
1.  Introduction
Global warming is one of the main threats to the stability of the present-day climate system. Under this warming, 
specific climate system components might change abruptly when certain critical thresholds are exceeded. Exam-
ples of such tipping elements (Lenton et al., 2008) are the Greenland Ice Sheet (GIS), the Atlantic Meridional 
Overturning Circulation and the West Antarctic Ice Sheet (WAIS). A thorough understanding of the mechanisms 
and impact of tipping behavior in these subsystems is fundamental in assessing the risks of climate change (Kemp 
et al., 2022).

Tipping elements are also strongly interacting, for example, the polar ice sheets and the ocean circulation, and 
hence tipping in one subsystem (the leading system) may lead to tipping in another (the following system), in a 
so-called tipping cascade (Dekker et al., 2018). This rises the possibility of domino effects, causing the climate 
system to collapse while the threshold of one subsystem only has been crossed (Klose et al., 2021). However, 
the collapse of one subsystem may also stabilize others (Ciemer et al., 2021; Swingedouw, Fichefet, Huybrechts, 
et al., 2008; Weaver et al., 2003) and thereby prevent such dramatic scenarios.

Using expert elicitation, Kriegler et al. (2009) qualitatively assessed the risk of such cascading events in a context 
of global warming. In a more quantitative assessment, Wunderling et al. (2021) studied the interactions between 
tipping of the GIS, the AMOC, the WAIS and the Amazon rainforest using a highly idealized model of coupled 
dynamical systems, each capturing the tipping through back-to-back saddle-node bifurcations. Here, the GIS, 
AMOC, and WAIS stood out as the protagonists of a potential large-scale cascading. However, the Wunderling 
et al. (2021) approach lacks a connection to the underlying physical processes, and their interactions.

The aim of this study is to couple physically motivated conceptual models of the three tipping elements. Within 
a new coupled model, we study similar issues as Wunderling et  al.  (2021), where the GIS and AMOC were 
described respectively as potential initiator and mediator of cascading, while the role of the WAIS was less 
certain. We focus on the conditions under which cascading can occur or not, and especially on regimes in which 
the AMOC can remain stable when interacting with tipping polar ice sheets under global warming.
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2.  Modeling Coupled Tipping Elements
A conceptual inter-hemispheric model composed of the GIS, the AMOC and the WAIS subsystems is presented 
in Figure 1. The individual model components and their coupling are described in the below paragraphs.

2.1.  The GIS

Over the last decades, satellite measurements have revealed a significant acceleration of ice loss of the GIS 
(The IMBIE Team,  2020), where the decreasing surface mass balance (SMB) plays a crucial role (Enderlin 
et al., 2014; Goelzer et al., 2013). A critical global mean surface temperature increase threshold of 0.8–3.0°C 
has been suggested (Armstrong McKay et al., 2022), above which the GIS would be committed to melting. An 
important mechanism to destabilize an ice sheet is the height-SMB feedback (Levermann & Winkelmann, 2016), 
according to which the thinning of an ice mass enhances melting as its surface reaches lower altitudes, associated 
with higher temperatures. Based on early warning signals, Boers and Rypdal (2021) claim that the height-SMB 
feedback might already have brought parts of the western GIS close to a tipping point.

To represent the GIS, we consider an isothermal ice sheet lying on a fixed bedrock (Greve & Blatter, 2009). The 
evolution of the ice thickness is given by the contribution of the transport inside the ice dome involving the ice 
flux, along with the SMB. The problem is simplified by using the shallow-ice approximation and considering 
a radially symmetric ice cap resting on a flat circular bed at sea level, with a no-ice condition at the boundary. 
The height-dependent SMB is defined using the precipitation rate and equilibrium line altitude, which depend 
on the regional temperature anomaly ΔτN with respect to the present-day annual mean value. Finally, ice loss is 
converted to a meltwater flux FN directly inserted in the northern Atlantic box. More details about the GIS model 
are provided in Section S1 in Supporting Information S1.

