
Computational Geometry: Theory and Applications 111 (2023) 101976
Contents lists available at ScienceDirect

Computational Geometry: Theory and

Applications
journal homepage: www.elsevier.com/locate/comgeo

Dynamic data structures for k-nearest neighbor queries

Sarita de Berg ∗, Frank Staals ∗

Utrecht University Department of Information and Computing Sciences, Princetonplein 5, 3584CC Utrecht, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 December 2021
Received in revised form 28 September
2022
Accepted 23 November 2022
Available online 5 December 2022

Keywords:
Data structure
Simple polygon
Geodesic distance
Nearest neighbor searching

Our aim is to develop dynamic data structures that support k-nearest neighbors (k-NN)
queries for a set of n point sites in the plane in O (f (n) + k) time, where f (n) is some
polylogarithmic function of n. The key component is a general query algorithm that allows
us to find the k-NN spread over t substructures simultaneously, thus reducing an O (tk)

term in the query time to O (k). Combining this technique with the logarithmic method
allows us to turn any static k-NN data structure into a data structure supporting both
efficient insertions and queries. For the fully dynamic case, this technique allows us to
recover the deterministic, worst-case, O (log2 n/ log log n + k) query time for the Euclidean
distance claimed before, while preserving the polylogarithmic update times. We adapt this
data structure to also support fully dynamic geodesic k-NN queries among a set of sites in
a simple polygon. For this purpose, we design a shallow cutting based, deletion-only k-NN
data structure. More generally, we obtain a dynamic planar k-NN data structure for any
type of distance functions for which we can build vertical shallow cuttings. We apply all
of our methods in the plane for the Euclidean distance, the geodesic distance, and general,
constant-complexity, algebraic distance functions.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the k-nearest neighbors (k-NN) problem, we are given a set of n point sites S in some domain, and we wish to
preprocess these points such that given a query point q and an integer k, we can find the k sites in S ‘closest’ to q
efficiently. This static problem has been studied in many different settings [1–5]. We study the dynamic version of the
planar k-nearest neighbors problem, in which the set of sites S may be subject to updates, i.e. insertions and deletions.
We are particularly interested in two settings: (i) a setting in which the domain containing the sites contains (polygonal)
obstacles, and in which we measure the distance between two points by their geodesic distance, the length of the shortest
obstacle avoiding path, and (ii) a setting in which only insertions into S are allowed (i.e. no deletions).

In many applications involving distances and shortest paths, the entities involved cannot travel towards their destination
in a straight line. For example, a person walking through the city center may want to find the k closest restaurants that
currently have seats available. However, he or she cannot walk through walls, and hence, we need to explicitly incorporate
such obstacles into the problem. This introduces additional complications as a single shortest path in a polygon with m ver-
tices may have complexity �(m), and thus it requires �(m) time to compute such a path. We wish to limit the dependency
on m in the space, query, and update times of our data structure as much as possible. In particular, we want to avoid having

* Corresponding authors.
E-mail addresses: s.deberg@uu.nl (S. de Berg), f.staals@uu.nl (F. Staals).
https://doi.org/10.1016/j.comgeo.2022.101976
0925-7721/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.comgeo.2022.101976
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2022.101976&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:s.deberg@uu.nl
mailto:f.staals@uu.nl
https://doi.org/10.1016/j.comgeo.2022.101976
http://creativecommons.org/licenses/by/4.0/

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976
to spend �(m) time and space when we insert or delete a new site in S . In terms of the above example, we wish to avoid
having to spend �(m) time every time some seats open up causing a restaurant to become available.

The second setting is motivated by classification problems. In k-nearest neighbor classifiers the sites in S all have a label,
and the label of some query point q is predicted based on the labels of the k sites nearest to q [6]. When this label turns
out to be sufficiently accurate, it is customary to then extend the data set by adding q to S . Hence, this naturally leads to
the question whether there is an insertion-only data structure that can efficiently answer k-nearest neighbor queries.

The static problem. If the set of sites S is static, and k is known a priori, one option is to build the (geodesic) kth-order
Voronoi diagram of S [7]. This yields very fast O (log(n + m) + k) query times, where m is the complexity of the domain P ,
however it is costly in space, as even in a simple polygon the diagram has size O (k(n − k) + km). Moreover, k needs to be
known a priori. In the scenario where the domain is the Euclidean plane, much more space efficient solutions have been
developed. There is an optimal linear space data structure achieving O (log n + k) query time after O (n log n) deterministic
preprocessing time [8,3]. Very recently, Liu showed how to achieve the same query and expected preprocessing time for
general constant-complexity distance functions for arbitrary sites in R2, using O (n log log n) space [5]. In case P is a simple
polygon with m vertices, the problem has not explicitly been studied. The only known solution using less space than just
storing the kth-order Voronoi diagram is the fully dynamic 1-NN structure of Agarwal et al. [9]. It uses O (n log3 n log m + m)

space, and answers queries in O (k polylog(n + m)) time (by deleting and reinserting the k-closest sites to answer a query).

Issues when inserting sites. Since nearest neighbor searching is decomposable, we can apply the logarithmic method [10]
to turn a static k-NN searching data structure into an insertion-only data structure. For example, in the Euclidean plane
this yields a linear space data structure with O (log2 n) insertion time. However, since this partitions the set of sites S into
O (log n) subsets, and we do not know how many of the k-nearest sites appear in each subset, we may have to consider
up to k sites from each of the subsets, thus yielding an O (k log n) term in the query time. In Section 3 we will present a
general technique that allows us to avoid this additional O (log n) factor.

Fully dynamic data structures. In case we wish to support both insertions and deletions, the problem becomes more
complicated, and the existing solutions thereby much more involved. When we again consider the plane, and we wish to
report only one nearest neighbor (i.e. 1-NN searching), several efficient fully dynamic data structures exist [11–13]. Actually,
all these data structures are variants of the same data structure by Chan [11]. For the Euclidean distance, the current
best result using linear space achieves O (log2 n) worst-case query time, O (log2 n) insertion time, and O (log4 n) deletion
time [12]. These results are deterministic, and the update times are amortized. The variant by Kaplan et al. [13] achieves
similar results for general distance functions: O (n log3 n) space, O (log2 n) worst-case query time, and expected O (polylog n)

amortized update time. Using recent results on shallow cuttings by Liu [5] the space can be reduced to O (n log n), the
insertion time to O (log2 n), and the deletion time to O (log4 n). The update times remain expected amortized. These data
structures can also be used to answer k-NN queries, but when answering a query we run into the same problem as in the
insertion-only case. That is, we consider O (log n) subsets, which results in a query time of O (log2 n + k log n) [11,5].

For the Euclidean case, Chan argues that the above data structure for 1-NN searching can be extended to obtain
O (log2 n/ log log n + k) query time, while still retaining polylogarithmic updates [14]. Chan’s data structure essentially main-
tains a collection of k-NN data structures built on subsets of the sites. A careful analysis shows that some of these structures
can be rebuilt during updates, and that the cost of these updates is not too large. Queries are then answered by perform-
ing ki -NN queries on several disjoint subsets of sites S1, .., St that together are guaranteed to contain the k nearest sites.
However, perhaps because the details of the 1-NN searching data structure are already fairly involved, one aspect in the
query algorithm is missing: how to determine the value ki to query subset Si with. While it seems that this issue can be
fixed using randomization [15],1 our general k-NN query technique (Section 3) allows us to recover deterministic, worst-case
O (log2 n/ log log n + k) query time.

Organization and results. We develop dynamic data structures for k-NN queries in the plane whose query times are of
the form O (f (n) + k), where f (n) is some function of n. In particular, we wish to avoid an O (k log n) term in the query
time. To this end, we present a general query technique that given t disjoint subsets of sites S1, .., St , each stored in a
static data structure that supports k′-NN queries in O (Q (n) + k′) time, can report the k nearest neighbors among

⋃t
i=1 Si

in O (Q (n)t + k) time. Our technique, presented in Section 3, is completely combinatorial, and is applicable to any type of
sites. In Section 4, we then use this technique to obtain a k-NN data structure that supports queries in O (Q (n) log n + k)

time and insertions in O ((P (n)/n) log n) time, where P (n) is the time required to build the static data structure. This result
again applies to any type of sites. In the specific case of the Euclidean plane, we obtain a linear space data structure
with O (log2 n + k) query time and O (log2 n) insertion time. At a slight increase of insertion time, we can also match the
query time of Chan’s [14] fully dynamic data structure. For general, constant-complexity, algebraic distance functions, we
obtain the same query and insertion times (albeit the insertion time holds in expectation). In the case where the sites S
are points inside a simple polygon P with m vertices, we use our technique to obtain the first static k-NN data structure
that uses near-linear space, supports efficient (i.e. without the O (k log n) term) queries, and can be constructed efficiently.

