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Abstract

The collateral choice option allows a collateral-posting party the opportunity to change the
type of security in which the collateral is deposited. Due to non-zero collateral basis spreads,
this optionality significantly impacts asset valuation. Because of the complexity of valuing
the option, many practitioners resort to deterministic assumptions on the collateral rates. In
this article, we focus on a valuation model of the collateral choice option based on stochastic
dynamics. Intrinsic differences in the resulting collateral choice option valuation and its im-
plications for collateral management are presented. We obtain sensitivities of the collateral
choice option price under both the deterministic and the stochastic model, and we show that
the stochastic model attributes risks to all involved collateral currencies. Besides an inability to
capture volatility effects, the deterministic model exhibits a digital structure in which only the
cheapest-to-deliver currency influences the valuation at a given time. We further consider hedg-
ing an asset with the collateral choice option by a portfolio of domestic and foreign zero-coupon
bonds that do not carry the collateral choice option. We propose static hedging strategies based
on the crossing times of the deterministic model and based on variance-minimization under the
stochastic model. We show how the weights of this model can be explicitly determined with
the semi-analytical common factor approach and we show in numerical experiments that this
strategy offers good hedging performance under minimized variance.

Keywords: Collateral Choice Option, Cheapest-to-deliver Collateral, Currency Spreads,

CSA, Minimal-variance Hedging, Static Hedging

1. Introduction

The collateral choice option describes an optionality in collateralized assets, where
a basket of admissible collateral securities is available to the collateral posting party.
Collateral posters are incentivized to optimize their choice of collateral security, as
posting collateral is associated with procurement costs and returns generated by the
collateral are transferred to the posting party.

This article outlines existing stochastic and deterministic models used in evaluating
the collateral choice option. We show that the prices obtained from the models fun-
damentally differ and that the models do not exhibit the same type of sensitivities in
their option prices. We further consider the hedging problem of an asset equipped with
the collateral choice option when the hedging instruments may not carry the option
themselves. We propose hedging strategies based on the stochastic and deterministic
collateral choice models.
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We focus on the popular case of cash collateral with a choice between multiple
available collateral currencies, but conclusions can be drawn for alternative securities
like bonds or other assets. In the choice between multiple collateral currencies, the
collateral rates of each currency are contractually determined with distinct interest
rates. Based on the returns of these rates, a hierarchy of collateral currencies is implied,
and an optimal choice of collateral currency, known as the cheapest-to-deliver collateral
currency, arises. Stochastic models to describe this choice and its valuation have been
previously treated in [1, 8, 2, 4, 5, 6, 9, 11]. Within this article, we use the stochastic
common factor collateral choice model proposed by [13].

The impact of the collateral choice option is closely linked to the asset on which
it acts. In full generality, the value of the collateral choice option is determined by
interactions between the collateral currencies and the collateralized assets, and also by
the collateralization modalities themselves. For example, collateral posting modalities
may restrict the collateral poster to only change the collateral currency whenever the
collateral account passes through zero (i.e. when the collateral account vanishes), or
that previously posted collateral may not be exchanged, and only additionally posed
collateral can be of different currency. The resulting fragmentation of the collateral
account is known as sticky collateral and is treated in [10].

The above restrictions result in an asset-specific collateral choice option, meaning
the option’s price must be individually calculated for each asset. In light of a large
number of eligible assets, this is not computationally feasible for many Financial actors
and motivates a model where the collateral choice option is valued separately from the
affected assets. A common assumption in the literature which achieves this is called
the free (collateral) substitution. In this case, the entire collateral can be exchanged
at any time. This makes it possible to persistently post the collateral in the currency
with the highest (FX-adjusted) collateral rate at any time. Consequently, the optimal
collateral rate is given by the maximum of all available rates.

In this article, we further assume perfect collateralization, meaning that the col-
lateral account is updated in continuous time without frictions. This is considered a
reasonable assumption under daily margin calls, see e.g. [4].

Moreover, a perfectly collateralized asset is free from default risks as outstanding
obligations are fully covered by the collateral account at any time, which simplifies
discounting back to a single curve framework where only the funding value has to be
considered. For this setting, it is shown in [9] that an adaption of the standard risk-free
model dictates the collateral rate to be used for discounting.

Thus, in the simplest case of one available collateral currency with the collateral
rate r0, a perfectly collateralized asset U with a singular cash flow at time T has, at
time t0 ≤ t ≤ T , the value

U(t) = EQ0
t

[
e−

∫ T
t r0(s)dsU(T )

]
, (1.1)

where Q0 is the appropriate measure linked with numéraire B(t) = exp(
∫ t
t0
r0(s)ds)

under which the collateralized asset is priced.1

We equip the above asset with the collateral choice option and free substitu-
tion rights between N + 1 collateral currencies, where collateral posted in currency
i ∈ {0, . . . , N} accrues interest at rate ri. We assume that the foreign interest rates
ri, i ≥ 1 are already FX-adjusted, meaning that they are denoted in the domestic

1Throughout this article, we denote by Et the conditional expectation with respect to the filtration
at time t. The expectation with respect to initial time t0 is indicated by E.
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currency according to the exchanged prices of the actual foreign rates. This allows for
a consistent valuation under the domestic measure Q0 associated with the domestic
interest and collateral rate r0.

Execution of the optimal collateral choice strategy imposes that the collateral is
posted in the cheapest-to-deliver currency at all times, which results in discounting
with the maximal collateral rate. Then, the value of the asset U with the collateral
choice option is given by

U(t) = EQ0
t

[
e−

∫ T
t max(r0(s),...,rN (s))dsU(T )

]
, t0 ≤ t ≤ T. (1.2)

In the following subsection 1.1, we examine the valuation formula (1.2) closely and
give conditions under which this expression can be simplified so that the impact of
the collateral choice option is separated from the asset valuation. Section 2 introduces
a stochastic model associated with the collateral rates and summarizes the collateral
choice valuation method proposed in [13], which will be used throughout this article.
In Section 3, we introduce the deterministic model for the collateral choice option and
show how it relates to the stochastic model, focussing on the valuation differences.
In Section 4, we compare sensitivities of the stochastic and deterministic models and
demonstrate that the stochastic model can incorporate dependencies on multiple cur-
rencies simultaneously, a feat that the deterministic model does not reproduce. In
Section 5, we consider hedging under the collateral choice option when hedging instru-
ments are not equipped with this option themselves. We first show the collateral choice
option’s influence on collateral management through its impact on asset valuation with
a synthetic replication of the collateral choice discount factor. Then, we consider the
hedging of a collateralized asset with portfolios of domestic and foreign zero-coupon
bonds. Strategies based on the deterministic and stochastic models are proposed. In
Section 6, we demonstrate the hedging portfolios in a numerical experiment and we
conclude the article in Section 7.

1.1. The cheapest-to-deliver discount factor

Formula (1.2) for valuation of an asset with the collateral choice option is asset-
specific, which renders it difficult to estimate the value of an entire book of assets
equipped with the collateral choice option as the option would need to be computed
individually for every single asset at an immense computational cost. In the following,
we give assumptions under which the value of the collateral choice option can be
detached from the asset and instead be expressed as a discount factor. Obtaining the
option value in this way is highly relevant to practitioners because the separation of
collateral choice option and asset price facilitates the computation of single discount
factors, which can be applied to large numbers of assets without incurring the high
computational cost of an asset-specific valuation.

The collateral choice is often expressed in terms of the collateral basis. In this
formulation, the option is given in terms of collateral spreads qi, i ∈ {1, . . . , N} which
are the differences between the FX-adjusted collateral rates and the domestic rate,

qi(t) = ri(t)− r0(t). (1.3)

Then, the asset value (1.2) is defined equivalently by

U(t) = EQ0
t

[
e−

∫ T
t r0(s)dse−

∫ T
t max(0,q1(s)...,qN (s))dsU(T )

]
, (1.4)
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since the involved maximum function can be written as

max(r0(s), r1(s), . . . , rN (s)) = r0(s) + max(0, q1(s), . . . , qN (s)). (1.5)

In this general form (1.4), the valuation of the asset price U(t) with the collateral choice
option depends on multiple stochastic processes and thus their joint distributions.
In the following, we show how specific assumptions about the dependency structure
between the domestic rate r0, the collateral spreads q1, . . . , qN and the asset U itself
can simplify the expression in (1.4).

A deterministic model of the collateral spreads qi yields a straightforward evalua-
tion. For clarity, we denote the spreads by q̂i, i ∈ {1, . . . , N} when they are modelled
deterministically. Then, the expression in (1.4) becomes

U(t) ≈ e−
∫ T
t max(0,q̂1(s)...,q̂N (s))ds EQ0

t

[
e−

∫ T
t r0(s)dsU(T )

]
, (1.6)

which is the “standard” risk-free valuation of U with a deterministic factor to account
for the collateral choice option. This assumption is valued by many practitioners for its
simplicity. However, this comes at the cost of multiple drawbacks which we will high-
light within this article. Besides the inherently strong assumption of no stochasticity
in the collateral spreads, the deterministic assumption systematically underestimates
the impact of the collateral choice option as we will show in Section 3.

If stochastic dynamics are to be assumed for the collateral spreads, a strong assump-
tion is full independence between the asset, the collateral spreads and the domestic
rate. Then, (1.4) can be factored into three parts:

U(t) ≈ EQ0
t

[
e−

∫ T
t max(0,q1(s)...,qN (s))ds

]
EQ0
t

[
e−

∫ T
t r0(s)ds

]
EQ0
t

[
U(T )

]
. (1.7)

This approach offers a complete separation between the involved quantities, but inde-
pendence between the domestic rate r0 and the asset U goes beyond standard valuation
assumptions. Particularly for interest rate products, which are often among the assets
equipped with the collateral choice option, this independence does not hold.

If we allow for dependence between domestic rate r0 and asset U but retain inde-
pendence between collateral spreads qi and the asset U , as well as between collateral
spreads and domestic rate, we obtain the following model in which the term that refers
to the collateral choice option can be separated:

U(t) ≈ EQ0
t

[
e−

∫ T
t max(0,q1(s)...,qN (s))ds

]
EQ0
t

[
e−

∫ T
t r0(s)dsU(T )

]
. (1.8)

This form is particularly appealing since it consists of the standard valuation formula
for the asset and one factor exclusively dedicated to the collateral choice option.

