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Abstract

We propose a new, data-driven approach for efficient pricing of – fixed- and float-strike –
discrete arithmetic Asian and Lookback options when the underlying process is driven by the
Heston model dynamics. The method proposed in this article constitutes an extension of [19],
where the problem of sampling from time-integrated stochastic bridges was addressed. The
model relies on the Seven-League scheme [16], where artificial neural networks are employed to
“learn” the distribution of the random variable of interest utilizing stochastic collocation points
[10]. The method results in a robust procedure for Monte Carlo pricing. Furthermore, semi-
analytic formulae for option pricing are provided in a simplified, yet general, framework. The
model guarantees high accuracy and a reduction of the computational time up to thousands
of times compared to classical Monte Carlo pricing schemes.

Keywords: Discrete Arithmetic Asian Option, Discrete Lookback Option, Heston Model,
Stochastic Collocation (SC), Artificial Neural Network (ANN), Seven-League Scheme (7L).

1. Introduction

A non-trivial problem in the financial field is the pricing of path-dependent derivatives, as
for instance Asian and Lookback options. The payoffs of such derivatives are expressed as func-
tions of the underlying process monitored over the life of the option. The monitoring can either
be continuous or discrete. Depending on different specifications of the underlying dynamics,
only a few case-specific theoretical formulae exists. For example, under the Black-Scholes and
Merton log-normal dynamics, closed-form formulae were derived for continuously-monitored
geometric Asian options (see, for instance, [6]). In the same model framework, [8, 5] derived
an analytic formula for the continuously-monitored Lookback option, using probabilistic ar-
guments as the reflection principle. However, options whose payoffs are discretely-monitored
are less tractable analytically, and so approximations are developed, as for the discrete Look-
back option under the lognormal dynamics [12]. Furthermore, stochastic volatility frameworks
are even more challenging for the pricing task, where no applicable closed-form theoretical
solutions are known.

Whenever an exact theoretical pricing formula is not available, a rich literature on numerical
methods and approximations exists. The three main classes of approaches are Monte Carlo
(MC) methods (e.g. [13]), partial differential equations (PDEs) techniques (see the extensive
work in [22] and [21]), and Fourier-inversion based techniques (among many relevant works,
we report [2, 25]).

Monte Carlo methods are by far the most flexible approaches, since they neither require any
particular assumption on the underlying dynamics, nor on the targeted payoff. Furthermore,
they benefit of a straightforward implementation based on the discretization of the time horizon
as, for instance, the well-known Euler-Maruyama scheme. The cost to be paid, however, is
typically a significant computational time to get accurate results. PDEs approaches are more

∗Corresponding author.
Email addresses: L.Perotti@uu.nl (Leonardo Perotti), L.A.Grzelak@uu.nl (Lech A. Grzelak)

1

ar
X

iv
:2

21
1.

03
63

8v
1 

 [
q-

fi
n.

C
P]

  7
 N

ov
 2

02
2



problem-specific since they require the derivation of the partial differential equation which
describe the evolution of the option value over time. Then, the PDE is usually solved using
finite difference methods. Fourier-inversion based techniques exploit the relationship between
probability density function (PDF) and characteristic function (ChF) to recover the underlying
transition density by means of Fast Fourier Transform (FFT). Thanks to the swift algorithm for
FFT, such methods produce high-speed numerical evaluation, but they often result problem-
specific, depending on the underlying dynamics.

In this article we propose an extension to MC schemes that allows for efficient pricing of
discretely-monitored Asian and Lookback options, without losing the flexibility typical of MC
methods. We develop the methodology in the complex framework of the stochastic volatility
model of Heston [11], with an extensive application to the case of Feller condition not satisfied.
Under this dynamics, we show how to price fixed- or float-strike discrete Asian and Lookback
options. Moreover, the pricing model is applied also for the challenging task of pricing options
with both a fixed- and a float-strike component. We underline that the strengths of the method
are its speed and accuracy, coupled with a significant flexibility. The procedure is, indeed,
independent on the underlying dynamics (it could be applied, for instance, at any stochastic
volatility model), and it is not sensitive to the targeted payoff.

Inspired by the works in [16, 19], the method relies on the technique of Stochastic Colloca-
tion (SC) [10], which is employed to accurately approximate the targeted distribution by means
of piecewise polynomials. Artificial neural networks (ANNs) are used for fast recovery of the
coefficients which uniquely determine the piecewise approximation. Given these coefficients,
the pricing can be performed in a “MC fashion” sampling from the target (approximated)
distribution and computing the numerical average of the discounted payoffs. Furthermore, in
a simplified setting, we provide a semi-analytic formula which allows to directly price options
without the need of sampling from the desired distribution. In both the situations (MC and
semi-analytic pricing) we report a significant computational speed-up, without affecting the
accuracy of the result which remains comparable with the one of highly expensive MC methods.

The remainder of the paper is as follows. In Section 2, we formally define discrete arith-
metic Asian and Lookback options, as well as the model framework for the underlying process.
Then, in Section 3, the pricing model is described. Two different cases are considered, in
increasing order of complexity, to handle efficiently both unconditional sampling (Section 3.2)
and conditional sampling (Section 3.3) for pricing of discrete arithmetic Asian and Lookback
options. Section 4 provides theoretical support to the given numerical scheme. The quality of
the methodology is also inspected empirically with several numerical experiments, reported in
Section 5. Section 6 concludes.

2. Discrete arithmetic Asian and Lookback options

In a generic setting, given the present time t0 ≥ 0, the payoff at time T > t0 of a discrete
arithmetic Asian or Lookback option, with underlying process S(t), can be written as:

Hω(T ;S) = max
(
ω
(
A(S)−K1S(T )−K2

)
, 0
)
, (2.1)

where A(S) ≡ A(S(t); t0 < t ≤ T ) is a deterministic function of the underlying process S,
the constants K1,K2 ≥ 0 control the float- and fixed-strikes of the option, and ω = ±1.
Particularly, discrete arithmetic Asian and Lookback options are obtained setting the quantity
A(S) respectively as follows:

A(S) :=
1

N

∑
n∈I

S(tn), A(S) := ωmax
n∈I

ωS(tn), (2.2)

with I = {1, . . . , N} a set of indexes, t1 < t2 < · · · < tN = T , a discrete set of future monitoring
dates, and ω as in (2.1).

Note that in both the cases of discrete arithmetic Asian and Lookback options A(S) is
expressed as a deterministic transformation of the underlying process’ path, which is the only
requirement to apply the proposed method. Therefore, in the paper, we refer always to the class
of discrete arithmetic Asian options, often just called Asian options, for simplicity. However,
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the theory holds for both the classes of products. Actually, the pricing model applies to any
product with a path-dependent European-type payoff, requiring only a different definition of
A(S).

2.1. Pricing of arithmetic Asian options and Heston framework

This section focuses on the risk-neutral pricing of arithmetic – fixed- and float strike – Asian
options, whose payoff is given in (2.1) with A(S) in (2.2). By setting K1 = 0 or K2 = 0, we get
two special cases: the fixed- or the float-strike arithmetic Asian option. From Equation (2.1),
for K1 = 0, the simplified payoff of a fixed-strike arithmetic Asian option reads:

Hfx
ω (T ;S) = max

(
ω
(
A(S)−K2

)
, 0
)
, (2.3)

therefore, with the risk-neutral present value:

V fx
ω (t0) =

M(t0)

M(T )
EQ
t0

[
max

(
ω
(
A(S)−K2

)
, 0
)]
, (2.4)

where we assume the money-savings account M(t) to be defined through the deterministic
dynamics dM(t) = rM(t)dt with constant interest rate r ≥ 0. For K2 = 0, however, the payoff
in Equation (2.1), becomes the one of a float-strike arithmetic Asian option:

Hfl
ω (T ;S) = max

(
ω
(
A(S)−K1S(T )

)
, 0
)
. (2.5)

The payoff in (2.5) is less tractable when compared to the one in (2.3), because of the presence of
two dependent stochastic unknowns, namely S(T ) and A(S). However, a similar representation
to the one in Equation (2.4) can be achieved, allowing for a unique pricing approach in both
cases. By a change of measure from the risk-neutral measure Q to the measure QS associated
with the numéraire S(t), i.e. the stock measure, we prove the following proposition.

Proposition 2.1 (Pricing of float-strike arithmetic Asian option under the stock measure).
Under the stock measure QS, the value at time t0 ≥ 0 of an arithmetic float-strike Asian option,
with maturity T > t0 and future monitoring dates tn, n ∈ {1, . . . , N}, reads:

V fl
ω (t0) = S(t0)ESt0

[
max

(
ω
(
Afl(S)−K1

)
, 0
)]
, (2.6)

with Afl(S), defined as:

Afl(S) := A

(
S(·)
S(T )

)
=
A(S)

S(T )
,

where A(S) is defined in (2.2).

Proof. For a proof, see Appendix A.1. �

Both the representations in Equations (2.4) and (2.6) can be treated in the same way. This
means that the present value of both a fixed- and a float-strike Asian option can be computed
similarly, as stated in the following proposition.

Proposition 2.2 (Symmetry of fixed- and float-strike Asian option present value). Let us
consider the process S(t) and the money-savings account M(t), for t ≥ t0. Then, the same
representation holds for the value at time t0 of both fixed- or float-strike Asian options, with
maturity T > t0, underlying process S(t), and future monitoring dates tn, n ∈ {1, . . . , N}. The
present value is given by:

V λω (t0) =

{
M(t0)
M(T )E

Q
t0

[
max

(
ω
(
A(S)−K2

)
, 0
)]
, for λ = fx,

S(t0)ESt0
[

max
(
ω
(
Afl(S)−K1

)
, 0
)]
, for λ = fl.

