
Springer Nature 2021 LATEX template

Algebra of core concept transformations
Procedural meta-data for geographic information

Niels Steenbergen1*, Eric Top1, Simon Scheider1
and Enkhbold Nyamsuren1

1*Department of Human Geography and Spatial Planning, Utrecht
University, Princetonlaan 8a, Utrecht, 3584CB, The Netherlands.

*Corresponding author(s). E-mail(s): n.steenbergen@uu.nl;
Contributing authors: e.j.top@uu.nl; s.scheider@uu.nl;

e.nyamsuren@uu.nl;

Acknowledgments
This work was developed within the QuAnGIS project, supported by the
European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 803498).

Abstract
Transformations are essential for dealing with geographic information.
They are involved not only in converting between geodata formats and
reference systems, but also in turning geodata into useful information
according to some purpose. However, since a transformation can be
implemented in various formats and tools, its function and purpose
usually remains hidden underneath the technicalities of a workflow.
To automate geographic information procedures, we therefore need to
model the transformations implemented by workflows on a conceptual
level, as a form of procedural knowledge. Although core concepts of spa-
tial information provide a useful level of description in this respect,
we currently lack a model for the space of possible transformations
between such concepts. In this article, we present the algebra of core
concept transformations (CCT). It consists of a type hierarchy which
models core concepts as relations, and a set of basic transformations
described in terms of function signatures that use such types. Type infer-
ence allows us to enrich GIS workflows with abstract machine-readable
metadata, by compiling algebraic tool descriptions. This allows us to

1

Unpublished preprint

Springer Nature 2021 LATEX template

2 Algebra of core concept transformations

automatically infer goal concepts across workflows and to query over
such concepts across raster and vector implementations. We evaluate the
algebra over a set of expert GIS workflows taken from online tutorials.

Keywords: Conceptual transformations, core concepts, geographic
information, workflows

1 Introduction
Manipulating and processing geographic information is a core competence
relevant for data analysts. It is not only needed to transform maps across dif-
ferent coordinate reference systems, it is also an essential means for preparing
geodata for analysis and simulation. For example, to measure the effect of
noise on the health of citizens [1], we may need to transform a noise contour
map (Fig. 1a) into a statistical summary that quantifies the amount of noise
within administrative regions. Using appropriate tools, we can derive a choro-
pleth map showing the proportion of the area covered by 70dB noise for each
neighborhood (Fig. 1b) from this contour map.

As we illustrate below, the contour and the choropleth map in the example
above correspond not only to different computational or cartographic steps,
but also to different forms of geographic information, i.e., to different concep-
tualizations. We therefore call such manipulations conceptual transformations.
In this article, we are interested in understanding how such transformations
are designed accurately, and how this can be modeled. What kind of proce-
dural knowledge is needed to understand transformations, i.e., to understand
why a tool can be picked for transforming the contour map into a map that
measures the intended proportions?

Today, it seems that, although we have textbooks explaining the required
methods in detail [3] and workflow management has become standard practice
in Geographic Information Systems (GIS), we cannot claim to understand this
workflow design practice very well [4] — at least not well enough for automat-
ing it [5]. In the past, we have seen attempts at annotating GIS operations
and services with semantic descriptions to make them reusable and interoper-
able, in particular in the form of Web services [6–9]. Also, understanding GIS
in terms of transformations has been suggested earlier [10].

However, while corresponding technologies are important enablers for (par-
tial) automation, systematizing GIS functionality needed in these services
turned out to be hard [4, 11, 12]. A useful theory that links GIS tools with
tasks seems still out of sight [13]. We believe this is at least partially due to
a lack of focus on the know-how of transformations on a conceptual level. In
the past, researchers have focused on tool technicalities in a raster or vector
format, needed for implementation of, but insufficient for, reasoning with GIS
[14, 15]. Although geocomputational workflows are necessarily implemented

Springer Nature 2021 LATEX template

Algebra of core concept transformations 3

(a) Map of noise contours in Amsterdam. Source: [2]

(b) Choropleth map of proportion of area covered by noise > 70 dB on the level of
neighborhoods.

Fig. 1: Transformation of noise contour map into a choropleth map.

in some format, their design requires reasoning on a conceptual level which
goes beyond geodata models.

To highlight this point, consider again our example from above. Note that
analytically, the important feature of the noise contour map is not that it is
in vector format, nor that noise values are given as integers, but that the data
can be interpreted as a spatial field, i.e., a spatially continuous function of
noise measures, as opposed to a collection of discrete objects. Aggregations
therefore cannot be counts, but should be field integrals or field coverage
amounts. In the latter case, we are measuring the area covered by a range
of field values (≥ 70 dB) within the extent of objects (neighborhoods) (cf.
dotted boxes in Fig. 2), and then form an area proportion. Note that this
holds regardless of whether such an operation, in turn, is implemented in
terms of raster (zonal map algebra) or vector overlay (combining e.g. intersect
and dissolve) (cf. schematized workflows in Fig. 2). Since the same task can

Springer Nature 2021 LATEX template

4 Algebra of core concept transformations

Fig. 2: How to transform a noise contour map into a measure of the proportion
of noisy area? The dotted transformations are on a conceptual level, in parallel
to computational procedures implemented with different data models (blue:
vector version, red: raster version). Procedures are schematized versions of
ArcGIS workflows from task 1b in Sect. 5.

be implemented by different workflows in different formats, neither data nor
tool formats provide a basis for understanding the function and purpose of
these workflows. Correspondingly, scripts may be enough for executing, but
are neither sufficient for synthesizing nor for retrieving such a workflow [16].

