{τ}uI ∩ A[π] = I,

where the last equality follows from the definition of a kernel ideal, see Definition
3.1 above and cf. Equation (1). This shows that the two constructions are in fact
equivalent for Drinfeld modules.

References

[1] Bruno Angles, On some subrings of Ore polynomials connected with finite Drin-
feld modules, J. Algebra 181 (1996), no. 2, 507–522.

[2] Sedric Nkotto Nkung Assong, Explicit description of isogeny and isomor-
phism classes of Drinfeld modules over finite field, arXiv e-prints (2020),
arXiv:2009.02533.

[3] , Orders occurring as endomorphism ring of a Drinfeld module in some
isogeny classes of Drinfeld modules of higher ranks, arXiv e-prints (2020),
arXiv:2009.11578.

[4] Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28.



ISOMORPHISM CLASSES OF DRINFELD MODULES OVER FINITE FIELDS 21

[5] Tommaso Giorgio Centeleghe and Jakob Stix, Categories of abelian varieties over
finite fields, I: Abelian varieties over Fp, Algebra Number Theory 9 (2015), no. 1,
225–265.
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