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Abstract

This paper studies equity basket options – i.e. multi-dimensional derivatives whose payoffs
depend on the value of a weighted sum of the underlying stocks – and develops a new and
innovative approach to ensure consistency between options on individual stocks and on the
index comprising them. Specifically, we show how to resolve a well-known problem that when
individual constituent distributions of an equity index are inferred from the single-stock option
markets and combined in a multi-dimensional local/stochastic volatility model, the resulting
basket option prices will not generate a skew matching that of the options on the equity
index corresponding to the basket. To address this “insufficient skewness”, we proceed in two
steps. First, we propose an “effective” local volatility model by mapping the general multi-
dimensional basket onto a collection of marginal distributions. Second, we build a multivariate
dependence structure between all the marginal distributions assuming a jump-diffusion model
for the effective projection parameters, and show how to calibrate the basket to the index
smile. Numerical tests and calibration exercises demonstrate an excellent fit for a basket of as
many as 30 stocks with fast calculation time.

Keywords: Basket Options, Index Skew, Monte Carlo, Local Volatility, Stochastic Volatility,
Collocation Methods

1. Introduction

Basket options are contingent claims in which the underlying is a group of assets – typically
equities (single stocks as well as equity indices/ETFs), commodities or currencies. As with
standard options, the holder of a basket option has the right, but no obligation, to buy (call)
or sell (put) the group at a specified strike price which itself is based on the weighted value of the
component assets. Basket options can be traded on their own, but commonly feature implicitly
in structured products like equity basket linked notes (ELNs) or equity basket certificates of
deposit, where return to investors depends on the percentage change in the value of stocks
or stock indices in the basket, with partial or total capital protection. For example, on April
16, 2021, JP Morgan priced $9.6 million of notes linked to a basket of 30 unequally weighted
U.S. stocks with exposure to infrastructure1. The structure is effectively a combination of a
European-style basket option and a hypothetical zero coupon bond of the issuing entity.

The key feature of basket options, and any structured notes based on them, is their inher-
ently multidimensional risk profile which presents two sets of related challenges. First, there is
the obvious computational problem of handling a potentially large number of correlated risk
factors driving the basket, which in turn requires involved Monte Carlo simulation and calls
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1Cf. the prospectus availible in the online records of the U.S. Securities and Exchange Commission at:
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for the deployment of some dimension-reduction technique, especially in light of the fact that
many such structures exhibit early exercise or other exotic features (e.g. Asian or lookback
options).

Second, and perhaps more importantly, there is the problem of ensuring consistency between
model dynamics chosen for the basket and its constituents, on the one hand, and market pricing
on the other. Typically, stocks or stock indices/ETFs included in the basket will have their
own vanilla options markets and the basket collection itself can also be traded on its own
account. Thus, ensuring consistency entails not only fitting the implied volatility smiles/skews
for individual assets in the basket – which can be done with excellent precision using e.g. the
local volatility model or the Heston model – but also their covariance structure, such as to
match closely the implied volatility smile for the market index corresponding to the basket.

Market practice is to use the local volatility model for individual basket members and
historical correlations estimates between underliers to relate the respective risk factors in a
Monte Carlo simulation.2 In addition, to avoid situations in which the correlation matrix fails
to be positive semi-definite, a flat correlation level is often imposed. However, this procedure
does not automatically ensure that the model price of a basket option is consistent with the
market price of the option on the index corresponding to the basket. And even if, as per market
practice, the correlation coefficient is chosen specifically to match the price of at-the-money
index options, the procedure generates an implied volatility smile/skew that for the basket
that is significantly less pronounced than that observed for the index options.

Consider for example options on the EURO STOXX Food and Beverage Index (Bloomberg
ticker SX3E). The index currently comprises 11 large cap European equities from the food
and beverage sector, such as French Danone, Dutch Heineken and Irish Kerry Group, each of
which has its own listed options market. Matching 1Y ATM implied volatility for the index
(15.51%) requires setting ρ = 0.22 (data as of 1 April 2022). Repricing the basket with this
flat correlation parameter for different moneyness levels generates an implied volatility skew of
about 3.6 vol points,3 which is less than half of the skew observed in the market (7.5 vol points;
cf. Figure 1, LHS). Similarly, fitting correlation to 1Y ATM vol does not allow to reproduce
the term structure of index implied volatilities observed in the market (Figure 1, RHS).

The above heuristic argument shows that a covariance structure implied by the modeling
choice, like the multi-dimensional local volatility (or perhaps Heston) model, will not in general
match the market well. This pattern becomes even more pronounced when handling really large
baskets of tens or hundreds of dimensions, as the generated implied volatilities degenerates to
almost a flat line, resembling implied volatilities produced by a simple Black-Scholes model.
These shortcomings have been known in the literature for quite some time, as a number of
papers have documented that when a constant correlation is picked to match the price of the
ATM implied volatility of the index, it generates a skew that is smaller by roughly a factor of
two than the market skew – as indeed shown in Figure 1 (see [3], [5], and [4]).

One could argue at this point that since the implied volatilities for the index are generally
available, there is no need to model individual underlying assets, and the problem of pricing a
basket corresponding exactly to the index is a theoretical exercise with little practical relevance.
Note, however, that by building a model for the basket that matches the covariance structure
implied by index options (while simultaneously calibrating to individual stocks’ options) we
can easily price products whose value depends on any linear combination of any subset of
stocks included in the broader index. Hence, in essence, we propose a tool for transferring
market-implied covariance patterns between liquid and illiquid baskets. This allows us, for
example, to price a basket of utilities stocks included in FTSE 100 or health care stocks in
Dow Jones, while making sure that the prices of such illiquid baskets will be consistent with
the covariance structures implied by prices of the respective liquid index options.

Several approaches have recently been proposed in the literature to tackle the problem
of pricing basket options and their skews. Perhaps most notably, so called local correlation
models – which come in various shapes and forms – allow correlation between stocks to depend

2For example, in the Bloomberg basket options pricing template correlations are, by default, estimated over
a 5 year period, whereby to eliminate noise, a given percentile of rolling 6-month cross-correlation estimates is
chosen in the parameterization of the full correlation matrix.

3We define the skew here loosely as the difference in implied volatilities between the 85-120% ATM levels.
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Figure 1: Local volatility model calibrated to Euro STOXX Food and Beverages Index
(SX3E) and a corresponding basket of its constituents; LHS: skew for 1Y index op-
tions; RHS: implied volatility term structure of index options; data as of 1 April 2022;
correlation parameter ρ = 0.22 calibrated to 1Y ATM implied SX3E volatility.

on their prices, just like in standard local volatility models ([14], [15], [21]). Local correlation
offered the first consistent remedy to the problem of insufficient skewness referred to above (cf.
Figure 1; [3]), however not without a cost. Local correlation models tend to be slow, difficult
to implement and lead to the usual problems of ensuring a positive semi-definite correlation
matrix, all of which limits their practical usefulness in a truly multidimensional setting.

A related family of models proposes stochastic instantaneous correlation, usually introduced
via Jacobi processes either in a pure form or with jumps (see e.g. [1] and [24]). Such models aim
not only to fit the market prices for correlation products but also, more specifically, to address
the so called correlation skew, i.e. an empirically documented tendency for cross-correlations
to rise when the market falls. Again, however, the added complexity leads to a further increase
in dimensionality and the associated computational burden.

Still others propose to enforce the desired level of the skew through non-Gaussian copulas
(e.g. [17]), however the resulting model is “black boxy” in nature and lacks dynamics, which
means it can only be applied to products with a single maturity, as observed in [24]. Moreover,
finding a multi-dimensional copula that isn’t Gaussian can be challenging in practice, and
anyway the need to calibrate the model through brute-force Monte Carlo makes the whole
approach slow and costly.

Finally, [6] proposes an analytical framework to handle stochastic correlation via Wishart
processes while [16] generalizes Merton’s jump diffusion option pricing approach to the multi-
asset case, however without offering a comprehensive solution that would match both the
basket skew as well as marginals of the constituent stocks.

Against such a background, we try to contribute to the existing literature by building a
highly efficient numerically and robust model capable of handling even very large baskets while
allowing quick and precise calibration. In terms of structure, the model is a local volatility
type and arises by mapping the basket on a set of proxy variables ensuring that both marginal
distributions for individual stocks are matched and the covariance structure of the basket
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corresponds to that of the traded index. Specifically, to ensure excellent fitting of individual
stocks’ marginal distributions, we leverage the so-called Stochastic Collocation Monte Carlo
Sampler (cf. [11]), which is a computationally cheap method for approximating expensive
distributions (we make no assumptions as to the models driving the respective stocks in the
basket). We then control the overall covariance structure of thus reconstituted basket via a
judicious choice of “kernel” processes, whereby – similarly as in [16] – we utilize Merton’s jump-
diffusion model [19] and show that the mean and volatility of Poisson jumps, together with
cross-correlations of individual kernel processes, produce a rich enough dependence structure
to fit both ATM index vols and skew with excellent precision. The proposed approach can be
extended into a fully stochastic volatility setting; however, as we shall see, there appears to be
no need for the added complexity as the classic Merton diffusion already delivers acceptable
results.