A spatial field is an example of a core concept of spatial information [17].
Core concepts capture the various ways in which the geographic environment
can be conceptualized. They have been successfully used as basis for semantic
data types to model GIS functions [15] and for semantic workflow synthe-
sis [18]. However, we still lack a model that can be used to describe the
space of conceptual transformations over entire workflows and across different
implementations. Such a model would make not only the automated compo-
sition, but also the description and retrieval of workflows independent from
their implementation. In this article, we introduce the algebra of core concept
transformations (CCT) which can be used to automatically infer conceptual
descriptions of entire workflows from tool descriptions, and allows retrieving
workflows based on how they transform concepts into one another.

In what follows, we first discuss previous work on core concepts and the
state-of-the art in GIS algebra (Sect. 2), before explaining our methodology
for designing the algebra (Sect. 3). We explain how core concepts can be mod-
eled as types of relations in the sense of relational algebra (Sect. 4). We then
introduce workflows in Sect. 5 and specify underlying tasks using such types.
In Sect. 6, we explain how types can be used to add information to tools and
workflows. Afterwards, we specify atomic transformations as function signa-
tures in Sect. 7. Finally, we test our model by describing and retrieving expert
workflows taken from a range of documented GIS scenarios (Sect. 8).

Springer Nature 2021 LATEX template

Algebra of core concept transformations 5

2 Related work
We review related work on using algebras in the context of GIS and work-
flows, and then explain core concepts as a way to conceptualize geographic
information.

2.1 GIS and algebra
In general, our work is situated in the context of describing geo-operators [19]
and automating GIS workflows [4] and corresponding services [9]. However,
such descriptions usually focus on syntactic labels and inputs or outputs of
tools, and thus captures functionality only on a superficial level. The idea of
using algebras to describe GIS functionality goes back to Dana Tomlin’s map
algebra [20]. Since it captures only a small part of GIS functionality, which
is closely related to the raster data model, there have been various attempts
at extending it [21]. Other researchers have focused on functional algebras as
more general models to design or implement GIS [22, 23], e.g. based on fields
[24, 25] and GIS operations in relational databases [26]. These approaches
[14, 21, 22, 26] propose generalized data models for implementing software,
not conceptual models for describing it. Our algebra builds on the preliminary
ideas in [15, 27], but goes beyond these in the following respects:

First, unlike other approaches, we are not targeting efficient or elegant
implementations, since core concepts are not data types, [17] though data
might be interpreted using such concepts. Previous focus on implementation
may have prevented success of earlier attempts at systematizing GIS opera-
tions because they overlooked these concepts [12]. Conceptual transformations,
in contrast, remain relatively stable across different implementations. Fields,
e.g. are not treated as a data type [25], but as a concept that can have raster
and vector implementations, as suggested in [15].

Second, we use our algebra as a definition, annotation and reasoning
language for tools and workflows, primarily for the purpose of retrieval, in
addition to synthesis (cf. [18]). Going beyond [27], our type system accommo-
dates a form of subsumption reasoning with parameterized types which allows
succinct, abstract signatures for atomic transformations. Third, in contrast to
[27], concepts are not modeled as functions, but rather as relations in the sense
of relational algebra [28], while functions stand for concept transformations.
This makes it easy to model partial and inverted fields as well as spatial net-
works, because the latter are essentially relational concepts [29], as explained
below.

2.2 Core concepts and amounts
Core concepts of spatial information were proposed by [14, 17, 30] as generic
interfaces to GIS in the sense of conceptual ‘lenses’ through which the envi-
ronment can be studied. Core concepts are results of human conceptualization
and interpretation and are thus usually not explicit in data types. For our
purpose, we make use of the following concepts:

Springer Nature 2021 LATEX template

6 Algebra of core concept transformations

• Fields: capture qualities [30] at locations of some metric space and at some
time. A prime example is a temperature field. Since field values are separated
by spatial distance, one can study change as a function of spatial distance.
Though field qualities also change in time, we consider only spatial fields,
i.e., snapshots of a field in time [27].

• Objects: Spatial objects are ‘endurants’ [31], meaning they can change their
location and quality in time while remaining their identity. Objects are spa-
tially bounded even if their boundary may be fuzzy. We consider geographic
places with bona fide (perceivable) and fiat (conventional) boundaries as
objects.

• Networks: Networks measure a relationship between objects [29, 30]. Net-
works are e.g. commuter flow matrices or traffic links in a road network.
Networks can change their relational quality in time. Similar to networks, we
also consider locations as keys of a relation. The latter are called relational
fields [29]. Examples of the latter are Euclidean distance (a ratio scaled rela-
tion between locations) and the visibility relation in a digital terrain model
(a boolean relation between locations).

We excluded event for the current version of the algebra because it is only
applied to static scenarios, and thus can be reinterpreted as object for this
purpose. Note that every concept also has a temporal dimension which is left
implicit here but can be added in future versions. Since our algebra focuses
on transformations, we furthermore need to consider how core concepts can
be quantified in terms of amounts. We use ‘amount’ here in a technical sense,
to signify extensive quantities with a mereological (part-whole) structure that
allows forming sums and which can be measured on a linear scale [32]. They
correspond to well known geographic operations (cf. [33]). For example, an
amount of space (a region) can be partitioned and summed into regions, all
of which can be measured in terms of size. An amount of objects can be
partitioned into subsets and can be measured by counting, or by summing
up their qualities. An amount of moisture content is measured by integrating
(summing up) a moisture field. We distinguish two principal types of amounts:
Content amounts are amounts formed by controlling space and measuring
its content (e.g., number of objects (e.g. households) or integral of a field
(e.g. precipitation) within a defined region). Coverage amounts are formed by
controlling content (e.g. collections of objects or field values) and measuring
(the size of) the spatial regions covered (cf. [32, 33]). Examples would be
the area covered by roads in a city, or the area covered by a certain type of
vegetation. Finally, qualities of core concepts as well as measures of amounts
can be on different levels of measurement [33].