(2.7)

Proof. The proof follows by direct comparison between Equations (2.4) and (2.6). �
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When K1 6= 0 and K2 6= 0, Equation (2.1) is the payoff of a fixed- and float-strikes
arithmetic Asian option. Its present value does not allow any simplified representation, and
we write it as the expectation of the discounted payoff under the risk-neutral measure Q:

Vω(t0) =
M(t0)

M(T )
EQ
t0

[
max

(
ω
(
A(S)−K1S(T )−K2

)
, 0
)]
. (2.8)

By comparing Equations (2.7) and (2.8) a difference in the two settings is unveiled. Equa-
tion (2.7) is characterized by a unique unknown stochastic quantity A(S), whereas in (2.8)
an additional term appears, namely the stock price at final time, S(T ). Furthermore, the two
stochastic quantities in (2.8) are not independent. This might suggest that different procedures
should be employed for the different payoffs. In particular, in a MC setting, to value (2.7) we
only have to sample from the unconditional distribution of A(S); while in (2.8) the MC scheme
requires dealing with both the sampling of S(T ) and the conditional sampling of A(S)|S(T ).

Let us define the stochastic volatility dynamics of Heston for the underlying stochastic pro-
cess S(t), with initial value S(t0) = S0, through the following system of stochastic differential
equations (SDEs):

dS(t) = rS(t)dt+
√
v(t)S(t)dWx(t), S(t0) = S0, (2.9)

dv(t) = κ (v̄ − v(t)) dt+ γ
√
v(t)dWv(t), v(t0) = v0, (2.10)

with r, κ, v̄, v0 ≥ 0, γ > 0 the constant rate, the speed of mean reversion, the long-term mean
of the variance process, the initial variance, and the volatility-of-volatility, respectively. Wx(t)
and Wv(t) are Brownian Motions (BMs) under the risk-neutral measure Q with correlation
coefficient ρ < 0, i.e., dWx(t)dWv(t) = ρdt.

The dynamics in (2.9) and (2.10) are defined in the risk-neutral framework. However,
Proposition 2.1 entails a different measure framework, whose dynamics still fall in the class
of stochastic volatility model of Heston, with adjusted parameters, as shown in the following
proposition.

Proposition 2.3 (The Heston model under the underlying process measure). Using the same
notation as in (2.9) and (2.10), under the stock S(t) measure, QS, the Heston framework yields
the following dynamics for the process S(t):

dS(t) = (r + v(t))S(t)dt+
√
v(t)S(t)dWS

x (t), S(t0) = S0,

dv(t) = κ∗(v̄∗ − v(t))dt+ γ
√
v(t)dWS

v (t), v(t0) = v0,

with κ∗ = κ − γρ, v̄∗ = κv̄/κ∗, and WS
x (t) and WS

v (t) are BMs under the underlying process
measure QS such that dWS

s (t)dWS
v (t) = ρdt.

Proof. For a proof, see Appendix A.1. �

3. Swift numerical pricing using deep learning

This section focuses on efficient pricing of discrete arithmetic Asian options in a MC set-
ting. The method uses a Stochastic Collocation [10] (SC) based approach to approximate the
target distribution. Then, artificial neural networks (ANNs) “learn” the proxy of the desired
distribution, allowing for fast recovery [16, 19].

3.1. “Compressing” distribution with Stochastic Collocation

In the framework of MC methods, the idea of SC – based on the probability integral trans-
form1 – is to approximate the relationship between a “computationally expensive” random
variable, say A, and a “computationally cheap” one, say ξ. The approximation is then used for
sampling. A random variable is “expensive” if its inverse CDF is not known in analytic form,

1Given the two random variables X,Y , with CDFs FX , FY , it holds: FX(X)
d
= FY (Y ).
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and needs to be computed numerically. With SC, the sampling of A is performed at the cost
of sampling ξ (see [10]). Formally, the following mapping is used to generate samples from A:

A
d
= F−1

A (Fξ(ξ)) =: g(ξ) ≈ g̃(ξ), (3.1)

with FA and Fξ being respectively the CDFs of A and ξ, and the function g̃ a suitable, easily
evaluable approximation of g. The reason why we prefer g̃ to g, is that, by definition, every
evaluation of g requires the numerical inversion of FA, the CDF of A.

Many possible choices of g̃ exist. In [10, 19], g̃ is an (M−1)-degree polynomial expressed in
Lagrange basis, defined on collocation points (CPs) ξ := {ξk}Mk=1 computed as Gauss-Hermite
quadrature nodes, i.e.:

g̃(x) :=

M∑
k=1

ak`k(x), `k(x) :=
∏

1≤j≤M
j 6=k

x− ξj
ξk − ξj

, k = 1, . . . ,M, (3.2)

where the coefficients a := {ak}Mk=1 of the polynomial in the Lagrange basis representation,
called collocation values (CVs), are derived by imposing the system of equations:

g(ξk) = g̃(ξk) =: ak, k = 1, . . . ,M, (3.3)

which requires only M evaluations of g.
In this work, we define g̃ as a piecewise polynomial. Particularly, we divide the domain R

of the random variable ξ (which for us is standard normally distributed2) in three regions. In
each region, we define g̃ as a polynomial. In other words, given the partition of the real line:

Ω− ∪ ΩM ∪ Ω+ := (−∞,−ξ̄) ∪ [−ξ̄, ξ̄] ∪ (ξ̄,+∞), (3.4)

for a certain ξ̄ > 0, g̃ is specified as:

g̃(ξ) := g−(ξ) · 1Ω−(ξ) + gM (ξ) · 1ΩM
(ξ) + g+(ξ) · 1Ω+

(ξ), (3.5)

where 1(·) is the indicator function, and g−, gM , g+ are suitable polynomials. To ensure high
accuracy in the approximation, gM is defined as a Lagrange polynomial of high-degree M − 1.
The CPs ξ, which identify the Lagrange basis in (3.2), are chosen as Chebyshev nodes in the
bounded interval ΩM = [−ξ̄, ξ̄] [7]. Instead, the CVs a are defined as in (3.3). The choice of
Chebyshev nodes allows to increase the degree of the interpolation (i.e. the number of CPs and
CVs), avoiding the Runge’s phenomenon within the interval ΩM [20]. However, the behaviour
of gM outside ΩM is out of control. We expect the high-degree polynomial gM to be a poor
approximation of g in Ω− and Ω+. Therefore, we define g− and g+ as linear (or at most
quadratic) polynomials, with degree M− − 1 and M+ − 1, built on the extreme CPs of ξ.

Summarizing, g−, gM and g+ are all defined as Lagrange polynomials:

g(·)(x) :=
∑
k∈I(·)

ak`k(x), `k(x) :=
∏
j∈I(·)
j 6=k

x− ξj
ξk − ξj

, k ∈ I(·),
(3.6)

where the sets of indexes for g−, gM and g+ are I− = {1, 2}, IM = {1, . . . ,M} and I+ =
{M − 1,M}, respectively (if a quadratic extrapolation is preferred, we get I− = {1, 2, 3}, and
I+ = {M − 2,M − 1,M}).

Remark 3.1 (“Compressed” distributions). The SC technique is a tool to “compress” the
information regarding A in (3.1), into a small number of coefficients, the CVs a. Indeed, the
relationship between A and a is bijective, provided the distribution of the random variable ξ,
and the corresponding CPs ξ (or, equivalently, the Lagrange basis in (3.2)), are specified a
priori.

2The two main reasons of ξ being standard normal are the availability of such a distribution in most of the
computing tools, and the “similarity” between a standard normally r.v. and (the logarithm of) A(S) (see [10]
for more details).
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3.2. Semi-analytical pricing of fixed- or float-strike Asian options

Let us first consider the pricing of the fixed- or the float-strike Asian options. Both the
products allow for the same representation in which the only unknown stochastic quantity is
Aλ(S), λ ∈ {fx, fl}, as given in Proposition 2.2. For the sake of simplicity, in absence of
ambiguity, we call Aλ(S) just A.

For pricing purposes, we can benefit of the SC technique presented in the previous section,
provided we know the map g̃ (or, equivalently, the CVs a), i.e.:

Vω(t0) = C E
[

max
(
ω
(
A−K

)
, 0
)]

≈ C E
[

max
(
ω
(
g̃(ξ)−K

)
, 0
)]

=: Ṽω(t0),
(3.7)

where ξ is a standard normally distributed random variable, and C is a constant coherent with
Proposition 2.2. We note, Ṽω(t0) is the expectation of (the positive part of) polynomials of
a standard normal distribution. Hence, a semi-analytic formula exists, in a similar fashion as
the one given in [9].

Proposition 3.2 (Semi-analytic pricing formula). Let Ṽω(t0) (and C) be defined as in Equa-
tion (3.7), with g̃ defined in (3.5). Assume further that α−, αM and α+ are the coefficients
in the canonical basis of monomials for the three polynomials g−, gM and g+ respectively of
degree M− − 1, M − 1 and M+ − 1. Then, using the notation a ∨ b = max(a, b), the following
semi-analytic pricing approximation holds:

Ṽω(t0)

ωC
=

[
M−ω−1∑
i=0

ωiα−ω,imi(ωcK ,−ξ̄ ∨ ωcK)

]
·
(
Fξ(−ξ̄ ∨ ωcK)− Fξ(ωcK)

)
+

[
M−1∑
i=0

ωiαM,imi(−ξ̄ ∨ ωcK , ξ̄ ∨ ωcK)

]
·
(
Fξ(ξ̄ ∨ ωcK)− Fξ(−ξ̄ ∨ ωcK)

)
+

[
Mω−1∑
i=0

ωiαω,imi(ξ̄ ∨ ωcK ,+∞)

]
·
(
1− Fξ(ξ̄ ∨ ωcK)

)
−K ·

(
1− Fξ(ωcK)

)
,

where Fξ is the CDF of a standard normal random variable, ξ, mi(a, b) := E[ξi|a ≤ ξ ≤ b]3,
cK satisfies K = g̃(cK), and ω = ±1 according to the call/put case.

Proof. For proof of the previous proposition, see Appendix A.2. �

We note also that Proposition 3.2 uses as input in the pricing formula the coefficients in
the canonical basis, not the ones in the Lagrange basis, a, in (3.3).