The rest of the paper proceeds as follows. Section 2 presents the general idea of the model
and discusses the stochastic collocation approach to basket reconstitution. Section 3 discusses
calibration strategy followed by a discussion of numerical exercises in Section 4. Finally, Section
5 draws conclusions.

2. The Modeling Framework

We consider a collection of N assets4 S1(t), S2(t), . . . , SN (t) and define a basket, B(·), as
consisting of wi shares of each individual stock Sn(t), such that at any time t its price is given
by:

B(t) =

N∑
i=1

ωiSi(t), ωj ∈ R. (2.1)

In what follows, for modeling purposes, we shall distinguish between a basket B(·) as a portfolio
of stocks, and a stock index, with price process I(t), representing the underlying instrument
for equity index options (e.g. an ETF), with realistic values of N ranging from 30-50 (DAX
Index) up to hundreds (S&P 500 Index) or even thousands constituents (Russell 3000 Index).

Our approach to valuing structured payoffs on a basket B(t) will be endowed with three
critical features: (i) low dimensionality to facilitate quick and efficient pricing; (ii) consistency
with the values of options on individual stocks making up the basket; and (iii) consistency with
market prices of options on the stock index corresponding to the basket.

We pursue features (i)-(iii) above by building a one-dimensional local volatility process 5:

dB̄(t) = rB̄(t)dt+ σLV (t, B̄(t))B̄(t)dW (t), (2.2)

with r being an interest rate and σLV the local volatility function, defined as follows:

σ2
LV (t, k) =

∂
∂t

[
e−rt

∫∞
k

(y − k)fB(t)(y)dy
]

+ rk
(
FB(t)(k)− 1

)
1
2k

2
i fB(t)(k)

, (2.3)

where FB(t)(·) is the CDF of the basket B(t) and fB(t)(·) the corresponding PDF. We shall re-
quire that the approximate model for the basket B̄(t) generates an implied volatility smile/skew
matching the implied volatility surface observed in the market for options on the corresponding
stock index. This will ensure that prices of index options derived from our basket model will
by definition match perfectly (cf. [7], [8], [12]). Furthermore, it will also guarantee consistency
between model-derived prices of baskets on any subset {Si1 , ..., SiK} ⊆ {S1, ..., SN} of the N
stocks included in the index and the prices of liquid index options.

4Without loss of generality, we shall henceforth think of the underlying assets as stocks, however the method
developed below is obviously general and, mutatis mutandis, applies to other instruments as well.

5The proposed framework can also be extended with a stochastic volatility process. Such an extension is
trivial and will, for simplicity, be omitted.
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In practical terms, our approach entails two critical steps. First, for each Tj we reconstitute
the basketB(Tj) by projecting each process Si – assumed to be known only through its marginal
distributions/options prices – on a polynomial of synthetic variables gi,j(Xi(Tj)), such that

Si(Tj) ≈ egi,j(Xi(Tj)), and B(Tj) ≈
N∑
i=1

egi,j(Xi(Tj)). (2.4)

The construction of gi,j(·) will be described in detail below, but its main role will be to ensure
the fit of marginal distributions for any choice of Xi(Tj). The reconstitution of the basket
paves the way for the second stage of the modeling procedure, namely imposing a multivariate
dependence structure on the surrogate kernel processes such as to match the index implied
volatility skew, or equivalently, matching marginal distributions between the basket and the

index for each maturity point Tj , i.e. ensuring that: B(Tj)
d
= I(Tj). This step will be handled

through parameters of the “kernel” processes Xj(t), which we assume to be driven by Merton-
type jump diffusions. This procedure will allow us to both calibrate the model to individual
stocks, and control/modify the covariance structure of all the underlying assets.

2.1. Covariance Structure of the Basket and the “Leaking Correlation” Problem

At this stage it may be worthwhile to pause for a moment and provide some further mo-
tivation for why controlling basket dependence structure is so tricky and a judicious choice of
kernel processes is required. After all, it could be argued that the model price of a basket option
can be fitted to a desired market level by altering the correlations ρi,j between the Brownian
motions driving individual stocks Si, Sj . Such correlation coefficients would then essentially
become model inputs describing the stochastic nature of the underlying assets. However, as
discussed in [2], correlations can be expected to “leak”, i.e. dissolve, in a Monte Carlo setting,
so that effective correlations between the respective basket constituents ends up weaker than
assumed. Clearly, this will limit the extent to which we may be able to control the basket smile
generated by our model, leading to erroneous pricing of derivatives away from at-the-money
levels.

To illustrate the correlation leakage problem, consider two stock exchange processes S1(t)
and S2(t) driven by the Heston model with correlated Brownian motions6. In the simulation
of the underlying processes, we consider a simple Euler discretization as in [20]. In Figure 2
the cases for the Feller’s condition are presented for a range of correlation values. We see that
the imposed correlations are not preserved in time, even when Feller’s condition is satisfied.
As a potential remedy to “leaking correlation”, we could attempt to enforce the desired de-
pendence patterns via copula. This, however, does not guarantee success either. To see why,
consider the previous example of the Heston model but now – to make the exposition clearer
– assume that the two stocks are independent, i.e. dW1,1(t)dW2,1(t) = 0 · dt. In such a setup
the marginal, cumulative distribution function of each stock can be recovered using Fourier
transform (cf. [20]), and the covariance structure can then be imposed using a copula. The
basket, B(T ), at given maturity T is thus computed via:

B(T ) = F−1S1(T )(U1) + F−1S2(T )(U2) = S1(T ) + S2(T ),

where the uniformly distributed random variables U1 and U2 are joined using a Gaussian copula
CR. Using such a model we can now price a call option and compute the corresponding implied
volatility for a range of copula parameters.

Figure 3 shows that varying the copula correlation has a significant impact on the level of
corresponding implied volatilities. However, it is also clear that while varying the covariance
structure alone might help in matching, say ATM index vols, Gaussian copula is unlikely to
generate a desired level of skewness – a problem we already alluded to in the introduction.

6The respective dynamics are given by (j = 1, 2): dSj(t) = rSj(t)dt + v
1/2
j (t)Sj(t)dWj,1(t), dvj(t) =

κj(v̄j −vj(t))dt+γjv
1/2
j (t)dWj,2(t) with correlations dWj,1(t)dWj,2(t) = ρjdt, dW1,1(t)dW2,1(t) = ρ1,2dt and

dWj,2(t)dWk,2(t) = 0 · dt. For reference, we set S1(t0) = 1, S2(t0) = 2.5, r = 0, κ1 = 1, κ2 = 0.5, γ1 = 1,
γ2 = 0.6, ρS1,v1 = −0.5, ρS2,v2 = −0.7, v1,0 = 0.1, v2,0 = 0.05, v̄1 = 0.1 and v̄2 = 0.05.

5



0 0.5 1 1.5 2
time

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Correlation in time (Feller condition satisfied)

1,2
= -0.6

1,2
= -0.3

1,2
= 0.3

1,2
= 0.6

0 0.5 1 1.5 2
time

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Correlation in time (Feller condition NOT satisfied)

1,2
= -0.6

1,2
= -0.3

1,2
= 0.3

1,2
= 0.6

Figure 2: Correlation, corr(logS1(t), logS2(t)), as a function of time. Left: Feller con-
dition satisfied; Right: Feller condition not satisfied.

One potential remedy would be to consider more elaborate copula functions (as e.g. proposed
in [17]), however we opt for a different approach. As has already been hinted above, and as we
shall explain in detail below, choosing Merton’s jump diffusion dynamics [18] for the synthetic
variables mapping individual stocks offers great flexibility in fitting both ATM index vols and
skew with excellent precision.
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Figure 3: Implied volatilities for a basket B(T ) for d = 2 driven by the Heston model.