1 The main idea is that the data structure as is can be used to efficiently report all sites within a fixed distance from the query point (reporting all planes
below a query point in R3). Combining this with an earlier random sampling idea [2] one can then also answer k-NN queries.
2

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976
Fig. 1. A 2-shallow cutting of a set of lines F in R2 consisting of 3 prisms. The at most k-level L≤k(F) is shown in green for k = 0, 1, 2. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

We now do get an O (k log m) term in the query time, as computing the distance between a pair of points already takes
O (log m) time. Our data structure uses O (n log n + m) space, can be constructed in O (n(log n log2 m + log3 m) + m) time,
and supports O (log(n +m) logm +k logm) time queries. In turn, this then also leads to a data structure supporting efficient,
O (log2 n log2 m + log n log3 m) time, insertions.

In Section 5 we argue that our general query algorithm is the final piece of the puzzle for the fully dynamic case.
For the Euclidean plane, this allows us to recover the deterministic, worst-case O (log2 n/ log log n + k) query time claimed
before [14]. Insertions take amortized O (log3+ε n/ log logn) time, whereas deletions take O (log5+ε n/ log logn) time. We
obtain the same query and (expected) update times in case of constant degree algebraic distance functions.

For the geodesic case there is one final hurdle to take. Chan’s algorithm uses a partition-tree based “slow” dynamic
k-NN query data structure of linear size as one of its subroutines (see Section 5.1 for details). Liu uses a similar trick
(after appropriately linearizing the distance functions into Rc for some constant c) in their static k-NN data structure [16].
Unfortunately, this idea is not applicable in the geodesic setting, as it is unknown if an appropriate (shallow) simplicial
partition exists, and the geodesic distance function cannot be linearized into a constant dimensional space (the dimension
would need to depend on m). Instead, we design a simple, shallow-cutting based, alternative “slow” dynamic k-NN structure,
that does extend to the geodesic setting. This way, we end up with an efficient (i.e. O (polylog(n + m)) expected updates,
O (log2 n log2 m + k log m) queries) fully dynamic geodesic k-NN data structure.

2. Preliminaries

We can easily transform a k-nearest neighbors problem in R2 to a k-lowest functions problem in R3 by considering
(the graphs of) the distance functions f s(x) of the sites s ∈ S . We discuss these problems interchangeably, furthermore we
identify a function with its graph.

2.1. Shallow cuttings

Let F be a set of bivariate functions. We consider the arrangement of F in R3. The level of a point q ∈R3 is defined as
the number of functions in F that pass strictly below q. The at most k-level L≤k(F) is then the set of points in R3 that have
level at most k.

A k-shallow cutting �k(F) of F is a set of disjoint cells covering L≤k(F), such that each cell intersects at most O (k)

functions [17]. When F is clear from the context we may write �k rather than �k(F). We are interested only in the case
where the cells are (pseudo-)prisms: constant-complexity regions that are bounded from above by a function in F , from the
sides by vertical (with respect to the z-direction) surfaces that pass through an intersection curve between two functions
in F , and unbounded from below. For example, if F is a set of planes, we can define the top of each prism to be a triangle.
This allows us to find the prism containing a query point q by a point location query in the downward projection of the
cutting. See Fig. 1. The subset F∇ ⊆ F intersecting a prism ∇ is the conflict list of ∇ . When, for every subset F ′ ⊆ F , the
lower envelope L0(F ′) has linear complexity (for example, in the case of planes), a shallow cutting of size (the number of
cells) O (n/k) can be computed efficiently [5].

In general, let T (n, k) be the time to construct a k-shallow cutting of maximum size S(n, k) on n functions, and Q (n, k)

be the time to locate the prism containing a query point. We assume these functions are non-decreasing in n and non-
increasing in k, and that S(n, k) = 1

k f (n), for some function f (n).

2.2. A dynamic nearest neighbor data structure

We briefly discuss the main ideas of the dynamic nearest neighbor data structure by Chan [11,12] that was later im-
proved by Kaplan et al. [13], as this also forms a key component in our fully dynamic k-NN data structures. For a more
detailed description we refer to the original papers. For ease of exposition, we describe the data structure when F is a set
of linear functions (planes). To make sure the analysis is correct for our definition of n (the current number of points in S),
we rebuild the data structure from scratch whenever n has doubled or halved. The cost of this is subsumed in the cost of
the other operations [11].
3

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976
Fig. 2. Example of the dynamic 1-NN data structure. Only one shallow cutting (�k j) is shown for each tower. The orange planes in T1 and T2 are pruned
when building �k j−1 , but are not removed from the conflict lists in �k j . When querying for the k-NN, the green prisms in �k j of each tower are considered.
Note that the three orange planes occur in each of the conflict lists.

The data structure consists of t = O (logb n) “towers” T (1), .., T (t) , for some fixed b ≥ 2. Each tower T (i) consists of a
hierarchy of shallow cuttings, which is built using a process that involves a subset of planes F (i) ⊆ F . For T (1) we have
F (1) = F , and a hierarchy of � = 	log(n/k0)
 shallow cuttings, for a fixed constant k0. For j = 0, .., � we have a k j -shallow
cutting of a subset of the planes F j ⊆ F (1) , where k j = 2 jk0. We set F� = F (1) and construct these cuttings from j = � to 0.
After computing �k j (F j), we find the set F ×

j of “bad” planes that intersect more than c log n prisms in �k�
(F�), .., �k j (F j),

i.e. in all cuttings in the hierarchy so far. We prune these planes by setting F j−1 = F j \ F ×
j , and removing all planes in F ×

j
from the conflict lists of the prisms in �k j (F j). Note that these bad planes are removed only from the conflict lists of the
current cutting, and can still occur in conflict lists of higher level cuttings. In the final �k0 (F0) cutting, each conflict list has
a constant size of O (k0). We denote by F (1)

bad = F ×
0 ∪ ... ∪ F ×

� the set of all bad planes generated during this process. By F (1)

live

we denote the set of planes that have not been pruned during the process, so F (1)

live = F (1) \ F (1)

bad. We then set F (i+1) = F (i)
bad

and recursively build T (i+1) on the functions in F (i+1) .
In the end, the set F is partitioned into sets F (1)

live, .., F
(t)
live. When insertions and deletions take place, planes can move

from a set F (i)
live to some F (i′)

live, but the property that these sets form a partition of F will be preserved. Kaplan et al. prove
the following lemma on the size of F (1)

live after the preprocessing phase:

Lemma 1 (Lemma 7.1 of [13]). For any ζ ∈ (0, 1) there exists a sufficiently large (but constant) choice of c, such that |F (1)

live| ≥ (1 − ζ)n

after building T (1) .

When ζ = 1/b, we get O (logb n) towers, for some fixed b ≥ 2, as desired. According to Kaplan et al. [13], this is achieved
by choosing c ≥ γ

ζ
= bγ = O (b), for some constant γ . Thus a plane occurs O (b log n) times in a tower. Here, we first

consider only the case where b = 2.
To build a single tower, naively we would need to compute O (logn) shallow cuttings, each of which takes O (n log n)

time. By using information of previously computed cuttings, Chan [12] recently achieved an overall construction time of
O (n log n). The preprocessing time of the entire data structure thus adheres to the recurrence P (n) ≤ P (n/2) + O (n log n).
This solves to P (n) = O (n log n).

Insertions. To insert a plane f into F , we insert it into F (1) . When we insert a function f into F (i) we assign it to
F (i)

bad, and thus recursively insert it in F (i+1) . When |F (i)
bad| reaches 3/4 · |F (i)| we rebuild the towers T (i), .., T (t) . The first

tower, T (i) , is built on the planes { f } ∪ F (i)
live ∪ ... ∪ F (t)

live, and the following towers are again built recursively on the new
sets F (i′−1)

bad . Only after �(|F (i)|) insertions can such a rebuild occur. The insertion time is thus given by the recurrence
I(n) ≤ I(3n/4) + O (P (n)/n), where P (n) is the time to build the data structure on a set of n planes. Using P (n) = O (n log n),
this results in an amortized insertion time of O (log2 n).