Remark 3.3 (Change of basis). Given a Lagrange basis identified by M collocation points ξ,
any (M −1)-degree polynomial g(ξ) is uniquely determined by the corresponding M coefficients
a. A linear transformation exists that connects the M coefficients in the Lagrange basis with
the M coefficients α in the canonical basis of monomials. In particular, it holds:

Mα = a,

with M ≡M(ξ) a M ×M Vandermonde matrix with element Mk,i := ξi−1
k in position (k, i).

The matrix M admits an inverse; thus, the coefficients α in the canonical basis are the result
of matrix-vector multiplication, provided the coefficients a in the Lagrange basis are known.
Moreover, since the matrix M only depends on ξ, its inverse can be computed a priori once
the CPs ξ are fixed.

Proposition 3.2 provides a semi-analytic formula for the pricing of fixed- or float-strike
Asian options. Indeed, it requires the inversion of the map g̃ which typically is not available
in analytic form. On the other hand, since both the CPs ξ and the CVs a are known, a proxy
of g̃−1 is easily achievable by interpolation on the pairs of values (ak, ξk), k = 1, . . . ,M .

3A recursive formula for the computation of mi(a, b) is given in Appendix A.2.
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The last problem is to recover the CVs a (which identify g̃) in an accurate and fast way.
We recall that, for k = 1, . . . ,M , each CV ak is defined in terms of the exact map g and the
CP ξk by the relationship:

ak := g(ξk) = F−1
A

(
Fξ(ξk)

)
.

The presence of F−1
A makes impossible to directly compute a in an efficient way. On the other

hand, by definition, the CVs a are quantiles of the random variable A ≡ A(S), which depends
on the parameters p of the underlying process S. As a consequence, there must exist some
unknown mapping H which links p to the corresponding a. We approximate such a mapping
from synthetic data setting a regression problem, which is solved with an ANN H̃ (in the same
fashion as in [16, 19]). We have the following mapping:

p 7→ a := H(p) ≈ H̃(p), p ∈ Ωp, a ∈ Ωa,

with Ωp and Ωa being the spaces of the underlying model parameters and of the CVs, respec-

tively, while the ANN H̃ is the result of an optimization process on a synthetic training set4:

T =
{

(pi,ai) : i ∈ {1, . . . , Npairs}
}
. (3.8)

The pricing procedure is summarized in the following algorithm.

Algorithm: Semi-analytic pricing

1. Fix the M collocation points ξ.

2. Given the parameters p, approximate the M collocation values, i.e. a ≈ H̃(p).

3. Given a, compute the coefficients α−, αM and α+ for g−, gM and g+ (see Remark 3.3).

4. Given K and a, compute cK of Proposition 3.2 interpolating g̃−1 on (a, ξ).

5. Given the coefficients α−, αM , α+, and cK , use Proposition 3.2 to compute Ṽω(t0).

3.3. Swift Monte Carlo pricing of fixed- and float-strikes Asian options

Let us consider the case of an option whose payoff has both a fixed- and a float-strike. The
present value of such a derivative is given by:

Vω(t0) =
M(t0)

M(T )
EQ
t0

[
max

(
ω
(
A(S)−K1S(T )−K2

)
, 0
)]
,

hence the price of the option is a function of the two dependent quantities A(S) and S(T ).
This means that, even in a MC setting, the dependency between A(S) and S(T ) has to be
fulfilled. Therefore, a different methodology with respect to the one proposed in the previous
section needs to be developed.

Due to the availability of efficient and accurate sampling techniques for the underlying
process S at a given future time T (we use the COS method [18] enhanced with SC [10],
and we call it COS-SC), the main issue is the sampling of the conditional random variable
A(S)|S(T ). This task is addressed in the same fashion as it is done in [19], where ANNs and
stochastic collocation are applied for the efficient sampling from time-integral of stochastic

bridges5, namely
∫ T
t0
S(t)dt given the value of S(T ). The underlying idea here is the same

since the random variable A(S) is conditional to S(T ). Especially, in the previous sections
we pointed out that the distribution of A(S) has an unknown parametric form which depends
on the set of Heston parameters p. Similarly, we expect the distribution of A|S(T ) = Ŝ to
be parametric into the “augmented” set of parameters pŜ := p ∪ {Ŝ}. Hence, there exists a
mapping H which links pŜ with the CVs, aŜ , corresponding to the conditional distribution

A(S)|S(T ) = Ŝ. We approximate H by means of a suitable ANN H̃, getting the the following
mapping scheme:

pŜ 7→ aŜ := H(pŜ) ≈ H̃(pŜ), pŜ ∈ ΩpS
, aŜ ∈ ΩaS

,

4The synthetic data are generated via MC simulation, as explained in Section 5.
5By stochastic bridge, we mean any stochastic process conditional to both its initial and final values.
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where ΩpS
and ΩaS

are respectively the spaces of the underlying model parameters (augmented

with Ŝ) and of the CVs (corresponding to the conditional distribution A(S)|S(T )), and H̃ is
the result of a regression problem an a suitable training set T (see Equation (3.8)). We propose
a first brute force sampling scheme.

Algorithm: Brute force conditional sampling and pricing

1. Fix the M collocation points ξ.

2. Given the parameters p, for j = 1, . . . , Npaths, repeat:

(a) generate the sample Ŝj from S(T ) (e.g. with COS-SC method [18] and [10]);

(b) given pŜj
, approximate the M conditional CVs, i.e. aŜj

≈ H̃(pŜj
);

(c) given aŜj
, use SC to generate the conditional sample Âj .

3. Given the pairs (Ŝj , Âj), for j = 1, . . . , Npaths, and any desired (K1,K2), evaluate:

Vω(t0) ≈ 1

Npaths

M(t0)

M(T )

Npaths∑
j=1

max
(
ω
(
Âj −K1Ŝj −K2

)
, 0
)
.

Nonetheless, the brute force sampling proposed above requires Npaths evaluations of H̃
(see 2(b) in the previous algorithm). This is a massive computational cost, even if a single
evaluation of an ANN is high-speed. We can, however, benefit of a further approximation. We
compute the CVs using H̃ only at specific reference values for S(T ). Then, the intermediate
cases are derived utilizing (linear) interpolation. We choose a set of Q equally-spaced values
{S1, S2, . . . , SQ} for S(T ), defined as:

Sq := Smin +
q − 1

Q− 1
(Smax − Smin), q = 1, . . . , Q, (3.9)

where the boundaries are quantiles corresponding to the probabilities pmin, pmax ∈ (0, 1), i.e.
Smin := F−1

S(T )(pmin) and Smax := F−1
S(T )(pmax).

Calling pq = pSq , and aq = aSq , q = 1, . . . , Q, we compute the grid G of reference CPs,
with only Q ANN evaluations, namely:

a1

· · ·
aq

· · ·
aQ

 =


H(p1)
· · ·

H(pq)
· · ·

H(pQ)

 ≈

H̃(p1)
· · ·

H̃(pq)
· · ·

H̃(pQ)

 =: G, (3.10)

where aq, H(pq) and H̃(pq), q = 1, . . . , Q, are row vectors. The interpolation on G is much
faster than the evaluation of H̃. Therefore, the grid-based conditional sampling results more
efficient than the brute force one, particularly when sampling a huge number of MC samples.

The algorithm for the grid-based sampling procedure, to be used instead of point 2. in the
previous algorithm, is reported here.

Algorithm: Grid-based conditional sampling

2.1. Fix the boundary probabilities pmin, pmax ∈ (0, 1) and compute the boundary quantiles
Smin := F−1

S(T )(pmin) and Smax := F−1
S(T )(pmax) (e.g. with the COS method [18]).

2.2. Compute the reference values Sq := Smin + q−1
Q−1 (Smax − Smin), q = 1, . . . , Q.

2.3. Given the “augmented” parameters pq, evaluate Q times H̃ to compute G (see (3.10)).

2.4. Given the parameters p and the grid G, for j = 1, . . . , Npaths, repeat:

(a) generate the sample Ŝj from S(T ) (e.g. with COS-SC method [18] and [10]);

(b) given Ŝj , approximate the M conditional CVs, i.e. aŜj
, by interpolation in G;

(c) given aŜj
, use SC to generate the conditional sample Âj .
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4. Error analysis

This section is dedicated to the assessment and discussion of the error introduced by the
main approximations used in the proposed pricing method. Two primary sources of error
are identifiable. The first error is due to the SC technique: in Section 3.1 the exact map
g is approximated by means of the piecewise polynomial g̃. The second one is a regression
error, which is present in both Sections 3.2 and 3.3. ANNs H̃ are used instead of the exact
mappings H. For the error introduced by the SC technique, we bound the “L2-distance”, εSC ,
between the exact distribution and its SC proxy showing that g̃1ΩM

= gM in ΩM is an analytic
function. εSC is used to provide a direct bound on the option price error, εP . On the other
hand, regarding the approximation of H via H̃ we provide a general convergence result for
ReLU-architecture ANN, i.e. ANN with Rectified Linear Units as activation functions.

4.1. Stochastic collocation error using Chebyshev polynomials

Let us consider the error introduced in the methodology using the SC technique (Sec-
tion 3.1), and investigate how this affects the option price. We restrict the analysis to the
case of fixed- or float-strike discrete arithmetic Asian and Lookback options (Section 3.2). We
define the error εP as the “L1-distance” between the real price Vω(t0) and its approximation
Ṽω(t0), i.e.:

εP :=
∣∣Ṽω(t0)− Vω(t0)

∣∣. (4.1)

Given the standard normal kernel ξ ∼ N (0, 1), we define the SC error as the (squared)
L2-norm of g − g̃, i.e.:

εSC := E
[
(g − g̃)2(ξ)

]
. (4.2)

We decompose εSC accordingly to the piecewise definition of g̃, namely:

εSC = E
[
(g1Ω− − g−)2(ξ)

]
+E
[
(g1ΩM

− gM )2(ξ)
]

+ E
[
(g1Ω+

− g+)2(ξ)
]

=: ε− + εM + ε+,

with the domains Ω(·) defined in Equation (3.4), i.e., for ξ̄ > 0:

Ω− = (−∞,−ξ̄), ΩM = [−ξ̄, ξ̄], Ω+ = (ξ̄,+∞).