2.2. Basket Reconstruction via Projection with Collocation

As discussed before, our ELV model relies on the availability of the marginal distribution
of each asset, Si(t), at every time Tj . Such a distribution may be given explicitly via a specific
form of the SDE governing the evolution of Si. Alternatively, the relevant distributions can
be inferred from options prices on Si – either obtained from the market or generated by some
unknown model – leaving us completely agnostic as to the shape or form of the asset-pricing
model. In this section we follow the latter more general approach and derive the distribution
through the following well known relation:

FSi(Tj)(y) = 1 +
∂Vc(t0, Tj , Si(t0),K))

∂K

∣∣∣
K=y

, fSi(Tj)(y) =
∂2Vc(t0, Tj , Si(t0),K))

∂K2

∣∣∣
K=y

, (2.5)

where FSi(Tj)(y) is the CDF of Si(·) observed at time Tj and fSi(Tj)(y) is the corresponding
PDF. We shall take such distributions as given and ultimately try to reconstruct the marginal
distributions of the basket B(Tj) defined as the weighted sum of all individual assets. This
step will be ultimately performed by “coupling” the individual marginals via correleted kernel
processes.
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However, our first goal is to project each basket constituent, Si(Tj), on a polynomial,
gmi,j(·), of synthetic variables Xi(Tj), such as to ensure a perfect fit to the respective marginal
distributions for every set of model parameters Xi(Tj). To this end we resort to the so-called
Stochastic Collocation Monte Carlo Sampler (SCMC) discussed in [11] (cf. also an overview
in Appendix A). Using the SCMC method we can express logSi(Tj) as:

logSi(Tj) ≈ gmi,j(Xi(Tj)) =

m−1∑
k=0

si,j,k`k(xi,j,k, Xi(Tj)), (2.6)

where `k(·) are the Lagrange basis function evaluated at the collocation points xi,j,k, k =
0, . . . ,m− 1 based on the kernel variable Xi(Tj). Alternatively, the representation above can
be re-expressed using a polynomial representation,

gmi,j(Xi(Tj)) =

m−1∑
k=0

α̂i,j,kX
k
i (Tj) = α̂i,j,0 + α̂i,j,1Xi(Tj) + ...+ α̂i,j,m−1X

m−1
i (Tj), (2.7)

where coefficients α̂i,j,k are known explicitly [10]. The expansion in (2.6) ensures that the
CDFs of Si(Tj) and gmi,j(Xi(Tj)) agree on the so-called collocation points, i.e.,

FlogSi(Tj)(si,j,k) = Fgm(Xi(Tj))(si,j,k), k = 0, . . . ,m− 1,

where si,j,k = F−1logSi(Tj)
(FX(xi,j,k)) and where Xi is the collocating variable.

The choice regarding variables Xi(Tj), although in principle free, is crucial for fitting to the
marginal distribution of Si(Tj) and controlling the basket’s covariance structure. The most
appealing choice regarding variables Xi is a normal distribution [11], which would imply sam-
pling from multivariate Gaussian copula, thus a computationally cheap, numerical procedure.
However, although Gaussian random variables are sufficient for finding optimal α̂i,j,k in (2.6)
guaranteeing excellent fit to marginal distribution of Si(Tj) such a model will generate low
skew of the basket and therefore the final calibration to the index will not be satisfactory
(see the remarks in Section 2.1). As presented later in the article, the non-trivial covariance
structure of the underlying assets is necessary for controlling the implied volatility skew. This
is confirmed by empirical studies [3].

In the ELV model presented in this article, the kernel that is used is Merton’s jump dif-
fusion model [18], which under the risk-neutral measure consists of a Brownian motion and a
compound Poisson process, which is defined by:

Xi(t) = Xi(t0) +

(
r − 1

2
σ2
i − ξp,iE[eJi − 1]

)
t+ σiWi(t) +

XP,i(t)∑
k=1

Jk,i, (2.8)

with Xi(t0) = logSi(t0), for σi > 0, Brownian motion, Wi(t), Poisson process XP,i(t), t ≥ 0
with parameter ξp,i such E[XP,i(t)] = ξp,it and where the jump sizes Jk,i are i.i.d. given by
Jk,i ∼ N

(
µJ,i, σ

2
J,i

)
. For a given index i the jumps, Jk,i, Brownian motion, Wi(t), and Poisson

process, XP,i(t) are assumed to be independent.

Remark (Alternative dynamics for Xi). Alternatively, one may also consider the more ad-
vanced process structure Xi(·) by adding stochastic volatility. Here, however, we will focus on
a simplified model, and we will show that such a structure is sufficient for excellent calibration
of the market data, even for large baskets consisting of 30 assets.

Once the collocating variable has been chosen, we need to establish the mapping procedure
from the asset logSi(Tj) onto the surrogate variable Xi(·). In order to achieve accurate ap-
proximations one needs to firstly determine the so-called collocation points, xi,j , j = 1, . . . , N ,
of “surrogate” variable Xt(·)- these collocation points are based on moments of Xi(t). This
ensures that the collocation points are the zeros of the orthogonal polynomial corresponding
to the distribution of Xi(·), and we can establish the connection with the computation of in-
tegrals by Gauss quadrature. Typically, for N -collocation points 2N moments of Xi(·) are
needed. However, for Xi(·) defined in (2.8) one may, due to the presence of jumps, expect an
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effect often called “moment explosion” which translates to huge moments causing significant
numerical instability of the method. As an alternative approach, we use the collocation points

zk, k = 0, . . . ,m − 1 corresponding to the standard normal random variable7 Z
d
= N (0, 1).

Such a strategy implies, for a given time Tj , the following relation between logSi(Tj), Xi(·)
and Z:

xi,j,k = F−1Xi(Tj)
(FZ(zk)), (2.9)

log si,j,k = F−1logSi(Tj)
(FXi(Tj)(xi,j,k)), (2.10)

which illustrates how to avoid computation of the collocation points of Xi(Tj) using moments
of Xi(Tj). It is important to note that although variable Xi(Tj) is not directly used to compute
the collocation points of Si(Tj) the approximating function gmi,j(Xi(Tj)) is explicitly defined in
terms of Xi and points xi,j,k and log si,j,k. The details on the optimality of such “substitution”
can be found in [23].

Remark (Grid stretching). When dealing with heavy-tailed distributions (of leptokurtic type
or the distribution is highly skewed), as here proposed for Xi(Tj), to avoid numerically unstable
inversions F−1Xi(Tj)

(a) for either a → 0 or a → 1 it is recommended to use the so-called “grid

stretching” technique [11] which facilitates stable inversions, especially for a high number of
the collocation points, m.

Availability of the ChF in closed form allows finding, via Fourier inversion [20], the cor-
responding CDF, FXi(Tj)(x), and thus finding of the corresponding collocation points, xi,j,k.

φXi(t)(u) = E
[
eiuXi(t)

]
= exp

(
iu(Xi(t0) + µ̄it)−

1

2
σ2
i u

2t+ ξp,ite
iuµJ,i− 1

2u
2σ2

J,i

)
, (2.11)

with µ̄i = r − 1
2σ

2
i − ξp,i(eµJ,i+

1
2σ

2
J,i − 1).

Then, by utilizing the COS method [20], one is able to determine the corresponding CDF:

FXi(Tj)(y) ≈
Nc−1∑
k=0

F̄kψ(a, b, y), F̄k =
2

b− a
<
{
φXi(Tj)

(
kπ

b− a

)
· exp

(
−i kaπ
b− a

)}
, (2.12)

with

ψ(a, b, y) =

{
b−a
kπ sin

(
kπ(y−a)
b−a

)
, for k = 1, 2, . . . , Nc − 1,

(x− a), for k = 0,
(2.13)

where Nc indicates the number of the expansion terms, a and b are the domain parameters,
typically determines in terms of cummulants.

In the next step, we build a multivariate dependence structure between all the marginal
distributions using a system of correlated SDEs. The basket, B(Tj), yields, in terms of the
latent variables, the following form:

B(Tj) =

N∑
i=1

Si(Tj) ≈
N∑
i=1

exp
(
gmi,j(Xi(Tj))

)
=

N∑
i=1

exp

(
m−1∑
k=0

α̂i,j,kX
k
i (Tj)

)
, (2.14)

with Xi(Tj) defined in (2.8). Although we have initially assumed that each Xi has its own
independent jumps Jk,i controlled by XPi(t), our numerical studies have shown that without

7The reason why we choose a standard normal distribution in the alternative approach is twofold. First,
even for a fundamental distribution as the standard normal results are highly accurate – this is also the case in
e.g. [9]. By choosing a different distribution, results may be further enhanced. Secondly, as mentioned in [11],
choosing the normal distribution is also motivated by the Cameron-Martin Theorem [22], which states that
polynomial chaos approximations based on the normal distribution converge to any distribution.

8



sacrificing much in terms of skew fitting possibilities, one can choose a sparse for of the model
with XPi(t) being the same for all the assets, i.e.,

XPi(t) ≡ XP(t).

In such form, the dependence between the individual stocks in the basket is controlled via two
main elements: correlated Brownian motions Wi(Tj) and common Poisson process XP(Tj) for
all Merton’s processes, Xi. Thus, the basket is reconstructed using a combination of marginal
distributions for each asset. The basket PDF, fB(t), can then be obtained by Monte Carlo. It
should be stressed that the sampling from multivariate normal is computationally inexpensive.
The expensive part involves the inversion of marginal distributions, but as explained above,
we handle this using collocation, mitigating the computational cost quite considerably.