However, independence between the domestic rate r0 and the collateral spreads
qi is not required to obtain a valuation formula in the desired shape with a discount
factor term. Indeed, we can slightly relax assumptions to only assume independence
between the collateral spreads qi, i ≥ 1 and the asset U under the T -forward measure
associated with Q0. Under this forward measure, which we denote by QT

0 , the domestic

zero coupon bond P (t, T ) = EQ0 [exp(−
∫ T
t r0(s)ds)] is the numéraire and by applying

a change of measure to (1.4) we obtain

U(t) = P (t, T )EQT
0

t

[
e−

∫ T
t max(0,q1(s)...,qN (s))dsU(T )

]
. (1.9)
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Then, by the above independence assumption and returning to the original Q0 measure,
the expression factors into

U(t) ≈ EQT
0

t

[
e−

∫ T
t max(0,q1(s)...,qN (s))ds

]
P (t, T )ETt

[
U(T )

]
= EQT

0
t

[
e−

∫ T
t max(0,q1(s)...,qN (s))ds

]
EQ0
t

[
e−

∫ T
t r0(s)dsU(T )

]
. (1.10)

This approach has the weakest assumptions of the approaches given. However, its
computation can be cumbersome in the presence of multiple cash flows at times Tk,
k = 1, . . . ,m. In this case, for every cash flow, the collateral spreads need to be
modelled under the appropriate forward measures QTk

0 .
We note that none of these models assumes independence between the collateral

spreads themselves. That is, for spreads qi and qj , i 6= j, independence between qi and
qj is not required.

In all these simplified approaches, the impact of the collateral choice option can be
expressed through an isolated term in the pricing equation,

U(t) ≈ CTD(t, T )EQ0
t

[
e−

∫ T
t r0(s)dsU(T )

]
. (1.11)

We denote this cheapest-to-deliver discount factor (CTD discount factor) by

CTD(t, T ) = Et
[
e−

∫ T
t max(0,q1(s)...,qN (s))ds

]
, (1.12)

where the expectation is taken either under the Q0 measure (in case of independence
between collateral spreads and domestic rate) or under the T -forward measure (in case
of correlations between collateral spreads and domestic rate). In the deterministic
model, this factor is simply

CTDdet(t, T ) = exp
(
−
∫ T

t
max(0, q̂1(s) . . . , q̂N (s))ds

)
. (1.13)

In the next two sections, we introduce the respective stochastic and deterministic
models used in the remainder of this article.

2. The CTD discount factor with stochastic dynamics

The CTD discount factor with stochastic dynamics in (1.12) is notoriously difficult
to evaluate and requires approximations. Typically, the collateral spreads q1, . . . , qN
are modelled with dynamics analogous to stochastic interest rates. Under these dy-
namics, an analytical solution for the CTD discount factor remains unavailable; hence
an approximation must be applied. In this article, the second-order common factor
model introduced in [13] is used and briefly described below. Other approaches for
the approximation step exist in the literature. In [9], a first-order approximation and
the collateral spread formulation are introduced. In [11], a model based on third-order
moment matching for collateral rates is developed. For the particular case of exactly
two collateral currencies, both a second-order model, and a model utilizing conditional
independence with respect to the time axis, are given in [1].
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2.1. Stochastic collateral spread dynamics

We begin by attributing stochastic dynamics to the collateral spreads. Given the
inherent uncertainty in modelling their behaviour, a stochastic approach appears nat-
ural. Here, we use a one-factor Hull–White (HW) model which is commonly used
for interest-rate-related processes. From initial time t0 to maturity T , the prescribed
dynamics for each collateral spread qi, i = 1, . . . , N , are

dqi(t) = κi (θi(t)− qi(t)) dt+ ξidWi(t), t ∈ (t0, T ], qi(t0) ∈ R, (2.1)

where κi > 0 is the speed of mean reversion, ξi > 0 the volatility coefficient and θi(t) ∈
R, t ∈ (t0, T ] is the long-term mean by which it can be ensured that the expectations
of the spreads fit market observations, E[qi(t)] = q̂i(t). The driving processes Wi are
Brownian motions in the measure under which the CTD discount factor is taken, as
specified in Section 1.1. That is, if the spreads are modelled with correlations to the
domestic rate r0, then their dynamics are modelled directly under the forward measure
QT

0 . Otherwise, if the spreads are independent of the domestic rate, their dynamics
are modelled under the Q0 measure. Correlations between the collateral spreads are
defined through the instantaneous correlations d[Wi,Wj ]t = ρi,jdt, i, j ∈ {1, . . . , N}
between the driving Brownian motions.

rem 2.1 (Dynamics of the domestic interest rate). The collateral spread dynamics are
defined under a measure where independence from the domestic interest rate r0 holds.
Nevertheless, it is helpful to also give dynamics of the domestic rate under Q0. We
model the domestic interest rate r0 with one factor Hull–White dynamics analogous to
(2.1) by

dr0(t) = κ0

(
θ0(t)− r0(t)

)
dt+ ξ0dW0(t), t ∈ (t0, T ], r0(t0) ∈ R, (2.2)

with parameters κ0, ξ0 > 0, long-term mean function θ0(t) ∈ R for t ∈ (t0, T ], and
instantaneous correlations with the driving Brownian motions of the collateral spreads,
d[W0,Wi]t = ρ0,idt for 1 ≤ i ≤ N .

2.2. Second-order diffusion-based common factor approximation

In the following, we summarize the second-order diffusion-based common factor
approximation introduced in [13]; this model will be used in the numerical experiments
of this article. We denote the maximum process by M(t) = max(0, q1(t), . . . , qN (t)) so

that the CTD discount factor (1.12) can be shortly expressed by E[exp(−
∫ T
t0
M(t)dt)]2.

No analytical solution is known for this term when the spreads are equipped with
stochastic dynamics and correlated to another. The issue arises because neither the
marginal distributions M(t), t ∈ (t0, T ], nor the process distributions (M(s),M(t)),
s, t ∈ (t0, T ] are available in closed form and thus the distribution of the integral

Y (T ) :=
∫ T
t0
M(t)dt is intractable.

By considering the second-order Taylor expansion of E[exp(−Y (T ))] instead, we
alleviate the task to only require the first two moments of the distribution of Y (T ).
We thus approximate

E
[
exp
(
−Y (T )

)]
≈ exp

(
−E
[
Y (T )

])(
1 +

1

2
Var

[
Y (T )

])
. (2.3)

2For notational convenience, we omit explicitly conditioning on the filtration at time t0 when no
other conditioning is indicated.
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The task is thus to compute the moments of the integral, E[Y (T )] and Var[Y (T )]. In
the next step, we show how they can be approximated based on the respective moments
of the maximum process, E[M(t)] and Var[M(t)]. Afterwards, we give a common-factor
approximation scheme which results in a semi-analytical form for these moments of
the maximum process.

The first moment of the integral E[Y (T )] is easily expressed in terms of the first
moment of the maximum process E[M(t)], as Fubini’s theorem yields E[Y (T )] =∫ T
t0
E[M(t)]dt.
The variance of the integral term Var[Y (T )], however, depends on the covariance

structure E[M(t)M(s)] for s 6= t, which has a path-dependence that prohibits an
analytical expression. By defining a standard Itô diffusion X(t) on [t0, T ] such that
Var[X(t)] = Var[M(t)] for all t ∈ [t0, T ], we obtain an estimator for the variance of
the integral,

Var[Y (T )] = Var[

∫ T

t0

M(s)ds] ≈ Var[

∫ T

t0

X(s)ds]. (2.4)

This estimator, the variance of the integral of an Itô diffusion, is analytically available.

lem 2.1. The variance of the integral of X is given by

Var
[∫ T

t0

X(t)dt
]

=

∫ T

t0

∫ s

t0

Var[M(t)]dtds+

∫ T

t0

(T − s)Var[M(s)]ds. (2.5)

We denote this diffusion-based estimator by

Ψ(t0, T ) := Var
[∫ T

t0

X(t)dt
]

(2.6)

and by replacing Var[Y (T )] with the diffusion-based estimator, we arrive at the ap-

proximation CTD(t0, T ) ≈ exp(−
∫ T
t0
E[M(t)]dt)(1 + 1

2Ψ(t0, T )). The proof of Lem 2.1
is given in [13], where additionally another variance of the integral estimator based on
a mean-reverting process is considered.

It remains to find an expression for the moments of the maximum, E[M(t)] and
Var[M(t)]. At any fixed time t, the HW dynamics (2.1) imply that the collateral
spread vector follows a multivariate Gaussian distribution,

q(t) = [q1(t), . . . , qN (t)]T ∼ N
(

[µ1(t), . . . , µN (t)]T ,Σ(t)
)
, (2.7)

where the marginal distributions qi(t) ∼ N (µi(t), σ
2
i (t)) and the covariance matrix

Σ(t) are explicitly known. We define a common factor approximation of these random
vectors for times within a time discretization T of [t0, T ]. For this approximation, the
required moments of the corresponding maximum process can be directly computed.

dfn 2.2 (Common factor approximation). Let t ∈ [t0, T ] be fixed and let qi(t) ∼
N (µi(t), σ

2
i (t)), i ∈ {1, . . . , N} be normally distributed random variables. We define

the common factor approximation component-wise by

q̃i(t) := C(t) +Ai(t), i ∈ {1, . . . , N}, (2.8)

where C(t), A1(t), . . . , AN (t) are independent normal random variables with distribu-
tions

C(t) ∼ N (0, σ2
min(t)|γ(t)|), (2.9)

Ai(t) ∼ N (µi(t), σ
2
i (t)− Var[C(t)]). (2.10)
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Here, we denote the minimal variance occurring amongst the spreads qi(t) by σ2
min(t) :=

min(σ2
1(t), . . . , σ2

N (t)) and determine the correlation structure of the common factor
approximation by the parameter γ(t) ∈ [0, 1).

