
https://doi.org/10.1007/s10664-022-10238-y

A systematic literature review on trust in the software
ecosystem

Fang Hou1 · Slinger Jansen1,2

Accepted: 9 September 2022 /
© The Author(s) 2022

Abstract
The worldwide software ecosystem is a trust-rich part of the world. Throughout the software
life cycle, software engineers, end-users, and other stakeholders collaboratively place their
trust in major hubs in the ecosystem, such as package managers, repository services, and
software components. However, as our reliance on software grows, this trust is frequently
violated by bad actors and crippling vulnerabilities in the software supply chain. This study
aims to define software trust in the worldwide SECO, that is, to determine what signifies
a trustworthy system, actor, or hub. We conduct a systematic literature review on the con-
cept of trust in the software ecosystem. We acknowledge that trust is something between
two actors in the software ecosystem, and we examine what role trust plays in the rela-
tionships between end-users and (1) software products, (2) package managers, (3) software
producing organizations, and (4) software engineers. Two major findings emerged from the
systematic literature review. To begin, we define trust in the software ecosystem by examin-
ing the definition and characteristics of trust. Second, we provide a list of trust factors that
can be used to assemble an overview of software trust. Trust is critical in the communica-
tion between actors in the worldwide software ecosystem, particularly regarding software
selection and evaluation. With this comprehensive overview of trust, software engineer-
ing researchers have a new foundation to understand and use trust to create a trustworthy
software ecosystem.

Keywords Software ecosystem · Software trust · Software package evaluation ·
Literature review

Communicated by: Hideaki Hata

� Fang Hou
f.hou@uu.nl

Slinger Jansen
slinger.jansen@uu.nl

1 Department of Information and Computer Science, Utrecht University,
Utrecht, Netherlands

2 School of Engineering Science, Lappeenranta University of Technology,
Lappeenranta, Finland

Published online: 23 November 2022

Empirical Software Engineering (2023) 28:8

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10238-y&domain=pdf
http://orcid.org/0000-0002-8042-3278
mailto: f.hou@uu.nl
mailto: slinger.jansen@uu.nl

1 Introduction

Software reuse enables software engineers to build software systems without starting from
scratch. Sometimes, when building software, they are confronted with a choice: build it
themselves or integrate a component from another software producing organization. If the
choice is made to integrate a component, the second choice is a selection problem: which
component should be selected? There are typically many options to select from, depending
on the software engineer’s perspective on which factors are more relevant in the selection
process. Factors such as feature completeness, software component quality, and technology
can all determine whether the software engineer selects a component. While researchers
have called for more structured approaches to software selection (Farshidi et al. 2021), the
selection process is typically completely dependent on the context of the software packagers
or engineers.

Software ecosystems (SECOs) are sets of actors that collaboratively serve a market for
software and services, typically with an underlying technical platform (Jansen et al. 2013).
The union of all SECOs creates the worldwide SECO, i.e., all software producing orga-
nizations, software end-users, and actors. SECOs have upstream flows from end-users to
software engineers, which contain, for example, money and data, as well as downstream
flows, which contain, for example, source code and packages. The worldwide SECO is
a trust-rich part of the world. End-users expect certain trustworthiness when download-
ing apps from their favorite application store. For instance, when the App Store provides
checksums, a technology to determine the authenticity of the received data for each deliv-
erable; the end-users can ensure that the data they receive is the same data from the
software engineer. The difference between trust and trustworthiness will be explained in
Section 4.1.4.

However, more often than not, there is no sound basis for trust in the SECO hubs.
Trust can be considered as founded and unfounded. There are more soft ways to create
founded trust, e.g., ensuring that the software engineer has been a productive member of the
SECO for a long time or ensuring that the software developed achieves established qual-
ity levels. Both soft and hard trust do not provide watertight guarantees, as the external
environment can also impact trust, e.g., new attacks from the external world. According to
Sonatype (2021), the number of supply chain attacks is dramatically increasing, posing sig-
nificant security risks to both software producing organizations and end-users. For example,
bad actors shift their attacks by inserting malicious code into the source code repositories
or software packages to acquire a critical advantage of time, allowing malware to spread
throughout the supply chain.

Standardization, processes, and models have been proposed to evaluate, select, and adopt
software to address “trust erosion” from academic and industrial perspectives. For exam-
ple, ISO/ISO 9126: 2001 and ISO/IEC 25010 provide standards to specify, measure, and
evaluate the quality of systems and software; STRAM (Security, Trust, Resilience, and
Agility Metrics) is a system-level trustworthiness metric framework to provide evidence
in the measurement and quality of trustworthy systems (Cho and Xu 2019); and ABCDE
(Acceptance, Behavior, Constraint, Design, Extension) computes the trustworthy degree of
the software component based on user feedback (Wang et al. 2019). Despite this, not all of
them are widely used to select software in the industry. The primary reasons are: (1) “It
lacks a trust model that is comprehensive enough to support trust management in the com-
ponent software system at different decision points for solving various trust-related issues”
(Yan 2008); (2) “Usually targeting mainly on quality” (Li et al. 2021); (3) “Most of the
factors are abstract and lack clarity or guides that can be used to quantify trust factors”

8 Page 2 of 38 Empir Software Eng (2023) 28:8

(Li et al. 2021); (4) “Current solutions do not address this problem of trust changing with
time” (Grandison and Sloman 2000); (5) “System security issues must be addressed before
an application is trusted” (McKnight 2005), “however, to date there have been no empirical
studies identifying the relationship between security and trust” (Goode et al. 2015).

In this context, we conduct a systematic literature review to understand software trust in
the SECO better and summarize the key impact factors based on their frequency of mention.
The purpose of the literature review presented here is to lay the groundwork for research on
the design of trust assessment mechanisms that will place trust at the center of the selection
process of software engineers. By analyzing the perception of trust in the literature review
manuscripts, we provide a comprehensive overview of relevant trust concepts and present a
brief overview of this study in Fig. 1.

The rest of this research is structured as follows. We examine four entities of the worldwide
SECO in Section 2 which are: actors, relationships, ecosystem services, and flows. Through
these entities, we investigate software trust. Section 3 presents the research method used
in this literature review, which works as an acquisition process to collect the software trust
concept and trust factors considered by the software end-users during the software selection.
Section 4 provides a definition of software trust as well as a discussion on the intrinsic and
extrinsic trust factors in terms of software products, package managers, software producing
organizations, and engineers, respectively. The results show that quality is the decisive fac-
tor for software trust, followed by code & structure, and security. Section 5 highlights the
effect of trust factors on the software selection, and discuss the validity, consideration, and
challenges of this work, as well as our future work. It is difficult to develop a consistent set
of criteria for assessing software trust; therefore, our view is that trust assessment should
be synthetic and drawn on from different perspectives and channels and in its own context.
When collecting and sharing information, we need to exercise caution to protect individual’s
privacy and the data’s objectivity. Additionally, collecting data on the trust of proprietary
software is challenging. Finally, in Section 6, we conclude that current research on software
trust limited to the software itself is insufficient. Future research should extend to more hubs
and actors in SECO, e.g., software packages, package managers, and software producers.

Fig. 1 This study outline provides the graphical overview of this work. Specifically, it provides an overview
of the SECO background, along with the results of the two research questions. The sections that they
correspond to in the study, as well as the research questions are provided at the top

Page 3 of 38 8Empir Software Eng (2023) 28:8

2 Background Of Software Ecosystems

To understand what aspects of SECOs can affect software trust, we present an overview of
the flows in SECOs in which trust plays a role. We sketch the primary entities and stake-
holders in the SECO in Fig. 2, along with their simplified relationships. We extend the
software search process beyond just software or stakeholders to relevant search areas for
specific entities, such as dependencies, components, packages, and package managers.

The worldwide SECO can be seen as all organizational entities that produce or use soft-
ware, including the relationships and flows between them. Depending on the scope, one can
place a specific perspective on the ecosystem, such as the “Twitter” ecosystem, which con-
cerns all software producing organizations in its ecosystems and the end-users and end-user
organizations that use the platform and associated products and services.

It is conceptually practical to distinguish four entities within SECOs: actors, relation-
ships, ecosystem services, and flows. Ecosystem services are services that do not directly
add any value to products but enable a better flow of products and services in an ecosystem,
such as partner portals, application stores, and repository platforms. SECO flows are value
flows across ecosystem relationships between two actors, such as products, knowledge,
software, money, and data.

2.1 Actors In The Software Ecosystem

End-User A software end-user is an individual who adopts or intends to adopt a software
product to make them more productive.

End-User Organization An end-user organization represents a set of end-users who collab-
oratively add software products to their software portfolio. They expect that the software
products add value to their organization’s goals. The distinction between an end-user and
end-user organization is essential. This is because the decision process for adopting, for
instance, a large resource planning application requires a large organizational selection pro-
cess. In contrast, an end-user can easily choose to adopt, for example, a new text editor for
daily use.

Package Manager Package

Local Database

Repository

End-user

So�ware

Library

Component

Requests a
package’s
installation

Looks up, downloads,
installs or updates
software/library

Verifies digital
certification, checksums

Maintains

Includes

Stores,
location for
package

Contains
installation
information Is contained

Is stored

Dependency

Version

So�ware Producer

Searches and
downloads package

Provides search
and install
capabilities

Develops
and

maintains

Package
Maintainer

Maintains

Fig. 2 This model shows the structure of the software package ecosystem. It identifies the prominent hubs
and actors of SECO within the software selection process. These hubs and actors are the subjects of this
study’s discussion on trust

8 Page 4 of 38 Empir Software Eng (2023) 28:8

Software Engineer A software engineer is a talented individual who creates and maintains
software products.

Software Producing Organization (SPO) An SPO is an organization that builds and main-
tains software to create valuable software that should be adopted as widely as possible
(Jansen et al. 2012). SPOs typically employ software engineers who create and maintain
software products. Generally they have additional goals, such as sustaining the organization
through a business model.

Package Maintainers Package Maintainers are a subset of SPOs. Package maintainers are
responsible for developing and maintaining software packages and their frameworks. They
manage the development in code hosting platforms or repositories, such as GitHub. Addi-
tionally, they configure package builds to ensure that packages can be sourced from the
distribution by extracting the source code from the collection of binaries in the distribution
(Duan et al. 2021).

2.2 Flows in the Software Ecosystem

Software Product According to Xu and Brinkkemper (2007), a software product can be
defined as follows: “a packaged configuration of software components or a software-based
service, with auxiliary materials released for and traded in a specific market”.

Component Based on Software Engineering Body Of Knowledge (SWEBOK), “a soft-
ware component is an independent unit, having well-defined interfaces and dependencies
that can be composed and deployed independently” (Bourque and Fairley 2014). The sig-
nificant characteristic of a component is that it can be reused, interact with other objects,
and be combined with other components to form a system or application. For instance, a
menu class or a button class.

Library A library is a collection of prewritten functions or data structures that is organized
to perform the same technically essential functions, such as functions that handle com-
patibility issues; it may be used as a dependency, avoiding the need to write code from
scratch (Bauer et al. 2012). For example, jQuery is a single JavaScript file, and it has been
loaded with all of its dependencies to simplify various operations of JavaScript and resolve
cross-browser compatibility issues. Sometimes a library refers to a package in programming
language directives, such as npm, RubyGems, and Maven (Zerouali et al. 2018).

Package A package is simply a collection that contains software, libraries, and metadata.
The metadata includes, for example, the software’s name, its purpose, version number,
providers, checksum, and a list of dependencies for the software or library version. Packages
are in general versioned, which frequently adhere to de facto conventions, such as seman-
tic versioning Hanus (2018). A package distribution can be considered as a SECO, with a
collection of interdependent software projects that are developed and maintained within the
same environment (Decan and Mens 2019).

2.3 Ecosystem Services

Ecosystem services are services that enable better flows of value in the ecosystem, such
as an application store in which end-user organizations can rapidly identify new solutions

Page 5 of 38 8Empir Software Eng (2023) 28:8

and add them to their application portfolios. While they do not add features and value to
a product, they are of dire importance to make the products in an ecosystem successful.
Ecosystem services can be provided by orchestrators, i.e., Google’s Services for Android,
such as Google Play. However, some ecosystem services are provided by third parties, such
as GitHub and GitLab, who provide repository services to any actor in the worldwide SECO.

Package Manager A package manager provides a privileged, central mechanism for
managing the installation and upgrade of packages on a computer’s operating system auto-
matically (Cappos et al. 2008a). Sometimes it refers to a software manager or application
manager, depending on the context. In programming languages, the preferred term is pack-
age manager, because the installed software is often a set of libraries rather than a directly
executable application. Package managers have a major contribution in that they retrieve the
specific versions of the libraries required to build client applications and the libraries they
depend on, and install the required libraries based on their dependencies (Hejderup et al.
2018).

Package Repository Typically, a package repository is just a web server that hosts pack-
ages and their associated metadata (Cappos et al. 2008b). Package managers rely on package
repositories to install packages and resolve dependency requirements.

2.4 Structure of the Software Ecosystem

In Fig. 2 we provide a model of the software package SECO. When an end-user uses a
package manager to download a package, the package manager searches for files pointing
to the repository location in the relevant configuration file it maintains, e.g., Apple Store
or SourceForge, to retrieve the package. Subsequently, the package manager downloads
the relevant packages from the repository. When the end-user confirms the installation of
the selected package, the package manager downloads the package. A package may have
dependencies, i.e., other packages must also be installed in sequence. The package man-
ager can detect these dependencies and automatically download and install them in order.
After a successful package installation, the package installation information is stored in the
metadata of the local package database and managed by the package manager to maintain
software dependencies and version information. End-users can modify the configuration file
to retrieve packages from other repositories. Alternatively, they can search and download
packages directly from repositories, such as GitHub.