Importantly, the proposed methodology does not rely on a calibration of the process
for marginal distributions, but solely on the computation of α̂i,j,k, for i = 1, . . . , N , j =
1, . . . , NT , k = 1, . . . ,m, and inexpensive samples from the multidimensional distribution of
(Xi(·), . . . , XN (·)).

Remark (Marginal distribution). We would like to stress that due to the collocation method
and the CDF mapping procedure, determined coefficients α̂i,j,k will ensure agreement between
the target CDF, FlogSi(Tj)(·) and the surrogate, FXi(Tj)(·). Once the marginal distributions are
calibrated for any configurations of model parameters of Xi(·), the smile/skew of the index
needs to be matched. Later, in this article, we will show that the model proposed allows for
intuitive control of different volatility shapes of the basket, therefore facilitating calibration to
the index.

3. Basket Calibration to the Index

Given that the ELV model, by its construction, guarantees fit to marginal distributions one
still needs to calibrate the basket to index volatilities. The brute force strategy of such opti-
mization can be performed using Monte Carlo simulation, i.e., for different model parameters,
the samples of Xi(Tj) are fed to basket equation in (2.14) and the option prices are computed.
Such routine is typically sub-optimal as it would require multiple iterations and samplings for
Xi(·). To speed up the process and save computational burden, we opt for a different approach,
based on moment matching.

Recall that in its most general form the model might appear to have an overwhelming
number of parameters to be calibrated. Fortunately, as we have already hinted above, many
simplifications can be resorted to without sacrificing calibration precision, while improving
tractability and sparsity.

Firstly, we note that the ELV model’s heart lies in the idea of construction of the local
volatility function; therefore, only the marginal distribution for the basket B(Tj) is relevant.
This implies that the calibration can be performed sequentially, or parallel, for every time Tj ,
j = 1, . . . , NT . Secondly, it is in practice safe to assume that the individual stocks share not
only the type of the kernel process but also the driving parameters. Specifically, we assume
henceforth that all the assets have a common counting process XP(Tj), independent i.i.d.
jumps J ≡ Jk,i ∼ N (µJ , σ

2
J) and correlated Brownian motions dWi(t)dWj(t) = ρdt, which

leads to the following simplified representation:

Xi(Tj) = Xi(t0) +
(
r − 1

2
σ2 − ξpE[eJ − 1]

)
Tj + σWi(Tj) +

XP(Tj)∑
k=1

Jk,i.

Thus, in order to calibrate the basket B(Tj) to an index we need, for every Tj , to determine the
set of optimal model parameters σ, ξp, µJ and σJ , driving the model’s covariance structure.

Each of the jump parameters has a different effect on the shape of the implied volatility
curve, i.e., σJ has a significant impact on the curvature, ξp controls the overall level of the
implied volatility, whereas µJ influences the implied volatility slope (the skew).

Having already gained much in terms of tractability, we can further save the computational
burden by performing calibration via the moment matching procedure. Given that the density

9
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Figure 4: Impact of different jump parameters on the shape of the implied volatility in
Merton’s jump diffusion model. First figure: impact of σJ ; Second figure: impact of ξp;
Third figure: impact of µJ .

of the index, fI(y), exists and can be calculated from options prices, as per Equation (2.5),
the objective is to match moments from the index,I(t), and the basket B(t). It is important to
note that the polynomial coefficients αi,j,k are implicitly a function of model parameters, i.e.,

αi,j,k := αi,j,k(σ, ξp, µJ , σJ), (3.1)

therefore any change in the model parameters requires re-computation of these coefficients.
Since this procedure only relies on the computation of a few inversions of the CDF in Equa-
tion (2.12), it is computationally cheap.

Since the first moment is trivial let us start with the second moment. By definition we
have:

E[B2(Tj)] =

N∑
i1=1

N∑
i2=1

ωi1ωi2E[Si1(Tj)Si2(Tj)].

One the other hand, assuming that we are able to determine the correlation ρ̂(Si1 , Si2) between
Si1(Tj) and Si2(Tj) (this correlation will differ from ρi1,i2dt = dWi1(t)dWi2(t) between the
corresponding Brownian motions), we find:

ρ̂(Si1 , Si2)
def
=

E[Si1(Tj)Si2(Tj)]− E[Si1(Tj)]E[Si2(Tj)]

σi1σi2
,

where σi,1 and σi,2 are standard deviations of Si1(Tj) and Si2(Tj) respectively (these quantities
can be calculated directly using (2.5)). Given that the marginal distributions of Si1 and Si2
are available, both: first moments and the standard deviations can be easily obtained, by for
example proper integration of the market-implied densities in (2.5). Then, we have:

E[Si1(Tj)Si2(Tj)] = ρ̂(Si1 , Si2)σi1σi2 + E[Si1(Tj)]E[Si2(Tj)], (3.2)

therefore the second moment of the basket becomes:

E[B2(Tj)] =

N∑
i1=1

N∑
i2=1

ωi1ωi2

(
ρ̂(Si1 , Si2)σi1σi2 + E[Si1(Tj)]E[Si2(Tj)]

)
. (3.3)

Since the correlation, ρ̂(Si1 , Si2), measures the linear relationship between assets Si1 and Si2 ,
we will compute this coefficient based on a fewer number of the collocation points 8, m = 2
which yields the following representation:

ρ̂(Si1 , Si2) ≈ ρ
(

eα̂i1,j,0+α̂i1,j,1Xi1
(Tj), eα̂i2,j,0+α̂i1,j,1Xi2

(Tj)
)

(3.4)

= ρ
(

eα̂i1,j,1Xi1
(Tj), eα̂i2,j,1Xi2

(Tj)
)

=: ρ̄(Si1 , Si2),

8The strategy proposed in this part does not require “re-calibration” of αi,j,k coefficients, but only neglects
the coefficients of higher order.
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with Xi(·) defined in (2.8), with correlated Brownian motions,

ρ̄(Si1 , Si2)
def
=

E[eα̂i1,j,1Xi1 (Tj)+α̂i2,j,1Xi2 (Tj)]− E[eα̂i1,j,1Xi1 (Tj)]E[eα̂i2,j,1Xi2 (Tj)]√
Var[eα̂i1,j,1Xi1

(Tj)]Var[eα̂i2,j,1Xi2
(Tj)]

.

We immediately note the connection between the moments and the corresponding ChF of Xi(t)
defined in (2.11) resulting in,

φXi(t)(u) = E[eiuXi(t)], thus E[eaXi(t)] = φXi(t)(−ia), a ∈ R,

resulting in the following representation

ρ̄(Si1 , Si2) =
E[ec1Xi1

(Tj)+c2Xi2
(Tj)]− φXi1

(−ic1)φXi2
(−ic2)√(

φXi1
(−2ic1)− φ2Xi1

(−ic1)
)(

φXi2
(−2ic2)− φ2Xi2

(−ic2)
) , (3.5)

with c1 = α̂i1,j,1, c2 = α̂i2,j,1 and φXi(Tj) defined in Equation 2.11. The only term that
caries the correlation between both processes is the expectation involving correlated Merton’s
processes. This expectation is given in closed form and it is presented in Lemma 3.1 below.

Lemma 3.1 (Expectation for a 2D Merton’s model). For a given 2D Merton’s model defined
as:

X1(t) = µ1 + σ1W1(t) +

XP(t)∑
k=1

Jk,1, X2(t) = µ2 + σ2W2(t) +

XP(t)∑
k=1

Jk,2, (3.6)

with correlated Brownian motions dW1(t)dW2(t) = ρ1,2dt, common counting Poisson process
XP(t) with the intensity parameter ξp and independent identically distributed jumps, J ≡ Jk,· ∼
N (µJ , σ

2
J), the following expression holds:

E[eaX1(T )+bX2(T )|F(t0)] = exp

[
aµ1 + bµ2 +

1

2
σ̂2T + ξpT

(
e(a+b)µJ+

1
2 (a

2+b2)σ2
J − 1

)]
=: ωX(a, b), (3.7)

where σ̂2 = a2σ2
1 + b2σ2

2 + 2ρ1,2abσ1σ2.

Proof. Proof can be found in Appendix B. �

Utilizing the results above we find the closed form solution for the expectation and therefore
the correlation coefficient, ρ̄(Si1 , Si2), by simply setting where c1 = α̂i1,j,1, c2 = α̂i2,j,1, µi =
Xi(t0) +

(
r − 1

2σ
2 − ξpE[eJ − 1]

)
T , and σ1 = σ2 = σ.