To deal with the “extrapolation” errors ε− and ε+, we formulate the following assumption.

Assumption 4.1. The functions (g1Ω− − g−)2 and (g1Ω+ − g+)2 are O(expx2/2). Equiva-
lently, g2

1Ω− and g2
1Ω+ are O(expx2/2) (since g− and g+ are polynomials).

Given Assumption 4.1 and the fact that ξ ∼ N (0, 1)6, then the “extrapolation” errors ε−
and ε+ vanish, with exponential rate, as ξ̄ tends to infinity, i.e. ε− = ε−(ξ̄), ε+ = ε+(ξ̄), and:{

ε−(ξ̄)→ 0,

ε+(ξ̄)→ 0,
for ξ̄ → +∞. (4.3)

An illustration of the speed of convergence is reported in Figure 1. Figure 1a shows that the
growth of g1Ω+

is (much) less than exponential (consistently with Assumption 4.1), whereas
Figure 1b illustrates the exponential decay of ε− and ε+ when ξ̄ increases.

Therefore, if ξ̄ is taken sufficiently big, the error ξSC in (4.2) is mainly driven by the “in-
terpolation” error εM , whose estimate is connected to error bounds for Chebyshev polynomial
interpolation, and it is the focus of the next part.

Theorem 4.1 (Error bound for analytic function [7, 23]). Let f be a real function on [−1, 1]
and fM be its (M−1)-degree polynomial interpolation built on Chebyshev nodes ξk := cos k−1

M−1π,
k = 1, . . . ,M . If f has an analytic extension in a Bernstein ellipse B with foci ±1 and major
and minor semiaxis lengths summing up to % > 1 such that supB |f | ≤

%−1
4 C for some constant

C > 0, then, for each M ≥ 1, the following bound holds:

||f − fM ||L∞([−1,1]) ≤ C%1−M .

6Th PDF fξ works as a dumping factor in ε− = E[(g1Ω− − g−)2(ξ)] and ε+ = E[(g1Ω+
− g+)2(ξ)].
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Figure 1: Left: (slow) growth of g1Ω+
compared to the linear extrapolation g+. Right: expo-

nential decays of ε−(ξ̄) and ε+(ξ̄) in (4.3) when the ξ̄ increases. The upper x-axis represents
the probability Fξ(ξ̄).

Since g1ΩM
is approximated by means of the (M − 1)-degree polynomials gM , built on

Chebyshev nodes, to apply Theorem 4.1, we verify the required assumptions, namely the
boundedness of g1ΩM

in ΩM and its analyticity. We recall that:

g = F−1
A ◦ Fξ, (4.4)

with FA and Fξ the CDFs of A(S) and ξ, respectively. Hence, the boundedness on the compact
domain ΩM is satisfied because the map g is monotone increasing (as composition of monotone
increasing functions), and defined everywhere in ΩM .

Furthermore, since the CDF of a standard normal, Fξ, is analytic, from (4.4) follows that g
is analytic if F−1

A is analytic. The analyticity of F−1
A is fulfilled if FA is analytic and F ′A = fA

does not vanish in the domain ΩM . Observe that, by restricting the domain to ΩM , the latter
condition is trivially satisfied because we are “far” from the tails of A(S) (corresponding to
the extrapolation domains Ω− and Ω+), and F ′A do not vanish in other regions than the tails.

On the contrary, proving that FA is analytic is not trivial because of the lack of an explicit
formula for FA. However, it is beneficial to represent FA through the characteristc function
(ChF) of A(S), φA. For that purpose, we use a well-known inversion result.

Theorem 4.2 (ChF Inversion Theorem). Let us denote by F and φ the CDF and the ChF
of a given real-valued random variable defined on R. Then, it is possible to retrieve F from φ
according to the inversion formula:

F (x)− F (0) =
1

2π

∫ +∞

−∞
φ(u)

1− e−iux

iu
du,

with the integral being understood as a principal value.

Proof. For detailed proof, we refer to [14]. �

Thanks to Theorem 4.2, we have that if φA is analytic, so it is FA (as long as the integral
in (4.2) is well defined). Thus, the problem becomes to determine if φA is analytic. We rely on
a characterization of entire7 ChFs, which can be used in this framework to show that in the
cases of – fixed- or float-strike – discrete arithmetic Asian and Lookback options, the (complex
extension of the) function φA is analytic in a certain domain.

Theorem 4.3 (Characterization of entire ChFs [3]). Let Y be a real random variable. Then,
the complex function φ(z) := E[eizY ], z ∈ C, is entire if and only if the absolute moments of
Y exist for any order, i.e. E[|Y |k] < +∞ for any k ∈ N, and the following limit holds:

lim
k→+∞

(
|E[Y k]|
k!

) 1
k

= 0. (4.5)

7Entire functions are complex analytic functions in the whole complex plan C.
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Proof. A reference for proof is given in [3]. �

When dealing with the Heston model, there is no closed-form expression for the moments
of the underlying process S(t), as well as for the moments of its transform A(S). Nonetheless,
a conditional case can be studied and employed to provide a starting point for a convergence
result.

Proposition 4.4 (Conditional ChF φA|V is entire). Let us define the N -dimensional random
vector V, with values in ΩV := RN+ , as:

V := [Iv(t1), Iv(t2), . . . , Iv(tN )]T , Iv(tn) :=

∫ tn

t0

v(τ)dτ, n = 1, . . . , N.

Let the complex conditional characteristic function φA|V(z) := E[eizA|V], z ∈ C, be the ex-
tended ChF of the conditional random variable A|V, with A ≡ A(S) as given in Equation (2.2).

Then, φA|V(z) is entire.

Proof. See Appendix A.4. �

From now on, using the notation of Proposition 4.4, we consider satisfied the following
assumption on the tail behaviour of the random vector (V, A). Informally, we require that
the density of the joint distribution of (V, A) has uniform (w.r.t. V) exponential decay for A
going to +∞.

Assumption 4.2. There exists a point z∗ ∈ C, z∗ = x∗ − iy∗, with x∗, y∗ ∈ R and y∗ > 0,
such that: ∫

ΩV×R+

ey
∗adFV,A(v, a) < +∞,

with FV,A(·, ·) the joint distribution of the random vector V and the random variable A.

Thanks to Assumption 4.2, the ChF φA(z) is well defined for any z ∈ Sy∗ ⊂ C, with the
strip Sy∗ := R+ i · [−y∗, y∗]. Moreover, applying Fubini’s Theorem, for any z ∈ Sy∗ , we have:

φA(z) =

∫
ΩV

φA|V=v(z)dFV(v). (4.6)

Thus, we can show that the ChF φA(z) is analytic in the strip Sy∗ (the details are given in
Appendix A.2).

Proposition 4.5 (ChF φA is analytic). Let φA(z) := E[eizA], z ∈ Sy∗ , with A ≡ A(S). Then,
φA(z) is analytic in Sy∗ .

Proof. A proof is given in Appendix A.2. �

Thanks to Proposition 4.5, and consistently with the previous discussion, we conclude that
the map g in (4.4), is analytic on the domain ΩM . Therefore, we can apply Theorem 4.1, which
yields the following error estimate:

||g1ΩM
− gM ||L∞(ΩM ) ≤ C%1−M ,

for certain % > 1 and C > 0. As a consequence, the following bound for the L2-error εM holds:

εM = E
[
(g1ΩM

− gM )2(ξ)
]
≤ C2

%2−2M . (4.7)

Furthermore, the exponential convergence is also confirmed numerically, as reported in Fig-
ure 2. In Figure 2a we can appreciate the improvement in the approximation of g̃1ΩM

by
means of gM , when M is increased, whereas Figure 2b reports the exponential decay of εM .

Using (4.7), the L2-norm of g − g̃, εSC in (4.2), is bounded by:

εSC ≡ εSC(ξ̄,M) = E
[
(g(ξ)− g̃(ξ))2

]
≤ ε−(ξ̄) + C

2
%2−2M + ε+(ξ̄),
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Figure 2: Left: exact map g1ΩM
(blue) compared to the interpolation gM in the domain ΩM ,

for M = 4, 5. Right: L2-error εM in (4.7) exponential decay in the order of the polynomial gM .

which goes to zero when ξ̄ ∈ R+ and M ∈ N tend to +∞. Therefore, for any ε > 0 there exist
ξ̄∗ ∈ R+ and M∗ ∈ N such that:

εSC(ξ̄∗,M∗) < ε2, (4.8)

and because of the exponential decay, we expect ξ̄∗ and M∗ do not need to be taken too big.
Eventually, we can benefit of the bound in (4.8) to control the pricing error, εP in (4.1). By

employing the well-known inequality max(a + b, 0) ≤ max(a, 0) + max(b, 0) and the Cauchy-
Schwarz inequality, we can write:

Ṽω(t0) = E
[(
ω
(
g̃(ξ)−K

))+]
≤
√

E
[(
g̃(ξ)− g(ξ)

)2]
+ E

[(
ω
(
g(ξ)−K

))+]
≤
√
εSC(ξ̄,M) + Vω(t0),

and using the same argument twice (exchanging the roles of g and g̃), we end up with the
following bound for the option price error:

εP ≤
√
εSC(ξ̄∗,M∗) ≤ ε,

with ξ̄∗ and M∗ as in (4.8).

4.2. Artificial neural network regression error

As the final part of the error analysis, we investigate when ANNs are suitable approximating
maps. In particular, we focus on ANNs with ReLU-architectures, namely ANNs whose activation
units are all Rectified Linear Units defined as φ(x) = x1x>0(x).

