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ABSTRACT:
This study compares 16 vowel-normalization methods for purposes of sociophonetic research. Most of the previous

work in this domain has focused on the performance of normalization methods on steady-state vowels. By contrast,

this study explicitly considers dynamic formant trajectories, using generalized additive models to model these nonli-

nearly. Normalization methods were compared using a hand-corrected dataset from the Flemish-Dutch Teacher

Corpus, which contains 160 speakers from 8 geographical regions, who spoke regionally accented versions of

Netherlandic/Flemish Standard Dutch. Normalization performance was assessed by comparing the methods’ abilities

to remove anatomical variation, retain vowel distinctions, and explain variation in the normalized F0–F3. In addi-

tion, it was established whether normalization competes with by-speaker random effects or supplements it, by com-

paring how much between-speaker variance remained to be apportioned to random effects after normalization. The

results partly reproduce the good performance of Lobanov, Gerstman, and Nearey 1 found earlier and generally favor

log-mean and centroid methods. However, newer methods achieve higher effect sizes (i.e., explain more variance) at

only marginally worse performances. Random effects were found to be equally useful before and after normaliza-

tion, showing that they complement it. The findings are interpreted in light of the way that the different methods han-

dle formant dynamics. VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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I. INTRODUCTION

A moderate number of studies have compared different

vowel-normalization methods for phonetic research (e.g.,

Adank et al., 2004a; Fabricius et al., 2009; Flynn, 2011;

Flynn and Foulkes, 2011; Johnson, 2020; Morrison and

Nearey, 2006; van der Harst, 2011). Contrasting with older

studies (e.g., Disner, 1980; Hindle, 1978), it is since Adank

et al. (2004a) that these comparisons have explicitly

addressed the sociophonetic dimension of regional variation

as one of the goals of normalization. However, with the

notable exception of van der Harst (2011), prior studies

comparing normalization methods have included only static
information, i.e., measuring all of the vowels at a single

time point, usually the midpoint. In recent times, concerns

have arisen that comparisons of normalization methods

based only on static information do not adequately represent

vowels that are time-dynamic (Clopper et al., 2005;

Hillenbrand et al., 2001). Because phonetic microvariation

in formant trajectories is a major component of sociolinguis-

tic variation (Fox and Jacewicz, 2009; Jacewicz and Fox,

2013; Van de Velde, 1996; van der Harst, 2011; van Hout

et al., 1999), and this information is used by human listeners

(Jacewicz et al., 2003; Milroy and Gordon, 2003; Peeters,

1991; Strange et al., 1983; Voeten, 2021a,b), neglecting this

source of variation might affect the conclusions of these

prior studies that are comparing normalization methods.

Thus, the present paper aims to update our knowledge of

normalization techniques by explicitly taking account of

time-dynamic information. In addition, this paper investi-

gates the extent to which speaker normalization is still a

methodological necessity given that nowadays the same task

might be employed by by-speaker random effects in the con-

text of a mixed-effects model or generalized additive mixed

model. We investigate these issues using 16 currently used

normalization methods, which are implemented in the R
package Visible Vowels (visvow; VV; Heeringa and Van

de Velde, 20181).

A comparison of normalization methods taking explicit

account of dynamic information in vowels was conducted

by van der Harst (2011). He developed and compared three

different approaches. The target approach represents phono-

logical monophthongs by their midpoint and phonological

diphthongs by the difference between two points measured

at 25% and 75% of their production, respectively. This is

one example of a “steady-state” method, which reduces tra-

jectorial information to a single data point; we refer to the

different measures in Fox and Jacewicz (2009) for alterna-

tive ways to compress trajectorial information into a unidi-

mensional measure of vowel dynamicity. Contrasting with

steady-state approaches, van der Harst (2011) also included

two dynamic approaches with respect to time. The time-
points approach takes samples at 25%, 37.5%, 50%, 67.5%,
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and 75% of their production (excluding the expected 12.5%

and 87.5% as a result of coarticulation being too strong at

those time points; see van der Harst, 2011) for mono-

phthongs and diphthongs and fits a linear regression through

these seven time points. The regression approach takes the

same seven samples as the time-points approach but then

fits a cubic polynomial regression to them. Using the same

criteria as Adank et al. (2004a), van der Harst (2011) evalu-

ated a set of normalization techniques for each of these three

approaches. He found a clear advantage of the dynamic

approaches over the target approach, especially with the

time-points approach being superior in revealing regional

variation. However, this advantage of time-dynamic

approaches over the steady-state approach did not result in a

different recommendation in the comparison of normaliza-

tion techniques: just like in Adank et al. (2004a), Lobanov

(1971) came out as the best-performing normalization

method, in achieving the best balance between normalizing

anatomical differences while retaining vowel distinctions

and sociolinguistic differences.

Building on this prior work, this paper revisits the issue

of vowel normalization for sociolinguistic research with a

specific focus on formant dynamics. There have been two

major developments in the past decade that warrant this

revisit. First, new normalization methods have been devel-

oped, which the present paper includes in its investigation.

Second, the past decades have seen significant methodologi-

cal advances in phonetics, particularly with respect to the

statistical analysis of time-dynamic data. One important

innovation for our study is the rise of generalized additive

models (GAMs; Wood, 2017) in phonetic research. These

are regression-based models that allow the incorporation of

nonlinear smoothing splines into the predictor structure,

whose degree of smoothness (i.e., shrinkage from a wiggly

curve to a straight line) is determined automatically. This

means that GAMs model dynamic formant trajectories in a

potentially nonlinear way and in doing so, find the optimal

balance between overfitting and underfitting that is war-

ranted by the data. This paints an important contrast with

van der Harst’s (2011) time-points approach and regression

approach: the time-points approach is likely to have under-

fitted the data while the regression approach was shown by

van der Harst (2011) to have produced an overfit (of the 84

coefficients produced by the regression approach, only 11

turned out to be needed in the linear-discriminant analyses

by van der Harst, 2011).

To facilitate a comparison with GAMs, the regression

approach and time-points approach can be conceptualized in

terms of (unpenalized) basis functions. The time-points

approach, which draws a single straight line through the

time-point predictor, uses a single basis function, x; per van

der Harst (2011), this underfits. The regression approach,

which fits a cubic polynomial, uses three basis functions, x,

x2, x3; per van der Harst (2011), this overfits. GAMs use

basis functions that incorporate an automatically determined

penalty term, which enables them to strike a balance

between these under- and overfits. Beyond simple

exponential-family models, GAMs also support multinomial

logistic regression—a more modern alternative to linear-

discriminant analysis2 that can easily be fitted within the

GAM framework—and multivariate analysis of variance,

making them directly comparable to the linear models run

by van der Harst (2011) and Adank et al. (2004a), with the

added ability to nonlinearly model the vowels’ dynamic for-

mant trajectories in an optimal way.

A second methodological innovation and an important

additional component to the impetus of this paper has been

the ability to incorporate random effects into statistical mod-

els. While such mixed-effects models have been around

since Henderson (1950), it is only in the past two decades

that they have gained traction in the phonetic sciences (hav-

ing entered the field via psycholinguistics, e.g., Baayen

et al., 2008). The ability to incorporate speakers as a random

factor has important consequences for the field of normali-

zation because this opens up an alternative means by which

to capture anatomical differences. Thus, from a methodolog-

ical point of view, fitting a full-random-effects model might

render speaker normalization obsolete. Alternatively, how-

ever, the separate step of speaker normalization may make

the random effects more identifiable by separating the ana-

tomical variation from phonological and social variation and

thereby allowing the latter sources to be estimated with

more precision (for an example, see Voeten, 2021b). There

is evidence from the domain of speech perception that

human listeners take the latter “double” approach: Barreda

(2020) presents results supporting a view in which the lis-

tener estimates a speaker-specific spectral scaling parameter

w (as in the shared log-mean model by Nearey, 1978; see

Sec. II B 14), which is shown to be strongly correlated with

speaker anatomy, operationalized in Barreda (2020) through

their physical height. Clearly, this is a type of normalization,

and one that does not take into account sociolinguistic and

idiosyncratic variation in the speaker’s vowel productions;

this kind of linguistic variation, Barreda (2020) argues, is

estimated separately (but not independently) from w. In a

follow-up paper, Barreda (2021) demonstrates that in per-

ception, normalization methods that operate using such uni-

form scaling factors outperform those that incorporate

additional processing. The latter includes models such as,

for example, centroid normalization by Lobanov (1971);

according to the perceptual results by Barreda (2021), such

methods overnormalize, i.e., remove phonetic variation that

is not strictly anatomical in nature. Thus, given this possible

tension between methodological considerations (by-speaker

random effects should subsume speaker normalization) and

psycholinguistic considerations (normalization should be an

independent step before estimating any subsequent speaker-

specific variation), the present paper explicitly investigates

the extent to which by-speaker random effects provide addi-

tional added value in addition to speaker normalization.

