
23 Social Networks�

Vincent Buskensa,b, Rense Cortena,c and Werner Rauba

a Utrecht University
b Erasmus University Rotterdam
c Tilburg University

Summary. Social networks affect individual behavior as well as social phenomena. Con-
versely, when actors can choose with whom to interact, social networks are also themselves
affected by individual behavior. This chapter provides an overview of two main classes of
formal theoretical models for the analysis of network effects and network formation, namely,
game-theoretic models and agent-based simulation models. We first discuss models in which
networks are assumed to be exogenous and focus on network effects. More specifically, we
focus on models predicting effects of social networks on behavior in social dilemmas. Second,
we summarize main approaches to network formation and the dynamics of networks. Third,
we review models on the co-evolution of networks and behavior that provide an integrated
analysis of network formation and network effects, again focusing on social dilemma prob-
lems. The chapter ends with an evaluation of the state of the art of theoretical models for
social networks, including open problems and suggestions for future research.

1 Introduction

Theoretical and empirical research from sociology and other disciplines reveals that
social networks have important effects for micro-level individual behavior as well as
macro-level social phenomena. This includes – but is not limited to – individual search
behavior on the labor market and labor market outcomes (Granovetter 1973, 1974),
individual adoption and macro-level diffusion of innovations (Coleman et al. 1966),
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the spread of diseases (Kretzschmar & Wallinga 2007; Morris et al. 1995), social
inequality (Coleman 1988; Flap 2004; Lin 2001), and trust in social and economic
exchange (Coleman 1990) as well as behavior in social dilemmas and the “solution”
of such dilemmas (Raub & Weesie 1990). This research implies that actors benefit
from occupying certain individual positions in a network and from certain network
structures, while other positions and structures affect them negatively. Sometimes
dense networks will be beneficial, for example, to solve trust- or cooperation problems
(Buskens 2002; Raub & Weesie 1990). In other settings, open structures are more
beneficial, for example, in competitive settings where access and control of information
is important (Burt 1992; Granovetter 1973; for comparison of these two contexts also
see Burt 2005). A similar message emerges from the social capital literature, which
argues that social inequality can be explained in part by differences in resources that
people derive from their personal networks (Coleman 1988; Flap 2004; Lin 2001).

Often, networks are not exogenous. Rather, actors can affect their position in a
network and the network structure, at least to some degree, by establishing, main-
taining, or severing relations with others. For example, actors can often choose with
whom to exchange goods or information and with whom to collaborate. The notions
that actors have opportunities to choose their relations and that networks have impor-
tant consequences suggest that actors also have incentives for “networking”. Namely,
goal-directed and incentive driven behavior then implies that actors will try to form
relationships with an eye on optimizing their individual benefits from their network:
they will tend to strategically invest in establishing and maintaining relations that
are beneficial and would end relations that are not (see, e.g., Flap 2004).

However, from the premise that network structures are the results of actors’ deci-
sions, it does not follow that socially beneficial network structures will emerge sponta-
neously (e.g., Büchel & Hellman 2012; Doğan et al., 2009; Jackson & Wolinsky 1996).
Although actors may be able to choose their own relations, the network structure is
the result of the combined choices of all actors. Actors are thus interdependent. Re-
lational choices of one actor may have consequences for other actors. For instance, by
breaking just one relation, an actor may interrupt many indirect connections between
other pairs of actors, thereby changing the flow of information in the network. Thus,
although network structures may be the consequences of individual decisions, they are
often unintended consequences of individual action (cf. Merton 1936; Schelling 1978).

For quite some time, the literature on social networks focused primarily on ef-
fects of social networks, while systematic research on the emergence and dynamics
of networks is more recent and presumably still scarcer. This is understandable since
the emergence and dynamics of networks is inherently – and even more so than net-
work effects – due to interdependent behavior of actors, thus complicating theoretical
and empirical analysis (Flap & Völker 2013; Snijders 2013). However, since the mid-
1990s the situation has changed and a meanwhile sizeable literature makes progress
in studying the emergence and dynamics of networks. This literature has roots in
sociology (e.g., Doreian & Stokman 1997; Stokman & Doreian 2001) but is meanwhile
very interdisciplinary, with core contributions also from disciplines such as economics,
mathematics, physics, and biology. As a result, models have been formulated on the
dynamics of “small world” networks (Watts & Strogatz 1998), scale-free networks
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(Barabási & Albert 1999; see also Stauffer’s chapter in this Handbook), communica-
tion networks (Bala & Goyal 2000; Buskens & Van de Rijt 2008), and other topics. By
now, the literature also includes major edited volumes (e.g., Dutta & Jackson 2003;
Demange & Wooders 2005; Jackson & Zenou 2013) and textbooks (see Goyal 2007;
Vega-Redondo 2007; Jackson 2008). The topic of network dynamics has also found its
way into popular science literature (e.g., Buchanan 2002; Christakis & Fowler 2011).

Much of this literature studies causes for network dynamics that lie solely in the
network structure itself. However, it is likely that the choice of network relations also
depends on the content of relations and on actual behavior in relevant interactions.
After all, one of the reasons to study social networks in the first place is that networks
affect behavior. For example, when facing cooperation problems, actors may want to
avoid defectors, while in other settings, actors may simply want to avoid those who
behave differently and prefer relations with those who behave similarly (cf. McPherson
et al. 2001). Thus, on the one hand, networks influence the way people behave in their
interactions. On the other hand, individual behavior in interactions also affects the
network such that actors “themselves constitute each others’ changing environment”
(Snijders 2001: 363; see also Snijders 2013). Hence, the co-evolution of networks and
behavior has become the object of study in a new research program in statu nascendi
(e.g., Eguiluz et al. 2005; Pujol et al. 2005; Vega-Redondo 2006; see Corten 2014 for
a more detailed survey).

The general picture emerging is that three kinds of related questions on social net-
works have to be addressed, namely, (1) the effects of networks on behavior as well as
on the macro-outcomes of behavior, (2) how networks are themselves affected by pur-
poseful behavior, and (3) how networks and behavior co-evolve. Whether one wants to
consider the effects of networks, the emergence and dynamics of networks, or the co-
evolution of networks and behavior, the interdependence of actors will always require
systematic model building to understand the implications of assumptions on the so-
cial context and on individual properties. In particular, network models intrinsically
incorporate macro-micro-macro links, because one tries to understand how macro-
conditions such as network structures affect behavior and how individual behavior in
turn shapes macro-outcomes, including the dynamics of networks.