Once the correlation coefficient, ρ̄(Si1 , Si2), is determined one is able to perform the ATM
calibration of the basket to the index.

min
σJ ,µJ ,ξp,ρ

(
E[B2(Tj)]− E[I2(Tj)]

)2
, E[I2(Tj)] =

∫
R
x2fI(Tj)(x)dx, (3.8)

where the index density fI(Tj)(x) is implied from the option quotes for the index (2.5) and
E[B2(Tj)] is defined in (3.3). It is important to note that, each change of the model parameters
of the kernel process does impact parameters αi1,j,1 and αi2,j,1, implying that the mapping
coefficients, α·, need to be recomputed at each iteration. This however is extremely cheap
operation as it only requires the CDF mappings presented in (2.9).

Following a similar strategy a third moment for the basket can be derived. The detailed
derivations for the approximation results are presented in Appendix C. By definition of the
third moment we have:

E[B3] =

N∑
i1=1

N∑
i2=1

N∑
i3=1

ωi1,i2,i3

[
ρ̂(Si1,i2 , Si3)σi1,i2σi3 + E[Si1,i2 ]E[Si3 ]

]

=

N∑
i1=1

N∑
i2=1

N∑
i3=1

ωi1,i2,i3

[
ρ̂(Si1,i2 , Si3)σi1,i2σi3 +

(
ρ̂(Si1 , Si2)σi1σi2 + E[Si1 ]E[Si2 ]

)
E[Si3 ]

]
,
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with ωi1,i2,i3 := ωi1ωi2ωi3 , and Si1,i2 := Si1Si2 . The first moments E[Si1 ], E[Si2 ] and E[Si3 ] are
known explicitly using the market market data for individual assets. Standard deviations, σi1
and σi2 , of assets Si1(Tj) and Si2(Tj) can be computed utilizing the market implied density
in (2.5). Correlation, ρ̂(Si1,i2 , Si3), is approximated, as for the second moment, and yields:

ρ̂(Si1,i2 , Si3) ≈
ωX(c1, c2, c3)− ωX(c1, c2)φXi3

(−ic3)√
(ωX(2c1, 2c2)− ω2

X(c1, c2))
(
φXi3

(−2ic3)− φ2Xi3
(−ic3)

) ,
where: c1 := α̂i1,j,1, c2 := α̂i2,j,1, c3 := α̂i3,j,1 with ωX(c1, c2, c3) defined in (C.5) and ωX(c1, c2)
in (3.7). Finally, the variance σ2

i1,i2
is given explicitly by:

σ2
i1,i2 := Var[Si1Si2 ] = E[Si1Si2 ]− E[Si1 ]E[Si2 ]

= ρ̂(Si1 , Si2)σi1(Tj)σi2(Tj), (3.9)

where ρ̂(Si1 , Si2) is given in (3.4) and it is approximated by ρ̄(Si1 , Si2) and derived in (3.5).
Availability of the third moment allows for an extended optimization problem proposed in (3.8),
i.e.,

min
σJ ,µJ ,ξp,ρ

3∑
k=2

(
E[Bk(Tj)]− E[Ik(Tj)]

)2
, E[Ik(Tj)] =

∫
R
xkfI(Tj)(x)dx, (3.10)

which will not only allow for the ATM fit but also the level of the implied volatility skew can
be matched.

The quality of the approximating moment formulae will be discussed in the follow-up section
(see Table 5), where a basket consisting of 5 assets will be considered.

4. Numerical Results

This numerical section is dedicated to the numerical aspects and implementation details
of the proposed model. We start with a step-by-step example outlining the procedure of
constructing a 5-dimensional basket including the calibration of the collocation method to
market-implied volatilities. We follow up with a discussion of the impact of model parameters
on the resulting basket implied volatility and a finally conclude with a fully-fledged calibration
of a high-dimensional basket to market data.

4.1. Illustrative 5D Example

This section presents a step-by-step procedure for building up a basket using the ELV
method. We illustrate in detail the complete process, starting from individual asset calibration
to basket construction and the impact of the model parameters on the basket. In this example,
we consider a basket consisting of 5 assets 9 that are a part of the DJIA 30. In the experiment,
we take Tj = 1y as of 8/12/2021. The implied volatilities for this set of assets are presented
in Table 1.

Table 1: Implied volatilities for 5 assets, for T = 1, observed on 8/12/2021. Spot
values for the underlying assets are: S1(t0) = 468.86, S2(t0) = 411.25, S3(t0) = 397.32,
S3(t0) = 334.97, S5(t0) = 266.31

asset 0.8 0.85 0.9 0.95 0.975 1 1.025 1.05 1.1 1.15 1.2

stock 1 32.20 31.00 29.98 29.07 28.65 28.25 27.87 27.51 26.85 26.28 25.83
stock 2 29.96 28.87 27.99 27.31 27.03 26.79 26.58 26.41 26.15 25.98 25.90
stock 3 32.23 31.07 30.11 29.34 29.02 28.73 28.48 28.26 27.90 27.65 27.47
stock 4 31.86 30.56 29.39 28.35 27.88 27.43 27.02 26.64 25.99 25.47 25.09
stock 5 34.58 33.84 33.25 32.76 32.55 32.35 32.17 32.00 31.71 31.46 31.26

As the first step of our modelling procedure, we parametrize the market-implied volatilities
using the SABR-based parametrization formula [13]. The parameters obtained in this step are
presented in Table 2.

91) UnitedHealth; 2) Home Depot; 3) Goldman Sachs; 4) Microsoft Corp; 5) salesforce.com Inc
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Table 2: Implied volatility parametrization using parameterization in [13]. The meaning
of the parameters is as follows: βH -“exponent beta”, αH - “initial vol”, ρH - “correlation”
and γH - “vol-vol”. In the calibration procedure βH was fixed at 0.9. Interest rates were
fixed at r = 0.0.

asset βH αH ρH γH

stock 1 0.90 0.52 -0.52 0.55
stock 2 0.90 0.48 -0.25 0.65
stock 3 0.90 0.51 -0.30 0.66
stock 4 0.90 0.49 -0.48 0.66
stock 5 0.90 0.56 -0.27 0.46

Once each implied volatility skew/smile is parameterized the next step is use (2.5) and using
the collocation method project the so-called “market distribution” on Xi. We set the number
of the collocation points to m = 7, and as discussed in Remark in Section 2.2 we use the grid
stretching technique to control the tail behaviour. Firstly, we take Z ∼ N (0, 1) and we set
the corresponding min/max quantiles at q1 = 0.01 and qm=7 = 0.99. Once the corresponding
collocation points zk, k = 1, . . . ,m are determined [11] the inverse for xi,k in (2.9) need to
take place. Note that in principle each asset, Si(Tj), may be projected on the same variable
Xi. Even if Xi’s are correlated (via Brownian motion) it does not affect marginal distributions
for Si, but it will be crucial in the basket construction. Table 3 illustrates the details on
computation of triples (zi,k, xi,k, si,k) ≡ (zk, xk, si,k), k = 1, . . . , 7, i = 1, . . . , 5.

Table 3: Projection details for the collocation method. Parameters for Xi were the
following: σ = 0.1, σJ = 0.02, µJ = 0.0, ξp = 0.25 and T = 0.5. Note that T here is
considered as a parameter therefore it can be fixed for all the assets. In the experiment
we have also taken the stretched grid with p = 0.01, as proposed in [11], implying the
the lower and upper bound for the CDF, FZ(z1) and FZ(z7).

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
zk -3.7504 -2.3668 -1.1544 0 1.154 2.3668 3.7504

FZ(zk) 0.0100 0.0710 0.237 0.5000 0.7630 0.929 0.9900
xk -0.1684 -0.1074 -0.0539 -0.0030 0.0478 0.1013 0.1623
s1,k 4.9851 5.6027 5.9341 6.1545 6.3270 6.4891 6.6839
s2,k 4.9591 5.5291 5.8174 6.0101 6.1734 6.3512 6.6100
s3,k 4.7692 5.4420 5.7672 5.9771 6.1500 6.3350 6.6025
s4,k 4.5586 5.2737 5.6126 5.8221 5.9828 6.1404 6.3508
s5,k 4.4752 4.9965 5.3177 5.5592 5.7702 5.9855 6.2538

Given the the projection points presented in Table 3 and the underlying process Xi(·) we
are able to replicate the marginal distribution functions of the assets observable in the market.
By simulating a process Xi(Tj) for every asset i = 1, . . . , N with the parameters specified in
Table 3 we evaluate the approximating polynomial for m = 7 with T = 1y,

logSi(T ) ≈ g7i (Xi(T )) =

m−1∑
k=0

si,k`k(xk, Xi(T )), `k(xk, Xi(T )) =

m∏
l=1,l 6=k

Xi(T )− xl
xk − xl

, (4.1)

with points xk and si,k defined in Table 3 and Xi(·) defined in (2.8). Ultimately, all the kernel
processes Xi, Xj need to be correlated with a given correlation coefficient. This, however, is
not necessary if we are only interested in marginal distributions, thus in a fit of each asset to
market implied volatility.

