
1. Introduction
Infiltration is a key hydrological process that partitions precipitation at the land surface into the part that enters 
the soil profile and the excess water that runs off. Infiltration and runoff trigger various secondary processes 
including erosion (e.g., Assouline & Ben-Hur, 2006; Garrote & Bras, 1995; Poesen & Valentin, 2003), changes 
in stream flow and flooding events (e.g., Garrote & Bras, 1995), landslides and debris flows on hillslopes (e.g., 
Iverson, 2000; Lehmann & Or, 2012), water available for vegetation (e.g., Verhoef & Egea, 2013), as well as 
groundwater recharge (e.g., Anderson et al., 2015; Villeneuve et al., 2015), while also affecting the exchange 
of water and energy between soil and the atmosphere (e.g., Kim et al., 2017; MacDonald et al., 2018). There-
fore, knowledge about infiltration is of high relevance for various scientific disciplines. A recent comprehensive 

Abstract In his seminal paper on the solution of the infiltration equation, Philip (1969), https://doi.
org/10.1016/b978-1-4831-9936-8.50010-6 proposed a gravity time, tgrav, to estimate practical convergence 
time and the time domain validity of his infinite time series expansion, TSE, for describing the transient 
state. The parameter tgrav refers to a point in time where infiltration is dominated equally by capillarity and 
gravity as derived from the first two (dominant) terms of the TSE. Evidence suggests that applicability of the 
truncated two-term equation of Philip has a time limit requiring higher-order TSE terms to better describe the 
infiltration process for times exceeding that limit. Since the conceptual definition of tgrav is valid regardless 
of the infiltration model used, we opted to reformulate tgrav using the analytic implicit model proposed by 
Parlange et al. (1982), https://doi.org/10.1097/00010694-198206000-00001 valid for all times and related TSE. 
Our derived gravity times ensure a given accuracy of the approximations describing transient states, while 
also providing insight about the times needed to reach steady state. In addition to the roles of soil sorptivity 
(S) and the saturated (Ks) and initial (Ki) hydraulic conductivities, we explored the effects of a soil specific 
shape parameter β, involved in Parlange's model and related to the type of soil, on the behavior of tgrav. We 
show that the reformulated tgrav (notably 𝐴𝐴 𝐴𝐴grav = 𝐹𝐹 (𝛽𝛽)𝑆𝑆2∕(𝐾𝐾𝑠𝑠 −𝐾𝐾𝑖𝑖)

2
, where F(β) is a β-dependent function) is 

about three times larger than the classical tgrav given by 𝐴𝐴 𝐴𝐴grav,Philip = 𝑆𝑆2∕(𝐾𝐾𝑠𝑠 −𝐾𝐾𝑖𝑖)
2 . The differences between 

the classical  tgrav,Philip and the reformulated tgrav increase for fine-textured soils, attributed to the time needed to 
attain steady-state infiltration and thus i + infiltration for inferring soil hydraulic properties. Results show that 
the proposed tgrav is a better indicator of time domain validity than tgrav,Philip. For the attainment of steady-state 
infiltration, the reformulated tgrav is suitable for coarse-textured soils. Still neither the reformulated tgrav nor the 
classical tgrav,Philip are suitable for fine-textured soils for which tgrav is too conservative and tgrav,Philip too short. 
Using tgrav will improve predictions of the soil hydraulic parameters (particularly Ks) from infiltration data 
compared to tgrav,Philip.
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review of Vereecken et al. (2019) highlights the importance of infiltration processes at scales ranging from the 
pedon to global.

The infiltration process can generally be described by solving the Richards (1931) equation when the relation-
ships between soil water content, matric potential, and hydraulic conductivity are defined explicitly. Alterna-
tively, direct measurement of actual infiltration provides a convenient field approach to determining soil hydraulic 
parameters such as the sorptivity and saturated hydraulic conductivity (Ross et al., 1996). Sorptivity (S) expresses 
the capacity of a soil to absorb and release water by capillarity. In contrast, the saturated hydraulic conductivity 
(Ks) reflects the ability of a soil to transmit water under the influence of gravity.

As a unique solution of the Richards equation, the time series expansion (TSE) introduced by Philip (1957, 1969) 
remains a widely used model for 1D ponded infiltration. Although, the TSE comprises an infinite series of differ-
ent components, generally only the first two terms are being used in practice, with the higher-order terms in the 
infinite time series requiring a more systematic analysis. To analyze the convergence and time domain validity of 
the TSE, Philip (1969) introduced a characteristic time termed gravity time, tgrav, at which gravity begins to domi-
nate infiltration over capillarity. Philip (1969) assumed tgrav to be a practical measure for the time range of useful 
convergence of the TSE to real data, thus allowing use of the two-term TSE. Hereby, tgrav was simply formulated 
in terms of S and ΔK = Ks – Ki, where Ki is the hydraulic conductivity at the initial (prior to infiltration) soil water 
content, θi. Although not mentioned explicitly by Philip (1969), one may infer that only the two first terms of the 
TSE are used to formulate tgrav. The definition of tgrav is then explicit since the first term of the infiltration equation 
represents the effects of capillarity, and the second term the effects of gravity.

The parameter tgrav has been used for a range of applications. For example, Ross et al. (1996) used tgrav to scale the 
time and cumulative infiltration to obtain a dimensionless implicit analytical equation for infiltration. In another 
study on Ks data obtained from positive-head tension and single-ring pressure infiltrometer data with classical 
undisturbed soil core measurements, Reynolds et al. (2000) used tgrav as an index of the time at which steady-state 
infiltration will be reached. While designing a Beerkan Estimation of Soil Transfer (BEST) method, Lassabatere 
et al. (2006) further used tgrav to determine the maximum time for which transient expressions should be fitted to 
experimental data to properly estimate S and Ks. In that case, the authors used the tgrav concept to compute the time 
validity of TSE for other types of analytical models. This last example shows that the concept of tgrav developed 
regarding Philip's TSE may be generalized to other analytical models.