Our approach is described in Sec. II. We compare 16

normalization methods on 6 evaluation criteria. Four of our

evaluation criteria are based on those by van der Harst

(2011) and Adank et al. (2004a) with appropriate
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modifications to fit within the GAM framework. These crite-

ria are the preservation of phonemic variation, the normali-

zation of anatomical variation due to speaker sex, the

preservation of regional variation, and the identification of

the main sources of variation after normalization. In Adank

et al. (2004a) and van der Harst (2011), the first three of

these criteria were operationalized by performing linear-

discriminant analyses of their four acoustic measures F0,

F1, F2, and F3 onto each of these three categories and test-

ing whether they were separated by the analysis above

chance level. For the fourth criterion, both sources used

multivariate analysis of variance to demonstrate the sources

of variation (vowel, speaker sex, and speaker regional ori-

gin) containing speaker-discriminative information. As out-

lined in Sec. II C, we extend these approaches to GAMs and,

in addition, we contribute two novel evaluation criteria. The

first concerns the normalization of differences between indi-

vidual speakers, of which we have 160 in our dataset. The

second new criterion considers the explained variance in an

analysis of known regional differences in the trajectory of

the first formant. For this criterion, we run an analysis as a

sociolinguist would do it, and consider the proportion of var-

iance explained by an analysis that incorporates by-speaker

random effects, relative to an analysis that does not include

these.

It is prudent to reflect on the goals that these evaluation

criteria aim to set. This is particularly relevant for our quali-

tative criteria, which are explained in Sect. II C 1. For these,

each evaluation metric returns a single score, which is a per-

centage of tokens correctly recovered after normalization. In

contrast to the quantitative criteria in Secs. II C 2 and II C 3,

these need to be interpreted: is a high percentage of correct

classification an indicator of a “good” normalization method

or a “bad” normalization method? A particularly illustrative

circumstance of this problem is the case of speaker sex. In

our comparison, we follow Adank et al. (2004a), Broadbent

et al. (1956), Ladefoged and Broadbent (1957), and van der

Harst (2011) in considering information on speaker sex to

be anatomical in nature, which, hence, should be subject to

normalization. Thus, a normalization method is considered

good if it normalizes away the information that keeps the

two sexes in our dataset apart. However, van der Harst

(2011, p. 101) rightly points out that “it might of course be

the case that some of these differences are (partially) socio-

linguistic,” in other words, that they are indexically repre-

sentative of the social construct of gender (on which there is

ample sociolinguistic literature; for an overview, see e.g.,

Eckert and McConnell-Ginet, 2013). Similarly, while we

again follow the aforementioned literature in considering a

normalization method to be well-performing if it maintains

phonemic distinctions between vowels, this does not match

the full breadth of phonetic reality: casual speakers coarticu-

late and even outright merge vowel categories all of the

time. Therefore, a normalization method that separates vow-

els well, particularly if it does so better than the unnormal-

ized baseline, might have succeeded at drawing out the

correct vowel categories of the data, but it might just as well

have introduced an artefactual separation of vowels that are

actually more variable in reality. In this hypothetical case,

the data have been overnormalized, which has caused legiti-

mate phonetic variation to be lost.

An additional criterion, which we added on top of those

proposed by Adank et al. (2004a), presents a similar ques-

tion. Each cell in the corpus design sampled five individuals

from the same region, age, and sex. For the corpus’s pur-

poses of analyzing regional variation, the argument could be

made that the variation within design cells (i.e., speakers

matched on these sociolinguistic variables) should necessar-

ily be smaller than the variation between them, such that

speakers from the same cell should be rendered less distinct

by the normalization process. Conversely, however, it has

been shown that even speakers that are perfectly matched on

sociolinguistic variables may differ from one another for

reasons that are not purely anatomical (see Kendall and

Fridland, 2012, for a particularly illustrative example of

individual speakers from the same family). Thus, while it

might be considered the main goal of speaker normalization

to normalize differences between individual speakers from

the same design cell, it is not realistic to require this expec-

tation to be met perfectly—if it is, this might just as well be

a sign of, again, overnormalization. Finally, an anonymous

reviewer raises a similar concern about the separation of

vowel categories: is it good to achieve a wide dispersion of

the different vowels after normalization or is that an unreal-

istic representation of actual language use? We follow

previous work in considering the separation (or rather, the

non-merging) of vowel categories desirable. We believe that

this choice is warranted by the nature of our data: recordings

of individuals aiming to speak Standard Dutch on a word-

list reading task. This is the most formal of speech styles

and, hence, should achieve the highest degree of phoneme

dispersion. However, again, we acknowledge that this con-

sideration need not apply to other kinds of data for which a

researcher might have different requirements.

In settling these issues, we believe that perceptual com-

parisons of normalization methods, like the one carried out

by Barreda (2021), stand to add a lot of value: the ultimate

benchmark for a good or bad normalization method is the

language users themselves. The present paper, however,

does not take a psycholinguistic stance but rather takes a

quantitative-variationist stance. This means that our goal is

not to identify the most psychologically real normalization

method but rather to inventory the extent to which the dif-

ferent methods preserve and draw out variation that is mean-

ingful for sociophonetics. Since it is well known that

listeners cannot be probed on all aspects of linguistic varia-

tion (see, e.g., indicator variables; Labov, 1972), this paper

makes the following choices. We consider a normalization

method to perform well if it maintains differences between

vowels and regions, normalizes differences between the two

speaker sexes, and similarly normalizes individual speaker

differences. However, our goals might be different from the

reader’s; we, therefore, warmly recommend readers to eval-

uate our results in light of their own research concerns, and
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then choose a normalization method that performs best on

the criteria that they find important.

II. METHOD

A. The data

We used the dataset by van der Harst (2011), which is

included with the tutorial to VV3 (see the supplementary

material4) and comprises the word-list component of the

Dutch Teacher Corpus (Adank, 2003; van Hout et al.,
1999). The speakers in this dataset consist of 160

secondary-school teachers of the Dutch language, who each

speak their respective variety of Standard Dutch

(Netherlandic Standard Dutch or Flemish Standard Dutch).

The speakers come from a total of eight major dialect

regions in the Dutch language continuum: four in The

Netherlands and four in Flanders. Each of these are subdi-

vided into central (NL, Randstad; FL, Brabant), middle (NL,

Gelderland; FL, East-Flanders), and two geographically

peripheral regions (NL, Groningen and Netherlandic

Limburg; FL, West-Flanders and Flemish Limburg). These

regions’ local interpretations of the supraregional standard

are not homogeneous such that differences between these

regions show up in objective phonetic measurements (van

der Harst, 2011, Chap. 4; Voeten, 2021c) and subjective per-

ception (Pinget et al., 2014). We refer to van der Harst

(2011) for more details about the data, including their

recording and manual measurement.

The data were collected by van Hout et al. (1999) and

measured by van der Harst (2011) in the following way. Each

speaker produced two mono- or disyllabic isolated words con-

taining one of the vowels /i,u,I,Y,O,e+,ø+,o+,Ei,œy,Au,E,a+,A/

and one monosyllabic word containing the vowel /y/. All of

the vowels were followed by /s/ or /t/ and in the stressed posi-

tion. F0–F3 of the vowels were extracted at 25%, 37.5%,

50%, 67.5%, and 75% production using Praat (Boersma and

Weenink, 2007; Burg algorithm, time step 10 ms, F0 range

50–300 Hz for men and 100–500 Hz for women, cutoff point

for formants 5000 Hz for men and 5500 Hz for women, win-

dow length 25 ms, pre-emphasis from 50 Hz) with the number

of linear predictive coding (LPC) coefficients determined

manually for every token (specified indirectly by setting the

number of formants to half the number of LPC coefficients);

we refer to van der Harst (2011) for further details. van der

Harst (2011) manually checked the entire dataset for outliers

or measurement errors and corrected these by hand. In our

analyses of these data, we excluded time points one and seven

based on findings by van der Harst (2011) that these are too

strongly influenced by coarticulation. Thus, for each speaker

and each vowel, we have five time points ranging from 25%

production to 75% production. Figure 1 shows a vowel-space

plot of all of the vowel types in the dataset sampled at the

aforementioned five time points.

An important feature of the dataset is that there are no

missing cells: all of the speakers produced all of the vowels.

The dataset is not completely balanced because for the

vowel /y/, we have only one word per speaker as opposed to

two words per speaker for the other vowels. Some normali-

zation methods are sensitive to imbalances in the data,

whether these are due to missing cells or due to different

numbers of observations per cell, as in our case of the vowel

/y/. We refer to Barreda and Nearey (2018) for a comparison

of some normalization methods’ sensitivity to missing data

as well as a proposed approach to remove this sensitivity.

Since their proposal was originally applied to the method of

Nearey 2, we discuss it in Sec. II B 14. VV also safeguards

against imbalances in the design affecting the outcomes of

normalization. VV does so by first computing the cell means

and only using those to derive normalization factors. This

prior averaging removes bias that may arise due to differ-

ences in sample size among the different speakers and vow-

els. This means that our present comparison of

normalization methods is not affected by differences in sen-

sitivity to imbalances between the normalization methods.

Thus, our results are based only on the methods’ perfor-

mance on the task of normalization.