2.2.  The AMOC

From long-term observations of sea surface temperature, it has been suggested (Caesar et al., 2018, 2021) that a 
slowing down of the AMOC has occurred over the last century. Global warming and associated changes in the 
hydrological cycle are overal destabilizing (Bakker et al., 2016) due to the salt-advection feedback. A tipping point 
ranging from 1.4°C to 8.0°C of global warming is suggested in the literature (Armstrong McKay et al., 2022), 
although with low confidence level. Also, an increased freshwater input in the deep water formation region, 
caused by GIS melting, is destabilizing (Jackson & Wood,  2018). Based on global climate models, Jackson 
and Wood (2018) have suggested a critical extra freshwater input of about 0.1 Sv, corresponding to the high 
end of that associated with a GIS decay (Lenaerts et al., 2015). The impact of freshwater input in the southern 
region, however, remains uncertain as there are numerous competing feedbacks (Swingedouw, Fichefet, Goosse, 

Visualization: S. Sinet
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Writing – review & editing: S. Sinet, A. 
S. von der Heydt, H. A. Dijkstra

Figure 1.  Representation of the coupled model. The West Antarctic Ice Sheet (WAIS) is represented by a single marine 
ice sheet in the Antarctic region. The Atlantic Meridional Overturning Circulation is depicted by three boxes for the 
southern (under 30°S), tropical (30°S to 30°N) and northern (above 30°N) Atlantic Ocean, each one coming with their 
own temperatures and salinities, forced by precipitation fluxes F1,3 and background temperatures τ1,2,3. The Greenland Ice 
Sheet is represented by a radially symmetric ice dome in the Arctic region. Both ice sheets interact with the ocean through 
meltwater fluxes FN,S, and the southern Atlantic Ocean temperature T3 interacts with the WAIS through the depth integrated 
ice viscosity parameter 𝐴𝐴 𝐴̄𝐴(Δ𝑇𝑇3)  .
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& Loutre, 2008), potentially restraining the AMOC weakening under global warming (Swingedouw, Fichefet, 
Huybrechts, et al., 2008) or leading to an AMOC recovery (Weaver et al., 2003). Recently, based again on early 
warning indicators, Boers (2021) claims that the AMOC is close to tipping.

For the AMOC, we use the three-box model of Rooth (Lucarini & Stone, 2005; Rooth, 1982; Scott et al., 1999), describ-
ing the AMOC driven by the pole-to-pole density difference. The first box represents the northern Atlantic Ocean, the 
second the tropical region and the third the southern Atlantic Ocean. Temperatures and salinities are changed through 
advective transport due to the AMOC strength q, defined positive for a present-day, northern sinking configuration. 
The temperature T1,2,3 of each box is relaxed to a background temperature τ1,2,3, at a relaxation time scale of about 
25 years. Salinities S1,2,3 are forced by surface freshwater fluxes F1,3,N,S, including precipitation and meltwater input at 
the poles, compensated by evaporation in the tropics (see Figure 1), yielding conservation of total salt content for the 
Atlantic Ocean. More details about the AMOC model are provided in the Section S2 in Supporting Information S1.

The stability of the Rooth model in a northern sinking state under varying freshwater or temperature forcing has 
already been investigated (Lucarini & Stone, 2005; Scott et al., 1999). On one hand, at a total freshwater input 
in the northern box of F1,c = 0.86 Sv, the model undergoes a subcritical Hopf bifurcation above which only the 
southern sinking state remains stable, while increasing the freshwater input in the southern box strengthens 
the circulation due to the salt-advection feedback. On the other hand, increasing the inter-hemispheric forcing 
temperature asymmetry τ1 − τ3 weakens the circulation. In both cases however, the associated critical values will 
be highly rate dependent, which will be discussed in Section 3.

2.3.  The WAIS

The WAIS has seen unprecedented ice loss over the last decades (The IMBIE Team, 2018), with ocean warming 
being the main driver (Favier et al., 2019; Joughin et al., 2014; Shepherd et al., 2004). The increased loss is likely due 
to the fact that a dominant part of the WAIS ice mass is grounded under sea level, making it subject to a dynamical 
instability known as the marine ice sheet instability (MISI), resulting in a fast retreat of the grounding line when on 
retrograde bed slope (Mulder et al., 2018; Schoof, 2007; Weertman, 1974). In the Amundsen sea sector, the MISI 
might already be initiated (Favier et al., 2014; Rignot et al., 2014), with potentially dramatic consequences for the 
WAIS (Feldmann & Levermann, 2015) and for the whole Antarctic continent (Garbe et al., 2020). In terms of global 
warming, Armstrong McKay et al. (2022) propose a tipping point ranging between 1.0°C and 3.0°C.