3 Researchmethod

Systematic Literature Review (SLR) is a term used to describe the process of collect-
ing, reading, analyzing, refining, and organizing data in the existing literature to provide a
comprehensive introduction, elaboration, and evaluation of a specific research topic or phe-
nomenon of interest (Keele 2007). We performed this SLR following the guidelines and
steps of Kitchenham (2004) to gain the current structure of knowledge on the trust within the
SECO domain and to understand the current relationships between software end-users and
software producers. We followed the outline of the following six activities in this review: (1)
defining the research question; (2) searching for relevant manuscripts; (3) manuscript selec-
tion, including inclusion and exclusion criteria and quality assessment; (4) data extracting;
and (5) coding scheme.

8 Page 6 of 38 Empir Software Eng (2023) 28:8

3.1 Research Questions

We construct the following research questions (RQ) to get an overview of software trust in
worldwide SECO.

RQ1: How is the concept of software trust and SECO trust defined in literature?
Interest We try to study the concepts of software trust and SECO trust as well as the
trust characteristics included in the concepts.
Approach This is achieved by searching the terms: “trust”, “trustworthiness”, “software
trustworthiness”, “software trust”, “SECO trust”, and “software ecosystem trust” from
the selected manuscripts. We reviewed and compared relevant definitions and examined
the sources, types, and attributions of software trust and SECO trust. Consequently, we
extended the definition of software trust based on the relationships between software
end-users and producers in the SECO and conclude our definition of software trust.
RQ2: What trust factors do end-user organizations consider when selecting soft-
ware products?

RQ2.1: What trust factors do end-user organizations consider when selecting software
products and versions?
RQ2.2: What trust factors do end-user organizations consider when selecting software
package managers?
RQ2.3: What trust factors do end-user organizations consider when selecting software
producing organizations?
RQ2.4: What trust factors do end-user organizations consider when selecting software
engineers?

Interest We take into account end-user organizations’ trust factors across the software
supply chain. Each sub-questions observe a different link in the SECO, starting with the
software product itself. Secondly, we identify the factors that play a role in selecting a
software source, such as a package manager. Thirdly, we look at how end-user organiza-
tions perceive the SPO, and finally, we look at the software engineers that work for those
organizations. In accordance with RQ1, we identify trust factors along different aspects
and axes, with quantitative and qualitative ratings, that may positively or negatively affect
perceived trust from the end-user organization.
Approach This is achieved by reading the full text of the literature review manuscripts
and exploring the trust-related information from the given tables, models, frameworks,
or context.

3.2 Search Strategy

In this section, we emphasize howmanuscripts were identified by using search strings in sci-
entific libraries. The search strings are focused on three primary areas. To begin, we defined
the scope of the study, including the context of SECO and software. Secondly, we discuss
two specific aspects involved in SECO, namely concepts related to hubs, i.e., package, com-
ponent, and dependency, as well as concepts related to software supply chain processes,
i.e., software management, provenance, and developer. Thirdly, we incorporated frequent
concepts related to trust based on the definition of trust, namely credibility, reputation, and
uncertainty. This resulted in the following search strings.

Page 7 of 38 8Empir Software Eng (2023) 28:8

(software ecosystem OR software) AND (package OR component OR
dependency OR management OR provenance OR developer) AND (trust OR
credibility OR reputation OR uncertainty)

Following the guidelines proposed by Kitchenham (2004), we designed the selection
strategy in six steps. Figure 3 shows the selection process with the number of manuscripts
included in each stage. These stages are described in more detail in the following
subsections.

3.2.1 Stage1 - Automatic Search

We adopted automatic search as the main search method and kept automatically selected
manuscripts from IEEE Xplore (IEEE) and ScienceDirect as the academic sources and
Google Scholar as a secondary source. We extracted 1000 manuscripts from Google
Scholar, 1032 manuscripts from ScienceDirect, and 573 manuscripts from IEEE. And we
stored the results in three lists.

3.2.2 Stage2 - Remove Duplicates

Duplicate manuscripts (manuscripts with the same title, author, and year of publication in
any two of the three sources) were existing in the results from the three lists. We manually
removed 33 duplicate manuscripts, including 22 manuscripts from ScienceDirect and 11
manuscripts from IEEE, to ensure that the filtered list included unique manuscripts.

3.2.3 Stage3 - Apply Inclusion And Exclusion Criteria

Inclusion and exclusion criteria ensure that relevant manuscripts are included, and irrelevant
manuscripts are excluded. If the inclusion criteria are too broad, poor-quality studies may
be included, reducing the overall quality of the study results. On the contrary, if the inclu-
sion criteria are too stringent, the resulting studies are likely to be small and therefore not
generalizable (Meline 2006).

The given inclusion criteria adopted in this research are:

– Studies published since the 1990s;
– When studies reported the same research, only the most recent one was included;
– Studies that were in the field of software engineering.

Fig. 3 This figure indicates the stages of the search process and the number of manuscripts at each stage

8 Page 8 of 38 Empir Software Eng (2023) 28:8

The given exclusion criteria selected in this research are:

– Studies that were not accessible in full-text;
– Studies that were not peer-reviewed;
– Studies that were not presented in English;
– Studies that were incomplete, short papers, or only provided literature in the form of

abstracts, prefaces, or presentation slides;
– Studies that were books or gray literature.

Based on the above criteria, we conducted two rounds of elimination. In the first round,
the first author filtered the three lists by manuscript type, publication year, source (e.g.,
conference or journal name), and title. In the filtering of manuscript type and publication
year, 57 manuscripts of patent type, 62 manuscripts of book type, seven manuscripts of cita-
tion type, and one manuscript published before the 1990s were excluded from the Google
Scholar list. Afterward, the source was filtered to ensure that the topics of the manuscripts
were only focused on software engineering. Five hundred seventy manuscripts were left for
ScienceDirect, 573 manuscripts for IEEE, and 868 manuscripts for Google Scholar. More
manuscripts have been filtered based on scanning the title to ensure that they are consistent
with our research topic. A total of 40 manuscripts were retained in the ScienceDirect list,
77 manuscripts in the IEEE list, and 435 manuscripts in the Google Scholar list.

In the second round, we accessed the manuscripts and scanned the title and abstract of
each manuscript. Five hundred fifty-six manuscripts were almost equally assigned to five
researchers. By scanning the title and abstract of each manuscript, more manuscripts have
been excluded, including 40 gray literature, 78 manuscripts that cannot be accessed, seven
incomplete manuscripts, 13 short papers, and one that was not peer-reviewed.

At this stage, we discarded 139 manuscripts, leaving 413 manuscripts.

3.2.4 Stage4 - Quality Assessment

To eliminate concerns and develop consistent criteria for manuscript quality assessment,
all researchers read and discussed the same four manuscripts before beginning the quality
assessment. Our quality assessment focused on the following questions:

– Does the study address at least one research question?
– Is the study based on research or expert opinion?
– Is there a clear statement of the purpose of the study?
– Was the data collection rigorous?
– Are the findings of the study clear?

We employed the double data extraction method proposed by Buscemi et al. (2006) to
assess the quality of each manuscript, i.e., two people in two rounds assessed the quality
of each manuscript. The five researchers performed the first-round assessment. They read
the full text and eliminated 265 manuscripts based on the above quality assessment criteria.
Most eliminated manuscripts focused on the non-software engineering trust, trust in the
non-software selection, or topics unrelated to trust and software choices.

The first author conducted a quality assessment of all the results derived from the
researchers in the second round. Twenty-two manuscripts received varying quality assess-
ment results. These 22 manuscripts included four manuscripts about specific software
systems, such as mobile applications or enterprise resource planning, and 18 manuscripts
about topics other than software, such as trust in hardware, economy, or IoT. Following a
discussion of these distinctions, we arrived at 108 manuscripts at this stage.

Page 9 of 38 8Empir Software Eng (2023) 28:8

3.2.5 Stage5 - Conduct Snowballing

The first author added four studies related to our topic through the snowballing technique.
Since there were limited manuscripts on SECO in the search results, we used backward
snowballing to check studies from the reference lists of SECO-related manuscripts with the
keyword “trust”. Only one was included (Schuur et al. 2011). However, from the reference
lists, we still found three studies related to our study, including one manuscript on the soft-
ware engineer’s concerns about the use of library/framework in SECO (Haenni et al. 2013);
one manuscript on a model for quality assurance of an ecosystem (Wang 2011); and one
SLR on a comprehensive overview of SECO (Manikas and Hansen 2013).

3.2.6 Stage6 - Final Result

Finally, we use 112 manuscripts in our data analysis.

3.3 Data Extraction and Synthesis

As explained earlier, for RQ1, we searched for terms including “trust”, “trustworthiness”,
“software trustworthiness”, “software trust”, “SECO trust”, and “software ecosystem trust”
in the selected manuscripts. The definitions and characteristics of software trust were usu-
ally explicitly given in these manuscripts. We provide sample definitions in Table 7, and
more details are discussed in Section 4.1. For RQ2, considerable impact factors were listed
in tables, models, frameworks, or formulas. There are still a number of factors that were dis-
cussed in context in some manuscripts. There may be ambiguity surrounding these factors,
or they were difficult to detect or were not even considered a factor. Thus, the difficulty in
data extraction lies at this point.

To address this challenge, we adopted the qualitative data analysis approach for data
extraction, which was carried out by five researchers in two rounds. In the first round, all
researchers performed data extraction for the same four manuscripts. Consensus meetings
were held to ensure a shared understanding of what data should be extracted, which is
listed in Table 1. Then five researchers studied the different manuscripts and recorded the
information in one excel sheet. After reviewing and confirming all extractions from the
second round, the first author classified the data, which was verified by the second author.

Data synthesis was performed using a frequency analysis technique to aggregate the
extracted data, calculated based on the total number of manuscripts in which the words or
synonyms appear. All included manuscripts were analyzed and extracted. It should be noted
that because some models or criteria have been proposed based on the results of previous
research, several trust factors are duplicated. However, we still counted and accumulated
these trust factors. The reason is that we believe the trust factors that are frequently discussed
must be significant.

We focused on software trust in software selection, but software and trust are broad
concepts from which considerable relevant topics can be deduced and developed. Therefore,
the search results encompassed a broad range of topics. We assigned those topics to distinct
sub-RQs based on their similarity and relevance, as outlined in Table 2.

3.4 Coding Scheme

The coding scheme was developed based on the data extraction results. During the coding
process, we found four common situations. First, some of the manuscripts used the same

8 Page 10 of 38 Empir Software Eng (2023) 28:8

Table 1 A summary of the attributes that have been extracted from each manuscript during the data extraction
stage

Attribute Description

Title The title of the manuscript

Authors The author(s) of the manuscript

Source Source of the selected manuscripts, e.g., conference or journal

Year The year of the publication

Keywords Keywords of the manuscript

Research method The research method of the manuscript

SECO type Type of the SECO

Research questions Which research question(s) has(have) been answered

Trust definitions Trust definition(s) given in the manuscript

Trust factors Main identified trust factor(s)

The attributes cover the basic information (title, author(s), publication year, source), topic (keywords and
SECO type), research method, and information related to our research (answered RQ, given trust definition(s)
and trust factor(s)) of a manuscript

codes, such as cost, reputation; or similar codes such as functionality (Godse and Mulik
2009), or function (Jadhav and Sonar 2009); second, the same concept adopted different
names, e.g., vendor (Del Bianco et al. 2011), supplier (Pollock andWilliams 2007), software
provider (Hillebrand and Coetzee 2013), and software producer (Wang et al. 2019); third,
several trust factors were not be codified but could be broken down into chunks, e.g., advice
given by other concerned parties (Chau 1994); and fourth, codes were usually located in
different categories in different manuscripts. For example, active maintenance is located
under technical factors as it is considered a major activity of the software release process
(Vargas et al. 2020). However, Jadhav and Sonar (2009) consider it as an organizational
factor, since software maintenance is performed by the organization.

Hence, we adopted an inductive coding method to analyze the data from each manuscript
to identify the relationships between them, and classify the trust impact factors with Cue
Utilization Theory (CUT). Inductive coding is a type of data analysis in which the researcher
reads and interprets raw textual data to develop concepts, themes or a process model based
on the data (Chandra and Shang 2019). CUT is a well-known framework for understanding
and analyzing various factors that influence a topic, as well as evaluating a product (Midha
and Palvia 2012). We classified the “cues” extracted from the selected manuscripts using
CUT and specified the characteristics of each category to ensure that they can provide a
comprehensive picture of the trust factors. We then divided those factors into intrinsic and
extrinsic trust factors for the previously proposed research questions. Intrinsic trust factors
have been used to represent a product’s physical attributes. In this study, they refer to source
code or architecture-related attributes or factors, such as quality-related factors or vulner-
abilities. Extrinsic trust factors have been used to represent external attributes, such as the
product’s reputation, cost, licenses, or capability of the software producer. In addition, in the
context of the SECO, each actor in SECO and its relationships, for example, the reputation
or popularity of software producers, are also categorized as extrinsic trust factors.