B. The normalization methods

We evaluate 16 speaker-normalization procedures. All

of them are available in VV. In VV, the user can also choose

from different scales: Hz, Bark, ERB (equivalent rectangular

bandwidth), ln, mel, and ST (semitones).5 Scales and

speaker-normalization methods can be combined, except for

six normalization methods in which a logarithmic transforma-

tion is included. The present paper focuses on normalization

methods and draws its comparisons on the original scales for

which each method was proposed. For a comparison of dif-

ferent scale transformations, we refer to Sch€utzler (2015).

Most of the 16 normalization methods are described in

at least 1 of the following publications: Adank (2003);

Adank et al. (2004a); Barreda and Nearey (2018);

FIG. 1. A vowel-space plot of the raw data used in our comparisons of nor-

malization methods, averaged over the 160 speakers per time point and

vowel.
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Esfandiaria and Alinezhadb (2014); Flynn (2011), and van

der Harst (2011). Below we describe how we implemented

them in the current study. Some normalization methods use

descriptive statistics like the minimum, maximum, mean, or

standard deviation. When F0 and formants are measured at

multiple time points, the measurements at all of the time points

are included when the descriptive statistics are calculated.

The 16 normalization methods can be classified into

four types: formant-ratio normalization, range normaliza-

tion, centroid normalization, and log-mean normalization.

For an overview, see Table I.

1. Peterson (1951)

Peterson (1951) plotted F1/F3 ratios against F2/F3

ratios. For time point t, the measurements of the vowel pro-

ductions are normalized as

FPeterson
t1 ¼ Ft1

Ft3
; (1)

FPeterson
t2 ¼ Ft2

Ft3
; (2)

Peterson (1951) calculated the ratios on the basis of

mel-transformed measurements. In VV, the ratios can be cal-

culated on the basis of any scale that is available in the appli-

cation. The method by Peterson (1951) uses the mel scale, for

which we use the formula by O’Shaughnessy (1987).

2. Sussman (1986)

Using the normalization method of Sussman (1986),

each formant value is expressed relative to the geometric

mean of F1, F2, and F3. For time point t and variable i, the

measurements of the vowel productions are normalized as

FSussman
ti ¼ ln

Fti

F̂t

� �
; (3)

where F̂t is the geometric mean, which is calculated from the

values of the three formants of the vowel production that is

being normalized, and ln is the natural logarithm. The geomet-

ric mean is defined as the nth root of the product of n numbers,

i.e., for a set of numbers x1; x2;…; xn, the geometric mean is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2 � � � � � xn

n
p

: (4)

3. Syrdal and Gopal (1986)

The normalization procedure of Syrdal and Gopal

(1986) is based on their observation that the distances F0

and F1 and between F2 and F3 are similar across speakers.

In their model, F1 minus F0 corresponds to the height

dimension and F3 minus F2 corresponds to the front-back

dimension. They found that F1–F0 differences of high vow-

els and F3–F2 differences of front vowels are both less than

3 Bark. F1 and F2 frequencies of vowels are normalized at

time point t by the following formulas:

FS&G
t1 ¼ Ft1 � Ft0; (5)

FS&G
t2 ¼ Ft3 � Ft2: (6)

Syrdal and Gopal (1986) applied the two formulas to

frequencies that were scaled to Bark and, therefore, this

TABLE I. An overview of formant normalization methods. When no scale is given under “base scale,” any scale is possible. A checkmark in the column

“use descriptive statistics” indicates that the procedure uses descriptive statistics such as minimum, mean, etc.

Applied to
Requires Base Use

F0 F1 F2 F3 F0 F3 scale descriptive statistics

Formant-ratio normalization

Peterson (1951) � � � �

Sussman (1986) � � � � Hz

Syrdal and Gopal (1986) � � � �

Miller (1989) � � � � Hz �

Thomas and Kendall (2007) � � � �

Range normalization

Gerstman (1968) � � � � �

Centroid normalization

Lobanov (1971) � � � � �

Watt and Fabricius (2002) � � �

Fabricius et al. (2009) � � �

Bigham (2008) � � �

Heeringa and Van de Velde (2021) 1 � � �

Heeringa and Van de Velde (2021) 2 � � �

Log-mean normalization

Nearey (1978) 1 � � � � Hz �

Nearey (1978) 2 � � � � Hz �

Labov (2006) 1 � � Hz �

Labov (2006) 2 � � � � Hz �
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method is known as the “Bark-distance method.” We use

the formula by Traunm€uller (1990) to compute the Bark

transformation.

4. Miller (1989)

Using the normalization method of Miller (1989), for-

mants are compared with their lower neighbours, i.e., F3

with F2 and F2 with F1. The first formant is normalized

against a sensory reference (SR), which is calculated for

each vowel type using geometric mean F0 (lF0), which is

corrected for a constant c.

In our implementation, the geometric mean, lF0, is cal-

culated as follows. First, the F0 values are averaged per

combination of speaker, vowel type, and time point, where

“time point” is one of the time points that were chosen by

the user to be considered when calculating descriptive statis-

tics. Using the averages in the dataset obtained in this way,

the geometric mean, lF0, is calculated per speaker and

descriptive time point.

The constant, c, is the geometric mean of the F0 aver-

age of the male speakers and the F0 average of the female

speakers. Miller (1989) suggested to use c¼ 168 Hz, a value

he found on the basis of F0 measurements in the Peterson

and Barney database (Peterson and Barney, 1952). The F0

average of the male speakers was 125 Hz, and the F0 aver-

age of the female speakers was 225 Hz. The geometric mean

is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð125� 225Þ

p
¼ 168 Hz. In VV, rather than recalculating

the constant, c, from the input data, c¼ 168 Hz is used.

Thus, the procedure can still be used when the input table

contains measurements from only male speakers or only

female speakers or when the number of speakers is small.

Using this constant, SR is computed as

SR ¼ 168� lF0

168

� �1=3

: (7)

Now formant frequencies in Hz of all of the vowel pro-

ductions are normalized for each time point, t, by the fol-

lowing formulas:

FMiller
t1 ¼ ln

Ft1

SR

� �
; (8)

FMiller
t2 ¼ ln

Ft2

Ft1

� �
; (9)

FMiller
t3 ¼ ln

Ft3

Ft2

� �
; (10)

where ln is the natural logarithm.6

5. Thomas and Kendall (2007)

In the procedure by Thomas and Kendall (2007), F0,

F1, and F2 are normalized by subtracting them from F3.

Formant frequencies of vowel productions are normalized

for a time point t as

FT&K
t1 ¼ Ft3 � Ft1; (11)

FT&K
t2 ¼ Ft3 � Ft2: (12)

6. Gerstman (1968)

Gerstman (1968) normalizes the frequencies of a for-

mant on the basis of the lowest and highest values found per

speaker and across the selected descriptive time points. The

frequencies are scaled so that they range from 0 to 999.

As a first step, for each of the variables F0, F1, F2, and

F3, the values are averaged per combination of speaker,

vowel type, and descriptive time point, which is a time point

that was chosen by the user to be considered when calculat-

ing descriptive statistics. This prevents vowel types that

occur frequently from being weighted more heavily than

those that occur less frequently.

Next, per speaker, the formant values are averaged

across the descriptive time points, and the minima and max-

ima of the averaged F1, F2, and F3 values are found. Then,

for the vowel productions of speaker k, time point t, and var-

iable i, we calculate

FGerstman
kti ¼ 999� Fkti � Fmin

ki

Fmax
ki � Fmin

ki

: (13)

7. Lobanov (1971)

A normalization procedure that expresses values rela-

tive to the hypothetical center of a speaker’s vowel space is

the one developed by Lobanov (1971). Using this method, a

speaker’s mean formant frequency is subtracted from a spe-

cific formant value and then divided by the standard devia-

tion for that formant. In the normalized F1–F2 plot,

Lobanov’s centroid lies at (0,0).

First, for each of the variables F1, F2, and F3, the mean

and standard deviation are calculated per speaker and per

the descriptive time points that were chosen by the user to

be considered when calculating descriptive statistics. We

have to ensure that vowel types are weighted equally rather

than by their token frequencies in the data. This is solved by

averaging the F1, F2, and F3 measurements per combination

of speaker, vowel type, and descriptive time point. Then,

per speaker, the mean and standard deviation of those aver-

aged values are calculated.

Using the mean and standard deviation, the formant fre-

quencies of all of the vowel productions of speaker k, time

point t, and variable i, are normalized as follows:

FLobanov
kti ¼ Fkti � lki

rki
: (14)

8. Watt and Fabricius (2002)

The procedure of Watt and Fabricius (2002) expresses

frequency values relative to a constructed centroid that is
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based on points that trace the edges of a speaker’s vowel

space. After normalization, the centroid lies at (1,1) in the

F1–F2 plot.

As a first step, for each of the variables F1 and F2, the val-

ues are averaged per combination of speaker, vowel type, and

descriptive time point, which is a time point that was chosen by

the user to be considered when calculating descriptive statistics.

This prevents more frequently occurring vowels from being

weighted more strongly than those that occur less frequently.