Coleman (1987, 1990) provided a stylized scheme that has become a standard
way of representing macro-micro-macro links. In his scheme, depicted in Figure 1,
nodes A and D represent propositions describing macro-conditions and, respectively,
macro-outcomes. Arrow 4 represents propositions about an empirical regularity at the
macro-level, say, an association between macro-conditions and macro-outcomes. The
macro-outcomes D as well as the empirical regularity 4 represent explananda. Node B
represents (descriptions of) micro-conditions, i.e., independent variables in assump-
tions about regularities of individual behavior or, more ambitiously, in a theory of
individual behavior. Arrow 1 represents assumptions on how social conditions affect
these variables. Social networks are paradigmatic examples of social conditions that
can be conceived as opportunities or, conversely, constraints that affect the feasible
alternatives between which actors can choose. Networks likewise shape the incentives
associated with various feasible alternatives and shape actors’ information. Various
labels have been suggested for such assumptions on macro-to-micro relations. Here,
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we follow Lindenberg (1981; Wippler & Lindenberg 1987) and label them “bridge
assumptions”. Node C represents micro-outcomes, i.e., descriptions of individual be-
havior. Assumptions about regularities of individual behavior or a theory of individual
behavior are represented by arrow 2. Thus, arrow 2 represents a micro-theory. Finally,
arrow 3 represents assumptions on how actors’ behavior generates macro-outcomes
such as changes of network structures. Again following Lindenberg (1977; Wippler &
Lindenberg 1987) we use “transformation rules” as a label for such assumptions on
micro-to-macro relations. It is evident from the scheme that the explananda, i.e., de-
scriptions of macro-outcomes (D) or macro-regularities (4), follow from an explanans
comprising assumptions on individual behavior (2), macro-conditions (A), as well as
bridge assumptions (1) and transformation rules (3). For a more extensive discussion
of macro-micro-macro modeling in general see Raub et al. (2011).

A: Macro-conditions D: Macro-outcomes

B: Micro-conditions C: Micro-outcomes✲

✲

�
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Fig. 1: Coleman’s scheme.

It is clear that networks can enter Coleman’s scheme as macro-conditions (node A)
and as macro-outcomes (node D). All three types of network questions to be discussed
in this chapter thus seamlessly fit in Coleman’s scheme. When considering effects
of networks, the network is one of the macro-conditions. The micro-conditions then
typically involve the different payoffs that actors may derive from different behaviors
in a network. Micro-assumptions often depend on the type of models considered: for
example, are these game-theoretic models (see also the chapters by Tutić and Rieck in
this Handbook) assuming forward-looking rationality or simulation models in which
actors are assumed to exhibit more backward-looking adaptive behavior. Propositions
on individual behavior, i.e., on micro-outcomes, follow from assumptions on macro-
and micro-conditions, bridge-assumptions, as well as assumptions about micro-level
regularities of behavior. Examples of micro-outcomes addressed in research on effects
of social networks have been provided above, while micro-outcomes will include choice
behavior with respect to establishing, maintaining, or severing relations with other
actors when it comes to research on network dynamics. In co-evolution models, both
types of micro-outcomes are relevant. Finally, propositions on macro-outcomes such as
macro-effects of social networks mentioned above but also the dynamics of networks
themselves or the efficiency of an emerging network structure then follow from micro-
outcomes and transformation rules. Again, in co-evolution models, one would like to



23 Social Networks 667

address both macro-outcomes in the sense of macro-effects of social networks as well
as the dynamics of network characteristics.

Note, too, that Coleman’s scheme, by directing attention to addressing how
micro- as well as macro-outcomes depend on macro- and micro-conditions, bridge-
assumptions, regularities of behavior, and transformation rules, naturally induces a
focus on the mechanisms through which networks have effects on micro- and macro-
outcomes and a focus on the mechanisms producing network dynamics. Therefore,
models that fit into Coleman’s scheme and are thus part of the “analytical tradition”
in social science (Hedström 2005) quite naturally avoid the “theory gap” (Granovetter
1979) that characterizes much purely descriptive network research.

The models considered in this chapter have in common that they employ the
assumption of goal-directed and incentive-guided behavior on the individual level. This
includes game-theoretic models as well as agent-based simulation models (see also the
chapter by Flache & Mäs in this Handbook). We will see that the demarcation between
these types of models is ambiguous. In the remainder of this chapter, we first sketch
models of network effects (Section 2). Thereafter, we address models on the emergence
and dynamics of networks (Section 3). Subsequently, we describe some models on the
co-evolution of networks and behavior (Section 4). We conclude with some general
observations, open questions for future research, and some suggestions for further
reading (Section 5). Throughout, we provide informal sketches of the models and
refer to the literature for technical details.

2 Network effects

By“network effects”we refer to implications of characteristics of social network struc-
ture for individual and social outcomes in the network. In terms of substantive appli-
cations, our discussion of models of network effects focuses on such effects for social
dilemma problems.1 We distinguish between game-theoretic models2 of such network
effects and simulation studies.

2.1 Game theory: games on networks

Social dilemmas are situations with strategic interdependencies between a set of ac-
tors such that cooperative behavior has socially desirable macro-effects in the sense of
Pareto-optimality for those actors,3 while at least one actor has an incentive for “de-
fection” in the sense of opportunistic behavior, thus improving own outcomes, while

1 Due to the focus on network effects on social dilemma problems, this chapter can also
be used as companion chapter to Raub et al. in this Handbook. Conversely, Raub et al.
provides background for and additional information on various concepts and assumptions
related to models of social dilemmas that are used in the present chapter.

2 See Tutić’s chapter in this Handbook and a textbook such as Rasmusen (2007) for game-
theoretic terminology and assumptions.