Consider the Sobolev space
(
Wn,∞([0, 1]d

)
, || · ||∞n,d

)
, with n, d ∈ N\{0}, namely the space of

functions Cn−1
(
[0, 1]d

)
whose derivatives up to the (n−1)-th order are all Lipschitz continuous,

equipped with the norm || · ||∞n,d defined as:

||f ||∞n,d = max
|n|≤n

ess sup
x∈[0,1]d

|Dnf(x)|,

with n := (n1, . . . , nd) ∈ Nd, |n| =
∑d
i=1 ni, and Dn the weak derivative operator. Further-

more, we define the unit ball Bn,d :=
{
f ∈ Wn,∞([0, 1]d

)
: ||f ||∞n,d ≤ 1

}
. Then, the following

approximation result holds:

Theorem 4.6 (Convergence for ReLU ANN). For any choice of d, n ∈ N\{0} and ε ∈ (0, 1),
there exists an architecture H(x|·) based on ReLU (Rectified Linear Unit) activation functions
φ, i.e. φ(x) = x1x>0(x), such that:
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1. H(x|·) is able to approximate any function f ∈ Bn,d with an error smaller than ε, i.e.,
there exists a matrix of weights W such that ||f(·)−H(·|W)||∞n,d < ε;

2. H has at most c(ln 1/ε + 1) layers and at most cε−d/n(ln 1/ε + 1) weights and neurons,
with c = c(d, n) an appropriate constant depending on d and n.

Proof. A proof is available in [24]. �

Substantially, Theorem 4.6 states that there always exists a ReLU-architecture (with fi-
nite number of layers and activation units) suitable to approximate at any desired precision
functions with a certain level of regularity (determined by (Wn,∞([0, 1]d), || · ||∞n,d)).

Remark 4.7 (Input scaling). We emphasize that although Theorem 4.6 applies to (a subclass
of sufficiently regular) functions with domain the d-dimensional hypercube [0, 1]d, this is not
restrictive. Indeed, as long as the regularity conditions are fulfilled, Theorem 4.6 holds for any
function defined on a d-dimensional hyperrectangle since it is always possible to linearly map
its domain into the d-dimensional hypercube.

Furthermore, we observe that all the results of convergence for ANN rely on the assumption
that the training is performed successfully, and so the final error in the optimization process
is negligible. Under this assumption, Theorem 4.6 provides a robust theoretical justification
for using ReLU-based ANNs as regressors. The goodness of the result can also be investigated
empirically, as we will show in the next section (see, for instance, Figure 4).

5. Numerical experiments

In this part of the paper, we detail some numerical experiments. We focus on applying the
methodology given in Section 3.2 for the numerical pricing of fixed-strike discrete arithmetic
Asian and Lookback options. We address the general case of discrete arithmetic Asian options
described in Section 3.3. For each pricing experiment errors and timing results are given. The
pricing errors are reported in basis points (bps) of the underlying process initial value, and the
timing results are given in seconds. The benchmarks are computed via MC using the almost
exact simulation of the Heston models, detailed in Result Appendix A.3.

All the computation are implemented and run on a MacBook Air (M1, 2020) machine, with
chip Apple M1 and 16 GB of RAM. The code is written in Python, and torch is the library
used for the design and training of the ANN, as in [19].

5.1. Experiments’ specifications

Among the three examples of applications presented, two of them rely on the technique
given in Section 3.2, while the third is based on the theory in Section 3.3. The first experiment
is the pricing of fixed-strike discrete arithmetic Asian options (FxA) with underlying a stock
price process following the Heston dynamics. The second example, instead, is connected to the
“interest rate world”, and is employed for the pricing of fixed-strike discrete Lookback swaptions
(FxL). We assume the underlying swap rate is driven by a displaced Heston model with drift-
less dynamics, typically used for interest rates. The last one is an application to the pricing
of fixed- and float-strikes discrete arithmetic Asian options (FxFlA) on a stock price driven
by the Heston dynamics. In the first (FxA) and last experiment (FxFlA), A(S) in (2.2) is
specified as:

A(S) =
1

5

5∑
n=1

S(tn), tn := T − (5− n)τA, n = 1, . . . , 5, (5.1)

with τA = 1
12 as monitoring time lag, and T > 4τA as option maturity. Differently, in the second

experiment (FxL) A(S) is given by:

A(S) = min
n
S(tn), tn := T − (30− n)τL, n = 1, . . . , 30, (5.2)

with τL = 1
120 as monitoring time lag, and T > 29τL as option maturity. Observe that, assuming

the unit is 1 year, with 12 identical months and 360 days, the choices of τA and τL correspond
respectively to 1 month and 3 days of time lag in the monitoring dates.
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5.2. Artificial neural network development

In this section we provide the details about the generation of the training set, for each
experiment, and the consequent training of the ANN used in the pricing model.

5.2.1. Training set generation

The training sets are generated through MC simulations, using the almost exact sampling
in Result Appendix A.3. In the first two applications (FxA and FxL) the two training sets
are defined as in (3.8), and particularly they read:

TFxA =
{(
{r, κ, γ, ρ, v̄, v0, T}i, {a1, . . . , a21}i

)
: i ∈ {1, . . . , NFxA

pairs}
}
,

TFxL =
{(
{κ, γ, ρ, v̄, v0, T}i, {a1, . . . , a21}i

)
: i ∈ {1, . . . , NFxL

pairs}
}
.

The Heston parameters, i.e. p\{T} – {r, κ, γ, ρ, v̄, v0} and {κ, γ, ρ, v̄, v0} for FxA and FxL,
respectively – are sampled using Latin Hypercube Sampling (LHS), to ensure the best filling
of the parameter space [16, 19]. For each set p\{T}, Npaths paths are generated, with a time
step of ∆t and a time horizon up to Tmax. The underlying process S is monitored at each time
T for which there are enough past observations to compute A(S), i.e.:

T ≥ 4τA + ∆t, for FxA,

T ≥ 29τL + ∆t, for FxL.

Consequently, the product between the number of Heston parameters’ set and the number of
available maturities determines the magnitude of the two training sets (i.e., NFxA

pairs and NFxL
pairs).

For each p, the CVs a corresponding to A(S) are computed as:

ak := F−1
A

(
Fξ(ξk)

)
≈ QA

(
Fξ(ξk)

)
, k ∈ {1, . . . , 21},

where QA is the empirical quantile function of A(S), used as numerical proxy of F−1
A , and ξk

are the CPs computed as Chebyshev nodes:

ξk := −ξ̄ cos
k − 1

20
π, k ∈ {1, . . . , 21},

with ξ̄ := F−1
ξ (0.993) ≈ 2.46. We note that, the definition of ξ̄ avoid any CV ak to be “deeply”

in the tails of A(S), which are more sensitive to numerical instability in a MC simulation.
The information about the generation of the two training sets are reported in Table 1.

Observe that TFxA is richer in elements than TFxL because of computational constraints. Indeed,
the higher number of monitoring dates of A(S) in FxL makes the generation time of TFxL more
than twice the one of TFxA (given the same number of pairs).

Since in the general procedure (see Section 3.3) ANNs are used to learn the conditional
distribution A(S)|S(T ) (not just A(S)!), the third experiment requires a training set which
contains also information about the conditioning value, S(T ). We define TFxFlA as:

TFxFlA =
{(
{r, κ, γ, ρ, v̄, v0, T, S

q, pq}i, {a1, . . . , a14}i
)

: i ∈ {1, . . . , Npairs}
}
,

Table 1: Training sets TFxA and TFxL generation details.

FxA FxL
p Nval range met. Nval range met. MC
r 700 [0.00, 0.05] LHS Npaths 106

κ 700 [0.20, 1.10] LHS 300 [0.80, 1.60] LHS ∆t 1
120

γ 700 [0.80, 1.10] LHS 300 [0.40, 1.00] LHS
ρ 700 [-0.95, -0.20] LHS 300 [-0.80, -0.30] LHS SC
v̄ 700 [0.02, 0.15] LHS 300 [0.10, 0.20] LHS M 21
v0 700 [0.02, 0.15] LHS 300 [0.10, 0.20] LHS ξ̄ 2.46
T 160 [0.34, 1.67] EQ-SP 170 [0.26, 1.67] EQ-SP Fξ(ξ̄) 0.993

Npairs 112000 (700× 160) 51000 (300× 170)
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Table 2: Training set TFxFlA generation details.

p Nval range met. MC
r 180 [0.00, 0.05] LHS Ntot 3 · 106

κ 180 [0.20, 1.10] LHS Npaths 2 · 105

γ 180 [0.80, 1.10] LHS ∆t 1
120

ρ 180 [-0.92, -0.28] LHS
v̄ 180 [0.03, 0.10] LHS SC
v0 180 [0.03, 0.10] LHS Q 15
T 160 [0.34, 1.67] EQ-SP M 14
Sq 15 [0.35, 2.01] EQ-SP ξ̄ 2.46
pq 15 [0.05, 0.85] IMPL Fξ(ξ̄) 0.993

Npairs 432000 (180× 160× 15)

where pq is the probability corresponding to the quantile Sq, given as in (3.9), i.e.:

Sq = Smin +
q − 1

14
(Smax − Smin), q ∈ {1, . . . , 15},

with the Smin = F−1
S(T )(pmin) and Smax = F−1

S(T )(pmax). Heuristic arguments drove the choice

of adding in the input set p the probability pq := FS(T )(S
q), i.e. the probability implied by

the final value pq. Indeed, the ANN training process results more accurate when both Sq and
pq are included in p.

Similarly as before, the sets of Heston parameters are sampled using LHS. For each set, Ntot

paths are generated, with a time step of ∆t and a time horizon up to Tmax. The underlying
process S is monitored at each time T for which there are enough past observations to compute
A(S), i.e.:

T ≥ 4τA + ∆t.

For any maturity T and any realization Sq, the inverse CDF of the conditional random variable
A(S)|S(T ) = Sq is approximated with the empirical quantile function, QA|Sq . The quantile
function QA|Sq is built on the Npaths “closest” paths to Sq, i.e. those Npaths paths whose final
values S(T ) are the closest to Sq.

Eventually, for any input set p = {r, κ, γ, ρ, v̄, v0, T, S
q, pq}, the CVs a corresponding to

A(S)|S(T ) = Sq are computed as:

ak := F−1
A|Sq

(
Fξ(ξk)

)
≈ QA|Sq

(
Fξ(ξk)

)
, k ∈ {1, . . . , 14},

with ξk the Chebyshev nodes:

ξk := −ξ̄ cos
k − 1

13
π, k ∈ {1, . . . , 14},

and ξ̄ := F−1
ξ (0.993) ≈ 2.46.