We consider the WAIS as one single marine ice sheet (Schoof,  2007) under depth-integrated shallow-shelf 
approximation, represented by a rapidly sliding, two-dimensional and symmetric marine ice sheet. A floating 
ice shelf is included as boundary condition at the grounding line, such that the position of the grounding line 
can be tracked. We consider the SMB constant and uniform, ignoring any melting contribution, as we expect 
dynamical ice loss to dominate when the MISI occurs. The bifurcation structure of this model with respect to 
the depth-integrated ice viscosity parameter 𝐴𝐴 𝐴̄𝐴  is known (Mulder et al., 2018; Schoof, 2007) and consists of two 
back-to-back saddle-node bifurcations inducing the MISI, resulting in a fast retreat of WAIS as this parameter 
exceeds the critical value of 𝐴𝐴 𝐴̄𝐴𝑐𝑐 = 2.87 ⋅ 10−25 Pa −3s −1. In the coupled model, we consider 𝐴𝐴 𝐴̄𝐴  as a linear function 
of the southern Atlantic Ocean temperature anomaly ΔT3

𝐴̄𝐴(Δ𝑇𝑇3) =
𝐴̄𝐴

0

𝑇𝑇
0

3

[

𝑇𝑇
0

3
+ 𝑐𝑐𝑆𝑆Δ𝑇𝑇3

]

.� (1)

where cS is a non-dimensional coupling parameter and the parameters 𝐴𝐴 𝐴̄𝐴
0  and 𝐴𝐴 𝐴𝐴

0

3
 indicate values at reference 

state, translating into a critical value ΔT3,c decreasing as cS increases. Although no straightforward link can be 
established between T3 and the regional ocean temperature, let us note that the range cS = [0.1, 1.0] corresponds 
to the range ΔT3,c = [0.1, 1.0] °C, consistent with model projections for the regional ocean warming with respect 
to present-day likely to trigger a WAIS tipping (Garbe et al., 2020). Finally, ice loss is converted into a meltwater 
flux FS, from which we assume only a fraction f = 0.27 to enter the southern Atlantic Ocean, considering the rest 
to be lost in the Pacific Ocean. More details about the WAIS model and the estimation of f are provided in the 
Section S3 in Supporting Information S1.

3.  Results
In this section, we will systematically use the initial state such that the AMOC is in a stable northern sinking 
configuration similar to present-day (Lucarini & Stone, 2005), and with ice sheets yielding realistic present-day 
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values for ice volumes and meltwater fluxes (see Section S4 in Supporting Information S1). To investigate the 
coupled model under global warming, we linearly increase surface temperatures over the GIS and Atlantic Ocean 
during 100 years, after which temperature is held constant, that is, for j ∈ {N, 1, 2, 3} (with t in years),

𝜏𝜏𝑗𝑗(𝑡𝑡) = 𝜏𝜏𝑗𝑗(0) + 𝛾𝛾𝑗𝑗
Δ𝜏𝜏2

100
𝑡𝑡𝑡� (2)

where amplification parameters γj are used to represent the phenomena of polar amplification (Cai et al., 2021; 
Hahn et  al.,  2021; Holland & Landrum,  2021), here with respect to the equatorial warming Δτ2. Those are 
estimated from results of Hahn et al. (2021), where many CMIP5 and CMIP6 models were used and compared 
to assess the (zonally averaged) amplification as a function of latitude when forced by a CO2 quadrupling, and 
chosen to be γN = 2, γ1 = 1.3, γ2 = 1.0, and γ3 = 1.0 for respectively the North Pole and the three oceanic boxes. For 
those values, the forcing can be expressed in terms of the global warming with respect to the pre-industrial period 
ΔτG ≈ 1.1Δτ2 + 1.1 alone, obtained by averaging over the Earth's surface and accounting for the present-day 
warming.