Next, per speaker, the formant values are averaged across

the descriptive time points. Thus, we get a dataset that contains

average F1 and F2 frequencies for each vowel type per

speaker. Using this dataset, for each speaker, we find the cor-

ners of the vowel space, which we call [i], [a], and [u0].7 The

coordinates of [i] are the minimum F1 and maximum F2. The

coordinates of [a] are the maximum F1 and the F2 of the vowel

type that has the maximum F1. The minimum F1 is also

assigned to the F1 and the F2 of [u0]. Now, the coordinate of

formant, i, of the centroid for speaker, k, is calculated as

Ski ¼
Fki i½ � þ Fki a½ � þ Fki u0½ �

3
: (15)

Formant values of the vowel productions of speaker k,

formant i, and time point t are normalized as

FW&F
kti ¼ Fkti

Ski
: (16)

9. Fabricius et al. (2009)

A weakness of the normalization method of Watt and

Fabricius (2002), which was noticed by Thomas and

Kendall (2007), is that the F2 of [a] might differ consider-

ably from the ideal F2 midpoint of the vowel space—which

they propose to obtain by averaging the F2 value of [i] and

the F2 value of [u0]—and, thus, distort the lower part of the

vowel space. Therefore, Fabricius et al. (2009) proposed an

alternative with a modified formula for calculation of the

coordinates of the centroid such that

Ski ¼

Fki i½ � þ Fki a½ � þ Fki u0½ �
3

; i ¼ 1;

Fki i½ � þ Fki u0½ �
2

; i ¼ 2:

8>><
>>:

(17)

10. Bigham (2008)

When using the procedures of Watt and Fabricius

(2002) and Fabricius et al. (2009), it is assumed that the

vowel space has the shape of a triangle. The normalization

method of Bigham (2008) is another derivation of the proce-

dure of Watt and Fabricius (2002), but its centroid is

obtained on the basis of the corners of a quadrilateral. As

corners, Bigham chose the American English vowels [I],
[u], [æ], and the average of [A] and [O] with tokens taken

from word-list items of the form /hVd/.

We implemented a modified version of the method of

Bigham (2008) that was proposed by Flynn (2011) (see also

Flynn and Foulkes, 2011). When using this approach, the

centroid is obtained on the basis of the corners of the vowel

space, which are called [i0], [a0], [o0], and [u0]. The coordi-

nates of [i0] are minimum F1 and maximum F2. Minimum

F1 is also assigned to [u0]. Minimum F2 is assigned to [u0]
and [o0]. Maximum F1 is assigned to [o0] and [a0].

In Bigham (2008), the F2 of [a0] was set equal to the F2

of the vowel [æ]. The implementation in VV first tries to

find [æ] in the dataset. If the vowel is not found, the proce-

dure searches for [æ;]; if that vowel is not found, the proce-

dure searches for [æ+], then for [a], then for [a;], then for

[a+], then for [E], then for [E;], and then for [E+]. For the data

in our comparison of normalization methods, this will cause

the vowel [a+] to be used to compute [a0].
Now, the coordinate of formant, i, of the centroid for

speaker, k, is calculated as

Ski ¼
Fki i0½ � þ Fki a0½ � þ Fki o0½ � þ Fki u0½ �

4
: (18)

11. Heeringa and Van de Velde (2021) 1

The last three methods that we discussed all assume

that vowel spaces have a specific shape. Such assumptions

have been criticized in the literature as not adequately repre-

senting the full space that is available to speakers (Fox and

Jacewicz, 2008, 2017; Jacewicz et al., 2007). In response to

this, Heeringa and Van de Velde (2021) developed a nor-

malization method that does not assume a particular shape.

It calculates a speaker’s centroid on the basis of all of the

points that constitute the convex hull that encloses the

speaker’s vowel space.

Just as for the procedures of Watt and Fabricius (2002),

Fabricius et al. (2009), and Bigham (2008), per speaker, the

average F1 and F2 is calculated for each combination of

vowel type and descriptive time point such that each vowel

is equally weighed in the normalization procedure.

Next, per speaker, the averaged formant values are aver-

aged across the descriptive time points. Thus, per speaker,

averaged F1 and F2 frequencies are obtained for all of the

vowel types. Then, for each speaker, the vowels that consti-

tute the convex hull are obtained on the basis of the speaker’s

frequencies of the vowel types. To this end, the R function

chull from the grDevices package is used. This function

uses an algorithm that is given by Eddy (1977). On the basis

of the F1,F2 coordinates of the vowels that constitute the con-

vex hull, the coordinates of a speaker’s centroid are found

with the R function poly_center of the pracma package

(Borchers, 2021). This function calculates the centroid as the

center (of mass) of the convex hull.

If Ski is the coordinate of formant i of the centroid of the

vowel space of speaker k, then the vowel productions of

speaker k, formant i, and time point t are normalized as follows:

Fconvex hull
kti ¼ Fkti

Ski
: (19)
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12. Heeringa and Van de Velde (2021) 2

Using this method, a speaker’s centroid is calculated in

the same way as done in the previous method. However, it

differs from that method because it integrates the centroid

values in Lobanov’s z-score formula.

Characteristic for Lobanov’s normalization is that it

does not only center the vowels around (F1¼ 0, F2¼ 0) but

also scales them by dividing them by the standard deviation

of the vowel formants, which makes the sizes of the vowel

spaces of the speakers more comparable. However, a weak-

ness of the method is that l and r depend on the distribution

of the vowels in the vowel space. Vowel spaces with the

same shapes but with different distributions within the

vowel spaces will have different l’s and r’s. To solve this,

Heeringa and Van de Velde (2021) made two changes to

Lobanov’s z-score formula. First, they replaced the l of for-

mant i and speaker k by the centroid coordinate Ski. Second,

the r is calculated on the basis of only the formant values, i,
of the vowels that constitute the convex hull. The result is a

variant of Lobanov’s method that does not depend on the

distribution of the vowels within the vowel spaces of the

speakers.

The vowels that constitute the convex hull may be

irregularly distributed, i.e., the Euclidean distances of pairs

of consecutive vowels may vary (strongly). To solve this,

the number of points on the convex hull is interpolated up to

1000 points. Next, the points are classified in ten classes of

equal width, both on the basis of F1 and F2. It appeared that

by using ten classes, there is an equilibrium between the

even distribution of the points on the convex hull that pro-

vides sufficient detail. The ten F1 classes do not exactly cor-

respond with the F2 classes as F1 and F2 differences of the

pairs of two successive points do not correlate exactly.

Therefore, points may have the same F1 class and different

F2 classes or the other way around. For each F1 class–F2

class combination, points that have an F1 within the F1 class

and an F2 within the F2 class are averaged. Then, the num-

ber of points becomes equal to the number of F1-class–F2-

class combinations. r is calculated as the standard deviation

of the formant values, i, of these points.

13. Nearey (1978) 1

The normalization methods of Nearey (1978) transform

Hz measurements to logarithms and, subsequently, subtract

a reference value from the log-transformed frequencies. The

reference value is a log-mean. In the version explained in

this section, the log-mean is calculated for each variable

individually. Therefore, van der Harst (2011) refers to this

procedure as Nearey’s individual log-mean model.
Nearey (1978) originally proposed his methods to nor-

malize formant values, specifically F1 and F2. In the later

NORM software suite (Thomas and Kendall, 2007), ver-

sions of the methods were added that also normalize F3. In

addition to these three formants, the formulas used by

Adank et al. (2004a) and van der Harst (2011) also normal-

ize F0; the same is possible in VV.

In our implementation, we first calculate the natural

logarithms of the acoustic variables F0–F3, which should be

given in Hz. Next, we calculate means, l, for each combina-

tion of speaker, vowel type, descriptive time point, and vari-

able, thus preventing vowel types that occur more

frequently in the data from being weighted more strongly

than vowel types that occur less frequently. Using these

means, for each speaker, k, and variable, i, we calculate the

average frequency, l ln
ki . Then, for each speaker k, each time

point t, and each variable I, we calculate

FNearey 1
kti ¼ F ln

kti � l ln
ki : (20)

14. Nearey (1978) 2 / Barreda and Nearey (2018)

The method presented in this section is similar to the

method explained in Sec. II B 13 except that the reference

value is calculated by taking a speaker’s mean of the log-

means of the variables F1, F2, and F3. Because the same

reference value is used for normalizing F1, F2, and F3 fre-

quencies, van der Harst (2011) refers to this method as

Nearey’s shared log-mean model.
The formula used by Adank et al. (2004a) and van der

Harst (2011) also included F0 in the speaker-specific refer-

ence value. However, it was pointed out by Barreda (2021)

that the inclusion of F0 is detrimental to the performance of

the Nearey 2 method. For this reason, in our comparison of

normalization methods, we do not include F0 in the refer-

ence value and, therefore, also do not attempt to compute a

normalization of F0. Thus, our version of the method only

works with F1, F2, and F3.

