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CD4+ conventional T cells (Tconvs) mediate adaptive immune responses, whereas
regulatory T cells (Tregs) suppress those responses to safeguard the body from
autoimmunity and inflammatory diseases. The opposing activities of Tconvs and Tregs
depend on the stage of the immune response and their environment, with an orchestrating
role for cytokine- and costimulatory receptors. Nutrient availability also impacts T-cell
functionality via metabolic and biosynthetic processes that are largely unexplored. Many
data argue that costimulation by Tumor Necrosis Factor Receptor 2 (TNFR2) favors
support of Treg over Tconv responses and therefore TNFR2 is a key clinical target. Here,
we review the pertinent literature on this topic and highlight the newly identified role of
TNFR2 as a metabolic regulator for thymus-derived (t)Tregs. We present novel
transcriptomic and metabolomic data that show the differential impact of TNFR2 on
Tconv and tTreg gene expression and reveal distinct metabolic impact on both cell types.
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INTRODUCTION

Adaptive immunity is controlled by the opposing activities of Tconvs and Tregs. The Treg lineage is
hallmarked by expression of the master transcriptional regulator FOXP3 that, in conjunction with
other transcription factors, dictates Treg function (1, 2). CD4+ T cells may gain FOXP3 expression
during thymic development and thus become tTregs that have a T-cell receptor (TCR) repertoire
focused on self-antigens. Alternatively, CD4+ Tconvs may gain FOXP3 expression and convert into
peripherally induced (p)Tregs during responses to foreign antigens (1, 2). In most tissues,
specialized tTreg subsets reside that respond and adapt to Tconv responses (3, 4). Tregs prevent
autoimmunity, maintain tissue homeostasis and limit inflammation. Aberrant Treg function may
therefore contribute to immune disorders or cancer (5–7). To improve immunotherapy of such
diseases, we must understand the signals that control Tconv and Treg responses. These responses
are initiated in lymphoid organs, but continue and often persist in many non-lymphoid tissues in
health and disease (3, 4). Both T-cell types are activated by engagement of their TCR, which together
with costimulatory- and cytokine receptor stimulation leads to proliferation and effector
differentiation (8). Besides these signals that are primarily delivered by dendritic cells (DCs),
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other environmental signals such as nutrient availability impact
T-cell responses (9). Especially in rapidly proliferating cells,
nutrients provide the metabolic building blocks for
biosynthetic pathways (10). Therefore, it can be envisioned
that the interplay of immune receptors and nutrient
metabolism is important for the activity of Tconvs and Tregs.

Tconvs and Tregs share numerous immunoregulatory
receptors. These may differentially impact the response of each
cell type, due to differential wiring of signal transduction
pathways (11) and other physiological differences between the
cell types. Altered signaling in Tregs is for example due to
constitutive low expression of STAT4, which disallows pro-
inflammatory cytokine expression (11), or due to binding of
FOXP3 to NFAT, which disallows IL-2 production (12).
Accumulating data emphasize the selective importance of the
T-cell costimulatory receptor TNFR2 for promoting Treg as
opposed to Tconv responses. In mouse models, TNFR2-
stimulated Treg responses were shown to protect from
autoimmunity and graft-versus-host disease (13–17). These in
vivo studies independently demonstrated that TNFR2 expression
on Tregs is essential to maintain the expression of Treg signature
molecules such as FOXP3, CD25 and CTLA-4, that are
important for suppressive function. We recently reported that
TNFR2 costimulation causes a glycolytic switch in activated
human tTregs, providing the first evidence that TNFR2 can
regulate cell metabolism (18). Given the great interest in
antibody-based TNFR2 targeting in immune-related diseases, it
is important to understand the consequences of TNFR2
costimulation for Tconv and Treg responses. At present, data
suggest that TNFR2 preferentially promotes Treg over Tconv
responses. Here, we review the validity of this assumption and
present recent data from our own laboratory that highlight the
response of tTregs and Tconvs to TNFR2 costimulation at the
metabolic level. TNFR2 differentially regulates metabolism of
tTregs and Tconvs, which may have implications for physiology,
cell therapy and drug targeting.
RATIONALE FOR TNFR2 TARGETING IN
IMMUNE-RELATED DISEASES