2.3 Type inference
Type inference is a common feature of programming languages to perform
static checks of implementations. In this work, we instead use it to infer con-
ceptual knowledge. The use of type inference in knowledge bases is not new —

Springer Nature 2021 LATEX template

Algebra of core concept transformations 7

in fact, the Web Ontology Language (OWL) facilitates a form of it through
owl:allValuesFrom constraints on RDF properties. [34] However, we use an
independent type inference module to access features like type parameteriza-
tion. To our knowledge, this has not been used before to produce metadata
about workflows.

3 Methodology
3.1 Requirements and approach
To serve as a model for conceptual transformations and their purposes, our
algebra needs to be:
• Implementation-free. This means it needs to generalize over different algo-

rithmic realizations of GIS methods, such as different implementations of
spatial interpolation. The primitives of our algebra therefore should be
implementation free, similar to Computational Independent Models (CIM)
in software engineering [35].

• Functionally universal and precise. The algebra needs to be universal enough
to cover functionality that can occur in a workflow in practice, and at the
same time precise enough to distinguish workflows that are suitable for a
task from those that are not.

To meet these requirements, we combine the idea of core concepts with two
technical approaches: For one, our operators’ signatures represent higher-order
functions to express operations in terms of other operations (cf. [27]). Since the
algebra does not concern itself with implementation, powerful type inference
features, including subsumption and bounded parametric polymorphism, can
be incorporated without the complexity of providing a concrete procedure
with the same level of generality. This allows us to handle a large variety of
possible transformations with only a limited set of primitives. The other idea
is relational algebra [28], which provides a general model for interpreting core
concepts in terms of types of relations.

3.2 Overview
Fig. 3 gives an overview of the terminology used in the following. The method-
ological approach is shown in Fig. 4. The algebra was developed initially based
on 12 GIS related tasks selected from GIS student exercises within several
development cycles1. When we reached a first stable version, we formally spec-
ified a type model of core concepts based on relational algebra (Sect. 4). We
then used this model to specify type signatures for algebraic operators which
represent atomic conceptual transformations (Sect. 7), and which can be com-
posed to derive more complex transformations that describe GIS functionality.
Operators were incrementally extended throughout the work.

1When we talk about a GIS task, we mean a question concrete enough to be answered by a GIS
workflow, such as: ‘What is the average distance of buildings in Utrecht to the nearest hospital?’,
see https://figshare.com/s/c9d5c94599e83a5cdd97.

https://figshare.com/s/c9d5c94599e83a5cdd97

Springer Nature 2021 LATEX template

8 Algebra of core concept transformations

Fig. 3: Terminology used in the paper. The transformation algebra models
concepts and their transformations (dotted lines), and is used to describe
tasks and implementations. CCT is a particular vocabulary using the algebra
syntax. Thick arrows denote dependencies, thin arrows denote implementation
or modeling relations.

To serve as empirical basis for evaluation of the algebra, we collected 11
analytical scenarios from online tutorials and GIS courses. We first manually
described the underlying analytic task in terms of a directed acyclic graph
between types, based on the task documentation (Sect. 5). We call this graph
a conceptual task specification and, for brevity, we will sometimes refer to it
as simply the task.

For each task, we then created one or more GIS workflows that implement
them, and encoded these as graphs in the RDF format[36] (Sect. 6.1). In what
follows, these graphs are what we will refer to simply as workflows.

All GIS tools occurring in the workflows were then described using trans-
formation expressions (Sect. 6.1). All these steps were developed in an iterative
manner over multiple development cycles.

We then developed a type inference system for the algebra (Sect. 6.2).
This system allows us to compute the type of each step in the conceptual
transformation that is implemented by a tool or workflow, by propagating
type information from inputs to outputs.

We evaluated in two ways (Sect. 8): for one, we checked whether composing
the transformations of individual tools into full workflows leads to type-correct
transformation graphs. This tests whether tool combinations imagined by
workflow authors are foreseen in our algebra model. Second, we performed
retrieval tests for workflows using task specifications. The retrieval tests assess
to what extent the conceptual transformations underlying analytic tasks match
inferred workflow types, and whether they are distinctive enough to pick a

Springer Nature 2021 LATEX template

Algebra of core concept transformations 9

Fig. 4: Flowchart of methods used in this article. The dotted arrows indicate
feedback in the development cycle.

valid workflow for a given task. A large scale evaluation on more workflows is
still future work.

4 Types
In this section, we present core concepts of geographic information modeled as
types of relations. Although the idea of representing and manipulating infor-
mation in terms of relations is borrowed from relational algebra [28], its formal
underpinnings are not essential for our current purposes. Where we recap rela-
tional algebra, we do so only to build an intuition for the conceptual types.
Furthermore, we dismiss the idea that our types stand for data structures,

Springer Nature 2021 LATEX template

10 Algebra of core concept transformations

such as a database table. They are rather means of conceptualizing and manip-
ulating geographic information, and thus vastly generalize over implemented
data structures.