3 But, as indicated in Raub et al. in this Handbook, this does not necessarily imply that it
is desirable for third parties.
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impairing the outcomes for other actors. If all actors follow individual incentives, they
end up with a Pareto-suboptimal outcome that is worse for all than had they coop-
erated. More specifically, in a social dilemma individually rational behavior yields
a Pareto-suboptimal outcome. Individually rational behavior is equilibrium behavior
in the sense of the theory of non-cooperative games – each actor chooses a strategy
that maximizes the actor’s (expected) payoff, given the strategies of all other actors
(a Nash equilibrium) – and, in the case of a game with multiple Nash equilibria,
behavior that is consistent with the equilibrium that can be considered as the “so-
lution” of the game. Cooperation by all actors is more beneficial for each actor and
is Pareto-optimal but cooperative behavior of all actors is either inconsistent with
equilibrium behavior or, in the case of a game with multiple equilibria such as a coor-
dination game, it can be consistent with equilibrium behavior but does not qualify as
the solution of the game. Or, using Rapoport’s (1974) more intuitive characterization,
individual rationality (in the sense of equilibrium behavior that is consistent with the
solution of a non-cooperative game) conflicts with collective rationality (in the sense
of Pareto-optimality) in a social dilemma.

Consider simple models for social dilemmas with two actors such as the Prisoner’s
Dilemma or the Trust Game (depicted in Figure 2) that can be used, for example,
to study problems of social and economic exchange as well as, more generally, the
“problem of social order”.4 In the Prisoner’s Dilemma, both actors can choose be-
tween cooperation and defection. For each actor, defection is a dominant strategy
so that mutual defection is the unique equilibrium and can thus be assumed to be
the solution of the game. Mutual cooperation is more beneficial for each actor than
mutual defection and is Pareto-optimal but is inconsistent with equilibrium behavior.
In the Trust Game, the trustor moves first and can choose between placing or not
placing trust. The game ends if trust is not placed. If trust is placed, the trustee
can choose between honoring and abusing trust. For the trustor, honored trust is the
best outcome and preferred to the no trust outcome, while the no trust outcome is
preferred to abused trust. For the trustee, abused trust is the most preferred out-
come, followed by honored trust, while the no trust outcome is least preferred by the
trustee. Honored trust is Pareto-optimal and preferred by both actors to the no trust
outcome. However, if trust is placed, equilibrium behavior requires that the trustee
abuses trust. Anticipating that the trustee would abuse trust, though, not placing
trust is the trustor’s best-reply and, while Pareto-suboptimal, not placing trust is the
unique subgame perfect equilibrium outcome of the game and not placing trust, while
placed trust would be abused, is the solution of the game.

Note that in terms of Coleman’s scheme individual cooperation and defection are
the micro-outcomes in the case of the Prisoner’s Dilemma. In the case of the Trust
Game, placing or not placing trust and, respectively, honoring or abusing trust are
the micro-outcomes. In both games, Pareto-optimality or Pareto-suboptimality is the
relevant macro-outcome. The core assumption on behavioral regularities, represented
by arrow 2, is the assumption of game-theoretic equilibrium behavior.

4 Quite some results for games such as the Prisoner’s Dilemma and the Trust Game gener-
alize in principle to a much larger class of games with two or even more actors.
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The game theory literature provides a broad range of mechanisms that “solve”
social dilemmas, that is, provide actors with incentives such that Pareto-optimal out-
comes become equilibria. Such mechanisms include (but are not limited to) iteration
of the game, incomplete information, and sanctioning and reputation mechanisms.
In Raub et al. in this Handbook, we discuss a number of these mechanisms from a
more general perspective. In the current chapter, we focus on how social networks can
facilitate the working of these more general mechanisms.

Actor 2
Cooperation (C2) Defection(D2)

Actor 1
Cooperation (C1) R1, R2 S1, T2

Defection (D1) T1, S2 P1, P2

a) The Prisoner’s Dilemma (Si < Pi < Ri < Ti); the bold-faced payoffs
indicate the unique equilibrium.
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D1: no trust C1: trust

D2: abuse trust C2: honor trust

P1 S1 R1

P2 T2 R2

b) The Trust Game (S1 < P1 < R1, P2 < R2 < T2); double lines indicate
behavior in the unique subgame perfect equilibrium.

Fig. 2: Two social dilemma games.

We now assume“embeddedness” (Granovetter 1985) of a social dilemma like the Pris-
oner’s Dilemma or the Trust Game in a network of relations. This could be repeated
interactions between the same two actors to which we refer as dyadic embeddedness.
A more complex and in the context of this chapter more interesting case is network
embeddedness: The actors involved in the social dilemma also interact with third par-
ties and there may be also relations connecting some of those third parties with each
other. For example, a trustee interacts with a number of trustors who maintain re-
lations with each other that allow for exchange of information about the trustee’s
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behavior. Or, the actors in the Prisoner’s Dilemma are likewise involved in Prisoner’s
Dilemmas with third parties and each actor has relations with third parties that allow
for information exchange about the partner’s behavior in his interactions with other
actors.5 Characteristics of the network of relations of the actors with third parties
and relations between the third parties are macro-conditions in terms of Coleman’s
scheme and we are interested in network effects – or effects of network embeddedness
– on micro- as well as macro-outcomes.

Buskens & Raub (2002; see also Yamagishi & Yamagishi 1994) distinguish two
mechanisms through which networks affect behavior and thus macro-outcomes in
social dilemmas such as the Prisoner’s Dilemma and the Trust Game. First, there is a
control effect due to the network. Given embeddedness, a rational actor will not only
consider his short-term incentives for opportunistic behavior, i.e., defection in the
Prisoner’s Dilemma and abuse of trust in the Trust Game. Rather, he6 will likewise
consider the long-term effects of his present behavior on the behavior of the partner
and of third parties in future interactions. After all, the partner and third parties may
sanction the actor’s present behavior in future interactions. Positive sanctioning may
entail that the partner or third parties cooperate themselves or place trust in the future
if the actor cooperates or honors trust today. Conversely, the partner and third parties
may apply negative sanctions if the actor defects or abuses trust today. More precisely,
the partner and third parties may defect themselves or may no longer place trust in
future interactions if the actor defects or abuses trust today. This mechanism is also
known as conditional cooperation (Taylor [1976] 1987; Axelrod 1984) and reciprocity
(Gouldner 1960; Blau [1964] 1996; Diekmann 2004; see also the chapter by Berger &
Rauhut in this Handbook).7

A second mechanism underlying network effects in social dilemmas can be inter-
preted as a learning effect. Assume that an actor in a social dilemma is incompletely
informed about the partner. For example, the actor does not know for sure the part-
ner’s feasible actions and strategies. In the Trust Game, this would be the case if
the trustee may have no opportunity to abuse trust and the trustor only knows the
probability for this contingency. Another case of incomplete information is that the
actor does not know for sure what the partner’s incentives are. In the Trust Game,
this would be the case if the trustee, with some positive probability, has no incentive
to abuse trust because he suffers from a bad conscience due to internalized norms and
values after abusing trust and because his bad conscience provides sufficient disutility
so that honoring trust is after all more attractive than abusing trust for such a trustee.

