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Abstract. Turbulent mixing is a vital component of verti-
cal particulate transport, but ocean global circulation mod-
els (OGCMs) generally have low-resolution representations
of near-surface mixing. Furthermore, turbulence data are
often not provided in OGCM model output. We present
1D parametrizations of wind-driven turbulent mixing in the
ocean surface mixed layer that are designed to be easily
included in 3D Lagrangian model experiments. Stochastic
transport is computed by Markov-0 or Markov-1 models, and
we discuss the advantages and disadvantages of two verti-
cal profiles for the vertical diffusion coefficient Kz. All ver-
tical diffusion profiles and stochastic transport models lead
to stable concentration profiles for buoyant particles, which
for particles with rise velocities of 0.03 and 0.003 m s−1

agree relatively well with concentration profiles from field
measurements of microplastics when Langmuir-circulation-
driven turbulence is accounted for. Markov-0 models pro-
vide good model performance for integration time steps of
1t ≈ 30 s and can be readily applied when studying the be-
havior of buoyant particulates in the ocean. Markov-1 mod-
els do not consistently improve model performance relative
to Markov-0 models and require an additional parameter that
is poorly constrained.

1 Introduction

Lagrangian models are essential tools to examine the trans-
port of particulates in the ocean on a variety of spatial and
temporal scales (Van Sebille et al., 2018) and have been used
to study the movement of plastic particulates (Onink et al.,

2019), oil (Samaras et al., 2014) and fish larvae (Paris et al.,
2013). However, especially in the field of marine plastic
modeling, most large-scale modeling studies consider only
virtual particles (henceforth referred to as particles) that float
and remain at the ocean surface (Lebreton et al., 2018; Li-
ubartseva et al., 2018; Onink et al., 2019, 2021), essentially
simplifying the three-dimensional ocean into a 2D system.
While this does reduce the complexity of models, ultimately
vertical transport processes need to be considered in order to
have a complete understanding of oceanic particulate trans-
port (Wichmann et al., 2019; Van Sebille et al., 2020).

In the case of buoyant particulates (particulates with a den-
sity lower than seawater), buoyancy is expected to return
any particulates to the ocean surface. However, instead of all
buoyant particulates accumulating at the ocean surface, both
field measurements (Kukulka et al., 2012; Kooi et al., 2016b)
and regional large-eddy simulation (LES) model studies
(e.g., Liang et al., 2012; Yang et al., 2014; Brunner et al.,
2015; Taylor, 2018) indicate vertical concentration profiles
throughout the mixed layer (ML). These profiles arise due to
the balance between the particulate buoyancy and turbulent
mixing flows, which are largely driven by wind and wave
breaking at the ocean surface (Chamecki et al., 2019). While
such profiles are commonly used to correct surface measure-
ments of particulates such as microplastics (e.g., Law et al.,
2014; Egger et al., 2020), it is difficult to recreate such verti-
cal mixing profiles in the ML outside of LES models, as ver-
tical turbulent processes generally act on much smaller scales
than is explicitly resolved in ocean global circulation mod-
els (OGCMs) (Taylor, 2018). In addition, while it is possible
to represent mixing using the parametrization from Kukulka
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et al. (2012), this approach is only valid for depths up to sev-
eral meters, while the mixed-layer depth (MLD) can be hun-
dreds of meters deep (Chamecki et al., 2019).

In this study we present numerical simulations of buoyant
virtual particles in the ML with four 1D wind-driven mixing
parametrizations. These mixing parametrizations have been
specifically designed such that the code can be easily adapted
to function within large-scale 3D Lagrangian models run-
ning with OGCM data, for cases where the vertical spatial
scales might be too coarse to explicitly represent turbulent
processes or where turbulence data might not be provided
as model output. Using these parametrizations we calculate
the vertical equilibrium profiles of buoyant particles within
the ML as a function of the particle rise velocities, the 10 m
wind speed and the MLD. Buoyant particles are found be-
low the ML (Pieper et al., 2019; Choy et al., 2019; Egger
et al., 2020), but diffusive mixing at such depths is likely not
due to wind-driven turbulent mixing and therefore goes be-
yond the scope of this study. We test two methods for solving
stochastic differential equations and consider vertical diffu-
sion coefficient profiles based on the K-profile parameteri-
zation (KPP) model (Large et al., 1994) and Kukulka et al.
(2012), which was extended by Poulain (2020). The modeled
concentration profiles are then compared with measurements
of vertical concentration profiles of microplastics.

2 Model framework

2.1 Lagrangian stochastic transport

Turbulence in the ocean occurs over a wide range of spatial
and temporal scales, with Kolmogorov length and timescales
of η = (ν3/ε)1/4 = 3× 10−4 m and τn = (ν/ε)

1/2
= 0.1 s

(Landahl and Christensen, 1992) for turbulent kinetic energy
ε = 10−4 m2 s−2 (Gaspar et al., 1990) and kinematic viscos-
ity of seawater ν = 10−6 m2 s−1 (Riisgård and Larsen, 2007).
The vertical resolution of OGCMs is typically on the order of
meters and is therefore not capable of explicitly resolving all
turbulent processes. Instead, turbulence due to sub-grid-scale
processes is generally represented stochastically. In our 1D
vertical model, we simulate positively buoyant particles that
are vertically transported due to stochastic turbulence and the
particle rise velocitywrise. For such particles, the particle tra-
jectory Z(t) can be computed with a stochastic differential
equation (SDE) (Gräwe et al., 2012) as follows:

Z(t + dt)= Z(t)+ (wrise+ ∂zKz)dt +
√

2KzdW, (1)
Z(0)= 0, (2)

where Kz =Kz (Z(t)) is the vertical diffusion coefficient
and ∂zKz = ∂Kz/∂z, dW is a Wiener increment with zero
mean and variance dt , and we define the vertical axis z
as positive upward with z= 0 at the air–sea interface. The
Euler–Maruyama (EM) scheme (Maruyama, 1955) is the

simplest numerical approximation of Eq. (1), where infinites-
imal terms dt and dW are replaced with the finite terms
1t and 1W . Equation (1) can then be rewritten as follows
(Gräwe et al., 2012):

w′(t)= ∂zKz+
1
1t

√
2Kz1W, (3)

Z(t +1t)= Z(t)+
(
wrise+w

′(t)
)
1t, (4)

where w′ is the stochastic velocity perturbation due to turbu-
lence. The turbulent transport has both a deterministic drift
term and a stochastic term. This is the most basic form of
representing turbulent particle transport, as turbulent pertur-
bations on the particle position are assumed to be uncorre-
lated (Berloff and McWilliams, 2003). The drift term assures
that the well-mixed condition is met, which states that an
initially uniform particle distribution must remain uniform
even with inhomogeneous turbulence (Brickman and Smith,
2002; Ross and Sharples, 2004). This approach, termed a
Markov-0 (M-0) or random walk model, assumes that tur-
bulent fluctuations exhibit no autocorrelation on timescales
1t , which for global-scale Lagrangian simulations can range
from 30 s (Lobelle et al., 2021) to 30 min (Onink et al., 2019).
However, measurements from Lagrangian ocean floats show
this is an oversimplification, as coherent oceanic flow struc-
tures can induce velocity autocorrelations that can persist for
significantly longer timescales (Denman and Gargett, 1983;
Brickman and Smith, 2002).

A higher-order approach is the Markov-1 (M-1) model,
which assumes a degree of autocorrelation of particle veloc-
ities set by the Lagrangian integral timescale TL. The tur-
bulent velocity perturbation is now expressed as a Langevin
equation, and with an EM numerical scheme the particle tra-
jectory Z(t) is computed as follows (Mofakham and Ah-
madi, 2020):

Z(t +1t)= Z(t)+
(
wrise+w

′(t)
)
1t, (5)

w′(t +1t)= αw′(t)+ ∂zσ
2
w1t +

√
2(1−α)σ 2

w

1t
1W, (6)

where α = 1−1t/TL and σ 2
w = σ

2
w(z, t) is the variance of

w′, and we assume 1t ≤ TL. The influence of the initial tur-
bulent fluctuations on subsequent fluctuations is set by α,
which in turn depends on the ratio between the integration
time step 1t and TL. However, empirical and theoretical es-
timates for TL range from 6–7 s (Kukulka and Veron, 2019)
to 15–30 min (Denman and Gargett, 1983), and TL can also
be depth dependent (Brickman and Smith, 2002). In large-
eddy simulation (LES) models, TL = 4e/3C0ε, where e is
the sub-grid scale turbulent kinetic energy, C0 is a model
constant determining diffusion in the velocity space and ε
is the turbulent kinetic energy dissipation rate (Kukulka and
Veron, 2019), but e and ε are not commonly available vari-
ables in the output of OGCMs. However, it does indicate why
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model TL estimates vary widely, as TL describes the auto-
correlation of the particle velocity from its initial velocity
due to unresolved sub-grid processes, which depends on the
model resolution and setup in a given study. Since there is
not a clear indication of the true value of TL, we consider
a range of values α ∈ [0,0.1,0.3,0.5,0.7,0.95], correspond-
ing to TL ∈ [1,1.1,1.4,2,3.3,20]×1t . As the depth depen-
dence of TL is uncertain, we make the simplification that
∂zTL = ∂zα = 0. Since 1t ≤ TL, we use Kz = σ 2

w1t (Brick-
man and Smith, 2002), which means that Eq. (6) becomes

w′(t)= αw′(t)+ ∂zKz+
1
dt

√
2(1−α)Kz1W. (7)

In this form, it is clear that Eq. (7) is equivalent to Eq. (4)
when α = 0. This is because when α = 0, velocity pertur-
bations w′ are assumed to be uncorrelated over timescales ≥
1t , which is equivalent to the M-0 formulation. M-1 stochas-
tic models generally should lead to improved representation
of diffusion in Lagrangian models (Berloff and McWilliams,
2003; Van Sebille et al., 2018), but it does require insight into
turbulence statistics that have not yet been extensively stud-
ied in Lagrangian settings. For that reason, while even higher
order Markov models are theoretically possible (Berloff and
McWilliams, 2003), we limit this study to just the M-0 and
M-1 approaches.

All Lagrangian simulations are run using Parcels v2.2.1
(Delandmeter and Sebille, 2019), which has been used for
1D, 2D and 3D particle oceanographic simulations (Fischer
et al., 2021; Onink et al., 2021; Lobelle et al., 2021). The
simulations start with 100 000 particles released at Z(0)= 0
and run for 12 h. The model is one dimensional with hori-
zontal velocities set to zero. The time-invariant vertical dif-
fusion profiles are calculated with a 0.1 m vertical resolu-
tion, where the Kz value at the exact particle location is
linearly interpolated from these profiles. The vertical trans-
port is calculated according to Eqs. (3) and (4) for M-0
simulations and Eqs. (5) and (7) for M-1 simulations. We
take 1t = 30 s, where the integration time step is a com-
promise between accounting for turbulent transport on short
timescales and computational cost for when the 1D model is
integrated into a larger 3D Lagrangian model. We consider
high, medium and low buoyancy particles with rise veloc-
ities of wrise ∈ [0.03,0.003,0.0003]m s−1, which for plas-
tic polyethylene (ρ = 980 kg m−3) particles corresponds to
spherical particles with diameters of 2.2, 0.4 and 0.1 mm (En-
ders et al., 2015). However, these particle sizes are rough in-
dications of approximate particle sizes, as the buoyancy of
particle depends on a combination of the particle size, shape,
polymer density and degree of biofouling (Kooi et al., 2016b;
Brignac et al., 2019; Kaiser et al., 2017). Relative to peak
stochastic velocity perturbations w′ calculated from the ver-
tical diffusion coefficients described in Sect. 2.2, the rise ve-
locity of the high-buoyancy particles dominate w′ except for
the highest wind speeds, while turbulence dominates buoy-
ancy for the medium- and low-buoyancy particles for almost