To determine whether cascading occurs or not, we first focus on the AMOC when no ice sheets are involved or, 
in other words, when cS = γN = 0. In this case, applying the forcing (2), we find a critical value ΔτG,c = 9.2°C at 
which the AMOC destabilizes, thereby tipping to the southern sinking configuration. Next, we couple only the 
GIS to the AMOC, that is, setting cS = 0. The critical value ΔτG,c, above which the AMOC destabilizes decreases 
to 6.9°C. Indeed, as the GIS in this model reaches its critical warming level already at ΔτG = 1.8°C, the AMOC 
is destabilized not only by rising temperatures but also by additional meltwater input into the northern box. 
We note that while the tipping point of the GIS sits in the middle of the range proposed by Armstrong McKay 
et al. (2022), the AMOC tipping point exceeds it by approximately one degree, which remains reasonable given 
the low confidence associated with this projection. In any case, this situation clearly represents a tipping cascade 
as both systems tip while only the critical threshold of the GIS has been crossed.

Finally, choosing non-zero values for cS, we couple the WAIS to the system. We repeat the global warming 
experiments with ΔτG = 7.1°C for two different WAIS-coupling values, cS = 0.2 and cS = 0.8, best illustrating the 
different effects of the coupling. For this level of warming, the GIS systematically tips at about year 10, while T3 
is increased by approximately 5°C within the first 150 years, far above the critical value triggering the MISI for 
both cS values.

In the case of low coupling (cS = 0.2, Figure 2a), the WAIS tips at about year 30, and the resulting meltwater 
flux is not large enough to compensate for the destabilizing effect of freshwater input in the north. Hence, the 
AMOC tips at about 400 years, resulting in another drastic rise of T3. However, the subsequent acceleration of the 
WAIS collapse happens too late, as the AMOC is then already in a reversed circulation regime. Higher coupling 
(cS = 0.8, Figure 2b) results in a more abrupt WAIS collapse triggered earlier, at about year 10. In this case, the 
meltwater flux from the WAIS is strong enough to maintain the AMOC in a northern sinking configuration. It 
is worth noting however that, while the circulation shift has been avoided, the AMOC strength is committed to a 
long term decrease of about 20% due to global warming.

The cases in Figure 2 are shown as the red crosses in Figure 3a, where the final state of the AMOC is shown in 
part of the (ΔτG, cS) parameter plane. In the yellow region, the AMOC is destabilized to the southern sinking state 
while, in the blue region, it remains in a northern sinking configuration. As expected, the critical value of warm-
ing leading to AMOC tipping ΔτG,c (the boundary between the yellow and blue region) increases with increasing 
cS, that is, when the WAIS more strongly reacts to ocean warming. Over the cS interval [0.1,1.0], ΔτG,c ranges 
between 6.9°C and 7.4°C, and implied transition times for both ice sheets remain consistent with those proposed 
by Armstrong McKay et al. (2022). Hence, this creates the possibility of preventing a collapse of the AMOC 
under conditions for which the WAIS tips fast enough. Notably, this range of warming is above those implied 
by any SSP scenario for the next century (Lee et al., 2021), for which the AMOC would hence remain stable 
regardless of the value of cS. However, the same experiment conducted using a longer temperature increase time 
of 300 years (Figure 3b) leads to a higher tipping point of ΔτG,c = 10.1°C for the AMOC alone. Consequently, the 
coupling to the ice sheets results in ΔτG,c ranging between 7.6°C and 8.3°C, consistent with expected warming 
levels implied by both SSP5-8.5 and SSP3-7.0 extended scenarios after 300 years (Lee et al., 2021). Representa-
tive cases (red crosses in Figure 3b) are illustrated on the Figure S2 in Supporting Information S1. In both exper-
iments, the length of the interval on which ΔτG,c varies appears to linearly depends on the fraction f of the WAIS 
meltwater flux reaching the southern Atlantic Ocean (see Figure S1 in Supporting Information S1).
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In the global warming experiments so far, the destabilization of both ice sheets is induced within a few decades. 
Moreover, at initial state, all tipping elements are in equilibrium while in reality, some of them might already 
be engaged in a transient, for example, the GIS or WAIS. To gain more insight into the influence of the 
different delays and rates of change in the coupled system, we perform additional sensitivity experiments by 
forcing only the ice sheets, while the AMOC reacts solely to the implied meltwater fluxes. Similar to what is 
seen in so-called hosing experiments (Boulton et al., 2014; Jackson & Wood, 2018; Rahmstorf et al., 2005), 
we explore more extreme forcings and investigate which of those hypothetical scenarios results in an AMOC 
collapse.