Whether or not tgrav is a correct indicator for the time domain validity of Philip's TSE and its truncated forms 
accuracy, and/or if it is an accurate indicator for attaining steady-state infiltration, a precise determination of tgrav 
itself is still of great importance. A limitation of the two-term infiltration approximation, as used to formulate 
tgrav, is that it cannot be used for long infiltration times. Several studies indicate that the higher-order TSE terms 
can describe the infiltration process much better the two-term equation for some soils (Kutílek & Krejca, 1987; 
Rahmati et al., 2019, 2020). On the other hand, conceptually, tgrav that marks when 50% of the cumulative infil-
tration is dominated by capillarity alone offers a generalizable alternative concept that it is valid irrespective of 
the number of terms included in the infiltration equation as well as regardless of the invoked model. A possible 
improvement when reformulating tgrav could be the use of an infiltration model without any time constraints. 
An attractive approach for this is the analytic approximation provided by Parlange et al. (1982), further denoted 
as AAP (Analytic Approximation by Parlange). The analytic approximation of Parlange et al. (1982) has been 
referred to as a “quasi-exact implicit formulation of Haverkamp et al. (1994) for 1D flow” by several authors. 
While Haverkamp et al. (1994) introduced useful refinements to the original expression of Parlange et al. (1982), 
in line with scientific convention, the expression (and modification thereof) should be referred to as the Parlange 
et al. (1982) equation as suggested by Haverkamp et al. (1994). We will use AAP because this formulation is 
(a) widely adopted due to its physical basis; (b) valid for the entire infiltration process (Haverkamp et al., 1994; 
Parlange et al., 1982); and (c) also admits its own TSE by analogy with Philip's TSE (Moret-Fernández et al., 2020; 
Rahmati et al., 2019, 2020), thus enabling users to determine which component reflects the capillary or gravity 
effects on infiltration (Rahmati et al., 2020). In addition to S and ΔK, the AAP formulation includes a soil specific 
shape parameter β that also impacts infiltration and depends on the soil hydraulic parameters. We therefore seek 
to broaden the formulation of tgrav by considering all variables S, ΔK = Ks − Ki, and β as used in the AAP formu-
lation so that the general features of the cumulative infiltration curve can be captured for different soils.
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For both the Philip and AAP TSE models, adding terms to the TSE-based tgrav formulation reflects the persistent 
effects of capillarity at relatively long infiltration times when infiltration is dominated by gravity. If the two-term 
TSE infiltration equation is used, the first term is purely capillary driven and the second term is driven by gravity 
(Lassabatere et al., 2006; Philip & Farrell, 1964, among others). However, the role of higher-order TSE terms, 
whether capillary- or gravity-driven, remains controversial, primarily because they contain ratios of Ks n−1/S n−2 
(with n = 1, 2, …, ∞). For example, Rahmati et al. (2020, 2021) analyzed the contributions of the higher order 
TSE terms of the AAP model under the premise that the role of gravity increases with increasing infiltration time. 
They concluded that although the higher-order terms still include the capillary parameter S, the terms remain 
largely controlled by gravity. A characteristic of the TSE is that all higher terms (those beyond the first two) have 
negligible impact on the onset of infiltration, whereas their contribution increases with increasing infiltration 
time. Since S is a capillary parameter, an important question arises about the role of S in the higher-order TSE 
terms, and whether these terms mainly reflect gravity. A simple answer to this question can be found in the math-
ematical form of the infinite series in terms of θ as derived by Philip (1957). The series contains the variables S 
and Ks for all infiltration times, but with significantly diminishing contributions of S beyond the first (absorption) 
term. Also, Philip's solution of the Richards (1931) equation involves a perturbation of the exact absorption case 
without gravity, while also considering uniform soil properties and initial soil water contents. These premises are 
often violated since the advancing infiltration front may reach layers with different water retention and hydraulic 
conductivities, thereby physically and mathematically affecting the infiltration rate at the surface. From a physi-
cal perspective, gravity will dominate the flow process at late infiltration times, and hence one may expect then 
vertically downward gravity-driven saturated flow (Waechter & Philip, 1985). However, by neglecting capillary, 
no information on the transition from near-dryness to near-saturation in regions below the infiltration front will 
be obtained. As correctly stated by Waechter and Philip (1985), this is a “physically interesting and practically 
important limit of flows strongly dominated by gravity, with capillary effects weak but nonzero”.

Because of the above ambiguities in the expression of tgrav, this study aims to clarify the definition of the charac-
teristic infiltration time. Specific objectives are to: (a) reformulate the infiltration characteristic time tgrav using the 
AAP formulation of (Parlange et al., 1982), (b) study its relation to the classical tgrav introduced by Philip (1969), 
hereafter denoted as tgrav,Philip, and (c) discuss potential applications of this soil property regarding our understand-
ing and modeling of water infiltration into soils.

2. Theoretical Development
2.1. Philip's Infiltration Theory

Based on an exact solution of the Richards (1931) equation, Philip (1957, 1969) derived the following expression 
for 1D ponded infiltration, known as Philip's TSE:

𝐼𝐼(𝑡𝑡) = 𝐴𝐴1𝑡𝑡
1
2 + (𝐴𝐴2 +𝐾𝐾𝑖𝑖) 𝑡𝑡 +

∞
∑

𝑛𝑛=3

𝐴𝐴𝑛𝑛𝑡𝑡
𝑛𝑛

2 (1)

where I(t) denote cumulative infiltration [L] at a given time t [T] and A1 to A∞ [L/T n/2] are coefficients of the 
infinite time series:

𝐴𝐴𝑛𝑛 ≥
𝐾𝐾𝑛𝑛−1

𝑠𝑠

𝑆𝑆𝑛𝑛−2
, 𝑛𝑛 = 1, 2, . . . , ∞ (2)

Philip  (1969) showed that A1 is equal to the sorptivity S, while A2 is proportional to Ks, suggesting that 
𝐴𝐴 𝐴𝐴2 = 𝑐𝑐 (𝐾𝐾s −𝐾𝐾i) , where c is a constant equal to  1/2,  2/3, and 0.38 depending upon the selected diffusivity model 

(i.e., linearized, a δ -function, and/or nonlinear).

Philip (1969) also determined the time domain validity of his TSE formulation. By comparing time and geomet-
ric series expansions, he found that the series solution should converge to the infiltration curve described by the 
Richard equation for 𝐴𝐴 𝐴𝐴 𝐴 (𝑆𝑆∕𝐴𝐴2)

2 . By noting that in most cases Ki/Ks << 1 and 𝐴𝐴 𝐴𝐴2 ≈ 1∕2 (𝐾𝐾𝑠𝑠 −𝐾𝐾𝑖𝑖) , Philip (1969) 
concluded that the convergence time or time domain validity could be defined as 𝐴𝐴 𝐴𝐴 𝐴 4𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 . Using S, Ks, and 
Ki, he approximated tgrav,Philip as:
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𝑡𝑡grav,Philip =

(

𝑆𝑆

𝐾𝐾𝑠𝑠 −𝐾𝐾𝑖𝑖

)2

 (3)

For initially dry soil conditions such that Ki can be neglected, the above equation simplifies to:

𝑡𝑡grav,Philip =

(

𝑆𝑆

𝐾𝐾𝑠𝑠

)2

 (4)

Philip (1969) furthermore showed that the condition 𝐴𝐴 𝐴𝐴 𝐴 4𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 was too conservative and that the factor 4 
could be replaced by a smaller value. He then stated that, nominally, 𝐴𝐴 𝐴𝐴 ≤ 𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 expresses the practical time 
domain validity for the TSE. We note that prior to Philip (1969), Philip and Farrell (1964) had defined the infil-
tration characteristic time, tgrav,P&F, as well as the infiltration characteristic length, Igrav,P&F, as:

𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔&𝐹𝐹 =

(

𝑆𝑆

𝑐𝑐 (𝐾𝐾𝑠𝑠 −𝐾𝐾𝑖𝑖)

)2
𝐾𝐾𝑖𝑖≈0

→ 𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔&𝐹𝐹 =

(

𝑆𝑆

𝑐𝑐𝐾𝐾𝑠𝑠

)2

 (5a)

𝐼𝐼grav,P&F =
𝑆𝑆2

𝑐𝑐 (𝐾𝐾𝑠𝑠 −𝐾𝐾𝑖𝑖)

𝐾𝐾𝑖𝑖≈0

→ 𝐼𝐼grav,P&F =
𝑆𝑆2

𝑐𝑐𝐾𝐾𝑠𝑠

 (5b)

2.2. Parlange's Analytical Solution of the Infiltration Equation

Equation 3 holds subject to the approximate time constraint that an attractive approach to overcome the time 
constraint is through comparisons with AAP. The AAP solution, which is valid for all times and gives an accurate 
estimate of the cumulative infiltration, can also be expanded in two-term (2T), three-term (3T) or higher approx-
imations, via the same approach of TSEs (e.g., Lassabatere et al., 2009). These models may be used to provide a 
more reliable estimate of tgrav. We first provide a background of the AAP as summarized by Rahmati et al. (2020).