TNF(R) Targeting in Disease
Tumor Necrosis Factor (TNF) is a cytokine involved in a
plethora of biological processes and is well known for its pro-
inflammatory properties (19). Its involvement in the
pathogenesis of autoimmune and chronic inflammatory
diseases such as rheumatoid arthritis has led to the
development and broad clinical application of TNF-blocking
agents, including the antibodies infliximab, adalimumab and
golimumab and the soluble IgG1-TNFR2 fusion protein
etanercept (20, 21). Despite the successes of TNF-blocking
therapies, these treatments are ineffective for part of the
patients, can have side effects and can even exacerbate the
disease (22–25). Around 30% of rheumatoid arthritis patients
withdraw from treatment with a TNF-blocking agent for these
reasons in the first year of therapy (26). This calls for a better
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understanding of the mechanist ic consequences of
TNF inhibition.

TNF is initially expressed on the cell surface as a
transmembrane molecule and cleaved to be released in its
soluble form (27–29). Either soluble or transmembrane TNF
can activate TNFR1 (TNFRSF1A), while transmembrane TNF
primarily activates TNFR2 (TNFRSF1B) (30, 31). TNFR1 is a
ubiquitously expressed receptor, while TNFR2 has a more
restricted tissue distribution (https://www.proteinatlas.org/).
Both receptors link to TRAF signaling adaptors that can
mediate cell survival, chemokine and cytokine signaling, but
only TNFR1 has a death domain that can bind TRADD and
mediate cell death by apoptosis or necroptosis (19, 32, 33).

It is already known for decades that TNF can have both pro-
inflammatory and anti-inflammatory effects (32, 34–37).
Neutralization of TNF in immune-related diseases aims to
block the pro-inflammatory effects of TNF–TNFR1 signaling
(38). However, such intervention will also block the anti-
inflammatory properties of TNF, which seem to largely result
from TNFR2 signaling into Tregs (32, 37, 39). Thus, drugs
interfering with TNF function may restrain Treg responses and
therefore be pro- instead of anti-inflammatory. Drugs that
specifically modulate either TNFR1 or TNFR2 activity will
therefore be more suited to combat inflammatory and
autoimmune diseases and transplant rejection, as has been
reviewed comprehensively (38, 40–45).

The Role of TNFR2 on Tregs and Tconvs
In human peripheral blood, TNFR2 is expressed by more than
80% of Tregs that are identified as FOXP3+CD25hi cells (46).
TNFR2 is upregulated on human and mouse Tregs upon TCR
stimulation, indicating that TNFR2 is particularly expressed on
effector Tregs as opposed to resting or naïve Tregs (18, 47). On
Tregs, TNFR2 supports FOXP3 expression and proliferation and
maintains their suppressive activity (13, 18, 47–51). Specific
polymorphisms in the human TNFRSF1B gene of which one
was shown to impair TNFR2 signaling (52) are associated with
inflammatory bowel disease, ankylosing spondylitis, lupus and/
or rheumatoid arthritis, supporting the idea that TNFR2 protects
against these diseases (40, 53–58). In mouse models, further
evidence has been gathered that support this notion. Wild-type
but not TNFR2-deficient Tregs could inhibit experimental colitis
in mice (13). In experimental autoimmune encephalomyelitis
(EAE), a mouse model for multiple sclerosis, Treg-restricted
TNFR2 deficiency led to a reduction in expression of Treg
signature molecules and suppressive function, which was
associated with disease exacerbation (14). Another study
supports the notion that Tregs require TNFR2 expression to
suppress EAE (15). Tregs also selectively expanded upon TNFR2
agonism and reduced graft-versus-host disease in a TNFR2-
dependent manner in allogeneic hematopoietic stem cell
transplantation in mice (16, 17). Whereas promoting TNFR2
activity on Tregs could be promising in autoimmune diseases
and transplantation, TNFR2 inhibition is considered in cancer
therapy (59). High TNFR2 expression is observed on certain
cancers and on tumor-associated Tregs (59–63). TNFR2
agonism and antagonism are currently being explored in both
June 2022 | Volume 13 | Article 881166
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autoimmune diseases and cancer, potentially opening new
treatment avenues (62, 64–66).