First, we apply a linear increase of the regional surface temperature in Greenland τN lasting 100 years, and look for 
the critical value of ΔτN leading to a southern sinking state of the AMOC. At the critical value of ΔτN,c = 22.3°C, 
the AMOC tipping occurs at a GIS melting totally in about 500 years. With this forcing, the GIS meltwater flux 
reaches 0.33 Sv at its peak, which is less than the forcing required to reach the Hopf bifurcation of the Rooth 
model. Hence, the AMOC collapse cannot be explained by bifurcation tipping. However, as the GIS collapses, the 
meltwater flux increases fast enough to trigger a rate-induced tipping (Ashwin et al., 2012).

Next, we add the WAIS to assess the stability of the AMOC when interacting with both polar ice sheets. To 
explore the combined effect of tipping rates and their delay in time, we force both ice sheets independently. At a 
time t we initiate a forcing of the GIS, linearly increasing τN by 23°C in 100 years. By choosing a slightly larger 
forcing than in the previous experiment, we reduce the potential AMOC stabilizing region occurring as a conse-
quence of the WAIS tipping. After a time delay Δt, we initiate a forcing of the WAIS, applying a linear increase of 
T3 by 7°C (affecting the WAIS only), in 100 years. Here, the exact value of T3 increase is not crucial as the WAIS 
tipping response will anyway be determined by the coupling parameter cS.

The final state of the AMOC in the parameter space (Δt, cS) is shown in Figure 3c. Below cS ≈ 0.1 (hence 
above ΔT3,c = 1.0°C), the AMOC always tips whenever the WAIS forcing is initiated. In this case, no WAIS 
meltwater flux can stabilize the AMOC against the high GIS meltwater input. However, as the coupling param-
eter cS increases, a region of stability appears (blue). In this region, the lowest values of cS require a strongly 
negative time delay Δt to prevent the AMOC tipping. There, the slower WAIS tipping provides a lower but 
sufficiently sustained meltwater input, such that the peak of the MISI coincides with the fast GIS tipping. As cS 
increases, the stabilizing region rapidly encompasses shorter delays, including positive ones from cS ≈ 0.3. Note 
however that, at strong coupling, a WAIS tipping triggered too soon will result in most of the WAIS meltwater 
content  to be released too long before the GIS tipping. Finally, it appears that there is a critical time delay at about 
Δt = 200 years, from which no WAIS tipping can causally interfere with the destabilization of the AMOC, due to 
the strong hysteresis behavior of the Rooth model. Representative cases (red crosses in Figure 3c) are illustrated 
on the Figure S3 in Supporting Information S1.

Figure 2.  Transient behavior of the Atlantic Meridional Overturning Circulation strength q and the ice sheet meltwater 
fluxes under a linear global warming ΔτG = 7.1°C lasting 100 years, for different couplings: (a) cS = 0.2 and (b) cS = 0.8.
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4.  Summary and Discussion
In this paper, we present a conceptual model to study the interaction of three tipping elements (WAIS, AMOC and 
the GIS) of the climate system. Under global warming, coupling the GIS to the AMOC drastically destabilizes 
the AMOC, making the GIS a potential initiator of global cascading as suggested by Wunderling et al. (2021). 
On  the other hand, coupling the WAIS to the AMOC has a stabilizing effect on the AMOC, especially in the case 
of a relatively fast and early WAIS tipping. By considering two different warming time scales, our model suggests 
these competing feedbacks to be especially relevant regarding warming projections based on extended SSP5-8.5 
and SSP3-7.0 scenarios (Lee et al., 2021).