all wind conditions (Table A1). The surface wind stress is
computed from u10 ∈ [0.85,2.4,4.35,6.65,9.3]m s−1. The
model domain is z ∈ [−100,0]m, where we apply a ceil-
ing boundary condition (BC) in which particles that cross
the surface boundary are placed at z= 0. This BC assures
that neither buoyancy or turbulence can transport particles
out of the water column. Vertical concentration profiles are
computed by binning the final particle locations into 0.5 m
bins, and the concentrations are then normalized by the to-
tal number of particles in the simulation. The variability of
the profiles at each depth level is calculated as the standard
deviation over the final hour of each simulation.

2.2 Vertical diffusion profiles

Two vertical diffusion coefficient profiles are used, with the
first based on Kukulka et al. (2012) and Poulain (2020).
Kukulka et al. (2012) parameterized the near-surface vertical
diffusion coefficient KS

z due to breaking waves as follows:

KS
z = 1.5u∗wκHs, (8)

for z >−1.5Hs, where κ = 0.4 is the von Karman constant,
Hs is the significant wave height and u∗w is the friction ve-
locity of water. The significant wave height Hs is parameter-
ized as Hs = 0.96g−1β

3/2
∗ u2

∗a, where g = 9.81 m s−2 is the
acceleration of gravity, β∗ = cp/u∗a is the wave age (cp be-
ing the characteristic phase speed of the surface waves) and
u∗a = τ/ρa is the friction velocity of water. The friction ve-
locity of air is based on the air density ρa = 1.22 kg m−3 and
the surface wind stress τ = CDρau

2
10, where u10 is the 10 m

wind speed and CD is the drag coefficient (Large and Pond,
1981). Similarly, u∗w = τ/ρw with the seawater density
ρw = 1027 kg m−3. Following Kukulka et al. (2012), we as-
sume a fully developed sea state with β∗ = 35. The Kukulka
et al. (2012) parametrization is valid only for z≈−1.5Hs,
and we extend the parametrization for greater depths using
the eddy viscosity profile νz, as found for oscillating grid tur-
bulence by Poulain (2020):

νz =

{
νS if z >−γHs

νS(γHs)
3/2
|z|−3/2 if z <−γHs,

(9)

where νS is the near-surface eddy viscosity and γ = 1.0 is
a multiple of Hs that sets the depth to which νS is constant.
This approach agrees with Kukulka et al. (2012) in predicting
constant mixing for z >−Hs, where the eddy viscosity then
drops proportional to z−3/2 for greater depths. Oscillating
grid turbulence (OGT) experiments are commonly used to
study wave- and wind-induced turbulence (Fernando, 1991).
As OGT experiments have been shown to reproduce turbu-
lence decay laws of velocities and dissipation rates observed
in the ocean ML (Thompson and Turner, 1975; Hopfinger
and Toly, 1976; Craig and Banner, 1994), this provides some
confidence in the modeling of the decay of near-surface eddy
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viscosity, although direct validation with field measurements
of eddy viscosity have yet to occur. The diffusion coefficient
Kz depends on νz as Kz = νz/Sct, where Sct is the turbu-
lent Schmidt number, and assuming ∂zSct = 0, combining
Eqs. (8) and (9) results in

Kz =


KS
z +KB = 1.5u∗wκHs+KB if z >−γHs

KS
z (γHs)

3/2
|z|−3/2

+KB = 1.5u∗wκγ 3/2H
5/2
s |z|

−3/2

+KB if z <−γHs

, (10)

where KB = 3× 10−5 m2 s−1 is the dianeutral diffusion be-
low the MLD (Waterhouse et al., 2014). The diffusion is thus
constant for z >−γHs, below whichKz ∝ |z|−3/2, while the
magnitude of Kz increases for higher wind speeds (Fig. 1).
Poulain (2020) implies γ = 1.0, while Kukulka et al. (2012)
estimates γ ≈ 1.5, and thus to test the model sensitivity
we consider γ ∈ [0.5,1.0,1.5,2.0] (Fig. 1). As z→−∞,
|z|−3/2

→ 0, and therefore we include the bulk dianeutral
diffusion KB to account for vertical mixing at depths be-
low the influence of surface wave-driven turbulence. As both
Kukulka et al. (2012) and Poulain et al. (2019) considered
turbulence generated by breaking surface waves, we refer to
this diffusion approach as surface wave breaking (SWB) dif-
fusion.