4.1 Values of measurement
A measurement or observation in GIS yields a value. These have a type, which
represents simply the domain of values belonging to that type. Our class of
value types, ∆V, consists of the mutually exclusive types of spatial objects Obj,
which can be understood as object names; locations Loc, which are populated
by coordinate tuples; and quality values of measurement systems Qlt. The
latter is further subdivided into a hierarchy of measurement levels, including
the types of nominal (Nom), ordinal (Ord), interval (Itv), ratio (Ratio), count
(Count) and boolean (Bool) values. Finally, we define the overarching type of
values as V.

∆V = {Obj, Loc,Qlt,Count,Ratio, Itv,Ord,Nom,Bool} ,

V =
⋃

∆V,

Count ⊂ Ratio ⊂ Itv ⊂ Ord ⊂ Nom ⊂ Qlt,

Bool ⊂ Nom.

4.2 A relational model of spatial information
A relation associates some values with some other values. Formally, a relation
r = 〈A,K, δ,B〉 in the set of relations R consists of:
• A set of independent or key attributes K = {a1, · · · , an}, as well as depen-

dent attributes A−K = {an+1, · · · , am}. Together, they form A, the heading
of the relation. The function δ : A→ ∆ assigns a type to each attribute.

• The body of the relation, B ⊆ δ(a1)× · · · × δ(am), every tuple of which pro-
vides each attribute with an attribute value from the corresponding domain.
Any combination of key attribute values may occur only once in the body,
thus uniquely identifying a tuple of dependent attribute values.

First, note that the product type α1×· · ·×αn represents the type of tuples
in which the value at index i is drawn from the type αi. Secondly, we write ε
for the unit type, which has only a single value, namely, the empty tuple.

With this in mind, we introduce the type operator R to express the type of
a relation. It is parameterized by two types (one for the key and one for the
dependent attributes), and is defined as the set of those relations in which the
attribute values draw from corresponding types:

R(α1 × · · · × αn, αn+1 × · · · × αm) = { 〈K,A, δ,B〉 ∈ R |

Springer Nature 2021 LATEX template

Algebra of core concept transformations 11

K = {a1, · · · , an},
A = {a1, · · · , am},
∀iδ(ai) = αi,

B ⊆ α1 × · · · × αm }

The class of relation types is ∆R. The type hierarchy on value types induces
a partial order on relation types, too, since sets of relations subset each other if
their attribute types subset each other. For example, R(Loc, Itv) ⊂ R(Loc, Qlt),
so interval scaled fields are also fields.

Collections
The simplest kind of relation is called a collection. A collection is a unary
relation, that is, a relation with only a single attribute, which is also the key.
This simply corresponds to a subset of values of the type of its attribute.
For example, R(Obj, ε) is the type of collections of objects. We write C(Obj)
as shorthand. Furthermore, we use Reg, which stands for spatial regions like
points, lines and areas, as a shorthand for C(Loc).

Unary concept types
Unary concept types have a single key attribute which uniquely identifies a rela-
tion tuple, and the other attribute is the only independent one. We call these
types ‘unary’ because a single key serves as an index for the other attribute.
This allows us to define concepts which combine values from more than one
domain in order to refer to characteristics of some phenomenon. Unary concept
types can serve as a model for particular core concepts of spatial information:
• Spatial and location fields R(Loc, Qlt) are interpreted here as relations con-

trolling quality values by locations, e.g., a temperature field. A variant
is a location field R(Loc, Loc), which is a field that controls locations by
(neighboring) locations, e.g., when measuring drainage directions.

• Inverted fields/coverage amounts R(Qlt, Reg) map quality values into regions
that are covered by this value, e.g. landuse coverages or contour regions.
Note that in both cases, regions are controlled by quality values, but not
vice versa (e.g., the region covered by more than 70 dB noise). The sizes of
such a coverage are represented by the relation type R(Qlt, Ratio).

• Object extents R(Obj, Reg) and object qualities R(Obj, Qlt) are, respectively,
relations of object values and their regions or quality values (denoting the
space that the object, e.g. a house, occupies and the value of one of its
qualities, e.g. its height).

• Field sample/content amount relations R(Reg, Qlt) denote either point-wise
samples of a field, or content amounts which summarize values over some
region. Content amounts are expressed by unary concepts that have regions
as keys and amount measures as value. For example, the number of buildings
within the boundaries of an arbitrary region is represented by the type

Springer Nature 2021 LATEX template

12 Algebra of core concept transformations

R(Reg, Count). A pointwise sample of precipitation would be modeled by
R(Reg, Ratio).

Binary concept types
In contrast to unary concept types, which capture characteristics of single phe-
nomena, binary concept types have two keys and a single dependent attribute.
This allows us to talk about relationships between concepts, and to measure
(quantify) some characteristics of these relationships. In particular, we draw
attention to quantified relations, in which the dependent attribute is a quality.
They also have an interpretation as core concepts:
• R(Obj× Obj, Qlt) captures the idea that a spatial network is a quantified

relation between spatial objects. For example, the network might measure
the amount of flow between pairs of cities, or it might capture information
about whether a pair of train stations is connected by some train line (the
latter being a boolean spatial network).

• The same idea can also be applied to locations as key pairs, as in
R(Loc× Loc, Qlt). We call these concept types relational fields. A rela-
tional field quantifies relationships between locations. An example would be
Euclidean distance. Another example, using Boolean quality values, would
be visibility: is some location visible from another?

Multiple attributes
Finally, we have relations with a single key attribute and multiple indepen-
dent attributes, for representing multiple characteristics of a single thing. For
example, for representing a type that captures both footprint and height of
buildings, we use the type R(Obj, Reg × Ratio). This reflects GIS layers with
several attributes.