Once we had a high-level classification of trust factors, we combined the RQs to derive
subcategories. RQ2.1 and 2.2 could be classified as both intrinsic and extrinsic factors,
while RQ2.3 and 2.4 were only classified as extrinsic factors. For example, we recognized
“active maintenance” as a meaningful activity in the software release process that answers

Page 11 of 38 8Empir Software Eng (2023) 28:8

Table 2 Main research areas per research question

Topic Area Topic of Interest RQ

Software trust Definition and attributes of software trust and SECO trust RQ1

Software trustworthiness

Software ecosystem trust

SECO trust

Trust

Trustworthiness

Application Software evaluation and selection criteria RQ2.1,2.3,2.4

Project Software metrics and reliability

Free open source software
(FOSS)

Relationship between end-users and technology

Open source software (OSS)

OSS component

Packaged software

Software engineering

Third-party software

Software-as-a-Service (SaaS)
Product

Commercial off-the-shelf
software (COTS)

Software

SECO

OSS Ecosystem

Software service

Information system

Library Evaluation and selection criteria RQ2.1

OSS code repository

Component

Package

Package manager Evaluation and selection criteria RQ2.2

Package management system

Software provider Impact factors of SPOs and stakeholders RQ2.3

Supplier Relationship between end-users and SPOs

Software organization

Software company

Vendor

Package provider

SaaS provider

OSS provider

OSS community

8 Page 12 of 38 Empir Software Eng (2023) 28:8

Table 2 (continued)

Topic Area Topic of Interest RQ

Developer Impact factors of software engineers RQ2.4

Software engineer Relationship between end-users and software engineer

IT staff

Maintainer

Security Risk, attack or uncertainty in software, packages and managers RQ2.1,2.2

Vulnerability

Attack

Uncertainty

Risk management

The topic area is determined by the title, abstract, or keywords of the selectedmanuscripts. Interest shows the
aspects that we focus on according to the different research questions

RQ2.1 - trust factors of software products, which focuses on whether end-users receive
regular or timely active maintenance in software releases. Therefore it is coded under the
intrinsic technical factors. However, considerable end-users also focus on the producers’
inputs, e.g., support or service, operation, and maintenance, which is more inclined to the
quality of support the software producers provide. Hence we coded “support or service” as
a sub-factor to answer RQ2.4.

After conducting a systematic review of all trust impact factors, we assigned them to our
CUT categories based on the research questions. We then labeled the codes using the words
from manuscripts and their CUT and semantic counterparts and adapted and refined them.
Additionally, we determined each category’s relative importance by counting the words’
frequency. If a trust factor appears frequently, it indicates that it is significant in research on
software trust and may have a significant impact. In Table 9 we show the major trust factor
according to the word frequency. To ensure traceability, we provided the coding scheme1 in
an open repository.

3.5 Biases in the SLR Process

The challenge of bias is one that all researchers face. The reasons may be, for example,
that a researcher has insufficient understanding of the findings of a subject, perhaps awares
but unable to access the findings, or the findings may be missing critical data points. Bias
may result in missing data, making not only the collected sample size decrease but also
the validity of the sample smaller (Cooper et al. 2008). In this study, we faced several
biases: Publication bias refers to the problem that positive results tend to be published
more frequently than negative results. If negative results are not widely published enough,
false conclusions could be attributed to them as true (Keele 2007). Retrieval bias refers
to the risk that the sample used in the synthesis does not appropriately represent the liter-
ature available (Durach et al. 2017). To mitigate them, we conducted an automatic search.
Search strings were not limited to only certain qualities of software products, but a broader

1https://data.mendeley.com/api/datasets/xn4jk93g4t/draft/files/b36ddc93-0f42-4227-b966-4c07d2a7e429?
a=9c51b45f-c943-4a22-814f-5baf59fb2896

Page 13 of 38 8Empir Software Eng (2023) 28:8

https://data.mendeley.com/api/datasets/xn4jk93g4t/draft/files/b36ddc93-0f42-4227-b966-4c07d2a7e429?a=9c51b45f-c943-4a22-814f-5baf59fb2896
https://data.mendeley.com/api/datasets/xn4jk93g4t/draft/files/b36ddc93-0f42-4227-b966-4c07d2a7e429?a=9c51b45f-c943-4a22-814f-5baf59fb2896

concept of software trust. In addition, we added studies by backward snowballing to pro-
vide a more comprehensive search. Biases in extractions and synthesis caused us to be
unable to extract comprehensive trust data from all manuscripts (Drucker et al. 2016).
Due to our different backgrounds, researchers have varying understanding of SECO, trust,
and even a seemingly basic concept. We have attempted to reduce these biases by having
two researchers extract data from the same manuscript and reach a consensus through dis-
cussion. However, human judgment is inherently subjective and biased, and the threat is
difficult to eliminate. It caused some potential studies or factors could have been missed. To
address it, we need to add to the studies afterward to adjust the trust factors at any time to
make the study more comprehensive.

3.6 Replication Package

This study is accompanied by the data set2 that contains all manuscripts at the different
stages of selection in this literature review.

4 Results

This section reports our findings on end-user organizations’ trust factors. First, we will
present the extraction results, and the remaining parts are organized according to the
research questions.

Table 3 shows the number of publication types. The most frequent manuscripts are from
journals. The research methods are classified according to the categories listed in Table 4.
The majority of the selected manuscripts are empirical research. Another large portion of
the trust factors can be attributed to theories, models, or frameworks that analyze or evaluate
software trust or specific aspects of software products. The remaining factors come from
exploratory research. The methods used to collect trust data are shown in Table 5. The
majority of the trust factors or trust facts are the result of experiments. These are approaches,
models, or frameworks proposed in the literature.

The numbers of search results for each research question are given in Table 6. Software
components make up the most significant proportion of the selected manuscripts, followed
by manuscripts on software development and software trust definition. The manuscripts
on the package managers and software packages make up the least amount of literature.
Despite adding “package” to the search strings, the number of retrieved manuscripts is
limited regarding software package trust and its related terms.

4.1 RQ1 - Concept of Software/SECO Trust in Literature

In this subsection, we provide an overview of the general field of software trust to answer
RQ1 - How is the concept of software trust and SECO trust defined in literature? A total
of 39 definitions of software trust can be found in the manuscripts. Table 7 shows some
examples of those definitions. Unfortunately, we did not find a specific definition of SECO
trust. We did not find a common definition of software trust or trustworthiness, because
it varies depending on the context Heiskanen et al. (2008). And trust is often replaced by
synonyms, such as reliability, dependability, or assurance.

2https://figshare.com/s/dadba2e7b3a6ab71ef18

8 Page 14 of 38 Empir Software Eng (2023) 28:8

https://figshare.com/s/dadba2e7b3a6ab71ef18

Table 3 Summary of
publications Source Total

Journal 79

Conference 26

Workshop 7

Table 4 Summary of research
methods Research Methods Total

Empirical 50

Theoretical 45

Exploratory 16

Commentary 1

Table 5 Summary of data
collection methods Collection Methods Total

Experiment 45

Survey/Interview 21

Case Study 18

Documents 15

Literature Review 11

User study 1

Commentary 1

Table 6 The number of manuscripts per research question

Research Question Total

RQ1:How is the concept of soft-
ware trust and SECO trust defined
in literature?

35

RQ2.1:What trust factors do end-
user organizations consider when
selecting software products and
versions?

91

RQ2.2:What trust factors do end-
user organizations consider when
selecting software package man-
agers?

4

RQ2.3:What trust factors do end-
user organizations consider when
selecting software producing orga-
nizations?

18

RQ2.4:What trust factors do end-
user organizations consider when
selecting software engineers?

19

Note: There are manuscripts that address more than one research question, so the total number of manuscripts
does not equal the total number of selected manuscripts

Page 15 of 38 8Empir Software Eng (2023) 28:8

Table 7 The number of manuscripts per trust definition

Definition Total Example definition

Software trustworthiness 11 “The trustworthiness of software can be simply
defined as the degree of confidence that exists that
it meets a set of requirements” (Immonen and Palvi-
ainen 2007).

Common themes trust 8 “Trust is the willingness of the trustor (evaluator) to
take the risk based on a subjective belief that a trustee
(evaluatee) will exhibit reliable behavior to maximize
the trustor’s interest under uncertainty (e.g., ambigu-
ity due to conflicting evidence or ignorance caused by
complete lack of evidence) of a given situation based
on the cognitive assessment of experience with the
trustee” (Cho et al. 2015).

System trust 8 “System trust, refers to the belief that the appro-
priate impersonal structures are in place to allow
one party to anticipate successful transactions with
another party” (Roumani et al. 2017).

Software service trust 5 “Trust is the individual’s perspective on a particu-
lar service, or product and reputation is a group’s
perspective on a particular service or product” (Hille-
brand and Coetzee 2013).

Software trust 4 “Trust is viewed as an attribute of software that com-
bines concerns for reducing the potential for both
innocent errors and malicious insertions” (Amoroso
et al. 1991).

Third-party library trust 2 “The first type of trust is a library’s functional
and non-functional related specifications. The sec-
ond type of trust is that the introduced library is
not volatile towards the current system environment”
(Kula et al. 2015)

.

Internet application trust 1 “We define trust as “the firm belief in the competence
of an entity to act dependably, securely and reliably
within a specified context” (Grandison and Sloman
2000).

4.1.1 Trust is Subjective

Trust is subjective. According to Del Bianco et al. (2011), trust is a kind of “confidence”;
Guo et al. (2014) state that trust is a “belief”; Lai et al. (2011) consider is as an “expecta-
tion”; Cho et al. (2015) explain it as a “willingness”; Das and Teng (2001) describe it as a
“goodwill”. (Yan 2008) argues that trust is a propended and subjective conclusion that peo-
ple draw based on a set of information. The propensity of software end-users depends on
their experience, bias, or education (Amoroso et al. 1991; Cho et al. 2015). For example,
a knowledgeable end-user can determine whether a software package is trustworthy and
appropriate for the current project based on his previous experience. Correspondingly, a per-
son without any IT background and experience has little propensity in the software package
selection.

The requirement is another kind of propensity because the “trustworthiness requirements
depend on how, why, where, and by whom the software is used” (Del Bianco et al. 2011).
A software product may not give the same confidence level across all functions but remains

8 Page 16 of 38 Empir Software Eng (2023) 28:8

Table 8 The number of software
product attributes in the trust
definition

Definition Total

Quality 8

Security 8

Reliability 7

Behavior or performance 7

Service 5

Risk and uncertainty 4

Dependability 3

Reputation 3

Resilience and agility 3

dependable (Jackson 2009). For example, a bank system may incorrectly calculate the expi-
ration date of a credit card but must not disclose the customer’s information; or a cellphone
may be unable to change the ringtone, but it can make a call. Therefore, software trust has
boundaries, which encompass the specific functionality, timing, user roles, experience, and
requirements of the software (Jackson 2009).

Such propensity is temporal and may change depending on the end-user’s knowledge,
experience, and different requirements for the software (Moyano et al. 2016). Amoroso et al.
(1991) point out that it also can be eliminated by providing specific and detailed guidelines.

4.1.2 Trust is a Result of Certain Facts

Software trust is inherently predictive based on a set of historical data, regardless of its focus
(Jackson 2009; Jadhav and Sonar 2011; Mcknight et al. 2011; Kula et al. 2015; Alarcon et al.
2020). According to this interpretation, it can be found in those given definitions that trust
in software is established through the behavior or performance of the software producer and
the software. Table 8 shows the attributes most often mentioned in trust-related concepts.

Quality Trustors generate their trust based on a number of observed behaviors or per-
formances, where qualitative attributes are primary (Yan 2008). The software must be of
high-quality (Hillebrand and Coetzee 2013) and meet the trustor’s standards (Yan 2008).
Kula et al. (2015) explain such standards could be functional and non-functional. In addi-
tion, trust definitions explain certain quality characteristics, for example, “functionality,
reliability, and helpfulness” (Mcknight et al. 2011); “fault tolerance, security, survival, and
real-time capability” (Zhu et al. 2012); “predictability, and safety” (Cho and Xu 2019);
“availability and supportability” (Hong et al. 2011). They reflect the multifaceted quality
requirements of end-users in various contexts.

Security Software Trustworthiness reflects the probability that a software product will
experience a security failure in a given time (Bugiel et al. 2011). Security refers to pre-
venting deliberate or accidental attacks Boyes et al. (2014). The term “software security
failure” describes a flaw discovered by its software provider or the security community
(Bugiel et al. 2011). Security failures can be caused by a variety of factors, both internal and
external. Software trustworthiness varies depending on the end-user’s environment and the
standards of security (Bugiel et al. 2011). To improve software security and trust, resilience

Page 17 of 38 8Empir Software Eng (2023) 28:8

and agility as emerging concepts have been discussed in recent years in the study of soft-
ware trust (Boyes et al. 2014; Cho and Xu 2019). According to the researchers, they reflect
the requirements for the ability of a software product to continuously restore a normal,
functional system state and respond to unexpected changes or situations.

Risk and uncertainty It is common to find both risk and uncertainty in a definition of trust,
as it is believed that the risk arises from uncertainty. Grodzinsky et al. (2011) believe that
the fewer information end-users receive regarding a software product, the greater the uncer-
tainty, the higher the risk they are exposed to. Similarly, Cho et al. (2015) point out that
uncertainty may result from ambiguity due to conflicting facts, or ignorance due to a com-
plete lack of evidence. The presence of risk and uncertainty makes trust more meaningful.
That is, despite some uncertainties and risks, end-users still hold positive expectations, i.e.,
trust, in the software product (Das and Teng 2001). It is possible to achieve software trust
through risk management, for example, by putting in place appropriate personnel, physical,
procedural, and technical controls (Boyes et al. 2014).

Reputation Trust and reputation are also topics that have been discussed in the literature.
Trust refers to the perception that an individual holds of a service or product, whereas rep-
utation refers to the perception that is held by a group (Hillebrand and Coetzee 2013).
Similarly, Hoxmeier (2000) argues that “reputation is built by satisfying market signals”, it
can be viewed as a complement to trust, i.e., the public’s perception of the trustworthiness
of the organization.