The second vertical diffusion coefficient profile is a local
form of the KPP (Large et al., 1994; Boufadel et al., 2020),
where Kz is given by

Kz =

(
κu∗w

φ
θ

)
(|z| + z0)

(
1−

|z|

MLD

)
+KB, (11)

where φ = 0.9 is the “stability function” of the Monin–
Obukhov boundary layer theory, θ is a Langmuir circulation
(LC) enhancement factor and z0 is the roughness scale of
turbulence. As such, Kz rises from a small non-zero value
at z= 0 to a maxima at z= 1/3MLD, before dropping to
Kz =KB for z ≤MLD (Fig. 1). In the original KPP formu-
lation Kz(z ≤MLD)= 0 since the theory only applies to the
surface mixed layer, and thus we add the same bulk dianeu-
tral diffusion term KB as with the SWB profile (Eq. 10). Bo-
ufadel et al. (2020) examined a case where LC-driven tur-
bulence was considered negligible, and thus θ = 1.0. How-
ever, the presence of LC can increase turbulent mixing by
a factor θ = 3–4 (McWilliams and Sullivan, 2000) and has
been shown to strongly affect the vertical concentration pro-
files of buoyant microplastic particles in LES experiments
(Brunner et al., 2015; Kukulka and Brunner, 2015). There-
fore, we examine θ ∈ [1.0,2.0,3.0,4.0,5.0]. The roughness
scale z0, which can represent the surface roughness due to
surface waves, depends on the wind speed and the wave age
(Zhao and Li, 2019), and following Kukulka et al. (2012)
we consider a wave age β∗ = cp/u∗a = 35 that is equivalent
to β = cp/u10 = 1.21. According to Zhao and Li (2019), the
roughness scale is given by

z0 = 3.5153× 10−5β−0.42u2
10/g. (12)

Figure 1. Vertical diffusion coefficient profiles for SWB and KPP
diffusion under varying wind conditions. The KPP diffusion profile
is calculated with z0 according to Eq. (12).

For w10 = 0.85–9.30 m s−1, this means z0 = 2.38× 10−6–
2.86× 10−4 m. To test the model sensitivity to z0, we
also consider an alternative scenario where z0 = 0.1×Hs =

1.76×10−3–2.10×10−1 m, following the same formulation
Hs = 0.96g−1β

3/2
∗ u2

∗a as in Kukulka et al. (2012). This in-
creases Kz for z≈ 0 but does not significantly affect the
magnitude Kz at greater depths (Fig. B1). The original KPP
theory does not explicitly account for surface wave break-
ing, which would lead to larger non-zero Kz at z= 0. While
we do not claim that setting z0 = 0.1×Hs means that our
KPP profile accounts for surface wave breaking turbulent
mixing, it allows us to investigate the influence higher near-
surface mixing would have on the modeled vertical concen-
tration profiles. The MLD is the maximum depth of the sur-
face ocean boundary layer formed due to interaction with the
atmosphere, and in KPP theory the MLD is defined as the
depth where the bulk Richardson number RiB is first equal to
a critical value Ricrit. In the original formulation Ricrit = 0.3
(Large et al., 1994), but RiB can be difficult to compute in the
field as this requires data for both vertical density and veloc-
ity shear profiles. In this study we prescribe MLD= 20 m, as
this falls within the range of the MLD for field data used to
evaluate the model (see Sect. 2.3).

2.3 Field data

We compiled a dataset of vertical plastic concentration pro-
files collected within the surface mixing layer to validate the
modeled concentration profiles (Table 1), with a total of 90
profiles with 741 data points. Only Kooi et al. (2016b) di-

Geosci. Model Dev., 15, 1995–2012, 2022 https://doi.org/10.5194/gmd-15-1995-2022



V. Onink et al.: Lagrangian parametrization of wind-driven particle mixing 1999

rectly measured the rise velocity of a subsample of the col-
lected microplastic particulates, and showed that these par-
ticles were positively buoyant. However, the presence of all
the other sampled particulates near the open ocean surface
indicates they are unlikely to be negatively buoyant. For all
stations the wind speed was recorded and the MLD was de-
termined from conductivity–temperature–depth (CTD) data
based on a temperature threshold (de Boyer Montégut et al.,
2004). The majority of the samples were collected in the
North Atlantic (Kukulka et al., 2012; Kooi et al., 2016b;
Pieper et al., 2019) and in regions with a relatively shallow
MLD. Since wind-driven turbulent mixing is not expected
to influence the concentration depth profile below the MLD,
we do not consider any measurements collected below 73 m.
Measurements were collected with surface wind speeds up
to 10.7 m s−1, with the majority of sampled concentrations
being collected for u10 = 3.4–7.9 m s−1 (535 of the 741 data
points).

Almost all of measurements were collected with neuston
nets, either multi-level nets simultaneously sampling fixed
depth intervals (Kooi et al., 2016b) or using multi-stage
nets that consecutively sample fixed depths or depth ranges
(Kukulka et al., 2012; Egger et al., 2020; Amaral-Zettler (un-
published data)). These nets have mesh sizes of 0.33 mm and
will generally sample high- and medium-buoyancy (wrise =

0.03–0.003 m s−1) particulates, which for non-biofouled
polyethylene would have a diameter greater than the mesh
size (2.2 and 0.4 mm). In contrast, low-buoyancy particulates
(wrise = 0.0003 m s−1) are typically not sampled in neuston
nets (Kooi et al., 2016b), likely in part due to smaller partic-
ulate sizes. Pieper et al. (2019) filtered samples collected via
Niskin bottles with a 0.8 µm filter and thus was able to filter
out smaller particulates with lower rise velocities.

All measured microplastic concentrations are normalized
by total amount of plastic measured within a vertical pro-
file. In order to compare the average normalized field con-
centration with the modeled profiles, we bin the normalized
field concentrations into 0.5 m depth bins and calculate the
standard deviation for each depth bin. Comparison of the
modeled concentration profiles with the binned normalized
field measurements is done via the root-mean-square error
(RMSE):

RMSE=

√√√√1
n

n∑
i=0
(Cf,i −Cm,i), (13)

whereCf,i andCm,i are the binned normalized field measure-
ment and modeled concentration within depth bin i. Model
evaluation for the low-buoyancy particles is not possible with
the available field measurements as low-buoyancy particles
are typically too small to be sampled with neuston nets, and
the Pieper et al. (2019) dataset alone is too small.

