
Computational Geometry: Theory and Applications 109 (2023) 101923
Contents lists available at ScienceDirect

Computational Geometry: Theory and 

Applications
www.elsevier.com/locate/comgeo

Computing the Fréchet distance between uncertain curves in 

one dimension ✩

Kevin Buchin a, Maarten Löffler c,1, Tim Ophelders b,c, Aleksandr Popov b,∗,2, 
Jérôme Urhausen c,3, Kevin Verbeek b

a TU Dortmund, Otto-Hahn-Str. 14, 44221, Dortmund, Germany
b TU Eindhoven, Postbus 513, 5600 MB, Eindhoven, the Netherlands
c Utrecht University, Postbus 80125, 3508 TC, Utrecht, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 August 2021
Received in revised form 29 April 2022
Accepted 3 August 2022
Available online 11 August 2022

Keywords:
Curves
Uncertainty
Fréchet distance
Hardness
Weak Fréchet distance

We consider the problem of computing the Fréchet distance between two curves for which 
the exact locations of the vertices are unknown. Each vertex may be placed in a given 
uncertainty region for that vertex, and the objective is to place vertices so as to minimise 
the Fréchet distance. This problem was recently shown to be NP-hard in 2D, and it is 
unclear how to compute an optimal vertex placement at all.
We present the first general algorithmic framework for this problem. We prove that it 
results in a polynomial-time algorithm for curves in 1D with intervals as uncertainty 
regions. In contrast, we show that the problem is NP-hard in 1D in the case that vertices 
are placed to maximise the Fréchet distance.
We also study the weak Fréchet distance between uncertain curves. While finding the 
optimal placement of vertices seems more difficult than the regular Fréchet distance—and 
indeed we can easily prove that the problem is NP-hard in 2D—the optimal placement of 
vertices in 1D can be computed in polynomial time. Finally, we investigate the discrete 
weak Fréchet distance, for which, somewhat surprisingly, the problem is NP-hard already 
in 1D.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Fréchet distance is a popular distance measure for curves. Its computational complexity has drawn considerable 
attention in computational geometry [1–7]. The Fréchet distance between two (polygonal) curves is often illustrated using 
a person and a dog: imagine a person is walking along one curve, having the dog, which walks on the other curve, on a 
leash. The person and the dog may change their speed independently but may not walk backwards. The Fréchet distance 

✩ Research on the topic of this paper was initiated at the 5th Workshop on Applied Geometric Algorithms (AGA 2020) in Langbroek, the Netherlands.

* Corresponding author.
E-mail addresses: kevin.buchin@tu-dortmund.de (K. Buchin), m.loffler@uu.nl (M. Löffler), t.a.e.ophelders@uu.nl (T. Ophelders), a.popov@tue.nl (A. Popov), 

j.e.urhausen@uu.nl (J. Urhausen), k.a.b.verbeek@tue.nl (K. Verbeek).
URLs: https://ls11-www.cs.tu-dortmund.de/staff/buchin/ (K. Buchin), https://webspace.science.uu.nl/~loffl001/ (M. Löffler), 

https://www.win.tue.nl/~tophelde/ (T. Ophelders), https://www.win.tue.nl/~apopov/ (A. Popov), https://www.win.tue.nl/~kverbeek/ (K. Verbeek).
1 Partially supported by the Dutch Research Council (NWO) under project no. 614.001.504.
2 Supported by the Dutch Research Council (NWO) under project no. 612.001.801.
3 Supported by the Dutch Research Council (NWO) under project no. 612.001.651.
https://doi.org/10.1016/j.comgeo.2022.101923
0925-7721/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.comgeo.2022.101923
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2022.101923&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:kevin.buchin@tu-dortmund.de
mailto:m.loffler@uu.nl
mailto:t.a.e.ophelders@uu.nl
mailto:a.popov@tue.nl
mailto:j.e.urhausen@uu.nl
mailto:k.a.b.verbeek@tue.nl
https://ls11-www.cs.tu-dortmund.de/staff/buchin/
https://webspace.science.uu.nl/~loffl001/
https://www.win.tue.nl/~tophelde/
https://www.win.tue.nl/~apopov/
https://www.win.tue.nl/~kverbeek/
https://doi.org/10.1016/j.comgeo.2022.101923
http://creativecommons.org/licenses/by/4.0/


K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
Table 1
Complexity results for the lower bound problems for uncertain curves.

Fréchet distance Weak Fréchet distance

discrete continuous discrete continuous

1D polynomial [24] polynomial NP-hard polynomial
2D polynomial [24] NP-hard [25] NP-hard NP-hard

corresponds to the minimum leash length needed so that the person and the dog can walk from start to end on their 
respective curve.

The Fréchet distance and its variants have found many applications, for instance, in the context of protein alignment [8], 
handwriting recognition [9], map matching [10] and construction [11,12], and trajectory similarity and clustering [13,14]. In 
most applications, we obtain the curves by a sequence of measurements, and these are inherently imprecise. However, it is 
often reasonable to assume that the true location is within a certain radius of the measurement, or more generally that it 
stays within an uncertainty region.

Re-imagine the person and the dog, except now each is given a sequence of regions they have to visit. More specifically, 
they need to visit one location per region and move along a straight line between locations without going backwards. Then 
minimising the leash length corresponds to the following problem. Each curve is given as a sequence of uncertainty regions; 
minimise the Fréchet distance over all the possible choices of locations in the regions. This is called the lower bound problem 
for the Fréchet distance between uncertain curves.

Similar problems involving uncertainty have drawn more and more attention in the past few years in computational 
geometry. Most results are on uncertain point sets, where we often aim to minimise or maximise some quantity stemming 
from the point set, but also perform visibility queries in polygons or find Delaunay triangulations [15–23]. More recently 
there have also been several results on curves with uncertainty [24–27].

The earliest results for a variant of the problem we consider do not concern the Fréchet distance as such, but its variant 
the discrete Fréchet distance, where we restrict our attention to the vertices of the curves. Ahn et al. [24] give a polynomial-
time algorithm that decides whether the lower bound discrete Fréchet distance is below a certain threshold, for two curves 
with uncertainty regions modelled as circles in constant dimension. The lower bound Fréchet distance with uncertainty 
regions modelled as point sets admits a simple dynamic program [25]. However, as recently shown, the decision problem 
for the continuous Fréchet distance is NP-hard already in two dimensions with vertical line segments as uncertainty regions 
and one precise and one uncertain curve [25]; it is not clear how to compute the lower bound at all with any uncertainty 
model that is not discrete. With the 2D problem being NP-hard, we turn our attention to one-dimensional curves. We 
present an efficient algorithm for computing the lower bound Fréchet distance with imprecision modelled as intervals. We 
further generalise this to a framework applicable in higher dimensions and restricted settings; it may not give polynomial-
time solutions in many settings.

Next to the discrete Fréchet distance, the most common variant of the Fréchet distance is the weak Fréchet distance [2]. 
In the person–dog analogy, this variant allows backtracking on the paths. The weak Fréchet distance (for precise curves) 
has interesting properties in 1D [7,28,29]: it can be computed in linear time in 1D, while in 2D it cannot be computed 
significantly faster than quadratic time under the strong exponential-time hypothesis. To our knowledge, the weak Fréchet 
distance has not been studied in the uncertain setting before. We give a polynomial-time algorithm that solves the lower 
bound problem in 1D. In contrast to that, we show that the problem is NP-hard in 2D, and that discrete weak Fréchet 
distance is NP-hard already in 1D. We summarise these results in Table 1.

The table provides an interesting insight. First of all, it appears that for continuous distances the dimension matters, 
whereas for the discrete ones the results are the same both in 1D and 2D. Moreover, it may be surprising that discretising 
the problem has a different effect: for the Fréchet distance it makes it easier, while for the weak Fréchet distance the 
problem becomes harder. We discuss the polynomial-time algorithm for the Fréchet distance in 1D in Section 4. We give 
the algorithm for the weak Fréchet distance in 1D in Section 6.1 and show NP-hardness for the weak (discrete) Fréchet 
distance in Section 6.2.

Finally, we also turn our attention to the problem of maximising the Fréchet distance, or finding the upper bound. It 
has been shown that the problem is NP-hard in 2D for several uncertainty models, including discrete point sets, both for 
the discrete and the continuous Fréchet distance [25]. We strengthen that result by presenting a similar construction that 
already shows NP-hardness in 1D. The proof is given in Section 5.

2. Preliminaries

Denote [n] ≡ {1, 2, . . . , n}. Consider a sequence of points π = 〈p1, p2, . . . , pn〉. We also use π to denote a polygonal 
curve, defined by the sequence by linearly interpolating between the points and can be seen as a continuous function: 
π(i + α) = (1 − α)pi + αpi+1 for i ∈ [n − 1] and α ∈ [0, 1]. The length of such a curve is the number of its vertices, |π | = n. 
Denote the concatenation of two sequences π and σ by π � σ . We can generalise this notation:

π ≡� pi = p1 � p2 � . . . � pn .

i∈[n]

2



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
Denote a subcurve from vertex i to j of π by π [i : j] = 〈pi, pi+1, . . . , p j〉. Occasionally we use the notation 〈π(i) | i ∈ I〉n
i=1

to denote a curve built on a subsequence of vertices of π , where vertices are only taken if they are in set I . For example, 
setting I = {1, 3, 4}, n = 5, π = 〈p1, p2, . . . , p5〉 means 〈π(i) | i ∈ I〉n

i=1 = 〈p1, p3, p4〉.
Denote the Fréchet distance between two polygonal curves π and σ by dF(π, σ), the discrete Fréchet distance by 

ddF(π, σ), and the weak Fréchet distance by dwF(π, σ). Recall the definition of Fréchet distance for polygonal curves of 
lengths m and n. It is based on parametrisations (non-decreasing surjections) α and β with α : [0, 1] → [1, m], β : [0, 1] →
[1, n]. A pair of parametrisations establish a matching μ = (α, β), so that π ◦ α(t) is matched to σ ◦ β(t) for any t ∈ [0, 1]. 
Denote the cost of a matching μ = (α, β) as costμ(π, σ) = maxt∈[0,1]‖π ◦ α(t) − σ ◦ β(t)‖. Then we can define Fréchet 
distance and its variants as

dF(π,σ ) = inf
matching μ

costμ(π,σ ) , dF(π,σ ) = inf
discrete matching μ

costμ(π,σ ) ,

dwF(π,σ ) = inf
weak matching μ

costμ(π,σ ) .

The discrete matching is restricted to vertices, and the weak matching is not a pair of parametrisations, but a path 
(α, β) : [0, 1]2 → [1, m] × [1, n], with α(0) = 1, α(1) = m and β(0) = 1, β(1) = n. In the person–dog analogy for the Fréchet 
distance, the best choice of parametrisations means that the person and the dog choose the best speed, and the leash length 
is then the largest needed leash length during the walk.

To decide whether the Fréchet distance is below some threshold δ > 0, Alt and Godau [2] define a free-space diagram.
It is a two-dimensional diagram on [1, m] × [1, n], where each point (x, y) corresponds to the pair (π(x), σ(y)). The point 
(x, y) is free if and only if ‖π(x) − σ(y)‖ ≤ δ. The free space is the collection of all the free points. We use a non-standard 
variation of this technique in Sections 3 and 4, where the diagram is in Rd ×Rd for two curves in Rd .