5 Since a dyad could be considered as a small network (Wasserman & Faust 1994), dyadic
embeddedness could be considered as network embeddedness in a broad sense. In the
following, we use “network embeddedness” always in the sense of “a network that includes
the actors in the focal social dilemma as well as third parties”. However, one should keep
in mind that effects of dyadic embeddedness are network effects, too.

6 Throughout, we use male pronouns to facilitate readability and without intending any
gender-bias.

7 See Raub et al. in this Handbook for a more detailed discussion of the control effect
due to dyadic embeddedness. Much the same logic applies, too, for the case of network
embeddedness.
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Again, the trustor has only information about the probability for such an unobservable
characteristic of the trustee. Then, information on the partner’s behavior in previous
interactions can be useful for adapting the actor’s assumptions about the partner’s
unobservable characteristics. In the case of dyadic embeddedness, such information
derives from the actor’s own previous interactions with the partner. Network embed-
dedness provides information about the partner’s behavior in previous interactions
with third parties that may likewise allow for adapting assumptions about character-
istics of the partner. Diffusion of information, in turn, is likely to be influenced by the
network structure, as a vast literature on this topic shows (e.g., Valente 1995; Buskens
& Yamaguchi 1999; also see Jackson 2008: chap. 7 for a review).

Diffusion of information due to network embeddedness is not unproblematic, par-
ticularly under the assumption of rational behavior of the actors (e.g., Raub & Weesie
1990: 648; Buskens 2002: 18-20). In a social dilemma context, providing information
on other actors’ behavior is evidently a contribution to the production of a collective
good, namely, mitigating opportunistic behavior in a network and thus fostering the
Pareto-optimal solution of social dilemmas. If providing information is costly, the dif-
fusion of information could itself be conceived as a social dilemma. Note that this is
often considered as a core problem for institutions used on Internet platforms such as
eBay’s Feedback-Forum (e.g., Bolton & Ockenfels 2009). Moreover, information that
an actor receives from third parties may be inconsistent with his own experiences.
Finally, information received from third parties may be biased due to misunderstand-
ings and also due to strategic misrepresentation. For example, consider that trustors
interacting with the same trustee are competitors and may thus have incentives to
negatively affect each other’s position. On the whole, one would expect that effects of
network embeddedness are attenuated when such problems associated with informa-
tion diffusion become more serious.

Game theory has been a useful tool for developing models of network effects in
social dilemmas. More precisely, the literature on games on networks (Goyal 2007:
chap. 3; Jackson 2008: chap. 9) assumes the network as given and exogenous and
analyzes effects of the network on individual behavior and on macro-outcomes. Raub &
Weesie (1990) seems to be the first game-theoretic model of network effects for a social
dilemma, namely, the Prisoner’s Dilemma. Buskens (2002) provides models of network
effects for trust problems. These models combine dyadic and network embeddedness
and show that network effects facilitate trust and cooperation since they complement
and strengthen the effects of dyadic embeddedness. The models assume indefinitely
repeated games with complete information and thus allow for analyzing control effects,
while learning effects are neglected. Buskens (2003) provides a model using games with
incomplete information that allows for an integrated analysis of control and learning
effects. Examples of more recent and further refined models include Fainmesser (2012)
and Jackson et al. (2012).

The game-theoretic models yield testable hypotheses on network effects. Testable
hypotheses can be derived (see Buskens & Raub 2013 for discussion) by first of all
proving theorems that specify conditions such that, given network embeddedness,
there is an equilibrium of the social dilemma game that can be assumed to be the so-
lution and implies cooperative behavior of the actors and thus also Pareto-optimality
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as a macro-outcome. In the next step, comparative static analysis is used for deriving
implications on how changes in characteristics of network embeddedness affect the
conditions for the existence of such a “cooperation equilibrium”. Roughly, the analysis
aims at deriving implications that specify if “increasing” embeddedness provides for
less restrictive conditions for the existence of the cooperation equilibrium. Typical hy-
potheses derived in this way include that cooperation becomes more likely with more
positive and less negative information about the partner, for example, more informa-
tion that the partner has honored trust as a trustee, be it information from one’s own
interactions or information one receives from third parties about the partner. These
are clearly hypotheses about learning effects due to dyadic embeddedness and net-
work embeddedness. Other hypotheses that can be derived from these models include
that cooperation becomes more likely with increasing network density as well as with
an increasing in- as well as outdegree of the actors involved, with network density
affecting learning as well as control, while in a network with directed ties indegree is
related to the learning effect and outdegree is related to the control effect.

Such hypotheses have meanwhile been tested in numerous empirical studies of net-
work effects. These studies cover domains such as economic sociology and organization
studies. Empirical studies employ different and complementary designs, including sur-
vey research as well as experimental and quasi-experimental designs (see Buskens &
Raub 2013 for an overview). Empirical research does reveal considerable evidence for
network effects in laboratory settings as well as in social and economic interactions
that resemble social dilemmas. A drawback of many studies is that they hardly allow
for disentangling different mechanisms through which networks have effects. An over-
all impression is, though, that learning effects are often stronger than control effects
and also – not surprising in the light of our discussion of conditions that can attenu-
ate network effects – that effects of dyadic embeddedness are typically stronger than
effects of network embeddedness.

2.2 Simulation: games on networks

The models discussed in the previous section, all assume that actors are perfectly
forward looking and anticipate in a repeated game context all the consequences of
their actions in terms of behavior of the other actors. This might seem an unrealis-
tic assumption at the individual level to start with, but that is only one reason to
consider also simulation models. The other reason is that deriving analytical results
for networks in general is often very cumbersome. Buskens (2002: chap. 3) uses sim-
ulations to extend the implications of analytical solutions of a game-theoretic model
of repeated Trust Games in which trustors organized in a network play Trust Games
with the same trustee. The analytic results provide explicit formulas for the extent to
which rational trustors can trust a rational trustee given any network, but it remains
implicit in these formulas, which network characteristics lead to more trust. Buskens
derives further hypotheses on control as well as learning effects through calculating the
implications of the analytical solutions for many different networks. By regressing pre-
dicted trust levels on network characteristics for this large set of networks, Buskens
obtains “approximate theorems” on the effects of network characteristics on trust.
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Buskens (2002: chap. 4; see Buskens & Yamaguchi 1999) also provides a stochastic
model for information diffusion in social networks. This is a model of learning effects.
Simulating the speed of information diffusion in many different networks and addi-
tionally assuming that information is positive in the sense that the information refers
to cooperative behavior, one again obtains hypotheses on the effects of network char-
acteristics on trust. Relevant network characteristics include, for example, network
density, centralization, and transitivity as well as trustors’ outdegrees and indegrees.