3 Results

Starting with all particles at z= 0 for t = 0, M-0 models with
both KPP and SWB diffusion lead to stable vertical con-
centration profiles (Fig. 2), where the equilibrium concen-
tration profile is already established within 1–2 h (Fig. C1).
For both diffusion profiles, there is progressively deeper mix-
ing of particles with increasing wind speeds and decreasing
buoyancy. While with both SWB and KPP diffusion low-
buoyancy particles always get mixed below the surface, for
medium- and high-buoyancy particles there exist minimum
wind speeds below which all particles remain at the surface.
These limits are similar for both diffusion types for medium-
buoyancy particles (u10 ≥ 2.40 m s−1), but high-buoyancy
particles only mix below the surface with SWB diffusion
if u10 ≥ 9.30 m s−1. However, once mixing below the ocean
surface occurs, KPP diffusion always leads to deeper mixing
of particles than SWB diffusion due to higher subsurface Kz
values.

The concentration profiles for medium- and low-buoyancy
particles are largely unaffected by reducing 1t below 30 s
(Fig. F1). However, for high-buoyancy particles with SWB
diffusion the concentration profile more strongly depends on
1t due to the applied boundary condition. For1t = 30 s, the
M-0 model shows all particles remain near the ocean sur-
face, but shorter 1t values indicate that deeper mixing of
particles already occurs for u10 = 6.65 m s−1. With KPP dif-
fusion, all high-buoyancy particles remain at the surface even
with 1t = 1 s, as Kz at z= 0 remains too low to overcome
the high rise velocity.

Even though KPP diffusion with θ = 1.0 and z0 follow-
ing (Zhao and Li, 2019) predicts deeper mixing of particles
than with SWB diffusion (γ = 1.0), both approaches under-
predict the mixing of particles relative to field observations.
For KPP diffusion, this can be corrected by accounting for
LC-driven mixing, which leads to deeper mixing of particles
for both medium- and low-buoyancy particles (Figs. 3 and
D1). For medium-buoyancy particles this generally leads to
better model agreement with lower RMSE values between
the modeled and averaged field data concentration profiles
(Fig. 5). However, for high-buoyancy particles LC-driven cir-
culation is not enough as particles remain at the ocean surface
for all wind conditions even for θ = 5.0 (Fig. D2), as Kz for
z≈ 0 is too low to overcome the inherent particle buoyancy.
Only when LC-driven is combined with higher near-surface
Kz values by setting z0 = 0.1×Hs do we see any below-
surface mixing of high-buoyancy particles when θ > 3.0 and
u10 ≥ 9.30 m s−1. Increased near-surface Kz values have a
lesser influence on the concentration profiles of medium- and
low-density particles, as these particles were already being
mixed below the surface even without larger z0 values. For
SWB diffusion we obtain deeper mixing of all particles by
increasing γ > 1.0 (Figs. 3, D1 and D2), which improves
model performance relative to observations (Fig. 5). While
increasing γ does not affect the peak magnitude of the near-
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Table 1. Overview of the sources of field measurements of microplastic concentration profiles. The uncertainty in the mean MLD is the
standard deviation.

Source Measurement Number of Number of Mean MLD
approach concentration profiles data points [min max] (z)

Kooi et al. (2016b) Neuston net 46 506 15.4± 3.6 [10.0, 26.2]
Pieper et al. (2019) Niskin bottles 12 152 17.1± 5.5 [11.0, 28.0]
Kukulka et al. (2012) Neuston net 13 47 24.3± 8.9 [11.0, 45.1]
Egger et al. (2020) Neuston net 16 20 55.8± 19.2 [12.3, 72.8]
Amaral-Zettler (unpublished data) Neuston net 3 16 17.8± 4.8 [14.0, 26.0]

Total 90 741 17.5± 8.8 [10.0, 72.8]

surface Kz values, it increases the depth until which Kz is
constant. This therefore results in stronger overall mixing
(Fig. 4), which in turn leads to the deeper mixing of the par-
ticles.

With both KPP and SWB diffusion, M-1 models show
deeper mixing of particles as α→ 1 (Fig. 6). Relative to the
field measurements, M-1 models can at best slightly improve
model performance over M-0 models (Fig. 7). However, im-
proved model performance is not shown across all particle
sizes and wind conditions, and there is not a consistent α
value leading to the smallest RMSE values.

4 Discussion

The parametrizations presented in this study are intended for
use in 3D Lagrangian experiments using OGCM data and
therefore should yield numerically stable results for the rel-
atively large integration time steps used in large-scale La-
grangian vertical transport modeling (Lobelle et al., 2021).
While there are more stable schemes available than the EM
scheme used in this study (Gräwe et al., 2012), the EM
scheme is computationally the cheapest and yields concen-
tration profiles that match reasonably well with observations.
Both M-0 and M-1 models show largely convergent concen-
tration profiles for 1t = 30 s, which would make both ap-
proaches feasible with regards to computational cost. How-
ever, we would currently recommend using a M-0 model.
M-1 models have the additional tuning parameter α repre-
senting the autocorrelation of turbulent velocity fluctuations,
which is poorly constrained in the literature. Using spatially
invariant α values at best slightly improved model perfor-
mance in comparison with M-0 models, and constraining α
is not possible from these results. M-1 models may improve
modeling of vertical diffusive transport, but more work is
required to further constrain the value and vertical profile
of α. Finally, numerous formulations of the M-1 drift term
have been proposed (e.g., Mofakham and Ahmadi, 2020;
Brickman and Smith, 2002) which can lead to large differ-
ences in the modeled profiles. In this study we used the non-
normalized Langevin equation from Mofakham and Ahmadi

(2020), but other formulations could be explored in future
work.