The fact that a data source or tool is associated with more than one
attribute is incidental, as is the way in which they are bundled. We are dealing
with concepts, not data structures, and so we could just as well have reversed
the attributes or used a tuple of unary concepts. Ideally, the type parameter
for the dependent attributes should not be a product but an intersection, so
that order is irrelevant and so that R(x, y ∩ z) is a supertype of R(x, y) and
R(x, z). While this should be addressed in a future version, it does not cur-
rently lead to problems, because we adhere to a consistent way of annotating
tools.

Simple example of a conceptual transformation
To illustrate the use of our types for describing conceptual transformations,
take again the example from Fig. 1. The first step is to convert the contour map
(which is an ordinally scaled coverage amount, since attributes denote interval
ranges and polygons denote the area covered by these ranges) into a field. This
would correspond to a transformation from R(Ord, Reg) to R(Loc, Ord). This
transformation may, for example, be implemented by the PolygonToRaster
tool. [37]

Springer Nature 2021 LATEX template

Algebra of core concept transformations 13

5 Tasks and workflows
We collected 11 documented workflow scenarios as an empirical basis for test-
ing, taken from course material of a GIS minor[38], and from ESRI’s ArcGIS
online learning hub[39] and similar online tutorials. Scenarios are themati-
cally diverse, complex and specific enough to be of practical relevance. For all
online coursework, corresponding tutorials can be found under the indicated
web resources.

We manually interpreted each scenario in terms of the underlying task, by
providing a task specification in terms of a flowchart of CCT types. Starting
from the input and feeding down into the goal concept types, the nodes and
edges in these visual descriptions represent the high-level concept types and
transformations inherent to the task itself, disregarding any tool that could
be used to fulfill it. In the remainder, we will refer to task specifications as
simply the tasks.

Additionally, we implemented one or two ArcGIS workflows for each sce-
nario by following the tutorials and modifying them for different possible
approaches.

Machine-readable task specifications and details of the workflows are avail-
able at the https://github.com/quangis/cct repository, under the tasks/ and
workflows/ directories, respectively. The repository has additionally been
archived at 10.6084/m9.figshare.19688712.2

We will illustrate two scenarios, along with their task specification and
associated workflows. Due to space constraints, the explanations of the
remaining nine have been moved to Appendix A.

Scenarios 1a and 1b: Noise
What is the proportion of noise ≥ 70dB in Amsterdam? [38]

The task is to quantify traffic noise in Amsterdam. This scenario has two
subscenarios. In the simplest one, NoisePortion, the noise contour map
in Fig. 1a needs to be transformed into the area covered by noise ≥ 70dB.
Alternatively, in the NoiseProportion variant, we normalize this area, e.g.,
by the area of objects, generating the proportion of the area covered by 70dB
noise within each neighborhood.

For NoisePortion, we generate the coverage of noise (A) from some ordi-
nal field (B) which was generated from a noise field (D) that was constrained
to the spatial region of Amsterdam (C) and which originates from a noise
contour map (E) (the latter with ordinally scaled noise intervals).

A R(Ord, Reg)B R(Loc, Ord)

C R(Obj, Reg×Nom)

D R(Loc, Ord)E R(Ord, Reg)

2Will be published after review.

https://github.com/quangis/cct
https://github.com/quangis/cct/tree/article1/tasks
https://github.com/quangis/cct/tree/article1/workflows
https://ndownloader.figshare.com/file/34971741

Springer Nature 2021 LATEX template

14 Algebra of core concept transformations

For the NoiseProportion case, we generate a ratio scaled quality of
neighborhoods (G and F), a proportion, of the sizes of neighborhood regions
(H) and the sizes of the ordinal fields (D) within these neighbourhoods (I),
originating from a noise contour map (E).

F R(Obj, Reg×Ratio)G R(Obj, Ratio)

H R(Obj, Ratio)C R(Obj, Reg×Nom)

I R(Obj, Ratio)D R(Loc, Ord)E R(Ord, Reg)

The NoisePortion implementation rasterizes the contour map, clips the
raster to the spatial extent of the municipal polygon of Amsterdam, constrains
the cell values (≥ 70) using local map algebra, and converts the constrained
raster layer into a vector polygon.

There are different raster and vector solutions that implement Noise-
Proportion, as depicted in Fig. 5. NoiseProportionRaster is the raster
version based on local and zonal map algebra operations. Here, a local map
algebra tool (Raster Calculator) is used to constrain the noise field to 70 dB.
Zonal Statistics is used to aggregate this field into the municipality polygon,
the size of which is measured with Add Geometry Attributes. Note how the
functionality of some tools is described on an aggregated level (supertool).
Overlay (Intersect) and Dissolve can be used in combination to do an equiv-
alent thing for vector data, which yields another workflow for the same task
(NoiseProportionVector).

Scenario 9: Floods
What is the stream runoff during a predicted rainstorm in Vermont, US? [40]

In this scenario, we estimate a unit hydrograph in order to predict floods
in a catchment area. A unit hydrograph is a relation of areas draining within
a given time interval, obtained using a digital elevation model within the
catchment area. Conceptually, this corresponds to generating a drainage time
(isochrone) field from a height field, and inverting it into a coverage of the
area draining within a given time interval: from a terrain model D we derive a
quantified (drainage time) relation between locations (C), which is minimized
with respect to closest location in the region E of some pour point object (F).
The resulting drainage time field (B) is classified into ordinal time intervals.
Inverting this field yields (G) and measuring the area covered by each time
interval yields the unit hydrograph (A).

A R(Ord, Ratio)G R(Ord, Reg)B R(Loc, Ratio)

C R(Loc×Loc, Ratio)D R(Loc, Itv)

E R(Nom, Reg)F R(Obj, Reg×Nom)

The entire Floods workflow is implemented using various map algebra
operations on raster maps.