Mcknight et al. (2011) point out that people trust the software producer, not the software
itself. Thus, the choice of the software product is a reflection of the end-user’s trust in the
reputation of the software producer. The reputation of software producers is obtained by
examining evidence, signs, or their experience (Cho et al. 2015), to identify whether they are
considered professional, reliable, and capable of producing high-quality software products
and providing quality services (Jadhav and Sonar 2011). Additionally, how software pro-
ducers remediate and recover from risks and problems is also considered to be a factor that
impacts the reputation of software producers as it affects the willingness of the end-user to
maintain a long-term service relationship with the software producer (Bennett et al. 2000).

4.1.3 Structural Assurance

Structural assurance (SA) is a special kind of trust we found in the selected manuscripts.
This kind of trust is not based on the attributes of the software product or its producer but is
built by the end-user or the software producer’s fear of the consequences of violating a rule,
law, or contract (Cho et al. 2015). As a result, SA ensures the interests of all stakeholders
are not compromised by unclear assumptions, premises, and responsibilities, and contracts
or clauses with unclear penalties.

4.1.4 Trust vs Trustworthiness

Trustworthiness is often misinterpreted as trust (Wright 2010). Trust is usually from the
trustor’s point of view. It is typically a belief that the trustee would do what is expected of
the trustor (Jadhav and Sonar 2011; Mcknight et al. 2011; Guo et al. 2014). Trustworthiness
is viewed from the perspective of the trustee. It is the probability that the trustee will act

8 Page 18 of 38 Empir Software Eng (2023) 28:8

by the trustor’s expectations (Bauer 2019). The trustworthiness of a trustee and the trustor’s
trust may differ. Trustworthiness can be seen as a characteristic of trust (Becerra et al. 2008),
which means that trust cannot exist without a high level of trustworthiness (Heyns and
Rothmann 2015).

4.1.5 Definition of SECO Trust

SECO is a broad and complex concept. It is not only a complex network of overlapping sup-
ply chains of software, data, and services but also a subtype of a business ecosystem. As such
it inherits some properties of a business ecosystem, e.g., business, strategy, and network.
As explained by (Van Den Berk et al. 2010), “business” implies not only profit or income
but also includes possible benefits other than financial income; “strategy” includes SECO
vision and platform’s strategy; and “network” refers to the connection between SECOs, a
more connected ecosystem is more resistant to shocks.

SECO trust is also a broader concept corresponding to the concept of SECO. As introduced
in Section 1, it constitutes all upstream and downstream trust between the stakeholders that
comprise the SECO. This includes, for instance, the trust of end-users in software engi-
neers to build solutions for their (business) problems, and the trust of software engineers
in software package management systems to transfer their software to end-users correctly.
Moreover, it is influenced by business systems thinking and considers strategy, business,
and network. Furthermore, SECO is unique because operational knowledge is distributed
among the actors, and no one has a complete picture. Therefore, from a social perspective,
the propagation of software operation knowledge in actors can increase the attractiveness of
SECO and build trust (Schuur et al. 2011).

We did not find a specific definition of SECO trust, and we believe that the study of
SECO trust should start with the trust in entities of SECO (as we presented in Section 2)
and extend to the trust in the market and society, as well as in networks with worldwide
ecosystems.

4.1.6 Definition of Software Trust

Software trust , which is a subsidiary of SECO trust, which is defined based on the com-
plex relationships between software end-users and producers in the SECO, including (1)
trust in hubs (e.g., dependencies, software packages, or package managers); and (2) trust in
actors (e.g., software engineers, software producing organizations, or communities) in the
ecosystem. The success of SECO depends upon software trust because in the absence of
software trust, SECO cannot effectively deliver value to its stakeholders. Considering the
context of SECO, we summarize the definition of software trust as follows:

Software trust refers to the willingness of SECO actors to accept risks based on
subjective beliefs. It is essentially an upstream trust in that actors expect assurance
that other actors on top of a common technology platform can exhibit reliable
behavior and provide valuable software products. Software is expected to
be able to carry out their intended functions in the presence of uncertainty and run
consistently and reliably without interruption.

Page 19 of 38 8Empir Software Eng (2023) 28:8

4.2 RQ2 - Trust Factors in Software Products Selection

In the following sections, we discuss trust factors in each sub-research question. Table 9
shows the entire landscape of the factors collected from the selected manuscripts. We focus
on frequently occurring trust factors, that are mentioned less frequently are not discussed
here.

4.2.1 RQ2.1 - Trust Factors of Software Products

This subsection argues RQ2.1 - What trust factors do end-user organizations consider when
selecting software products and versions? As discussed in Section 3.4, based on CUT, we
classified the trust factors as intrinsic and extrinsic factors. Intrinsic trust factors refer to the
software product’s features, code, and architecture, such as software quality, code quality,
or known vulnerabilities. Extrinsic trust factors refer to attributes bestowed on the software
product by the outside world, such as popularity, reputation, software-based services, or
auxiliary materials that need to be delivered to the end-users. We highlighted the major
factors as boldface in the subsequent sections.

Intrinsic Trust Factor Intrinsic trust factors represent internal physical attributes rather than
being determined by the environment. The following factors are discussed frequently in the
manuscripts:

Security, Vulnerability, andAttack Proneness Security is one of the primary software trust
attributes. Surprisingly, even though software engineers are aware that it is a significant
factor, they affirm that they do not check it in advance before adopting a software product
(Vargas et al. 2020). The authors report that software engineers do not check everything but
just utilize community knowledge, for instance, publicly accessible vulnerability databases,
to gather data. However, those public vulnerability databases are not a perfect solution, as
they face two challenges. The first one is the diversity of the data source. According to
(Decan et al. 2018), there are three sources of vulnerability data: (1) public databases, such
as CVE, NVD, or snyk.io; (2) specialized tools, such as the GitHub vulnerability tracking
mechanism; (3) mailing lists, bug tracking systems, and blogs. The authors point out that
the diversity of vulnerability data sources makes it impossible to fully understand the vul-
nerabilities of an ecosystem. The second one is the timeliness of vulnerability reporting.
The quality of the data in the vulnerability database impact vulnerability tracking, analy-
sis, and fixing. With the emergence of new types of cyberattacks, software attacks show
a gradual trend of a large-scale multivector designed to infect multiple components of the
SECO. Hence, it is difficult for software engineers or end-users to discover and report all
vulnerabilities from all hubs promptly (Duan et al. 2021).

In addition, there are problems faced in fixing vulnerabilities. In most cases, fixing them
can take a long time. An empirical study of nearly 400 security reports in npm dependencies
over six years showed that only half of the vulnerabilities could be fixed within a month, and
the probability of a vulnerability being fixed after six months is 74% (Decan et al. 2018).
This study also indicates that more than half of the dependent packages are affected by
vulnerabilities in upstream packages. Interestingly, due to the lack of proper maintenance
of packages or strict dependencies, most affected dependent packages are not automatically
fixed with the upstream packages. Therefore, (Duan et al. 2021) believe that the defense
approaches that are more oriented toward preventing access to sensitive data or finding bugs
in software products cannot effectively protect against attacks on the SECO; future research

8 Page 20 of 38 Empir Software Eng (2023) 28:8

Table 9 This table identifies the main trust factors of RQ2 along with the number of times each factor was
mentioned

Intrinsic Factors - Software Product (RQ2.1)

Source code 31

Reliability 29

Security 29

Maintainability 18

Process 18

Usability 16

Vulnerability and attack 13

Functionality 13

Framework 10

Performance 10

Dependency 8

Portability 8

Safety 7

Interoperability 7

Adaptability 6

Efficiency 5

Completeness 5

Fault-Tolerance 5

Portability 5

Extrinsic Factors - Software Product (RQ2.1)

Documentation 24

Structural assurance 22

Cost 17

Popularity 11

Reputation 7

Intrinsic Factors - Package Manager (RQ2.2)

Dependency 4

Security vulnerability 4

Prevention mechanism 2

Extrinsic Factors - Software Producing Organization (RQ2.3)

Support 5

Population of contributors 5

Reputation 4

Team Size 2

Extrinsic Factors - Software Engineer (RQ2.4)

Competencies and skills 5

Contributing effort 2

Satisfaction and happiness 2

The most frequently discussed factor is quality. However, to present more detailed trust factors, we did not
list quality as a separate trust factor, but rather its subfactors

Page 21 of 38 8Empir Software Eng (2023) 28:8

should focus on analyzing and detecting malicious software packages through an analysis
of relationships between stakeholders in the SECO to prevent supply chain attacks.

Furthermore, software security still has no uniform standard to measure it (Wang
et al. 2015). This may be because software security is influenced by the factors, such
as environment, complex software supply chains, project management, or the adoption of
programming languages. For the software itself, the complexity of the requirements, the
complexity of the code, the technology used, and even the skills of the engineers have
an impact on software security, with the problem being that these factors are difficult to
quantify. Meanwhile, it is unrealistic to request software testers to meet all the security
requirements. Different stakeholders have different perceptions of software security. Con-
trary to organizations and governments, software engineers do not place software security as
a priority (Vargas et al. 2020). In particular, software security requires significant resources
to develop, evaluate, and defend; small and medium-sized companies may be unable to
afford this investment.

Quality and Development Process Factors regarding quality revolve around the quality
characteristics of the software itself and the activities of the software development life cycle
(SDLC).

Software quality models contribute the majority of factors. Berander et al. (2005) intro-
duce several well-known software quality models. McCall’s Quality Model is proposed in
1977 and it is one of the more renowned predecessors of today’s quality models, which
includes 11 factors that describe the external view of the software (user view) and 23 fac-
tors that describe the internal view of the software (developer view). In the following year,
Boehm’s Quality Model is introduced with a hierarchical quality model structure. It focuses
on a broader range of characteristics of software products, i.e., as-is utility, maintainability,
and portability. FURPS & FURPS+ are developed by Robert Grady of Hewlett-Packard,
identifying software quality factors through functional requirements and non-functional
requirements. Dromey’s Quality Model recognizes that quality is assessed differently for
each product and therefore requires a combination of product characteristics and quality
attributes to dynamically determine how each attribute affects quality attributes and identify
software shortcomings. ISO/IEC 9126:2001 covers six significant areas of software evalua-
tion: functionality, reliability, efficiency, maintainability, portability, and usability. However,
there are no indications on how to quantify these factors and subfactors, and this model may
reflect the perception of software engineers instead of end-users (Challa et al. 2011). It has
been replaced by ISO/IEC 25010, which focuses on the characteristics of software internal
quality, external quality, and usage quality. Notably, ISO/IEC 25010 proposes that trust is
“the degree to which a user or other stakeholder has confidence that a product or system will
behave as intended” in quality of use. Several studies have extended based on these well-
known models and attempted to quantify the factors that affect software quality, such as the
Fuzzy Software Quality Quantification Tool (FSQQT), which takes several real-time values
of metrics from the ISO/IEC 9126 Model as inputs and quantifies software quality based on
the views of end-users, engineers and project managers as outputs. This study shows that
end-users care more about reliability and usability; engineers focus more on functionality,
efficiency, portability, and maintainability; and project managers are more concerned with
cost, schedule pressure, and cycle time (Challa et al. 2011).

Table 10 shows the number of primary factors and subfactors stated in the models of
McCall’s Model, Boehm’s Quality Model, Dromey’s Quality Model, ISO/IEC 9126:2001,
ISO/IEC 25010, FURPS & FURPS+, and FSQQT Model. We found that reliability is the

8 Page 22 of 38 Empir Software Eng (2023) 28:8

Table 10 The tables show the primary factors, subfactors, and counts based on McCall’s Model, Boehm’s
Quality Model, Dromey’s Quality Model, ISO/IEC 9126:2001, ISO/IEC 25010, FURPS & FURPS+, and
FSQQT Model

Primary Factor Total Subfactor Total

Reliability 6 Accuracy 5

Efficiency 5 Testability 4

Portability 5 Adaptability 4

Usability 5 Interoperability 3

Functionality 4 Security 3

Maintainability 4 Maturity 3

Correctness 2 Fault tolerance 3

Testability 2 Operability 3

Installability 3

Replaceability 3

Reusability 3

Consistency 3

Completeness 2

most critical factor in quality models. Efficiency, portability, usability, accuracy, testability,
and adaptability are the most stated subfactors.

Software quality is not accidental. It is achieved through management and must be
assured throughout the product life cycle. It is suggested by models or standards that evi-
dence of software quality or software trust should cover the information obtained at each
stage of the development process. For instance, IEEE Std 982.2-1988 indicates the relation-
ship between software reliability and each life cycle phase, including concept, requirement,
design, implementation, test, installation and checkout, operation and maintenance, and
retirement. Even though this standard was published in 1988, it does, to some extent,
reflect the information at each stage of the SDLC that influences the quality measurement.
Additionally, a number of Capability Maturity Models (CMM) address quality issues from
five maturity levels of software development processes, i.e., initial level, repeatable level,
defined level, managed level, and optimizing level (Berander et al. 2005; Ellison et al.
2016). The repeatable level focuses on project management, the defined level focuses on
the engineering process, the managed level focuses on product and process quality, and the
optimizing level focuses on continuous improvement. He et al. (2009) argue that trusted
components are affected by the development process. Therefore, trustworthy proof should
be collected through three phases: development, submission, and application. Submissions
and applications are primarily concerned with the quality factors in the quality models. For
instance, the submission phase includes the proof of functionality, reliability, and usability,
and the application phase emphasizes the proof of effectiveness, security, and efficiency.
Similarly, (Wang 2011) states that trustworthiness evidence includes development-stage
evidence, delivery-stage evidence, and application-stage evidence.