In our implementation, we first compute the aforemen-

tioned speaker-specific reference value. This scaling factor

is called wk:

wk ¼
l ln

k1 þ l ln
k2 þ l ln

k3

3
: (21)

Normalized log frequencies of the F1–F3 of speaker k, time

point t, and variable i are then calculated by subtracting the

per-speaker wk values,

FNearey 2
kti ¼ F ln

kti � wk: (22)

It was noted by Barreda and Nearey (2018) that wk will

be biased if a dataset does not contain the same number of

productions for all of the vowels for all of the speakers. They

propose a modification (which can also be generalized to cer-

tain other methods that use speaker-specific scaling factors,

e.g., Lobanov, 1971) that avoids this bias by replacing the

direct averages computed by Nearey 2 with the correspond-

ing marginal effects of a linear-regression model. Given each

speaker k, vowel type v, time point t, and formant i, they fit

F ln
kvti ¼ bkXk þ bvtiXvti þ �; (23)

where Xk is an indicator matrix coding for the individual

speakers, and Xvti is a sum-coded matrix indicating the
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combinations of vowels, time points, and formants in the

data. Because the model does not include an intercept term,

the speaker-specific scaling factors, Sk, are given directly by

the estimates for bk, such that Sk ¼ b̂k. These are then used

as robust replacements for wk in the Nearey 2 method:

FBarreda & Nearey
kti ¼ F ln

kti � Sk: (24)

The benefit of this approach lies in the sum-coding scheme

used in the factor Xvti. While the estimates for the bvti coeffi-

cients will still be influenced by the number of tokens in the

data, the bk coefficients will not be, because the sum-coding

scheme is an orthogonal coding scheme. Thus, any imbal-

ance in the number of productions per speaker, vowel, time

point, and formant will not carry through into the speaker-

specific Sk values.

As mentioned in Sec. II A, VV derives normalization

factors like wk after first averaging the data over the differ-

ent productions per speaker, vowel type, time point, and

formant. This is mathematically equivalent to the linear-

regression approach by Barreda and Nearey (2018). As

such, for purposes of the present comparison of normaliza-

tion methods, the method of Barreda and Nearey (2018) is

equivalent to the method of Nearey 2. In our results, we,

therefore, refer to both methods as “Nearey 2/Barreda and

Nearey.”

15. Labov’s ANAE method 1

The normalization procedure of Labov et al. (2006) was

designed for the Atlas of North American English (ANAE).

First, the natural logarithms of the formant values (F1,

F2) given in Hz are calculated. Using these values, the grand

mean, G, is calculated, which is the geometric mean of the

values of F1 and F2 of all of the speakers.

To avoid any bias toward vowel types that are more fre-

quently found in the data, we generate a table that contains

the geometric mean of the productions for each combination

of speaker, vowel type, descriptive time point, and formant

(F1, F2).

Given nk speakers, nv vowel types, nt time points, and

ni(¼2) formants, we calculate G as the geometric mean of

the nk � nv � nt � ni geometric means.

In addition, the mean, Sk, per speaker is calculated as

the geometric mean of the nv � nt � ni geometric means of

speaker k.

Subsequently, the anti-log (with base e, i.e., the expo-

nent) of the difference between the two means (G� Sk) is

calculated, which results in a speaker-specific scaling factor,

dk,

dk ¼ exp ðG� SkÞ: (25)

Next, the formant values of the vowel productions of

speaker k, time point t, and formant i are multiplied by this

scaling factor such that

FLabov
kti ¼ dk � Fkti: (26)

Labov et al. (2006) pointed out that G, using F1 and F2,

stabilizes when the number of speakers exceeds 345.

Thomas and Kendall (2007) mention that this may indicate

“that this method (and perhaps speaker-extrinsic methods in

general) are best only when a study has an exceptionally

high subject count.”

16. Labov’s ANAE method 2

Labov’s ANAE method 2 uses the same procedure as

used in Labov’s ANAE method 1 except that F3 measure-

ments are also included when G and Sk are calculated.

Therefore, when using this method in VV, F3 formant fre-

quencies are normalized as well.

C. Evaluating normalization performance

We evaluated normalization performance using criteria

inspired by those of Adank et al. (2004a) but modified to be

able to incorporate nonlinear trajectories. For example, the

linear-discriminant analyses by Adank et al. (2004a) cannot

naturally include trajectorial information, whereas this is
possible when using multinomial logistic GAMs instead.

For ease of exposition, we divide our evaluation criteria

into three components:

(1) Classification, based on the similar evaluation criteria

used by Adank et al. (2004a). Here, we established the

extent to which the different normalization methods

were able to distinguish sociolinguistically relevant cat-

egories, such as maintaining distinctions between vowel

phonemes;

(2) sources of variation, based on the eponymous evaluation

criterion by Adank et al. (2004a). Here, we established

the amount of sociolinguistic information that the differ-

ent normalization methods were able to capture; and

(3) explained variance. This is a novel criterion, where we

established how well a sociolinguistic analysis would be

able to explain sociolinguistically relevant variance in

the data. We use this to investigate, based on model

comparisons, the interplay between speaker normaliza-

tion and the presence of by-speaker random effects in a

statistical analysis.

1. Classification

Our classification component builds on the approach by

Adank et al. (2004a). The following questions are addressed

here:

(1) How well do the different techniques maintain distinc-

tions between different vowels?

(2a) How well do the different techniques remove speaker-

sex-related information in the F0?

(2b) How well do the different techniques remove speaker-

sex-related information in the formants?

(3) How well do the different techniques maintain regional

differences?
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These questions coincide with the three sources of

information mentioned by Broadbent et al. (1956) and

Ladefoged and Broadbent (1957).

We also added a fourth question, which considers the

extent to which individual speakers are indistinguishable

from one another after normalization. As discussed in the

Introduction, a complete neutralization of interspeaker dif-

ferences is almost certainly a case of overnormalization.

However, for an investigation of regional variation, it is still

useful to know the extent to which differences between

speakers from the same region–age–sex combination indeed

do and do not remain in the data after normalization; by def-

inition, such information reflects individual differences that

cannot be regional in nature and, hence, might be undesir-

able to researchers specifically interested in regional differ-

ences. This is formalized by question (4):

(4) How well do the different techniques remove informa-

tion that can separate individual speakers in the same

design cell?

We used multinomial logistic GAMs to answer these

questions by taking the category enquired about for each ques-

tion (respectively, “vowel,” “sex,” “region,” and “speaker”) as

a dependent variable and the normalized F0–F3 as predictors

(or subsets thereof for normalization methods that do not retain

F0 and/or F3). For region, one model was fitted for each vowel

and the results from these 15 models were pooled (cf. Adank

et al., 2004a); for the other three dependent variables, a single

model was run per normalization method. In all of the models,

the F0 and formant values were assumed to interact with a

nonlinear trajectory along the five time points. We modeled

this through an approach called “varying-coefficient

regression,” whereby we modeled time using a thin-plate

regression spline and then multiplied this spline by the relevant

formant values. For example, the model for question (3) would

predict sex out of three thin-plate regression splines along the

predictor “time,” each of which is multiplied by one of the

three formants. The splines were afforded at most five basis

functions such that, in theory, they were able to fit the five time

points exactly, but the extent to which the data warranted the

use of these degrees of freedom was determined automatically

using the restricted maximum likelihood (REML)-based

smoothness-selection methods in R package mgcv (Wood,

2017). Estimation was performed using the extended Fellner-

Schall optimizer by Wood and Fasiolo (2017). After fitting each

model and assessing them for successful convergence, we took

the models’ classification accuracies as our criteria of interest.

These represent the quality of the normalization methods: for

every token in the dataset, its corresponding vowel, speaker sex,

region, and speaker individual are each either classified correctly

or confused with something else, with nothing in between.

2. Sources of variation

We used multivariate normal GAMs to investigate what

time-dynamic sources of variation (vowel, sex, region, and

their interactions) could explain the joint variation in the

normalized F0 and formants for each normalization method.

We took F0–F3 as dependent variables, or the relevant sub-

set of these for normalization methods that do not include

F0 or F3. We set up sum contrasts for the predictors

“vowel,” “sex,” and “region,” and modeled the nonlinear

formant dynamics in the data using a reference smooth (a

thin-plate regression spline with, maximally, five basis func-

tions) along time and difference smooths along time for

each of the contrasts. For each normalization method, we fit-

ted a GAM using function gam from R package mgcv, using

REML as the smoothness-selection criterion and, again, fit-

ting via the extended Fellner-Schall optimizer. All of the

models converged successfully, with the single exception of

the model for Sussman; for that model, we had to fix the

smoothing parameters at effective infinity to get the model

to converge.8 This reduces the model complexity to a

straight line through the five time points, which may, hence,

underexplain the variance in those formant trajectories.

After fitting each model, we computed Wald F-values

for each set of contrasts over all of the acoustic measures

simultaneously; thus, we obtained F-values for the total non-

linear effects of vowel, sex, region, and each of their interac-

tions. The Wald statistics were computed using the

approach by Wood (2003). We then converted these F-

values into partial-eta-squared values using the identity

g2
partial ¼ ðF� edfÞ=ðF� edf þ rdfÞ, where “edf” are the

factor’s estimated degrees of freedom and “rdf” are the cor-

responding residual degrees of freedom. Partial eta squared

was also used by Adank et al. (2004a) here, and has the

advantage that it is a scale-independent measure of effect

size, meaning that its values can be compared across the dif-

ferent normalization methods. These values represent the

quantity of the information that is reproduced by the normal-

ization methods: the size of the effect corresponds to the

amount of information present in the normalized data.