TNFR2 functions as a costimulatory receptor not only on
Tregs, but also on Tconvs by lowering the threshold of T-cell
activation and increasing survival and proliferation (67–70).
TNFR2 expression is upregulated on Tconvs upon TCR
activation and is associated with resistance to Treg-mediated
suppression in mice, as determined by increased proliferation
and effector cytokine production (47, 71). TNFR2-deficient
Tconvs failed to induce colitis in mice, which was linked to
reduced proliferation and less IFN-g production (72). Together,
these findings indicate that TNFR2 has costimulatory effects on
both Tconvs and Tregs, but that under specific conditions, Treg
responsiveness prevails. Here we offer our recent experimental
findings resulting from unbiased “omics” approaches that give
new insights into the effects of TNFR2 agonism on both tTregs
and Tconvs. We believe that this information can stimulate new
research directions with clinical relevance, in particular
regarding the impact of environmental metabolic cues on the
Treg/Tconv balance and functional outcomes.

We present an unbiased, side-by-side analysis of the
consequences of TNFR2 costimulation on human Tconvs and
tTregs at the level of gene expression and cell metabolism. The
Treg lineage consists of tTregs and pTregs (73, 74), but pTregs
are largely restricted to mucosal surfaces and the maternal-fetal
interface (75, 76). The majority of Tregs in vivo are tTregs, which
control systemic and tissue-specific autoimmunity (3, 77).
Therefore, we focused on tTregs that were isolated to high
purity from blood as described before (18, 78).
EFFECTS OF TNFR2 ON TREGS
AND TCONVS ACCORDING TO OUR
RECENT WORK

Transcriptomics Identifies Responses of
Tconvs and tTregs to TNFR2
Costimulation
Contrary to Tconvs, Tregs rely on costimulation to initiate
proliferation after in vitro triggering of the TCR/CD3 complex
by anti-CD3 antibody (79). In addition, Tregs require exogenous
IL-2 in such assays, since they cannot produce this cytokine after
activation, unlike Tconvs (80, 81). Accordingly, in our
experimental setting, Tconvs already started to proliferate
upon stimulation of the TCR/CD3 complex alone, whereas
tTregs required additional costimulation by either CD28 or
TNFR2 (Figure 1A) (18). We used a comparative setting of
Tconvs and tTregs that had been pre-expanded, rested and
restimulated via CD3 alone, CD3/CD28 or CD3/TNFR2. After
24 h, cells were harvested for transcriptome analysis (18)
(Supplementary Methods).

We aimed to globally identify the most discriminative
transcripts that separated the sample groups, with focus on the
effects of TNFR2 or CD28 costimulation. Therefore, we
performed sparse partial least squares discriminant analysis
(sPLS–DA), which involves supervised clustering due to
Frontiers in Immunology | www.frontiersin.org 3
awareness of the sample classes (Figure 1B) (83). Component
1 (47%) distinguished tTregs from Tconvs regardless of
costimulation (Figure 1B). Component 2 (13%) discriminated
TNFR2-costimulated tTregs from CD3(/CD28)-stimulated
tTregs and did the same, albeit more modestly, for Tconvs
(Figure 1B, left panel). Component 3 (4%) highlighted a
unique reaction of Tconvs to TNFR2 costimulation
(Figure 1B, right panel). A representative heat map including
transcripts with the highest contribution to components 1–3
showed that TNFR2-costimulated Tconvs and tTregs both
expressed genes that set them apart from their CD3- or CD3/
CD28-stimulated counterparts (Figure 1C, Supplementary
Table 1). However, the transcripts that contributed most to
component 2 indicated a greater impact of TNFR2 costimulation
on the transcriptome of tTregs versus that of Tconvs. The
transcriptomes of CD3- or CD3/CD28-stimulated tTregs and
Tconvs clustered more closely together, especially in Tconvs,
likely due to the convergence of CD3- and CD28 signaling
pathways (84).

In terms of numbers of differentially expressed genes
following TNFR2 costimulation, a Venn diagram revealed in
an unbiased manner that tTregs respond more strongly to
TNFR2 costimulation than Tconvs (Figure 1D). Gene
Ontology (GO) enrichment analysis showed that processes
related to mitosis were highly overrepresented in TNFR2-
costimulated tTregs (Figure 1E, left panel). In TNFR2-
costimulated Tconvs, GO and STRING network analyses
indicated activation of TNFR family costimulatory pathways
(CD70/TNFSF7, TNFSF9, RELB, MAPKs) and cytokine
pathways (IL-12RB2, IL-21R, IL-23A) and inhibition of
apoptosis (CFLAR/cFLIP, TNFAIP3) and inflammation
(CASP-1 and -4, PYCARD, CARD16) (Figure 1E, right panel;
Figure 1F). These data indicate that human Tconvs and tTregs
both respond to TNFR2 costimulation, in a different manner,
although the breadth of the transcriptomic changes is much
larger in tTregs (18).