The AAP cumulative infiltration solution (Parlange et al., 1982), which was redefined by Haverkamp et al. (1994), 
is given by:

2Δ𝐾𝐾2

𝑆𝑆2
𝑡𝑡 =

2

1 − 𝛽𝛽

Δ𝐾𝐾 (𝐼𝐼 −𝐾𝐾𝑖𝑖𝑡𝑡)

𝑆𝑆2
−

1

1 − 𝛽𝛽
𝑙𝑙𝑙𝑙

[

1

𝛽𝛽
𝑒𝑒𝑒𝑒𝑒𝑒

{

2𝛽𝛽Δ𝐾𝐾 (𝐼𝐼 −𝐾𝐾𝑖𝑖𝑡𝑡)

𝑆𝑆2

}

+
𝛽𝛽 − 1

𝛽𝛽

]

 (6)

where β is a soil-dependent dimensionless integral shape parameter, usually fixed at 0.6 (default value). Fuentes 
et al. (1992) demonstrated that the shape parameter β is related to the soil hydraulic functions by:

𝛽𝛽 = 2 − 2
∫

𝜃𝜃𝑠𝑠

𝜃𝜃𝑖𝑖

(

𝐾𝐾 −𝐾𝐾𝑖𝑖

𝐾𝐾𝑠𝑠 −𝐾𝐾𝑖𝑖

)(

𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑖𝑖

𝜃𝜃 − 𝜃𝜃𝑖𝑖

)

𝐷𝐷(𝜃𝜃)𝑑𝑑𝜃𝜃

∫
𝜃𝜃𝑠𝑠

𝜃𝜃𝑖𝑖
𝐷𝐷(𝜃𝜃)𝑑𝑑𝜃𝜃

 (7)

where θs is the saturated volumetric water content (L 3L −3), θi is the initial water content (L 3L −3), and D(θ) is the 
soil water diffusivity. For initially dry soils (with Ki ∼ 0), the AAP solution reduces to:

2𝐾𝐾2
𝑠𝑠

𝑆𝑆2
𝑡𝑡 =

2

1 − 𝛽𝛽

𝐾𝐾𝑠𝑠

𝑆𝑆2
𝐼𝐼 −

1

1 − 𝛽𝛽
𝑙𝑙𝑙𝑙

[

1

𝛽𝛽
𝑒𝑒𝑒𝑒𝑒𝑒

(

2𝛽𝛽𝐾𝐾𝑠𝑠

𝑆𝑆2
𝐼𝐼

)

+
𝛽𝛽 − 1

𝛽𝛽

]

 (8)

A simplified two-term (2T) approximate expansion of Equation 8 was proposed by Haverkamp et  al.  (1994) 
to describe the transient state valid for short to intermediate infiltration times. The expansion is identical to 
Philip (1957) two-term equation:

𝐼𝐼(𝑡𝑡) = 𝑐𝑐(1)𝑡𝑡
1

2 + 𝑐𝑐(2)𝑡𝑡 (9)

where
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𝑐𝑐(1) = 𝑆𝑆

𝑐𝑐(2) =
2 − 𝛽𝛽

3
𝐾𝐾𝑠𝑠

 (10)

Additional expansions were proposed by Rahmati et  al.  (2019) using three terms (3T), by Moret-Fernández 
et al. (2020) considering four terms (4T), and Rahmati et al. (2020) using five terms (5T), that is,

𝐼𝐼(𝑡𝑡) = 𝑐𝑐(1)𝑡𝑡
1

2 + 𝑐𝑐(2)𝑡𝑡 + 𝑐𝑐(3)𝑡𝑡
3

2 (11)

𝐼𝐼(𝑡𝑡) = 𝑐𝑐(1)𝑡𝑡
1

2 + 𝑐𝑐(2)𝑡𝑡 + 𝑐𝑐(3)𝑡𝑡
3

2 + 𝑐𝑐(4)𝑡𝑡2 (12)

𝐼𝐼(𝑡𝑡) = 𝑐𝑐(1)𝑡𝑡
1

2 + 𝑐𝑐(2)𝑡𝑡 + 𝑐𝑐(3)𝑡𝑡
3

2 + 𝑐𝑐(4)𝑡𝑡2 + 𝑐𝑐(5)𝑡𝑡
5

2 (13)

where c(3) to c(5) are defined as:

𝑐𝑐(3) =
1

9

(

𝛽𝛽2 − 𝛽𝛽 + 1
) 𝐾𝐾2

𝑠𝑠

𝑆𝑆

𝑐𝑐(4) =
2

135
(𝛽𝛽 − 2)(𝛽𝛽 + 1)(1 − 2𝛽𝛽)

𝐾𝐾3
𝑠𝑠

𝑆𝑆2

𝑐𝑐(5) =
1

270

(

𝛽𝛽2 − 𝛽𝛽 + 1
)2𝐾𝐾4

𝑠𝑠

𝑆𝑆3

 (14)

These expressions for c(3) to c(5) assume that the initial hydraulic conductivity is negligible. We adopt this 
hypothesis to simplify the derivations of tgrav. We aim at simplifying tgrav by (a) neglecting the initial hydraulic 
conductivity and thus neglecting the dependency of tgrav on initial conditions and (b) using the approximate 
expansions instead of the implicit AAP model to ease computations.

2.3. Exact Implicit Formulation of the Characteristic Time tgrav

According to the basic definition of tgrav, one can rewrite any TSE at time equal to tgrav as (Rahmati et al., 2020):

1

2
𝐼𝐼grav = 𝑆𝑆𝑆𝑆

1

2

grav (15)

where Igrav is the cumulative infiltration at time tgrav, also known as the infiltration characteristic length. Igrav in 
Equation 15 can be computed immediately by evaluating any analytical model at time tgrav. Since Philip's TSE is 
not clearly defined when using a limited number of terms, we consider it more robust to reformulate tgrav by using 
the AAP solution, which is valid for all infiltration times. To do this, Equation 6 is redefined in terms of t = tgrav 
by substituting Igrav from Equation 15 into Equation 6 to give:

2Δ𝐾𝐾2

𝑆𝑆2
𝑡𝑡grav =

2

1 − 𝛽𝛽

Δ𝐾𝐾

(

2𝑆𝑆𝑡𝑡
1
2
grav −𝐾𝐾𝑖𝑖𝑡𝑡grav

)

𝑆𝑆2
−

1

1 − 𝛽𝛽
𝑙𝑙𝑙𝑙

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1

𝛽𝛽
𝑒𝑒𝑒𝑒𝑒𝑒

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2𝛽𝛽Δ𝐾𝐾

(

2𝑆𝑆𝑡𝑡
1
2
grav −𝐾𝐾𝑖𝑖𝑡𝑡grav

)

𝑆𝑆2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+
𝛽𝛽 − 1

𝛽𝛽

⎤

⎥

⎥

⎥

⎥

⎥

⎦

 (16)

If Ks, Ki, ΔK (=Ks – Ki), S, and β are known, this equation can be solved analytically for tgrav using MATLAB, 
Mathematica, R, Python, or some other appropriate software. Those approaches can be combined with scaling 
procedures to separate the effects of scale and the hydraulic shape parameters. A computationally more effective 
scaling procedure as proposed by Varado et al. (2006) and further developed by Lassabatere et al. (2009), also 
for the sorptivity (Lassabatere et al., 2021) can be used. For this purpose, we scale cumulative infiltration, I(t), 
and time, t, by:

𝐼𝐼(𝑡𝑡) =
𝑆𝑆2

2Δ𝐾𝐾
𝐼𝐼∗ (𝑡𝑡∗) +𝐾𝐾𝑖𝑖𝑡𝑡 (17a)