Additionally, with the introduction of third-party components, software features cannot
be assessed with traditional quality attributes. Emerging software quality concepts arise,
such as configurability, customizability, reusability, scalability, availability, trackability, and
compatibility to the quality requirements for software products produced by traditional soft-
ware development processes (Chau 1994; Challa et al. 2011). These concepts emphasize the

Page 23 of 38 8Empir Software Eng (2023) 28:8

needs for third-party components to be flexible in design and application and easy to reuse,
change, and extend. The object is not only to make the third-party components reusable but
also to make them adapt components to end-users systems and requirements (Wang et al.
2019).

OSS is a frequently discussed topic in quality-related manuscripts. The advantage of
OSS projects is that project data is public, so there are “many eyeballs” to help find and
fix defects (Mohagheghi and Conradi 2007), thus ensuring more credible software quality.
However, there are some warnings about the risk of having “too many cooks in the kitchen”
(Androutsellis-Theotokis et al. 2011). We did not find clear evidence that the number of
contributors correlates with software quality. However, research shows individuals may not
access the software to test it directly. They prefer metrics such as the number of stars and
users on GitHub as indicators of quality assessment (Li et al. 2021). In addition, the nature of
OSS is that it is available to all end-users. Therefore, it is also susceptible to hackers, which
opens a backdoor for the software and makes the system insecure. Furthermore, end-users
do not necessarily suggest that all of them are concerned with the security of the software,
as most of the people who use the software are engineers, not security experts.

Source Code Quality and Architecture Researchers calculate software quality as the ratio
of the total number of defects identified in a certain period to the total number of code
lines (Liu and Iyer 2007). Thus, it is not difficult to find that software quality, especially for
OSS, depends on the quality source code (Qian et al. 2009) and its attributes, for instance,
availability, understandability, completeness, conciseness, portability, consistency, main-
tainability, testability, usability, reliability, structuredness, and efficiency (Crowston et al.
2003; Jadhav and Sonar 2009). A frequently stated impact factor regarding source code is
availability (Chau 1994; Crowston et al. 2003; Badampudi et al. 2016). Reasons abound for
this, one of which may be that end-users or downstream engineers need to inspect or analyze
source code to determine code quality and software quality.

Programming languages may not directly affect software trust. However, experts
believed that projects written in more popular programming languages are more success-
ful in market penetration and attracting human resources (Ghapanchi and Tavana 2015),
indirectly giving end-users greater confidence in choosing their software. Several aspects
need to be considered when selecting a programming language for a project: (1) the project
itself, for instance, as a back-end server, it is not possible to consider a low-performance
interpreted language like Python (Jadhav and Sonar 2009); (2) support of programming
languages, for instance, whether in-house experts are proficient in the language (Jadhav
and Sonar 2011); (3) dependencies and interfaces, for instance, whether they need to be
purchased or used (Jadhav and Sonar 2011).

We try to collect a set of indicators for source code analysis and provide the result3 in an
open repository. This set of indicators are derived from various source code analysis tools
and are frequently used in the software selection process. In forming this set of indicators,
we considered, as much as possible, both the goal of the analysis (i.e., to be able to describe
the quality aspects of the software process and the resulting product) and the availability
of metrics in the data (Koch and Neumann 2008), assessing process and product evidence
(Donohue et al. 2005).

3https://data.mendeley.com/api/datasets/xn4jk93g4t/draft/files/b36ddc93-0f42-4227-b966-4c07d2a7e429?
a=9c51b45f-c943-4a22-814f-5baf59fb2896

8 Page 24 of 38 Empir Software Eng (2023) 28:8

https://data.mendeley.com/api/datasets/xn4jk93g4t/draft/files/b36ddc93-0f42-4227-b966-4c07d2a7e429?a=9c51b45f-c943-4a22-814f-5baf59fb2896
https://data.mendeley.com/api/datasets/xn4jk93g4t/draft/files/b36ddc93-0f42-4227-b966-4c07d2a7e429?a=9c51b45f-c943-4a22-814f-5baf59fb2896

The software architecture highly influences the selection of the software. It is reported
that “engineers will dismiss an unfamiliar framework and library if they cannot make it
work within an hour” (Haenni et al. 2013; 2014). Most of the time, end-users select a
package or a library to implement a single function instead of an extensive system or appli-
cation; for instance, for brownfield development, the existing software architecture of the
project imposes constraints on the selection of the following software package or library, the
selected package or library must fit into the existing technology stack of the project (Vargas
et al. 2020). As software packages are hosted off-premises, they are challenging to integrate
with other systems or software packages. Hence, end-users and software producers should
pay additional attention to the architecture’s integration, scalability, and reliability. They
should ensure that software products can remain available within a given time window and
maintain a reasonable response time even during peak periods (Godse and Mulik 2009).

Versions and Dependencies The distribution, installation, and updating of software pack-
ages or components also impact software trustworthiness, especially the integrity and
reliability of the software. Distribution requires that the package or component is in the for-
mat provided by the software producer without any malformations or corruptions, and the
installation and updates must also comply with the requirements set forth by the software
producer (Catuogno et al. 2017). However, dependencies complicate the software compo-
nents’ distribution. Dependencies connect various components of the system, thus forming a
highly interconnected ecosystem (Hejderup et al. 2018). Usually, the version that the pack-
age depends on is specific; therefore, a critical activity that must be carried out at each stage
of the SDLC is ensuring the integrity and coherence of dependencies with deployment tasks,
as failure in this process can result in disastrous consequences (Catuogno et al. 2017).

Considerable security vulnerabilities are caused by aging libraries (Kula et al. 2015).
However, it does not mean that a new version guarantees bug-free software. Not only that,
some uncontrollable dependencies often pose higher risks. For instance, the left pad is a few-
line software package with thousands of dependent packages. When its producer decided to
delete it from npm, it almost broke the internet. Therefore, the requirements for a package
or component are: (1) it has to be authentic; (2) unmodified; (3) fresh; (4) all required
dependencies are adequately satisfied and ensure dependency, integrity, and consistency;
(5) unauthorized installation is prohibited (Catuogno et al. 2017).

Extrinsic Trust Factors Extrinsic trust factors refer to the external environment characteris-
tics that influence software selection. Although the majority of manuscripts discuss intrinsic
trust factors, end-users still prioritize some extrinsic trust factors in the software selection.
This is because extrinsic trust factors have a wide range of data sources on publicly acces-
sible portals compared to intrinsic trust factors that lack quantitative metrics or detailed
data.

Structural Assurance In Section 4.1, we underlined that SA is believed to increase soft-
ware trust. This is because software trustworthiness may increase when end-users perceive
that they are using software in a secure, protected environment. SA includes licenses (e.g.,
GNU General Public License 2.0, or Apache License 2.0), contracts, regulations, or other
safeguards (e.g., package promises and legal considerations) (Guo et al. 2014). Contracts
define rights and obligations in a software project, including the functionality and goals of
the software, what each stakeholder is expected to accomplish, and the solutions to antici-
pated risks or problems. License is the most important type of structural assurance, which
has been stated in several manuscripts (Jadhav and Sonar 2009; Del Bianco et al. 2011;

Page 25 of 38 8Empir Software Eng (2023) 28:8

Vargas et al. 2020). It restricts the end-user’s ability to use the software (Midha and Palvia
2012). For instance, the GPLv3 (General Public License) license requires developers to
open their software, which is not a choice for commercial software (Vargas et al. 2020). In
addition, different versions of the same software product may have different licenses, which
end-users should be aware of during their software selection.

Documentation Documentation provides the first impression to end-users of a product’s
quality (Vargas et al. 2020). It includes the official project documentation, e.g., requirements
documentation, architecture, technical and user manual (Sarrab and Rehman 2014); and
broader forms of documentation, e.g., documentation translation, user comments, or discus-
sion in the forums (Chau 1994). Crowston et al. (2003) argue that the organization, clarity,
and maintenance of documentation are criteria that are often used to measure a software
product. Our previous study seems to be consistent with this finding. In our previous study,
we interviewed 12 participants, including software engineers, DevOps, architects, and other
experts, and ten of them considered documentation crucial to package selection. Typically,
they examine data structures, the functionality of features, and the package’s compatibil-
ity with the project via documentation, one of them confirmed that packages requiring two
days of reverse engineering due to unclear documentation would be eliminated (Jansen et al.
2021).

However, there is a problem with official and broader forms of documentation. In terms
of the official documentation, not all types of documentation are available to the public. For
example, to keep the trade secret, proprietary closed source software producers cannot share
their project data and source code with the public (Alexy et al. 2013). In terms of broader
forms of documentation, although the documentation for open-source software or packages
is free and open, much of the technical information and discussion occurs on mailing lists
or forums, making it difficult to collect and maintain valid information, let alone version
control of the documentation (Bangerth and Heister 2013).

Popularity Popularity is the most straightforward way to determine how widely used and
liked the product is by the public. Popularity can be measured as the number of likes,
downloads or dependencies of the software product (Vargas et al. 2020), or the number of
subscribers or views of the information page (Crowston et al. 2003). Additionally, the num-
ber of dependencies reflects the popularity of the software as a component or library. More
dependencies mean more people are using it, and it is more Table (Vargas et al. 2020).

Reputation Reputation can be at the software level or human level. Human-level reputation
is discussed in Section 4.2.3, the focus here is on the reputation of software. A good reputa-
tion represents a good rating by a specific size of users over a given period, and it represents
a lower risk of choosing a software product (Duan et al. 2021). Therefore, with similar soft-
ware quality, the end-users choose the software with a higher reputation. The most direct
reputation indicator is the average software product rating (Alarcon et al. 2020). The reputa-
tion of a software product may include the number of releases or versions, product history,
and open/closed issues (Alarcon et al. 2020), the programming language used, clarity of
comments, number of bugs reported, tests performed, number of versions, and reviews from
users who used the software or stakeholders who participated in the development or testing
(Haefliger et al. 2008).

Cost Although it is widely accepted that cost is associated with software selection because
solution selection frequently involves a trade-off between quality and cost (Limam and

8 Page 26 of 38 Empir Software Eng (2023) 28:8

Boutaba 2010), there are still partial software end-users, such as some OSS adopters, who
do not believe that cost is associated with software trust. This is most evident in the growing
awareness of software, particularly OSS, across various industries. However, some special-
ized industries, such as banking, resist adopting inexpensive or even free software, such as
OSS, despite the high cost of customizing and maintaining the software(Talib et al. 2020).
This finding is derived from a top 10 American bank case study. The main reason they are
reluctant to use OSS is that they “fear about who would maintain, fix, and otherwise sup-
port the systems”. As a result, they adopted OSS in some non-core modules, such as the
interfaces or customer self-service modules(Walli et al. 2005), or moved some of their exist-
ing operating systems or databases to OSS operating systems or databases, to balance the
costs associated with the high-priced core systems.

Top management from IT organizations, especially profit-oriented organizations, tend to
consider the return on investment (ROI) as the primary financial cost factor in their software
selection decision-making process (Del Bianco et al. 2011). ROI is the ratio of net benefits
to costs. (Mohagheghi and Conradi 2007) define the net benefits as savings, which are influ-
enced by reuse costs and rework savings. Reuse cost includes the cost of developing reusable
assets, integrating reusable assets, rework savings, and recovering creation costs. Rework
savings measure the cost savings when adopting a trusted library or package, as well as sav-
ings in rework due to reduced system errors. However, the two factors are difficult to gather
before the end-users select a software product. The possibility is that they are predicted or
calculated after the software has been in use for a time. In the literature, costs usually refer to
license cost, training cost, installation and implementation cost, maintenance cost, mitiga-
tion cost, and upgrading cost (Jadhav and Sonar 2009; 2011). Cho and Xu (2019) introduce
several cost factors as well, e.g., service costs and learning defense costs, in their model
of trustworthiness of Computer-Based Systems. Service costs include defense costs, which
refer to the cost of deploying various alternative solutions; decision costs, which refer to the
administrative delays, complexity, and effort incurred in the decision process; and recovery
costs, which refer to the costs associated with the recovery process to back to a normal oper-
ating system state. Recovery costs include intrusion response, replacement, physical storage
repair, and user training costs. Learning defense costs are the costs associated with imple-
menting the system’s defense mechanisms. In addition to the financial cost, the time cost,
such as time to market and project completion time, and potential cost risks that can impact
the cost also need to be considered (Vargas et al. 2020; Mohagheghi and Conradi 2007).

4.2.2 RQ2.2 - Trust Factors of Software Package Managers

This subsection focuses on addressing RQ2.2 - What trust factors do end-user organizations
consider when selecting software package managers?

A package manager is a software tool used to search, install, track, upgrade, and delete
packages on the operating system. Based on the definition of the SECO, a package manager
is also a SECO, with a set of actors interacting on this common platform. Perhaps it has
been overlooked to some extent, at least so far, there has been little research concerning the
trust relationships between the various hubs and actors in the package manager ecosystem,
we only found four manuscripts (Decan et al. 2018; Duan et al. 2021; Hejderup et al. 2018;
Catuogno et al. 2017). The topics discussed are, respectively, how does the package manager
ensure that the packages it manages are trustworthy, how does the package manager ensure
that the packages are up-to-date, and how does the package manager detect vulnerabili-
ties and notify end-users promptly and address the problems caused by the vulnerabilities.

Page 27 of 38 8Empir Software Eng (2023) 28:8

Therefore, the factors that contribute to trust in the package manager are limited, focus-
ing on (1) dependency hell; (2) security vulnerability; (3) package prevention. They are all
intrinsic trust factors related to the design of the package manager and its vulnerabilities.