Most simulation models that analyze games on networks use agent-based ap-
proaches (see also the chapter by Flache & Mäs in this Handbook). Actors in these
models have predefined strategies, for example, “always defect” or Tit-for-Tat (Axel-
rod 1984). Note that predefined strategies might be conditional on what other actors
do as in the case of Tit-for-Tat. Then, these actors play together and the emergence
of cooperation is studied given the strategies of the actors. Initially, the interaction
structures were relatively simple. In Axelrod (1984) everyone plays with everyone else,
while in Nowak & May (1992) actors are placed on a regular grid. Still, more and more
studies investigate the effects of more structure on who plays with whom. For example,
Ohtsuki et al. (2006) show that, for many structures, the average number of neighbors
in a network is a crucial parameter for whether cooperation can be maintained. We
refer to Szabó & Fáth (2007) for an extensive overview of this type of models. In their
chapter 6, they discuss at length models related to Prisoner’s Dilemmas, but they
discuss also more general principles as well as other applications.

Although the simulation models seem to apply a completely different modeling
strategy as the game-theoretic models, the models are formally quite closely related.
Weibull (1995), for example, shows that so-called evolutionary stable strategies are a
subset of the Nash equilibria of the underlying game. Still others (e.g., Macy & Flache
2002) suggest that exploring different learning mechanisms in social simulations pro-
vides much more informative solutions than just considering the Nash equilibria. This
claim is probably even more important if one considers interactions that have a rather
irregular spatial structure such as interactions on irregular networks. On the other
hand, outcomes of simulations might also strongly depend on subtle specifications of
the underlying assumptions.

3 Network formation

The notion that networks have important effects on behavior of actors embedded in
these networks has drawn attention to the question how networks emerge. Recent
developments in game theory have led to the specification of models of network for-
mation. In such models, actors do not choose strategies in a game that is embedded
in a network, but instead choose the relations in the network. A core assumption in
network formation models is that actors choose relations after consideration of the
benefits and costs of relations, where the benefits of particular relations depend on
properties of the resulting network. This means that actors prefer certain network
positions to others, and actively try to reach such positions. One example of network
benefits we have seen above: in denser networks actors can trust each other more
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easily. Another example is Burt’s (1992) argument that network positions rich in
structural holes provide actors in these positions with structural advantages. Balance
theory (Cartwright & Harary 1954; see Antal et al. 2005; Van de Rijt 2011) stating
that a friend of a friend should be a friend is yet another argument that could play a
role when actors form relations and that argument can be modeled using game theory
as well.

However, from the premise that network structures are the results of actors’ con-
scious decisions, it does not necessarily follow that socially beneficial network struc-
tures spontaneously emerge. As we have argued above, although actors may be able to
choose their own relations, the larger network structure is the result of the combined
choices of all actors, and relational choices of one actor may have consequences for
other actors. As a result, establishing network relations may be akin to producing a
collective good. If, for example, a network is mainly used to obtain information and
this information travels easily between actors in the network, two actors establishing
a relation will also facilitate further information diffusion between two actors that are
connected to one of the actors who established the relation but who are not connected
to each other. This property is evident in the so-called“connections model” introduced
by Jackson & Wolinsky (1996) as discussed below.

3.1 Game theory: strategic network formation

In game-theoretic modeling, one can distinguish two important types of models for
strategic network formation. Both types of models start from the idea that there is
a well-defined utility function for the actors in the network that only depends on the
position of actors in the network. So, if we know all the relations in the network and
a particular position of a given actor, then we know the utility of this actor in this
position. Both types of strategic formation models are then based on the assumption
that actors try to optimize their utility in this network by choosing relations with
others. First, there are the models related to Jackson & Wolinsky (1996). They define
equilibrium of the network by considering (sets of) relations and establishing whether
actors involved in these relations can increase their utility by changing the set of
relations among them. In particular, they define a network as pairwise stable if no
actor wants to remove a relation and no pair of actors wants to add a relation to the
network, using the idea that actors can unilaterally delete relations, but need consent
of another actor to establish a relation with this actor. This equilibrium concept has
a cooperative flavor because pairs of actors have to consider whether they do or do
not want to add a relation.

Second, the class of models exemplified by Bala & Goyal (2000) starts from a
completely non-cooperative perspective and defines the strategic network formation
game as a game in which all the actors in the network simultaneously propose a set of
relations they would like to have. Based on all these proposals, a network is formed. As
indicated above, actors’ utilities are completely determined by the network position
they obtain in this network. This conceptualization has some flexibility, because it
allows for different ways in which network relations are formed based on the choices
of the actors. For example, one can assume that a relation is formed when at least one
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actor indicates to be willing to form the relation (one-sided tie formation). A more
common assumption, which is also closer to the idea of Jackson & Wolinsky, is that
a relation can only be formed if both actors want to have the relation (two-sided tie
formation). Under the second assumption for formation of relations, the issue arises
that due to coordination problems many Nash equilibria exist. For example, whatever
the utility function on the network, no actor proposing a relation is always a Nash
equilibrium, simply because given that no other actors propose relations, an actor is
indifferent between proposing or not proposing any relation, since these relations will
not materialize anyway. If one refines the set of Nash equilibria by excluding Nash
equilibria in which there are pairs of actors who are not connected, but would prefer
to be connected, the set of Nash equilibria reduces to a subset of the pairwise stable
networks (Calvó-Armengol & İlkiliç 2009).