While the concentration profiles of medium- and low-
buoyancy particles are unaffected by decreasing the integra-
tion time step 1t < 30 s, using higher 1t values underesti-
mates the depth to which high-buoyancy particles are mixed
when using SWB diffusion. This is because for high 1t val-
ues, the upward non-stochastic component of Eq. (6), which
scales with 1t , dominates the stochastic component, which
scales with

√
1t . With KPP diffusion the vertical profile for

high-buoyancy particles appears unaffected by 1t , but this
is because the near-surface Kz values are significantly lower
than with SWB diffusion. One possibility to correct for this
is to apply a different BC, such as a reflective BC. While
the concentration profiles for medium- and low-buoyancy
particles are not strongly affected by such a reflective BC
(Fig. G1), the reflective BC does show deeper particle mix-
ing with SWB diffusion. However, for1t = 30 s the depth of
mixing is now overestimated compared to smaller 1t values
(Fig. G2), as with1t = 30 s andwr = 0.03 m s−1 the particle
would be reflected up to 0.9 m below the ocean surface solely
due to the model numerics. In addition, earlier studies have
shown that reflecting BC can cause spurious increases in par-
ticle concentration near the boundary (Ross and Sharples,
2004; Nordam et al., 2019). Therefore, changing the BC to
a reflective BC would not improve the concentration profiles
of high-buoyancy particles. Depending on the model appli-
cation and setup, the error in the concentration profile depth
(O(1)m for high-buoyancy particles) might be acceptable.
Otherwise, the error can be reduced by using a smaller inte-
gration time step where that is computationally feasible.

Considering the KPP and SWB diffusion profiles, the re-
sults in this study are inconclusive with regards to which
approach performs better relative to field observations. For
high-buoyancy particles, SWB diffusion leads to slightly
deeper particle mixing, while only if the KPP diffusion pro-
file accounts for LC-driven turbulence and has higher near-
surface Kz values can it similarly show below-surface mix-
ing of high-buoyancy particles for u10 ≥ 9.30 m s−1. With
medium- and low-buoyancy particles the KPP profile leads
to much deeper mixing compared with SWB diffusion where
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Figure 2. Vertical concentrations of buoyant particles for KPP and SWB diffusion using M-0 models. Panels (a)–(e) show the vertical
concentration profiles for high- and medium-buoyancy particles with increasing wind speeds. The KPP profiles are calculated for θ = 1.0
and z0 according to Eq. (12). The grey markers indicate field measurements, with darker shades indicating more measurements, while the
binned field measurement average and standard deviation are shown by the black markers. Panel (f) shows the vertical concentration profiles
for low-buoyancy particles under increasing wind conditions. Shading around the profiles indicates the profile’s standard deviation at each
depth level.

Figure 3. Vertical concentrations of buoyant particles for KPP diffusion using M-0 models for wr = 0.003 m s−1. The KPP profiles are cal-
culated for θ = [1.0,2.0,3.0,4.0,5.0] and with either z0 = 0.1×Hs or according to Eq. (12). The grey markers indicate field measurements,
with darker shades indicating more measurements, while the binned field measurement average and standard deviation are shown by the
black markers. Shading around the profiles indicates the profile’s standard deviation at each depth level.

γ = 1.0 Poulain (2020), especially when accounting for LC-
driven turbulence, and this appears to agree better with field
observations. However, for SWB diffusion the value of γ is
uncertain, as Poulain (2020) and Kukulka et al. (2012) define
γ = 1.0 and γ ≈ 1.5, respectively. Higher γ values lead to

approximately equal model performance relative to field ob-
servations as with KPP diffusion. However, the model eval-
uation is largely based on field measurements collected in
the top 5 m of the water column, and it is below this depth
that we see greater differences in the KPP and SWB verti-
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Figure 4. Vertical concentrations of buoyant particles for SWB diffusion under varying wind conditions with wr = 0.003 m s−1. The SWB
diffusion profile is calculated with γ ∈ [0.5,1.0,1.5,2.0]. The grey markers indicate field measurements, with darker shades indicating more
measurements, while the binned field measurement average and standard deviation are shown by the black markers. Shading around the
profiles indicates the profile’s standard deviation at each depth level.

Figure 5. RMSE between field measurements and modeled concentration profiles for M-0 models with KPP and SWB diffusion under
different wind conditions. All KPP diffusion simulations were with z0 according to Eq. (12).

cal concentration profiles. In addition, the currently available
data collected with neuston nets does not allow for model
evaluation for the low-buoyancy particles in either scenario.
As such, more field measurements (including smaller-sized
particles) would be necessary to fully evaluate model perfor-
mance for all particles sizes with the two diffusion profiles.

With regards to necessary data to calculate the diffusion
profiles, the SWB approach has the benefit that it only re-
quires surface wind stress data, while KPP diffusion ad-
ditionally requires MLD data. In addition, while our re-
sults indicate that accounting for LC-driven turbulent mix-
ing improves KPP diffusion model performance, determining

which θ value to use is not trivial. McWilliams and Sullivan
(2000) demonstrated that θ is inversely proportional to the
Langmuir number (La), which is defined as La=

√
u∗w/US

with US as the surface Stokes drift. The Langmuir number
can conceivably be calculated using OGCM data, but the de-
tails of such an implementation will be left for future work
with 3D Lagrangian models. However, KPP diffusion does
have the advantage that it has been widely used and validated
in various model setups (Boufadel et al., 2020; McWilliams
and Sullivan, 2000; Large et al., 1994), while such extensive
validation has not yet occurred for SWB diffusion. Finally,
the influence of wind forcing on turbulence is generally as-
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Figure 6. Vertical concentrations of buoyant particles for (a) KPP and (b) SWB diffusion using M-0 and M-1 models with varying values
for α. The grey markers indicate field measurements, with darker shades indicating more measurements, while the binned field measurement
average and standard deviation are shown by the black markers. Shading around the profiles indicates the profile’s standard deviation at each
depth level. The KPP profiles are for θ = 1.0 and z0 according to Eq. (12). All profiles are for u10 = 6.65 m s−1 and medium-buoyancy
particles (wrise = 0.003 m s−1).