𝑡𝑡 =
𝑆𝑆2

2Δ𝐾𝐾2
𝑡𝑡∗ (17b)
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Rewriting the above equations for t = tgrav yields:

�(�����) =
�2

2Δ�
�∗

(

�∗����
)

+ �2��

2Δ�2
�∗����

����� =
�2

2Δ�2
�∗����

 (18)

where 𝐴𝐴 𝐴𝐴∗grav is the scaled tgrav parameter, and 𝐴𝐴 𝐴𝐴∗
(

𝑡𝑡∗grav

)

 corresponds to the scaled cumulative infiltration at 𝐴𝐴 𝐴𝐴∗grav . 
Substitution of the above expressions into Equation 16 leads to:

𝑡𝑡∗grav =
1

1 − 𝛽𝛽

(

2
√

2𝑡𝑡∗grav −
𝐾𝐾𝑖𝑖

Δ𝐾𝐾
𝑡𝑡∗grav

)

−
1

1 − 𝛽𝛽
𝑙𝑙𝑙𝑙

[

1

𝛽𝛽
𝑒𝑒𝑒𝑒𝑒𝑒

{

𝛽𝛽

(

2
√

2𝑡𝑡∗grav −
𝐾𝐾𝑖𝑖

Δ𝐾𝐾
𝑡𝑡∗grav

)}

+
𝛽𝛽 − 1

𝛽𝛽

]

 (19)

Several functions for the hydraulic conductivity could be used in Equation 19. For this study we used the Mualem–
van Genuchten (MvG) model (Mualem, 1976; van Genuchten, 1980) for Ki given by:

𝐾𝐾 (𝑆𝑆𝑒𝑒)

𝐾𝐾𝑠𝑠

= 𝑆𝑆
1∕2
𝑒𝑒

[

1 −
(

1 − 𝑆𝑆
1∕𝑚𝑚
𝑒𝑒

)𝑚𝑚]2

, 𝑆𝑆𝑒𝑒 =
𝜃𝜃 − 𝜃𝜃𝑟𝑟

𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟
 (20)

where K(Se) is soil hydraulic conductivity at effective saturation (Se), or alternatively at a given soil water content 
θ, m is a model parameter, and θs and θr are the saturated and residual water contents (L 3 L −3), respectively. 
Substitution of Equation 20 into Equation 19 gives:

𝑡𝑡∗grav =
1

1 − 𝛽𝛽

(

2
√

2𝑡𝑡∗grav − 𝛿𝛿𝑡𝑡∗grav

)

−
1

1 − 𝛽𝛽
𝑙𝑙𝑙𝑙

[

1

𝛽𝛽
𝑒𝑒𝑒𝑒𝑒𝑒

{

𝛽𝛽

(

2
√

2𝑡𝑡∗grav − 𝛿𝛿𝑡𝑡∗grav

)}

+
𝛽𝛽 − 1

𝛽𝛽

]

 (21)

where δ is a coefficient accounting for the effects of initial soil water content and the parameter m on 𝐴𝐴 𝐴𝐴∗grav :

𝛿𝛿 =
𝑆𝑆

1∕2

𝑒𝑒𝑒𝑒𝑒

[

1 −
(

1 − 𝑆𝑆
1∕𝑚𝑚

𝑒𝑒𝑒𝑒𝑒

)𝑚𝑚]2

1 − 𝑆𝑆
1∕2

𝑒𝑒𝑒𝑒𝑒

[

1 −
(

1 − 𝑆𝑆
1∕𝑚𝑚

𝑒𝑒𝑒𝑒𝑒

)𝑚𝑚]2
𝑒 0 ≤ 𝛿𝛿 𝛿 1 (22)

Equation 21 is identical to Equation 16, except that Ks, Ki, and S are eliminated to lead to a more generalized 
dimensionless definition of 𝐴𝐴 𝐴𝐴∗grav from where we can view 𝐴𝐴 𝐴𝐴∗grav as a function of the infiltration-related soil variable 
β and the functional coefficient δ given by:

𝑡𝑡∗𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑐𝑐(𝛽𝛽𝛽 𝛽𝛽) (23)

The function c(β, δ) is to be obtained from Equation 21 by numerical resolution using a root-finding algorithm. 
Finally, the dimensional tgrav can be recovered immediately from Equation 17b to yield:

𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐹𝐹 (𝛽𝛽𝛽 𝛽𝛽)
(

𝑆𝑆

Δ𝐾𝐾

)2

 (24)

where F(β, δ) defines a functional relationship depending on β and δ:

𝐹𝐹 (𝛽𝛽𝛽 𝛽𝛽) =
𝑐𝑐(𝛽𝛽𝛽 𝛽𝛽)

2
 (25)

For an initially dry soil (𝐴𝐴 lim𝑆𝑆𝑒𝑒𝑒𝑒𝑒→0 𝛿𝛿 = 0 ), one can simply set δ = 0. Equation 21 then simplifies to:

𝑡𝑡∗grav =
1

1 − 𝛽𝛽

(

2
√

2𝑡𝑡∗grav − 𝑙𝑙𝑙𝑙

[

1

𝛽𝛽
𝑒𝑒𝑒𝑒𝑒𝑒

{

2𝛽𝛽
√

2𝑡𝑡∗grav

}

+
𝛽𝛽 − 1

𝛽𝛽

])

 (26)

In this case, 𝐴𝐴 𝐴𝐴∗grav may be viewed as a function of β only. Equation 24 can then be simplified also by setting Ki = 0:

𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐹𝐹 (𝛽𝛽𝛽 𝛽𝛽 = 0)

(

𝑆𝑆

𝐾𝐾𝑠𝑠

)2

= 𝐹𝐹 (𝛽𝛽)

(

𝑆𝑆

𝐾𝐾𝑠𝑠

)2

 (27)

By having tgrav reformulated, one can simply use Equation 15 to compute the infiltration characteristic length by:
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𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 2
√

𝐹𝐹 (𝛽𝛽𝛽 𝛽𝛽)
𝑆𝑆2

Δ𝐾𝐾

𝐾𝐾𝑖𝑖≈0

→ 𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 2
√

𝐹𝐹 (𝛽𝛽)
𝑆𝑆2

𝐾𝐾𝑠𝑠

 (28)

2.4. An Approximate Explicit Expression of the Characteristic Time tgrav

Although formally it is possible to evaluate the functional relationship F(β) numerically, the equation might be 
too impractical for many applications. Therefore, we use the 3T approximation (i.e., 3T TSE of the AAP model) 
alternatively to obtain an explicit formulation for F(β) and consequently for tgrav. Calculating Igrav at time tgrav using 
the 3T approximation (Equation 11), and substituting it in Equation 15, yields:

𝑆𝑆 =
1

2

𝑆𝑆𝑆𝑆
1
2
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 +

2− 𝛽𝛽

3
𝐾𝐾𝑠𝑠𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 +

1

9

(

𝛽𝛽2 − 𝛽𝛽 + 1
) 𝐾𝐾2

𝑠𝑠

𝑆𝑆
𝑆𝑆
3
2
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑆𝑆
1
2
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

 (29)

In this expression, the initial value of the hydraulic conductivity, Ki, is neglected, meaning that the expression 
should be considered only for initially dry soils. Simplifying and rearranging Equation 29 results in a quadratic 
equation, where 𝐴𝐴

√

𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 represents an unknown, and Ks, S, and β are knowns:

−𝑆𝑆 +
2 − 𝛽𝛽

3
𝐾𝐾𝑠𝑠𝑡𝑡

1
2
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 +

1

9

(

𝛽𝛽2 − 𝛽𝛽 + 1
) 𝐾𝐾2

𝑠𝑠

𝑆𝑆
𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0 (30)

Solving Equation 30 for 𝐴𝐴
√

𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 in terms of its positive root results in the following expression:

𝐹𝐹 (𝛽𝛽) =

(

3

2

√

5𝛽𝛽2 − 8𝛽𝛽 + 8 − (2 − 𝛽𝛽)

(𝛽𝛽2 − 𝛽𝛽 + 1)

)2

 (31)

which shows that F(β) now explicitly depends on β.