Many early examples of game-theoretic models on network formation can be found
in Dutta & Jackson (2003), including the following variant of the connections model
(Jackson & Wolinsky 1996). Suppose that actors in some population are connected by
a social network and that worthwhile information can flow freely through this network.
Then, individuals might be interested in being (directly or indirectly) connected to as
many other actors as possible, because this allows them to access the largest amount of
information. Furthermore, assume that actors may change the network by unilaterally
initiating or removing relations. Finally, assume that maintaining relations is not free:
every actor who initiates a relation has to pay a certain maintenance cost and after the
relation is established information can flow in both directions through this relation.
This is comparable to making a phone call: although both actors participating in the
relation benefit from it, only one of them bears the cost. Thus, in this setup, actors
would try to obtain access to as many other actors as possible, while at the same time
trying to minimize the number of relation they have to maintain themselves. The
network that eventually emerges is the result of the combined actions of the actors.
This creates the strategic interdependence that makes the situation suitable for game-
theoretic analysis. Moreover, there is clearly a tension between individual incentives
on the one hand (minimizing individual maintenance costs) and the collective interest
on the other hand (creating a network that allows optimal information flows).

In this example, an actor’s strategy consists of his relational choices. Using the
concept of Nash equilibrium outlined above, a network is considered to be in equi-
librium if no actor can improve his benefits by initiating a new relation or removing
an existing relation, given the relations others have. It is possible to show that in
the situation described above there are only two types of equilibrium networks. First,
the empty network is an equilibrium if the costs of the first relation are larger than
the benefits of a single relation. Second, networks that are minimally connected, i.e.,
networks in which no relation can be removed without disconnecting the network, can
be an equilibrium.

Another example is related to the by now almost classic notion of structural holes
as introduced by Burt (1992, 2005). Burt’s constraint formula makes the underlying
intuition precise: actors are more constrained by their network if they have many
relations who are also connected among each other. Using a series of empirical studies
on network positions of employees in firms, Burt provides empirical evidence that if
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someone’s network is very constrained, the actor has a smaller likelihood to obtain,
for example, a promotion in the firm. If an actor has many relations that are not
connected one can say that this actor’s network is rich in structural holes. Buskens &
Van de Rijt (2008) study equilibrium networks using different equilibrium concepts if
all actors strive for brokerage positions in the sense of having structural holes in their
personal networks. They show that many of the equilibrium networks are bipartite
networks: these are networks in which one can divide the actors in two groups such
that relations exist only between the two groups, but not within the groups. Moreover,
the two groups are mostly of similar size. Because actors who are in the same group
do not have connections with each other, but only to actors in the other group, there
are no closed triads in these networks and they emerge exactly due to actors’ effort
to avoid closed triads. The interesting macro-property of these networks is that there
are no or only limited strategic advantages for the actors in the network. Everyone
has relatively many relations and no one has relations that are connected among each
other. This implies that even though the constraint of each network position is low,
there are no actors who have a much lower constraint than others. Therefore, no actor
has a substantially better network position than another actor.

Note the conflicting incentives between actors in the connections model and in the
structural holes model. In the connections model, others often profit from relations
a given actor established. So there are positive externalities of network formation. In
the structural holes model, relations formed between two actors can have negative
externalities for others because structural holes are removed. A general finding is
that if relations between others in general have negative externalities for others in
networks, networks tend to be over-connected, while if relations between others have
positive externalities, networks tend to be under-connected (see Büchel & Hellman
2012). This shows that the network formation process often implies a type of social
dilemma in which it is difficult to reach or maintain a socially optimal structure.

3.2 Simulation: strategic network formation

Buskens & Van de Rijt (2008) also show that it can be rather unfeasible to characterize
the complete set of equilibrium networks for a given utility function implied by the
network. This also implies that it is not always feasible to provide a complete overview
of the theoretical implications of the assumptions in the model. This can be due
to the complexity of the network utility function or the complexity of the equili-
brium concept that is considered. Especially the equilibrium concepts as introduced by
Jackson & Wolinsky (1996) can be readily used to develop dynamic simulation models
(see Watts 2001; Jackson & Watts 2002) by starting from any network, checking in
some order stability of relations, and changing relations until no pair of actors wants
to change their relation anymore. Using such agent-based models, the implications of
the network formation model can often be extended. Buskens & Van de Rijt use these
models to reach two goals. First, for small networks, checking all possible network
structures, they specify the equilibrium networks for different equilibrium concepts.
Second, for larger networks, they simulate the network formation process starting
from a large set of networks. As soon as no actor wants to remove a relation anymore
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and no pair of actors wants to add a relation, the network is, by definition, pairwise
stable. With this approach, one can not only show that the bipartite networks are
by far the most likely networks to emerge, but also that the specific set of bipartite
networks in which the two groups have an as equal as possible size are even more
likely to emerge than more unevenly distributed groups. This reconfirms that one can
hardly expect that some actors obtain strategic advantages in the network due to the
network formation process.

Similar analyses are meanwhile available for other assumptions on what actors
strive for in networks, such as the assumption that all actors in the network strive for
(betweenness and closeness) centrality (Büchel & Buskens 2013), closure (Burger &
Buskens 2009), or prepare their network for social exchange (Doğan et al. 2009). Note
that there are also limitations to this approach. If only pairwise stability is considered,
rather straightforward changes in the network through which all the involved actors
can obtain better positions can be easily overlooked. Examples are cases in which one
actor moves a relation from one partner to another partner. Because this involves three
parties, the pairwise stability notion cannot account for this issue. Buskens & Van der
Rijt (2008), therefore, pay some attention to refinements of pairwise stability. Another
limitation of these simulations is that actors are actually considered as myopic. Actors
change relations if this immediately pays off. However, a relational change of one
pair of actors often causes that another pair of actors also want to change, and this
second change is not necessarily beneficial for the first pair of actors. Therefore, the
equilibrium concept has also been extended to versions that assume either perfect
(Herings et al. 2009) or limited farsightedness of actors in the network (Morbitzer
2013; Morbitzer et al. 2014).

A growing and flourishing literature on network formation models has also been
developed in physics, such as random graph models, preferential attachment models,
and percolation models (see also Stauffer’s chapter in this Handbook). Superficially,
these models seem to be rather mechanistic, because they mostly do not assume
strategic behavior of actors. However, the difference with the game-theoretic models
is smaller than it seems at first sight. For example, preferential attachment models
can be defined as models in which actors are just more likely to connect to others
who have already more relations, but one could also define the utility function on the
network in such a way that relations to actors with more relations are more valuable.
Still, discussing these models is beyond the scope of this chapter and would not do
justice to this rich literature. For an introduction to these models, we refer the reader
to Newman (2010, in particular chapters 14-16).