Deletions. Deletions are not performed explicitly on the conflict lists. Instead, for each prism ∇ we keep track of the
number of planes in F∇ that have been deleted so far, denoted by d∇ . When deleting a plane f , we increase d∇ for all
prisms with f ∈ F∇ , and remove f from the set F (i)

live that includes f . When too many planes in a conflict list have been
deleted, we purge the prism. In particular, we purge a prism ∇ in a k j -shallow cutting when d∇ ≥ k j/2 = 2 j−1k0. When a
prism in T (i) is purged, we mark it as such, and we reinsert all planes f ′ ∈ F∇ ∩ F (i)

live. These planes are effectively moved
from F (i)

live to some other F (i′)
live. Note that we only reinsert planes that have not been deleted so far. This scheme ensures a

prism is only purged after at least k j/2 deletions, and this causes at most |F∇ | = O (k j) reinsertions. Thus, each increment
of d∇ causes amortized O (1) reinsertions. This gives an amortized deletion time of O (log4 n).
4

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976
Nearest neighbor queries. When answering a nearest neighbor query for a query point q, we simply find the prism con-
taining q in the lowest (j = 0) cutting of each T (i) by a point location query in O (log n) time. We then go through each
conflict list (of constant size) to find the plane that is lowest at q. If the plane we find for T (i) is not in F (i)

live, we ignore the
result. When a prism has been purged, we simply skip it. Finally, we return the plane that is lowest among the O (log n)

planes that are found. As we perform O (log n) point location queries, the query time is O (log2 n).

k-nearest neighbors queries. Answering k-nearest neighbors queries using this dynamic 1-NN data structure is straightfor-
ward. For each tower we consider the prism containing q of the shallow cutting at level jk := log(Ck/n)�, for some large
enough constant C . The size of the conflict list of each of these prisms is O (k), thus we can find the k-lowest live planes
in each conflict list in O (k) time. Chan [11] proves that it is indeed sufficient to consider only planes in these conflict lists.
This query algorithm has a running time of O (log2 n + k log n).

However, even if we were to know the exact number of the k-nearest neighbors that occurs in each tower, we would
not be able to support k-NN queries in O (log2 n + k) time. When a plane is pruned during the preprocessing, or when a
prism is purged, the plane is only removed from the conflict lists of the current shallow cutting. It can thus still occur in
other shallow cuttings in the hierarchy. This means that we can encounter the same plane multiple times when querying
each tower for the k-lowest planes. See Fig. 2 for an illustration. As there are O (log n) towers, this yields an O (k log n) term
in the query time.

General distance functions. Kaplan et al. [13] showed how to adapt Chan’s data structure to support more general shallow
cutting algorithms. The main differences between their data structure and the one from Chan is that planes are only pruned
when they appear in (S(n, 1)/n) · c log n conflict lists. Kaplan et al. essentially prove the following lemma.

Lemma 2 (Kaplan et al. [13]). Given an algorithm that constructs a k-shallow cutting of size S(n, k) on n functions in T (n, k) time, such
that the prism containing a query point can be located in Q (n, k) time, we can construct a data structure of size O (S(n, 1) logn) that
dynamically maintains a set of at most n functions F . Reporting the lowest function at a query point q takes O (Q (n, 1) log n) time, in-
serting a function in F takes O ((T (n, 1)/n) log2 n) amortized time, and deleting a function from F takes O ((T (n, 1)S(n, 1)/n2) log4 n)

amortized time.

From now on we consider the general variant, where the data structure consists of O (logb n) towers. The following
lemma describes the properties of the 1-NN data structure we need to construct our general fully dynamic k-nearest neigh-
bors data structure.

Lemma 3. Let b ≥ 2 be any fixed value and S(n, k) be the maximum size of a k-shallow cutting. There is a dynamic nearest neighbor
data structure that has the following properties.

1. The data structure consists of O (logb n) towers.
2. A function occurs O (b logn · S(n, 1)/n) times in a conflict list in a single tower.
3. The insertion time is O (b logb n · P (n)/n), where P (n) is the preprocessing time.
4. A deletion causes amortized O (b logb n log n · S(n, 1)/n) reinsertions.
5. To find the k-NN of a query point q, it is sufficient to consider O (logb n) prisms, namely for each tower the prism containing q of

the shallow cutting at level jk := log(Ck/n)�, for some large enough constant C.

3. Querying multiple k-NN data structures simultaneously

In this section we introduce a method to find the k-nearest neighbors of a query point q spread over t (disjoint) k′-NN
data structures storing a set of sites S simultaneously. Suppose the query time of such a k′-NN data structure is O (Q (n) +k′),
for a non-decreasing function Q . Naively, querying each data structure for the k closest sites would take O (Q (n)t + tk) time.
Our method allows us to find the k-NN over all these data structures in O (Q (n)t +k) time instead, thus reducing the O (tk)

term to O (k). More formally, we prove the following result.

Theorem 1. Let S1, .., St be disjoint sets of point sites of sizes n1, .., nt , each stored in a data structure that supports k′-NN queries
in O (Q (ni) + k′T) time, where T is the time for evaluating d(p, q). There is a k-NN data structure on

⋃
i Si that supports queries in

O (Q (n)t + kT) time. The data structure uses O (
∑

i C(ni)) space, where C(ni) is the space required by the k-NN structure on Si .

Proof. We first describe the algorithm to query all t data structures simultaneously, and then analyze its running time.

Query algorithm. We use the heap selection algorithm of Frederickson [18] to answer k-NN queries efficiently. This algo-
rithm finds the k smallest elements of a binary min-heap of size N � k in O (k) time. Running this algorithm on a heap
that contains all sites s ∈ S exactly once, with the distance d(s, q) as key for each site, would return the k-nearest neighbors.
However, building this entire heap takes linear time. To overcome this issue, we do not construct the entire heap we query
before starting the algorithm. Instead, the heap is expanded during the query when necessary. See Fig. 3 for an example.
5

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976
Fig. 3. Example of expansion. Blue elements have been visited by the algorithm, orange elements have not. The expansion (building the next subheap)
occurs when the last element is visited.

Fig. 4. The heap that we construct for the k-nearest neighbors query. The subheaps of which all elements have been visited are indicated in blue. The
subheaps that have been built, but for which not all elements have been visited, are indicated in orange. The white subheaps have not been built so far,
because not all elements of their predecessor have been visited.

To know when to expand the heap, we require that the Frederickson algorithm only visits a node after the parent of that
node has been visited. This implies that once a leaf of the heap is visited by the algorithm, we can expand the heap further
below that leaf without hindering the algorithm.

Next, we describe the heap H , on which we call the heap selection algorithm, in more detail. As stated before, H contains
all sites s ∈ S exactly once, with the distance d(s, q) as key for each site. Let S1, .., St be the partition of S into t disjoint
sets, where S j is the set of sites stored in the j-th k′-NN data structure. For each set of sites S j , j ∈ {1, .., t}, we define a
heap H(S j) containing all sites in S j . We then “connect” these t heaps by building a dummy heap H0 of size O (t) that has
the roots of all H(S j) as leaves. We set the keys of the elements of H0 to −∞. Let H be the complete data structure (heap)
that we obtain this way, see Fig. 4. It follows that we can now compute the k sites closest to q by finding the |H0| + k
smallest elements in the resulting heap H and reporting only the non-dummy sites.

What remains is how to (incrementally) build the heaps H(S j) while running the heap selection algorithm. Each such
heap consists of a hierarchy of subheaps H1(S j), .., H O (logn)(S j), such that every element of S j appears in exactly one Hi(S j).
Moreover, since the sets S1, .., S j are pairwise disjoint, this holds for any s ∈ S , i.e. s appears in exactly one Hi(S j). The
level 1 heaps, H1(S j), consist of the k1 = Q (n) sites in S j closest to q, which we find by querying the static data structure
of S j . The subheap Hi(S j) at level i > 1 is built only after the last element e of Hi−1(S j) is visited by the heap selection
algorithm. We then add a pointer from e to the root of Hi(S j), such that the root of Hi(S j) becomes a child of e, as in
Fig. 3.

To construct a subheap Hi(S j) at level i > 1, we query the static data structure of S j using ki = k12i−1. The new subheap
is built using all sites returned by the query that have not been encountered earlier. It follows that all elements of Hi(S j)

are larger than any of the elements in H1(S j), .., Hi−1(S j). Thus, the heap property is preserved.

Analysis of the query time. As stated before, finding the k-smallest non-dummy elements of H takes O (k +|H0|) time [18].
We now analyze the time used to construct H .