It can be shown that the marginal distributions coincide, q̃i(t) ∼ qi(t), and the
correlation structure of the common factor approximation is imposed through the
parameter γ(t) by

corr[q̃i(t), q̃j(t)] =
σ2

min(t)|γ(t)|
σi(t)σj(t)

, i 6= j ∈ {1, . . . , N}. (2.11)

In the three-currency case, the parameter γ(t) is analytically available (see [13]), for a
higher number of currencies, it becomes an optimization problem to choose a parameter
γ(t) such that the covariance matrix of the common factor approximation is as close
as possible to the covariance matrix Σ(t) of the spreads.

The common factor approximation gives rise to the common factor maximum, given
by M̃(t) := max(0, q̃1(t), . . . , q̃N (t)). It can be equivalently expressed as

M̃(t) = max
(
0, C(t) + max

(
A1(t), . . . , AN (t)

))
, (2.12)

where the inner maximum is taken between independent random variables. This con-
struction as a sum and maximum of independent random variables makes the cumu-
lative distribution function (cdf) of M̃(t) analytically available.

lem 2.3. The cumulative distribution function of M̃(t) is given by

F
M̃(t)

(x) := P[M̃(t) ≤ x] =


0, x ≤ 0,(
fC(t) ∗

N∏
i=1

FAi(t)

)
(x), x > 0,

(2.13)

with fC(t)(x) = 1√
|γ(t)|σ2

min(t)
φ( x√

|γ(t)|σ2
min(t)

) the density of C(t) and FAi(t)(x) = Φ(a)

the cdf of Ai(t), where

a =
x− µi(t)√

σ2
i (t)− σ2

min(t)|γ(t)|
. (2.14)

Here, ϕ and Φ are the density and cdf of the standard normal N (0, 1) distribution and
f ∗ F denotes the convolution (f ∗ F )(x) =

∫
R f(z)F (x− z)dz.

The proof of this lemma can be found in [13]. With the cdf of the common factor

maximum M̃(t) at hand, arbitrary moments of the distribution can be computed and
it holds that

E[M̃(t)] =

∫ ∞
0

1− F
M̃(t)

(x)dx, E[M̃(t)2] =

∫ ∞
0

2x
(
1− F

M̃(t)
(x)
)
dx, (2.15)

and hence Var[M̃(t)] can be obtained. Using these moments of M̃(t) as estimators
for E[M(t)] and Var[M(t)], we define the second-order diffusion-based common factor
approximation of the cheapest-to-deliver discount factor as

CTDcf(t, T ) := exp

(
−
∫ T

t
Et
[
M̃(s)

]
ds

)(
1 +

1

2
Ψ(t, T )

)
. (2.16)

where Ψ(t, T ) is the diffusion-based variance estimator defined in (2.6), with the dif-

fusion X calibrated to the common factor maximum variance Var[M̃(t)]. Proofs for
all preceding lemmata, a detailed derivation and accuracy results for this stochastic
model can be found in [13].
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3. The deterministic model and its connection to the stochastic model

The deterministic model is based on market data qmkt
i (tk), i ∈ {1, . . . , N} which is

available at discrete times tk ∈ T . By suitable interpolation between these points, we
obtain a continuous time function q̂i(t), t ∈ [t0, T ] which corresponds to each individual,
deterministic collateral spread. This yields the deterministic CTD discount factor given
in (1.13):

CTDdet(t, T ) = exp
(
−
∫ T

t
max(0, q̂1(s) . . . , q̂N (s))ds

)
. (3.1)

This describes a unique point of departure for the stochastic model given in Section 2.1.
Unlike classic interest rate models, which meet zero-coupon bond prices obtained from
the market, the point of departure is deterministic collateral spreads. A typical re-
quirement is a consistency in the sense that the stochastic collateral spreads should
collapse back to the deterministic collateral spreads as volatility tends to zero,

qi(t)
ξi→0−→ q̂i(t), (3.2)

for all t ∈ [t0, T ]. This assumption is equivalent to setting E[qi(t)] = q̂i(t) and ensures
that both models perfectly fit available market data at the monitoring dates,

E[qi(tk)] = q̂i(tk) = qmkt
i (tk). (3.3)

As always, the expectation is taken under the appropriate measure, Q0 or QT
0 , accord-

ing to the model assumptions.

rem 3.1 (Hull–White model calibration). Because of the desired connection to the
deterministic curves q̂i, i ∈ {1, . . . , N}, it is advantageous to define the Hull–White
processes qi in terms of the Hull–White decomposition,

qi(t) = q̂i(t) + ui(t), t ∈ [t0, T ], (3.4)

where ui(t) is a centred Ornstein-Uhlenbeck process with dynamics

dui(t) = −κiui(t)dt+ ξiWi(t), ui(t0) = 0. (3.5)

For completeness, we now give the connection between q̂i(t) and the long-term
mean function θi(t) from the process formulation in (2.1). Analogous computations
have been undertaken for interest rate processes; see, for example, [3]. In the follow-
ing lemma, we give two solutions for θi(t) which satisfy the convergence requirement
(3.2). First, a general solution in continuous time comes at the cost of requiring a
differentiable interpolation of the deterministic collateral spreads. Secondly, a solution
is given in which the requirement only holds at the discrete dates tk ∈ T . This is
particularly suitable for numerical implementations, and for market data that may
exhibit discontinuities.

lem 3.1 (Long-term mean function of the collateral spreads). Let qi be the collateral
spread with dynamics given in (2.1) and let its initial value be qi(t0) = q̂i(t0).

1. Let q̂i(t) be a continuously differentiable function on [t0, T ]. Then, the choice of
the long-term mean

θi(t) = q̂i(t) +
∂

∂t

1

κi
q̂i(t) (3.6)

satisfies E[qi(t)] = q̂i(t) for every t ∈ [t0, T ].
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2. Let q̂i(tk) ∈ R be defined at every time tk ∈ T of a discretization of the time
domain [t0, T ]. Then, the choice of the long-term mean

θi(t) =
q̂i(tk)e

κitk − q̂i(tk−1)eκitk−1

eκtk − eκtk−1
, (3.7)

for t ∈ (tk−1, tk], k ≥ 1, yields that E[qi(tk)] = q̂i(tk) holds for every tk ∈ T .

A proof of this result is given in Appendix A.

3.1. Collateral disputes under the collateral choice option

Unfortunately, such consistency on the level of individual spreads does not result in
consistent pricing of the collateral choice option. Instead, we show that the resulting
prices systematically differ. Under the deterministic model, the cheapest-to-deliver
discount factor is the purely analytical expression given in (1.13). By the condition
(3.2), it holds

CTDdet(t0, T ) = exp
(
−
∫ T

t0

max(0, q̂1(t) . . . , q̂N (t))dt
)

= exp

(
−
∫ T

t0

max (0,E[q1(t)], . . . ,E[qN (t)]) dt

)
. (3.8)

A comparison to the generalized CTD discount factor in (1.12) shows that contrasted
with the stochastic formulation, the deterministic version is obtained through the ex-
change of the expectation operator with the exponential, integral and maximum oper-
ators. This corresponds to two applications of Jensen’s inequality and one application
of Fubini’s theorem, resulting in the inequalities

CTD(t0, T ) = E
[
exp
(
−
∫ T

t0

max (0, q1(t), . . . , qN (t)) dt
)]

≤ exp
(
−E
[∫ T

t0

max(0, q1(t), . . . , qN (t))dt
])

≤ exp
(
−
∫ T

t0

max(0,E[q1(t)], . . . ,E[qN (t)])dt
)

= CTDdet(t0, T ). (3.9)

The discount factor of the deterministic model acts as an upper bound for the discount
factor associated with the stochastic model. Equality is only attained when the collat-
eral spreads are deterministic, which does not align with observations by practitioners.
Consequently, the discount factor obtained from a stochastic model is smaller than the
one obtained from a deterministic model, which corresponds to the attribution of a
more significant collateral choice option under stochastic assumptions.

In the following, we will exemplify this on the concrete example of an interest rate
swap. The inherent valuation differences between the stochastic and the deterministic
collateral choice model have an immediate impact on collateral management. We
illustrate this with the example of a (payer) interest rate swap V with payment dates
Tk, k ∈ {1, . . . ,m}, at which a fixed rate K is exchanged for a simple compounded
Ibor3 rate accrued on a notional N̄ .

3The interest rate swaps here do not depend on the choice of floating rate. A (simple compounded
forward) Ibor rate is used for illustrative purposes, but in light of the Libor transition, any other
floating rate can easily replace it.
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Again, P (t, Tk) = EQ0 [exp(−
∫ Tk
t r0(s)ds)] denotes the domestic zero coupon bond.

The price of the swap V at time t is well-known to be

V (t) = N̄
m∑
k=1

τkP (t, Tk)
(
`k(t)−K

)
, (3.10)

where τk := Tk−Tk−1 is the time period between payment dates and `k(t) the forward
Ibor rate

`k(t) :=
P (t, Tk−1)− P (t, Tk)

(Tk − Tk−1)P (t, Tk)
. (3.11)

To add the (perfectly exercised, free substitution) collateral choice option, it is helpful
to decompose the swap V into a sum of forward rate agreements Uk, each with a single
cash flow at time Tk. The swap equipped with the collateral choice option, denoted
by V c to indicate the option, is obtained from an application of the appropriate CTD
discount factor (1.12) to each asset Uk:

V c(t) =
m∑
k=1

CTD(t, Tk)U
c
k(t, Tk) = N̄

m∑
k=1

CTD(t, Tk)τkP (t, Tk)
(
`k(t)−K

)
. (3.12)

In practice, the CSA agreement indicates a party (either involved in the trade or
even a designated third party) determining the due collateral based on their asset
valuation. Both trading parties involved have the right to dispute this valuation,
see, for example, [12]. As shown above, the CTD discount factors CTD(t, Tk) have a
model-dependent price, and as they are not traded assets, there is no canonical value
attached. The inequality in (3.9) shows that the deterministic model used by many
practitioners does not adjust for a loss of convexity relative to the stochastic model.
This implies that two parties with different valuation models of the collateral choice
option are likely to arrive at different present values of their trade.

4. Sensitivities of the collateral choice option

The stochastic and deterministic models for the collateral choice option also exhibit
different behaviours in terms of sensitivities, as we will demonstrate in this section. We
first consider the sensitivity to volatility, which the deterministic model clearly does
not exhibit, and then compare how both models behave when the long-term mean of
the collateral spreads is varied.