4 Co-evolution of networks and behavior

Until now, we have discussed models for effects of networks on the outcomes of games
(networks as explanans) and models for network formation (networks as explananda).
In many situations, however, we see both types of processes at work: behavior in
games is influenced by the network structure, and actors also have opportunities to
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change the network. In these cases, we can speak of co-evolution of networks and
behavior.

As an example, consider the model by Raub & Weesie (1990), which shows that
network embeddedness can promote cooperation in repeated Prisoner’s Dilemmas by
means of reputation effects. This model might be applied to R&D collaboration, in
which firms share knowledge to create value but also run the risk of opportunistic
behavior by their partners. In this situation, it seems plausible that firms would have
the opportunity to pick their own interaction partners, and thus change the network.
What is more, they also have incentives to do so: firms who had a bad experience with
an opportunistic partner may want to abandon the interaction with this partner and
instead seek a partner with a good reputation for cooperation, thereby (perhaps un-
intentionally) changing the network structure. In addition, if network embeddedness
promotes cooperation via reputation effects, firms that want to engage in cooperative
relations might actively pursue such network embeddedness by starting new interac-
tions within densely knit clusters, while firms that intend to be opportunistic would
do better to avoid embeddedness and instead seek interaction partners who do not
interact with each other. Conversely, co-evolution of networks may also undermine
reputation effects. If actors react to defection by a given partner by ending their
relation with this partner, this change of the network may (again, unintentionally)
prohibit the flow of information through the network, thereby limiting the effective-
ness of reputation effects.

The example illustrates how network structure and behavior in strategic situations
are likely to be interdependent. The example also gives an indication of the complexity
of the mechanisms involved. As a result of this added complexity, theoretical under-
standing of the co-evolution of social networks and behavior in games is currently
limited. Models of co-evolution tend to quickly become analytically intractable, and
consequently, analyses relatively often rely on computational approaches.

4.1 Game theory: co-evolution of networks and behavior

An important distinction among co-evolution models, just as with games on networks
as discussed above, is the choice of the underlying game. Earlier models of co-evolution
focused on coordination games, perhaps for their relative simplicity (see Skyrms &
Pemantle 2000). In coordination games, the actors’ main aim is to play the same
strategy as their interaction partners, there are no opportunities for opportunistic
behavior, and hence there is little reason to model reputation effects such as in the
Raub & Weesie (1990) model. For similar reasons, co-evolution of coordination and
networks can often be modeled rather adequately by assuming myopic best reply
behavior.

Typically, the Coordination Game assumed is a 2× 2 game with a risk-dominant
equilibrium and a payoff dominant equilibrium (i.e., a Stag-Hunt game). As such, these
models build on the earlier models by Ellison (1993) and Young (1998) who study
coordination in a fixed social structure and find that long-run stochastic dynamics
always favor the risk-dominant (but socially suboptimal) equilibrium.
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Jackson & Watts (2002) introduce a model in which actors not only choose their
strategy in a repeated coordination game, but also choose their interaction partners,
while relations are costly to maintain. They use the concept of stochastic stability to
characterize equilibrium states. In this setup, also other states than the risk-dominant
equilibrium turn out to be stable, depending on the cost of maintaining relations.
Goyal & Vega-Redondo (2005) study a variation of this setup in which actors unilat-
erally create relations rather than bilaterally, as in Jackson & Watts (2002). Likewise,
they find that the introduction of network dynamics allows for new types of equilibria,
depending mostly on the cost of relations. However, this also leaves a problem of equi-
librium selection in both models; within the boundaries of very general characteriza-
tions of equilibria, many different equilibria are possible, and formal game-theoretical
approaches are typically insufficient to predict equilibria in specific cases. Simulation
studies, addressed in the next section, address this issue.

4.2 Simulation: co-evolution of networks and behavior

Computational approaches to co-evolution of networks and behavior tend to com-
plement analytical approaches in at least two respects. First, they help address the
equilibrium selection problem sketched above. An example of this angle is the sim-
ulation study by Buskens et al. (2008), who consider a non-stochastic variant of the
Jackson &Watts (2002) model of coordination in dynamic networks. Whereas Jackson
& Watts provide a general characterization of a multitude of equilibria, Buskens et al.
simulate the co-evolution process for a broad range of model parameters and initial
conditions, and use statistical regression methods to predict which equilibria are more
or less likely given these parameters and conditions, thereby partly solving the equi-
librium selection problem. The simulation results show, for instance, that equilibria
in which groups in a population coordinate on different actions (i.e., polarization) are
less likely if the network is initially dense.

A second use of simulation studies is to obtain results for models that are too com-
plex to study analytically. Typically, such complex models are the result of relaxing
strong assumptions on interdependence and rationality that are made to keep models
analytically tractable. An example of such complex assumptions are mechanisms of
reputation effects in cooperation problems in dynamic networks, as discussed above.
Consequently, studies of cooperation in dynamic networks tend to be computational
rather than analytical. A good example of such studies is presented by Vega-Redondo
(2006), who examines the role of volatility in a situation in which networks and cooper-
ation co-evolve. In this model, actors play dyadic Prisoner’s Dilemmas with multiple
partners, and receive information about the behavior of other actors via the inter-
action network. At the same time, actors have the possibility to choose their own
interaction partners. Volatility of the environment is introduced by drawing payoffs
for each interaction afresh in each round of the game with some probability ε. Equili-
brium of the network is defined in terms of pairwise stability, as defined earlier in this
chapter. Using simulations and mean field analysis,8 Vega-Redondo is able to show

8 Mean field analysis is a technique in which the behavior of a complex system of interacting
individuals is approximated by averaging individual effects.
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that as volatility increases, the network endogenously adapts by becoming denser,
thereby sustaining high cooperation levels. This result emphasizes the role of net-
works as an emergent phenomenon, or unintended consequence of individual action.
Similarly, Hanaki et al. (2006) use a simulation model to study the co-evolution of
cooperation and networks assuming that actors imitate their best-performing neigh-
bor in the network. Somewhat counter-intuitively, they find that cooperation is most
likely to emerge if costs of relations are relatively high.

A somewhat similar situation is studied by Corten & Cook (2009), who model rep-
utation effects on cooperation in dynamic networks under the assumption that actors
use learning heuristics to determine their choices of relations and cooperation levels.
In contrast to Vega-Redondo (2006), they explicitly study the effect of reputation
effects (i.e., the importance of information diffusion) on cooperation. They find that
reputation does not necessarily promote cooperation, but rather increases the range
of possible equilibria. Another conclusion is that network density is more likely to be
a result of successful cooperation than vice versa.