2.5. Test Data for Validation

The expressions above were obtained by using the AAP expansion. However, when evaluating their AAP based 
model, Parlange et al. (1982) made several assumptions that may not apply to real-world cases, such as the choice 
of the θ(z, t) profile as well as interpolation of the relationship between diffusivity and hydraulic conductivity. 
Their proposed relation between β and the soil hydraulic curves (see Equation 6 in Haverkamp et al., 1994) seems 
problematic and not applicable at all times. This point was discussed in-depth by Lassabatere et al. (2009), who 
showed that the relation holds poorly for some types of soils (see Figure 6 of Lassabatere et al., 2009). Apart 
from the AAP limitations, using infiltration data simulated with HYDRUS to validate tgrav is more scientifically 
sound. For this reasons, we validated the proposed expressions of F(β, δ) against synthetic infiltration data gener-
ated with the HYDRUS-1D software (Šimůnek et al., 2008, 2016). For the HYDRUS simulations we used the 
soil hydraulic properties of the 12 USDA soil textural classes (Table 1) provided by Carsel and Parrish (1988). 
Table 2 summarizes the settings of the HYDRUS simulations.

The numerically generated data are considered as the reference data and used in the following to assess the accu-
racy of the approximate expansions, including those related to Philip's and the AAP TSE formulations.

2.6. Time Domain Validity and Time to Steady-State Infiltration

For this section we considered the scenarios detailed in Table 1, which were modeled with HYDRUS to obtain 
reference cumulative infiltration data. We then computed the Philip and AAP TSE expansions from the previ-
ously computed input parameters S, Ks, Ki, and β. Note that β was computed using Fuentes' equation (Equation 7). 
The initial hydraulic conductivity was computed using Equation 20. Lastly, sorptivity (S) data were obtained from 
horizontal infiltration simulations by Rahmati et al. (2020). The Philip and AAP TSE predictions were compared 
to the numerically generated data described in the previous section by considering pointwise differences between 
predicted 𝐴𝐴 𝐼𝐼(𝑡𝑡) and numerically simulated I(t) values:
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𝑑𝑑(𝑡𝑡) =
|𝐼𝐼(𝑡𝑡) − 𝐼𝐼(𝑡𝑡)|

𝐼𝐼(𝑡𝑡)
× 100 (32)

where d is the distance/difference between the targeted approximate expansion and numerically simulated infil-
tration per each unit cumulative infiltration at a certain time step t. Theoretically, when the time domain validity 
of the approximate expansions is targeted, d(t) will have lower values at initial times, but then will tend toward 
higher values at later times. Practically, the time where d(t) exceeds a critical value, d(t) ≥ dTDV, is considered as 
the time beyond which the approximate expansion is not valid anymore. For this analysis we used a dTDV threshold 
of 5%.

Parameters

θr θs θi α

n (-) m (-)

Ks S

β (-)(cm 3 cm −3) (cm −1) (cm h −1/2) (cm h −1/2)

Clay 0.068 0.380 0.271 0.008 1.09 0.083 0.20 1.02 1.92

Clay loam 0.095 0.410 0.150 0.019 1.31 0.237 0.26 1.46 1.58

Loam 0.078 0.430 0.088 0.036 1.56 0.359 1.04 2.20 1.27

Loamy sand 0.057 0.410 0.057 0.124 2.28 0.561 14.6 6.22 0.80

Sand 0.045 0.430 0.045 0.145 2.68 0.627 29.7 9.23 0.60

Sandy clay 0.100 0.380 0.170 0.027 1.23 0.187 0.12 0.79 1.70

Sandy clay loam 0.100 0.390 0.111 0.059 1.48 0.324 1.31 1.61 1.36

Sandy loam 0.065 0.410 0.066 0.075 1.89 0.471 4.42 3.84 0.99

Silt 0.034 0.460 0.090 0.016 1.37 0.270 0.25 1.35 1.50

Silt loam 0.067 0.450 0.104 0.020 1.41 0.291 0.45 1.66 1.44

Silt clay 0.070 0.360 0.266 0.005 1.09 0.083 0.02 0.35 1.92

Silty clay loam 0.089 0.430 0.197 0.010 1.23 0.187 0.07 0.53 1.70

Note. The sorptivity (S) data were obtained from horizontal infiltration simulations by Rahmati et al. (2020). The tortuosity parameter l for the hydraulic conductivity 
was fixed at 0.5 as used by van Genuchten (1980). Initial water contents θi at an initial pressure head of −10,000 cm were taken from Rahmati et al. (2020, 2021). 
The infiltration constant β was calculated using Equation 7. θs, θr, and θi are the saturated, residual, and initial water contents; α, n, and m are parameters of the van 
Genuchten (1980) soil hydraulic model; Ks is the saturated hydraulic conductivity; S is the soil sorptivity; β is an infiltration constant defined by Parlange et al. (1982) 
and formulated by Fuentes et al. (1992).

Table 1 
Soil Hydraulic Parameters of the Mualem-van Genuchten (MvG) Model (van Genuchten (1980) for the Soil Water Retention and Hydraulic Conductivity Functions 
for the 12 USDA Textural Classes According to Carsel and Parrish (1988)

Simulation settings Applied conditions

Soil Profile depth 200 cm

Upper boundary condition Zero-pressure head

Lower boundary condition Free drainage

Node Numbers for discretization 401 non-equidistant (finer spacing near the top)

Simulation time 24 hr

Internal interpolation tables Disabled

Hydraulic model

 if n > 1.2 MvG

 if n < 1.2 Modified MvG with an air-entry value of −2 cm

Note. n is a parameter in the Mualem-van Genuchten (MvG) soil hydraulic functions (van Genuchten (1980)).

Table 2 
Parameters and Conditions Used for the HYDRUS-1D Simulations to Generate the Synthetic Infiltration Data (Adopted 
From Rahmati et al., 2020, 2021)
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To determine the attainment of the steady-state infiltration, we simply computed a linear regression of the last 
points and verified that the slope is equal to Ks. Then, having predicted the steady-state infiltration, the time 
where the numerically simulated HYDRUS-1D cumulative infiltration curve starts to converge to the steady-
state line determines the attainment of steady-state infiltration. The same criterion as introduced in Equation 32 
has been used to find the time for the attainment of the steady-state infiltration. Theoretically, if the steady-state 
attainment is reached, d(t) will be higher at short times and tend toward zero with progressing in time. Practically, 
the time when d(t) drops below a critical value, d(t) ≤ dSSI, is considered as the time for attaining steady-state 
infiltration. A dSSI threshold of 5% was used for all soils in this analysis.

3. Results and Discussion
3.1. Functional Relationships for F(β, δ) and tgrav

Figure 1 illustrates variations in the functional F(β, δ) given by Equation 25, tgrav (i.e., the reformulated tgrav 
obtained for the AAP solution when δ is not set to zero) and tgrav,Philip for the 12 USDA soil classes examined. Note 
that the values of F(β, δ) correspond to the roots of Equation 21, with the values of β tabulated in Table 1 and 
the values of δ defined by Equation 22. tgrav is then directly obtained by scaling time with Equation 24. Figure 2 
illustrates the employed δ values to obtain Figure 1.