An uncertain point in one dimension is a set of real numbers u ⊆ R. The intuition is that only one point from this set 
represents the true location of the point; however, we do not know which one. A realisation p of such a point is one of 
the points from u. In this paper, we consider two special cases of uncertain points. An indecisive point is a finite set of 
numbers u = {x1, . . . , x�}. An imprecise point is a closed interval u = [x1, x2]. Note that a precise point is a special case of 
both indecisive and imprecise points.

Define an uncertain curve as a sequence of uncertain points U = 〈u1, . . . , un〉. A realisation π � U of an uncertain curve 
is a polygonal curve π = 〈p1, . . . , pn〉, where each pi is a realisation of the uncertain point ui . For uncertain curves U and 
V , define the lower bound and upper bound Fréchet distance. The discrete and weak Fréchet distance are defined similarly.

d min
F (U,V) = min

π�U,σ�V
dF(π,σ ) , d max

F (U,V) = max
π�U,σ�V

dF(π,σ ) .

3. Lower bound Fréchet distance: general approach

In this section, we consider the following decision problem.

Problem 1. Given two uncertain curves U = 〈u1, . . . , um〉 and V = 〈v1, . . . , vn〉 in Y = Rd for some d, m, n ∈ N+ and a 
threshold δ > 0, decide if d min

F (U , V) ≤ δ.

Note that this problem formulation is general both in terms of the shape of uncertainty regions and the dimension of 
the problem. We propose an algorithmic framework that solves this problem. As shown previously [25], the problem is 
NP-hard in 2D for vertical line segments as uncertainty regions, but admits a simple dynamic program for indecisive points 
in 2D. So, in many uncertainty models, especially in higher dimensions, the following approach will not result in an efficient 
algorithm. However, our approach is general in that it can be instantiated in restricted settings, e.g. in 2D assuming that 
the segments of the curves can only be horizontal or vertical. The inherent complexity of the problem appears to be related 
to the number of directions to consider, with the infinite number in 2D without restrictions and two directions in 1D. We 
conjecture that in this restricted setting the approach yields a polynomial-time algorithm; verifying this and making a more 
general statement delineating the hardness of restricted settings are both interesting open problems. Our approach shows a 
straightforward way to engineer an algorithm for various restricted settings in arbitrary dimension, but we cannot make any 
statements about its efficiency in most settings. To illustrate the approach, we instantiate it in 1D and analyse its efficiency 
in Section 4. The interested reader might refer to that section for a more intuitive explanation of the approach.

First we introduce some extra notation. Recall Y =Rd . For i ∈ [m], denote Ui = 〈u1, . . . , ui〉 and U∗
i = 〈u1, . . . , ui, Y 〉. We 

call Ui and U∗
i the subcurve and the free subcurve of U at i, respectively. Intuitively, a realisation of U∗

i extends a realisation 
of Ui by a single edge whose final vertex position is unrestricted. Let S := Sd−1 be the unit (d − 1)-sphere. Denote the 
direction of the i-th edge π [i : i + 1] of a realisation π by di(π) ⊆ S . For example, in 1D there are only two options, in 2D 
the directions can be picked from a unit circle, in 3D from a unit sphere, etc. In the degenerate case where the edge has 
length 0 (or π has no i-th edge), let di(π) = S .

We want to find realisations π � U and σ � V such that π and σ have Fréchet distance at most δ. Call such a pair 
(π, σ) a δ-realisation of (U , V). Intuitively, we want to create a dynamic program on the two curves that keeps track of the 
3



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
Ri, j Ri+1, j

Ri, j+1 Ri+1, j+1

Ri∗, j

Ri∗, j+1

Ri, j∗ Ri+1, j∗Ri∗, j∗

(a) The sets on a cell of a regular free-space diagram.

Ri∗, j+1 Ri+1, j+1

Ri, j∗ Ri∗, j∗ Ri+1, j∗

Ri, j Ri∗, j

(b) Dependencies of the dynamic program. a → b means that a de-
pends on b.

Fig. 1. Illustration for the dynamic program of Lemma 2.

possible realisations of the current uncertain points and the allowed edge directions to extend the prefix curves, so that the 
entire prefix curves have the Fréchet distance at most δ. Recall that two polygonal curves π : [1, i] → Y and σ : [1, j] → Y
have Fréchet distance dF(π, σ) at most δ if and only if there exist parametrisations (non-decreasing surjections) α : [0, 1] →
[1, i] and β : [0, 1] → [1, j] such that the path (π ◦ α, σ ◦ β) lies in the δ-free space, defined as Fδ = {(p, q) ∈ Y × Y |
‖p −q‖ ≤ δ}. For δ-close (free) subcurves of U at i and V at j, we capture their pairs of endpoints and final directions using 
Ri, j, Ri, j∗ , Ri∗, j, Ri∗, j∗ ⊆ Y × Y × S × S:

Ri, j = {(π(i) ,σ ( j) , s, t) | π � Ui ,σ � V j , s ∈ di(π), t ∈ d j(σ ),dF(π,σ ) ≤ δ},
Ri, j∗ = {(π(i) ,σ ( j + 1), s, t) | π � Ui ,σ � V∗

j , s ∈ di(π), t ∈ d j(σ ),dF(π,σ ) ≤ δ},
Ri∗, j = {(π(i + 1),σ ( j) , s, t) | π � U∗

i ,σ � V j , s ∈ di(π), t ∈ d j(σ ),dF(π,σ ) ≤ δ},
Ri∗, j∗ = {(π(i + 1),σ ( j + 1), s, t) | π � U∗

i ,σ � V∗
j , s ∈ di(π), t ∈ d j(σ ),dF(π,σ ) ≤ δ}.

Note that for π � Ui , i is the final vertex, so di(π) = S . Therefore, Ri, j captures the reachable subset of Y × Y for the 
realisations of the last points of the prefixes, and the two other dimensions contain all points from S to capture that we 
may proceed in any allowed direction. The reachable subset of Y ×Y here refers to the subset of Y ×Y where the realisations 
of the last points may be, taking into account the entire prefixes of the curves. The set Ri∗, j captures the reachable subset 
of Y × Y for the point in the parametrisation where we are between vertices i and i + 1 on U and at j on V ; we have 
not restricted the range to ui+1 yet. The allowed directions for parameter s now depend on how we reached this point in 
the parametrisation, since segments connecting realisations are straight line segments, and the direction needs to be kept 
consistent once chosen. From this description the reader can deduce what the other sets capture by symmetry. See also 
Fig. 1a, where the sets are positioned as in a regular free-space diagram, replacing the edges, vertices, and cells.

To solve the decision problem, we must decide whether Rm,n is non-empty. If so, then there are realisations of Um ≡ U
and Vn ≡ V that, after placing all the previous realisations, result in curves with the Fréchet distance at most δ. We compute 
R·,· using dynamic programming. We illustrate the propagation dependencies in Fig. 1b and make them explicit in Lemma 2.

Lemma 2. Let �(A) := {(p + λs, q + μt, s, t) | (p, q, s, t) ∈ A and λ, μ ≥ 0}. We have

R·,0 = R0,· = ∅ ,

Ri+1, j∗ = {(p,q, s, t) ∈ ui+1 × Y × S × S | (p,q, ·, t) ∈ Ri∗, j∗ } ,

Ri∗, j+1 = {(p,q, s, t) ∈ Y × v j+1 × S × S | (p,q, s, ·) ∈ Ri∗, j∗ } ,

Ri+1, j+1 = {(p,q, s, t) ∈ ui+1 × v j+1 × S × S | (p,q, ·, ·) ∈ Ri∗, j∗ } ,

R0∗,0∗ = Fδ × S × S ,

Ri∗, j∗ = (Fδ × S × S) ∩ �(Ri, j ∪Ri∗, j ∪Ri, j∗) for i > 0 or j > 0.

Proof. The first equation holds because the empty function has no parametrisation, so the Fréchet distance of any pair of 
realisations is infinite. The equation for Ri+1, j∗ holds because for π � Ui+1, di+1(π) = S , and the only additional constraint 
that a realisation of Ui+1 has over one of U∗

i is that the final vertex lies in ui+1. Using symmetric properties on V , we obtain 
the equations for Ri∗, j+1 and Ri+1, j+1. The equation for R0∗,0∗ concerns curves π and σ consisting of a single vertex, so 
d0(π) = d0(σ ) = S , and dF(π, σ) ≤ δ if and only if (π(1), σ(1)) ∈ Fδ . The equation for Ri∗, j∗ remains. First we show that 
4



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
Pr1,2,3(Ri∗, j+1) Pr1,2(Ri+1, j+1)

Pr1,2,4(Ri, j∗ ) Ri∗, j∗ Pr1,2,4(Ri+1, j∗ )

Pr1,2(Ri, j) Pr1,2,3(Ri∗, j)

Fig. 2. Simplified dependencies with projections as follows from Lemma 2.

the right-hand side is contained in Ri∗, j∗ . Suppose that π and σ form a witness for (p, q, s, t) ∈ Ri, j ∪ Ri∗, j ∪ Ri, j∗ . We 
obtain realisations π∗ � U∗

i and σ ∗ � V∗
j by extending the last edge of π and σ in the direction it is already going (or 

adding a new edge in an arbitrary direction if π � Ui or σ � V j), to (p + λs, q + μt). If (p + λs, q + μt) ∈ Fδ , then, by 
convexity of Fδ , the extensions of the last edges have Fréchet distance at most δ (since the points at which the extension 
starts have distance at most δ), so (p + λs, q + μt, s, t) ∈ Ri∗, j∗ . Conversely, we show that the right-hand side contains 
Ri∗, j∗ . Let π∗ � U∗

i and σ ∗ � V∗
j together with parametrisations α : [0, 1] → [1, i + 1] and β : [0, 1] → [1, j + 1] form a 

witness that (p, q, s, t) ∈Ri∗, j∗ . Then, for any x ∈ [0, 1], the restrictions πx of π∗ and σx of σ ∗ to the domains [1, α(x)] and 
[1, β(x)] have Fréchet distance at most δ. Because α and β are non-decreasing surjections, whenever i > 0 or j > 0, there 
exists some x such that

1. α(x) = i and β(x) = j, in which case πx � Ui and σx � V j , or
2. α(x) > i and β(x) = j, in which case πx � U∗

i and σx � V j , or
3. α(x) = i and β(x) > j, in which case πx � Ui and σx � V∗

j .

Note that if i = 0, only the second case applies, and if j = 0, only the third case applies. In each case, the last edge of π∗
and σ ∗ extends the i-th and j-th edge of πx and σx , respectively. So (πx, σx) forms a witness that (p, q, s, t) is contained 
in the right-hand side. �
Simplifying the approach. Due to their dimension, the sets above can be impractical to work with. However, for the major-
ity of these sets, at least one of the factors S carries no additional information, as formulated below. Denote by Prc the 
projection map of the c-th component, so that Pr1 : (p, q, s, t) �→ p, and in general Prc1,...,ck (x) = (Prc1 (x), . . . , Prck (x)). The 
equations of Lemma 2 imply the equivalences

(p,q, s, t) ∈ Ri, j ⇐⇒ (p,q) ∈ Pr1,2(Ri, j) ,

(p,q, s, t) ∈ Ri∗, j ⇐⇒ (p,q, s) ∈ Pr1,2,3(Ri∗, j) ,

(p,q, s, t) ∈ Ri, j∗ ⇐⇒ (p,q, t) ∈ Pr1,2,4(Ri, j∗) .