The above discussion indicates that despite existing efforts, many aspects of the
co-evolution of behavior and networks remain unexplored. In concluding this section,
we point at two open questions that we think deserve further attention. First, in
most existing co-evolution models, information diffusion through networks is at best
a “by-product” of network formation, which actors then use to optimize their choices
in games played on the networks. However, arguments about social capital suggest
that actors would strategically invest in network relations, with the explicit intention
of influencing the flow of information in the network (we already hinted at such
mechanisms above). Some first steps in this direction are taken by Frey et al. (2013)
and Raub et al. (2013) who study investments in network relations in co-evolution
with behavior in trust games and other social dilemmas.

A second restricting assumption in existing models is that the network of in-
formation exchange typically coincides with the interaction network; that is, actors
exchange information if and only if they also play a game together. For many appli-
cations, however, it seems reasonable that these decisions can be taken more or less
independently.

5 Conclusions and suggestions for further reading

Models of social networks as sketched in this chapter have obvious strengths. Assump-
tions are clearly specified, with an eye on a clear distinction between assumptions on
macro- and micro-conditions, assumptions that relate the macro- with the micro-level,
and assumptions on behavioral regularities. Thus, the explicit focus on macro-micro-
macro links is an appealing feature of these models. In this way, progress has been
made in closing Granovetter’s (1979) “theory gap”. Analytical methods and simula-
tions are employed to systematically derive implications from the model assumptions.
Implications include testable hypotheses and also often include non-obvious or even
counter-intuitive predictions. Indeed, empirical research actually testing hypotheses
is in full swing in the field of research on social networks. Goldthorpe (2007) has of-
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fered influential arguments for an alliance of rational actor models and quantitative
survey research in sociology. Goldthorpe’s program can be broadened at the theoret-
ical end by including not only rational actor models but also alternative assumptions
on behavioral regularities that fit into macro-micro-macro models. Also, the program
can be broadened at the empirical end by complementing survey research with ex-
perimental research and the use of quasi-experimental designs. Finally, the program
seems not only attractive for sociology but also for other social sciences. Quite some
of current theoretical and empirical research on social networks can then be seen as
an implementation of such a broad version of Goldthorpe’s program (see also various
contributions in Wittek et al. 2013).

Typical problems of models for social networks likewise become transparent. For
example, consider problems related to assumptions on micro-level regularities of be-
havior (arrow 2 in Coleman’s scheme). In a sense, current research faces a trade-off
concerning these assumptions. On the one hand, it would be desirable for various
reasons to use the same and preferably parsimonious assumptions on micro-level reg-
ularities in different models. After all, for methodological reasons, one would ceteris
paribus prefer assumptions on micro-level regularities with high testability that are
consistently applicable in a broad class of models. Also, it seems hard to defend that
individual behavior obeys different behavioral regularities in different contexts. While
it seems natural that actors behave differently under different circumstances, it would
be surprising if the regularities underlying individual behavior in social dilemma sit-
uations are inherently different from those underlying behavior when it comes to
establishing, maintaining or severing relations with partners. Such concerns provide
reasons for using perfect rationality assumptions with respect to behavioral regulari-
ties. These assumptions are in principle broadly applicable and parsimonious.

On the other hand, in network contexts, these assumptions are also problematic,
often more so than in other contexts. For example, game-theoretic models for learning
effects of network embeddedness on behavior in social dilemmas assume that incom-
plete information is updated using Bayes’ rule (see also the chapter by Benner &
Poppe in this Handbook). Thus, such models use very strong assumptions concern-
ing the strategic rationality of actors. Also, when it comes to network formation, let
alone network formation in a sizeable network, assuming perfect strategic rationality
implies that actors behave as if they can foresee all the consequences of their own
decisions with respect to establishing, maintaining, or severing relations for future
networking decisions by other actors, since these future decisions may be affected by
previous networking decisions and may have repercussions for payoffs of other actors
(see Page et al. 2005; Dutta et al. 2005; Herings et al. 2009; Pantz 2006 for work in this
direction). It is not only doubtful whether actors can optimize in this way, it is also
often impossible for the modeler to solve such optimization problems. These problems
are exacerbated since macro-outcomes in interdependent contexts and certainly so in
network contexts are often not robust when assumptions on behavioral regularities
are modified (see Raub et al. 2011 for further references).

Problems associated with using perfect rationality assumptions in social network
research have induced the use of alternative behavioral models, such as pure learning
models or the assumption of myopic best-response behavior in models of network
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formation. The drawback then is that different assumptions on behavioral regularities
are used for different contexts and also that such behavioral assumptions might be too
radical in assuming away any kind of strategic rationality. Also, empirically observed
outcomes are not always consistent with the predictions following from models that
employ extreme assumptions on myopic behavior (e.g., Callander & Plott 2005; Pantz
2006; Berninghaus et al. 2012; Corten & Buskens 2010). Research on models that
assume “some” but less than perfect strategic rationality thus seems attractive but
is still in its infancy (see Berninghaus et al. 2012 and Morbitzer 2013; Jackson 2008:
chap. 8 provides an overview and further references).

This chapter provides a selective overview of models on network effects, network
formation, and the co-evolution of networks and behavior. Quite some models could
not be addressed. This includes, for example, theoretical refinements and empirical
applications of Coleman’s (1973) exchange model in network contexts (e.g., Mars-
den 1983; Braun 1993), the sociological literature on network exchange (see Willer
1999 and Braun & Gautschi 2006 for overviews), and models of collective decisions in
policy networks (e.g., Stokman et al. 2000). Another important and relatively recent
development are actor-oriented models for the statistical analysis of network data that
have strong links to the theoretical models discussed in this chapter and provide im-
portant tools for closely integrating theoretical and statistical modeling (see Snijders
2013 for an overview). Finally, there is a presumably seminal literature emerging that
studies online social networks: web-based services that allow users to maintain social
relations. These services – such as Facebook or Twitter – have become immensely
popular and since relations via these services are mediated by technology, they al-
low in principle for detailed longitudinal observations of networks and certain types
of behavior (see Leskovec et al. 2008 and Corten 2012 for examples of models and
empirical applications).
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