Figure 1. Variations in (a) the reformulated and classical characteristic times (tgrav [h]) and (b) the functional relationship F(β, δ) for the 12 USDA soil textural classes. 
Note that soils are ranked based on their texture and no function is defined for them.
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The results indicate that tgrav varies between 15 min for sand and 996 hr for silty clay, with an average of 138 ± 80 hr 
and a median of 64 ± 60 hr over all soil classes. Excluding silty clay from the analysis, the range of tgrav gets 
narrower by varying between 15 min for sand and 183 hr for silty clay loam, with an average of 60 ± 19 hr and a 
median of 42 ± 42 hr. The reason why the silty clay soil is an outlier is still unresolved. One reason may be that the 
MvG parameters were taken from the class pedo-transfer function of Carsel and Parrish (1988). A clear trend can 
be detected in that the coarser textures have lower tgrav values. This agrees with the physics of the flow processes 
involved, in that lower soil capillary forces and higher flow rates are to be expected for the more coarse-textured 
soils with their larger pores.

Similarly to tgrav, Figure 1 shows that F(β, δ) varies between 2.59 and 3.25, with the finer soil textural classes 
exhibiting higher F(β, δ) values. These results indicate that the reformulated tgrav is approximately 2.59–3.25 
times (with a mean value of 3.1) higher than tgrav,Philip, since 𝐴𝐴 𝐴𝐴grav = 𝐹𝐹 (𝛽𝛽𝛽 𝛽𝛽) × 𝐴𝐴grav𝛽Philip . This probably also impacts 
the interpretation of infiltration data presented later in Section 3.5. If we consider the relationship between tgrav,P&F 
and tgrav,Philip (𝐴𝐴 i.e., 𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑔𝑔&𝐹𝐹 = (1∕𝑐𝑐)2 × 𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ) and use the possible range for c parameter (1/3, 2/3) as reported 
by Philip (1969), tgrav,P&F will be almost 2.3–9 times the value of tgrav,Philip. Therefore, we believe that our refor-
mulated tgrav nicely defines this characteristic time by falling between those defined by Philip (1969) and Philip 
and Farrell (1964).

Next, the relationships between F(β, δ) versus β and δ were analyzed. As can be seen from the contour plot in 
Figure 3, F(β, δ) is mainly controlled by, and positivity correlated to, β throughout most δ values. Additionally, 
we found that at increasing values of δ, F(β, δ) is dominated by δ. The threshold, where δ dominates the function 
ranges from around δ = 0.1 in coarse-textured soils with lower β values, to around 0.005 in fine-textured soils 
with higher β values. However, closer inspection reveals that we rarely find situations in nature where δ exceeds 
these threshold values where a δ value of 1 corresponds to Ki/Ks of 0.5. An in-depth discussion considering the 
dependency of δ on m and Se,i is provided in the following section.

3.2. F(β, δ) Versus F(β)

The effect of δ on tgrav was explored by comparing F(β, δ) and F(β), where F(β) is equal to F(β, δ) when δ is set 
to zero, that is, F(β) = F(β, δ = 0). Our analysis in the previous section showed that δ has a minimal influence 
on F(β, δ) and that setting δ = 0 did not lead to considerable changes in the F(β, δ) values, and consequently also 
not in tgrav. Our numerical calculations also showed that by setting δ = 0, one will obtain the same results for both 
cases as shown in Figure 1, which may be a consequence of the δ values being very close to zero for all examined 
soil classes, except for clay and silty clay, and to a lesser extent also for silty clay loam (Figure 2).

Figure 2. Variation in the functional coefficient δ among the 12 USDA soil textural classes. The δ values were obtained the 
for initial water contents θi provided in Table 1.
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For a more detailed examination of the effect of δ on F(β, δ), and consequently on tgrav, the surface response func-
tion between F(β, δ), m, and Se,i was explored (Figure 4), whereby all parameters were allowed to vary within a 
physically meaningful range. To do this, β values must be determined from the m parameter since there is logical 
relationship between both parameters. In this sense, an empirical linear function of 𝐴𝐴 𝐴𝐴(𝑚𝑚) = 2.141 − 2.421 × 𝑚𝑚 
with R 2 value of 0.999 was used to determine β for different m values based on the β and m values tabulated in 
Table 1 for the different soils. The m values were allowed to vary between 0 and 0.7, the latter corresponding 
to the highest n value (here m = 1−1/n) among the studied soil classes. Note that smaller m values generally 
correspond to more fine-textured soils, while higher m values correspond to coarser-textured ones. We varied Se,i 
between 0 and 0.9 since Se,i values above 0.9, which correspond to near saturation, may lead to lower infiltration 
rates. As can be seen from Figure 4, the contour lines are horizontally aligned for the case m < 0.4 (medium- and 
fine-textured soils) and Se,i values less than 0.6, indicating that Se,i starts to affect F(β, δ) only when the soils are 
close to saturation. The horizontal contour lines can be found for all soils with any possible m value as long as 
Se,i is lower than 0.5. Figure 4 therefore clearly indicates that Se,i, and consequently δ, have considerable effect on 
F(β, δ) and tgrav only when infiltration occurs in coarse-textured soils at a relatively high degree of saturation (e.g., 
Se,i > 0.6) at the start of the infiltration process. The latter condition seldom occurs in nature since coarse-textured 
soils usually are drained fast after saturation. On the other hand, the possible effects of the m parameter on F(β, 
δ) and tgrav is well explained by the β parameter due to their interlinked relationship. Hence, we are confident that 
ignoring δ in our formulation will not impact the overall predictions. Consequently, we use F(β, δ = 0) whenever 
the AAP solution for tgrav is used, while for simplicity we use only the term F(β) throughout the text.

3.3. Implicit Versus Explicit Solutions of tgrav

Still needed is a verification that the much simpler explicit solutions given by Equation 31 provide accurate 
approximations of the implicit solutions of tgrav as given by Equation 21. Figure 5 shows variations in F(β) versus 
β for the 12 soil textural classes when using AAP and the related 3, 4, and 5T expansions. In case of the implicit 
solution of tgrav, F(β) was always higher than 2.6 for all textural classes, with F(β) linearly increasing with increas-
ing β (Figure 5, AAP). In contrast, a second-order polynomial trend between F(β) and β is present when the 3T 
explicit solution is used, with a maximum of about 3.6 in F(β) when β values were about 1.3, and lower F(β) 
elsewhere. A similar trend as for the implicit solution of tgrav, albeit with a smaller slope, existed between F(β) 

Figure 3. Functional relationship of F(β, δ) within logical ranges of β (0-2) and δ (0-1).
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and β when the 4T expansion was used. The 5 T approximate expansion also showed a second-order polynomial 
trend between F(β) and β, but less nonlinear and with mostly a negative slope.