First, the level 0 and level 1 heaps are built. Building H0 takes only O (t) time. To build the level 1 heaps, we query each
of the substructures using k1 = Q (n)/T , where T denotes the time to evaluate the distance function. In total these queries
take O ((Q (n) + k1T)t) = O (Q (n)t) time. Retrieving the next ki elements to build Hi(S j) for i > 1 requires a single query,
and thus takes O (Q (n) + ki T) time. To bound the time used to build all heaps at level greater than 1, we first prove the
following lemma.
6

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976
Lemma 4. The size of a subheap Hi(S j), j ∈ {1, .., t}, at level i > 1 is exactly k12i−2 .

Proof. To create Hi(S j), we query the static data structure of S j to find the k12i−1 sites closest to q. Of these sites, only the
ones that have not been included in any of the lower level subheaps are included in Hi(S j). The sites previously encountered
are exactly the k12i−2 sites returned in the previous query. It follows that |Hi(S j)| = k1(2i−1 − 2i−2) = k12i−2. �

Building Hi(S j) takes O (Q (n) + ki T) time. To pay for this, we charge O (T) to each element of Hi−1(S j). Because we
choose k1 = Q (n)/T , Lemma 4 implies that |Hi−1(S j)| = �(Q (n)/T), and that ki = k12i−1 = 22k12i−3 = O (|Hi−1(S j)|). Note
that the heap Hi(S j), i > 1, is only built when the final element of Hi−1(S j) is visited. Thus, we only charge elements of
the heaps of which all elements have been visited (shown blue in Fig. 4). In total, O (k) elements (not in H0) are visited,
so the total size of these subheaps is O (k). From this, and the fact that all subheaps are disjoint, it follows that we charge
O (T) to only O (k) sites. The total running time thus becomes O (t) + O (Q (n)t) + O (kT) = O (Q (n)t + kT). This completes
the proof of Theorem 1. �
4. An insertion-only data structure

We describe a method that transforms a static k-NN data structure with query time O (Q (n) +k) into an insertion-only k-
NN data structure with query time O (Q (n) log n +k). Insertions take O ((P (n)/n) log n) time, where P (n) is the preprocessing
time of the static data structure, and C(n) is its space usage. We assume Q (n), P (n), and C(n) are non-decreasing.

To support insertions, we use the logarithmic method [10]. We partition the sites into O (log n) groups S1, .., S O (logn)

with |Si | = 2i for i ∈ {1, .., O (logn)}. To insert a site s, a new group containing only s is created. When there are two groups
of size 2i , these are removed and a new group of size 2i+1 is created. For each group we store the sites in the static
k-NN data structure. This results in an amortized insertion time of O ((P (n)/n) log n). This bound can also be made worst-
case [10]. The main remaining issue is then how to support queries in O (Q (n) log n + k) time, thus avoiding an O (k log n)

term in the query time. Applying Theorem 1 directly solves this problem, and we thus obtain the following result.

Theorem 2. Let S be a set of n point sites, and let D be a static k-NN data structure of size O (C(n)), that can be built in O (P (n)) time,
and answer queries in O (Q (n) + k) time. There is an insertion-only k-NN data structure on S of size O (C(n)) that supports queries in
O (Q (n) log n + k) time. Inserting a new site in S takes O ((P (n)/n) log n) time.

4.1. Points in the plane

In the Euclidean metric, k-nearest neighbors queries in the plane can be answered in O (log n +k) time, using O (n) space
and O (n log n) preprocessing time [8,3]. Hence:

Corollary 1. There is an insertion-only data structure of size O (n) that stores a set of n sites in R2 , allows for k-NNs queries in
O (log2 n + k) time, and insertions in O (log2 n) time.

If we increase the size of each group in the logarithmic method to bi , with b = logε n and ε > 0, we get only O (logb n)

groups instead of O (log n). This reduces the query time to O (log2 n/ log logn +k), matching the fully dynamic data structure.
However, this also increases the insertion time to O (log2+ε n/ log log n). For general constant-complexity distance functions,
we achieve the same query time using Liu’s data structure [5]. The space usage is O (n log log n) and the expected insertion
time is O (log2 n).

4.2. Points in a simple polygon

In the geodesic k-nearest neighbors problem, S is a set of sites inside a simple polygon P with m vertices. For any two
points p and q the distance d(p, q) is defined as the length of the shortest path π(p, q) between p and q fully contained
within P . The input polygon P can be preprocessed in O (m) time so that the geodesic distance d(p, q) between any two
points p, q ∈P can be computed in O (log m) time [19].

To apply Theorem 2, we need a static data structure for geodesic k-NN queries. We can build such a data structure by
combining the approach of Chan [2] and Agarwal et al. [9]. The data structure consists of a hierarchy of lower envelopes
of random samples R0 ⊂ R1 ⊂ .. ⊂ R logn . For each sample, we store a (topological) vertical decomposition of the downward
projection of the lower envelope, and the conflict lists of the corresponding pseudo-prisms. The downward projection is
a geodesic Voronoi diagram, which can be preprocessed for efficient point location queries using the method of Oh and
Ahn [20]. From a Clarkson and Shor style sampling argument, it follows that total expected size of all conflict lists of one
sample is O (n). Thus, the space of the resulting data structure is O (n log n) in expectation. We can then find a prism in one
of the vertical decompositions that contains the query point and whose conflict list has size O (k) in O (log(n +m) +k log m)

time [2]. This allows us to answer k-NN queries in the same time. The crux in this approach is in how to compute the
7

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976
Fig. 5. A partial decomposition of P and the corresponding heap used in a k-NN query for q.

conflict lists. We can naively compute these in O (mn) time by explicitly constructing the geodesic distance function for
each site, and intersecting it with each of the O (n) pseudo-prisms. It is unclear how to improve on this bound.

Theorem 3. Let S be a set of n sites in a simple polygon P with m vertices. In O (n(logn log2 m + log3 m)) time we can build a data
structure of size O (n logn log m), excluding the size of the polygon, that can answer k-NN queries with respect to S in O (log(n +
m) log m + k log m) time.

Proof. To circumvent the issue we describe above, we partition P into two subpolygons Pr and P� of roughly the same
size by a diagonal d. Let Sr and S� denote the sites in Pr and P� , respectively. We then build a data structure that can find
the k-nearest neighbors of any query point q ∈ Pr among the sites in S� efficiently. To allow us to answer general queries,
i.e. to find the k-nearest neighbors for any q ∈ P among all sites in S , we build such a data structure on both Pr and P� ,
and then recursively partition the polygon further. This results in a decomposition of the polygon of O (log m) levels.

To answer k-NN queries for a point in Pr among the sites in S� , we consider the Voronoi diagram of sites in S� (resp.
Sr) restricted to Pr . The bisector between any two sites in S� restricted to Pr is x-monotone with respect to the vertical
diagonal d. Agarwal et al. use this fact to construct an efficient data structure (Theorem 22 of [9]) for our problem. This is
essentially the data structure that was described at the start of this section. However, because the bisectors are x-monotone,
we can efficiently compute the conflict lists by only considering the functions intersecting the corners of each prism. Because
of the monotonicity, a bisector cannot enter and exit again through the same edge of a prism. Therefore, the conflict list
of a prism is simply the union of the conflict lists of its corners (Lemma 15 of [9]). For each function f , we compute the
vertices it conflicts with by first finding a vertex v on d that conflicts with f , and then performing a breadth first search
to find all vertices (corners) it conflicts with. Thus, we can build the data structure in O (n(log n log m + log2 m)) time (see
[9] for details). The data structure requires O (n log n) space, excluding the size of the polygon, and it allows us to find the
k-nearest neighbors among S� for a point q ∈Pr in O ((log n + k) log m) expected time [9].

To answer a k-NN query in P , we first check whether the query point q lies in Pr or P� . When q lies in Pr (resp. P�),
we query the data structure on S� to find the k-nearest neighbors among this set. To find the k-nearest neighbors among
Sr , we recursively query Pr . At each level of the decomposition, we thus consider a data structure on a single set of sites
(S� or Sr) (see Fig. 5). In the next paragraph, we describe how to improve the query time of the static data structure,
which can answer k-NN queries for a query point in Pr among sites in S� , to O (log(n + m) + k log m) time. It follows that,
using our technique from Section 3, we can find the k-NN in S , which are spread over O (logm) of these data structures, in
O (log(n + m) log m + k log m) time.