If the collateral spreads are assumed to have stochastic dynamics, it is implied that
the collateral choice option (represented by the CTD discount factor) has a sensitivity
to the collateral spread volatility. We denote CTD(t0, T ; ξi) the CTD discount fac-
tor obtained when the i-th collateral spread, for some i ∈ {1, . . . , N}, has volatility
parameter ξi. The described sensitivity is then

∂CTD(t0, T )

∂ξi
= lim

ε→0

CTD(t0, T ; ξi + ε)− CTD(t0, T ; ξi)

ε
. (4.1)

Since the stochastic CTD discount factor does not admit an analytical solution, we
have to resort to a “bump-and-revalue” evaluation where the CTD discount factor
is computed with the different parameters considered. In the following, we give an
example based on the common factor approach given in (2.16) with a two-sided finite
difference scheme,

∂CTD(t0, T )

∂ξi
≈ CTDcf(t0, T ; ξi + ε)− CTDcf(t0, T ; ξi − ε)

2ε
. (4.2)
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Figure 1: Sensitivity of the CTD discount factor to the volatility parameters ξ1
and ξ2 obtained from the difference quotient of the common factor approximation.
Both ξ1 and ξ2 are set to the same value indicated on the horizontal axis, difference
quotients are obtained one parameter at a time. The speeds of mean reversion
are κ1 = 0.0078, κ2 = 0.0076, the instantaneous correlation is ρ1,2 = 0.5. For all
times t ∈ [0, 20], the expectations of the spreads are equal to the initial values.
In the graph on the left, they are E[q1(t)] ≡ 0.014, E[q2(t)] ≡ 0.0133, whereas
in the graph on the right there is a larger difference between the expectations,
E[q1(t)] ≡ 0.014, E[q2(t)] ≡ 0.0007.

The example consists of three currencies, i.e. two collateral spreads and one domes-
tic currency corresponding to the zero component in max(0, q1(t), q2(t)). To improve
the interpretability of the results, constant expectations are assumed for both of the
collateral spreads, and the expectations are ordered such that E[q1(t)] > E[q2(t)] > 0.
Furthermore, expectations of the spreads are exaggerated with respect to recent mar-
ket observations for this example. The results are presented in Figure 1. It becomes
apparent that each collateral spread impacts the CTD discount factor, not only the col-
lateral spread with the highest expected value, which would be the uncontested, sole
maximal spread under deterministic dynamics. The size of each collateral spread’s
impact on the CTD discount factor is related to the spread’s probability of being
the maximal spread. As volatility increases, the spreads exhibit more variation in
their paths, increasing the initially smaller spread’s probability of being the maximal
spread. Consequently, the difference between the sensitivity to either volatility param-
eter decreases as the volatility parameters grow. In the graph on the right, we chose
a significantly smaller initial value and expectation for the collateral spread q2(t) to
reduce its probability of being the maximal spread. Particularly in the low-volatility
scenarios, there is, heuristically speaking, not enough random motion in the system
for the two spreads to cross. Consequently, the sensitivity of the CTD discount factor
to ξ2 is reduced in these cases. We conclude that the CTD discount factor exhibits
sensitivities to the collateral spreads’ volatilities and if the collateral spreads are to be
thought of as stochastic processes, then this is an integral part of the picture which the
deterministic model, and hedging strategies derived from it, cannot take into account.

When the sensitivity to changes in the long-term mean of the underlying collat-
eral spread is considered, more differences between the stochastic and deterministic
models become apparent. For illustrative purposes, we again consider the simplified
scenario where both collateral spreads q1(t) and q2(t) have constant expectations. The
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Figure 2: Sensitivity of the stochastic and the deterministic CTD discount factor
to changes in the long-term mean of q2(t). Long-term means q̂1 and q̂2 are constant
at the values indicated in the figure. Volatilities are ξ1 = 0.0018, ξ2 = 0.0023,
correlation and speed of mean reversion are as indicated in Figure 1. In the graph
on the left, the CTD discount factors obtained from the deterministic and the
common factor method are given for different values of q̂2. In the graph on the
right, the difference quotient relative to changes in the long-term mean q̂2 is given.

deterministic model is thus described by

q̂i(t) ≡ q̂i ∈ R, i ∈ {1, 2}. (4.3)

As outlined in Rem 3.1, the corresponding stochastic model can be given by

qi(t) = q̂i + ui(t), t ∈ [t0, T ] (4.4)

dui(t) = −κiui(t)dt+ ξidWi(t), ui(t0) = 0, (4.5)

for i ∈ {1, 2}. One can show that this is equivalent to the model described in (2.1)
with long-term mean parameters constant and equal to the initial value q̂i.

We consider the sensitivity of the CTD discount factor to changes in q̂2, i.e. the
(average) level of the first collateral spread remains fixed and the (average) level of
the second collateral spread is varied. We again use the notation CTD(t0, T ; q̂2) to
indicate the CTD discount factor obtained under the choice of q̂2. Then, the following
sensitivity is considered:

∂CTD(t0, T )

∂q̂2
= lim

ε→0

CTD(t0, T ; q̂2 + ε)− CTD(t0, T ; q̂2)

ε
. (4.6)

For comparison of the stochastic and the deterministic model, we consider the two-
sided finite difference schemes

∂CTD(t0, T )

∂q̂2
≈ CTDcf(t0, T ; q̂2 + ε)− CTDcf(t0, T ; q̂2 − ε)

2ε
, (4.7)

for evaluation under the stochastic model, and

∂CTD(t0, T )

∂q̂2
≈ CTDdet(t0, T ; q̂2 + ε)− CTDdet(t0, T ; q̂2 − ε)

2ε
, (4.8)

for evaluation under the deterministic model, respectively. The results are presented in
Figure 2, where the graph on the left shows the resulting discount factors CTDcf(t0, T ; q̂2)
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and CTDdet(t0, T ; q̂2) and the graph on the right shows the corresponding difference
quotients.

First, the left graph of Figure 2 shows what was discussed in Section 3, the de-
terministic model undervalues the price of the collateral choice option. Secondly, the
deterministic model does not consider changes to the spread which is not the maximal
spread. Therefore, for values q̂2 < q̂1, the value of the CTD discount factor remains
unchanged. The same can be observed in the graph of the sensitivity on the right.
Moreover, as q̂2 becomes larger than q̂1, the deterministic model overestimates the
sensitivity. This can be attributed to the “binary” nature of the deterministic model.
Once it sees the second collateral spread as maximal, any changes applied to the second
collateral spread fully impact the CTD discount factor. Analogously, after this point
the deterministic model loses sensitivity to the first collateral spread. The stochastic
model, on the other hand, exhibits a “dampening” behaviour, where the sensitivity
impact of changes to the long-term mean q̂2 is related to the probability of q2(t) being
the maximal spread. As we get to the hedging of the collateral choice option in the
next section, we will see this behaviour of the two models reflected in the hedging
portfolio.

5. Hedging under the collateral choice option

The presence of a collateral choice option impacts more than the valuation of assets.
From a risk management perspective, there are two implications. First, hedging strate-
gies need to be adapted to the presence of the collateral choice option, which changes
the asset valuation. Regarding this effect, we show that a precise valuation of the
collateral choice option is crucial in Section 5.1. Secondly, the collateral choice option
itself introduces risk factors which should be hedged against. In Section 5.2, we intro-
duce strategies for the hedging of an asset equipped with the collateral choice model
with foreign and domestic zero-coupon bonds. These hedging strategies are based on
both the deterministic and the stochastic framework of modelling the collateral choice
option.

We only consider cases where the hedging instruments are not equipped with the
collateral choice option. Otherwise, if the same collateral choice is available to the
hedging instruments, back-to-back transactions become possible in which cash flows of
the hedged asset are offset by cash flows of the hedging instruments, which neutralizes
all risks associated with the collateral choice option and consequently dissolves the
associated hedging problem.

5.1. Adaption of the classic hedging strategy

The presence of the collateral choice option requires adaptions of classical hedging
strategies. Exemplarily, we consider again the interest rate swaps V c and V defined
in (3.12) and (3.10), with and without the collateral choice option, respectively. Both
swaps are linear products in the underlying bonds P (t, Tk), but the swap V c has
additional CTD discount factors in each summand. As always, the expectation is
taken under the domestic measure Q0 or under forward measures QTk

0 , depending on
the modelling choices described in Section 1.1.

The classic hedging strategy for the uncollateralized interest rate swap V is given
by a hedging portfolio, denoted by Π(t), which consists of the swap and a linear
combination of zero-coupon bonds P (t0, Tk), Tk ∈ {T1, . . . , Tm}. In such a case of a
linear asset, the portfolio Π(t) is static, i.e. it can be set up once at initial time t0
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for the entire maturity and it perfectly hedges any price changes in the underlyings,
P (0, Tk).

When the collateral choice option is added, the pricing formula for the swap changes
to the form given in (3.12) and an adaption of the classic hedging strategy becomes
necessary to accommodate the CTD discount factor terms.

As per our requirement, the collateral choice option is not available for the hedging
instruments. Without this option, the CTD discount factors CTD(t, Tk) are difficult
to replicate with market instruments, as the involved quantities, the collateral spreads,
are not tradeable assets themselves. In the following, we demonstrate that a synthetic
replication of the discount factor can be used to circumvent this problem.

Since the value of the CTD discount factor is not directly available from market
data and does not admit an analytical formula either, it remains to be approximated.
In this example, we consider three hedged portfolios based on different approximation
schemes: In the first scheme, the CTD discount factors are ignored, which corresponds
to the approximation CTD(t, Tk) ≈ 1. This results in the standard hedged portfolio
Π(t) as described for the uncollateralized swap V above.

For the second scheme, we consider the deterministic model CTD(t, Tk) ≈ CTDdet(t, Tk)
described in Section 3. Finally, for the third scheme, we consider a stochastic model
with the common factor discount factors CTD(t, Tk) ≈ CTDcf(t, Tk) outlined in Sec-
tion 2.