TNFR2 Costimulation Regulates
Metabolism in tTregs and Tconvs
Activated T cells rely on metabolic programs that support energy
supply and biosynthesis needed for their rapid proliferation and
effector functions (9, 10). Tconvs that are activated via the TCR/
CD3 complex exhibit an mTOR-driven upregulation of
glycolysis, which is promoted by CD28 costimulation (85, 86).
Divergent results have been reported for Tregs (87–94), which
may be explained by the complexity of the cell populations
studied. For example, pTregs and tTregs are often not
discriminated and cell populations often contain Tconv
contamination. The impact of TNFR family members on cell
metabolism has not been studied in any depth thus far. We
recently reported that TNFR2 impacts T-cell metabolism.
Specifically, we showed that upon TCR/CD3-mediated
activation, human tTregs undergo an mTOR-driven glycolytic
switch after TNFR2 costimulation, but not after CD28
costimulation, even though they enter cell division in both
settings (18). As compared to TCR/CD3-activated glycolytic
Tconvs, TNFR2-costimulated glycolytic tTregs show a net
June 2022 | Volume 13 | Article 881166
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FIGURE 1 | Transcriptome analysis of human Tconvs and tTregs highlights distinct responses upon CD3, CD3/CD28 or CD3/TNFR2 stimulation. (A) Tconvs and
tTregs were sorted and pre-expanded for 2 weeks, then labeled with CellTrace Violet and restimulated for 96 h to assess cell proliferation by flow cytometry. For
color legend of stimuli, see panel (B) Tconvs and tTregs were sorted and pre-expanded for 2 weeks, restimulated as indicated for 24 h and subjected to
transcriptomics. sPLS–DA shows clustering of indicated sample groups by components 1–3. (C) Representative heat map of the sPLS–DA results, showing
hierarchical clustering of indicated sample groups and relative expression levels (color-coded z-scores) of the top 100 transcripts per component 1–3. (D) Venn
diagram depicting the number of up- (red) and downregulated (blue) transcripts in CD3/TNFR2- versus CD3-stimulated cells, including unique and shared changes in
tTregs and Tconvs (p < 0.05, log2 fold change > 0.32 or < -0.32). (E) GO Biological Process enrichment analysis of the differentially expressed genes shown in (D).
(F) STRING network of genes involved in the enriched processes for Tconvs in (E), only including genes with high-confidence associations. Markov Cluster Algorithm
(MCL) clustering (82) was performed and inter-cluster associations are displayed as dotted lines. Genes were colored based on log2 fold change. Further details are
described in the Supplementary Methods.
Frontiers in Immunology | www.frontiersin.org June 2022 | Volume 13 | Article 8811664
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lactate retention and an increased flux of glucose-derived carbon
into the tricarboxylic acid (TCA) cycle. Glycolysis proved
essential to maintain FOXP3 expression and suppressive
function in TNFR2-costimulated tTregs (18). Besides glucose,
the amino acid glutamine is essential for T-cell proliferation and
function (10). In Tconvs, glutamine uptake and catabolism is
enhanced upon CD3/CD28 stimulation and is crucial for
proliferation, differentiation and cytokine production (95–99).
Glutamine is initially metabolized to glutamate and a-
ketoglutarate, which can be further processed in the TCA cycle
to support mitochondrial oxidative phosphorylation and the
biosynthetic processes needed for cell proliferation.