Improving the query time. The query time of the static data structure is determined by two factors: a point location query
in the topological vertical decomposition of a geodesic Voronoi diagram, this takes O (log n log m) time, and O (k) distance
queries that take O (log m) time. We can improve the point location time to O (log(n + m)) by incorporating the idea of
Oh and Ahn [20] to approximate a geodesic Voronoi diagram by a polygonal subdivision. Given the exact location of the
degree-1 and degree-3 vertices of the Voronoi diagram, they approximate each common boundary of two Voronoi regions by
connecting the two endpoints using at most three line segments. This allows them to find the (not-approximated) Voronoi
region that contains a query point q in O (log(n + m)) time, using O (n log(n + m)) preprocessing time. In our case, we want
to find the (pseudo-)prism that contains the query point. This corresponds to finding the (pseudo-)trapezoid, which is the
downward projection of the prism, of the (topological) vertical decomposition of a geodesic Voronoi diagram that contains
q. Thus, we need to slightly adapt their approach to not only find the Voronoi region of the query point q, but also the
exact trapezoid containing q.

Instead of approximating the bisector connecting two Voronoi vertices, we approximate each part of the bisector between
two vertices of the vertical decomposition separately, see Fig. 7. To approximate a bisector of sites s1 and s2 between vertices
u, v , Oh and Ahn first find two points t1, t2 such that the geodesic convex hull of t1, t2, u, v is contained in the Voronoi
regions of s1 and s2, and the boundary of this convex hull consists of at most four maximal concave polygonal curves. They
then approximate the bisector by either the line segment uv , when this is contained in the convex hull, or a polygonal
8

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976
Fig. 6. The four convex chains between u, t1, v, t2 are used to approximate the orange bisector between u and v .

Fig. 7. Approximation (in green) of the Voronoi diagram in Pr . To find the trapezoid containing q, we consider both colored trapezoids.

curve consisting of extensions of the edges incident to u and v of π(u, v), and a line segment tangent to π(t1, v) and
π(t2, u) that connects them.

We now consider the vertical decomposition of our Voronoi diagram. We want to approximate a bisector of sites s1 and
s2 between two vertices u, v of the vertical decomposition. Without loss of generality, let v be the vertex furthest from d.
Oh and Ahn choose ti as the junction of π(si, u) and π(si, v). When choosing the ti ’s like this, it could be that either of
the ti ’s is not contained in the trapezoid whose boundary we are approximating. In this case, we instead choose ti as the
intersection between π(si, v) and the left line segment defining the trapezoid, see Fig. 6. As π(si, v) is contained in the
Voronoi region of si , this intersection point indeed exists. Note that this also ensures the convex hull is still bound by at
most four maximal concave curves. Thus, we can use we can use the algorithm of Oh and Ahn [20] to approximate the
bisector within the convex hull.

To find the trapezoid containing a query point q, we use the query algorithm of Oh and Ahn [20]. The query is performed
as follows: first, we find the approximated trapezoid containing q by shooting a ray upwards from q, and determining what
segment in the approximated Voronoi diagram (or the polygon boundary) is hit. Let s be the site whose Voronoi region we
find. Suppose this is not the real trapezoid containing q, then q lies in a region bounded by part of a bisector of s and some
other site t , and the approximation of that bisector, see Fig. 7. To find this approximated bisector (and thus the trapezoid
in the Voronoi region of t containing q), we shoot a ray from q in direction opposite to the edge of π(s, q) incident to q.
This does not intersect the real bisector, and thus intersects the approximated bisector of s and t . Finally, we compare the
distance from q to the two sites to find the trapezoid of the vertical decomposition containing q. �

Applying Theorem 1 to the data structure of Theorem 3 proves the following corollary.

Corollary 2. Let P be a simple polygon with m vertices. There is an insertion-only data structure of size O (n logn log m + m) that
stores a set of n point sites in P , allows for geodesic k-NN queries in O (log(n + m) log n log m + k log m) expected time, and inserting
a site in O (log2 n log2 m + log n log3 m) time.

5. A fully dynamic data structure

In this section, we develop a k-NN data structure that supports both insertions and deletions, building on the results of
Chan [14]. The data structure we propose is an extension of the nearest neighbor data structure of Lemma 2, and achieves
the following result.
9

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976
Theorem 4. Given an algorithm that constructs a k-shallow cutting of size S(n, k) on n functions in T (n, k) time, such that the prism
containing a query point can be located in Q (n, k) time, we can construct a data structure that dynamically maintains a set of at most
n functions F for k-NN queries. The size of the data structure is O (S(n, 1)2/n · log n log log n), and operations are performed in time:

Query: O (Q (n,1) log n/ log log n + k)

Insertion: O ((S(n,1)T (n,1)/n2) log2+ε n)∗
Deletion: O ((T (n,1)/ log log n + T (n,n/ log n)) · S(n,1)2 log4+ε n/n3)∗

∗amortized

In Section 5.1, we first describe the k-NN data structure for planes by Chan [14], and then fill in the part missing from
Chan’s query algorithm. This data structure forms the basis for our general k-NN data structure. In Section 5.2, we then
discuss a simple deletion-only k-NN structure. This deletion-only structure allows us to adapt Chan’s k-NN data structure
to more general distance functions like the geodesic distance. In Section 5.3, we analyse the running times of our general
k-NN data structure with respect to the Euclidan distance, as this is somewhat easier to follow. In Section 5.4, we prove the
general running times with respect to any vertical shallow cuttings as stated in Theorem 4. Finally, in Section 5.5, we apply
Theorem 4 to the case of general constant-complexity distance functions and the geodesic distance.

5.1. A dynamic k-NN data structure for planes

Chan [14] describes how to adjust his original 1-NN data structure to efficiently perform k-NN queries. We denote this
(adjusted) data structure by D. There are two main changes in this data structure: the conflict lists are stored in k-NN data
structures, and the number of towers is reduced by using b = logε n. Only the live planes of the conflict list of each prism ∇
are stored in a data structure D0 that uses linear space, can perform k′-NN (or k′-lowest planes) queries in O (Q 0(|F∇|) +k′)
time, and deletions in D0(|F∇|) time. A different data structure is used to store small and large conflict lists. After building
a tower T (i) , each data structure D0 of a prism ∇ is built on F∇ ∩ F (i)

live. As the D0 data structures use linear space, the
space usage of the entire data structure is O (n log n).

Insertions are performed as in the original data structure, but the deletion of a plane h requires more effort than in
the original. In addition to increasing d∇ for each prism containing h, h is explicitly removed from the D0 data structures.
Note that T (i) for which h ∈ F (i)

live is the only tower whose D0 data structures contain h. When a prism in tower T (i) is
purged, we also delete its planes from the other D0 data structures in T (i) to retain this property. This gives an amortized
expected update time of U (n) = O (log6+ε n) [14]. The improvement of Kaplan et al. [13] reduces this to O (log5+ε n), and
the improvement of Chan [12] makes it deterministic. In Section 5.3 we discuss this update time in more detail w.r.t. our
adaption of the data structure. It follows from Lemma 3 and the above modifications that:

Lemma 5 (Chan [14]). Let q be a query point. In O (t log n) time, we can find t = O (logb n) prisms ∇1, .., ∇t , such that: (i) all prisms
contain q, (ii) the conflict list of each prism has size O (k), (iii) the conflict lists are pairwise disjoint and stored in a D0 data structure,
and (iv) the k sites in S closest to q appear in the union of the conflict lists of those prims.

So, to answer k-NN queries we can use a ki -NN query on each D0 data structure of the prisms ∇1, .., ∇t , where ki is the
number of sites from the k-nearest neighbors of q that appear in the conflict list of ∇i . This takes O (

∑t
i=1 Q 0(k) + ki) =

O (
∑t

i=1 Q 0(k) + k) time. However, it is unclear how to compute those ki values. Fortunately, we can use Theorem 1 to find
the k-nearest neighbors over all of the substructures in O (Q 0(k) logb n + k) time. Plugging in the appropriate query time
Q 0(k) (see Chan [14] and Section 5.3), this achieves a total query time of O (log2 n/ log log n + k) time as claimed.

5.2. A simple deletion-only data structure

Let H be a set of n planes, and let r ∈ N be a parameter. We develop a data structure that supports deletions, and
reporting the t lowest planes above a query point q ∈R2. For our application, we are mostly interested in the deletion time
of the data structure, and less in the query time. By picking r to be somewhat small, we can make deletions efficient at the
cost of making the query time fairly terrible.