Consequently, to find Ri, j , Ri∗, j , and Ri, j∗ , it suffices to compute the projections above. This simplifies the prior depen-
dencies as shown in Fig. 2.

Pr1,2(Ri+1, j+1) = (ui+1 × v j+1) ∩ Pr1,2(Ri∗, j∗)

= (ui+1 × Y ) ∩ Pr1,2(Ri∗, j+1)

= ( Y × v j+1) ∩ Pr1,2(Ri+1, j∗) .

Instantiating the approach. The dynamic program of Lemma 2 can naturally be adapted to constrained realisations whose 
edge directions are to be drawn from a subset S ′ ⊆ Sd−1, by replacing S by S ′ , so the framework can be used for restricted 
settings in 2D. For S = Sd−1 the complexity of Ri, j can be exponential, so it can be useful to restrict the problem.

We can look at the construction used to prove NP-hardness of the problem in 2D [25] as an example for our approach. 
There the curve V is precise, so each v j is a single point and each t is predetermined, and curve U consists of uncertainty 
regions that are vertical line segments, so each ui has a fixed x-coordinate and a range of y-coordinates. If we now exclude 
the fixed values from our propagation, we get to track pairs (y, s) of the feasible y-coordinates on the current interval and 
the directions. We start with a single region. The hardness construction uses gadgets on the precise curve to force the un-
certain curve to go through certain points. In our approach, this means that we keep restricting the set of feasible directions 
while passing by vertices on V , and eventually each point in the starting region gives rise to two disjoint reachable points on 
one of the following uncertainty regions. So we can use our algorithm to correctly track the feasible y-coordinates through 
the construction; however, we would need to keep track of regions of exponential complexity, which is, predictably, inef-
ficient. Therefore, it is important to analyse the complexity of the propagated regions to determine whether our approach 
gives rise to an efficient algorithm. To illustrate our approach, we use it in the 1D case to devise an efficient algorithm in 
Section 4.
5



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
4. Lower bound Fréchet distance: one dimension

In this section we instantiate the approach of Section 3 in 1D and analyse its efficiency. We first show the formal 
definitions that result from this process, and then give some intuition for how the resulting algorithm works in 1D.

In our case, S = S0, so there are only two directions: positive x-direction and negative x-direction. We make use of the 
projections interpretation and split the projections into two regions based on the value of the relevant direction; then all 
the regions we maintain are in R2 and have a geometric interpretation as feasible combinations of realisations of the last 
uncertain points on the prefixes of the curves. We omit Ri, j from our computations except for checking whether Rm,n is 
non-empty. As follows from the definition of the sets, Ri, j ⊆Ri∗, j and Ri, j ⊆Ri, j∗ , so we can simplify the computation of 
Ri∗, j∗ , and then we do not need the explicit computation of Ri, j . Furthermore, we do not compute any of Ri∗, j∗ explicitly, 
opting instead to substitute them into the relevant expressions. Therefore, we maintain the sets Ri, j∗ and Ri∗, j , splitting 
each into two based on the relevant direction. Based on our earlier free space cell interpretation (see Fig. 1a), call the 
directions along U right and left and call the directions along V up and down. We then have the following mapping from 
the regions of Section 3 to the simpler intuitive regions of this section.

Ui, j = {(p,q) | (p,q, ·, t) ∈ Ri, j∗ ∧ t = 1} ,

Di, j = {(p,q) | (p,q, ·, t) ∈ Ri, j∗ ∧ t = −1} ,

Ri, j = {(p,q) | (p,q, s, ·) ∈ Ri∗, j ∧ s = 1} ,

Li, j = {(p,q) | (p,q, s, ·) ∈ Ri∗, j ∧ s = −1} .

It is also easier to express the � operator of Lemma 2 in this setting. Depending on which of the directions we consider 
fixed because we already committed to a direction, the propagation through the cell interior works by adding either a 
quadrant or a half-plane to every point in the starting region; we can denote this with a Minkowski sum. Based on these 
considerations, we give the following simplified definition.

Formal definition. Denote R≤0 = {x ∈R | x ≤ 0} and R≥0 = {x ∈R | x ≥ 0}. Consider the space R ×R of the coordinates of 
the two curves in 1D. We are interested in what is feasible within the interval free space, which in this space turns out to be 
a band around the line y = x of width 2δ in L1-distance called Fδ . For notational convenience, define the following regions 
(see Fig. 3):

Fδ = {(x, y) ∈R2 | |x − y| ≤ δ} , Ii = (ui ×R) ∩Fδ , J j = (R× v j) ∩Fδ .

We use dynamic programming, similarly to the standard free-space diagram for the Fréchet distance; however, we propagate 
reachable subsets of uncertainty regions on the two curves. The propagation in the interval-free-space diagram consists of 
starting anywhere within the current region and going in restricted directions, since we need to distinguish between going 
in the positive and the negative x-direction along both curves. We introduce the notation for restricting the directions in 
the form of quadrants, half-planes, and slabs:

Q LD = R≤0 ×R≤0 , Q LU = R≤0 ×R≥0 , Q R D = R≥0 ×R≤0 , Q RU = R≥0 ×R≥0 ,

H L =R≤0 ×R , H R =R≥0 ×R , H D =R×R≤0 , HU =R×R≥0 .

SL = R≤0 × {0} , S R =R≥0 × {0} , S D = {0} ×R≤0 , SU = {0} ×R≥0 .

We introduce notation for propagating in these directions from a region by taking the appropriate Minkowski sum, denoted 
with ⊕. For a, b ∈ {L, R, U , D} and a region X ,

Xa = X ⊕ Ha , Xab = X ⊕ Q ab , Xa0 = X ⊕ Sa .

Now we can discuss the propagation. We start with the base case, where we compute the feasible combinations for the 
boundaries of the cells of a regular free-space diagram corresponding to the first vertex on one of the curves. For the sake 
of better intuition we do not use (0, 0) as the base case here. So, we fix our position to the first vertex on U and see how 
far we can go along V ; and the other way around. As we are bound to the same vertex on U , as we go along V , we keep 
restricting the feasible realisations of u1. Thus, we cut off unreachable parts of the interval as we propagate along the other 
curve. We do not care about the direction we were going in after we cross a vertex on the curve where we move. So, if 
we stay at u1 and we cross over v j , then we are free to go both in the negative and the positive direction of the x-axis to 
reach a realisation of v j+1. We get the following expressions, where Ui, j denotes the propagation upwards from the pair of 
vertices ui and v j and propagation down, left, and right is defined similarly:
6



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
Fig. 3. On the left, the filled region is Ii = (ui ×R) ∩Fδ for ui = [0, 1]. On the right, the filled region is J j = (R × v j) ∩Fδ for v j = [0.5, 1.5]. In both cases 
δ = 1.

Fig. 4. An interval-free-space diagram for ui = [0, 1], v j = [−1.5,−0.2], and v j+1 = [1.5,2] with δ = 1. Note that the feasible realisations for ui are [0.5, 0.8].

U1,1 = (I1 ∩ J1)
U 0 ∩Fδ , D1,1 = (I1 ∩ J1)

D0 ∩Fδ ,

R1,1 = (I1 ∩ J1)
R0 ∩Fδ , L1,1 = (I1 ∩ J1)

L0 ∩Fδ ,

U1, j+1 = ((U1, j ∪ D1, j) ∩ J j+1)
U 0 ∩Fδ , D1, j+1 = ((U1, j ∪ D1, j) ∩ J j+1)

D0 ∩Fδ ,

Ri+1,1 = ((Ri,1 ∪ Li,1) ∩ Ii+1)
R0 ∩Fδ , Li+1,1 = ((Ri,1 ∪ Li,1) ∩ Ii+1)

L0 ∩Fδ .

Once the boundary regions are computed, we can proceed with propagation:

Ui+1, j = (U U
i, j ∪ R RU

i, j ∪ LLU
i, j ) ∩ Ii+1 , Di+1, j = (D D

i, j ∪ R R D
i, j ∪ LLD

i, j ) ∩ Ii+1 ,

Ri, j+1 = (R R
i, j ∪ U RU

i, j ∪ D R D
i, j ) ∩ J j+1 , Li, j+1 = (LL

i, j ∪ U LU
i, j ∪ D LD

i, j ) ∩ J j+1 .

To solve the decision problem, we check if the last vertex combination is feasible:

((Rm−1,n ∪ Lm−1,n) ∩ Im) ∪ ((Um,n−1 ∪ Dm,n−1) ∩ Jn) �= ∅ .

Intuition. If the consecutive regions are always disjoint, we do not need to consider the possible directions: we always 
know (in 1D) where the next region is, and thus what direction we take. However, if the regions may overlap, it may be 
that for different realisations of a curve a segment goes in the positive or in the negative direction. The propagation we 
compute is based on the parameter space where we look at whether we have reached a certain vertex on each curve yet, 
inspired by the traditional free-space diagram. It may be that we pass by several vertices on, say, V while moving along a 
single segment on U . The direction we choose on U needs to be kept consistent as we compute the next regions, otherwise 
we might include realisations that are invalid as feasible solutions. Therefore, we need to keep track of the chosen direction, 
reflected by the pair (s, t) in the general approach and the separate sets in this section. Otherwise, these regions in 1D are 
simply the feasible pairs of realisations of the last vertices on the prefixes of the curves.

It is helpful to think of the approach in terms of interval-free-space diagrams. Consider a combination of specific vertices 
on the two curves, say, ui and v j , and suppose that we want to stay at ui but move to v j+1. Which realisations of ui , v j , 
and v j+1 can we pick that allow this move to stay within the 2δ-band?

Suppose the x-coordinate of the diagram corresponds to the x-coordinate of U . Then we may pick a realisation for 
ui anywhere in the vertical slab corresponding to the uncertainty interval for ui , namely, in the slab ui × R. The fixed 
realisation for ui would then yield a vertical line. Now suppose the y-coordinate of the diagram corresponds to the x-
coordinate of V . For v j , picking a realisation corresponds to picking a horizontal line from the slab R × v j ; for v j+1, it 
corresponds to picking a horizontal line from R × v j+1. Picking a realisation for the pair (ui, v j) thus corresponds to a 
point in ui × v j .
7



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
Fig. 5. An example simple region. We get less general ones by setting any side length to 0.

Of course, we may only maintain the matching as long the distance between the matched points is at most δ. For a fixed 
point on U , this corresponds to a 2δ window for the coordinates along V . Therefore, the allowed matchings are contained 
within the band defined by y = x ± δ, and when we pick the realisations for (ui , v j), we only pick points from ui × v j for 
which |y − x| ≤ δ holds.