Dependency Hell As previously stated, package installations are currently experiencing
dependency hell, and end-users become trapped in a dead-end loop that state-of-the-art
package managers cannot resolve. Catuogno et al. (2017) argue that a trustworthy package
manager should avoid the dependency hell by selecting the right package sources and ver-
sions, especially guaranteeing confidentiality, integrity, freshness, and authenticity of the
packages and dependencies.

Security Vulnerability Security vulnerability includes two aspects, bugs and attacks on the
metadata and the repository. As explained in Section 2, metadata includes the version of
a package and a set of dependencies. Attackers may attempt to manipulate metadata to
insert malicious code in dependencies to infect popular packages (Duan et al. 2021). In
terms of the repository, if an online repository contains malicious code when downloading
and upgrading packages, it will be imported into the end-user’s computer through transitive
dependencies (Hejderup et al. 2018).

Prevention The protection mechanisms of package managers are discussed in two articles.
(Catuogno et al. 2017) emphasize that multiple layers of protection should be provided to
secure packages from their sources. For example, authentication of packages by digital sig-
natures, verification of metadata freshness, and updating or downloading packages from
multiple sources. (Decan et al. 2018) suggest that package managers should detect and dep-
recate vulnerable packages and warn end-users when packages with known vulnerabilities
are installed or depended upon.

4.2.3 RQ2.3 - Trust Factors of Software Producing Organizations

This subsection focuses on addressing RQ2.3 - What trust factors do end-user organizations
consider when selecting software producing organizations?

In most cases, a product that is managed by an organization is more trustworthy because
it gives end-users the confidence that the product is produced and managed by professionals
(Hoxmeier 2000). However, it is often difficult to determine if an organization is a good
self-promoter or a genuinely reputable organization. Next, we discuss the role of SPOs in
software trust assessment.

Reputation Reputation is a publicly recognized judgment about the character or status of
a person or thing (Immonen and Palviainen 2007). It is an asset for software producing
organizations and gives them a competitive edge over others (Pollock and Williams 2007).
Cai and Zhu (2016) argue that software quality has a positive relationship with an SPO’s
reputation, while (Vargas et al. 2020) observe that an organization’s reputation depends not
only on the quality of the products it produces but also on other aspects, for instance, the
services it provides (Jadhav and Sonar 2011), end-users feedback, and its rating values,
positive and timely response, compliance with contracts, and length of experience (Chau
1994; Jadhav and Sonar 2009; Challa et al. 2011; Capra et al. 2011; Vargas et al. 2020).
Length of experience, from an SPO’s perspective, means that the SPO has experience in
product manufacturing, project management, business operations, industry, and experienced
in-house experts and engineers (Chau 1994). This extensive experience results in the SPO

8 Page 28 of 38 Empir Software Eng (2023) 28:8

developing higher quality and trustworthy software. Especially when risks and uncertainties
hit, they can deal with or avoid problems more effectively, increasing end-user confidence
in their products and services.

Capability SPO’s cability arises from different factors, including technology skills, the
firm’s strategy, maturity, and scale.

Technology skills are undoubtedly the capital of organizations to achieve success and are
a core competency. Technology skills emphasize technical knowledge in software project
management, including knowledge in programming and system development knowledge,
R&D capability, training, and support. Trustworthy software cannot be developed without
programming and system development knowledge, which is the physical guarantee of soft-
ware production (Lai et al. 2011; Sarrab and Rehman 2014; Cho and Xu 2019). It means that
the organization must have qualified members who are proficient in programming, system
analysis, and design, project management, and other soft skills to deliver software on time,
on quality, and on schedule, as well as effectively control and resolve all risks and issues
in the SDLC (Amoroso et al. 1991). However, it is difficult to measure how many qualified
members an organization has, and whether those members are qualified, one approach to
measuring this would be to examine the software products and services offered by the orga-
nization. R&D capability shows whether an SPO can develop and maintain current projects
and whether it has the potential and innovation to develop new products. It keeps the SPO
ahead of the competition by continuously innovating and introducing new products and ser-
vices or improving its existing offerings. End-users prioritize getting training and guidance
from the services (Jadhav and Sonar 2011; Del Bianco et al. 2011; Sarrab and Rehman 2014;
Vargas et al. 2020), which include: (1) training and documentation, e.g., user manual, tuto-
rials, or troubleshooting guide; (2) maintenance and up-gradation, e.g., technical support
and consultancy, communication with end-users, on-site demo and free-trial version, rapid
responsiveness, business skills (Jadhav and Sonar 2009; 2011), or management and opera-
tion (Hunter and Walli 2013); (3) social network-continued activity; (4) knowledge-sharing
user-base (Wang et al. 2015), e.g., discussion forums or signs of an active community. Espe-
cially for OSS, guaranteed, long-term technical support is an essential indicator for selecting
an OSS software (Alarcon et al. 2020).

An SPO cannot produce a product in SECO without relying on the product of another
SPO. Therefore, end-users’ selection of an SPO should be accompanied by consideration of
how the candidate SPO manages the SPOs on which it depends. For instance, how to select
third-part components, manage third-party producers, or maintain the sourcing strategy. The
strategy includes the SPO’s management and vision, the SPO’s culture, and the type of
industry.

SPO’s maturity indicates whether an SPO can manage the product well, which is essen-
tial to ensure product quality. It can be expressed through, for instance, content management
systems, partnership models, rules, and regulations (Jansen 2014). Although there is no
consensus on how to measure it, from the perspective of software end-users, formal proce-
dures and standard security policies will help them evaluate and select trustworthy software
products (Vargas et al. 2020).

SPO’s capabilities are also affected by the number of contributors in the SPO (Bogart
et al. 2016). For instance, how many people write code, report problems, and fix defects
(Mockus et al. 2002), as well as how effective these individuals are (Challa et al. 2011;
Jansen 2014). Numerous studies have shown that the number of contributors positively
impacts the success of a project (Crowston et al. 2003; Scacchi 2007; Koch and Neumann
2008; Sen et al. 2012; Midha and Palvia 2012; Jansen 2014), especially for open source

Page 29 of 38 8Empir Software Eng (2023) 28:8

projects. By modeling the number of contributors and subscribers, the results suggest that
more contributors to a project may increase the project activity and thus increase the number
of subscribers. Similarly, increasing subscribers can affect the number of contributors by
attracting new contributors and converting new contributors from the subscriber base (Sen
et al. 2012).

In our study, we found that SPOs are mentioned more frequently in OSS studies (Cruz
et al. 2006; Liu and Iyer 2007; Midha and Palvia 2012; Sen et al. 2012). Among them,
it has been argued that SPO involvement and management in OSS development does not
guarantee product quality and service ((Capra et al. 2011)). Because software engineers have
to adhere to strict deadlines to meet SPO’s goals and maintain leadership, at the expense of
internal design quality.

4.2.4 RQ2.4 - Trust Factors of Engineers

This subsection answers RQ2.4 - What trust factors do end-user organizations consider
when selecting software engineers? Similar to the trust factors of SPOs, the trust factors
of software engineers are also extrinsic. These trust factors, especially software engineers’
competencies, and skills, contributing effort, satisfaction, and happiness, affect not only
SPO trustworthiness but also software trustworthiness.

Competencies and Skills Competencies and skills refer to the knowledge and abilities that
an engineer or a group of engineers should possess throughout the product’s life cycle. They
stem from good working knowledge, the experience of different operating systems, and
the ability to learn from others (Sarrab and Rehman 2014). These skills and abilities, for
example, the deployment and maintenance of software, the monitoring of news articles and
messages in user forums and mailing lists regularly, and promptly responding to bug reports,
are used to develop and integrate new and stable modules that meet end-user requirements
(Norris 2004). Several researchers believe that they significantly impact the quality of the
product they create (Norris 2004; Mcknight et al. 2011; Sarrab and Rehman 2014). In par-
ticular, engineer responsiveness is considered critical regardless of whether end-users trust
the software or its output (Gefen and Keil 1996). Software engineers will likely suffer from
distrust if they fail to respond to end-users promptly. While response times depend on the
availability of engineers on the project and the priority of defects, in most cases, end-users
are not concerned with them, but rather with defects being resolved quickly (Mockus et al.
2002).

Contributing Effort (Cai and Zhu 2016) believe that contributing effort helps shape an
engineer’s reputation. This is because engineers with low reputations may mean that they do
not work hard enough, which leads to low contributions. Engineers with low contributions
may lead to poor performance of the software products they produce.

Satisfaction andHappiness Researchers believe that engineers’ satisfaction and happiness
with working significantly affect the quality of the product of their products and the trust that
end-users place in them (Crowston et al. 2003; Capra et al. 2011). Engineer satisfaction and
happiness are highly subjective factors because each individual’s satisfaction and happiness
are unique. They are difficult to collect, analyze and quantify objectively.

Numerous research findings disagree on end-users importance in knowing who devel-
oped the software. This may imply that the end-users do not consider the software engineer
to be a factor in their software selections. According to a set of interviews with 75 engineers

8 Page 30 of 38 Empir Software Eng (2023) 28:8

that had been conducted in (Haenni et al. 2013; 2014), when the end-users select a com-
ponent or library, they are not concerned with the engineers’ identities but with the code’s
quality and level of maintenance, e.g., the engineers’ responsibilities and their response
time. Similarly, according to another study of an interview on package selection (Bogart
et al. 2016), package selection depends on whether end-users trust the package maintainer.
It is reported that one interviewee even deliberately sent bug reports to test whether the
maintainer would respond in time. Nevertheless, we see some contrary views in certain
manuscripts as well. For example, some end-users require that the names and numbers of
engineers who develop and test the code must be public because they believe that rep-
utable engineers help make code more reliable and reduce more defects (Madanmohan and
De 2004). Both views imply that how engineers maintain the project is crucial to software
selection.

5 Discussion

5.1 Impact on the Software Selection

The factors discussed in this study may positively or negatively affect the software selection
outcome. No factor can have an absolute positive or negative impact. For instance, vulnera-
bilities and attacks appear to be detrimental to software trust, as their presence significantly
impacts the quality and credibility of software and the reputations of software producers
(Cho and Xu 2019; Vargas et al. 2020). With the advancement of attack techniques and
the expansion of scale and scope, no software can now claim to be secure enough on its
own. However, if the software can employ an effective defense to ensure a lower number of
attacks over time, and if it is capable of employing more rapid means of resolving the situ-
ation following an attack, we can assert that although vulnerabilities and attacks undermine
the software, the effect on selection and trust is positive (Gefen and Keil 1996). Similarly,
factors such as the software’s quality, reputation, or the skills of the software producer can
have a positive or negative effect. It means that if a software product is of high quality and
has a positive reputation, it will have a beneficial effect on the software trust, and vice versa.
However, almost all reputation information is based on a web source. To project a trustwor-
thy image, software producers are likely to falsify information or provide only one-sided
information to achieve a higher reputation (Farooq et al. 2016). For instance, numerous
proprietary product licenses contain clauses prohibiting public criticism of the product with-
out the software producers’ prior permission. Hence, a single-source reputation makes it
difficult for end-users to obtain real feedback on the software product and thus assess its
trustworthiness (Tavakolifard and Almeroth 2012).

The negative or positive impact is determined by how the end-user perceives those factors
for various reasons. For instance, as we have discussed previously, several end-users choose
low-cost software, whereas in several industries, such as banking, the cost is not a factor that
prevents them frommaking a choice; rather, it represents a certain level of service reliability.
Or, different end-users have different views on whether OSS is developed by SPOs, with
some believing that SPOs represent sophisticated management and others believing that
SPOs may be overly concerned with deadlines at the expense of product quality.

There is one situation in which the impact is neither positive nor negative: the propensity
of software end-users. It affects the end-user to conduct the trust process professionally
and rationally. Usually, the effect on decision-making should be beneficial. However, if the

Page 31 of 38 8Empir Software Eng (2023) 28:8

technology of the software evaluation exceeds, such as end-user experience, it may have no
impact on the decision outcome (Moyano et al. 2016).

5.2 Validity Consideration

We considered the validity of the following points. First, our selection of manuscripts was
inevitably subjective due to bias and understanding of the concepts, so we could not have
included all relevant studies in this SLR. Second, we found that most studies focused on
software quality, with relatively few studies on hubs, actors, and their relationships in the
SECO. Perhaps because OSS provides public access to technical data while proprietaries’
data is restricted, the manuscripts we extracted are more relevant to OSS-based discussions.
Hence, the analysis of the results may not cover all types of SECOs. Additionally, a con-
siderable number of studies are based on interviews or questionnaires, which may cause
the results to be not generalized. Moreover, most models are not yet widely adopted in the
open-source ecosystem, which means they still lack validation and application in real-world
projects, and may be problematic in terms of generalizability. Finally, we categorized soft-
ware trust as intrinsic and extrinsic trust factors with different levels. Although this allows
for a clarified and focused presentation of the results, we may have inevitably removed
several factors that could not be categorized and overlooked specific scenarios of end-user
trust.

5.3 Lessons and Research Challenges

Software trust is comprehensive, and its factors cover all actors in the SECO. In this sub-
section, we identify several challenges that make research more complicated. The first
complicating factor is that end-users propensity to trust is subjective. Even when different
end-users are given the same information, the trust they place will be different, and this trust
can change over time. The judgment depends on the information they access. Therefore,
assigning a fixed priority or weight to the factors is impossible. Second, it is difficult, if
not impossible, to find a comprehensive set of models to measure software trust objectively
and fairly. The measurement and interpretation of software trust must be dynamic. Third,
the interpretation of trust factors should be multifaceted. It may be challenging to obtain
or apply project data to determine trust in closed software, but these data can be used to
calculate trust in OSS.