Figure 7. RMSE between field measurements and modeled concentration profiles for M-0 and M-1 models with (a) KPP and (b) SWB
diffusion under different wind conditions and with varying values of α. All KPP diffusion simulations were with θ = 1.0 and z0 according
to Eq. 12.

sumed to be limited to the surface mixed layer (Chamecki
et al., 2019), while with the SWB profile wind-generated tur-
bulence can extend far below the MLD (Figs. 1 and E1), pos-
sibly overestimating turbulent mixing at such depths. KPP
theory does limit wind-driven turbulent mixing to the surface
mixed layer, while either a constantKz value or otherKz pro-
files could be used for sub-MLD mixing, such as the Kz es-
timates for internal tide mixing as proposed by de Lavergne
et al. (2020).

Ideally, KPP theory would be expanded to account for sur-
face wave breaking, which could lead to higher near-surface
Kz values as seen with MLD diffusion. While such a theo-
retical approach is beyond the scope of this paper, we show
that artificially elevating near-surface Kz values by increas-
ing the surface roughness z0 has a smaller influence on the
overall concentration profile than LC-driven mixing, as simi-
larly shown by (Brunner et al., 2015). Therefore, although we
recommend future work incorporating surface wave breaking
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into KPP theory, our current KPP diffusion approach repre-
senting LC-driving mixing through θ does already seem to
capture the majority of turbulent mixing dynamics.

In all cases, the vertical concentration profiles stabilized
to vertical equilibrium profiles, similar to what has been
shown for buoyant particles in LES model studies (Liang
et al., 2012; Yang et al., 2014; Brunner et al., 2015; Tay-
lor, 2018). The modeled concentration profiles generally re-
sembled the profiles from field measurements of microplastic
concentrations under different wind conditions (Kooi et al.,
2016b; Kukulka et al., 2012), but the averaged concentra-
tion profiles of the field measurements are quite noisy. This
could be partly due to inhomogeneity in the particle buoy-
ancy, as the collected microplastic particulates have varying
sizes and rise velocities (Kooi et al., 2016b; Egger et al.,
2020). Additionally, we sorted the field measurements based
on wind conditions, but other underlying oceanographic con-
ditions such as the MLD can still vary significantly even
with similar wind speeds. Unfortunately, we lack additional
data of the oceanographic conditions at the time of sampling,
which currently prohibits more high-level comparisons of the
field and model concentration profiles. Compared with the
field data, the variance in the modeled concentration pro-
files is significantly smaller. This is in part also due to as-
suming constant environmental conditions over 12 h for the
model simulations, while wind and other oceanographic con-
ditions can change on much shorter timescales over the ocean
surface. To further improve vertical transport model verifi-
cation, more measurements would be required, covering a
wider range of oceanographic conditions (such as for wind
conditions higher than u10 = 10.7 m s−1) and with a high
spatial sampling resolution also for depths z <−5 m. Ide-
ally these measurements would also sample small, neutrally
buoyant particulates, but we acknowledge this is difficult
with the sampling techniques commonly used today. At the
same time, we would encourage conducting more ocean field
measurements of near-surface vertical eddy diffusion coeffi-
cient and/or eddy viscosity profiles, as this will allow further
validation of the Kz profiles predicted by the KPP and SWB
theory with actual ocean near-surface mixing measurements.

The parameterizations have been validated for high and
medium rise velocities, and at least for KPP diffusion with
θ > 1.0 the concentration profiles resemble those calculated
from field observations. This provides confidence in the tur-
bulence estimates from the KPP approach, and as these are
independent of the type of particle that might be present, this
would suggest the KPP approach can also be applied to neu-
tral or negatively buoyant particles. However, as model veri-
fication was only possible for microplastic particulates with
rise velocities between approximately 0.03 and 0.003 m s−1,
we would advise additional model verification for other par-
ticle types where the necessary field data are available. In
the case of SWB diffusion, turbulent mixing seems underes-
timated when further from the ocean surface when γ = 1.0,
but increasing to γ = 1.5–2.0 does correct for this. However,

as SWB diffusion has not yet been as extensively tested and
verified as KPP diffusion, we advise more caution and addi-
tional validation with field observations before applying this
diffusion approach to other particle types.

5 Conclusions

We have developed a number of 1D surface mixing
parametrizations designed to be readily applied in large-scale
oceanic Lagrangian model experiments using OGCM data.
Where possible, we would recommend using the turbulence
fields from the OGCM to assure turbulent transport of the
particles is consistent with that of other model tracers. How-
ever, if the turbulence fields are unavailable then particu-
larly parametrizations with KPP diffusion with LC-driven
mixing are shown to produce modeled vertical concentra-
tion profiles that match relatively well with field observa-
tions of microplastics. The parametrizations generally per-
form well for time steps of 1t = 30 s, but for high-buoyancy
particles users need to take care to use sufficiently short time
steps, especially with SWB diffusion. Verification was only
possible for positively buoyant particles larger than 0.33 mm
(which generally have rise velocities ≤ 0.003 m s−1), but the
parametrizations should also be applicable to other particle
types. The parametrizations can therefore be applied to inves-
tigate the influence of turbulent mixing on the vertical trans-
port of (microplastic) particles within a 3D model setup, and
ultimately gain a more complete understanding of the fate of
such particles in the ocean.
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Appendix A: wr/w
′ ratios for various turbulence

scenarios

Table A1. Ratios wr/w
′ between the rise velocity wr and the peak stochastic velocity perturbation w′ for KPP and SWB diffusion. The peak

w′ is the maximum value of Eq. (3). The peak w′ values for KPP diffusion are calculated for θ ∈ [1.0,3.0,5.0] and for z0 following Eq. (12).
The peak w′ values for SWB diffusion are independent of γ .