Cell metabolism is often regulated at the posttranslational
level and, therefore, transcriptome analyses do not predict
metabolic activity well (100). For this reason, we performed
metabolomics to examine the metabolic processing of glucose
and glutamine by TCR/CD3-activated tTregs and Tconvs in
response to CD28 versus TNFR2 costimulation. We fed the
cells [13C6]-glucose or [

13C5]-glutamine and compared by mass
spectrometry the processing of these nutrients into intermediates
of the TCA cycle and nucleotide synthesis pathways
Frontiers in Immunology | www.frontiersin.org 5
(Supplementary Methods). Tracing of [13C6]-glucose
confirmed our previous finding (18) that TNFR2 costimulation
promotes the influx of glucose-derived 13C into the TCA cycle in
tTregs in particular (Figure 2A). Incorporation of 13C into
citrate, a-ketoglutarate (both TCA cycle) or aspartate was
increased in TNFR2-costimulated tTregs, whereas the increase
was less pronounced in Tconvs (Figure 2A). Aspartate is a
precursor for pyrimidine nucleotide synthesis, which can be
analyzed by measuring UTP. Tracing of [13C5]-glutamine
revealed that TNFR2 costimulation promoted both in Tconvs
and tTregs incorporation of glutamine-derived 13C into a-
ketoglutarate, aspartate and the nucleotide UTP (Figure 2B).

This is the first evidence that TNFR2 affects metabolism both
in tTregs and Tconvs, with remodeling of glutamine metabolism
as a commonality between both cell types and the enhancement
of glycolysis and coupled TCA cycle events being unique for
tTregs. Glutamine metabolism appears to promote nucleotide
biosynthesis in both tTregs and Tconvs after TNFR2
costimulation, which can sustain cell proliferation. However,
glutamine can also regulate effector differentiation: in CD4+ T
cells it supports Th17 differentiation via glutamate and the
A

B

FIGURE 2 | TNFR2 costimulation regulates Tconv and tTreg metabolism. Tconvs and tTregs were sorted as in Figure 1 and pre-expanded for 1 week. Subsequently,
cells were restimulated as indicated for 24 h in the presence of IL-2 and either [13C6]-glucose (A) or [13C5]-glutamine (B) and analyzed by liquid chromatography–mass
spectrometry (LC–MS) to trace 13C-labeled metabolites. (A, B) Left panels: schematic diagrams of the fate of 13C in metabolic pathways following [13C6]-glucose uptake
(blue) or [13C5]-glutamine uptake (red), including glycolysis, the TCA cycle, the pentose phosphate pathway (PPP) and nucleotide synthesis. (A, B) Right panels:
quantifications of 13C-labeled (M+) citrate, a-ketoglutarate (both TCA cycle), aspartate and UTP (both nucleotide synthesis) as fractions of the pool. M+7 was shown for
UTP in the [13C6]-glucose tracer experiment, as incorporated 13C originated from aspartate as well as PPP-derived ribose. Two-way ANOVA with Tukey’s post hoc test
was used for statistical analysis (*p < 0.05, **p < 0.01). Data are presented as mean ± SEM and data points are depicted as unique symbols per donor. Additional
information is described in the Supplementary Methods.
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antioxidant glutathione and impairs Th1 differentiation via a-
ketoglutarate that acts as a cofactor for histone- and DNA
demethylases (98). In this way, glutamine metabolism may
support epigenetic reprogramming to maintain or direct tTreg
and/or Tconv functionality under conditions of TNFR2
costimulation. This hypothesis remains to be proven, but we
have already shown that glycolysis is essential to maintain
FOXP3 expression and suppressive functions of tTregs after
TNFR2 costimulation (18).
DISCUSSION

Although TNF biology is very complex, TNF blockade is widely
applied in disease and often successful. It has been well-
established that TNFR1 and TNFR2 have distinct tissue
distributions and signaling functions and that TNFR1 can be
classified as pro-inflammatory, while TNFR2 is more anti-
inflammatory. This realization fosters the approach of selective
TNFR1- or TNFR2 agonism or antagonism in therapy of human
diseases. Particularly, selective TNFR2 agonism to promote Treg
responses and thus attenuate autoimmunity, inflammation and
transplant rejection is highlighted in recent literature. Many data,
including in vivo agonism of TNFR2 in mouse models argue that
Tregs rather than Tconvs are the main responders to TNFR2
agonism. Even so, TNFR2 can also costimulate the proliferative
response of Tconvs. We add here a side-by-side unbiased
analysis of the response of human Tconvs and tTregs to
TNFR2 costimulation at the transcriptomic level. This analysis
highlights that both TCR/CD3-activated cell types have an
inherent gene expression pattern that is discrepant between the
cell types and does not change much upon CD28 or TNFR2
costimulation. We also observe a gene set that responds similarly
to TNFR2 costimulation in tTregs and Tconvs, and a gene set
that differentially responds between the cell types. These
reactions are unique to TNFR2 costimulation and not shared
with CD28 costimulation. These data suggest that the responder
cells adopt a unique functionality upon TNFR2 costimulation
that warrants further investigation. Furthermore, we highlight
TNFR2 as a metabolic regulator—not only for tTregs, but also for
Tconvs—as shown by a common upregulation of glutamine
metabolism. It will also be of interest to investigate how this
affects Tconv and tTreg responses.