Lemma 6. For any fixed r, we can construct a deletion-only data structure D0 of size O (n log r), or O (n) when n ≥ r1/ε , in O (n logn)

time that stores a set of n planes, allows for t-lowest planes queries in O (log r + n/r + t) time and deletions in O (r log n) amortized
time.

Proof. Our entire data structure consists of just � = O (log r) ki -shallow-cuttings �k0 , .., �k�
of the planes, for values ki =

2in/r�, for i = 0, .., �. Hence, this uses O (n log r) space in total. We can compute the shallow cuttings along with their
conflict lists in O (n log n) time [3]. Note that even when r > n, we only need to build O (log n) shallow cuttings.
10

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976

r)
Deletions. If we delete a plane, we remove it from all conflict lists in all cuttings. Since cutting �ki has size O (r/2i), each
plane occurs at most O (r/2i) times. Hence, the total time to go through all of these prisms is

∑log r
i=0 r/2i = O (r) time. When

more than half of the planes from any conflict list are removed, we rebuild the entire data structure. Because the smallest
conflict list contains at least n/r planes, at least n/2r deletions take place before a global rebuild. We charge the O (n log n)

cost of rebuilding to these planes, so we charge O (r logn) to each deletion. Deletions thus take amortized O (r log n) time.

Queries. We report the t-lowest planes at a query point q as follows. We consider the cutting for which ki = 2in/r� =
O (t), so at level i = log(Ctr/n)�, for some large enough constant C . When t < n/r, there is no such cutting, so we query
the lowest level cutting instead. We find the prism containing q by a point location query. As the largest cutting has size
O (r), this takes O (log r) time. We then simply report the t lowest planes at q by going through the entire conflict list. This
results in a query time of O (log r + n/r + t).

Reducing space usage. When n is large w.r.t. r, that is n ≥ r1/ε , we can use a similar approach to Chan [11,14] to achieve
linear space usage. Instead of storing the conflict lists explicitly, we only store the prisms of the shallow cuttings. Addition-
ally, we store the planes in an auxiliary halfspace range reporting data structure [21] with O (n log n) preprocessing time,
O (n1−ε) query time, O (logn) deletion time, and linear space. This results in a linear space data structure. To delete a plane,
we simply delete it in the auxiliary halfspace range reporting data structure in O (log n) time. After n

2r deletions we rebuild
the entire data structure. Thus the amortized deletion time remains O (r log n).

When performing a query, we first locate the prism ∇ as before. We then query the halfspace range reporting data
structure with the intersection point of the vertical line through q and the roof of ∇ . We find the t lowest planes by going
through the O (t) returned planes. This results in a query time of O (n1−ε + log r + n/r + t). Because n ≥ r1/ε , we have
n1−ε ≤ n/r, thus the query time is O (log r + n/r + t). �

General data structure. The data structure of Lemma 6 can be applied to any type of functions for which we have an
algorithm to compute vertical k-shallow cuttings. Refer to Section 2.1 for the definitions regarding the computation of k-
shallow cuttings. The data structure uses O (S(n, 1) log r) space. Note that the “lowest” cutting we use is an n/r-shallow
cutting. It follows that constructing all shallow cuttings takes O (T (n, n/r) log r) time. To delete a function, we remove all
occurrences of the function from the conflict lists in

log r∑
i=0

S(n,ki) =
log r∑
i=0

1

ki
f (n) =

log r∑
i=0

r

2i
f (n) = O ((r/n)S(n,1))

time, where we used the assumption that S(n, k) = 1
k f (n), for some function f (n). Additionally, we charge O ((r/n)T (n, n/r) log

to the deletion to pay for the global rebuild. To answer a query, we simply find the prism containing q in one cutting, so
the query time is O (Q (n, n/r) + n/r + t). This results in the following general lemma.

Lemma 7. For any fixed r, we can construct a deletion-only data structure of size O (S(n, 1) log r) in O (T (n, n/r) log r) time that
stores a set of n functions, allows for t-lowest functions queries in O (Q (n, n/r) + n/r + t) time and deletions in O ((r/n)(S(n, 1) +
T (n, n/r) log r)) amortized time.

5.3. A general dynamic k-NN data structure

In Section 5.3 and 5.4, we generalize the dynamic k-NN data structure from Section 5.1 to support other types of distance
functions. First, in this section, we analyse the space usage and running times of the data structure for planes, as this is
somewhat easier to follow. Next, in Section 5.4, we analyse these for the general data structure.

Lemma 8. There is a fully dynamic data structure of size O (n) that stores a set of n point sites and allows for planar k-nearest neighbors
queries using the Euclidean distance in O (log2 n/ log log n +k) time, insertions in O (log3+ε n/ log log n) amortized time, and deletions
in O (log5+ε n/ log log n) amortized time.

Proof. To generalize the dynamic k-NN data structure from Section 5.1 to other types of distance functions, we replace the
deletion-only data structure used by Chan [14] as D0 data structure by the data structure of Section 5.2. In our approach,
we use the same data structure for both small and large conflict lists. Queries and updates are performed as before (see
Sections 2.2 and 5.1). This results in a dynamic k-lowest functions data structure that can be used for any type of functions
for which we can construct k-shallow cuttings. As our D0 data structure only uses k-shallow cuttings, our approach is also
somewhat simpler than Chan’s, albeit at a slight increase in space usage. This problem can be solved by using the space
saving idea discussed in Section 5.2.
11

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976
Query time. Our bootstrapping data structure D0 has query time Q 0(n′) = O (log r + n′/r) and deletion time D0(n′) =
O (r log n′). Because we query the shallow cutting at level jk , the size of each conflict list we query is O (k). By again using
our scheme to find the k-nearest neighbors over the substructures simultaneously, the query time becomes:

Q (n) = O ([log n + Q 0(O (k))] logb n + k)

= O ((log n + (log r + k/r)) logb n + k).

If we set r = logn (and b = logε n just like Chan) we get

Q (n) = O ((log n + log log n + k/ logn) log n/ log log n + k)

= O (log2 n/ log log n + k).

Thus using our D0 data structure does not affect the query time.

Update time. In the following we analyze the update time of the data structure in more detail. The update time given by
Chan is:

U (n) = O (bO (1) log6 n + max
m≤n

D0(m) · bO (1) log5 n).

Note that this update time is based on the old approach of Chan, where a plane can occur O (b log2 n) times in a tower. To
give a more detailed analysis, we first study the insertion time and then the deletion time of D.

Lemma 3 states that insertion time is given by I(n) = O (b logb n · (P (n)/n)), where P (n) is the preprocessing time of
D. Our preprocessing time increases w.r.t. the original data structure, since after building the hierarchy of shallow cuttings
for a tower, we additionally need to build the structure D0 on each conflict list. As before, building the shallow cuttings
takes O (n log n) time [12]. Next, we analyze the time to build all data structures D0. The cutting at level j in the hierarchy
consists of O (n/k j) prisms, and the size each conflict list in the cutting is O (k j). Furthermore, there are log(n/k0) cuttings
in the hierarchy, as the lowest level cutting is a k0-shallow cutting. Let α be a constant bounding the size of the conflict
lists. Using that P0(n′) = O (n′ log n′), we find the following running time for building all D0 data structures of a single
tower:

log n
k0∑

j=0

O

(
n

k j

)
· P0(αk j) =

log n
k0∑

j=0

O

(
n

k j

)
· O

(
αk j log(αk j)

)

=
log n

k0∑
j=0

O
(
n log(αk j)

)

= O
(

log(n/k0) · n log
(
αk02log(n/k0)

))

= O (n log2 n).

The preprocessing time thus adheres to the recurrence relation P (n) ≤ P (n/b) + O (n log2 n), which solves to P (n) =
O (n log2 n). It follows that I(n) = O (b logb n · (P (n)/n)) = O (b log2 n logb n) = O (log3+ε n/ log log n). Note that the improve-
ment of building all shallow cuttings in a tower in O (n log n) time does not improve the insertion time to O (log2 n) as in
the 1-NN data structure, because building the D0 data structures is the dominant term.

When deleting a plane h that is live in tower T (i) , we remove the plane from all D0 of T (i) with h ∈ D0. There are
at most O (b log n) such data structures D0, because a plane can occur at most O (b log n) times in a tower. On the other
hand, by Lemma 3, deleting a plane causes amortized O (b log n logb n) reinsertions. Each reinserted plane is also removed
from the structures D0 of a single tower. This results in amortized O (b logb n log n) planes that are again removed from
O (b log n) structures. We can thus formulate the deletion time as D(n) = O (b log n logb n · (b log n · D0(n) + I(n))). Plugging in
D0(n) = O (log2 n) and I(n) = O (b log2 n logb n), we find D(n) = O (b2 log4 n logb n + b2 log3 n log2

b n) = O (bO (1) log4 n logb n) =
O (log5+ε n/ log log n).