The information about the generation of the training set TFxFlA are reported in Table 2.

5.2.2. Artificial neural network training

Each training set T(·) store a finite amount of pairs (p,a), in which each p and each

corresponding a are connected by the mapping H. The artificial neural network H̃ is used to
approximate and generalize H for inputs p not in T(·). The architecture of H̃ was initially
chosen accordingly to [16, 19], then suitably adjusted by heuristic arguments.

H̃ is a fully connected (or dense) ANN with five layers – one input, one output, and three
hidden (HidL), as the one illustrated in Figure 3. Input and output layers have a number

Table 3: Artificial neural network and optimization details.

ANN architecture ANN optimization
FxA FxL FxFlA HidL 3 E 3000 InitLR 10−3 Opt Adam

InS 7 6 9 HidS 200 B 1024 DecR 0.1 LossFunc MSE
OutS 21 21 14 ActUn ReLU DecS 1000
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Figure 3: Illustration of a dense ANN with (from the left) one input layer, three hidden layers
and one output layer. Each white node represents an activation unit.

of units (neurons) – input size (InS) and output size (OutS) – coherent with the targeted
problem (FxA, FxL, or FxFlA). Each hidden layer has the same hidden size (HidS) of 200
neurons, selected as the optimal one among different settings. ReLU (Rectified Linear Unit) is
the non-linear activation unit (ActUn) for each neuron, and it is defined as φ(x) := max(x, 0)
[17]. The loss function (LossFunc) is the Mean Squared Error (MSE) between the actual
outputs, a (available in T), and the ones predicted by the ANN, H̃(p).

The optimization process is composed of 3000 epochs (E). During each epoch, the major
fraction (70%) of the T (the actual training set) is “back-propagated” through the ANN in
batches of size 1024 (B). The stochastic gradient-based optimizer (Opt) Adam [15] is employed in
the optimization. Particularly, the optimizer updates the ANN weights based on the gradient
computed on each random batch (during each epoch). The initial learning rate (InitLR) is
10−3, with a decaying rate (DecR) of 0.1 and a decaying step (DecS) of 1000 epochs. The
details are reported in Table 3.

Furthermore, during the optimization routine, the 20% of T is used to validate the result
(namely, to avoid the overfit of the training set). Eventually, the remaining 10% of T is used
for testing the quality of the ANN. Figure 4 provides a visual insight into the high accuracy
the ANN reaches at the end of the training process. Figure 4a shows the scatter plot of the
real CVs ak, k = 1, . . . , 21, against the ones predicted using the ANN, for the experiment FxA;
in Figure 4b a zoom is applied to the “worst” case, namely the CV a10, for which anyway is
reached the extremely high R2 score of 0.9994.
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Figure 4: First experiment: FxA. Left: scatter plot of the real CVs (ak, k = 1, . . . , 21, with
different colors) against the predicted ones. Right: zoom on the “worst” case, namely a10.
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5.3. Sampling and pricing

Given the trained model from the previous section, we can now focus on the actual sampling
and/or pricing of options. In particular, for the first two experiments we consider the following
payoffs:

FxA: max
(
ω
(
A(S)−K2

)
, 0
)
,

K2

S(t0)
∈ [0.2, 1.7], (5.3)

FxL: max
(
ω
(
A(S)−K2

)
, 0
)
,

K2

S(t0)
∈ [0.2, 1.7], (5.4)

whereas for the third, FxFlA, we have:

max
(
ω
(
A(S)−K1S(T )−K2

)
, 0
)
,

(
K1

S(t0)
,
K2

S(t0)

)
∈ [0.10, 0.85]× [0.10, 0.85], (5.5)

with A(S) defined as in (5.1) for FxA and FxFlA, and as in (5.2) for FxL.
All the results in the following sections are compared to a MC benchmark obtained using

the almost exact simulation described in Appendix Appendix A.3.

5.3.1. Numerical results for FxA

The procedure described in Section 3.2 is employed to solve the problem of pricing fixed-
strike discrete Asian options with payoff as in (5.3), with underlying stock price initial value
S(t0) = 1. In this experiment, the ANN is trained on Heston model parameters’ ranges, which
include the examples proposed in [1] representing some real applications. Furthermore, we
note the following aspect.

Remark 5.1 (Scaled underlying process and (positive) homogeneity of A). The unit ini-
tial value is not restrictive. Indeed, the underlying stock price dynamics in Equations (2.9)
and (2.10) are independent of S(t0), with the initial value only accounting as a multiplicative
constant (this can be easily proved by means of Itô’s lemma). Moreover, since A(S) is (posi-
tive) homogeneous in S also A(S) can be easily “scaled” according to the desired initial value.

Particularly, given the constant c > 0, cA(S)
d
= A(cS).

The methodology is tested on different randomly chosen sets of Heston parameters. We
report the details for two specifics sets, Set I and Set II, available in Table 4. For Set I, in Fig-
ure 5, we compare the population from A(S) obtained employing SC with the MC benchmark
(both with Npaths = 3 · 106 paths each). Figure 5a shows the highly accurate approximation
of the exact map g = F−1

A ◦ Fξ by means of the piecewise polynomial approximation g̃. As
a consequence, both the PDF (see Figure 5b) and the CDF (see Figure 5c) perfectly match.
Moreover, the methodology is employed to value fixed strike arithmetic Asian options (calls
and puts) for two sets of parameters (Set I and Set II) and 100 different strikes (from deep out
of money to deep in the money). The resulting prices and absolute errors (in bps) are reported
in Figure 6. The same figure shows also the results obtained using the semi-analytic formula
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Figure 5: Left: comparison between maps g from MC and g̃ from SC (with linear extrapolation).
Center: comparison between MC histogram of A(S) and the numerical PDF from SC. Right:
comparison between MC numerical CDF of A(S) and the numerical CDF from SC.
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Figure 6: Options for 100 different strikes and maximum absolute error in bps (the SC method
(SC) and the semi-analytic formula (PA) are compared with a Monte Carlo benchmark (MC)).
Npaths = 4 × 106 for both MC and SC. The extrapolation is quadratic. Left: call, with param-
eters’ Set I. Right: put, with parameters’ Set II.

from Proposition 3.2. The timing results are reported (in seconds) in Table 4, together with
the maximum absolute error in bps of S(t0) (given the different strikes).

The semi-analytic formula requires a constant evaluation time, as well as the SC technique
(if Npaths is fixed), whereas the MC simulation is dependent on the parameter T (since we
decided to keep the same MC step in every simulation). Therefore, the methodology becomes
more convenient the longer is the maturity of the option T . The option pricing computational
time is reduced of tens of times when using SC to generate the population from A, while it is
reduced of thousands of times if the semi-analytic (SA) formula is employed.

Eventually, the error distribution of 10000 different option prices (one call and one put with
100 strikes each for 50 randomly chosen Heston parameters’ sets and maturities) is given in
Figure 7a. The MC semi-analytic price (assuming a linear extrapolation) is compared with
MC benchmark. The outcome is satisfactory, and shows the robustness of the methodology
proposed. Indeed, the absolute error is smaller than 7.42 bps in the 90% of the experiments,
and an error of less than 5 bps is achieved in the 76.4% of the cases.

5.3.2. Numerical results for FxL

In this section, we use the procedure to efficiently value the pipeline risk typically embedded
in mortgages. The pipeline risk (in mortgages) is one of the risk a financial institution is exposed
to any time a client buys a mortgage. Indeed, when a client decides to buy a mortgage there is
a grace period (from one to three months in The Netherlands), during which (s)he is allowed
to pick the most convenient rate, namely the minimum.

Observe now that a suitable Lookback option on a payer swap, namely a Lookback payer
swaption, perfectly replicates the optionality offered to the client. In other words, the “cost”
of the pipeline risk is assessed by evaluating a proper Lookback swaption. In particular, we
price fixed-strike discrete Lookback swaptions with a monitoring period of 3 months and 3-day
frequency (see 5.2).

We assume the underlying swap rate S(t), 0 ≤ t ≤ T , is driven by the dynamics given in
Equations (2.9) and (2.10) with S(t0) = 0.05 and parallel shifted of θ = 0.03. By introducing

Table 4: Tested Heston parameters and results for FxA.

Set I Set II
r κ γ ρ v̄ v0 T r κ γ ρ v̄ v0 T

0.04 0.5 1.0 -0.8 0.08 0.05 1.0 0.02 1.0 0.9 -0.6 0.10 0.13 1.5

Call (with Set I) Put (with Set II)
time speed-up max. err. time speed-up max. err.

MC 60.0 s / / MC 98.2 s / /
SC 0.784 s 77 2.82 bps SC 0.782 s 126 4.96 bps
SA 0.013 s 4694 2.04 bps SA 0.014 s 7283 3.27 bps
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Figure 7: SA error distribution of 10000 option prices: 2 call & put × 100 strikes × 50
parameters’ set. Blue and red represent the best 90% and the worst 10% errors. The MC
benchmark is obtained with Npaths = 3 × 106 paths. Left: FxA. Right: FxL.

a shift, we handle also the possible situation of negative rates, which otherwise would require
a different model specification.

Remark 5.2 (Parallel shift of S(t) and A(S)). A parallel shift θ does not affect the training

set generation. Indeed, since A(S) = minn S(tn), it holds A(S − θ) d
= A(S) − θ. Then, it is

enough to sample from A(S) (built from the paths of S(t) without shift), and perform the shift
afterward, to get the desired distribution.

The timing results from the application of the procedure are comparable to the ones in
Section 5.3.1 (see Table 4). Furthermore, in Figure 5b, we report the error distribution obtained
by pricing call and put options for 50 randomly chosen Heston parameters’ sets and 100 different
strikes. The 90% quantile of the (absolute) error distribution is 8.99 bps for the option prices
obtained using SC, and 8.18 bps when the semi-analytic formula is employed. The thresholds
obtained here are comparable to the ones of the previous example, but we can notice some
more extreme outliers which are mainly due to the quality of the training set TFxL. Indeed, the
MC computation of A(S) = minn S(tn) (in the generation of the training set) is more sensitive
to numerical instability than the computation of A(S) =

∑
n S(tn). This reason might explain

the slightly less accurate results.