As we consider the propagation to v j+1, note that we may not move within ui , so the allowed realisations for the pair 
(ui, v j+1) are limited. In particular, we can find that region by taking the subset of ui × v j+1 for which |y − x| ≤ δ holds 
and restricting the x-coordinate further to be feasible for the pair (ui, v j). See Fig. 4 for an illustration of this. In this figure, 
we know that v j+1 lies above v j ; if we did not know that, we would have to attempt propagation both upwards and 
downwards. For the second curve, the same holds.

Complexity. We now discuss the complexity of the regions we are propagating to analyse the efficiency of the algorithm 
presented above. We will perform the following steps:

1. Define complexity of the regions and establish the complexity of the base case.
2. Study the possible complex regions that can arise from all simple regions.
3. Study what happens to the complex regions as we propagate and conclude that the complexity is bounded by a con-

stant.

The boundaries of the regions are always horizontal, vertical, or coincide with the boundaries of Fδ . A region can be thus 
represented as a union of (possibly unbounded) axis-aligned rectangular regions, further intersected with the interval free 
space. We define the complexity of a region as the minimal required number of such rectangular regions. Define a simple
region as a region of complexity at most 1. Observe that a simple region is necessarily convex; and a non-simple region 
has to be non-convex. The illustration in Fig. 5 shows the most general example of a simple region. An empty region is also 
a simple region. To enumerate the possible non-simple regions, we need to examine where higher region complexity may 
come from in our algorithm. To that aim, we first prove some simple statements about the propagation procedure.

First, we discuss the complexity of the regions we can get in the base case of the propagation.

Lemma 3. For all i ∈ [m − 1] and j ∈ [n − 1], regions U1, j , D1, j , Ri,1 , and Li,1 are simple.

Proof. Consider first the intersection I1 ∩ J1. It is the intersection of a vertical slab, a horizontal slab, and the diagonal slab 
(interval free space). All three are convex sets, hence their intersection is also convex and uses only vertical, horizontal, and 
diagonal line segments, so the result is a simple region. To obtain U1,1, D1,1, R1,1, and L1,1, we take the Minkowski sum 
of the region with the corresponding half-slab. Both are convex, so the result again is convex; we then intersect it with the 
interval free space again, getting a simple region.

Now assume that U1, j is simple; we show that U1, j+1 is simple. Note that for some region X , U1, j = X U 0 ∩ Fδ and 
D1, j = X D0 ∩Fδ . Then

U1, j ∪ D1, j = (X U 0 ∪ X D0) ∩Fδ = (X ⊕ ({0} ×R)) ∩Fδ .

So, we get a vertical slab the width of X , intersected with Fδ , so the result is convex. We then intersect the region with the 
simple region J j+1; take Minkowski sum with a slab; and again intersect with the interval free space. Clearly, the result is 
convex and uses only the allowed boundaries, so we get a simple region.
8



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
Fig. 6. Propagation of Ui, j′ to Li, j and Ri, j . Note J j ⊂ Fδ . Observe that U LU
i, j′ ∩ U RU

i, j′ = U U 0
i, j′ , and if U U 0

i, j′ ∩ J j = ∅ but J j does not lie below Ui, j′ , then 
U LU

i, j′ ∩ J j = ∅ and U RU
i, j′ ∩ J j = J j , so one of the regions is empty and the other covers the entire feasible region.

The argument for D1, j is symmetric; the arguments for Ri,1 and Li,1 are equally straightforward. Hence, all the regions 
we get in the base case are simple. �

To proceed, we need to make the relation in pairs (U , D) and (R, L) clear, so we know where the complexity may come 
from. Denote a half-plane with a vertical or horizontal boundary starting at coordinate s and going in direction X by H X

s . 
For example, a half-plane bounded on the left by the line x = 2 is denoted H R

2 .

Lemma 4. Take two imprecise curves U and V of lengths m and n, respectively, and let i ∈ [m − 1] and j ∈ [n − 1]. Consider the pair 
Ri, j , Li, j and assume the regions are simple. Then exactly one of the following options holds:

1. Ri, j = Li, j = ∅, so both regions are empty;
2. Ri, j = J j ∩ H R

s �= ∅ ∧ Li, j = ∅ for some s, so one region is empty and the other spawns the entire feasible range, except that it 
may be cut with a vertical line on the left;

3. Li, j = J j ∩ H L
s �= ∅ ∧ Ri, j = ∅ for some s, so one region is empty and the other spawns the entire feasible range, except that it may 

be cut with a vertical line on the right;
4. Li, j ∩ Ri, j �= ∅, so both regions are non-empty, and they intersect.

We can make the same statement for the pair Ui, j , Di, j , replacing the half-planes with HU
s and H D

s .

Proof. We show the statement for the pair Ri, j , Li, j . We prove the statement by induction on j. First of all, for j = 1 we 
know that either both regions are empty (case 1), or they are both non-empty and intersect (case 4), showing the claim. So 
let j = j′ + 1 for the rest of the proof and assume that the lemma holds for the pair Ri, j′ , Li, j′ .

We go over the possible combinations of the previous regions that are combined in the propagation and show that for 
any such combination we end up in one of the cases. Recall that Ri, j = Ri, j′+1 = (R R

i, j′ ∪ U RU
i, j′ ∪ D R D

i, j′ ) ∩ J j′+1. Similarly, 
Li, j = (LL

i, j′ ∪ U LU
i, j′ ∪ D LD

i, j′ ) ∩ J j′+1. Consider the following cases:

• Ui, j′ �= ∅. Note that U LU
i, j′ ∩ U RU

i, j′ = U U 0
i, j′ , so a vertical half-slab from a lower boundary. If U U 0

i, j′ ∩ J j′+1 �= ∅, then both Li, j

and Ri, j are non-empty and intersect, landing in case 4. Otherwise, suppose U U 0
i, j′ ∩ J j′+1 = ∅. This intersection can be 

empty due to two reasons. Firstly, U U 0
i, j′ may lie entirely above J j′+1. Then U LU

i, j′ ∩ J j′+1 = U RU
i, j′ ∩ J j′+1 = ∅, so Ui, j′ does 

not contribute anything to either region; this case is considered below. Secondly, U U 0
i, j′ may lie entirely to the left of 

J j′+1. Then we get the situation shown in Fig. 6: it must be that U LU
i, j ∩ J j′+1 = ∅ and U RU

i, j ∩ J j′+1 = J j′+1. This means, 
in particular, that Ri, j = J j′+1 = J j . It might be that Li, j and Ri, j are both non-empty; as Li, j ⊆ J j , they intersect, and 
so we end up in case 4. Otherwise, Li, j must be empty, ending up in case 2. So, whenever Ui, j′ contributes, we end up 
in one of the cases.

• Di, j′ �= ∅. We can make arguments symmetric to the previous case, landing us in either case 4 or case 3. If Di, j′ does 
not contribute to either region, we consider the next case.

• Neither Ui, j′ nor Di, j′ contribute to Li, j or Ri, j , meaning we can simplify the expressions to Ri, j′+1 = R R
i, j′ ∩ J j′+1

and Li, j′+1 = LL
i, j′ ∩ J j′+1. We use the induction hypothesis and distinguish between the cases for the pair Ri, j′ , Li, j′ . 

Starting in case 1, we get that Li, j = Ri, j = ∅, ending up in case 1. Starting in case 2, we get Li, j = ∅, and Ri, j = Ri, j′+1 =
J j′+1 ∩ R R ′ . Observe that R R ′ is a half-plane that can be denoted by H R

s for some appropriate s; depending on whether 
i, j i, j

9



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
(a) LU arrangement. (b) RU arrangement.

(c) LD arrangement. (d) R D arrangement.

Fig. 7. All possible combinations for a single-step staircase. Each can be further intersected by a vertical or horizontal slab (Ii or J j ) or shifted so that the 
boundary is affected by Fδ .

the intersection is empty, we end in either in case 1 or in case 2. Starting in case 3 is symmetric and lands us in either 
case 1 or case 3. If we start in case 4, then the half-planes R R

i, j′ and LL
i, j′ intersect, and so for the pair Ri, j , Li, j , we end 

up in case 4; or in case 2 or 3 if LR
i, j′ ∩ J j′+1 or R R

i, j′ ∩ J j′+1 is empty.

This covers all the cases. By induction, we conclude that the lemma holds. The proof for U , D is symmetric. �
Let us now introduce the higher complexity regions.

Definition 5. A staircase with k steps is an otherwise simple region with k cut-outs on the same side of the region, each 
consisting of a single horizontal and a single vertical segments, introducing higher complexity. All the options for a staircase 
with one step (regions of complexity 2) are illustrated in Fig. 7.

We should note that a staircase with k steps, when intersected with Fδ , can yield up to k + 1 disjoint simple regions. 
More specifically, every step that extends outside Fδ splits a staircase of k steps into two staircases of at most k − 1 steps 
in total.

We make the following observation relating the regions in pairs Ri, j , Li, j and Ui, j , Di, j .

Lemma 6. Take two imprecise curves U and V of lengths m and n, respectively, and let i ∈ [m − 1] and j ∈ [n − 1]. Consider the 
pair Ri, j , Li, j and assume both regions are non-empty. If j = 1, the regions have the same y-coordinate for their lower and upper 
boundaries. If j = j′ + 1 and the regions Ui, j′ , Di, j′ are simple, then the union Ri, j ∪ Li, j is either simple or a staircase with one step. 
Furthermore, both Ri, j and Li, j are either simple or staircases with one step.

Proof. First of all, for j = 1, Lemma 3 implies that Ri, j and Li, j are simple; furthermore, the propagation starts from the 
same region, so the y-range is the same and the statement holds. For the rest of the proof assume that j = j′ + 1 and 
regions Ui, j′ and Di, j′ are simple.

Consider the region Ri, j = (R R
i, j′ ∪ U RU

i, j′ ∪ D R D
i, j′ ) ∩ J j . In principle, the union of the two quadrants may create a staircase 

with a single step. However, as the reader may verify, adding the half-plane to the union cannot add a step, since doing 
so would require a horizontal ray forming the top or the bottom boundary of the union of quadrants, which is impossible. 
Symmetrical arguments can be made for Li, j . So, under the given assumptions the regions are always either simple or 
staircases with one step. Figs. 8a and 8b show some examples.

Now consider the union of regions Ri, j ∪ Li, j :

Ri, j ∪ Li, j = (R R ′ ∪ LL ′ ∪ U U ′ ∪ D D ′) ∩ J j .
i, j i, j i, j i, j

10



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
Fig. 8. Examples of staircase arrangements.

The only source of higher complexity is the union operator in the propagation. This is the union of four half-planes. If 
both Ri, j′ and Li, j′ are non-empty, we know from Lemma 4 that they intersect, so J j ⊆ R R

i, j′ ∪ LL
i, j′ = R2. The same holds 

for the pair Ui, j′ , Di, j′ . Now assume that at least one region from each pair is empty, say, Li, j′ and Di, j′ . If one more 
region is empty, then one of Li, j , Ri, j is empty, which contradicts our assumption. Note that the union of two half-planes 
with perpendicular boundaries, intersected with a horizontal strip and the interval free space, can create a staircase with 
one step. In our particular setting we get the staircase in the RU arrangement, shown in Fig. 7b. Other choices for empty 
regions will give one of the other arrangements of Fig. 7. There are no other options, so the statement about the union 
Ri, j ∪ Li, j is proven. �

Now consider the propagation when we start from not necessarily simple regions or regions that do not match in their 
y-range (or x-range), as described in Lemma 6. Consider the complexity contribution when propagating across a cell—say, 
Ui, j to Ui+1, j . To perform the propagation, we take

U U
i, j = Ui, j ⊕ HU = Ui, j ⊕ (R×R≥0) .