The calibration quality for the considered five assets is presented in Table 4. Again, we
report excellent results; the error does not exceed 0.2%.

As the final step of this illustrative example we construct a basket, B(T ) =
∑5
i=1 Si(T )

with Si(t) given in (4.1). For this purpose, we utilize Equation (2.14), where the processes Xi

need to be simulated with Monte Carlo. As discussed before, we consider a standard Poisson
process, XP(T ), for all the underlying assets and correlated Brownian Motions, W (t). These
processes can be pre-simulated and then fed into the asset Equation (4.1). This procedure will
produce Monte Carlo paths for the basket, B(t).

The next step is to determine optimal kernel model parameters. The objective is to find
the parameters that will generate basket implied volatility as close as possible to the implied
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Table 4: Table illustrates the calibration of the collocation method to market-implied
volatilities. “mkt” stands for the market implied volatility obtained from the parameter-
ization of implied volatility, “coll” represents the results obtained from the collocation
method and “err” is the difference of implied volatilities, in %.

relative strike
asset IV % 0.8 0.85 0.9 0.95 0.975 1 1.025 1.05 1.1 1.15 1.2

S1 mkt 32.2 31.0 30.0 29.1 28.7 28.3 27.9 27.5 26.9 26.3 25.8
coll 32.1 31.0 30.0 29.0 28.6 28.2 27.8 27.4 26.8 26.2 25.7
err 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

S2 mkt 29.9 28.9 28.0 27.3 27.0 26.8 26.6 26.4 26.1 26.0 25.9
coll 29.9 28.9 28.0 27.3 27.0 26.8 26.5 26.4 26.1 25.9 25.9
err 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

S3 mkt 32.2 31.1 30.2 29.4 29.0 28.7 28.5 28.2 27.9 27.6 27.5
coll 32.0 31.0 30.0 29.3 28.9 28.7 28.4 28.2 27.8 27.6 27.4
err 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

S4 mkt 31.9 30.6 29.4 28.4 27.9 27.4 27.0 26.6 26.0 25.5 25.1
coll 31.7 30.4 29.2 28.2 27.7 27.3 26.9 26.5 25.9 25.4 25.0
err 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

S5 mkt 34.5 33.9 33.3 32.8 32.6 32.4 32.2 32.0 31.7 31.5 31.3
coll 34.6 33.9 33.3 32.8 32.6 32.4 32.2 32.0 31.7 31.5 31.3
err -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

volatility of the index. In this illustrative experiment, we do not consider an index; however, we
can analyze the quality of the approximating formulae and the impact of the model parameters
on the basket volatilities.

In the calibration procedure, we will follow Equation (3.10), which relies on fitting based
on the variance and the skew. In Table 5 the numerical results for estimated variance and
the skew for varying model parameters are shown. The results are excellent, especially for the
standard deviation, σB , where the error is about 0.1.

Table 5: Table illustrates the quality of the approximation of the moments derived
for a considered basket B(T ), T = 1, and varying set of the model parameters. The
first 5 columns of the table illustrate particular parameter configuration (dots indicate
unchanged parameters). σB :=

√
Var[B(T )].

parameters Monte Carlo Approximation
σ σJ µJ ξp ρ σB E[B3]/σ3

B σB E[B3]/σ3
B

0.2 0.02 0.0 0.25 0.5 28.17 98.42 28.1 90.84

0.2 · · · · 28.19 98.17 28.17 90.17
0.5 · · · · 28.18 98.25 28.19 89.95

· 0.01 · · · 28.19 98.21 28.18 90.02
· 0.04 · · · 27.88 101.25 27.68 94.85

· · -0.1 · · 29.77 84.48 29.61 78.13
· · -0.25 · · 31.18 74.23 31.86 63.47

· · · 0.1 · 28.2 98.11 28.17 90.13
· · · 0.15 · 28.19 98.22 28.14 90.47

· · · · 0.1 19.44 277.62 19.33 269.78
· · · · 0.8 33.31 62.87 33.31 56.03

In the final part of this section, we illustrate, in Table 6, the timing results. As presented in
the table, the most time-consuming part is to parameterize market discrete implied volatilities
into a parametric form. Typically, such a process is performed only once, and only the relevant,
optimized parameters are stored. The collocation method’s calibration and the collocation
points’ generation is a considerably cheap operation. Finally, the Monte Carlo simulation
required sampling of all the underlying processes and construction of the basket.

In the next section the impact of the model parameters on basket implied volatility will be
studied.
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Table 6: Timing results in seconds for the basket consisting of 5 assets. The results
were performed on a standard home PC where no parallelization was used. Timings are
aggregated for all the assets and are reported in seconds. “IV param” indicates the time
needed to parameterize the implied volatilities- this process may be considered irrelevant
for this framework as it is a part of data processing. “Gen.xi” indicates the time needed
to generate the collocation points zi and xi based on the process Xi. “Gen.yi” represents
the time needed to calibrate the collocation method via the inverse of the corresponding
CDFs. “Monte Carlo” corresponds to the complete basket simulation with five assets
and 50k paths for each stock.

IV param. (s) Gen.xi (s) Gen.yi (S) Monte Carlo (s)

0.5765 0.040 0.0876 0.240

4.2. Impact of the Model Parameters on Basket Implied Volatility

This section analyses the impact of the kernel model parameters on the basket implied
volatilities induced by the ELV model. As described earlier, due to the collocation method, a
particular choice of model parameters does not have a material impact on the fit of individual
assets- they, due to the mapping procedure, remain intact. However, it has an impact on the
covariance structure of the basket. This effect can be measured in terms of implied volatilities.
In the experiment we set the parameters of process X(t) (all the parameter values are the
same for all the assets) σ = 0.10, σJ = 0.02, µJ = 0, ξp = 0.25, T = 0.5 with the correlation
between all the Brownian motions, dWi(t)dWj(t) = ρdt, ρ = 0.5 and measure the impact on
the implied volatility of the basket, B(T )- the basket consists of 5 assets and it’s construction
is defined in Section 4.1.

Figure 5 and Figure 6 show that10: σ, σJ and ξp have a moderate impact on the level
of basket implied volatilities. The two remaining parameters are the most relevant: µJ and
ρ. To a large extent, correlation, ρ determines the level of basket implied volatilities (higher
correlation lower the implied volatility) while µJ in a significant way controls the implied
volatility skew, as demonstrated in Figure 7. We considered negative values for µJ in the
experiment, implying negative shocks to the underlying process. We observe that a more
negative value of µJ produces more skew.
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Figure 5: Impact of different jump parameters on the shape of the basket implied volatil-
ity in the ELV model. First figure: impact of σJ ; Second figure: impact of µJ .

Since both model parameters σJ and ξp impact the basket implied volatility in a similar
fashion, this means that in the calibration routine, one of them can be effectively fixed, reducing
the complexity of the calibration procedure. First, the calibration process can be performed in
an iterative way, where the µJ (skew) is chosen; secondly, the ATM implied volatility is found
such that the basked and index ATM volatility matched perfectly.

10Results for σ are not presented here as they resembled the impacts of ξp and σJ
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Figure 6: Impact of different jump parameters on the shape of the basket implied volatil-
ity in the ELV model. First figure: impact of ξp; Second figure: impact of ρ- correlation
between Brownian motions.
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Figure 7: Basket implied volatilities with re-calibrated model parameters for ATM level.

The presented results suggest that the model can only generate implied volatility skew.
The basked implied volatility shapes may also be affected by the basket’s composition. In
Figure 4 we have shown that the kernel process allows for the generation of a smile, though
limited. On the other hand, each asset’s volatility contributes to the overall basket vol. This
will be confirmed in the numerical experiment where we will consider a DJIA index with 30
underlying assets.

4.3. Calibration of a High Dimensional Basket

In this section, we perform a practical experiment where we build a bridge between a
basket and an index. This section considers a DJIA (Dow Jones Industrial Average) with 30
underlying assets, as of 12/08/2021, with the spot price of 357.55. This experiment poses an
extension of a case considered in Section 4.1 where a 5D case was examined. Now, however,
we will also perform the model calibration, allowing us for consistent pricing of both an index
and a combination of basket constitutes.

The essence of the ELV model lies in the construction of a local volatility model that is
constructed of basket marginal distributions that are consistent with the index. As such, the
calibration procedure can be performed separately for each expiry date Ti, where we utilize
analytic expression for the basket’s moments (see Equation (3.10) that are matched with the
moments computed from the index. The calibration is straightforward, and as indicated earlier,
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there are two dominant model parameters, µJ and ρ, that play a central role in the skew
calibration. Given the closed-form formulas for the moments, the calibration is swift and
straightforward and can be performed with a simple search algorithm.