Space usage. The space usage of a D0 data structure storing n′ planes is O (n′ log r). The space usage of D is thus S(n) =∑log n
k0

j=0
n
k j

· O (k j log r) = O (n log n log log n). Using the space reduction idea mentioned in Section 5.2, the space of a D0 data
structure is only O (n′) for n′ ≥ r1/ε . The space usage of the entire data structure is then

S(n) =
j′∑

j=0

n

k j
· O (k j log r) +

log n
k0∑

j= j′

n

k j
· O (k j) = O (j′n log r + n log n),

where j′ is such that k j′ = r1/ε . Using that r = log n we find S(n) = O (n log n). �

12

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976
5.4. Analysis of the running times for general shallow cuttings

We can use a similar scheme in a more general setting. In this section, we describe the running times of the data
structure w.r.t. any algorithm that can construct vertical k-shallow cuttings. We assume that S(n, k) = 1

k f (n), for some
function f (n). This implies that the size of a k-shallow cutting including its conflict lists is S(n, k) · O (k) = O (S(n, 1)).

We will prove the following theorem, which is similar to Lemma 2, but for k-lowest functions queries.

Theorem 4. Given an algorithm that constructs a k-shallow cutting of size S(n, k) on n functions in T (n, k) time, such that the prism
containing a query point can be located in Q (n, k) time, we can construct a data structure that dynamically maintains a set of at most
n functions F for k-NN queries. The size of the data structure is O (S(n, 1)2/n · log n log log n), and operations are performed in time:

Query: O (Q (n,1) log n/ log log n + k)

Insertion: O ((S(n,1)T (n,1)/n2) log2+ε n)∗
Deletion: O ((T (n,1)/ log log n + T (n,n/ log n)) · S(n,1)2 log4+ε n/n3)∗

∗amortized

Proof. As in Section 5.3, we apply the D0 data structure from Section 5.2 to the data structure described in Sections 2.2
and 5.1. Instead of Lemma 6, we apply the general data structure of Lemma 7.

Query time. Using the query time of the general D0 data structure of Lemma 7, we have Q 0(n′) = O (Q (n′, n′/r) + n′/r).
Just as in the Euclidean case, we use r = log n and b = logε n. The query time then becomes

Q (n) = O ([Q (n,1) + Q 0(O (k))] logb n + k)

= O ([Q (n,1) + Q (k,k/r) + k/r] logb n + k)

= O (Q (n,1) log n/ log log n + k/ log logn + k)

= O (Q (n,1) log n/ log log n + k).

Note that Q (k, k/r) = O (Q (n, 1)), as Q (n, k) is non-decreasing in n. Also, O (logb n/r) = O ((log n/ log log n)/ log n) =
O (1/ log log n).

Update time. To determine the insertion time, we start by analyzing the preprocessing time of the data structure. In the
preprocessing, we first construct the O (log n) shallow cuttings of a single tower in O ((T (n, 1) log n) time. Then, we again
build all structures D0 on (the live part of) the resulting conflict lists. A k j -shallow cutting consists of S(n, k j) prisms, each
with conflict list of size ≤ αk j . The time to build the D0 data structures is thus:

log n
k0∑

j=0

S(n,k j) · P0(αk j) =
log n

k0∑
j=0

S(n,k j) · O (T (αk j,αk j/r) log r)

= O

⎛
⎜⎝S(n,1) log r ·

log n
k0∑

j=0

1

k j
T (αk j,αk j/r)

⎞
⎟⎠

= O

⎛
⎜⎝S(n,1) log r ·

log n
k0∑

j=0

1

k j
T (αk j,1)

⎞
⎟⎠

= O ((S(n,1)T (n,1)/n) log n log r)

= O ((S(n,1)T (n,1)/n) log n log log n) .

Here we used that T (αk j, 1) ≥ αk j and T (n, k) is non-decreasing in n, which implies that T (αk j, 1)/k j ≤ T (n, 1)/n. It follows
that

P (n) = O ((S(n,1)T (n,1)/n) log n log logn),

and by Lemma 3:

I(n) = O (b logb n · P (n)/n) = O ((S(n,1)T (n,1)/n2) log2+ε n).

Note that the insertion time has increased by an O (log log n) factor compared to the Euclidean case, because the prepro-
cessing time of the D0 data structure now depends on log r.
13

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976
The deletion time is still determined by the number of reinsertions caused by a deletion. According to Lemma 3,
the amortized number of reinsertions caused by a deletion is O ((S(n, 1)/n)b log n logb n). Each reinsertion in turn
causes O ((S(n, 1)/n)b log n) updates on the D0 data structures. By Lemma 7 we have that D0(n) = O ((r/n)(S(n, 1) +
T (n, n/r) log r)). So, the deletion time is given by:

D(n) = O ((S(n,1)/n)b log n logb n(D0(n)(S(n,1)/n)b log n + I(n)))

= O ((S(n,1)/n) log2+ε n/ log log n(D0(n)(S(n,1)/n) log1+ε n + I(n)))

= O ((S(n,1)2T (n,n/ log n)/n3) log4+ε n

+ S(n,1)2T (n,1) log4+ε n/n3 log logn)

= O ((T (n,1)/ log logn + T (n,n/ log n)) · S(n,1)2 log4+ε n/n3).

Here, we used that S(n, 1) ≤ T (n, 1).

Space usage. The space usage of the data structure is

S(n) =
log n

k0∑
j=0

S(n,k j) · O (S(αk j,1) log r) = O (S(n,1)2/n · log n log log n). �

5.5. Applications

Points in the plane. For general distance functions of constant description complexity, for which the lower envelope of any
t functions has O (t) faces, edges, and vertices, Liu [16] recently presented an algorithm to compute k-shallow cuttings of
linear size. This improves the shallow cuttings used by Kaplan et al. [13] in the dynamic 1-NN data structure. Liu [16] also
shows that in the static setting we can use a circular range query data structure [22] to improve space usage. Like in the
Euclidean case, we can use this auxiliary data structure to improve the space usage of the D0 data structure to linear for
large n.

Corollary 3. There is a fully dynamic data structure of size O (n logn) that stores a set of n point sites and allows for k-nearest neighbors
queries using a fixed constant description complexity distance function in O (log2 n/ log log n + k) time. A site can be inserted in
O (log3+ε n/ log log n) expected amortized time and deleted in O (log5+ε n/ log log n) expected amortized time.

Proof. The k-shallow cutting algorithm by Liu [16] produces shallow cuttings of size S(n, k) = O (n/k) in T (n, k) =
O (n log3 nλs+2(log n)) expected time. A prism containing a query point can be located using a point location data struc-
ture in Q (n, k) = O (log n) time. We can then apply Theorem 4 directly to obtain a k-NN data structure.

In the recently published journal version of the paper [5], Liu improves upon these results even further. The improved
algorithm produces shallow cuttings of size S(n, k) = O (n/k) in T (n, k) = O (n log n) expected time. To be precise, the con-
struction algorithm of Liu [5] can build all shallow cuttings in a hierarchy in O (n log n) expected time. This means that the
preprocessing and deletion time of the bootstrapping data structure (Lemma 7) are improved to O (n log n) and O (r log n),
respectively. Applying Theorem 4 to these shallow cuttings, and adjusting the update times to account for this improvement
in the bootstrapping data structure, proves the result. �

Points in a simple polygon. Agarwal et al. [9] show how to use a data structure based on the structure by Chan to perform
geodesic 1-NN queries. We adapt this data structure by again storing the conflict lists in the data structure of Section 5.2.
The data structure by Agarwal et al. partitions the polygon recursively into two subpolygons, as described in Section 4.2.
It then uses the Chan data structure to find the nearest neighbor in the corresponding subpolygon at each of the O (log m)

levels of the decomposition. Note that in the k-NN case, we can again use our scheme of Section 4 to find the k-NN spread
over O (log m) data structures simultaneously.

The shallow-cuttings that are described in [9] use pseudo-prisms that are no longer of constant complexity. We refer to
the paper for the precise definition. For our purposes, we need only the property that we can still find the prism containing
a query point efficiently.