From the definition of the Minkowski sum, it is easy to see that for non-empty Ui, j this results in an upper half-plane with 
respect to the lowest point in Ui, j . Therefore, when propagating a region across the cell, it either contributes nothing if it 
is empty, or it contributes a half-plane otherwise. Therefore, to establish if we can arrive at progressively more complex 
regions, we need to consider the other boundaries as source of complexity. This insight together with the previous results 
informs the following argument.

Lemma 7. The regions that we propagate are either simple, or staircases with one step, so the regions have constant complexity.

Proof. As shown in Lemma 3, the base regions are always simple. Consider the regions Ri, j , Li, j for some i and j = j′ + 1. 
The proof for Ui, j , Di, j is symmetric. As we have just observed, the complexity of Ri, j′ and Li, j′ is irrelevant for Ri, j , Li, j , as 
they contribute a half-plane in the worst case. Furthermore, we have shown in Lemma 6 that if Ui, j′ and Di, j′ are simple, 
then regions Ri, j , Li, j are at worst single-step staircases.

It remains to consider what happens as we propagate further from the regions obtained in Lemma 6. So suppose Ri, j , Li, j
are obtained as in Lemma 6. Again, their complexity is irrelevant for the complexity of Ri, j+1, Li, j+1, so it remains to answer 
the following question. Assuming no restrictions on Ui, j , Di, j , what is the possible complexity of Ui+1, j , Di+1, j? Consider 
the propagation for e.g. Ui+1, j = (U U

i, j ∪ R RU
i, j ∪ LLU

i, j ) ∩ Ii+1. As follows from Lemma 6 and the mechanics of propagation, the 
region LLU

i, j ∪ R RU
i, j is either a simple region or a staircase with a single step, unbounded horizontally. Therefore, adding the 

half-plane of U U
i, j cannot increase the complexity. A symmetric argument holds for Di+1, j . Hence, both Ui+1, j and Di+1, j

are again either simple or staircases with a single step.
Finally, consider the propagation through the next cell to the pair Ri+1, j+1, Li+1, j+1. For the region Ri+1, j+1 we need to 

compute U RU
i+1, j ∪ D R D

i+1, j . Note that

Ui+1, j ∪ Di+1, j = (U U
i, j ∪ D D

i, j ∪ R R
i, j ∪ LL

i, j) ∩ Ii+1 ,

and as both Ri, j and Li, j are non-empty and intersect, as follows from Lemmas 4 and 6, we conclude Ui+1, j ∪ Di+1, j = Ii+1. 
Therefore, the region Ri+1, j+1 is formed with a union of two half-planes with parallel boundaries, and so the region is 
simple. The same holds for Li+1, j+1. So, within two propagation steps we may go from simple regions to staircase regions 
11



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
with one step before returning to simple regions. As there are no other possibilities for the propagation, the statement of 
the lemma holds. �

The operations we use during propagation can be done in constant time for constant-complexity arguments. Using 
Lemma 7, we state the main result.

Theorem 8. We can solve the decision problem for lower bound Fréchet distance on imprecise curves of lengths m and n in 1D in time 

(mn).

5. Upper bound Fréchet distance

Until this point, we have been discussing the lower bound Fréchet distance. We now turn our attention to the upper 
bound. The problem is known to be NP-hard in 2D in all variants we consider [25]; we show that this remains true even 
in 1D. Define the following problems for the discrete and continuous Fréchet distance.

Problem 9. Upper Bound (Discrete) Fréchet: Given two uncertain trajectories U and V in 1D of lengths m and n, respec-
tively, and a threshold δ > 0, determine if d max

F (U , V) ≤ δ (d max
dF (U , V) ≤ δ).

We show that these problems are NP-hard both for indecisive and imprecise models by giving a reduction from CNF-SAT. 
The construction we use is similar to that used in 2D; however, in 2D the desired alignment of subcurves is achieved by 
having one of the curves be close enough to (0, 0) at all times. Here making a curve close to 0 will not work, so we need to 
add extra gadgets instead that can ‘eat up’ the alignment of the subcurves that we do not care about. We start by describing 
the construction and then show how it leads to the NP-hardness argument.

Suppose we are given a CNF-SAT formula C on n clauses and m variables:

C =
∧

i∈[n]
Ci , Ci =

∨
j∈ J⊆[m]

x j ∨
∨

k∈K⊆[m]\ J

¬xk for all i ∈ [n].

We define an assignment as a function a : {x1, . . . , xm} → {True, False} that assigns a value to each variable, a(x j) = True or 
a(x j) = False for any j ∈ [m]. C[a] then denotes the result of substituting x j �→ a(x j) in C for all j ∈ [m]. We construct 
two curves: curve U is an uncertain curve that represents the variables, and curve V is a precise curve that represents the 
structure of the formula.

Literal level. Define a literal gadget for curve V :

LGi, j =

⎧⎪⎨
⎪⎩

0 � 1.5 if x j is a literal of Ci ,

−1.5 � 1.5 if ¬x j is a literal of Ci ,

−0.75 � 1.5 otherwise.

Consider for now the indecisive uncertainty model. The curve U has an indecisive point per variable, each with two options, 
corresponding to True and False assignments. Define a variable gadget for curve U :

VG j = {−1.5,0} � 2.5 .

Here the notation {−1.5, 0} denotes an indecisive point with two possible locations −1.5 and 0. We interpret the position 
−1.5 as assigning x j = True and the position 0 as assigning x j = False. Observe the relationship between LGi, j and VG j for 
any given i ∈ [n]: the distance between the first points of the gadgets is large if the given variable assignment turns the 
clause true. For instance, if a clause has the literal x j , then the choice of x j = True makes the distance between the first 
points 1.5 > 1; if the literal is ¬x j and we make the same choice, then the distance is 0; and if the literal does not occur 
in Ci , then whichever realisation we pick, the distance is 0.75 < 1.

Clause level. We now aggregate the literal gadgets into clause gadgets. Similarly, we aggregate the variable gadgets into the 
variable section:

CGi = 3.5 � �
j∈[m]

LGi, j , VS = 4.5 � �
j∈[m]

VG j .

Suppose that we pick some realisation for all the variables with some function a. Pick a clause Ci . Suppose that Ci[a] = True. 
This means there is at least one x j assigned in a way that makes Ci turn true. In our construction, this means that there is 
at least one pair of LGi, j and VG j that gives a large distance between the first two points. If we are interested in just the 
Fréchet distance between CGi and VS for some fixed i, we can state the following.
12



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
Lemma 10. For some fixed i ∈ [n], the (discrete) Fréchet distance between CGi , corresponding to clause Ci , and a realisation π � VS, 
corresponding to an assignment a, is 1 iff Ci[a] = False, and is 1.5 iff Ci[a] = True, and there are no other possible values.

Proof. First of all, note that the points 4.5 and 3.5 must be matched, yielding the distance of at least 1 between the curves. 
Furthermore, the only point within distance 1.5 of the point 2.5 that occurs at the end of every VG j is the last point of 
every LGi, j , namely, 1.5. Observe that simply walking along both curves, matching point k on one curve to point k on the 
other curve for every k, gives us (discrete) Fréchet distance of at most 1.5. Thus, the optimal matching will always match 
the point 2.5 to one of the points at 1.5. Furthermore, the optimal solution will always match the first point of LGi, j to the 
indecisive point of VG j , as the point at 2.5 is always too far. Therefore, both for Fréchet and discrete Fréchet distance the 
optimal matching is one-to-one, i.e. we advance along both curves on every step. The initial synchronisation points yield the 
distance 1, as do the second points in the literal level gadgets; each indecisive point is matched at distance of either 0, 0.75, 
or 1.5. The latter case only occurs if the assignment of the variable makes the clause satisfied. So, indeed, we conclude that 
we can only get the distance of either 1 or 1.5, and the latter is only possible if some variable turns the clause to true, so 
if Ci[a] = True. Otherwise, the clause is false, and the distance is 1. �
Formula level. We can now paste the clause gadgets together. Once we do that, we would like to have a way to freely 
choose a clause to align with the variable section: then, if there is a clause that is not satisfied, choosing that clause would 
yield a small overall distance; and if all clauses are satisfied, then any one of them will give a large distance, and so we 
can distinguish between whether the formula is satisfied or not. As a starting point, it is clear that we need to prepend and 
append something to the variable section that would catch the clauses that are not aligned with the variable section. We 
devise the following gadget for that:

abs = 2.5 � �
j∈[m]

(−0.5 � 0.5) .

We show that this gadget may indeed be satisfactorily aligned with any CGi .

Lemma 11. The (discrete) Fréchet distance between abs and any CGi is 1.

Proof. First of all, note that we must match the first synchronisation point of CGi at 3.5 to some point on the other curve, 
and the only point in abs that is close enough is the point at 2.5 in the beginning. This establishes the lower bound of 1. 
Furthermore, we can always get the distance of 1 by walking step-by-step along both curves: the distance between any 
of −1.5, −0.75, and 0 is at most 1 to −0.5, and the distance between 1.5 and 0.5 is 1. Thus, the statement holds. �

We need as many of these gadgets as there may be misaligned clauses. In the worst case, we may align CG1 or CGn with 
VS, and so we need n − 1 of the catch gadgets before and after VS. However, the new problem we get is that now the extra 
abs clauses need to be aligned with something. To that end, we devise the following gadget:

abs2 = 1.5 � 0.5 .

Again, we show that it can perform its function.

Lemma 12. The (discrete) Fréchet distance between abs2 and abs is 1.

Proof. First of all, note that we must match the first synchronisation point of abs at 2.5 to the point at 1.5 on abs2, giving 
the lower bound of 1. Furthermore, we can always get the distance of 1 by stepping to the second point on both curves and 
staying at 0.5 on abs2 while alternating between −0.5 and 0.5 on abs. Thus, the statement holds. �

Finally, we need to align these gadgets with something, but that is not too difficult, as they only have the length of 1. 
We define our final uncertain curves:

U = 1 �
(�
i∈[n−1]

abs
)

� VS �
(�
i∈[n−1]

abs
)

� 1 , V =
(�
i∈[n−1]

abs2
)

�
(�

i∈[n]
CGi

)
�

(�
i∈[n−1]

abs2
)

.

We illustrate the curves in Fig. 9. With these definitions, we can show the following.

Theorem 13. The problem Upper Bound (Discrete) Fréchet is NP-hard in the indecisive model.