Springer Nature 2021 LATEX template

Algebra of core concept transformations 15

(a) Computing noise proportion using Raster GIS (NoiseProportionRaster).

(b) Computing noise proportion using Vector GIS (NoiseProportionVector).

Fig. 5: Different ArcGIS workflows for implementing scenario 1b (comput-
ing noise proportion) using noise contours and municipalities as input (blue).
Input/output types from tool annotations are added as labels for illustration
purposes. Polygons circumscribe supertools (cf. Sect.6) .

6 Conceptual workflow description
In the previous sections, we introduced a formal framework in which we mod-
elled core concepts as types (Sect. 4) and we described our tasks in terms
of those types (Sect. 5). Now, before the next section, in which we pro-
vide the operators that comprise our geo-analytical vocabulary (Sect. 7), we
first show how we combine such operators into transformation graphs. These

Springer Nature 2021 LATEX template

16 Algebra of core concept transformations

graphs describe tools, and are stitched together to describe full workflows. The
conceptual type at each step in the graph is automatically inferred.

6.1 Workflows as tool applications
The workflows of Sect. 5 have been encoded as RDF graphs, linking tool
application nodes to their inputs and output, as in Figure 6.

Fig. 6: Example of a workflow encoded as RDF triples. Arrows denote RDF
properties.

The tool nodes themselves refer roughly to ArcGIS Pro or QGIS tools,
which have been manually annotated with a transformation expression, which
is a semantic signature that describes the underlying conceptual transforma-
tion. The annotations are available in the tools/ directory of the repository.
Note, however, that software tools and tool nodes do not correspond to each
other 1-to-1. This is for the following reasons:
• A given tool might be interpreted into several variants of conceptual trans-

formation, corresponding to its internal function and parameterizations.3
For example, the zonal statistics tool might aggregate the size of the
area covered by a raster ZonalStatisticsSize, but may also use average to
aggregate over raster values ZonalStatisticsMeanRatio, as well as fields or
objects for zone definitions. All of these choices correspond to different
(tool-internal) conceptual transformations.

• Semantic descriptions were sometimes lifted to the level of supertools, stand-
ing for sub-workflows that can only be meaningfully interpreted into a
core concept transformation as a whole. For example, the supertool Inter-
sectDissolve stands for a combination of the Intersect and Dissolve tool.
This implements the functionality of IntersectDissolveField2Object, which
aggregates some vector representation of a field into some object quality.
Comparing the algebraic description of this tool with ZonalStatisticsSize,
it can be seen that it implements an identical core concept transformation,
even though both tools are implemented on different data types and in
various pieces of software.

3This should not be confused with simply having a polymorphic type. Whether a hammer is
used to drive a nail into plywood or into a tree, the operation has the same purpose or function,
though the type of result may differ. If it is used to break a plank instead, the function is a
different one.

https://github.com/quangis/cct/tree/article1/tools

Springer Nature 2021 LATEX template

Algebra of core concept transformations 17

This illustrates that tool implementations do not necessarily align with con-
ceptualizations of their function, which can be handled by separating semantic
from technical tool descriptions.

6.2 Type inference
A transformation expression should provide rich descriptions of the tools used
in a workflow, capturing the underlying functionality in detail. At the same
time, it should be succinct, composed of a limited number of general operators.

Although the full meaning of atomic operators is not formally specified,4,
they do have an intended reading and a type signature.

For example, an operator for adding a value of type x to a collection of
values of type x would have a signature x→ C(x) → C(x). This constrains its
input, which can be enforced by using the type inference algorithm as a type
checker, so that nonsensical transformations are rejected.

Moreover, the operators may generalize over various collections, unary con-
cepts and quantified relations. Therefore, they are polymorphic, in that they
may apply to values of more than one type, and higher-order, in that trans-
formations may be described in terms of other transformations. The concrete
type produced by a particular application is automatically inferred.

We have implemented the algorithm as a stand-alone Python module.
This approach allows for integration in a broader ecosystem for workflow
synthesis. It also enables flexibility, as our use case is atypical in its dis-
regard for concrete implementation. The algorithm was loosely inspired by
[41]; details in Appendix B. The code is freely available and documented at
https://github.com/quangis/transformation-algebra.

Subtype polymorphism
A type is a domain to which a value or relation belongs: if a ∈ α, then
a : α. Therefore, we immediately obtain a type hierarchy that mirrors subset
relations. Because Count ⊂ Ratio, for example, we have that x : Count implies
x : Ratio.

Our algorithm accommodates subtype polymorphism in the sense that an
operator of type α→ β will also accept any input of type α− such that α− ⊆ α,
and will produce a value of any type β+ such that β ⊆ β+. The most specific
possible type is selected.

Parametric polymorphism
However, to define transformations that work on multiple types that are
not merely subtypes of each other, we additionally accommodate parametric
polymorphism. That is to say: signatures may contain type variables.

4However, for some operators, a straightforward semantics can be borrowed from relational
algebra or functional programming. Furthermore, our algebra allows for lambda abstraction to
define new functions from primitives. Since we do not focus in this article on handling such
definitions, we kept this aspect out of scope.

https://github.com/quangis/transformation-algebra

Springer Nature 2021 LATEX template

18 Algebra of core concept transformations

Such a schematic type may be further bounded by a typeclass. Because
types are not associated with specifically defined behaviour, there is no need
to specify a typeclass beyond the set of types it comprises. It also implicitly
accommodates functional dependencies: if we know that R(α, β) is bounded
by a finite typeclass like {R(Obj, Count),R(Reg, Ratio)}, then once we find out
that α = Obj, we can immediately conclude that β = Count.