5.3.3. Numerical results for FxFlA

The third and last experiment consists in the conditional sampling of A(S)|S(T ). The
samples are then used, together with S(T ), for pricing of fixed- and float-strikes discrete Asian
options.

The procedure is tested on 30 randomly chosen Heston parameters’ sets. Both the MC
benchmark and the SC procedure are based on populations with Npaths = 3 · 103 paths. The
process S(T ) is sampled using the COS method [18] combined with SC (COS-SC) to avoid a
huge number of CDF numerical inversions [10], and so increase efficiency. Then, we apply the
grid-based algorithm of Section 3.3. We evaluate the ANN at a reduced number of reference
quantiles, and we compute the CVs corresponding to each sample of S(T ) by means of linear
interpolation. The CVs identify the map g̃, which is employed for the conditional sampling.

Table 5: Tested Heston parameters and results for FxFlA.

Set III
r κ γ ρ v̄ v0 T

0.01 0.46 0.99 -0.79 0.09 0.11 1.0

Call (with Set III)
tot. time speed-up max. err.

MC 63.9 s / /
SC 1.654 (0.193) s 39 2.37 bps
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Figure 8: Left: joint distribution of (S(T ), A(S)), for the Heston set of parameters in Set III
(see Table 5). Right: marginal distribution of A(S), for the same set of Heston parameters.

Figure 8a shows the cloud of points (for parameters’ Set III in Table 5) of the bivariate distribu-
tion (S(T ), A(S)) generated using the procedure against the MC benchmark, while Figure 8b
only focuses on the marginal distribution of A(S). We can appreciate a good matching between
the two distributions.

For each set we price 30 × 30 call options with equally-spaced strikes K1 and K2 in the
ranges of (5.5). The results for the particular case corresponding to Set III are reported in
Table 5, where the timing results keep into account of the pricing of all the 900 different call
options (according to each combination of K1 and K2). Furthermore, in the procedure time,
it is reported in brackets what amount of it was spent for applying the COS-SC method, i.e.
0.193 seconds. Figure 9a represents the option price given a fixed-strike K2 = 0.5 and varying
the float-strike K1, while in Figure 9b the error distribution is given. We report a 90% quantile
(for the absolute error) of 5.75 bps.

It might look surprising that the performance of the general procedure is better than the
special one, but actually it is not. Indeed, an important aspect needs to be accounted. The
high correlation between S(T ) and A(S) makes the task of the ANN easier, in the sense that
the distribution of A(S)|S(T ) typically has a low variance around S(T ). In other words, the
ANN has to “learn” only a small correction to get A(S)|S(T ) from S(T ) (S(T ) is an input for
the ANN!), whereas the ANN in the special procedure learns the unconditional distribution
of A(S) with no information on the final value S(T ), and so only on the Heston parameters.
The result is that a small lack in accuracy due to a not perfect training process, or most
likely to a not perfect training set, is less significant in the conditional case rather than in the
unconditional.
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Figure 9: Left: Call price and error for Heston parameters Set III and fixed-strike K2 = 0.5.
Right: SC error distribution of 54000 option prices: 2 call & put × 30 K1 × 30 K2 × 30
parameters’ set. Blue and red represent the best 90% and the worst 10% errors. The MC
benchmark is obtained with Npaths = 3 × 106 paths.
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6. Conclusion

In this work, we presented a robust, data-driven procedure for the pricing of fixed- and float-
strike discrete Asian and Lookback options, under the stochastic volatility model of Heston.
The usage of Stochastic Collocation techniques combined with deep artificial neural networks
allows the methodology to reach a high level of accuracy, while reducing the computational time
of tens of times, when compared to Monte Carlo benchmarks. Furthermore, a semi-analytic
pricing formula for European-type option on a piecewise polynomial of standard normal is
provided. Such a result allows to even increase the speed-up up to thousands of times, without
deterioration on the accuracy. An analysis of the error provides theoretical justification for
the proposed scheme, and the problem of sampling from both unconditional and conditional
distributions is further investigated from a numerical perspective. Eventually, the numerical
results provide a clear evidence of the quality of the method.
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Appendix A. Proofs and lemmas

Appendix A.1. Underlying process measure for float-strike options

Proof of Proposition 2.1. Under the risk-neutral measure Q the value at time t0 ≥ 0 of a float-
strike Asian Option, with maturity T > t0, underlying process S(t), and future monitoring
dates tn, n ∈ {1, . . . , N}, is given by:

V fl
ω (t0) = EQ

t0

[
M(t0)

M(T )
max

(
ω
(
A(S)−K1S(T )

)
, 0
)]
.

We define a Radon-Nikodym derivative to change the measure from the risk-neutral measure
Q to the stock measure QS , namely the measure associated with the numéraire S:

dQS

dQ
=
S(T )

S(t0)

M(t0)

M(T )
,

which yields the following present value, expressed as an expectation under the measure QS :

V fl
ω (t0) = ESt0

[
M(t0)

M(T )
max

(
ω
(
A(S)−K1S(T )

)
, 0
)S(t0)

S(T )

M(T )

M(t0)

]
= S(t0)ESt0

[
max

(
ω

(
A(S)

S(T )
−K1

)
, 0

)]
.

�

Proof of Proposition 2.3. Under the stock measure QS , implied by the stock S(t) as numéraire,
all the assets discounted with S must be martingales. Particularly, this entails that M(t)/S(t)
must be a martingale, where M(t) is the money-savings account defined as dM(t) = rM(t)dt.

From (2.9) and (2.10), using Cholesky decomposition, the Heston model can be expressed

in terms of independent Brownian motions, W̃x(t) and W̃v(t), through the following system of
SDEs:

dS(t) = rS(t)dt+
√
v(t)S(t)dW̃x(t),

dv(t) = κ (v̄ − v(t)) dt+ γ
√
v(t)

[
ρdW̃x(t) +

√
1− ρ2dW̃v(t)

]
.

After application of Itô’s Lemma we find:

d
M(t)

S(t)
=

1

S(t)
rM(t)dt− M(t)

S2(t)

(
rS(t)dt+

√
v(t)S(t)dW̃x(t)

)
+
M(t)

S3(t)
v(t)S2(t)dt,

which implies the following measure transformation:

dW̃x(t) = dW̃S
x (t) +

√
v(t)dt.

Thus, under the stock measure QS , the dynamics of S(t) reads:

dS(t) = rS(t)dt+
√
v(t)S(t)

(
dW̃S

x (t) +
√
v(t)dt

)
=
(
r + v(t)

)
S(t)dt+

√
v(t)S(t)dW̃S

x (t),

while for the dynamics of v(t) we find:

dv(t) = κ (v̄ − v(t)) dt+ γ
√
v(t)

[
ρ
(

dW̃S
x (t) +

√
v(t)dt

)
+
√

1− ρ2dW̃v(t)
]

= [κ (v̄ − v(t)) + γρv(t)] dt+ γ
√
v(t)

[
ρdW̃S

x (t) +
√

1− ρ2dW̃v(t)
]
.

Setting κ∗ := κ − γρ, v̄∗ := κv̄/κ∗, WS
x (t) := W̃S

x (t), and WS
v (t) := ρW̃S

x (t) +
√

1− ρ2W̃v(t)
the proof is complete. �

22



Appendix A.2. Semi-analytic pricing formula

Result Appendix A.1 (Moments of truncated standard normal distribution). Let ξ ∼
N (0, 1) and a, b ∈ [−∞,+∞], a < b. Then, the recursive expression for:

mi(a, b) := E[ξi|a ≤ ξ ≤ b],

the i-th moment of the truncated standard normal distribution ξ|a ≤ ξ ≤ b, reads:

mi(a, b) = (i− 1)mi−2(a, b)− bi−1fξ(b)− ai−1fξ(a)

Fξ(b)− Fξ(a)
, i ∈ N\{0},

where m−1(a, b) := 0, m0(a, b) := 1, and fξ and Fξ are the PDF and the CDF of ξ, respectively.

Result Appendix A.2 (Expectation of polynomial of truncated normal distribution). Let

p(x) =
∑M−1
i=0 αix

i be a (M − 1)-degree polynomial and let ξ ∼ N (0, 1), with fξ, Fξ its PDF
and CDF, respectively. Then, for any a, b ∈ [−∞,+∞] with a < b, the following holds:∫ b

a

p(x)fξ(x)dx =

M−1∑
i=0

αimi(a, b) (Fξ(b)− Fξ(a)) ,

with mi(a, b) as defined in Result Appendix A.1.

Proof. The proof immediately follows thanks to the following equalities:∫ b

a

p(x)fξ(x)dx =

M−1∑
i=0

αi

∫ b

a

xifξ(x)dx =

M−1∑
i=0

αiE[ξi1[a,b](ξ)]

=

M−1∑
i=0

αiE[ξi|a ≤ ξ ≤ b] · P[a ≤ ξ ≤ b].