Since the collateral choice option is not available to the hedging instruments, we
equip them with synthetic discount factors which are applied to their respective no-
tionals. We therefore construct hedging portfolios Πc

j , j ∈ {0, 1, 2} corresponding to
the schemes outlined before by use of the synthetic discount factors C0(t, Tk) ≡ 1,
C1(t, Tk) = CTDdet(t, Tk) and C2(t, Tk) = CTDcf(t, Tk).

The resulting hedging portfolios are

Πc
j(t) = V c(t)−

∑
Tk≥t

Cj(t, Tk)N̄τk(`k(t)−K)P (t, Tk), (5.1)

for j ∈ {0, 1, 2}.
Notably, Πc

0 is the standard hedging portfolio of a swap without the collateral
choice option. The portfolios Πc

1 and Πc
2, which replicate the CTD discount factor, are

no longer static hedging portfolios, as the synthetic replication of the discount factors
requires a dynamic rescaling of the notional amounts as time progresses.

We compare the performance of the hedging portfolios by the distribution of their
associated P&L accounts at final maturity Tm. If it is ensured that the set of rebal-
ancing times of the hedging portfolios, which we denote by T Π, includes the payment
dates Tk, then the P&L accounts are given by

PnLj(t0) = Πc
j(t0), (5.2)

PnLj(t`) = PnLj(t`−1)e
∫ t`
t`−1

r0(s)ds
+ (Πc

j(t`)−Πc
j(t`−1)), (5.3)

for all t` ∈ T Π. By requiring that Tk ∈ T Π, we guarantee that the synthetic discount
factors correspond to the actual CTD discount factors, CTD(Tk, Tk) = 1 = Cj(Tk, Tk).
This ensures that the realized cash flows from the swap V c at times Tk are perfectly
neutralized by the hedge and no residuals are accumulated in the P&L account which
would distort the results.

Figure 3 exemplarily shows the distribution of the three P&L accounts PnLj(Tm)
at final maturity for j ∈ {0, 1, 2}. In the experiment, the market is simulated with the
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Figure 3: Final P&L distribution histogram of a 10 year interest rate swap with
the collateral choice option, hedged with synthetic replication of the cheapest-to-
deliver discount factors obtained from the deterministic, respectively stochastic,
model. The notional is 107 units of the domestic currency.

mean-reverting stochastic dynamics for the collateral spreads qi, i ∈ {1, . . . , N} given
in (2.1), and the same type of dynamics for the domestic collateral rate r0. From the
figure, it becomes apparent that the presence of the collateral choice option should not
be discarded in hedging, and that the quality of the synthetic replication of the CTD
discount factor can play a significant role.

5.2. Hedging of the collateral choice risk

In the previous section, we demonstrated the immediate impact of the collateral
choice option on asset valuation and its consequences in hedging. The implied strategy
of synthetically replicating the CTD discount factors is not very practical, as it requires
a frequent rebalancing of the hedging portfolio which is associated with transaction
costs.

In this section, we introduce static hedging strategies for assets with the collateral
choice option, which require no rebalancing and take into consideration the risks added
by the collateral choice option. As detailed before, we do not allow for the hedging
instruments to carry the collateral choice option.

To this end, we consider the hedging problem of a domestic zero-coupon bond which
is equipped with the collateral choice option. Zero-coupon bonds form an important
building block for many interest rate products, and, as we saw in (3.12), the CTD
discount factor directly acts on the bonds. Therefore, analysing the hedging of a
zero-coupon bond is the first step toward further-reaching conclusions.

We denote the domestic zero-coupon bond equipped with the collateral choice
option by P c, its price is given by

P c(t, T ) = EQ0
t [e−

∫ T
t max(0,q1(s),...,qN (s))dse−

∫ T
t r0(s)ds] = CTD(t, T )P (t, T ), (5.4)

for all t ∈ [t0, T ]. As before, CTD(t, T ) denotes the CTD discount factor defined in
(1.12) under the domestic measure Q0 or the forward measure QT

0 , according to the
dependence modelling of collateral spreads and domestic interest rate.
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We propose to hedge the asset P c with combinations of the domestic zero-coupon
bond and the foreign zero-coupon bonds associated with the collateral currencies which
appear in the asset’s collateral choice option. For the sake of demonstration, we express
the domestic prices of foreign zero-coupon bonds in terms of the FX-adjusted collateral
rates ri, i ∈ {1, . . . , N}, to simplify valuation under the domestic measure Q0.

dfn 5.1 (Domestic price of a foreign zero-coupon bond). A foreign zero-coupon bond
pays one unit of foreign currency at maturity T . Its domestic price at time t ∈ [t0, T ]
is obtained by discounting under the FX-adjusted foreign interest rate ri(s),

Qi(t, T ) = EQ0
t

[
exp
(
−
∫ T

t
ri(s)ds

)]
. (5.5)

We remark that the foreign zero-coupon bond can be expressed by using the do-
mestic discount factor and a discount factor based on the collateral spread qi(s),

Qi(t, T ) := EQ0
t

[
exp
(
−
∫ T

t
qi(s)ds

)
exp
(
−
∫ T

t
r0(s)ds

)]
. (5.6)

Analogous to the discussion in Section 1.1, we can write

Qi(t, T ) = EQ∗

t

[
exp
(
−
∫ T

t
qi(s)ds

)]
P (t, T ), (5.7)

for Q∗ ∈ {Q0,QT
0 } depending on the modelling of the collateral spreads.

rem 5.1. With the convention that q0(t) = 0, we can express the domestic zero-coupon
bond P in this framework as

Q0(t, T ) = E[exp(−
∫ T

t
q0(s)ds)]P (t, T ) = P (t, T ). (5.8)

For the remainder of this section, we facilitate the setting with the assumptions
of (1.8), independence between the collateral spreads qi(t), i ∈ {1, . . . , N} and the
domestic interest rate r0(t). Unless indicated differently, all following expectations are
taken under the Q0 domestic measure.

First, we present a hedging strategy that aims to eliminate the risks introduced
through the collateral choice option from the asset P c(t, T ), based on the assumption
of stochastic collateral spread dynamics laid out in Section 2. The underlying idea
is to find weights α = (α0, . . . , αN ) which correspond to each bond Qi in a way that
accounts for the probabilities with which each collateral spread is the maximal spread
during the lifetime of the asset. As indicated in Section 4, the CTD discount factor
depends on many risk factors that should be taken into consideration.

Therefore, we propose a static hedging portfolio based on variance minimization
with zero initial price. To this end, define the stochastic strategy CTD-hedging port-
folio

Πstoch(t0) := P c(t0, T ) +
N∑
i=0

αiQi(t0, T ) + Cstoch(t0), (5.9)

where Cstoch(t0) denotes the cash account offsetting the transactions at initial time t0,

Cstoch(t0) = −
(
P c(t0, T ) +

N∑
i=0

αiQi(t0, T )
)

= −
(
E
[
e
−

∫ T
t0

max(0,q1(s),...,qN (s))ds
]

+

N∑
i=0

αiE
[
e
−

∫ T
t0
qi(s)ds

])
P (t0, T ) (5.10)
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The value of the hedging portfolio at times t0 ≤ t ≤ T is then given by

Πstoch(t) := P c(t, T ) +

N∑
i=0

αiQi(t, T ) + Cstoch(t0)B(t0, t). (5.11)

Here, B(t0, t) = exp(
∫ t
t0
r0(s)ds) denotes the “bank account”, which is the numéraire

of the Q0 measure and reflects the accrual of the cash amount (positive or negative)
held. In the following, we will define a random variable π(α) related to the hedging
portfolio’s performance across its lifetime [t0, T ] as a function of the hedging weights
α.

dfn 5.2. Let P̃ c(t0, T ) and Q̃i(t0, T ), i ∈ {0, . . . , N} be the random variables associated
with the collateral choice zero-coupon bond P c(t0, T ) and the bonds Qi(t0, T ). They are
given by

P̃ c(t0, T ) = exp
(
−
∫ T

t0

max
(
0, q1(s), . . . , qN (s)

)
ds
)

exp
(
−
∫ T

t0

r0(s)ds
)

(5.12)

Q̃i(t0, T ) = exp
(
−
∫ T

t0

qi(s)ds
)

exp
(
−
∫ T

t0

r0(s)ds
)
, 1 ≤ i ≤ N,

Q̃0(t0, T ) = exp
(
−
∫ T

t0

r0(s)ds
)
. (5.13)

Finally, let π(α) be the performance random variable of the hedging portfolio Πstoch(t0)
over its lifetime, defined by

π(α) = P̃ c(t0, T ) +
N∑
i=0

αiQ̃i(t0, T ) + Cstoch(t0). (5.14)

With these ingredients at hand, we can define the portfolio variance minimization
by which the weights α = (α0, . . . , αN ) are found. The variance of π(α) is given by

Var[π(α)] = Var
[
P̃ c(t0, T ) +

N∑
i=0

αiQ̃i(t0, T )
]
, (5.15)

where we used that Cstoch(t0) is constant. We find the weights αi, i ∈ {0, . . . , N} by
minimizing the variance of the random variable π(α),

(α0, . . . , αN ) = argmin
{
α′ ∈ [−1, 1]N+1 : Var[π(α′)]

}
. (5.16)

Note that the minimizing weights α obtained in (5.16) are equal to the weights obtained
from minimizing

f(α) =

N∑
i=0

α2
iVar[Q̃i(t0, T )] +

N∑
i,j=0

j 6=i

αiαjCov[Q̃i(t0, T ), Q̃j(t0, T )]

+ 2

N∑
i=0

αiCov[P̃ c(t0, T ), Q̃i(t0, T )]. (5.17)

The variance and covariance terms in f(α) can be expressed analytically, respec-
tively semi-analytically with the common factor approximation for the term containing
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P̃ c(t0, T ), due to the embedded CTD discount factor. Details on this procedure are
given in Appendix B.

We contrast the obtained hedging portfolio with another static hedging portfolio,
based on deterministic modelling of the collateral spreads. This second portfolio en-
sures that the deterministic maximum spread obtained from the deterministic collateral
spread forecast is matched precisely.