3. Random effects and explained variance

We investigated the extent to which the different nor-

malization methods were able to capture regional variation

between the eight regions. We focused on regional differ-

ences in the vowels’ F1 trajectories, which are known to be

subject to extensive regional variation. This concerns at

least the tense mid vowels /e+,ø+,o+/ and diphthongs

/Ei,œy,Au/ (Jacobi, 2009; Van de Velde, 1996; van der

Harst, 2011; Voeten, 2021a), but Fig. 1 suggests that other

vowels (e.g., /a+/) also vary in F1 across regions. We there-

fore included all 15 vowels in our comparison of the normal-

ization methods, operationalizing the capture of regional

variation by means of the R2 statistic, which represents the

total explained variance by a statistical model. Additionally,

we investigated whether this explained variance improved

significantly by the inclusion of a full by-speaker random-

effects structure. A sociolinguistic analysis of this type

would normally include such random effects, which serve to

absorb any systematic inter-speaker differences, be they

anatomical or sociolinguistic. If random effects serve this
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job well, then a separate speaker-normalization procedure

might be unnecessary. In that case, we would expect a sig-

nificant difference in the baseline model with versus without

random effects but not much change in the normalized data-

sets. We tested this explicitly by comparing two models per

normalization method: one with random effects (i.e., a gen-

eralized additive mixed model, or GAMM) and one without

(i.e., a GAM).

The statistical analyses took the F1 as the dependent

variable. As predictors, we included a thin-plate regression

spline along time by the combination of region and vowel

plus appropriate parametric terms. The splines were

afforded, at most, five basis functions. For the models that

included random effects, we also added a random intercept

by speakers per vowel and a random smooth along time by

speakers per vowel. The models were fitted using function

bam from R package mgcv with discretization enabled to

make it possible to fit even the full-random-effects models.

All of the models converged successfully except for the

model for Gerstman with random effects included. This

model did converge, however, when we forced the random

smooths by participants to be straight lines, similarly to the

Sussman model in Sec. II C 2 (except only applied to

the random smooths rather than to all of the terms in the

model).9

For each model, we extracted its R2 value. This repre-

sents the goodness of fit with values of zero indicating a

total lack of fit and values of one indicating a perfect fit.

These R2 statistics are our metric of interest for comparing

the different normalization methods. In addition, for each

individual normalization method, we computed F-values for

the difference in R2 between the (reduced) model without

random effects and the (full) model with random effects

using the identity F ¼ rdffull � ðR2
full � R2

reducedÞ=ð1� R2
fullÞ,

where “rdf” are the residual degrees of freedom.10 The

resulting statistic is F-distributed with edffull � edfreduced

numerator degrees of freedom and rdffull denominator

degrees of freedom, where “rdf” is the same as before and

“edf” are the model degrees of freedom.

III. RESULTS

A. Classification

Figure 2 shows the extent to which the different normal-

ization techniques were able to preserve the different vowel

identities. Higher percentages indicate better retention of

this important information. Figure 2 is sorted such that the

methods that achieve better vowel separation are closer to

the top. The best-performing method is Lobanov (77% cor-

rect), followed closely by Nearey 1 (75% correct). These

methods plus those by Gerstman, Nearey 2 / Barreda and

Nearey, Labov 2, and Heeringa and Van de Velde 2 separate

the vowels better than the baseline of no normalization—the

latter only achieves 65% correct. Most of the remaining

methods score only marginally worse than this with the

notable exception of Peterson (56% correct), Syrdal and

Gopal (53% correct), and Sussman (51% correct). These

latter three methods score far below the baseline and, hence,

confuse noticably more vowels.

Figure 3 shows the different normalization methods’

performances at normalizing speaker sex. Figure 3 visual-

izes this by means of a stacked-bars plot that splits out the

results by F0 information only, formant information only,

and the combination of both sources of information (cf.

Adank et al., 2004a; van der Harst, 2011). Note that not all

of the normalization methods include F0, and some also do

FIG. 2. Classification accuracies of recovering vowel identities from the

different normalized datasets, with 100% correct indicating that all of the

vowels are identified correctly and 0% indicating total confusion. Higher

accuracies are taken as better performance. The chance level (indicated by

the gray line) is at 11.1%.

FIG. 3. Classification accuracies of recovering speaker sex from the differ-

ent normalized datasets. Lower scores indicate better performance.

The chance level (indicated by the gray line) is at 50%. “Fx” is an abbrevia-

tion for the three terms of F1, F2, and (if returned by the normalization

method) F3.
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not return F3 values. In both cases, the absent information is

simply unused, such that some methods have no F0-only

model and some of the “Fx” models include only F1 and F2,

whereas others include F1, F2, and F3. Figure 3 is, again,

ranked by classification accuracy with a lower percentage

indicating more homogeneization and, thus, better normali-

zation. A perfect normalization method would cause both

sexes to be equally likely for all of the tokens; because the

dataset is totally balanced, this would yield a classification

accuracy of 50%. The best-performing methods are ranked

closest to the top of Fig. 3. It turns out that the top three

approaches—those being Labov 1 (no F0, 52% correct

based on formants), Lobanov (52% F0 only, 50% formants

only, 52% both), and Nearey 1 (52% F0 only, 50% for-

mants only, 52% both)—are nearly indistinguishable from

one another. The methods from Heeringa and Van de

Velde 2 to Syrdal and Gopal all perform rather similarly to

each other (55% correct, on average). The remaining

methods—Thomas and Kendall, Peterson, and the base-

line—all score substantially worse, ranging from 75% cor-

rect (Thomas and Kendall, with F0 and formant

information combined) to as high as 95% correct (baseline,

F0, and formants combined).

The ability of the different normalization techniques to

preserve sociolinguistically meaningful regional differences

is shown in Fig. 4. Following Adank et al. (2004a) and van

der Harst (2011), the analyses were run separately for each

vowel; the resulting classification accuracies are pooled

across these different models. Again, the models are ranked

by performance. We observe that Gerstman performs best,

followed closely by Lobanov, the baseline, and Nearey 1—

all of these score 27% correct after rounding. Then, the

results naturally drop off until reaching Labov 1 at 22% cor-

rect. All of these results well exceed the chance level.

Figure 5 shows the extent to which the different

approaches were able to normalize differences between indi-

vidual speakers. As discussed in the Introduction, this mea-

sure could be considered a double-edged sword: on the one

hand, merging anatomically similar speakers could be con-

sidered the main goal of normalization, but on the other

hand, no two speakers are exactly the same from a sociolin-

guistic point of view (cf. Kendall and Fridland, 2012). Thus,

while the results in Fig. 5 provide more precise information

than the coarse category of speaker sex from Fig. 3, the

method that achieves the highest normalization here is not

necessarily the best method per se. Nonetheless, Fig. 5 does

rank the methods from most-normalizing to least-

normalizing, leaving it up to the researcher to determine

their own trade-off between overnormalization and under-

normalization. As expected, we observe that in the baseline

condition, i.e., in the absence of normalization, the highest

number of speakers can be recovered from the data: 7.41%,

well above chance. The method that normalizes these inter-

speaker differences the strongest is Labov 1, which allows

our classification model to recover only 0.84% of speakers.

Most of the other methods score only a bit above this, start-

ing from Heeringa and Van de Velde 2 at 1.08% correct, but

after reaching Labov 2 (1.66% correct), the remaining two

methods recover well over 2.31% (Thomas and Kendall,

2007) of individual speakers.

B. Sources of variation

Figure 6 shows the partial-eta-squared values for the

nonlinear sources of variation that we tried to account for in

the data. Because partial eta squared is equivalent to a

squared partial correlation coefficient, we can interpret the

numbers in Fig. 6 as proportions of explained variance due

to the individual factor in each facet. For the same reason,

FIG. 4. Classification accuracies of recovering the speakers’ regional ori-

gins from the different normalized datasets. Higher scores indicate better

performance. The chance level is at 12.5%.

FIG. 5. Classification accuracies of recovering the individual speakers from

the different normalized datasets. Lower scores indicate better performance.

The chance level is at 0.63%.
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the sum of a model’s partial-eta-squared values may exceed

one, particularly when the residual variance is small. Figure

6 is sorted such that larger effect sizes (i.e., more variation

retained) are favored for the factors “vowel,” “region,” and

their interaction, and lower effect sizes (i.e., more normali-

zation) are favored for the facets involving sex or its interac-

tions. The methods performing best according to these

criteria over the seven facets are sorted closest to the top.

We observe that for all of the normalization methods,

the largest source of variation is the factor “vowel” with the

different vowels’ formant trajectories, on average, explaining

90% of the partial variance associated with it. This means

that the different vowels are well distinguishable from one

another. For sex, most normalization methods have success-

fully normalized the variation: most normalization methods

score well below the baseline’s 54% explained partial vari-

ance. Thomas and Kendall and Peterson are noteworthy in

this context, having noticeably undernormalized this vari-

ance, with an average g2
partial of .38 between them. The two-

and three-way interactions in which sex is involved all

explain very little variance across all of the normalization

methods. An anonymous reviewer asks whether the poor nor-

malization of speaker sex by Thomas and Kendall and

Peterson is different from the way these methods perform on

single-point data—i.e., whether these two methods are par-

ticularly ill-adapted to trajectory data. We checked this by

rerunning the same analysis with only the vowel midpoints

and changing the thin-plate regression splines to ordinary

factors. The results are nearly the same with, respectively,

g2
partial values of .34 and .42 for the midpoint-only models

versus g2
partial values of .36, and .44 for the time-dynamic

models. Thus, this result is not specific to trajectory data.