Corollary 4. Let P be a polygon with m vertices. There is a fully dynamic data structure of size O (n log5 n log m log logn +
m) that stores a set of n point sites in P and allows for geodesic k-nearest neighbors queries in O (log2 n log2 m/ log log n +
k log m) time, insertions in O (log8+ε n log m + log7+ε n log3 m) expected amortized time, and deletions in O ((log12+ε n log m +
log11+ε n log3 m)/ log log n) expected amortized time.
14

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976
Proof. Theorem 23 of [9] states that a k-shallow cutting �k(F) of F of topological complexity S(n, k) = O ((n/k) log2 n) can
be computed in expected time O ((n/k) log3 n(log n + log2 m) +n log2 m +n log3 n log m). Our improvement for the static k-NN
data structure of Section 4 also leads to a slight improvement in the construction time of a shallow cutting. In particular, we
can build a shallow cutting in T (n, k) = O ((n/k) log3 n(log n + log2 m) +n log2 m +n log2 n log(n +m)) expected time. Locating
the correct prism takes Q (n, k) = O (logn log m) time. By applying Theorem 4 we find for D:

Q (n) = O (log2 n log m/ log logn + k)

I(n) = O (log8+ε n + log7+ε n log2 m)

D(n) = O ((log12+ε n + log11+ε n log2 m)/ log logn)

S(n) = O (n log5 n log log n)

Using this data structure at each of the O (log m) levels of the decomposition and applying the scheme from Section 4 to
achieve O (polylog(n, m) + k) query time proves the result. �

The following theorem summarizes the results of this section, together with the results from Section 5.3.

Theorem 5. There is a fully dynamic data structure of size S(n) that stores a set of n sites in the plane and allows for k-nearest
neighbors queries in Q (n) time, insertions in I(n) amortized time, and deletions in D(n) amortized time. For the general and geodesic
case, the update times are expected running times. P is a simple polygon with m vertices.

Euclidean General Geodesic in P

Q (n) O
(

log2 n
log log n + k

)
O

(
log2 n

log logn + k
)

O
(

log2 n log2 m
log logn + k log m

)

I(n) O
(

log3+ε n
log log n

)
O

(
log3+ε n
log logn

)
O (log8+ε n log m + log7+ε n log3 m)

D(n) O
(

log5+ε n
log log n

)
O

(
log5+ε n
log logn

)
O

(
log12+ε n logm

log logn + log11+ε n log3 m
log logn

)

S(n) O (n log n) O (n log n) O (n log5 n log m log log n + m)

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] A. Andoni, P. Indyk, Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions, Commun. ACM 51 (1) (2008) 117–122.
[2] T.M. Chan, Random sampling, halfspace range reporting, and construction of ≤ k-levels in three dimensions, SIAM J. Comput. 30 (2) (2000) 561–575.
[3] T.M. Chan, K. Tsakalidis, Optimal deterministic algorithms for 2-d and 3-d shallow cuttings, Discrete Comput. Geom. 56 (4) (2016) 866–881.
[4] D.-T. Lee, On k-nearest neighbor Voronoi diagrams in the plane, IEEE Trans. Comput. C-31 (6) (1982) 478–487.
[5] C. Liu, Nearly optimal planar k nearest neighbors queries under general distance functions, SIAM J. Comput. 51 (3) (2022) 723–765.
[6] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inf. Theory 13 (1) (1967) 21–27.
[7] C. Liu, D.T. Lee, Higher-order geodesic Voronoi diagrams in a polygonal domain with holes, in: Proceedings of the Twenty-Fourth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA, SIAM, 2013, pp. 1633–1645.
[8] P. Afshani, T.M. Chan, Optimal halfspace range reporting in three dimensions, in: Proceedings of the Twentieth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA, SIAM, 2009, pp. 180–186.
[9] P.K. Agarwal, L. Arge, F. Staals, Improved dynamic geodesic nearest neighbor searching in a simple polygon, in: 34th International Symposium on

Computational Geometry, SoCG, in: LIPIcs, vol. 99, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, pp. 4:1–4:14.
[10] M.H. Overmars, The Design of Dynamic Data Structures, Lecture Notes in Computer Science, vol. 156, Springer, 1983.
[11] T.M. Chan, A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries, J. ACM 57 (3) (2010) 16:1–16:15.
[12] T.M. Chan, Dynamic geometric data structures via shallow cuttings, in: 35th International Symposium on Computational Geometry, SoCG, in: LIPIcs,

vol. 129, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 24:1–24:13.
[13] H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, M. Sharir, Dynamic planar Voronoi diagrams for general distance functions and their algorithmic applica-

tions, Discrete Comput. Geom. 64 (3) (2020) 838–904.
[14] T.M. Chan, Three problems about dynamic convex hulls, Int. J. Comput. Geom. Appl. 22 (4) (2012) 341–364.
[15] T.M. Chan, 2021, personal communication.
[16] C. Liu, Nearly optimal planar k nearest neighbors queries under general distance functions, in: Proceedings of the Thirty-First Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA, SIAM, 2020, pp. 2842–2859.
[17] J. Matoušek, Reporting points in halfspaces, Comput. Geom. Theory Appl. 2 (3) (1992) 169–186.
15

http://refhub.elsevier.com/S0925-7721(22)00119-5/bib18673BD3BBAD6909047D60F1714D647Es1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bibDD212619235111A74E7D2010C85A125Es1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib2A20A4FD8734361DCD49A39BCB3B7C9Fs1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bibCD31D6FE89B3248336EB028807839E85s1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bibFDF51BF31C936CFB3C5461734B44B531s1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib3ED656A03C6EFF5CE3B498EFB821A256s1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bibDFFE9E489583A8449518C5929C3DEDCAs1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bibDFFE9E489583A8449518C5929C3DEDCAs1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib13C5ACA58D1BB8535CD910535039F73Bs1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib13C5ACA58D1BB8535CD910535039F73Bs1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib630790E9E84418F101A2F1B38247B530s1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib630790E9E84418F101A2F1B38247B530s1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib0D1635794125CCF82433D12B07833D38s1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib805A58E2A1510321FE915CD68C253334s1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib2660EB46299CD99AF024A13ECE491D9Es1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib2660EB46299CD99AF024A13ECE491D9Es1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib44F9C7E3C9CB98D80669633492FB1DB6s1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib44F9C7E3C9CB98D80669633492FB1DB6s1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib484EC01B07A5839F747736A6CE00D259s1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bibFAD2CC13C74730B0E71D34847E48CFF3s1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bibFAD2CC13C74730B0E71D34847E48CFF3s1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bibEC91FFCF3531766BF654F7B09A0C21DBs1

S. de Berg and F. Staals Computational Geometry: Theory and Applications 111 (2023) 101976
[18] G.N. Frederickson, An optimal algorithm for selection in a min-heap, Inf. Comput. 104 (2) (1993) 197–214.
[19] L.J. Guibas, J. Hershberger, Optimal shortest path queries in a simple polygon, J. Comput. Syst. Sci. 39 (2) (1989) 126–152.
[20] E. Oh, H. Ahn, Voronoi diagrams for a moderate-sized point-set in a simple polygon, Discrete Comput. Geom. 63 (2) (2020) 418–454.
[21] P.K. Agarwal, J. Matousek, Dynamic half-space range reporting and its applications, Algorithmica 13 (4) (1995) 325–345.
[22] P.K. Agarwal, J. Matousek, M. Sharir, On range searching with semialgebraic sets. II, SIAM J. Comput. 42 (6) (2013) 2039–2062.
16

http://refhub.elsevier.com/S0925-7721(22)00119-5/bibB2932552913D307CECDED5C686248BE1s1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib49E18F5AD4B685EA3552FAF70D75FD4Fs1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib765876A0E6F151626E0514AE0A679636s1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bib8EF470A209E351D5A6FC5912F036C8AFs1
http://refhub.elsevier.com/S0925-7721(22)00119-5/bibC40521E628AC3034D352D08813ABCEB3s1

	Dynamic data structures for k-nearest neighbor queries
	1 Introduction
	2 Preliminaries
	2.1 Shallow cuttings
	2.2 A dynamic nearest neighbor data structure

	3 Querying multiple k-NN data structures simultaneously
	4 An insertion-only data structure
	4.1 Points in the plane
	4.2 Points in a simple polygon

	5 A fully dynamic data structure
	5.1 A dynamic k-NN data structure for planes
	5.2 A simple deletion-only data structure
	5.3 A general dynamic k-NN data structure
	5.4 Analysis of the running times for general shallow cuttings
	5.5 Applications

	Declaration of competing interest
	Data availability
	References