Proof. First of all, notice that in our construction the synchronisation points at the start of the clauses gadgets must be 
matched to the synchronisation points at the start of the variable section and the abs gadgets in the optimal matching, as 
hinted at in the proofs of the previous lemmas. Furthermore, note that any number of abs2 at the start can be matched to 
13



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
Fig. 9. Left: The realisation of U for assignment x1 = True, x2 = True, x3 = False and curve V for the formula C = (x1 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3). Note that 
C = True with this assignment, and that both feasible alignments give (discrete) Fréchet distance of 1.5. Right: The corresponding free space. White dots are 
accessible, spots without a dot are never accessible. Blue (red) dots are only accessible if the corresponding variable is set to True (False). Yellow dashed 
paths indicate potential paths through the free space; the goal is to determine if the variables can be set such that all potential paths are blocked. (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

the point at 1, and any number of abs2 can be matched to the point at 1 at the end. Putting these observations together 
with Lemmas 10 to 12, it is easy to see the following. Choose some assignment a and consider the corresponding realisation 
π � U . Suppose that C[a] = False; this means that there is at least one i for which Ci[a] = False. Our construction allows us 
to consider the alignment where we match CGi to VS, and the rest of clauses to one of abs; the remaining abs are matched 
to the abs2, and the remaining abs2 are matched to 1. In this matching, the (discrete) Fréchet distance between the curves 
is 1, which is optimal, and the formula is not satisfied. Now suppose that C[a] = True; this means that for all i, Ci[a] = True. 
So, no matter which CGi we choose to align with VS, we get the distance of 1.5; therefore, the formula is satisfied, and the 
optimal distance is 1.5.

Recall that the upper bound distance takes the maximum distance over all realisations. Therefore, if the upper bound 
distance is 1, then all the realisations yield the distance 1, and so all assignments a yield C[a] = False, and the formula 
is not satisfiable. On the other hand, if the upper bound distance is 1.5, then there is some realisation that yields this 
distance, and it corresponds to an assignment a with C[a] = True, so the formula is satisfiable. Thus, our construction with 
the threshold δ = 1 solves CNF-SAT. Curve U has length 2 + 2 · (n − 1) · (1 + 2m) + 1 + 2m = 2n + 4mn − 2m + 1; curve V
has length 4 · (n − 1) + n · (1 + 2m) = 5n + 2mn − 4. Clearly, the construction takes polynomial time. Therefore, the problem 
both for discrete and continuous Fréchet distance is NP-hard. �

We can easily extend this result to the imprecise curves. We replace the indecisive points at {−1.5, 0} with intervals 
[−1.5, 0]. The following observation is key.

Observation 14. Any upper bound solution that can be found as a certificate in the construction with the indecisive points can also be 
found in the imprecise construction.

Furthermore, note that no realisation can yield a distance above 1.5 with an optimal matching. Thus, if the formula 
is satisfiable, the upper bound distance is still 1.5, and this distance cannot be obtained otherwise. We conclude that the 
problem is NP-hard.

Theorem 15. The problem Upper Bound (Discrete) Fréchet is NP-hard in the imprecise model.

6. Weak Fréchet distance

In this section, we investigate the weak Fréchet distance for uncertain curves. In general, since weak matchings can 
revisit parts of the curve, the dynamic program for the regular Fréchet distance cannot easily be adapted, as it relies on the 
fact that only the realisation of the last few vertices is tracked. In particular, when computing the weak Fréchet distance 
for uncertain curves, one cannot simply forget the realisations of previously visited vertices, as the matching might revisit 
them. Surprisingly, we can show that for the continuous weak Fréchet distance between uncertain one-dimensional curves, 
14



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
we can still obtain a polynomial-time dynamic program, as shown in Section 6.1. One may expect that the discrete weak 
Fréchet distance for uncertain curves in 1D is also solvable in polynomial time; however, in Section 6.2 we show that this 
problem is NP-hard. We also show that computing the continuous weak Fréchet distance is NP-hard for uncertain curves 
in 2D.

6.1. Algorithm for continuous setting

We first introduce some definitions. Consider two polygonal one-dimensional curves π : [1, m] → R and σ : [1, n] → R
with vertices at the integer parameters. Let π−1 denote the reversal of a polygonal curve π . Denote by π |[a,b] the restriction 
of π to the domain [a, b]. For integer values of a and b, note that π |[a,b] ≡ π [a : b]. Finally, define the image of a curve as 
the set of points in R that belong to the curve, Im(π) ≡ {π(x) | x ∈ [1, m]} for π : [1, m] → R. For any polygonal curve π , 
define the growing curve −→π of π as the sequence of local minima and maxima of the sequence 〈π(i) | π(i) /∈ Im(π |[1,i))〉m

i=1. 
Thus, the vertices of a growing curve alternate between local minima and maxima, the subsequence of local maxima is 
strictly increasing, and the subsequence of local minima is strictly decreasing.

It has been shown that for precise one-dimensional curves, the weak Fréchet distance can be computed in linear 
time [29]. For uncertain curves, it is unclear how to use that linear-time algorithm; however, we can apply some of the un-
derlying ideas. A relaxed matching between π and σ is defined by parametrisations α : [0, 1] → [1, m] and β : [0, 1] → [1, n]
with α(0) = 1, α(1) = x ∈ [m − 1, m] and β(0) = 1, β(1) = y ∈ [n − 1, n]. Observe that the final points of parametrisations 
have to be on the last segments of the curves, but not necessarily at the endpoints of those segments. Moreover, define a re-
laxed matching (α, β) to be cell-monotone if for all t ≤ t′ , we have min(�α(t)�, m − 1) ≤ α(t′) and min(�β(t)�, n − 1) ≤ β(t′). 
In other words, once we pass by a vertex to the next segment on a curve, we do not allow going back to the previous 
segment; backtracking within a segment is allowed. Let rm(π, σ) be the minimum matching cost over all cell-monotone 
relaxed matchings:

rm(π,σ ) = inf
cell-monotone relaxed matching μ

costμ(π,σ ) .

It has been shown for precise curves [29] that

dwF(π,σ ) = max
(
rm(

−→π ,
−→σ ), rm(

−→
π−1,

−→
σ −1)

)
.

Let rm(π, σ)[i, j] ≡ rm(π [1 : i], σ [1 : j]). Then the value of rm(π, σ) can be computed in quadratic time as rm(π, σ)[m, n]
using the following dynamic program:

rm(π,σ )[0, ·] = rm(π,σ )[·,0] = ∞ ,

rm(π,σ )[1,1] = |π(1) − σ(1)| , and for i > 0 or j > 0,

rm(π,σ )[i + 1, j + 1] = min

{
max

(
rm(π,σ )[i, j + 1],d

(
π(i), Im(σ [ j : j + 1]))) ,

max
(
rm(π,σ )[i + 1, j],d

(
σ( j), Im(π [i : i + 1]))) .

If π is a growing curve, we have Im(π [i : i + 1]) = Im(π [1 : i + 1]), so the following dynamic program is equivalent if π and 
σ are growing curves:

r(π,σ )[0, ·] = r(π,σ )[·,0] = ∞ ,

r(π,σ )[1,1] = |π(1) − σ(1)| , and for i > 0 or j > 0,

r(π,σ )[i + 1, j + 1] = min

{
max

(
r(π,σ )[i, j + 1],d

(
π(i), Im(σ [1 : j + 1]))) ,

max
(
r(π,σ )[i + 1, j],d

(
σ( j), Im(π [1 : i + 1]))) .

Let r(π, σ) := r(π, σ)[m, n] when executing the dynamic program above for curves π : [1, m] →R and σ : [1, n] →R. We 
have rm(

−→π , −→σ ) = r(−→π , −→σ ). Moreover, observe that the final result of computing r is the same whether we apply it to the 
original or the growing curves. In other words, r(π, σ) = r(−→π , −→σ ), so

dwF(π,σ ) = max
(
rm(

−→π ,
−→σ ), rm(

−→
π−1,

−→
σ −1)

)
= max

(
r(−→π ,

−→σ ), r(
−→
π−1,

−→
σ −1)

)
= max

(
r(π,σ ), r(π−1,σ −1)

)
.

With regard to computing the minimum weak Fréchet distance over realisations of uncertain curves, this roughly means 
that we only need to keep track of the image of the prefix (and the suffix) of π and σ . To formalise this, we split up 
the computation over the prefix and the suffix. Let imin, imax ∈ [m], jmin, jmax ∈ [n], [xmin, xmax] ⊆R, and [ymin, ymax] ⊆R. 
Abbreviate the pairs I := (imin, imax), J := ( jmin, jmax) and the intervals X := [xmin, xmax], Y := [ymin, ymax], and call a 
15



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
realisation π of an uncertain curve I-respecting if π(imin) is a global minimum of π and π(imax) is a global maximum 
of π . Moreover, say that π is (I, X)-respecting if additionally π(imin) = xmin and π(imax) = xmax. Let π ′ � UI and π ′′ � U X

I
denote some I- and (I, X)-respecting realisations of an uncertain curve U , respectively. Consider the minimum weak Fréchet 
distance between (I, X)- and ( J , Y )-respecting realisations π � U X

I and σ � VY
J :

d min
wF (U X

I ,VY
J ) ≡ min

π�U X
I ,σ�VY

J

dwF(π,σ ) = min
π�U X

I ,σ�VY
J

max
(
r(π,σ ), r(π−1,σ −1)

)
.

Lemma 16. Among (I, X)- and ( J , Y )-respecting realisations, the prefix and the suffix are independent:

d min
wF (U X

I ,VY
J ) = max

⎧⎨
⎩

minπ�U X
I ,σ�VY

J
r(π,σ ) ,

minπ ′�U X
I ,σ ′�VY

J
r(π ′−1,σ ′−1) .

Proof. If we take π = π ′ and σ = σ ′ , the right-hand side becomes a lower bound on d min
wF (U X

I , VY
J ). To show that it is also 

an upper bound, consider (I, X)-respecting realisations π and π ′ , and define πc as the prefix of π up to imin concatenated 
with the suffix of π ′ starting from imin. Then πc is an (I, X)-respecting realisation of U . Moreover, the growing curves −→π
and −→πc are the same (this is obvious if imin > imax, and follows from the fact that the value of the imax-th vertex is xmax

otherwise). Symmetrically, 
−−→
π ′−1 = −→

π−1
c . We can similarly define a ( J , Y )-respecting realisation σc of V based on some σ

and σ ′ . Since −→π = −→πc and −→σ = −→σc , we have r(π, σ) = r(πc, σc), and symmetrically, r(π ′−1, σ ′−1) = r(π−1
c , σ −1

c ). We can 
therefore use πc � U X

I and σc � VY
J in the definition of dwF(U X

I , VY
J ) to obtain the desired upper bound. �

The remainder of this section is guided by observations based on Lemma 16.

1. If we can compute minπ�U X
I ,σ�VY

J
r(π, σ), we can compute d min

wF (U X
I , VY

J ).

2. To compute d min
wF (UI , V J ), we must find an optimal pair of images X and Y for π and σ .

3. We can find d min
wF (U , V) by computing d min

wF (UI , V J ) for all O (m2n2) values for (I, J ).

Instead of computing minπ�U X
I ,σ�VY

J
r(π, σ) for a specific value of (X, Y ), we compute the function (X, Y ) �→

minπ�U X
I ,σ�VY

J
r(π, σ) using a dynamic program that effectively simulates the dynamic program r(π, σ) for all I- and 

J -respecting realisations simultaneously. So let

R I, J [i, j](x, y, X, Y ) := inf
π�UI ,Im(π [1:i])=X,π(i)=x
σ�V J ,Im(σ [1: j])=Y ,σ ( j)=y

r(π,σ )[i, j], then

R I, J [m,n](x, y, X, Y ) = inf
π�U X

I ,π(m)=x

σ�VY
J ,σ (n)=y

r(π,σ ).