In Table 7 the estimated model parameters are presented, while the moments of the basket
compared to the index and “exact” moments obtained from Monte Carlo are tabulated in
Table 8.

Table 7: Calibrated model parameters.

Ti σM σJ µJ ξP T ρ

1m 0.25 0.020 -0.20 0.25 0.30 0.35
2m 0.15 0.020 -0.20 0.25 0.50 0.25
3m 0.15 0.020 -0.20 0.25 0.50 0.25
6m 0.15 0.020 -0.20 0.25 0.50 0.37
1y 0.1 0.020 -0.20 0.25 0.50 0.45

1.5y 0.1 0.020 -0.20 0.25 0.50 0.45
2y 0.20 0.020 -0.25 0.50 0.45 0.38

Table 8: Moment approximation quality for DJIA with 30 underlying assets, as defined
in Table 5.

Index (Market) Basket (Monte Carlo) Basket (Proxy)
Ti σB E[B3]/σ3

B σB E[B3]/σ3
B σB E[B3]/σ3

B

1m 19.08 6,634.4 19.0 6,714.1 18.7 6,982.6
2m 29.07 1,895.9 29.3 1,858.0 28.6 1,958.6
3m 36.47 969.8 36.0 1,009.5 35.2 1,059.5
6m 53.34 319.9 54.3 304.0 53.7 302.8
1y 78.56 107.3 81.9 95.9 82.8 85.8

1.5y 94.52 65.3 99.0 58.0 99.7 50.6
2y 109.07 45.4 113.5 41.3 113.1 35.5

Figures 9 and 10 show, for a range of maturities, the implied volatilities obtained from
the calibrated basket and the index. In addition, Figure 8 zooms in on the fit to marginal
distributions of a selected four stocks included in the index.
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Figure 8: Calibration quality for four selected stocks. Red squared indicate market
quote, blue line corresponds to the collocation method.

The results confirm excellent performance of the ELV model in fitting both individual
stocks’ distributions and their covariance structure. For all the available index quotes, the
model is within the bid-ask spreads. We have also included the ELV model, where jumps are
not included for comparison reasons. Such a case may be considered standard local volatility.
The additional degree of freedom given by the jumps is essential in calibrating the basket to
the index. This is also confirmed by the calibration results shown in the Table 7 where negative
µJ was obtained for all the option expiries.
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Figure 9: Implied volatilities for DJIA 30 compared to ELV model with and without
jumps; LHS: T = 2M , RHS: T = 3M.
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Figure 10: Implied volatilities for DJIA 30 compared to ELV model with and without
Jumps; LHS: T = 1y, RHS: T = 2y.

4.4. Cost of Basket Miscalibration

In this section, we assess the impact of basket miscalibration. In the experiment, we will
continue with the 30-dimensional basket calibrated in Section 4.3. We will consider a subset
of assets Si1 , . . . SiK of the basket and price an exotic derivative using two variants of the ELV
framework. In the first case, we take the model with a covariance structure only driven by
Brownian motion, while the alternative is the model where jumps are included. Our previous
experiment has shown that including jumps facilitates a better fit to the index. Now, we
quantify the potential cost of this mispricing.

In the first step of pricing, the local volatility surface for the ELV dynamics, B̄ in (2.2),
needs to be constructed. This is performed based on the calibrated basket in Equation (2.4).
The number of expiries, NT , available for building the local volatility surface depends on the
required accuracy and discretization time-step of (2.2). Although, in practice, a finite and
somewhat limited set of expiries, Tj , is available in the market, for the intermediate expiry,
T , Tj < T < Tj+1 we can impose a smooth transition between the corresponding model
parameters, i.e.,

p(T ) =
Tj+1 − T
Tj+1 − Tj

p(Tj) +
T − Tj
Tj+1 − Tj

p(Tj+1),

where p(Tj), p(Tj+1) represent the parameters of the kernel process X(Tj), X(Tj+1) observed
at times Tj and Tj+1, respectively.

In this experiment we consider a basket consisting of 5 stocks, already introduced earlier in
Section 4.1 where the subset of DJIA stocks has been considered, and two exotic derivatives,
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namely, an arithmetic Asian option, defined as:

VA(t0) = Ne−rTE

( L∑
l=1

S(Tl)−KA

)+

|F(t0)

 ,
with N being the notional and where KA is the strike price, and the up-and-out barrier option:

VBar(t0) = Ne−rTE
[
(B(T )−KB)+1τ(H,B)>T

∣∣∣F(t0)
]
,

where KB is the strike price, H > B(t0) is the barrier, and τ(x,B) := inf{t ≥ 0 : B(t) > x},
and the notional, N . In the experiment we consider the ATM option with KB = 123.82 and
the notional of 1. Although relatively standard in the financial world, both derivatives are
sensitive to different characteristics of the underlying model.

The pricing for varying strikes and barrier levels is presented in Figure 11. The results
show that although in the case of the Asian option, the skew-related miscalibration does not
have a significant impact in the case of the up-and-out barrier option, the skew plays a vital
role. As illustrated in Table 9 the price differences may be even ten-fold.

Table 9: Comparison of Asian and Barrier option pricing for ELV models with and
without jumps.

Asian option price differences
K 100.05 108.46 116.87 125.28 133.69 142.10 150.51
diff 0.0392 -0.0555 -0.1439 -0.0464 0.0870 0.0602 0.0289
Barrier option price differences
H 123.8225 178.1855 232.5484 286.9113 341.2742 395.6371 450

diff 0 -1.881 -1.2491 -0.4639 -0.1986 -0.0891 -0.0735
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Figure 11: Figure illustrates prices of Asian and Barrier option prices for: LHS varying
strike, K, RHS: varying the barrier level, H.

5. Conclusions

We have proposed above the Effective Local Volatility model capable of accurate, consistent
and swift pricing of basket options – both plain vanilla and of the more exotic type. The model
is accurate, because – as demonstrated in Section 4.3 – it calibrates to liquid index options
with only minimal error, well within the bid-ask spread. The model is consistent, because it
simultaneously calibrates to individual basket constituents (via the functions gi,j(·)) and their
index-implied covariance structure (via the kernel processes Xi(·) which we assume to be of
Merton’s jump diffusion type). Finally, the model works swiftly, because the typically numer-
ically “expensive” task, like sampling from stocks’ marginal distributions, is handled via the
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collocation method, and basket calibration is performed by means of moment matching tech-
nique, leveraging the analytical expressions for basket moments which we derive in Section 3.
Importantly, unlike copula-based or local-correlation models which tend to be black-boxy and
intractable, the proposed approach allows users to control the basket implied volatility skew
using just a few parameters in a clear and transparent way. Thus, it is straightforward to
control the dependence structure of the basket and trace how implied volatility smiles transfer
from individual assets to the whole basket (or possibly the index). While interesting in its
own right, this feature makes it possible to price structured products including baskets on any
combination of index constituents stocks: the assets simply “inherit” the covariance structure
implied by the index which we then feed into a one-dimensional local volatility model, allowing
us to price a desired structured product in a quick and easy way.

While the model as currently proposed strikes a good balance between accuracy and
tractability and works very well for basket dimensions relevant in practice, the approach can
nonetheless be extended in two main directions. First, one could postulate more sophisti-
cated dynamics for the kernel processes than the simple jump diffusion model. This might
allow for even better control of the implied volatility shapes, however possibly at some cost
to tractability, slowing down the calibration. Second, one could add a stochastic component
to the Effective Local Volatility model which might allow for more accurate pricing of callable
structures.
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Appendix A. Stochastic Collocation Method

Let’s assume two random variables, Y and X, where the latter one is cheaper to sample
from (e.g., X is a Gaussian random variable). These two scalar random variables are connected,
via,

FY (Y )
d
= U

d
= FX(X), (A.1)

where U ∼ U([0, 1]) is a uniformly distributed random variable, FY (ȳ) := P[Y ≤ ȳ] and
FX(x̄) := P[X ≤ x̄] are cumulative distribution functions (CDF). Note that FX(X) and
FY (Y ) are random variables following the same uniform distribution. FY (ȳn) and FX(x̄n)
are supposed to be strictly increasing functions, so that the following inversion holds true,

ȳn = F−1Y (FX(x̄n)) =: g(x̄n). (A.2)

where ȳn and x̄n are samples (numbers) from Y and X, respectively. The mapping function,
g(·) = F−1Y (FX(·)), connects the two random variables and guarantees that FX(x̄n) equals
FY (g(x̄n)), in distributional sense and also element-wise. The mapping function should be
approximated, i.e., g(x̄n) ≈ gm(x̄n), by a function which is cheap. When function gm(·) is
available, we may generate “expensive” samples, ȳn from Y , by using the cheaper random
samples x̄n from X.