On average, the factor region explains 21% partial vari-

ance. It is not necessarily informative to split this out across

the different normalization methods; this is not only because

the different methods seem relatively homogeneous on this

factor but, moreover, because the main effect for region

reflects across-the-board regional differences. However, the

primary regional differentiator in this corpus is not the aver-

age F0–F3 measures altogether but rather their differences

across the different vowels. The main effect is, therefore,

a statistical nuisance term, and it is the interaction “vowel

� region” that is of sociolinguistic interest. On that factor,

the normalization method of Heeringa and Van de Velde 2

retains the largest amount of sociolinguistically relevant

information as it is able to account for 22% of the partial

variance through this interaction. The methods of Heeringa

and Van de Velde 1, Fabricius et al., Watt and Fabricius,

Bigham, and Labov 1 follow quite closely, explaining

between 21% and 19% of the partial variance. The other

methods all ascribe less than 17% of the variance to the

vowel � region interaction, which suggests that they have

not been able to draw out all of the regional variation in

vowel production to be found in the data.

C. Random effects and explained variance

Figure 7 presents the goodness-of-fit values for our

sociolinguistic models of differences in F1 trajectories

between vowels and regions. “�RE” indicates that the

model did not include random effects, “þRE” indicates that

the model did include random effects; Fig. 7 is sorted by the

performance of the former model. When not considering

random effects, we observe that all of the models perform

very similarly, with perhaps Thomas and Kendall as an

FIG. 6. Partial-eta-squared values for sources of variation.
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exception (the latter reaches an R2 of .73, compared to the

other models, which average out on R2 ¼ :88). When ran-

dom effects are included, the methods other than Thomas

and Kendall gain a boost of, on average, þ.06 points on the

R2 metric or a 6% increase in total explained variance. For

Thomas and Kendall, the gain from including random

effects is noticably larger with a difference of þ.17 points

or 17% explained variance. This suggests that Thomas and

Kendall’s method, in principle, undernormalizes but the

missed anatomical variation can be captured by including

random effects, after which it performs on par with the other

random-effects models.

It is important to observe that the baseline model, which

had been fitted to the unnormalized data, does not accrue a

noticeably larger gain between the �RE and þRE models

than the normalized datasets do (the R2 increase for the

baseline model is þ.07). This is important because it shows

that the increase in R2 for the random-effects models cannot

be explained by anatomical factors alone: had that been the

case, the unnormalized data should have seen a much larger

R2 increase after including random effects than the normal-

ized datasets. We believe that an important factor in explain-

ing this is the fact that our design was perfectly balanced

(we have data from all of the participants on all of the

items). In this case, a model with random effects will—by

definition—give the same fit (i.e., coefficient estimates) as a

model without random effects, just with a larger proportion

of explained variance (since some variance will be reallo-

cated from the error to the random effects). As such, the rel-

atively systematic and modest contribution of random

effects might be more visible in an unbalanced dataset, in

which the grand mean and average of the per-speaker means

no longer coincide. The result for purposes of sociophonetic

research is that we observe a clear benefit to including ran-

dom effects, even when data have been normalized. These

results refute the hypothesis that normalization might be

unnecessary as long as a proper random-effects structure is

used; instead, normalization and random effects can work in

tandem. In addition, there do not turn out to be substantial

differences between the different normalization methods in

this regard: all perform similarly, perhaps with the single

exception of Thomas and Kendall, which without and with

random effects scores a few percent points lower than the

other methods. For this method, however, the advantage of

including normalization and random effects also is the clear-

est: any putative undernormalization performed by this

method has been correctly picked up by the random effects.

IV. DISCUSSION

There are two goals to speaker normalization: retaining

(socio)linguistic information (here, vowel identity and

regional origin) and normalizing anatomical differences

(here, speaker sex and individual differences between speak-

ers matched on sex, age, and region). On both of these goals,

the selection of normalization methods by Adank et al.
(2004a) showed the best performance for Lobanov, Nearey

1, and Gerstman. Our results, which include more methods,

reproduce the findings by Adank et al. (2004a) for the first

goal: Lobanov, Nearey 1, and Gerstman perform best. These

are the top three methods for retaining distinctions between

the vowels and in the top four (together with the baseline)

for revealing regional differences. When it comes to normal-

izing anatomical differences, our results diverge from those

by Adank et al. (2004a). Contrary to their findings of, again,

Lobanov, Nearey 1, and Gerstman performing best, we

observe an advantage for log-mean and centroid normaliza-

tion methods. Speaker sex and individual differences

between matched speakers were normalized best by Labov

1, a log-mean method. This is followed by Lobanov’s cen-

troid method, Nearey 1’s log-mean method, and Heeringa

and Van de Velde 2’s centroid method; only then does

Sussman’s formant-ratio method appear. However, for the

individual speaker, Labov 1 (a log-mean method) is fol-

lowed by all of the centroid methods, starting from

Heeringa and Van de Velde 2, after which the remaining

three log-mean methods follow. We also observe that of the

plots in Fig. 7, the five top-performing methods (i.e., those

achieving high effect sizes on variables we want to maintain

and low effect sizes on variables to be normalized) are all

centroid methods as is the seventh, where methods six,

eight, and nine are log-mean methods.

Why do log-mean and centroid methods perform so

well? We believe that part of the reason is to be found in the

way in which they respond to time-dynamic information.

Figure 8 shows how four normalization methods, one of

each type, use the first formant to distinguish between pro-

ductions of /Ei/ in two different regions: Netherlands-

Randstad and Flemish Brabant. These two regions are the

centers of, respectively, the Netherlandic and Flemish

FIG. 7. R2 values of the amount of regional variation in the different vow-

els’ F1 trajectories that could be explained by the models. For all of the nor-

malization methods as well as the baseline, the random-effects model

represents a significant improvement over the fixed-effects-only model (all

p< 0.001).
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varieties of Standard Dutch. We know from prior research

(Adank et al., 2004b; Adank et al., 2007; Van de Velde,

1996; van der Harst, 2011; Voeten, 2021a) that there are

two key differences in the productions of /Ei/ between these

varieties: The Netherlands has a lower nucleus and a higher

target, both of which are reflected in the first formant. To

visualize the use of this information in Fig. 8, we took the

relevant classification models from Fig. 4 and generated pre-

dictions from them onto a grid of time point � F1 values

(mapped to the x and y axes, respectively) while holding the

other variables constant at their means. The z axis represents

the fitted probability (on the logit scale) between the two

regions of interest: positive values indicate a higher proba-

bility of the region being classified as Netherlands-Randstad

while negative values represent Flemish Brabant. We

observe that Lobanov and Nearey 1 accurately reproduce

the expected regional differences. At early time points (i.e.,

in the nucleus), a low F1 is associated with Flemish Brabant

while a high F1 is associated with Netherlands-Randstad. At

late time points (i.e., in the target), a low F1 is associated

with Netherlands-Randstad while a high F1 is associated

with Flemish Brabant. When we turn to Gerstman,11 how-

ever, we see that it has successfully captured the former pat-

tern in the nuclei but fails to reproduce the latter observation

on the targets. Sussman’s method, in turn, not only fails to

reproduce both observations, but the pattern that it does
come up with is actually inverted, using the time-dynamic

information in the signal in an incorrect way. We recom-

mend that future work investigate the extent to which these

observed correlations—log-mean and centroid methods

making fuller use of time-dynamic information and achiev-

ing better performance—can be derived causally from the

mathematical specifications of these normalization methods.

Thus, overall, in choosing a normalization method for

sociophonetic research, we recommend giving strong con-

sideration to log-mean methods (particularly Nearey 1) and

centroid methods (particularly Lobanov). On the tasks of

retaining vowel identities (Fig. 2) and normalizing anatomi-

cal factors (Figs. 3 and 5), these methods excel qualitatively:

they produce relatively few vowel confusions and produce

relatively many sex and speaker confusions (as would

behoove a well-performing speaker-normalization tech-

nique). However, Fig. 6 showed that there are other options

that retain higher quantities of sociolinguistically relevant

information. We emphasize the difference between quality

and quantity in this context: Figure 4 shows that the

Gerstman-Lobanov-Nearey 1 triad is excellently able to find

the qualitatively right information to separate regions based

on these regions’ vowel productions, such that a classifier

like the one we used in Sec. III A is able to separate the

FIG. 8. The decision boundaries for four

normalization methods in their regional

classification of productions of the vowel

/Ei/. Higher log odds ratios denote higher

probabilities of the region being classi-

fied as Netherlands-Randstad, whereas

lower log odds ratios correspond to

higher probabilities of a classification as

Flemish Brabant.
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regions on the basis of this information. However, when

additional information is also present, as is common in anal-

yses of sociolinguistic data, Fig. 6 shows that there are nor-

malization methods other than those by Lobanov that obtain

larger effect sizes, i.e., a higher signal-to-noise ratio and

more statistical power, on the crucial interaction of vowel

� region. If retaining the maximum amount of this informa-

tion is of importance and the cost of slightly higher propor-

tions of vowel confusion and speaker-sex retention is

acceptable, we recommend the method of Heeringa and Van

de Velde 2. This method obtained the highest partial-eta-

squared value on the vowel � region interaction of all of the

methods. This means that it has a high signal-to-noise

ratio—at the cost of having only a slightly weaker signal

than the other methods—translating into smaller residuals

and, hence, higher power.