We derive

R I, J [0, ·](x, y, X, Y ) = R I, J [·,0](x, y, X, Y ) = ∞,

R I, J [1,1](x, y, X, Y ) = inf
π�UI ,{x}=X,π(1)=x
σ�V J ,{y}=Y ,σ (1)=y

|π(1) − σ(1)|, and for (i, j) �= (1,1)

R I, J [i, j](x, y, X, Y )

= inf
π�UI ,Im(π [1:i])=X,π(i)=x
σ�V J ,Im(σ [1: j])=Y ,σ ( j)=y

min

{
max{r(π,σ )[i − 1, j],d(π(i − 1), Y )},
max{r(π,σ )[i, j − 1],d(σ ( j − 1), X)}

= min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf π�UI ,Im(π [1:i])=X,π(i)=x
σ�V J ,Im(σ [1: j])=Y ,σ ( j)=y

π(i−1)=x′

max{r(π,σ )[i − 1, j],d(x′, Y )},

inf π�UI ,Im(π [1:i])=X,π(i)=x
σ�V J ,Im(σ [1: j])=Y ,σ ( j)=y

σ ( j−1)=y′

max{r(π,σ )[i, j − 1],d(y′, X)}

= min

⎧⎪⎨
⎪⎩

infπ�UI ,Im(π [1:i])=X,π(i)=x
Im(π [1:i−1])=X ′,π(i−1)=x′

max{R I, J [i − 1, j](x′, y, X ′, Y ),d(x′, Y )},
infσ�V J ,Im(σ [1: j])=Y ,σ ( j)=y

Im(σ [1: j−1])=Y ′,σ ( j−1)=y′
max{R I, J [i, j − 1](x, y′, X, Y ′),d(y′, X)},
16



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
where, crucially, the conditions on x′ , y′ , X ′ , and Y ′ can be checked purely in terms of UI and V J , so the recurrence does 
not depend on any particular π or σ . This yields a dynamic program that constructs the function R I, J [i, j] based on the 
functions R I, J [i − 1, j] and R I, J [i, j − 1].

The recurrence has the parameters I , J , i, j, x, y, X , and Y . The first four are easy to handle, since i ∈ [m], j ∈ [n], 
I ∈ [m]2, and J ∈ [n]2. The other parameters are continuous. X can be represented by xmin and xmax, Y by ymin and ymax. 
To prove that we can solve the recurrence in polynomial time, it is sufficient to prove that we can restrict the computation 
to a polynomial number of different xmin, xmax, ymin, ymax, x and y.

We assume that each of the ui and v j is given as a set of intervals. This includes the cases of uncertain curves with 
imprecise vertices (where each of these is just one interval) and with indecisive vertices (where each interval is just a point; 
but in this case we get by definition only a polynomial number of different values for the parameters).

Consider the realisations π = 〈p1, . . . , pm〉 and σ = 〈q1, . . . , qn〉 of the curves that attain the lower bound weak Fréchet 
distance d min

wF (U , V) =: δ. In these realisations, we need to have a sequence of vertices r1 ≤ r2 ≤ · · · ≤ r� with the rk alter-
nately from the set of pi and the set of q j such that r1 is at a right interval endpoint, r� is at a left interval endpoint, and 
rk+1 − rk = δ. Since 1 ≤ � ≤ m + n, this implies that there are only O (N2 · (m + n)) candidates for δ, where N is the total 
number of interval endpoints. We can compute these candidates in time O (N2 · (m + n)).

Now assume that we have chosen π and σ such that none of the pi or q j can be increased (i.e. moved to the right) 
without increasing the weak Fréchet distance. Then for every pi (and likewise q j ) there is a sequence r1 ≤ r2 ≤ · · · ≤ r� = pi , 
where r1 is the endpoint of an interval and rk+1 − rk = δ. There are O (N) possibilities for r1, O (m + n) possibilities for �, 
and O (N2 · (m + n)) possibilities for δ, thus the total number of positions to consider for pi is polynomial.

Theorem 17. The continuous weak Fréchet distance between uncertain one-dimensional curves can be computed in polynomial time.

6.2. Hardness of discrete setting

In this section, we prove that minimising the discrete weak Fréchet distance is NP-hard, already in one-dimensional 
space. We show this both for indecisive and imprecise points. In the constructions in this section, the lower bound Fréchet 
distance is never smaller than 1. The goal is to determine whether it is equal to 1 or greater than 1.

Indecisive points. We reduce from 3SAT. Consider an instance with n variables and m clauses. We assign each variable a 
unique height: variable xi gets assigned height 10i + 5. We use slightly higher heights (10i + 6 and 10i + 7) to interact with 
the positive state of the variable, and slightly lower heights to interact with a negative state.

We construct two uncertain curves, one which represents the variables and one which represents the clauses. The first 
curve, U , consists of n + 2 vertices. The first and last vertex are certain points, both at height 0. The remaining vertices are 
uncertain points, with two possible heights each:

U = 〈0, {14,16}, {24,26}, . . . , {10n + 4,10n + 6},0〉 .

The second curve, V , consists of nm + n + m + 2 vertices. For a clause c j = �a ∨ �b ∨ �c , let C j be the set {10a + 3/7, 10b +
3/7, 10c + 3/7}, where for each literal we choose +7 if �i = xi or +3 if �i = ¬xi . Let S be the set S = {15, 25, . . . , 10n + 5}
of ‘neutral’ variable heights. Then V is the curve that starts and ends at 0, has a vertex for each C j , and has sufficiently 
many copies of S between them:

V = 〈0, S, . . . , S, C1, S, . . . , S, C2, S, . . . , S, . . . . . . , Cm,0〉 .

Consider the free-space diagram, with a ‘spot’ (i, j) corresponding to a pair of vertices ui and v j . The discrete weak 
Fréchet distance is equal to 1 if and only if there is an assignment to each uncertain vertex such that the there is a path 
from the bottom left to the top right of the diagram that uses only accessible spots, where a spot is accessible if the assigned 
heights of the corresponding row and column are within 1. Fig. 10 shows an example.

We can only cross a column corresponding to clause c j if at least one of the corresponding literals is set to true. 
The remaining columns can always be crossed at any row. Note that the repetition is necessary: although all spots are in 
principle reachable, only one spot in each column can be reachable at the same time. If we have at least n columns between 
each pair of clauses, this will always be possible.

Theorem 18. Given two uncertain curves U and V , each given by a sequence of values and sets of values in R, the problem of choosing 
a realisation of U and V such that the weak discrete Fréchet distance between U and V is minimised is NP-hard.

Imprecise points. The construction above relies on the ability to select arbitrary sets of values as uncertainty regions. We 
now show that this is not required. We strengthen the proof in two ways: we restrict the uncertainty regions to intervals 
and we use uncertainty in only one curve.

The main idea of the adaptation is to encode clauses not by a single uncertain vertex, but by sets of globally distinct 
paths through the free-space diagram. To facilitate this, we need a global frame to guide the possible solution paths, and we 
need more copies of the variable vertices (though only one copy will be uncertain) to facilitate the paths.
17



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
Fig. 10. An example with five variables and three clauses. White dots are always accessible, no matter the state of the variables (however, note that only 
one white dot per column can be used). Red / blue dots are accessible only if the corresponding variable is set to False / True. Spots without a dot are 
never accessible.

Fig. 11. The global frame. White dots are accessible, spots without a dot are never accessible. Within each block, there are three potential paths between 
its two accessible corners.

Let T = 10(n + 2). We build a frame for the construction using four unique heights: 0, 10, T − 10 and T .4 Let S =
〈0, 10, ?, T − 10, ?, 10, ?, T − 10, T 〉 be a partial sequence—the question marks indicate gaps where we insert other vertices 
later. Globally, the curves have the structure U = S and V = S � S−1 � S � S−1 � . . . � S: one copy or reversed copy of S
for each clause (if the number of clauses is even, simply add a trivial clause). In the free-space diagram, this creates a 
frame that every path needs to adhere to. The frame consists of one block per clause, and inside each block, there are three 
potential paths from the bottom left to top right corner (or from the top left to bottom right corner for reversed blocks). 
See Fig. 11.

Next, we fill in the gaps. Let U = 〈0〉 � U1 �U−1
2 �U1 � 〈T 〉, where

U1 = 〈10,14,16,24,26, . . . ,10n + 4,10n + 6, T − 10〉 ,

U2 = 〈10, [14,16], [24,26], . . . , [10n + 4,10n + 6], T − 10〉 .

Let V = �1≤ j≤m C (−1) j−1

j be concatenation of clause sequences, where each even clause sequence is reversed. For a clause 
c j = �a ∨ �b ∨ �c , the sequence C j is of the form

C j = 〈0,10〉 � La � 〈T − 10〉 � L−1
b � 〈10〉 � Lc � 〈T − 10, T 〉 ,

where the literal sequence Li corresponding to �i = xi (positive literals) or �i = ¬xi (negative literals) is respectively

Li = 〈15,25, . . . ,10(i − 1) + 5,10i + 5,10i + 7,10(i + 1) + 5, . . . ,10n + 5〉 , or

Li = 〈15,25, . . . ,10(i − 1) + 5,10i + 3,10i + 5,10(i + 1) + 5, . . . ,10n + 5〉 .

See Fig. 12 for an example of the resulting free-space diagram.
The construction relies on the following.

Observation 19. Li can always be matched to U1 . Li can be matched to U2 if and only if �i = xi and xi is set to True, or �i = ¬xi and 
xi is set to False.

4 The actual values are, in fact, irrelevant for the construction—they simply need to be unique numbers sufficiently removed from the values we will use 
for encoding the variables.
18



K
.Buchin,M

.Löffl
er,T.O

phelders
et

al.
Com

putationalG
eom

etry:
Theory

and
A

pplications
109

(2023)
101923

cessible only if the corresponding variable is set to False /

19
Fig. 12. An example with five variables and three clauses. White dots are always accessible, no matter the state of the variables. Red / blue dots are ac
True. Spots without a dot are never accessible.



K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
Theorem 20. Given an uncertain curve U , given by a sequence of values and intervals in R, and a certain curve V , given by a sequence 
of values in R, the problem of choosing a realisation of U such that the weak discrete Fréchet distance between U and V is minimised 
is NP-hard.

Continuous weak Fréchet distance in R2. Finally, we mention that the results in this section carry over to continuous weak 
Fréchet distance in one dimension higher. We simply construct the same curves as described above on the x-axis, and 
intersperse each curve with the point at (0, ∞).

Corollary 21. Given an uncertain curve U , given by a sequence of points and regions in R2, and a certain curve V , given by a sequence 
of points in R2 , the problem of choosing a realisation of U such that the weak Fréchet distance between U and V is minimised is 
NP-hard.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

References

[1] P.K. Agarwal, R.B. Avraham, H. Kaplan, M. Sharir, Computing the discrete Fréchet distance in subquadratic time, SIAM J. Comput. 43 (2) (2014) 429–449, 
https://doi .org /10 .1137 /130920526.