The digitization of society has provided us with a number of affordances, and the pene-
tration of IT in it should be considered an unprecedented development in history. However,
we are standing at the advent of a new period in history, where societal trust in IT is drop-
ping at an alarming rate (Public affairs council 2021). We can say the hay-day of society’s
willingness to adopt new IT solutions and trust the older ones is over (Hayes et al. 2020).
With this problem statement in mind, we have set ourselves an ambitious goal to raise the
accessibility, reliability, and use of trust data in the worldwide SECO (Hou et al. 2021). We
envision a future where software can be rapidly and even automatically assessed relatively
and equally, using a shared understanding of trust that is collaboratively created and main-
tained. However, several challenges must be tackled before creating such an accessible and
common infrastructure. We define a set of research challenges for the future in the bold
typeface.

The first challenge is that we are collecting and sharing software engineer data, but at the
risk of revealing their identities and breaking their privacy (Poel 2020). This would directly
contradict the goals of this project, so we need to find mechanisms for protecting personal

8 Page 32 of 38 Empir Software Eng (2023) 28:8

data within ethical and legal boundaries, such as the General Data Protection Regulation
(GDRP).

There is an inherent problem with sharing information with a community, as actors could
misjudge or misuse the information. It must be noted that observed vulnerabilities are not
a sign of untrustworthy software and that if these vulnerabilities are rapidly identified and
eliminated, they actually might be a sign of trustworthy software. Furthermore, we need to
ensure that vulnerabilities can be shared openly within the community without falling
into the “wrong” hands.

We have performed two preliminary interview studies to assess how software engineers
and end-user organizations would use trust data in their work. These interview studies
showed that while trust facts may be irrefutable, the perception of trust is a moving target
for different actors. One actor may be satisfied with using a bleeding-edge software package
that often updates, while another wants an old version of a patched but reliable package. We
are currently exploring if different categorizations of trust ratings are necessary, such as
“project evolution speed”, “vulnerability fix time”, and “team liveliness”.

While we respect tools that centrally collect trust data, we believe that trust data should
be part of a zero-trust community. We observe that it is impossible to observe correct trust
data as one major party objectively and consensus mechanisms are necessary to observe
that a software package version is objectively trustworthy.

The data collection process itself is challenging. Once we have identified the values (that
is, trust facts) that are necessary to collect, we will have to tackle the challenge of the avail-
ability of these data. Data to judge the software trust can come from usage data, source code,
build systems, test systems, etc. Thus, it will be challenging to judge the trust of closed
software. Furthermore, it is hard, if not impossible, to get data from closed reputation
databases, such as app store ratings. Finally, the operationalization of the impact factors
is a major challenge in this work. We plan to perform a large-scale survey study with soft-
ware engineers as an approach to this problem to identify a minimal collectible set of trust
facts useful for software engineers.

5.4 FutureWork

Our near-future works consist roughly of two parts.
First, we plan to launch a software engineer survey based on the outcomes of this

SLR. The survey intends to determine a prioritized and categorized list of trust factors.
Furthermore, we want to use the survey to gauge and create awareness amongst software
engineers about the role of trust in their software engineering processes.

Secondly, using the list of prioritized trust factors, we develop a tool for automatically
gathering trust scores for different trust impact categories (Hou et al. 2021). Software
engineers must evaluate the tool to decide whether it effectively supports them in down-
loading and depending on a particular software package. We aim to store these trust scores
in a distributed ledger to make trust common to all software engineers. The community that
uses the ledger can contribute openly observable facts to the ledger to increase or decrease
trust scores for software packages.

6 Conclusion

In this study, we examined the role of trust in SECO by starting with the selection and
measurement of software products. Our goal is to devise a strategy for resolving the trust

Page 33 of 38 8Empir Software Eng (2023) 28:8

erosion issue raised in the introduction, specifically the harm caused to SECO’s health by
vulnerabilities and attacks. This study adopted a systematic literature review approach to
review the trust in SECO of a selected 112 manuscripts. On this basis, we discussed the
definition, types, and sources of software trust and propose a definition of software trust in
the context of SECO. Additionally, we classified the impact factors on software trust from
the standpoint of software and packages, software package managers, software producers,
and software end-users. We analyzed the existing literature for relevant impact factors and
counted their frequencies. The most frequently discussed factors are software quality, source
code, security, documentation, and structural assurance. Furthermore, based on these stud-
ies, we compiled a comprehensive table of software trust impact factors and identified as
many practical metrics as possible for each factor to be measured.

Although most of the trust factors we collected are based on empirical research and only
a few models or metrics are widely used in real-world projects, they reflect, to some extent,
the concerns expressed by software engineers or end-users during the software selection or
evaluation process.

According to the literature, software trust is the foundation for cooperation between hubs
and actors in SECO. While software trust is critical for cooperation between actors, current
research on software trust focuses exclusively on software and components, particularly
software quality. Limited measures of trust assessment cannot be the final word to success,
and it should be expanded to include other entities to analyze trust in the SECO in a multi-
level, multi-perspective manner. Next, we will survey software engineers to ascertain their
perceptions of software trust in the future, paving the way for designing a community-
managed infrastructure that serves as a trust layer for SECO.

Acknowledgements We thank the SecureSECO team for their constructive feedback and help to create
this article. In particular, we thank Donny Groeneveld, Venja Beck, and Floris Jansen for their diligence
in performing their part of the literature review, i.e., filtering, double-checking, and processing the articles.
Furthermore, we thank them for the lengthy and productive discussions that led to an inter-rater agreement
between the SLR team members. Finally, we thank Hidde Reeskamp and Joost Gadellaa for their excellent
comments on the early versions of this article.
Funding This project received funding from the TruBlo project the third Open Call (sub-grant agree-
ment), under European Union’s Horizon 2020 Research and Innovation program under the Grant Agreement
Number 957228.

Declarations

Conflict of Interests Author Slinger Jansen is an Associate Editor at the Empirical Software Engineering
Journal.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alarcon GM, Gibson AM, Walter C, Gamble RF, Ryan TJ, Jessup SA, Boyd BE, Capiola A (2020) Trust
Perceptions of Metadata in Open-Source Software: The Role of Performance and Reputation. Systems
8(3):28

8 Page 34 of 38 Empir Software Eng (2023) 28:8

http://creativecommons.org/licenses/by/4.0/

Amoroso Ed, Nguyen Thu, Weiss Jon, Watson John, Lapiska Pete, Starr Terry (1991) Toward an approach
to measuring software trust. In: Proceedings. 1991 IEEE Computer Society Symposium on Research in
Security and Privacy, pp 198–198

Androutsellis-Theotokis S, Spinellis D, Kechagia M, Gousios G (2011) Open source software: a survey from
10,000 feet. Found Trends Technol Inf Oper Manag 4.3-4:187–347

Badampudi Deepika, Wohlin Claes, Petersen Kai (2016) Software component decision-making: in-house,
OSS, COT S or outsourcing-A systematic literature review. J Syst Software 121:105–124

Bennett K, Layzell P, Budgen D, Brereton P, Macaulay L, Munro M (2000) Service-based software: the
future for flexible software. In: Proceedings seventh Asia-Pacific software engeering conference, APSEC
2000. IEEE, pp 214–221

Berander P, Damm LO, Eriksson J, Gorschek T, Henningsson K, Jönsson P, Wohlin C (2005) Software
quality attributes and trade-offs. In: Blekinge Institute of Technology 97.98, p. 19

Bogart C, Kästner C, Herbsleb J, Thung F (2016) ‘How to break an API: cost negotiation and community
values in three software ecosystems’. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 109–120

Boyes HA, Norris P, Bryant I, Watson T (2014) Trustworthy Software: lessons from goto fail’& Heart- bleed
bugs. In: 9th IET International Conference on System Safety and Cyber Security, pp. 17.

Bugiel S, Davi LV, Schulz S (2011) Scalable trust establishment with software reputation, pp 15–24. In:
Proceedings of the sixth ACM workshop on Scalable trusted computing

Cai Y, Zhu D (2016) Reputation in an open source software community: Antecedents and impacts. Decis
Support Syst 91:103–112

Capra E, Francalanci C, Merlo F, Rossi-Lamastra C (2011) ‘Firms’ involvement in Open Source projects: a
trade-off between software structural quality and popularity. J Syst Software 84.1:144–161

Catuogno L, Galdi C, Persiano G (2017) Secure dependency enforcement in package management systems.
IEEE Trans Dependable Secure Comput 17.2:377–390

Challa JS, Paul A, Dada Y, Nerella V, Srivastava PR, Singh AP (2011) Integrated software quality evaluation:
a fuzzy multi-criteria approach. J Inf Process Syst 7.3:473–518

Chau P (1994) Selection of packaged software in small businesses. European J Inf Syst 3.4:292–302
Cho J-H, Chan K, Adali S (2015) A survey on trust modeling. ACM Comput Surveys (CSUR) 48.2:

1–40
Cho J-H, Xu S (2019) Stram: measuring the trustworthiness of computer-based systems. ACM Comput

Surveys (CSUR) 51.6:1–47
Crowston K, Annabi H, Howison J (2003) Defining open source software project success. In: Proceedings of

the International Conference on Information Systems (ICIS)
Cruz D, Wieland T, Ziegler A (2006) Evaluation criteria for free/open source software products based on

project analysis. Software Process: improvement and Practice 11.2:107–122
Das TK, Teng B-S (2001) Trust, control, and risk in strategic alliances: an integrated framework. Organization

studies 22.2:251–283
Decan A,Mens T, Constantinou E (2018) On the impact of security vulnerabilities in the npm package depen-

dency network. In: Proceedings of the 15th international conference on mining software repositories,
pp 181–191

Del Bianco V, Lavazza L, Morasca S, Taibi D (2011) A survey on open source software trustworthiness.
IEEE Softw 28.5:67–75

Donohue SK, Dugan JB, Brown CL (2005) Is my software good enough to release?-A probabilistic
assessment. In: 29th annual IEEE/NASA Software engineering workshop, pp 5–13

Duan R, Alrawi O, Kasturi RP, Elder R, Saltaformaggio B, Lee W (2021) Towards measuring supply chain
attacks on package managers for interpreted languages. In: Network and distributed systems security
(NDSS) symposium 2021

Ellison R, Nichols W,Woody C (2016) Measuring software assurance. In: 2016 IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC), vol 2, pp 359–364

Gefen D, Keil M (1996) Developer responsiveness and perceived usefulness. In: Academy of management
proceedings, Academy of management Briarcliff Manor, NY 10510. vol 1996, pp 313–317

Ghapanchi AH, Tavana M (2015) A longitudinal study of the impact of open source software project
characteristics on positive outcomes. Inf Syst Manag 32.4:285–298

Godse M, Mulik S (2009) An approach for selecting software-as-a-service (SaaS) product. In: 2009 IEEE
international conference on cloud computing. IEEE, pp 155–158

Goode S, Lin C, Tsai JC, Jiang JJ (2015) Rethinking the role of security in client satisfaction with software-
as-a-service (SaaS) providers. Decision Support Syst 70:73–85

Grandison T, Sloman M (2000) A survey of trust in internet applications. IEEE Commun Surveys Tutorials
3.4:2–16

Page 35 of 38 8Empir Software Eng (2023) 28:8

Grodzinsky FS, Miller KW, Wolf MJ (2011) Developing artificial agents worthy of trust: would you buy a
used car from this artificial agent? Ethics Inf Technol 13.1:17–27

Guo G, Zhang J, Thalmann D, Basu A, Yorke-Smith N (2014) From ratings to trust: an empirical study of
implicit trust in recommender systems. In: Proceedings of the 29th annual acm symposium on applied
computing, pp 248–253

Haefliger S, Von Krogh G, Spaeth S (2008) Code reuse in open source software. Manag Sci 54.1:180–193
Haenni N, Lungu M, Schwarz N, Nierstrasz O (2013) Categorizing developer information needs in software

ecosystems. In: Proceedings of the 2013 international workshop on ecosystem architectures, pp 1–5
Haenni N, Lungu M, Schwarz N, Nierstrasz O (2014) A quantitative analysis of developer information

needs in software ecosystems. In: Proceedings of the 2014 European conference on software architecture
workshops, pp 1–6

He J, Hou H, Song Q, Hao K (2009) Reference model of trustworthy proof for trusted components. In: 2009
second international conference on future information technology and management engineering. IEEE,
136–139

Heiskanen A, Newman M, Eklin M (2008) Control, trust, power, and the dynamics of information sys-
tem outsourcing relationships: a process study of contractual software development. J Strategic Inf Syst
17.4:268–286

Hejderup J, van Deursen A, Gousios G (2018) Software ecosystem call graph for dependency management.
In: 2018 IEEE/ACM 40th international conference on software engineering: new ideas and emerging
technologies results (ICSE-NIER). IEEE, pp 101–104

Hillebrand C, Coetzee M (2013) Towards reputation-as-a-service. In: 2013 Information Security for South
Africa. IEEE, pp 1–8

Hong H, Chang-hui W, Ben W (2011) Research on management scheme of trusted application soft-
ware. In: 2011 international conference on network computing and information security. Vol. 1. IEEE,
pp. 311–315

Hoxmeier JA (2000) Software preannouncements and their impact on customers perceptions and vendor
reputation. J Manag Inf Syst 17.1:115–139

Hunter P, Walli S (2013) The rise and evolution of the open source software foundation. In: International
Free and Open Source Software Law Review 5, p. 31

Immonen A, Palviainen M (2007) Trustworthiness evaluation and testing of open source components. In:
Seventh international conference on quality software (QSIC 2007). IEEE, pp 316–321