Wind speed (m s−1) Diffusion type wr = 0.03 m s−1 wr = 0.003 m s−1 wr = 0.0003 m s−1

0.85

KPP, θ = 1.0 1.818 0.182 0.018
KPP, θ = 3.0 1.055 0.106 0.011
KPP, θ = 5.0 0.818 0.082 0.008
SWB 10.512 1.051 0.105

2.40

KPP, θ = 1.0 1.087 0.109 0.011
KPP, θ = 3.0 0.628 0.063 0.006
KPP, θ = 5.0 0.486 0.049 0.005
SWB 4.077 0.408 0.041

4.35

KPP, θ = 1.0 0.808 0.081 0.008
KPP, θ = 3.0 0.465 0.047 0.005
KPP, θ = 5.0 0.359 0.036 0.004
SWB 1.753 0.175 0.018

6.65

KPP, θ = 1.0 0.654 0.065 0.007
KPP, θ = 3.0 0.373 0.037 0.004
KPP, θ = 5.0 0.288 0.029 0.003
SWB 0.935 0.094 0.009

9.30

KPP, θ = 1.0 0.553 0.055 0.006
KPP, θ = 3.0 0.313 0.031 0.003
KPP, θ = 5.0 0.241 0.024 0.002
SWB 0.566 0.057 0.006

Appendix B: Influence of z0 on diffusion profiles

Figure B1. Vertical diffusion coefficient profiles for KPP diffusion under varying wind conditions with θ = 1.0. The KPP diffusion profile
is calculated with either z0 according to Eq. (12) or z0 = 0.1×Hs.
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Appendix C: Time evolution of concentration profiles

Figure C1. Vertical concentrations of buoyant particles for KPP diffusion at times t = 0–12 h. The KPP diffusion profile is calculated with
θ = 1.0, u10 = 6.65 m s−1, and z0 according to Eq. (12).

Appendix D: Influence of θ for KPP diffusion

Figure D1. Vertical concentrations of buoyant particles for KPP diffusion under varying wind conditions with wr = 0.0003 m s−1. The KPP
diffusion profile is calculated with either z0 according to Eq. (12) or z0 = 0.1×Hs and for θ ∈ [1.0,2.0,3.0,4.0,5.0]. The grey markers
indicate field measurements, with darker shades indicating more measurements, while the binned field measurement average and standard
deviation are shown by the black markers. Shading around the profiles indicates the profile’s standard deviation at each depth level.
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Figure D2. Vertical concentrations of buoyant particles for KPP diffusion under varying wind conditions with wr = 0.03 m s−1. The KPP
diffusion profile is calculated either with z0 according to Eq. (12) or z0 = 0.1×Hs and for θ ∈ [1.0,2.0,3.0,4.0,5.0]. The grey markers
indicate field measurements, with darker shades indicating more measurements, while the binned field measurement average and standard
deviation are shown by the black markers. Shading around the profiles indicates the profile’s standard deviation at each depth level.

Appendix E: Influence of γ for SWB diffusion

Figure E1. Vertical concentrations of buoyant particles for SWB diffusion under varying wind conditions with wr = 0.0003 m s−1. The
SWB diffusion profile is calculated with γ ∈ [0.5,1.0,1.5,2.0]. The grey markers indicate field measurements, with darker shades indicating
more measurements, while the binned field measurement average and standard deviation are shown by the black markers. Shading around
the profiles indicates the profile’s standard deviation at each depth level.
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Figure E2. Vertical concentrations of buoyant particles for KPP diffusion under varying wind conditions with wr = 0.03 m s−1. The SWB
diffusion profile is calculated with γ ∈ [0.5,1.0,1.5,2.0]. The grey markers indicate field measurements, with darker shades indicating more
measurements, while the binned field measurement average and standard deviation are shown by the black markers. Shading around the
profiles indicates the profile’s standard deviation at each depth level.

Appendix F: Influence of 1t

Figure F1. Vertical concentrations of buoyant particles for (a, c, e) KPP and (b, d, f) SWB diffusion using M-0 models with varying values for
wrise and1t ∈ [30,15,10,5,1] s. All profiles are for u10 = 6.65 m s−1. Shading around the profiles indicates the profile’s standard deviation
at each depth level. The KPP profiles are computed with θ = 1.0 and z0 according to Eq. (12), while the SWB profile is computed with
γ = 1.0.
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Appendix G: Influence of boundary conditions

Figure G1. Vertical concentrations of buoyant particles for (a) KPP and (b) SWB diffusion using M-0 models for reflective and ceiling BCs.
Shading around the profiles indicates the profile’s standard deviation at each depth level. All profiles are for u10 = 6.65 m s−1. The KPP
profiles are computed with θ = 1.0 and z0 according to Eq. (12), while the SWB profile is computed with γ = 1.0.

Figure G2. Vertical concentrations of buoyant particles for (a, c, e) KPP and (b, d, f) SWB diffusion using M-0 models with varying values
for wrise and 1t ∈ [30,15,10,5,1] s with a reflective BC. All profiles are for u10 = 6.65 m s−1. Shading around the profiles indicates the
profile’s standard deviation at each depth level. The KPP profiles are computed with θ = 1.0 and z0 according to Eq. (12), while the SWB
profile is computed with γ = 1.0.
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