Figure 5 indicates that the approximate expansions are relatively far away from the implicit solution of tgrav, espe-
cially at long infiltration times, with the F(β) values showing that the reformulated equation for tgrav is 2.69–3.25 
times larger than the classical tgrav model given by Equation 3. These results indicate that precise calculations of 
tgrav requires Parlange's AAP solution instead of the AAP approximate expansions. We explored this more directly 
by comparing the obtained tgrav values from the implicit and explicit solutions, Equation 31. Figure 6 shows the 
expected differences in tgrav between the implicit and explicit solutions. We excluded the 4 and 5T expansions 
since they are complicated to solve and still inaccurate compared to the AAP implicit solution (especially for 
large β values). To check the null hypothesis that the pairwise difference between the tgrav vectors has a mean 
equal to zero, a paired-sample t-test at a probability of p < 0.05 was performed. The tgrav values obtained from the 

Figure 4. Functional relationship F(β, δ) within logical ranges of the initial saturation degree of soils, Se,i, (0–1), and the m 
parameter (0–0.7). To plot this figure, an empirical function was considered between β and m (i.e., 𝐴𝐴 𝐴𝐴(𝑚𝑚) = 2.141 − 2.421𝑚𝑚 as 
derived from the values in Table 1), while δ was determined as a function of m and Se,i using Equation 22.

Figure 5. Variations in the function F(β) versus β for the 12 USDA soil textural classes, as a function of the selected 
formulation: AAP, and related 3, 4, or 5T approximate expansions.
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implicit solution was considered to be the reference value (𝐴𝐴 𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ) for comparisons. The results (Table 3) indicate 
that the differences in the tgrav values obtained from the implicit and explicit solutions are significant. As shown in 
Figure 7, for some soils, the relative difference, 𝐴𝐴

(

𝑡𝑡grav − 𝑡𝑡grav

)

∕𝑡𝑡grav × 100 , is relatively high. For example, for the 
loam soil, the difference reached almost 18% (Figure 7). Overall, the relative difference was soil type-dependent, 
with the fine- and coarse-textured soils showing lower (±5%) differences, while for the medium-textured soils the 

tgrav explicit solution was overestimated by 10%–18%. Therefore, we recom-
mend using the implicit solution for future use. Still, using this solution is 
very time-consuming and complicated since it requires a numerical solution 
to estimate tgrav using the AAP formulation. Therefore, we suggest applying 
the following empirical expression between F(β) and β, which is obtained 
for  the implicit solution from the data shown in Figure 5:

𝐹𝐹 (𝛽𝛽) = 0.470𝛽𝛽 + 2.404 (33)

Using this empirical expression, F(β) can be obtained for β values between 
0.6 and 2.

3.4. Influence of β on tgrav

Given the fact that β is very difficult to estimate and its value has little 
effect on 1D cumulative infiltration rates (e.g., Latorre et al., 2018; Rahmati 
et  al.,  2020), we analyzed the effect of β on tgrav using a constant values 
of 0.6 for β of 0.6 as suggested by Haverkamp et al.  (1994), rather than a 
soil-dependent β according to Equation 7, for both the implicit and explicit 
solutions. As can be seen from Figure 8, a constant β value of 0.6 does not 
represent tgrav very well for none of the USDA soil classes (except for sand 

Figure 6. Variations in the soil characteristic time, tgrav, determined using the implicit and explicit solutions (based on three 
terms) of tgrav for the examined soil textural classes. The inset shows differences between the two approaches for the coarser 
soils. Note that the ordinate is split for better visualization.

  Implicit Explicit

Mean a 1.347 1.383

Variance 1.221 1.187

Observations 12 12

Pearson Correlation 0.9997

Hypothesized Mean Difference 0

Degree of Freedom, df 11

t-stat −3.868

P(T ≤ t) one-tail 1.31E−03

t-Critical, one-tail 1.796

P(T ≤ t), two-tail 2.62E−03

t-Critical, two-tail 2.201

 aLogarithms (log10) of tgrav data were used in the analysis to ensure a normal 
distribution of the data.

Table 3 
Results of the Paired-Sample t-Test Between tgrav Values Obtained From 
Implicit and Explicit Solutions
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which originally had a β value of 0.6), neither when the implicit nor explicit solution was used. In both cases, 
using a constant β value resulted in up to 25% underestimations in the tgrav predictions. The course the soil texture, 
the less the underestimation was caused by a constant β value. In other words, the finer the soil texture, the higher 
the deviation of tgrav values obtained when constant and soil-dependent β values were used. The reason is that 
fine-textured soils usually have β values almost double or even larger than the constant value of 0.6.

To compare the soil-dependent and constant β cases when the implicit or explicit solution is used, a paired-sample 
t-test at p < 0.05 showed (Table 4) that our null hypothesis that the pairwise difference between the tgrav vectors 

Figure 7. Relative differences, 𝐴𝐴
(

𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
)

∕𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 × 100 , between characteristic times determined using the implicit (𝐴𝐴 𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ) 
and explicit (tgrav) solutions (based on three terms) for the examined soil textural classes.

Figure 8. The ratios between soil characteristic times, tgrav, determined by implicit or explicit solutions when soil-dependent 
β values (Equation 7) and constant β value of 0.6 (Haverkamp et al., 1994) are applied. In both solutions, tgrav values obtained 
from soil-dependent β values are considered as reference (𝐴𝐴 𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ) for comparisons.
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has a mean equal to zero is rejected, meaning that the differences between tgrav 
values are significant. We hence strongly recommend using soil-dependent 
β values in future applications, whether using implicit or explicit solutions.

3.5. Application of tgrav

This section briefly discusses selected top-of-mind examples where the 
used of tgrav is suggested. As mentioned in the Introduction, several previous 
studies used tgrav from different perspectives. Philip (1969) himself used the 
parameter (denoted here as tgrav,Philip) as a priory indicator to determine the 
time domain validity of his TSE solution and its truncated forms. We  there-
fore briefly explored if tgrav and tgrav,Philip accurately represented the time 
domain validity of AAP TSE approximate expansions (which are identical to 
Philip's TSE approximate expansions) by analyzing 1D simulated infiltration 
curves obtained with HYDRUS-1D. Results are shown in Figure 9 for four 
soil textural classes.

As can be seen from the results in Figure 9, tgrav,Philip was not a good time 
domain validity indicator for the TSE approximations. It gave a far too 
high value its safe use. Interestingly, Figure 9 shows that the AAP 2T equa-
tion diverged from the simulated data already at small infiltration times in 
nearly all cases, thus suggesting that this approximation should be used with 
caution, especially for late infiltration times. The 3T equation represented 
infiltration well, even at later times when its curve diverges from the simu-
lated HYDRUS-1D curves. Furthermore, the reformulated tgrav seemed to be 
a good indicator for the time domain validity of the 3T equation.

As mentioned before, Ross et al. (1996) used tgrav,Philip and Igrav,Philip to scale times (𝐴𝐴 𝐴𝐴∗ = 2𝐴𝐴∕𝐴𝐴grav,Philip ) and the cumu-
lative infiltration curves (𝐴𝐴 𝐴𝐴∗ = 2𝐴𝐴∕𝐴𝐴grav,Philip ) to obtain a dimensionless implicit analytical equation for infiltration. 
Their equation could be used to determine dimensionless parameters of the normalized soil water retention and 
hydraulic conductivity functions. Using reformulated tgrav and Igrav values instead of tgrav,Philip and Igrav,Philip to 
scale the infiltration data would produce different scaling factors and indirectly lead to varying predictions of 
the hydraulic parameters. While beyond the scope of our current study, this topic should be analyzed in future 
research.