Since tTregs are the major controllers of autoimmunity (77),
we studied the response of tTregs to TNFR2 costimulation. The
exact role of TNFR2 on pTreg responses remains to be elucidated.
TNFR2 expression was not required for in vitro-generated, TGF-
b-induced pTregs to suppress colitis in mice (101). Moreover,
TNF blockade ameliorated EAE due to increased pTreg numbers,
presumably by releasing an inhibitory effect of TNFR2 on TGF-b-
induced FOXP3 expression (102). However, a contrasting study
reports that TNF–TNFR2 signaling increases TGF-b-induced
pTreg differentiation and suppressive function in vitro and in
vivo (103). It remains to be unraveled whether the (metabolic)
responses of human pTregs to TNFR2 costimulation are unique or
more skewed towards the responses of Tconvs or tTregs.
Frontiers in Immunology | www.frontiersin.org 6
Why Tregs as opposed to Tconvs predominate the response
to TNFR2 agonists in vivo is not clear. One reason may be that
TNFR2 expression is higher on Tregs than on Tconvs (18, 46,
47). By binding newly produced cell surface TNF, TNFR2hi Tregs
may outcompete TNFR2lo Tconvs from responding to this
ligand. By binding transmembrane TNF, Tregs may also
prevent TNF from being shed and from activating TNFR1 on
multiple cell types. It can be envisioned that Tregs in this way
provide negative feedback to dampen inflammation (104).
Certainly during priming in secondary lymphoid organs,
proliferating Tregs and Tconvs are in close proximity. The
precise contexts of TNFR2 costimulation remain to be
resolved, but both CD4+ and CD8+ Tconvs (105, 106) as well
as Tregs (107) can express transmembrane TNF. In a graft-
versus-host disease model, TNF produced by Tconvs proved to
be crucial for Treg responses (17). Activated Tconvs also produce
IL-2 that Tregs need for their proliferation (81). Therefore, it is
likely that Tconvs can invite their own suppression by Tregs via
transmembrane TNF. Subsequent TNFR2-induced Treg
proliferation may shift the balance—a numbers game—towards
immunosuppression. In addition to Tconvs, monocytes (108)
and tolerogenic monocyte-derived dendritic cells (109) can
express transmembrane TNF, but how this impacts Treg or
Tconv responses is not yet known.

After priming, Tregs relocate to non-lymphoid tissues, where
they encounter Tconvs and other cell types. It has been shown
that Tregs adapt their differentiation state in peripheral tissues to
that of locally resident effector T cells, by responding to specific
cytokines and gaining expression of lineage-determining
transcription factors such as T-bet or GATA-3 in addition to
FOXP3 (1–3). Since metabolic activity depends on nutrient
availability in the environment, it is tempting to speculate that
TNFR2 costimulation endows Tconvs and Tregs with a degree of
metabolic flexibility that allows them to facilitate survival,
replication and functionality in metabolically changing
environments, such as sites of inflammation or cancer. TNFR2
is also involved in the function of myeloid-derived suppressor
cells (110), mesenchymal stem cells (111) and multiple cell types
of the central nervous system, including oligodendrocytes (112),
their precursor cells (113) and microglia (114). The interesting
commonality between these cell types and Tregs is that they
possess immunomodulatory or tissue-regenerative properties.
Similar to Tregs, these TNFR2-expressing cell types may
exhibit a negative feedback mechanism to suppress the
pathological effects of excessive TNF–TNFR1 signaling, e.g. in
neurological disorders (37). Future studies are required to
establish common TNFR2-induced (metabolic) responses of
these cell types and how such responses may support their
protective functions.
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