Jackson D (2009) A direct path to dependable software. Commun ACM 52.4:78–88
Jadhav AS, Sonar RM (2009) Evaluating and selecting software packages: a review. Information and software

technology 51.3:555–563
Jadhav AS, Sonar RM (2011) Framework for evaluation and selection of the software packages: a hybrid

knowledge based system approach. J Syst Software 84.8:1394–1407
Jansen S (2014) Measuring the health of open source software ecosystems: beyond the scope of project

health. Inf Software Technol 56.11:1508–1519
Koch S, Neumann C (2008) Exploring the effects of process characteristics on products quality in open

source software development. J Data Manag (JDM) 19.2:31–57
Kula RG, German DM, Ishio T, Inoue K (2015) Trusting a library: A study of the latency to adopt the

latest maven release. In: 2015 IEEE 22nd International Conference on Software Analysis, Evolution,
and reengineering (SANER). IEEE, pp 520–524

Lai IK, Tong VW, Lai DC (2011) Trust factors influencing the adoption of internet-based interorganizational
systems. Electr Commerce Res Appl 10.1:85–93

Limam N, Boutaba R (2010) Assessing software service quality and trustworthiness at selection time. IEEE
Trans Software Eng 36(4):559–574

Liu X, Iyer B (2007) Design architecture, developer networks and performance of open source software
projects. In: International Conference on Information Systems 2007 Proceedings, p. 90

Manikas K, Hansen KM (2013) Software ecosystems–a systematic literature review. J Syst Software
86.5:1294–1306

McKnight DH (2005) Trust in information technology. Blackwell Encyclopedia Manag 7:329–331
Mcknight DH, Carter M, Thatcher JB, Clay PF (2011) Trust in a specific technology: an investigation of its

components and measures. ACM Trans Manag Inf Sys (TMIS) 2.2:1–25
Midha V, Palvia P (2012) Factors affecting the success of Open Source Software. J Syst Software 85.4:895–

905
Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of open source software development: apache

and mozilla. ACM Trans Software Eng Method (TOSEM) 11.3:309–346
Mohagheghi P, Conradi R (2007) Quality, productivity and economic benefits of software reuse: a review of

industrial studies. Empirical Software Eng 12.5:471–516

8 Page 36 of 38 Empir Software Eng (2023) 28:8

Moyano F, Fernandez-Gago C, Lopez J (2016) A model-driven approach for engineering trust and reputation
into software services. J Netw Comput Appl 69:134–151

Norris JS (2004) Mission-critical development with open source software: lessons learned. IEEE Softw
21.1:42–49

Pollock N, Williams R (2007) Technology choice and its performance: towards a sociology of software
package procurement. Inf Org 17.3:131–161

Qian H, Zhu X, Ma J, Cao X (2009) Quality process-oriented software credibility measurement and assess-
ment. In: 2009 international conference on computational intelligence and software engineering. IEEE,
pp 1–6

Roumani Y, Nwankpa JK, Roumani YF (2017) Adopters trust in enterprise open source vendors: an empirical
examination. J Syst Software 125:256–270

Sarrab M, Rehman OMH (2014) Empirical study of open source software selection for adoption, based on
software quality characteristics. Adv Eng Software 69:1–11

Scacchi W (2007) Free/open source software development: recent research results and methods. Adv Comput
69:243–295

Schuur Hvd, Jansen S, Brinkkemper S (2011) The power of propagation: on the role of software operation
knowledge within software ecosystems. In: Proceedings of the international conference on management
of emergent digital ecosystems, pp 76–84

Sen R, Singh SS, Borle S (2012) Open source software success: measures and analysis. Decision Support
Syst 52.2:364–372

Van Den Berk I, Jansen S, Luinenburg L (2010) Software ecosystems: a software ecosystem strategy assess-
ment model. In: Proceedings of the fourth european conference on software architecture: companion
volume, pp 127–134

Vargas EL, Aniche M, Treude C, Bruntink M, Gousios G (2020) Selecting third-party libraries: the practi-
tioners’ perspective. In: Proceedings of the 28th ACM joint meeting on european software engineering
conference and symposium on the foundations of software engineering.

Wang B, Chen Y, Zhang S, Wu H (2019) Updating model of software component trustworthiness based on
users feedback. IEEE Access 7:60199–60205

Wang H (2011) TRUSTIE: design of a trustworthy software production environment. In: 2011IEEE 10th
international conference on trust, security and privacy in computing and communications. IEEE, pp 3–4

Wang H, Yin G, Li X, Li X (2015) TRUSTIE: a software development platform for crowdsourcing. In:
Crowdsourcing. Springer, pp 165–190

Wang J, Shih PC, Wu Y, Carroll JM (2015) Comparative case studies of open source software peer review
practices. Inf Software Technol 67:1–12

Yan Z (2008) A comprehensive trust model for component software. In: Proceedings of the 4th international
workshop on security, privacy and trust in pervasive and ubiquitous computing, pp 1–6

Zhu M-X, Luo X-X, Chen X-H, Wu DD (2012) A non-functional requirements tradeoff model in trustworthy
software. Inf Sci 191:61–75

Other Sources

Alexy O, Henkel J, Wallin MW (2013) From closed to open: Job role changes, individual predispositions,
and the adoption of commercial open source software development. Res Policy 42.8:1325–1340

Bangerth W, Heister T (2013) What makes computational open source software libraries successful? Comput
Sci Discov 6(1):015010

Bauer PC (2019) Conceptualizing trust and trustworthiness. In: Political concepts working paper series
Bauer V, Heinemann L, Deissenboeck F (2012) A structured approach to assess third-party library usage. In:

2012 28th IEEE international conference on software maintenance (ICSM). IEEE, pp 483–492
BecerraM, Lunnan R, Huemer L (2008) Trustworthiness, risk, and the transfer of tacit and explicit knowledge

between alliance partners. J Manag Studies 45.4:691–713
Bourque P, Fairley RE (2014) Guide to the software engineering body of knowledge. Version 3.
Buscemi N, Hartling L, Vandermeer B, Tjosvold L, Klassen TP (2006) Single data extraction generated more

errors than double data extraction in systematic reviews. J Clinic Epidemiology 59.7:697–703
Cappos J, Samuel J, Baker S, Hartman JH (2008a) A look in the mirror: Attacks on package managers. In:

Proceedings of the 15th ACM conference on Computer and communications security, pp 565–574
Cappos J, Samuel J, Baker S, Hartman JH (2008b) Package management security. In: University of Arizona

Technical Report, pp 08–02
Chandra Y, Shang L (2019) Qualitative research using R: a systematic approach. Springer
Cooper HM, Lindsay JL, Patall EA (2008) Research synthesis and meta-analysis. In: Applied Methods,

p. 344.

Page 37 of 38 8Empir Software Eng (2023) 28:8

Decan A, Mens T (2019) What do package dependencies tell us about semantic versioning? In: IEEE
transactions on software engineering. IEEE

Drucker AM, Fleming P, Chan A-W (2016) Research techniques made simple: assessing risk of bias in
systematic reviews. J Investig Dermatology 136.11:e109–e114

Durach C, Kembro J, Wieland A (2017) A New Paradigm for Systematic Literature Reviews in Supply Chain
Management. Journal of Supply Chain Management 53

Farooq U, Nongaillard A, Ouzrout Y, Qadir MA (2016) A multi source product reputation model. Comput
Indust 83:55–67

Farshidi S, Jansen S, Deldar M (2021) A decision model for programming language ecosystem selection:
seven industry case studies. In: Information and software technology, pp 106640

Hanus M (2018) Semantic versioning checking in a declarative package manager. In: Technical commu-
nications of the 33rd international conference on logic programming (ICLP 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer informatik

Hayes P, van de Poel I, Steen M (2020) Algorithms and values in justice and security. In: AI & SOCIETY.
Springer, vol 35, pp 1–23

Heyns M, Rothmann S (2015) Dimensionality of trust: an analysis of the relations between propensity,
trustworthiness and trust. SA J Industr Psych 41.1:01–12

Hou F, Farshidi S, Jansen S (2021) TrustSECO: a distributed infrastructure for providing trust in the software
ecosystem. In: International conference on advanced information systems engineering. Springer, pp 121–
133

Jansen F, Jansen S, Hou F (2021) TrustSECO: an interview survey into software trust. In: arXiv:2101.06138
Jansen S, Brinkkemper S, Souer J, Luinenburg L (2012) Shades of gray: Opening up a software producing

organization with the open software enterprise model. J Syst Software 85.7:1495–1510
Jansen S, Cusumano MA, Brinkkemper S (2013) Software ecosystems: analyzing and managing business

networks in the software industry. Edward Elgar
Keele S (2007) Guidelines for performing systematic literature reviews in software engineering. Technical

report, Ver. 2.3 EBSE technical report. EBSE
Kitchenham B (2004) Procedures for performing systematic reviews. Keele, UK, Keele University

33.2004:1–26
Li X, Moreschini S, Zhang Z, Taibi D (2021) Exploring factors and metrics to select open source software

components for integration: An empirical study. J Syst Softw 188:111255
Madanmohan T, De R (2004) Notice of violation of IEEE publication principles open source reuse in

commercial firms. Software, IEEE 21:62–69
Meline T (2006) Selecting studies for systemic review: Inclusion and exclusion criteria. Contemp Issues

Commun Sci Disorders 33(Spring):21–27
Poel Ivd (2020) Core values and value conflicts in cybersecurity: beyond privacy versus security. Ethics

Cybersecurity:45
Public affairs council (2021) 2021 Public affairs pulse survey report. https://pac.org/wp-content/uploads/

Pulse2021Report.pdf
Sonatype (2021) 2021 state of the software supply chain. https://www.sonatype.com/hubfs/Q3%5C

%202021-State%5C%20of%5C%20the%5C%20Software%5C%20Supply%5C%20Chain-Report/
SSSC-Report-20210913PM2.pdf?hsLang=en-us

Talib MA, Alsaafin A, Medjden SM (2020) Application of quality in use model to evaluate the user
experience of online banking software. J Cases Inf Technol (JCIT) 22.2:34–51

Tavakolifard M, Almeroth KC (2012) A taxonomy to express open challenges in trust and reputation systems.
J Commun 7.7:538–551

Walli S, Gynn D, Von Rotz B (2005) The growth of open source software in organizations. A report
Wright S (2010) ‘Trust and trustworthiness’. In: Philosophia 38.3, pp. 615–627
Xu L, Brinkkemper S (2007) Concepts of product software. European J Inf Syst 16.5:531–541
Zerouali A, Constantinou E, Mens T, Robles G, González-Barahona J (2018) An empirical analysis of

technical lag in npm package dependencies. In: International conference on software reuse. Springer,
pp 95–110

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

8 Page 38 of 38 Empir Software Eng (2023) 28:8

http://arxiv.org/abs/2101.06138
https://pac.org/wp-content/uploads/Pulse 2021 Report.pdf
https://pac.org/wp-content/uploads/Pulse 2021 Report.pdf
https : / /www.sonatype.com/hubfs/Q3%5C%202021- State%5C%20of%5C%20the%5C%20Software%5C%20Supply%5C%20Chain-Report/SSSC-Report-2021 0913PM 2.pdf?hsLang=en-us
https : / /www.sonatype.com/hubfs/Q3%5C%202021- State%5C%20of%5C%20the%5C%20Software%5C%20Supply%5C%20Chain-Report/SSSC-Report-2021 0913PM 2.pdf?hsLang=en-us
https : / /www.sonatype.com/hubfs/Q3%5C%202021- State%5C%20of%5C%20the%5C%20Software%5C%20Supply%5C%20Chain-Report/SSSC-Report-2021 0913PM 2.pdf?hsLang=en-us

	A systematic literature review on trust in the software ecosystem
	Abstract
	Introduction
	Background Of Software Ecosystems
	Actors In The Software Ecosystem
	End-User
	End-User Organization
	Software Engineer
	Software Producing Organization (SPO)
	Package Maintainers

	Flows in the Software Ecosystem
	Software Product
	Component
	Library
	Package

	Ecosystem Services
	Package Manager
	Package Repository

	Structure of the Software Ecosystem

	Research method
	Research Questions
	Search Strategy
	Stage1 - Automatic Search
	Stage2 - Remove Duplicates
	Stage3 - Apply Inclusion And Exclusion Criteria
	Stage4 - Quality Assessment
	Stage5 - Conduct Snowballing
	Stage6 - Final Result

	Data Extraction and Synthesis
	Coding Scheme
	Biases in the SLR Process
	Replication Package

	Results
	RQ1 - Concept of Software/SECO Trust in Literature
	Trust is Subjective
	Trust is a Result of Certain Facts
	Quality
	Security
	Risk and uncertainty
	Reputation

	Structural Assurance
	Structural assurance

	Trust vs Trustworthiness
	Definition of SECO Trust
	SECO trust

	Definition of Software Trust
	Software trust

	RQ2 - Trust Factors in Software Products Selection
	RQ2.1 - Trust Factors of Software Products
	Intrinsic Trust Factor
	Security, Vulnerability, and Attack Proneness
	Quality and Development Process
	Source Code Quality and Architecture
	Versions and Dependencies
	Extrinsic Trust Factors
	Structural Assurance
	Documentation
	Popularity
	Reputation
	Cost

	RQ2.2 - Trust Factors of Software Package Managers
	Dependency Hell
	Security Vulnerability
	Prevention

	RQ2.3 - Trust Factors of Software Producing Organizations
	Reputation
	Capability

	RQ2.4 - Trust Factors of Engineers
	Competencies and Skills
	Contributing Effort
	Satisfaction and Happiness

	Discussion
	Impact on the Software Selection
	Validity Consideration
	Lessons and Research Challenges
	Future Work

	Conclusion
	Declarations
	References
	Other Sources