This is achieved by a combination of the asset P c(t0, T ) with bonds Qi(t0, T ) and
forward contracts Fi(t0, S, T ), which deliver bonds Qi(S, T ) at times S ∈ [t0, T ]. The
reasoning behind the portfolio comes from the perceived collateral spread structure
in a deterministic model. The deterministic collateral spreads q̂i(t) imply determin-
istic crossing times, which are the times where the spread that attains the maximum
changes. Based on these, we can set up a static portfolio at time t0, where the corre-
sponding bond to the deterministic maximum is contained at every time t0 ≤ t ≤ T .

We begin with two definitions needed for the deterministic strategy.

dfn 5.3 (Forward contract on a foreign zero-coupon bond in the domestic currency).
Let the forward contract Fi(t, S, T ), i ∈ {1, . . . , N} deliver a foreign zero-coupon bond
denominated in the domestic currency at time S with maturity T . No-arbitrage con-
ditions dictate that the forward contract is equivalent to

Fi(t, S, T ) =
Qi(t, T )

P (t, S)
. (5.18)

Let the forward contract F0(t, S, T ) analogously deliver the domestic zero coupon bond,

F0(t, S, T ) =
P (t, T )

P (t, S)
. (5.19)

dfn 5.4 (Maximal spread crossing time). Let the maximum over the deterministic
collateral spreads for all times t ∈ [t0, T ] be denoted by

M̂(t) := max(q̂0(t), q̂1(t), . . . , q̂N (t)). (5.20)

Let the crossing time TCk be the kth time that the collateral spread which attains
the maximum changes. The crossing times are defined iteratively for k ≥ 1 by

TC0 := t0,

TCk := inf
{
t > TCk−1 : {0 ≤ i ≤ N : q̂i(t) = M̂(t)} 6= {0 ≤ j ≤ N : q̂j(T

C
k−1) = M̂(TCk−1)}

}
.

(5.21)

Let S be the set of crossing times before maturity, S = {TCk : k ≥ 0, TCk < T}. This set
is nonempty as t0 = TC0 ∈ S.

We recall that q̂0(t) = 0 by the definition of the collateral spreads in (1.3). Without
loss of generality, let exactly one of the collateral spreads q̂i(t) attain the maximum over
any given time interval. For intervals where this does not hold, these maximal collateral
spreads are indistinguishable for our purposes and further criteria, like preferences of
the collateral posting party, can be considered to create a distinction.

Let ik ∈ {0, . . . , N} denote the index of the collateral spread q̂i(t) which is maximal
on the interval [TCk , T

C
k+1) for k ≥ 0. Under the deterministic CTD model, the asset is
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priced as

P̂ c(t, T ) = E
[
exp
(
−
∫ T

t
M̂(s)ds

)
P (t, T )

]
= E

[
exp
(
−
∫ T

t

∑
TC
k ∈S

q̂ik(s)1[TC
k ,T

C
k+1)(s)ds

)]
P (t, T ). (5.22)

The optimal deterministic CTD-hedging strategy is then given by a portfolio which
consists of the asset P c(t, T ), and is short in exactly one unit of the optimal bond
Qik(t, T ) during times t ∈ [TCk , T

C
k+1), k ≥ 0. It is obtained by the following procedure:

For each TCk ∈ S, add:

{
−Fik(t0, T

C
k , T ) + Fik(t0, T

C
k+1, T ), if TCk+1 ∈ S,

−Fik(t0, T
C
k , T ), if TCk+1 6∈ S,

to the portfolio. The static, deterministic strategy CTD-hedging portfolio with zero
initial price is thus given by

Πdet(t) := P c(t, T ) +
∑

TC
k+1∈S

(
−Fik(t, TCk , T ) +Fik(t, TCk+1, T )

)
−Fim(t, TCm , T ) +Cdet(t),

(5.23)
where TCm = max{TCk ∈ S} is the final crossing time before maturity and im the
associated index of the collateral spread q̂i(t) which is maximal on [TCm , T ). Again,
Cdet(t) denotes the cash account for the initial condition, which is determined by accrual
with the domestic interest rate, Cdet(t) = Cdet(t0)B(t0, t), with initial holdings Cdet(t0)
obtained from offsetting the transactions at t0,

Cdet(t0) = −
(
P c(t0, T ) +

∑
TC
k+1∈S

(
−Fik(t0, T

C
k , T ) +Fik(t0, T

C
k+1, T )

)
−Fim(t0, T

C
m , T )

)
.

(5.24)
In (5.23) above, we implicitly require physical settlement of the forward contracts, so
that Fi(t, T

C
k , T ) = Qi(t, T ) for times t > TCk .

Finally, we define a class of basic portfolios Πi, i ∈ {0, . . . , N} that simply hedge
the collateral choice zero-coupon bond P c with one unit of the bond Qi:

Πi(t) = P c(t, T )−Qi(t, T ) + Ci(t). (5.25)

The cash accounts of the basic portfolios Πi are given by

Ci(t) = −
(
P c(t0, T )−Qi(t0, T )

)
B(t0, t). (5.26)

We include the domestic currency choice Q0(t, T ) := P (t, T ) to obtain the portfolio

Π0(t) = P c(t, T )− P (t, T ) + C0(t)B(t0, t), (5.27)

which simply ignores the collateral choice option in the hedge and corresponds to the
portfolio Πc

0 in Section 5.1. We emphasize this by writing Πnone := Π0. In absence of
crossing times t0 < TCk < T , the basic portfolio of the maximal (cheapest-to-deliver)
currency is equivalent to the deterministic strategy introduced before.
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Figure 4: In the first CTD-hedging experiment, the deterministic collateral
spreads do not cross for the entire lifetime of the asset, t ∈ [0, 10]. In the graph on
the left, the expectations of the collateral spreads are given. In the graph on the
right, we give the standard deviations of the CTD-hedging portfolios Πstoch,Πdet

and of the portfolio Πnone.

6. Numerical experiments on CTD hedging

We consider numerical experiments to compare the performances of the proposed
hedging strategies. The “stochastic strategy” is based on stochastic collateral spread
assumptions associated with the portfolio Πstoch given in (5.11), the “deterministic
strategy” is based on deterministic collateral spread assumptions associated with the
portfolio Πdet given in (5.23) and the “basic strategies” correspond to the portfolios
Πi, i ∈ {0, . . . , N} given in (5.25).

We add the assumption that the domestic collateral rate is constant zero, r0(t) ≡ 0.
By this, the collateralized asset, defined in (5.4), simplifies to P c(t, T ) = CTD(t, T ).
This ensures that any risks encountered in the following stem exclusively from the
collateral choice option. Consequently, it holds that P (t, T ) = B(t, T ) ≡ 1 for all
t0 ≤ t ≤ T .

We return to the setting of the experiments in Section 4 with three available cur-
rencies, i.e. two non-zero collateral spreads q1(t) and q2(t). The speed of mean re-
version parameters are set to κ1 = 0.0078, κ2 = 0.0076, the volatility parameters to
ξ1 = 0.0018, ξ2 = 0.0023 and the instantaneous correlation to ρ1,2 = 0.3. We remark
that throughout this section, the deterministic collateral spreads and stochastic collat-
eral spread expectations, q̂i(t) = E[qi(t)] are modelled as linear functions. This is not
a general restriction of the model but a simplifying choice to facilitate interpretations.

In the first experiment, we consider a scenario of non-crossing collateral spread
forecasts. That is, the deterministic collateral spreads q̂i(t), i ∈ {0, 1, 2}, which are
also the expectations of the stochastic dynamics, are chosen such that they do not
cross and q̂1(t) remains maximal for all t until maturity T = 10. A graph of the spread
configuration is presented on the left in Figure 4.

As there are no crossing times after t0, the deterministic strategy portfolio is given
by

Πdet(t) = P c(t, T )−Q1(t, T ) +
(
−P c(t0, T ) +Q1(t0, T )

)
. (6.1)

This is equal to the basic portfolio Π1 and due to the clear hierarchy of collateral
spreads, we abstain from simulating the basic portfolio Π2. We do consider the basic,
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Figure 5: Valuation of the CTD-hedging portfolios Πstoch(t),Πdet(t) and portfolio
Πnone(t). Sample paths and expected values are provided. In the graph on the
right, the portfolios are stripped of their respective cash accounts, eliminating the
initial zero condition.

domestic portfolio Π0(t) = Πnone(t), as it describes a portfolio unconcerned with the
collateral choice option. As here r0(t) ≡ 0, it is equal to

Πnone(t) = P c(t, T )− 1 + (−P c(t0, T ) + 1
)
. (6.2)

The stochastic strategy portfolio is obtained with the variance minimization (5.16).
We note that in the constant zero domestic interest rate scenario, the variance to
minimize is given by

Var
[
π̃(α)

]
= Var

[
P̃ c(t0, T ) + α0Q̃0(t0, T ) + α1Q̃1(t0, T ) + α2Q̃2(t0, T )

]
= Var

[
P̃ c(t0, T ) + α1Q̃1(t0, T ) + α2Q̃2(t0, T )

]
, (6.3)

with the random variables defined in Dfn 5.2. The latter equality follows from the par-
ticular scenario with r0(t) ≡ 0. This implies that the variance minimization approach
leaves weight α0 unspecified because of the lack of stochasticity in Q0(t, T ) = P (t, T ) =
1 of this particular scenario. However, the lack of interest accrual also implies that
the weight α0 does not enter the portfolio with initial value zero in a meaningful way,
as it cancels out with the bank account, shown in (6.4) below. The weights obtained
from the variance minimization procedure are α1 ≈ −0.477 and α2 ≈ −0.361 and the
stochastic strategy portfolio is thus equal to

Πstoch(t) = P c(t, T ) + α0 − 0.477Q1(t, T )− 0.361Q2(t, T )

+
(
−P c(t0, T )− α0 + 0.477Q1(t0, T ) + 0.361Q2(t0, T )

)
= P c(t, T )− 0.477Q1(t, T )− 0.361Q2(t, T )

+
(
−P c(t0, T ) + 0.477Q1(t0, T ) + 0.361Q2(t0, T )

)
. (6.4)

The portfolios Πdet(t), Πstoch(t) and Πnone(t) are evaluated in a Monte Carlo market
simulation based on Hull–White dynamics. Market prices of the involved instruments,
E[Q1(t0, T )], E[Q2(t0, T )], and E[P c(t0, T )], can be obtained from the Monte Carlo
simulation or, similarly, from analytical Hull–White ZCB formulas and the common
factor CTD approach, respectively.
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Figure 6: In the second CTD-hedging experiment, the deterministic collateral
spreads (respectively expectations of collateral spreads) cross.