We also briefly evaluated if the reformulated tgrav or tgrav,Philip parameters were able to accurately represent the time 
to reach steady-state infiltration, as done by Reynolds et al. (2000). For this we fitted linear steady-state lines to 
the HYDRUS data to determine steady-state infiltration (Issi) attainment as explained in Section 2.6. The results 
in Figure 10 show that although tgrav with a value of 0.24 hr is still slightly conservative for coarse-textured soils, 
it served as a useful indicator for attainment of steady-state infiltration (with tssi of 0.2 hr) not captured by Philip's 
tgrav,Philip value of 0.1 hr. By comparison, tgrav of the fine-textured soils was too conservative (much to the right 
of the tangent departure point), where tgrav (∼80 hr) was almost three times the value of tssi (30 hr). In contrast, 
tgrav,Philip was located to the left, indicating early times for steady-state infiltration with a tgrav,Philip value of 26 hr. 
Still, it seems that times slightly beyond tgrav,Philip would capture the time to steady-state infiltration more accu-
rately. In case of intermediate soil textures (loam, silt, silty clay, and silty clay loam), both criteria seemed to fall 
beyond the time when steady state is reached (with tgrav and tgrav,Philip being 5–10 times larger than tssi). Therefore, 
neither tgrav,Philip nor tgrav would be suitable estimates for the time when steady-state infiltration will be reached. We 
note that tgrav, which defines the time during which the truncated approximate expansions of AAP TSE are valid, 
can serve as an indicator for the attainment of steady-state infiltration if the approximation is accurate for all times 
until steady state is reached (i.e., remaining valid beyond the time when steady state is reached). Figure 10 shows 
that tgrav,Philip violated this condition by for fine-textured (Figure 10a) and coarse-textured (Figure 10d) soils.

Lassabatere et  al.  (2006) also used tgrav,Philip in their BEST method to determine the maximum valid time, 
𝐴𝐴 𝐴𝐴max = 1∕4(1 − 𝐵𝐵)2𝐴𝐴grav with B a constant, for transient expressions as well as for the predictions of S and Ks. 

Considering that the reformulated tgrav improves the estimation of the maximum time, using it in the BEST 

Implicit solution Explicit solution

Soil-
dependent β

Constant 
β

Soil-
dependent 

β
Constant 

β

Mean a 1.347 1.275 1.383 1.297

Variance 1.221 1.160 1.187 1.160

Observations 12 12 12 12

Pearson Correlation 0.9999 0.9995

Hypothesized Mean Dif. 0 0

Degrees of Freedom, df 11 11

t Stat 8.240 8.236

P(T ≤ t) one-tail 2.46E−06 2.48E−06

t Critical one-tail 1.796 1.796

P(T ≤ t) two-tail 4.93E−06 4.95E−06

t Critical two-tail 2.201 2.201

 aLogarithms (log10) of tgrav data were used in the analysis to ensure a normal 
distribution of the data.

Table 4 
Results of the Paired-Sample t-Test Between tgrav Values Obtained With 
the Implicit and Explicit Solutions Along With Soil-Dependent β Values 
(Equation 7) and a Constant Value of 0.6 as Suggested by Haverkamp 
et al. (1994)
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method may result in different results for the S and Ks predictions. Using similar concept as those presented here, 
Rahmati et al. (2020) also showed that inferring soil hydraulic parameters (S and Ks) from infiltration data works 
better when the infiltration data are measured until tgrav is reached. They furthermore showed that infiltration 
measurements for durations shorter than tgrav could lead to significant errors in the S and Ks predictions, particu-
larly when estimating Ks. Their results also indicated that the infiltration measurements should be long enough 
for robust interpretation of real field measurements.

4. Conclusions
The seminal papers of Philip  (1957, 1969) describing cumulative infiltration by a TSE is still a widely used 
approach to analyze the infiltration process, where water enters the soil profile via the surface. Regardless of 
whether the gravity time, tgrav, serves as a good indicator for the time domain validity of Philip's TSE expansion, 
it is of great interest to reformulate tgrav using all possible terms of the TSE, or by means of another general infil-
tration model that is valid for all infiltration times. This because the higher-order terms in the TSE are known 
to exert a significant impact on infiltration, especially at longer times where the truncated two-term equation of 
Philip fails to describe infiltration appropriately. On the other hand, theoretically, tgrav is a general concept based 
on equal contribution of capillarity and gravity on cumulative infiltration, that remains valid regardless of the 
infiltration model being used. For these reasons, we reformulated tgrav to be 𝐴𝐴 𝐴𝐴grav = 𝐹𝐹 (𝛽𝛽)𝑆𝑆2∕(𝐾𝐾𝑠𝑠 −𝐾𝐾𝑖𝑖)

2 using the 
AAP of Parlange et al. (1982), which has no time constraints. Using AAP, we were able to explore the effects of a 
fourth parameter (a soil specific shape parameter β) on tgrav in addition to S, Ks, and Ki. The effects of β on tgrav are 
implemented in the form of a functional relationship F(β). Finally, we provided an implicit and an explicit solu-
tion for F(β) and examined the effects of β (both constant and soil-dependent) and initial soil moisture conditions 

Figure 9. Simulated infiltration curves obtained with HYDRUS-1D and the approximate 2T, 3T 4T, and 5T approximate expansions (AAP TSE) as obtained for four 
out of 12 USDA soil textural classes (a): clay, (b) loam, (c) silt, and (d) sand. Also shown is the steady-state infiltration curve of linear regression matched to the late-
time simulation data. The red and blue dots show the relationships between time domain validity of the AAP time series expansion (TSE) and the reformulated tgrav and 
classical tgrav,Philip characteristic times.
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on F(β), and consequently on tgrav. Finally, we analyzed the use of the classical tgrav,Philip as well as a reformulated 
tgrav on the plausibility of these two time-indicators to serve as time domain validity criteria for AAP TSE and 
related approximate expansions (which are assumed to be identical to Philip's TSE approximate expansions), and 
as a criterion for determining the time when steady state infiltration is reached. We also discussed the possible 
accuracy of the inferred soil hydraulic properties when classical and reformulated tgrav definitions are considered. 
Based on the results, the following conclusions can be drawn:
 1. The reformulated tgrav is 2.59–3.25 times (3.1 on average) larger than the classical tgrav. The differences between 

the classical and reformulated tgrav parameters seem to be much higher in the case of fine-textured soils.
 2. Practically, a linear relationship exists between F(β) and β, with higher β values leading to higher F(β) values.
 3. The initial soil moisture content did not cause any changes in F(β) and consequently also not in tgrav, thus 

showing that for nearly all soil saturation degrees and soil types, the term δ related to Ki can be set to zero with 
little or no effects on the results.

 4. Finding considerable differences between the implicit and explicit solutions of F(β), final calculations of tgrav 
also showed significant differences between the implicit and explicit solutions, particularly for intermediate 
soil texture classes. We therefore recommend usage of the implicit solution.

 5. The use of a constant value of 0.6 for β, as suggested by Haverkamp et al. (1994), resulted in erroneous tgrav 
values compared to soil dependent β values when the explicit solution was used. This was not the case when 
the implicit solution was used. We therefore strongly suggest avoiding a constant β for practical implications, 
or to use a constant β only along with the implicit solution.

 6. The reformulated tgrav appeared to be a better indicator for the time domain validity of Philip's TSE and the 
AAP 3T approximation compared to the classical tgrav,Philip.

 7. The reformulated tgrav expressions were found to be suitable for the time when steady state infiltration is reached 
in coarse-textured soils. However, both classical and reformulated tgrav expressions performed poorly when 
applied to fine-textured soils, for which the reformulated tgrav was too conservative and tgrav,Philip too short.

Figure 10. Relationships between the time to reach steady-state infiltration and the reformulated tgrav and classical tgrav,Philip characteristic times for four out of 12 USDA 
soil classes (a) clay, (b) loam, (c) silt, and (d) sand. Simulated data were based on HYDRUS simulations.
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Data Availability Statement
The test data is accessible at https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20068.
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