For a schematic type α → β in which α is bound by the typeclass C, we
write α ∈ C =⇒ α→ β.

6.3 Workflows as transformations
The transformation expression for the SelectLayerByObjectTessObjects tool is
given below as an example. This tool is the first step in the NoisePortion
workflow, selecting neighbourhoods of Amsterdam.

subset (− : C(Obj)) (1 : R(Obj, Reg × Nom))

In this expression, the tool’s first and only input, denoted 1, which must be
a subtype of R(Obj, Reg × Nom), is subset by some other collection of objects
C(Obj). While this other collection is a conceptual input to the operator, it is
not associated with a concrete input to the tool, because it is only implicitly
inserted by the author of the workflow. Therefore, it is left unspecified and
denoted −.

We will learn in Sect. 7 that the subset operator has type C(x) → R(k, v) →
R(k, v) where x occurs in k or v. With this knowledge, we can infer the output
type of this specific application of the operation, and, in turn, of the tool.
For example, if input 1 has type R(Obj, Reg × Count), the output must be a
value of that type too. Moreover, if its input has an incongruent type, like
R(Loc, Obj), we can immediately reject it.

A transformation expression can be represented as a tree. By connecting
the trees for every tool application in a workflow, and running type inference
alongside, we synthesize the transformation graph for an entire workflow.

Figure 7 illustrates the resulting transformation graph for the NoisePor-
tion workflow. We will describe the meaning of the operators in the next
section.

7 Geo-analytical transformations
We specify geo-analytical transformations in terms of the operators introduced
in this section. We give a complete overview of the operators in order to
illustrate the range of GIS functionality that can be captured with them.
However, to understand our general approach, it is not essential to understand
the particularities of each, especially since operators are subject to continuous
revision and in this article, we used them only to produce types.5

5The operators themselves could also be used as semantic markers in the task specifications
(see discussion).

Springer Nature 2021 LATEX template

Algebra of core concept transformations 19

Fig. 7: Simplified procedural annotations for the NoisePortion workflow.
Neighbourhoods polygon

Noise contour

SelectLayerByObjectTessObjects

ContourToFieldRaster

LocalMapAlgebraSubOrder

RegionFromRasterExtent

ClipFieldRaster2ObjectExtent

R(Obj, Reg×Nom)

R(Ord, Reg)

C(Obj)

R(Obj, Reg×Nom) via subset

R(Loc, Ord) via revert

Bool via eq

R(Loc, Ord) via select

Ord

R(Ord, Reg) via nest2

C(Loc) via fcover

Reg via reify

C(Ord) via pi2

Ord via name

C(Ord) via pi2

R(Loc, Ord) via subset

R(Obj, Reg) via get_attrL

C(Obj) via pi1

Reg via ocover

C(Loc) via deify

R(Obj, Reg) via get_attrL

Keep in mind that an expression describes transformations on a conceptual
level, that is, in the mind of an analyst guiding computational procedures.
Consequently, the operators generalize over data types like Raster and Vector,
and they may be used to describe a diversity of tools and implementations.
Conversely, the operators allow for many ways in which a single tool can be
described. Nevertheless, we expect that pertinent concepts will show up in any
sensible description of a tool.

Springer Nature 2021 LATEX template

20 Algebra of core concept transformations

All operators in this section have a machine-readable counterpart in the
cct.py file in the repository.

7.1 Transformations of geo-analytic values
Value derivations

objectify : Nom → Obj nominalize : Obj → Nom

leq : Ord → Ord → Bool eq : V → V → Bool

and : Bool → Bool → Bool not : Bool → Bool

ratio, product : Ratio → Ratio → Ratio classify : Itv → Ord

The objectify and nominalize convert between object identifiers and names.
classify provides a way to reclassify interval scaled values to ordinal classes,
a typical GIS operation implemented in reclassification tables. The other
operators have obvious meanings (with eq for equality and leq for less-than-
or-equal).

Aggregations of collections

count : C(Obj) → Count size : C(Loc) → Ratio

merge : C(Reg) → Reg name : C(Nom) → Nom

centroid : C(Loc) → Loc

These are operations that aggregate collections, with straightforward
meanings, such as the centroid of a collection of locations. name can be used
to grant a single name to a collection of landuse types, or to a collection
topological relation values.

Statistical summaries

avg : R(V, Itv) → Itv min : R(V, Ord) → Ord

sum : R(V, Ratio) → Ratio max : R(V, Ord) → Ord

Note that these operations are on unary concepts, not collections, since in
order to capture the concept of a statistical distribution, we need to be able to
control values by other values. For example, temperature measurements can
be controlled by different locations.

7.2 Geometric transformations
Constructors for binary concepts

lDist : C(Loc) → C(Loc) → R(Loc× Loc, Ratio)
lTopo : C(Loc) → Reg → R(Loc× Reg, Nom)
loDist : C(Loc) → R(Obj, Reg) → R(Loc× Obj, Ratio)

https://github.com/quangis/cct/tree/article1

Springer Nature 2021 LATEX template

Algebra of core concept transformations 21

oDist : R(Obj, Reg) → R(Obj, Reg) → R(Obj× Obj, Ratio)
loTopo : C(Loc) → R(Obj, Reg) → R(Loc× Obj, Nom)
oTopo : R(Obj, Reg) → R(Obj, Reg) → R(Obj× Obj, Nom)

We start with operations to construct binary concepts. lDist generates dis-
tance relations between locations, and lTopo generates topological relations
between locations and regions, for example, whether a point is inside, outside
or bordering a region, corresponding to the point set basis of the 9 intersection
model. [42]