�

Proof of Proposition 3.2. The approximation g̃ is strictly increasing in the domain of interest.
Then, setting cK = g̃−1(K), we have:

Ṽω(t0)

C
=

∫ +∞

−∞
max

(
ω
(
g̃(x)−K

)
, 0
)
fξ(x)dx

=

∫ +∞

ωcK

ω
(
g̃(ωy)−K

)
fξ(ωy)dy

= ω

(∫ +∞

ωcK

g̃(ωy)fξ(y)dy −KP[ξ > ωcK ]

)
,

where the first equality holds by definition of expectation, the second one relies on a suitable
change of variable (y = −x) and the last one holds thanks to the even symmetry of fξ. We
define the integral Iω(cK) as:

Iω(cK) :=

∫ +∞

ωcK

g̃(ωx)fξ(x)dx,

and using the definition of g̃ as a piecewise polynomial, we get:

Iω(cK) =

∫ −ξ̄∨cK
ωcK

g−ω(ωx)fξ(x)dx+

∫ ξ̄∨cK

−ξ̄∨cK
gM (ωx)fξ(x)dx+

∫ +∞

ξ̄∨cK
gω(ωx)fξ(x)dx. (A.1)

The thesis follows by applying Result Appendix A.2 at each term in (A.1) and exploiting the
definition of Fξ. �
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Appendix A.3. Almost Exact Simulation from the Heston Model

In a MC framework, the most common scheme employed in the industry is the Euler-
Maruyama discretization of the system of SDEs which describe the underlying process dynam-
ics. For the the stochastic volatility model of Heston, such scheme can be improved, allowing
for an exact simulation of the variance process v(t) (see (2.10)), as shown in [4]. This results
in increased accuracy, and avoids numerical issues due to the theoretical non-negativity of the
process v(t), leading to the so-called almost exact simulation of the Heston model [18].

Result Appendix A.3 (Almost exact simulation from the Heston Model). Given X(t) :=
logS(t), its dynamics8 between the consequent times ti and ti+1 is discretized with the following
scheme:

xi+1 ≈ xi + k0 + k1vi + k2vi+1 +
√
k3viξ,

vi+1 = c̄χ2(δ, κ̄vi)
(A.2)

with the quantities:

∆t := ti+1 − t1, δ :=
4κv̄

γ2
, c̄ :=

v̄

δ
(1− e−κ∆t), κ̄ := c̄−1e−κ∆t,

the noncentral chi-squared random variable χ2(δ, η) with δ degrees of freedom and non-centrality
parameter η, and ξ ∼ N (0, 1). The remaining constants are defined as:

k0 :=

(
r − ρ

γ
κv̄

)
∆t, k1 :=

(
ρκ

γ
− 1

2

)
∆t− ρ

γ
, k2 :=

ρ

γ
, k3 := (1− ρ2)∆t.

Derivation. Given X(t) = logS(t), by applying Itô’s Lemma and Cholesky decomposition on
the dynamics in (2.9) and (2.10) , we get:

dX(t) =

(
r − 1

2
v(t)

)
dt+

√
v(t)

[
ρdW̃v(t) +

√
1− ρ2dW̃x(t)

]
, (A.3)

dv(t) = κ (v̄ − v(t)) dt+ γ
√
v(t)dW̃v(t), (A.4)

where W̃x(t) and W̃v(t) are independent BMs.
By integrating (A.3) and (A.4) in a the time interval [ti, ti+1], the following discretization

scheme is obtained:

xi+1 = xi +

∫ ti+1

ti

(
r − 1

2
v(t)

)
dt+ ρ

∫ ti+1

ti

√
v(t)dW̃v(t) +

√
1− ρ2

∫ ti+1

ti

√
v(t)dW̃x(t),

(A.5)

vi+1 = vi + κ

∫ ti+1

ti

(v̂ − v(t)) dt+ γ

∫ ti+1

ti

√
v(t)dW̃v(t), (A.6)

where xi := X(ti), xi+1 := X(ti+1), vi := v(ti), vi+1 := v(ti+1).
Given vi, the variance vi+1 is distributed as a suitable scaled noncentral chi-squared dis-

tribution [18]. Therefore, we substitute
∫ ti+1

ti

√
v(t)dW̃λ

v (t) in (A.5) using (A.6), ending up
with:

xi+1 = xi +

∫ ti+1

ti

(
r − 1

2
v(t)

)
dt+

ρ

γ

(
vi+1 − vi − κ

∫ ti+1

ti

(v̄ − v(t)) dt

)
+
√

1− ρ2

∫ ti+1

ti

√
v(t)dW̃x(t).

We approximate the integrals in the expression above employing the left integration boundary
values of the integrand, as in the Euler-Maruyama discretization scheme. The scheme (A.2)

follows collecting the terms and employing the property W̃x(ti+1) − W̃x(ti)
d
=
√

∆tξ, with
ξ ∼ N (0, 1) and ∆t := ti+1 − ti. �

8Under the risk-neutral measure, Q. However, the same scheme applies under the underlying process measure
QS , with only a minor difference, i.e., k1 := (ρκ/γ + 1/2) ∆t− ρ/γ.
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Appendix A.4. SC error analysis for Chebyshev interpolation

The two following lemmas are useful to show that the conditional complex ChF φA|V(z) =
E[eizA|V] is an analytic function of z ∈ C. The first one provides the law of the conditional
stock-price distribution, whereas the second one is meant to give algebraic bounds for the
target function A(S).

Lemma Appendix A.1 (Conditional distribution under Heston). Let S(t) be the solution

at time t of Equation (2.9) and Iv(t) :=
∫ t
t0
v(τ)dτ , with v driven by the dynamics in Equa-

tion (2.10). Then, the following equality in distribution holds:

S(t)
∣∣∣Iv(t0, t) d

= exp
(
µ(Iv(t0, t)) + σ(Iv(t0, t))ξ

)
,

with ξ ∼ N (0, 1), µ and σ defined as µ(y) := logS(t0) + r(t − t0) − y/2 and σ(y) :=
√
y.

Furthermore, for any k = 0, 1, . . . , the following holds:

E[S(t)k|Iv(t)] = exp

(
kµ(Iv(t)) +

1

2
k2σ2(Iv(t))

)
(A.7)

In other words, the stock price given the time-integral of the variance process Iv is log-normally
distributed, with parameters dependent on the time-integral Iv, and its moments up to any
order are given as in Equation (A.7).

Proof. Writing (2.9) in integral form we get:

S(t) = S(t0) exp

(
r(t− t0)− 1

2

∫ t

t0

v(τ)dτ +

∫ t

t0

√
v(τ)dWx(τ)

)
.

By considering the conditional distribution S(t)|Iv(t) (instead of S(t)) the only source of ran-
domness is given by the Itô’s integral (and it is due to the presence of the Brownian motion
Wx(t)). The thesis follows since the Itô’s integral of a deterministic argument is normally
distributed with zero mean and variance given by the time integral of the argument squared
(in the same interval). Therefore, S(t)|Iv(t) is log-normally distributed, with moments given
as in (A.7). �

Lemma Appendix A.2 (Algebraic bounds). Let us consider {s1, . . . , sN}, with sn > 0 for
each n = 1, . . . , N . Then, for any k = 1, 2, . . . , we have:

1.
(∑

n sn
)k ≤ 2(N−1)(k−1)

∑
n s

k
n.

2.
(

minn sn
)k ≤ skn∗ for any n∗ = 1, . . . , N .

Proof. The second thesis is obvious. We prove here the first one. We recall that in general,
given a, b > 0 and any k = 1, 2, . . . , the following inequality holds:

(a+ b)k ≤ 2k−1(ak + bk). (A.8)

Then, applying (A.8) N − 1 times we get:(
N∑
n=1

sn

)k
≤ 2k−1

sk1 +

(
N∑
n=2

sn

)k ≤ · · · ≤ 2(N−1)(k−1)skN +

N−1∑
n=1

2n(k−1)skn,

which can be further bounded by:(
N∑
n=1

sn

)k
≤ 2(N−1)(k−1)skN +

N−1∑
n=1

2(N−1)(k−1)skn =

N∑
n=1

2(N−1)(k−1)skn,

�

We have all the ingredients to prove Proposition 4.4.
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Proof of Proposition 4.4. To exploit the characterization for entire ChFs in Theorem 4.3 we
need to show the finiteness of each absolute moment as well as that Equation (4.5) is satisfied.
Both the conditions can be proved using Lemma Appendix A.1 and Lemma Appendix A.2.
For k = 0, 1, . . . , we consider the two cases:

1. If A = 1
N

∑
n S(tn), then thanks to Lemma Appendix A.2 we have:

E[|A|k|V] =
1

Nk
E
[(∑

n

S(tn)
)k∣∣∣V] ≤ 2(N−1)(k−1)

Nk
E
[∑

n

S(tn)k
∣∣∣V]

=
2(N−1)(k−1)

Nk

∑
n

E[S(tn)k|V],

whereas from Lemma Appendix A.1 follows:

E[|A|k|V] ≤ 2(N−1)(k−1)

Nk

∑
n

E[S(tn)k|V]

=
2(N−1)(k−1)

Nk

∑
n

exp

(
kµn(V) +

1

2
k2σ2

n(V)

)
,

(A.9)

where µn(V) := µ(Iv(tn)) and σn(V) := σ(Iv(tn)), n = 1, . . . , N .

2. If A = minn S(tn), then we immediately have:

E[|A|k|V] ≤ E[S(tn∗)
k|V]

= exp

(
kµn∗(V) +

1

2
k2σ2

n∗(V)

)
,

(A.10)

for an arbitrary n∗ = 1, . . . , N .

The finiteness of the absolute moments up to any order follows directly from (A.9) and (A.10)
respectively, since Iv(tn) are finite (indeed, they are time-integrals on compact intervals of
continuous paths).

Eventually, thanks to Jensen’s inequality we have |E[A|V]|k ≤ E[|A|k|V]. This, together
with the at most exponential growth (in k) of the absolute moments of A|V, ensures that the
limit in Equation (4.5) holds. Then, by Theorem 4.3, φA|V(z) is an entire function of the
complex variable z ∈ C. �

Proof of Proposition 4.5. The goal here is to apply Morera’s theorem. Hence, let γ ∈ Sy∗ be
any piecewise C1 closed curve in the strip Sy∗ . Then:∫

γ

φA(z)dz
(4.6)
=

∫
γ

∫
ΩV

φA|V=v(z)dFV(v)dz

Fubini
=

∫
ΩV

∫
γ

φA|V=v(z)dzdFV(v)
Cauchy

= 0,

where in the first equality we exploited the representation of the unconditional ChF φA in
terms of conditional ChFs φA|V, in the second equality we use Fubini’s theorem to exchange
the order of integration, and eventually in the last equation we employ the Cauchy’s integral
theorem on

∫
γ
φA|V=v(z)dz. �
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