An anonymous reviewer asks to what extent the quali-

tatively different nature of F0 versus formants might play a

role in the performance of the different normalization

methods. From the perspective of speech production, F0

differs from formants in, among others, two fundamental

ways. First, F0 is strongly influenced by sex and gender;

formants are influenced by these as well (cf. sex-based for-

mant shifts between male and female speakers, sex-based

differences in vowel-space sizes, and gender-based differ-

ences in vowel dispersion) but not as dramatically and

obviously. Second, F0 is used to communicate paralinguis-

tic features (such as the speaker’s emotional state) in addi-

tion to linguistic information (such as phrasal groupings or

lexical tone) while formants do not inherently represent

such information. For purposes of investigating the role of

F0, the normalization methods could be divided into three

types:

(1) Methods that ignore F0. For example, most of the cen-

troid methods (see Table I) only involve F1 and F2. The

methods that ignore F0 are Sussman, Watt and

Fabricius, Fabricius et al., Bigham, Heeringa and Van

de Velde 1 and 2, Nearey 1, and Labov 1 and 2;

(2) methods that return F0 but do not use it (e.g., in calcu-

lating some kind of reference value). One such example

is Lobanov: F0 is not intrinsically involved in the calcu-

lation of the means and standard deviations used as

references except when the variable being normalized

happens to be F0 itself. The full list of these methods is

the baseline, Peterson, Thomas and Kendall, Gerstman,

Lobanov, and Nearey 1; and

(3) methods that use F0 but do not return it. These are

Syrdal and Gopal and Miller, which normalize F1 by

subtracting F0 itself (Syrdal and Gopal) or the F0-based

SR (Miller) from it but do not return F0 itself.

Type-1 and type-2 methods are useful control cases:

Their juxtaposition makes it possible to ascertain the role of

F0 in and of itself. Type-3 methods are particularly interest-

ing for the present question because they introduce F0 in a

Trojan-horse-like way: F0 influences the calculation of the

formants, but the statistical models we use in our evaluations

cannot control for this influence due to F0 itself being absent

from the output of the normalization procedure.

We conducted an exploratory investigation of the role

of F0 on the basis of the multivariate models from Sec.

III B. Due to their having the acoustic measures as multiple

dependent variables at once, these models make it possible

to evaluate simultaneously the contribution of F0 and the

way F0 influences the formants. We tested the role of the 3

different F0 types by means of linear regression on the 119

partial-eta-squared values from Sec. III B. We converted

these into partial correlation coefficients by taking their

square roots and then applied the z-transformation of Fisher

(1921) to these to yield a Gaussian random variable, on

which linear-regression analysis is valid. We used function

lme from R package nlme to fit a linear model taking these

transformed effect sizes as the dependent variable. We

included fixed effects for the three F0 types (“F0 type”), the

seven factors from Fig. 6 (“factor”), and their interaction

(all coded using deviation coding). Also, we added a random

intercept by normalization methods. The fixed-effects

results showed significant main effects of “factor,” which

reflects that some effects (e.g., vowel) from Fig. 6 had larger

effect sizes than others (e.g., sex) across the board. We did

not find any significant main effect of F0 type. Most impor-

tantly, of the 12 possible interactions between F0 type and

“factor,” we found 4 that were significant. Type-1 methods

achieved lower effect sizes than the other methods on sex

[b̂ ¼ �2:21; SE ðstandard errorÞ ¼ 0:57; t84 ¼ �3:90, p<
0.001], which confirms that methods that ignore F0 retain

less information about speaker sex (which the results from

Fig. 3 strongly corroborate). Type-1 methods achieved

higher effect sizes on vowel (b̂ ¼ 2:09; SE ¼ 0:57;
t84 ¼ 3:69, p< 0.001), which means that excluding F0

results in a slightly better separation of the different vowels.

We surmise that this is because F0 is essentially noise when

it comes to vowel identity, such that models that exclude it

simply profit from a higher signal-to-noise ratio in identify-

ing the individual vowels. Type-2 methods, in contrast,

show a completely inverted pattern: these methods achieved

significantly higher effect sizes on sex (b̂ ¼ 2:64;
SE ¼ 0:61; t84 ¼ 4:35, p< 0.001), and significantly lower

ones on vowel (b̂ ¼ �1:51; SE ¼ 0:61; t84 ¼ �2:49,

p¼ 0.01). Type-3 methods, then, are in between the other

two methods. On the basis of this brief exploratory analysis,

we conclude that F0 type does make a difference: Methods

that completely exclude F0 retain less information on

speaker sex and also return better-dispersed vowels com-

pared to methods that retain F0. In addition, if a method

does make use of F0, these differences are more pronounced

if the F0 information remains explicitly available in the

analysis (i.e., type-2 methods) than if it is withheld from the

model (i.e., type-3 methods).

An additional issue that was explicitly investigated in

this paper has been the possible relationship between

(knowledge-based) speaker normalization and (knowledge-

poor) by-speaker random effects. The question was whether

random effects would be useful either instead of or
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supplementary to speaker normalization. Our results from

Sec. II C 3 clearly supported the latter view and discounted

the former. There was an overall benefit to including ran-

dom effects that was the same for the unnormalized baseline

and the different normalized datasets. As such, normaliza-

tion and random effects were found to offer independent

contributions rather than one supplanting the other.

Furthermore, in one specific case (namely, the normalization

method of Thomas and Kendall), random effects were found

to effectively compensate for undernormalization. The

method of Thomas and Kendall retains a relatively high

amount of anatomical information (Fig. 3), which translated

into a lower amount of explained variance in our sociolin-

guistic analysis in Sec. III C when random effects were not

included. However, after random effects were added, the

method performed on par with the others; this shows that

part of the additional variation accounted for was the same

as that for the other methods, whereas another part was due

to anatomical differences that the method had undernormal-

ized. In other words, Thomas and Kendall retained some

between-speaker anatomical variation, which was able to

distinguish speaker sexes and be captured by random

effects. This shows that researchers can afford themselves a

bit of freedom in their choices of normalization methods:

Should the optimal method for a given problem be one that

does not normalize to the fullest extent, random effects will

compensate for this.

The previous paragraph demonstrated one instance of a

more general point: A researcher’s choice of normalization

method depends on their research question. If there is one of

the factors we investigated in Sec. III A that the researcher

strongly cares about in isolation, it is a valid strategy to sim-

ply pick the normalization method that scores best on that

evaluation criterion. If the researcher is more concerned

about a particular factor in the presence of (possibly many)

others, Sec. III B may be of more help. We note, furthermore,

that our normalization criteria need to be viewed in the con-

text of all of the speakers speaking one standardized variety

in which there are small but notable regional differences. In a

different setting, different properties might be desirable. For

example, Lobanov excellently homogenizes tokens of the

same vowel category produced by different speakers (Fig. 2),

but in cases of stronger variation, where there may also be

differences in the centroid location and contour shape of the

relevant vowel category, such homogeneization might not be

desired (and even within this language situation, one could

raise objections to this goal in light of e.g., Kendall and

Fridland, 2012). In a similar vein, we have considered infor-

mation on speaker sex to be anatomical in nature (following

Adank et al., 2004a and van der Harst, 2011). However,

while sex is indeed often not of sociolinguistic interest, the

closely related notion of gender often is; in such a context, a

method that we consider good in Fig. 3 might actually be

considered to be bad. We, thus, cannot offer a one-size-fits-

all “optimal normalization method”; rather, our results should

be taken to guide a careful consideration of the relative

advantages and disadvantages of the different options.

V. CONCLUSION

This paper considered 16 normalization methods in

their performance on a well-known and validated dataset of

regional variation, explicitly taking account of nonlinear

formant dynamics. Our investigation partially reproduced

the standing recommendation to use Lobanov, Nearey 1, or

Gerstman (Adank et al., 2004a) based on their excellent

classification performances. However, if seeking to draw out

the maximum amount of sociolinguistic variation in the

presence of other factors, our results show that it is worth-

while to consider possible alternatives (e.g., Heeringa and

Van de Velde 2). We also investigated the contribution of

random effects and their interaction with the choice of nor-

malization method (including no normalization) and found

that normalization and random effects operate indepen-

dently and complement one another. While a definitive

choice of optimal normalization method will, by necessity,

depend on research-specific considerations, we believe that

our results offer a viable starting point for other researchers

in sociolinguistics for making these considerations.
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2An advantage of multinomial logistic regression over linear-discriminant
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5van der Harst (2011) rightly points out that Adank (2003) and Adank

et al. (2004a) do not display the formulas for ERB and mel correctly. In
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