In the right graph of Figure 4, the standard deviations of the portfolio simulations,
defined as SD[Π(t)] :=

√
Var[Π(t)], are evaluated up to maturity. As all considered

portfolios have deterministic payoffs at maturity, all the standard deviations taper back
to zero at time T . It is evident that the stochastic strategy portfolio displays by far the
least standard deviation. This comes as expected since the portfolio was constructed
from principles of variance minimization. The deterministic strategy hedging portfolio
still displays less standard deviation than the CTD-indifferent portfolio Πnone.

In Figure 5 on the left, valuations of the hedging portfolios are given for portfolio
sample paths and expected portfolio values. We clearly observe the initial condition
Π(0) = 0 for all portfolios. A hypothetical, perfect hedging portfolio could be obtained
from the back-to-back hedge with a zero-coupon bond that has the same collateral
choice option. This perfect portfolio vanishes throughout its lifetime. Accordingly, we
can associate the valuation of a portfolio at time t with the cost of the imperfect hedging
at that time. We are particularly interested in the valuations at maturity T , which
are deterministic. Notably, the CTD-indifferent hedging portfolio Πnone(T ) ≈ 0.045
carries the highest penalty, whereas the stochastic strategy portfolio Πstoch(T ) ≈ 0.025
performs slightly worse than the deterministic strategy Πdet(T ) ≈ 0.017. In the graph
on the right of Figure 5, the portfolios are given without the requirement of initial price
zero, i.e. Π̄j(t) = Πj(t)−Cj(t) for j ∈ {stoch, det, none} and Cj the corresponding cash
accounts. The initial valuations of these portfolios, Π̄j(0), indicate the amount of
cash which needs to be borrowed to enter the respective hedging portfolios. Since the
uncollateralized bond P (t0, T ) ≥ P c(t0, T ) is never priced lower than the collateral-
choice bond, entering the strategy Πnone yields non-negative cash. In contrast, entering
the deterministic hedging strategy requires funding, Π̄det(0) = 0.49. The stochastic
hedging strategy takes a special role, as here the so far unspecified weight α0 comes
into play. We can indeed choose the weight α0 to obtain an arbitrary initial price,

Π̄stoch(t0) = P c(t0, T ) + α0 − 0.477Q1(t0, T )− 0.361Q2(t0, T )

= +α0 + 0.132. (6.5)

An initial choice of α0 = −0.132 yields a cash-neutral portfolio at inception, in which
case the valuation paths are again those of the portfolio shown in the graph on the
left.

In the second hedging experiment, we consider a scenario where the projections for
the collateral spreads cross. Until the crossing time TC1 = 3.6, the first collateral spread
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Figure 7: Portfolio valuations in the second CTD-hedging experiment, where the
deterministic collateral spreads cross.

q̂1(t) is maximal, afterwards the second collateral spread q̂2(t) is. This behaviour is
depicted in the left graph of Figure 6. The resulting deterministic strategy portfolio is
given by

Πdet(t) = P c(t, T )−Q1(t, T ) + F1(t, TC1 , T )− F2(t, TC1 , T )

+
(
−P c(t0, T ) +Q1(t0, T )− F1(t0, T

C
1 , T ) + F2(t0, T

C
1 , T )

)
. (6.6)

Since the domestic interest rate is constant zero, we have P (t, S) = 1 for all S ∈ [t0, T ]
and therefore the forward contracts simplify to Fi(t, S, T ) = Qi(t, T ). Thus, in this
setting, the deterministic strategy is equal to the basic strategy Π2(t) with hedging
instrument Q2(t, T ). We furthermore add the basic strategy with hedging portfolio
Π1, given by

Π1(t) = P c(t, T )−Q1(t, T ) +
(
−P c(t0, T ) +Q1(t0, T )

)
, (6.7)

and the hedging strategy which ignores the CTD-discount factor, Πnone(t), given in
(6.2).

From portfolio variance minimization, we obtain the hedging weights of the stochas-
tic strategy, α1 ≈ −0.343, α2 ≈ −0.436 and the corresponding stochastic strategy
portfolio

Πstoch(t) = P c(t, T )− 0.343Q1(t, T )− 0.436Q2(t, T )

+
(
−P c(t0, T ) + 0.343Q1(t0, T ) + 0.436Q2(t0, T )

)
. (6.8)

We refer to the discussion around (6.4) regarding the unspecified parameter α0. Com-
paring the weights (α1, α2) to the weights obtained in the first experiment, we notice
increased importance attributed to the second foreign zero-coupon bond Q2(t0, T ) in
the portfolio. This aligns with an increased probability of q2(t) being the maximal
spread, which can easily be analytically confirmed with the updated collateral spread
expectations under unchanged volatilities ξ1, ξ2.

The standard deviations of the portfolios observed in this experiment, displayed
in Figure 6, resemble those of Figure 4 in magnitude, with the stochastic portfolio
clearly displaying the least variance. However, all deterministic strategies, basic and
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maximal-spread-following, exhibit more deviation than before, now at similar levels to
the strategy of portfolio Πnone.

In Figure 7, we have the portfolio valuations for this scenario, again with the bank
account ensuring an initial price of zero and without. Initial-zero portfolios behave
similar to the observation of the previous experiment, with the portfolio Πnone(T ) ≈
0.039 exhibiting the highest value at time T , which we understand as the penalty
for the imperfect hedge. As before, the deterministic strategy (Πdet(T ) ≈ 0.021) is
slightly cheaper than the stochastic strategy (Πstoch(T ) ≈ 0.027) and the basic strategy
(Π1(T ) ≈ 0.025).

The right graph of Figure 7, which shows the portfolio valuations when the cash
account is removed, presents a notably different picture from before. Except for the
stochastic strategy, all hedging portfolios are cash-positive at inception. As remarked
before, the stochastic portfolio is subject to arbitrary, parallel shifts about the vertical
axis by the choice of unspecified parameter α0. The cash-neutral choice, in this case,
is given by α0 ≈ −0.19.

7. Conclusions

We have demonstrated structural differences between the deterministic and stochas-
tic models for the collateral choice option, and we have shown that assets with the col-
lateral choice option require tailored hedging strategies when no hedging instruments
equipped with the same option are available. To this end, we have proposed hedging
strategies based on the domestic and foreign zero-coupon bonds associated with the
available collateral currencies. A variance-minimizing strategy was proposed based on
the stochastic collateral spread model, and we have shown how its hedging weights
can be obtained semi-analytically with an application of the common factor approach
to CTD discount factor pricing. We have further proposed hedging strategies based
on the deterministic collateral spread model and its implied collateral spread cross-
ing times. Several numerical experiments have been performed in a setting where
domestic risk factors are removed, resulting in a scenario where only risks from the
alternative collateral currencies enter. The numerical results affirm that the strategy
derived from the stochastic model strongly reduces the portfolio variance compared to
all other strategies considered. In any case, hedging with a currency associated with a
positive collateral spread improved hedging performance over the indiscriminate choice
of the domestic currency. Future research should consider the effect of the collateral
choice option on non-linear products in a broadened scenario where all risk factors
are present in the market. Furthermore, it remains an important question how the
strong assumption of free collateral substitution can be loosened without making the
collateral choice option price path dependent and how the collateral spreads can be
calibrated in an efficient way.

Acknowledgments

This research is part of the ABC–EU–XVA project and has received funding from
the European Union’s Horizon 2020 research and innovation programme under the
Marie Sk lodowska–Curie grant agreement No. 813261.

References

[1] Antonov, A. and Piterbarg, V. (2014). Options for collateral options. Risk Magazine, pages 66–71.

25



[2] Bielecki, T. R. and Rutkowski, M. (2015). Valuation and hedging of contracts with funding costs
and collateralization. SIAM Journal on Financial Mathematics, 6(1):594–655.

[3] Brigo, D. and Mercurio, F. (2006). Interest rate models: theory and practice: with smile, inflation,
and credit. Springer, Berlin New York.

[4] Fujii, M. and Takahashi, A. (2011). Choice of collateral currency. Risk Magazine, 24(1):120–125.
[5] Macey, G. (2011). Pricing with standard CSA defined by currency buckets. SSRN.
[6] McCloud, P. (2013). Collateral volatility. SSRN Electronic Journal.
[7] Oosterlee, C. W. and Grzelak, L. A. (2019). Mathematical Modeling And Computation In Finance:

With Exercises And Python And Matlab Computer Codes. World Scientific Publishing Company.
[8] Piterbarg, V. (2010). Funding beyond discounting: collateral agreements and derivatives pricing.

Risk Magazine, 23(2):42–48.
[9] Piterbarg, V. (2012). Cooking with collateral. Risk Magazine, 25(8):58–63.
[10] Piterbarg, V. (2013). Stuck with collateral. Risk Magazine, (11):60–65.
[11] Sankovich, V. and Zhu, Q. (2015). Collateral option valuation made easy. Risk Magazine, pages

68 – 73.
[12] Simmons, M. (2018). Collateral management: a guide to mitigating counterparty risk. John Wiley

& Sons, Chichester, West Sussex, United Kingdom.
[13] Wolf, F. L., Grzelak, L. A., and Deelstra, G. (2022). Cheapest-to-deliver collateral: a common

factor approach. Quantitative Finance, 22(4):707–723.