By considering the stability of the AMOC when affected by meltwater fluxes only, we identified two key compo-
nents to prevent an AMOC collapse, that is, interrupting a tipping cascade: the tipping rate of ice masses and the 
time delay between these tipping phenomena. While a comparatively slow tipping of the WAIS could keep the 
AMOC stable when triggered hundreds of years before the GIS tipping, it turns out that a faster WAIS tipping is 
more efficient to avoid an AMOC collapse for shorter delays, which is probably a more realistic scenario when 
thinking about climate change. In any case, our results rely on the fact that a freshwater input in the southern 

Figure 3.  (a–b) Final state of the Atlantic Meridional Overturning Circulation (AMOC) depending on the warming ΔτG 
and coupling parameter cS, using a linear global warming lasting respectively (a) 100 years and (b) 300 years (c) Same for 
the hosing experiment but depending on the time delay Δt and coupling parameter cS. The yellow area stands for reversed 
circulation (AMOC tipping), while blue area stands for northern sinking circulation (no AMOC tipping). The gray line 
indicates the lowest expected value for cS at 0.1, corresponding to the critical ocean warming ΔT3,c = 1.0°C. Red crosses 
represent parameter configurations used in (a) Figure 2b (b) Figure S2 in Supporting Information S1 and (c) Figure S3 in 
Supporting Information S1.
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Atlantic Ocean stabilizes the AMOC, a behavior which is shared by many box model representations of the 
AMOC (Cimatoribus et al., 2012; Rahmstorf, 1996; Rooth, 1982).

Of course, the model contains many idealizations and hence we argue below why we think these results are robust 
when more detailed physical processes are included. First, it is known that the stability of the AMOC in the Rooth 
model is very sensitive to the inter-hemispheric temperature forcing asymmetry, here implied by the amplifica-
tion coefficients used to define climate change (Lucarini & Stone, 2005). While other choices of these parameters 
would affect the magnitude of the GIS and WAIS influence on the AMOC stability, we expect our results to 
remain robust as long as the warming remains destabilizing. A more accurate assessment of those amplification 
coefficients spanning the Atlantic Ocean alone would be an improvement to the quantitative results of our study.

Second, the description of the influence of the oceanic temperature on the WAIS has been strongly idealized. 
However, we can expect our qualitative results to hold as long as this interaction remains destabilizing. To better 
base it on physical grounds, one would have to consider sub-shelf melting and calving processes, interacting 
with the ice shelf stability through buttressing (Haseloff & Sergienko,  2018,  2022) and lateral drag (Schoof 
et al., 2017). Also, a better assessment of the fraction f of the WAIS freshwater flux reaching the southern Atlan-
tic Ocean would be a direct improvement, which involves resolving the dynamics associated to the Antarctic 
Circumpolar Current and is beyond the scope of this study. Nonetheless, the apparent linear behavior of the 
critical warming with respect to f supports our results, as the stabilizing effect remains substantial when f varies 
around our estimation.

Third, some feedbacks have been omitted. Most importantly, the stabilizing effect of an AMOC tipping on the 
GIS via cooling of the northern hemisphere (Jackson et al., 2015) was not included, as our model has no atmos-
pheric component. This represents a potentially strong negative feedback which may result in a safe overshoot 
of the GIS tipping point (Ritchie et al., 2021). Also, the mutually destabilizing effect of sea level rise (Gomez 
et al., 2010) on both ice sheets has been neglected, and is far more destabilizing for the WAIS than the GIS 
(Wunderling et al., 2021). In our model, both of those feedbacks would most probably inhibit the AMOC desta-
bilization further, which makes it an interesting track to explore in future research.

In conclusion, the stability of the climate system, and in particular of the AMOC, is drastically changed when 
considering interactions between the tipping elements in agreement with the more abstract results of Wunderling 
et al. (2021). We emphasized here the consequences of a potentially stabilizing effect of a WAIS tipping on the 
AMOC in the presence of a tipping GIS, which could have important consequences on the other tipping elements 
and, by extension, on the climate system as a whole. Hence, while the collapse of the WAIS will always be a 
dramatic event, it might prevent a larger-scale cascading tipping event to happen. This stresses the importance of 
getting a better understanding of the interaction between the WAIS and the AMOC and to include the effects of 
interacting tipping elements in future climate change projections.

Data Availability Statement
All MATLAB codes are publicly available (Sinet, 2022), at the address: https://doi.org/10.5281/zenodo.6800055, 
including a short manual.
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