The Stochastic Collocation Monte Carlo method (SCMC) developed in [11] aims to find an
accurate mapping function g(·) in an efficient way. The basic idea is to employ Equation (A.2)
at specific collocation points and approximate the function g(·) by a suitable monotonic in-
terpolation between these points. This procedure, see Algorithm I, reduces the number of
expensive inversions F−1Y (·) to obtain many samples from Y (·).

Algorithm: SCMC Method
Taking an interpolation function of degree m − 1 (with m ≥ 2, as we need at least two

collocation points), as an example, the following steps need to be performed:

1. Calculate CDF FX(xj) on the points (x1, x2, ..., xm), that are obtained, for example,
from Gauss-Hermite quadrature, giving m pairs (xj , FX(xj));

2. Invert the target CDF yj = F−1Y (FX(xj)), j = 1, . . . ,m, and form m pairs (xj , yj);

3. Define the interpolation function, y = gm(x), based on these m point pairs (xj , yj);

4. Obtain sample Ŷ by applying the mapping function Ŷ = gm(X̂), where sample X̂ is
drawn from X.

The SCMC method parameterizes the distribution function by imposing probability con-
straints at the given collocation points. Taking the Lagrange interpolation as an example, we
can expand function gm(·) in the form of polynomial chaos,

Y ≈ gm(X) =

m−1∑
j=0

α̂jX
j = α̂0 + α̂1X + ...+ α̂m−1X

m−1. (A.3)

Monotonicity of interpolation is an important requirement, particularly when dealing with
peaked probability distributions.

The Cameron-Martin Theorem [22] states that any distribution can be approximated by
a polynomial chaos approximation based on the normal distribution, but also other random
variables may be used for X (see, for example, [11]).

Appendix B. Proof of Lemma 3.1

Proof. By substitution we find:

E[eaX1(T )+bX2(T )] = eaµ1+bµ2E

exp

aσ1W1(T ) + bσ2W2(T ) +

XP(T )∑
k=1

aJk,1 +

XP(Tj)∑
k=1

bJk,2

 ,
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with X1, X2 defined in (3.6), and where Jk,i ∼ N (µJ , σ
2
J). Due to the correlation between

Brownian motions we perform the following factorization,

aσ1W1(T ) + bσ2W2(T )
d
=
√
a2σ2

1 + b2σ2
2 + 2ρ1,2abσ1σ2W̃ (T ) =: σ̂W̃ (T ),

with σ̂2 = a2σ2
1 + b2σ2

2 + 2ρ1,2abσ1σ2 and where W̃ (T ) is an independent Brownian motion.

XP(T )∑
k=1

aJk,1 +

XP(T )∑
k=1

bJk,2 =

XP(T )∑
k=1

(aJk,1 + bJk,2) =:

XP(T )∑
k=1

Ĵk,

where Ĵ ≡ Ĵk = aJk,1 + bJk,2 ∼ N ((a+ b)µJ , (a
2 + b2)σ2

J); thus we have:

E[eaX1(T )+bX2(T )] = E

exp

σ̂W̃ (T ) +

XP(T )∑
k=1

Ĵk

 ⊥⊥= eaµ1+bµ2E
[
eσ̂W̃ (T )

]
E
[
e
∑XP (T )

k=1 Ĵk
]
.

The first expectation simply reads E
[
eσ̂W̃ (T )

]
= e

1
2 σ̂

2T , while the second expectation, thanks
to the tower property of expectations, gives:

E

exp

XP(T )∑
k=1

Ĵk

 =
∑
n≥0

E

[
exp

(
n∑
k=1

Ĵk

)]
e−ξpT (ξpT )n

n!

=
∑
n≥0

e−ξpT (ξpT )n

n!
En
[
eĴ
]

= exp
(
ξpTE[eĴ − 1]

)
,

where the last expression can be recognized as a Taylor expansion of an exponential function.
Since

E[eĴ ] = e(a+b)µJ+
1
2 (a

2+b2)σ2
J ,

by substitutions the proof is complete. �

Appendix C. Third Moment Derivations

For convenience we neglect the time argument Tj . The third moment of the basket, by
definition, is defined as:

E[B3] =

N∑
i1=1

N∑
i2=1

N∑
i3=1

ωi1ωi2ωi3E [Si1Si2Si3 ] =:

N∑
i1=1

N∑
i2=1

N∑
i3=1

ωi1ωi2ωi3E [Si1,i2Si3 ] ,

where Si1,i2 = Si1Si2 . Following the same procedure as for the second moment we find:

E[B3] =

N∑
i1=1

N∑
i2=1

N∑
i3=1

ωi1ωi2ωi3
[
ρ̂(Si1,i2 , Si3)σSi1,i2

σSi2
+ E[Si1,i2 ]E[Si3 ]

]
.

E[Si1,i2 ] := E[Si1Si2 ], can be computed with (3.2), E[Si3 ] is given from the market data. Terms
we need to establish are: σSi1,i2

and ρ̂(Si1,i2 , Si3). For the first term we have:

σ2
Si1,i2

= E[Si1Si2 ]− E[Si1 ]E[Si2 ],

which again can be computed using Equation (3.2). For the correlation coefficient we have:

ρ̂(Si1,i2 , Si3) = ρ
(
eα̂i1,j,0+α̂i1,j,1Xi1 eα̂i2,j,0+α̂i1,j,1Xi2 , eα̂i3,j,0+α̂i3,j,1Xi3

)
= ρ

(
eα̂i1,j,1Xi1+α̂i2,j,1Xi2 , eα̂i3,j,1Xi3

)
=: ρ̄(Si1,i2 , Si3),
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which yields:

ρ̄(Si1,i2 , Si3)
def
=

E[eα̂i1,j,1Xi1
+α̂i2,j,1Xi2

+α̂i3,j,1Xi3 ]− E[eα̂i1,j,1Xi1
+α̂i2,j,1Xi2 ]E[eα̂i3,j,1Xi3 ]√

Var[eα̂i1,j,1Xi1
+α̂i2,j,1Xi2 ]Var[eα̂i3,j,1Xi3 ]

=
E[eα̂i1,j,1Xi1+α̂i2,j,1Xi2+α̂i3,j,1Xi3 ]− E[eα̂i1,j,1Xi1+α̂i2,j,1Xi2 ]φXi3

(−iα̂i3,j,1)√
Var[eα̂i1,j,1Xi1

+α̂i2,j,1Xi2 ]
(
φXi3

(−2iα̂i3,j,1)− φ2Xi3
(−iα̂i3,j,1)

) .

All the expression except for the first expectation can be computed using (3.2):

aσ1W1(T ) + bσ2W2(T ) + cσ3W3(T )
d
= σ̂W̃ (T ), (C.1)

with

σ̂2 = a2σ2
1 + b2σ2

2 + c2σ2
3 + 2ρ1,2abσ1σ2 + 2ρ1,3acσ1σ3 + 2ρ2,3abσ2σ3, (C.2)

therefore

XP(T )∑
k=1

aJk,1 +

XP(T )∑
k=1

bJk,2 +

XP(T )∑
k=1

bJk,3 =

XP(T )∑
k=1

(aJk,1 + bJk,2 + bJk,3) =:

XP(T )∑
k=1

Ĵk, (C.3)

where Ĵ ≡ Ĵk = aJk,1 + bJk,2 + cJk,3 ∼ N ((a+ b+ c)µJ , (a
2 + b2 + c2)σ2

J); thus we have:

E[eaX1+bX2+cX3 ]
⊥⊥
= eaµ1+bµ2+cµ3E

[
eσ̂W̃ (T )

]
E
[
e
∑XP (T )

k=1 Ĵk
]
, (C.4)

with σ̂W̃ (T ) defined in (C.1) and Ĵk defined in (C.3). Using the result from proof in Appendix
B we find:

ωX(a, b, c) := E[eaX1+bX2+cX3 ] (C.5)

= exp

(
aµ1 + bµ2 + cµ3 +

1

2
σT + ξpTE[eĴ − 1]

)
= exp

[
aµ1 + bµ2 + cµ3 +

1

2
σ̂T + ξpT

(
e(a+b+c)µJ+

1
2 (a

2+b2+c2)σ2
J − 1

)]
,

where σ2 is defined in (C.2).
Combining these results with Lemma 3.1 we find the following expression for the correlation:

ρ̄(Si1,i2 , Si3),

ρ̄(Si1,i2 , Si3 ) =
ωX(c1, c2, c3) − ωX(c1, c2)φXi3

(−ic3)√(
ωX(2c1, 2c2) − ω2

X(c1, c2)
) (
φXi3

(−2ic3) − φ2Xi3
(−ic3)

) ,
where: c1 := α̂i1,j,1, c2 := α̂i2,j,1, c3 := α̂i3,j,1 and where ωX(c1, c2, c3) is defined in (C.5) and
ωX(c1, c2) in (3.7).
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