[2] H. Alt, M. Godau, Computing the Fréchet distance between two polygonal curves, Int. J. Comput. Geom. Appl. 5 (1) (1995) 75–91, https://doi .org /10 .
1142 /S0218195995000064.

[3] K. Bringmann, Why walking the dog takes time: Fréchet distance has no strongly subquadratic algorithms unless SETH fails, in: 2014 IEEE 55th Annual 
Symposium on Foundations of Computer Science, IEEE, Piscataway, NJ, USA, 2014, pp. 661–670, https://doi .org /10 .1109 /FOCS .2014 .76.

[4] K. Bringmann, W. Mulzer, Approximability of the discrete Fréchet distance, J. Comput. Geom. 7 (2) (2016) 46–76, https://doi .org /10 .20382 /jocg .v7i2a4.
[5] K. Buchin, M. Buchin, W. Meulemans, W. Mulzer, Four Soviets walk the dog: improved bounds for computing the Fréchet distance, Discrete Comput. 

Geom. 58 (1) (2017) 180–216, https://doi .org /10 .1007 /s00454 -017 -9878 -7.
[6] A. Driemel, S. Har-Peled, C. Wenk, Approximating the Fréchet distance for realistic curves in near linear time, Discrete Comput. Geom. 48 (1) (2012) 

94–127, https://doi .org /10 .1007 /s00454 -012 -9402 -z.
[7] S. Har-Peled, B. Raichel, The Fréchet distance revisited and extended, ACM Trans. Algorithms 10 (1) (2014) 3:1–3:22, https://doi .org /10 .1145 /2532646.
[8] M. Jiang, Y. Xu, B. Zhu, Protein structure: structure alignment with discrete Fréchet distance, J. Bioinform. Comput. Biol. 6 (1) (2008) 51–64, https://

doi .org /10 .1142 /s0219720008003278.
[9] J. Zheng, X. Gao, E. Zhan, Z. Huang, Algorithm of on-line handwriting signature verification based on discrete Fréchet distance, in: International Sym-

posium on Intelligence Computation and Applications, in: Lecture Notes in Computer Science, vol. 5370, Springer Berlin Heidelberg, Berlin, Germany, 
2008, pp. 461–469, https://doi .org /10 .1007 /978 -3 -540 -92137 -0 _5.

[10] S. Brakatsoulas, D. Pfoser, R. Salas, C. Wenk, On map-matching vehicle tracking data, in: Proceedings of the 31st International Conference on Very Large 
Data Bases, Association for Computing Machinery, New York, NY, USA, 2005, pp. 853–864, https://doi .org /10 .5555 /1083592 .1083691.

[11] M. Ahmed, C. Wenk, Constructing street networks from GPS trajectories, in: Proceedings of the 20th Annual European Symposium on Algorithms, in: 
Lecture Notes in Computer Science, vol. 7501, Springer, Berlin Heidelberg, Berlin, Germany, 2012, pp. 60–71, https://doi .org /10 .1007 /978 -3 -642 -33090 -
2 _7.

[12] K. Buchin, M. Buchin, D. Duran, B.T. Fasy, R. Jacobs, V. Sacristán, R.I. Silveira, F. Staals, C. Wenk, Clustering trajectories for map construction, in: 
Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’17), Association for 
Computing Machinery, New York, NY, USA, 2017, pp. 14:1–14:10, https://doi .org /10 .1145 /3139958 .3139964.

[13] K. Buchin, A. Driemel, N. van de L’Isle, A. Nusser, Klcluster: center-based clustering of trajectories, in: Proceedings of the 27th ACM SIGSPATIAL 
International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’19), Association for Computing Machinery, New York, NY, USA, 
2019, pp. 496–499, https://doi .org /10 .1145 /3347146 .3359111.

[14] J. Gudmundsson, T. Wolle, Football analysis using spatio-temporal tools, Comput. Environ. Urban Syst. 47 (2014) 16–27, https://doi .org /10 .1016 /j .
compenvurbsys .2013 .09 .004.

[15] M. Abellanas, F. Hurtado, C. Icking, R. Klein, E. Langetepe, L. Ma, B. Palop, V. Sacristán, Smallest color-spanning objects, in: Algorithms – ESA 2001, in: 
Lecture Notes in Computer Science, vol. 2161, Springer Berlin Heidelberg, Berlin, Germany, 2001, pp. 278–289, https://doi .org /10 .1007 /3 -540 -44676 -1 _
23.

[16] K. Buchin, M. Löffler, P. Morin, W. Mulzer, Preprocessing imprecise points for Delaunay triangulation: simplified and extended, Algorithmica 61 (3) 
(2011) 674–693, https://doi .org /10 .1007 /s00453 -010 -9430 -0.

[17] C. Fan, J. Luo, B. Zhu, Tight approximation bounds for connectivity with a color-spanning set, in: Algorithms and Computation (ISAAC 2013), in: Lecture 
Notes in Computer Science, vol. 8283, Springer Berlin Heidelberg, Berlin, Germany, 2013, pp. 590–600, https://doi .org /10 .1007 /978 -3 -642 -45030 -3 _55.

[18] C. Knauer, M. Löffler, M. Scherfenberg, T. Wolle, The directed Hausdorff distance between imprecise point sets, Theor. Comput. Sci. 412 (32) (2011) 
4173–4186, https://doi .org /10 .1016 /j .tcs .2011.01.039.

[19] M. Löffler, Data imprecision in computational geometry, Ph.D. thesis, Universiteit Utrecht, 2009, cited 2019-06-15, https://dspace .library.uu .nl /bitstream /
handle /1874 /36022 /loffler.pdf.

[20] M. Löffler, W. Mulzer, Unions of onions: preprocessing imprecise points for fast onion decomposition, J. Comput. Geom. 5 (1) (2014) 1–13, https://
doi .org /10 .20382 /jocg .v5i1a1.

[21] M. Löffler, J.S. Snoeyink, Delaunay triangulations of imprecise points in linear time after preprocessing, Comput. Geom. Theory Appl. 43 (3) (2010) 
234–242, https://doi .org /10 .1016 /j .comgeo .2008 .12 .007.

[22] M. Löffler, M. van Kreveld, Largest and smallest tours and convex hulls for imprecise points, in: Algorithm Theory – SWAT 2006, in: Lecture Notes in 
Computer Science, vol. 4059, Springer Berlin Heidelberg, Berlin, Germany, 2006, pp. 375–387, https://doi .org /10 .1007 /11785293 _35.

[23] M. van Kreveld, M. Löffler, J.S.B. Mitchell, Preprocessing imprecise points and splitting triangulations, SIAM J. Comput. 39 (7) (2010) 2990–3000, https://
doi .org /10 .1137 /090753620.

[24] H.-K. Ahn, C. Knauer, M. Scherfenberg, L. Schlipf, A. Vigneron, Computing the discrete Fréchet distance with imprecise input, Int. J. Comput. Geom. 
Appl. 22 (1) (2012) 27–44, https://doi .org /10 .1142 /S0218195912600023.
20

https://doi.org/10.1137/130920526
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.20382/jocg.v7i2a4
https://doi.org/10.1007/s00454-017-9878-7
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1145/2532646
https://doi.org/10.1142/s0219720008003278
https://doi.org/10.1142/s0219720008003278
https://doi.org/10.1007/978-3-540-92137-0_5
https://doi.org/10.5555/1083592.1083691
https://doi.org/10.1007/978-3-642-33090-2_7
https://doi.org/10.1007/978-3-642-33090-2_7
https://doi.org/10.1145/3139958.3139964
https://doi.org/10.1145/3347146.3359111
https://doi.org/10.1016/j.compenvurbsys.2013.09.004
https://doi.org/10.1016/j.compenvurbsys.2013.09.004
https://doi.org/10.1007/3-540-44676-1_23
https://doi.org/10.1007/3-540-44676-1_23
https://doi.org/10.1007/s00453-010-9430-0
https://doi.org/10.1007/978-3-642-45030-3_55
https://doi.org/10.1016/j.tcs.2011.01.039
https://dspace.library.uu.nl/bitstream/handle/1874/36022/loffler.pdf
https://dspace.library.uu.nl/bitstream/handle/1874/36022/loffler.pdf
https://doi.org/10.20382/jocg.v5i1a1
https://doi.org/10.20382/jocg.v5i1a1
https://doi.org/10.1016/j.comgeo.2008.12.007
https://doi.org/10.1007/11785293_35
https://doi.org/10.1137/090753620
https://doi.org/10.1137/090753620
https://doi.org/10.1142/S0218195912600023


K. Buchin, M. Löffler, T. Ophelders et al. Computational Geometry: Theory and Applications 109 (2023) 101923
[25] K. Buchin, C. Fan, M. Löffler, A. Popov, B. Raichel, M. Roeloffzen, Fréchet distance for uncertain curves, in: 47th International Colloquium on Automata, 
Languages, and Programming (ICALP 2020), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 168, Schloss Dagstuhl–Leibniz-Zentrum 
für Informatik, Dagstuhl, Germany, 2020, pp. 20:1–20:20, https://doi .org /10 .4230 /LIPIcs .ICALP.2020 .20.

[26] M. Buchin, S. Sijben, Discrete Fréchet distance for uncertain points, Lugano, Switzerland, presented at EuroCG 2016, http://www.eurocg2016 .usi .ch /
sites /default /files /paper _72 .pdf, 2016.

[27] C. Fan, B. Zhu, Complexity and algorithms for the discrete Fréchet distance upper bound with imprecise input, arXiv:1509 .02576v2, 2018.
[28] K. Buchin, M. Buchin, C. Knauer, G. Rote, C. Wenk, How difficult is it to walk the dog?, presented at EuroCG 2007, Graz, Austria, https://page .mi .fu -

berlin .de /rote /Papers /pdf /How +difficult +is +it +to +walk +the +dog .pdf, 2007.
[29] K. Buchin, T. Ophelders, B. Speckmann, SETH says: weak Fréchet distance is faster, but only if it is continuous and in one dimension, in: Proceedings 

of the 30th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA ’19), Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 
2019, pp. 2887–2901, https://doi .org /10 .5555 /3310435 .3310614.
21

https://doi.org/10.4230/LIPIcs.ICALP.2020.20
http://www.eurocg2016.usi.ch/sites/default/files/paper_72.pdf
http://www.eurocg2016.usi.ch/sites/default/files/paper_72.pdf
http://refhub.elsevier.com/S0925-7721(22)00066-9/bibD19C0D7FE35B698CEC013FDC2D5DD9FBs1
https://page.mi.fu-berlin.de/rote/Papers/pdf/How+difficult+is+it+to+walk+the+dog.pdf
https://page.mi.fu-berlin.de/rote/Papers/pdf/How+difficult+is+it+to+walk+the+dog.pdf
https://doi.org/10.5555/3310435.3310614

	Computing the Fréchet distance between uncertain curves in one dimension
	1 Introduction
	2 Preliminaries
	3 Lower bound Fréchet distance: general approach
	4 Lower bound Fréchet distance: one dimension
	5 Upper bound Fréchet distance
	6 Weak Fréchet distance
	6.1 Algorithm for continuous setting
	6.2 Hardness of discrete setting

	Declaration of competing interest
	References