Appendix A. Proof of Lem 3.1

Proof. Throughout this proof, expectations are taken under either the domestic Q0

measure or the domestic forward QT
0 measure, according to the definition of the col-

lateral spreads in (2.1).
1. Let θi(t) be defined as in (3.6). Then it holds for every t ∈ [t0, T ]:

E[qi(t)] = qi(t0)e−κi(t−t0) + κi

∫ t

t0

θi(z)e
−κi(t−z)dz

= q̂i(t0)e−κi(t−t0) + κi

∫ t

t0

(
q̂i(z) +

∂

∂z

1

κi
q̂i(z)

)
e−κi(t−z)dz

= q̂i(t0)e−κi(t−t0) + e−κit
(∫ t

t0

q̂i(z)κie
κizdz +

∫ t

t0

∂

∂z
q̂i(z)e

κizdz
)
. (A.1)

The result follows from the integration by parts formula∫ t

t0

q̂i(z)κie
κizdz +

∫ t

t0

∂

∂z
q̂i(z)e

κizdz =
[
q̂i(z)e

κiz
]t
t0

= q̂i(t)e
κit − q̂i(t0)eκit0 . (A.2)

2. Let T = {t0, t1, . . . , tR = T} be the time discretization of [t0, T ] and let θi(t) be
defined piecewise constant on the intervals (tk−1, tk] for every k ≥ 1 as described in
(3.7). For every tk, k ≥ 1 it holds that

E[qi(tk)] = qi(t0)e−κi(tk−t0) + κi

∫ tk

t0

θi(z)e
−κi(tk−z)dz

= q̂i(t0)e−κi(tk−t0) +

k∑
j=1

κie
−κitk q̂i(tj)e

κitj − q̂i(tj−1)eκitj−1

eκtj − eκtj−1

∫ tj

tj−1

eκizdz

= q̂i(t0)e−κi(tk−t0) + e−κitk
k∑
j=1

(
q̂i(tj)e

κitj − q̂i(tj−1)eκitj−1
)

= q̂i(tk), (A.3)

where the final step is based on a telescopic sum. �
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Appendix B. Computation of the portfolio variance minimization

In the following, we give the mathematical details of the portfolio variance mini-
mization approach. By the end of this section, we obtain a semi-analytical approach
to the hedging weights obtained from the variance minimization in (5.16). The first
result is a transformation of the variance Var[π(α)] into the object of interest f(α)
given in (5.17).

lem Appendix B.1. Minimizing the variance of the random variable π(α) given in
Dfn 5.2, is equivalent to minimizing

f(α) =
N∑
i=0

α2
iVar[Q̃i(t0, T )] +

N∑
i,j=0

j 6=i

αiαjCov[Q̃i(t0, T ), Q̃j(t0, T )]

+ 2
N∑
i=0

αiCov[P̃ c(t0, T ), Q̃i(t0, T )]. (B.1)

In the following, we do not write the repeated arguments (t0, T ) of the random
variables Q̃i(t0, T ) and P̃ c(t0, T ).

Proof. The proof is obtained by expansion of the variance of π(α),

Var[π(α)] = Var[P̃ c +
N∑
i=0

αiQ̃i]

= Var[P̃ c] +
N∑

i,j=0

αiαjCov[Q̃i, Q̃j ] + 2
N∑
i=0

αiCov[P̃ c, Q̃i]. (B.2)

The result follows by the removal of the first term, Var[P̃ c], which does not contain
any weights αi, i ≥ 0. �

Towards a semi-analytical expression of the function f(α), we begin by analysing
the covariance term Cov[Q̃i, Q̃j ], which can, for all i, j ≥ 0, be expressed by

Cov[Q̃i, Q̃j ] = EQ0
[(

e
−

∫ T
t0
qi(s)dse

−
∫ T
t0
r0(s)ds)(

e
−

∫ T
t0
qj(s)ds

e
−

∫ T
t0
r0(s)ds)]

− EQ0
[
e
−

∫ T
t0
qi(s)dse

−
∫ T
t0
r0(s)ds]EQ0

[
e
−

∫ T
t0
qj(s)ds

e
−

∫ T
t0
r0(s)ds]

= EQ0
[
e
−

∫ T
t0
qi(s)dse

−
∫ T
t0
qj(s)ds]EQ0

[(
e
−

∫ T
t0
r0(s)ds)2]

− EQ0
[
e
−

∫ T
t0
qi(s)ds

]
EQ0

[
e
−

∫ T
t0
qj(s)ds]EQ0

[
e
−

∫ T
t0
r0(s)ds]2

. (B.3)

Above, we used the assumption of independence under Q0 between the collateral
spreads and domestic interest rate which was made in Section 5.2. We note that

(B.3) holds even for i = 0 or j = 0, since q0(t) = 0 and thus E[e
−

∫ T
t0
q0(s)ds

] = 1.
The collateral spreads qi(t), i ≥ 1 are defined as 1-factor Hull–White processes

under the particular choice of measure Q0 in (2.1), and r0(t) is defined as an analo-
gous 1-factor Hull–White process under the measure Q0 in (2.2). Therefore, the first

moments EQ0 [e
−

∫ T
t0
qi(s)ds] and EQ0 [e

−
∫ T
t0
r0(s)ds

] in (B.3) can be directly obtained from
the well-known pricing formula for a zero-coupon bond under the Hull–White model,
see, for example, [7].

Let us now concentrate on the second-order terms. In the following lemma, we

consider the mixed term EQ0
[
e
−

∫ T
t0
qi(s)dse

−
∫ T
t0
qj(s)ds]

; the second moment of Q̃0 can
be derived similarly.
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lem Appendix B.2. The mixed second-order term EQ0
[
e
−

∫ T
t0
qi(s)dse

−
∫ T
t0
qj(s)ds]

is,
for every i, j ≥ 1, given by

EQ0
[
e
−

∫ T
t0
qi(s)dse

−
∫ T
t0
qj(s)ds]

= exp
(
µi,j +

1

2
vi,j

)
, (B.4)

where

µi,j := −EQ0
[∫ T

t0

(
qi(s) + qj(s)

)
ds
]

= −
∫ T

t0

(
q̂i(s) + q̂j(s)

)
ds, (B.5)

and

vi,j := Var
[∫ T

t0

qi(s)ds
]

+ Var
[∫ T

t0

qj(s)ds
]

+ 2Cov
[∫ T

t0

qi(s)ds,

∫ T

t0

qj(s)ds
]
. (B.6)

Furthermore, it holds for every i, j ≥ 1,

Cov
[∫ T

t0

qi(s)ds,

∫ T

t0

qj(s)ds
]

=
ξiξjρi,j
κi + κj

(
e−κjτ

κ2
j

− 1

κ2
j

+
τ

κj
+

1

κ2
i

− e−κiτ

κ2
i

+
τ

κi

− e−(κi+κj)τ

κiκj
+

e−κiτ

κiκj
+
e−κjτ

κiκj
− 1

κiκj

)
, (B.7)

where τ := T − t0, and all variances, covariances are taken under the Q0 measure.

Proof. Since every qi(s) is a normal random variable, so is qi(s) + qj(s) and also∫ T
t0
qi(s) + qj(s)ds. Consequently, EQ0 [exp(−

∫ T
t0
qi(s) + qj(s)ds)] is the expectation of

a log-normal random variable, thus (B.4) holds and (B.5), (B.6) immediately follow.
Finally, (B.7) is obtained from the observation

Cov
[∫ T

t0

qi(s)ds,

∫ T

t0

qj(s)ds
]

=

∫ T

t0

∫ T

t0

Cov[qi(u), qj(v)]dudv, (B.8)

and the explicit solution of Cov[qi(u), qj(v)], given by

Cov
[
qi(u), qj(v)

]
= ξiξje

−(κiu+κjv)Cov
[∫ u

t0

eκizdWi(z),

∫ v

t0

eκjydWj(y)
]

=
ξiξjρi,j
κi + κj

e−(κiu+κjv)
(

e(u∧v)(κi+κj) − et0(κi+κj)
)
. (B.9)

The latter result is obtained by using that Wj
d
= ρi,jWi+

√
1− ρ2

i,jW
⊥, with a Brown-

ian motion W⊥ independent of Wi, which enables an application of Itô’s isometry. �

This concludes the analytical expressions in the variance minimization approach.
It remains to find an expression for the term Cov[P̃ c, Q̃i], i ≥ 0.

We begin with the case i = 0. Following the same factorization argument as in
(B.3), we obtain

Cov[P̃ c, Q̃0] = EQ0
[
e
−

∫ T
t0
M(s)ds](EQ0

[
Q̃2

0

]
− EQ0

[
Q̃0

]2)
, (B.10)

where it was defined that M(s) = max(0, q1(s), . . . , qN (s)). We showed previously
how the moments of Q̃0 can be obtained. The remaining term is precisely the CTD
discount factor CTD(t0, T ) and we can use the common factor approximation, given
in (2.16), to obtain a semi-analytical approximation.

28



For the case that i ≥ 1, it holds by the same line of reasoning that

Cov
[
P̃ c, Q̃i

]
= EQ0

[
e
−

∫ T
t0
M(s)ds

Q̃iQ̃0

]
− EQ0

[
e
−

∫ T
t0
M(s)ds]EQ0

[
Q̃i
]
EQ0

[
Q̃0

]
. (B.11)

Most of these terms has been previously treated, except for EQ0 [e
−

∫ T
t0
M(s)ds

Q̃iQ̃0].
The missing term is

EQ0
[
e
−

∫ T
t0
M(s)ds

Q̃iQ̃0

]
= EQ0

[
e
−

∫ T
t0

max
(
qi(s),q1(s)+qi(s),...,qN (s)+qi(s)

)
e
−

∫ T
t0

2r0(s)ds
]

= EQ0

[
e
−

∫ T
t0

max
(
qi(s),q1(s)+qi(s),...,qN (s)+qi(s)

)]
EQ0

[
e
−

∫ T
t0

2r0(s)ds
]
, (B.12)

which we recognize as closely related to the CTD discount factor. The procedure of
the common factor approximation, detailed in [13], can be adapted for this special
case. Herefore, it is only necessary to construct the joint marginal distributions(

qi(s), q1(s) + qi(s), . . . , qN (s) + qi(s)
)
∼ N

(
µ(s; i),Σ(s; i)

)
, (B.13)

where
µ(s; i) :=

(
q̂i(s), q̂1(s) + q̂i(s), . . . , q̂N (s) + q̂i(s)

)
, (B.14)

and the covariance matrix Σ(s; i) can be directly obtained from (B.9).
We have thus shown how the variance minimization term can be expressed with a

mixture of analytical results and semi-analytical approximations. Terms involving only
the random variables Q̃i, associated with domestic and foreign zero-coupon bonds, are
solved analytically and terms involving the random variable P̃ c, associated with the
asset equipped with a collateral choice option, are approximated semi-analytically.
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