Related versions of distance and topological constructors for objects and
regions are derived from this. In a similar way, further variants of topologi-
cal constructors between regions and objects (lrTopo, rTopo, orTopo) can be
specified.

nbuild : R(Obj, Reg × Ratio) → R(Obj× Obj, Ratio)
nDist : C(Obj) → C(Obj) → R(Obj× Obj, Ratio) → R(Obj× Obj, Ratio)

The next operations build spatial distance networks from objects with
impedance qualities, and measure distances between objects on a spatial
network. The latter needs to be fed with a spatial network as input.

lVis : C(Loc) → C(Loc) → R(Loc, Itv) → R(Loc× Loc, Bool)
gridgraph : R(Loc, Loc) → R(Loc, Ratio) → R(Loc× Loc, Ratio)

lgDist : R(Loc× Loc, Ratio) → C(Loc) → C(Loc)

lVis measures visibility between locations, given some terrain model as a
field. It is the basis of visibility analysis in GIS. gridgraph builds a network of
locations from a location field and an impedance field (where field impedance
values are taken as network qualities), and lgDist measures distances on such
a location network. These functions are fundamental for global map algebra,
such as runoff modeling on a terrain model.

Conversions

invert : R(Loc, x) → R(x, Reg)
revert : R(x, Reg) → R(Loc, x)

getamounts : x ⊆ Qlt =⇒ R(Obj, Reg × x) → R(Reg, x)

invert and revert convert fields into contours (regions denoting some field
value interval) and nominal coverages (regions denoting homogeneous nominal
field values) and back. getamounts obtains content amounts (e.g. number of
schools in some region) from object qualities (number of schools in Utrecht).

Springer Nature 2021 LATEX template

22 Algebra of core concept transformations

Interpolation and buffering

extrapol : R(Obj, Reg) → R(Loc, Bool)
interpol : R(Reg, Itv) → C(Loc) → R(Loc, Itv)

Based on distance relations between locations, we can define a boolean field
that indicates where a certain distance value applies. Buffers, in addition, turn
this boolean field into a region. The operation called extrapol is the basis for
the generation of buffers. Note that the operation needs a distance parameter
which is left implicit here.

Point interpolation uses some field sample (e.g. point-wise measures) to
estimate a field that is at least interval scaled, within a collection of locations
(extent).

Map algebra

slope : R(Loc, Itv) → R(Loc, Ratio)
aspect : R(Loc, Itv) → R(Loc, Ratio)

flowdirgraph : R(Loc, Itv) → R(Loc, Loc)
accumulate : R(Loc, Loc) → R(Loc, C(Loc))

Local, focal and global map algebra turns fields into other fields based on
coinciding locations, moving window locations, or by searching over all loca-
tions. In this paper, we consider primitives for computing the focal operations
slope, aspect and flowdirgraph (flow direction from a height field), as well as
the global function accumulate which aggregates a location network over all
connected locations into a field of collections of locations reachable from a
given location. Further map algebra functions [20] can be introduced in this
way, but are not needed for our workflows.

7.3 Amount operations

fcont : x, y ⊆ Qlt =⇒ (R(V, x) → y) → R(Loc, x) → Reg → y

ocont : R(Obj, Reg) → Reg → Count

fcover : x ⊆ Qlt =⇒ R(Loc, x) → C(x) → Reg

ocover : R(Obj, Reg) → C(Obj) → Reg

Finally, we discuss operations to summarize the content of collections of
objects and fields as amounts. We distinguish operations that summarize a
field quality, e.g. by estimating an integral (fcont), or by summing up objects
(ocont). These amounts are called content amounts. Vice versa, starting with
value and object collections, we can also measure the area covered by a field
quality (fcover) and by a collection of objects (ocover), respectively. The latter
are called coverage amounts.

Springer Nature 2021 LATEX template

Algebra of core concept transformations 23

7.4 Relational operators
The following operators take inspiration from relational algebra and functional
programming. Their interpretation is not geographical, but rather, they are
used to combine geographical operations. Their type signatures are therefore
quite general. There are many different operators we could have used, and
they can be reduced by defining them in terms of eachother. The choices we
make here affect the ‘resolution’ of our transformations.

Set operators

relunion : r ∈ ∆R =⇒ C(r) → r get : C(x) → x

set_diff : r ∈ ∆R =⇒ r → r → r add : v → k → R(k, v) → R(k, v)
prod3 : R(z, R(x, y)) → R(x× z, y) nest : x → y → R(x, y)
inrel : x → C(x) → Bool

These operators are inspired by counterparts from set theory: prod3 builds
a Cartesian product from a nested relation, which results in a binary concept.
nest allows us to generate singular relations and and get gets some value out
of a collection. add adds elements to collections, and inrel tests whether some
element is contained in a collection.

Projection operator
The projection operators project a given relation to its i’th attribute, resulting
in a collection. We define the typeclass Ci(x) = {α0 × · · · × αn | αi = x} for
those tuple types that contain x as it’s i’th operand.

pii : k × v ∈ Ci(x) =⇒ R(k, v) → C(x)

Selection operator
We may select a subset of a relation using a constraint on attribute values,
using some binary comparison operator, like equality. The subset is a particular
use of this selection, using inrel to determine whether a value is contained in
a collection.

select : (k × v → Bool) → R(k, v) → R(k, v)

subset : k × v ∈
⋃
i

Ci(x) =⇒ R(k, v) → C(x) → R(k, v)

Join operators

join : R(x, y) → R(y, z) → R(x, z) get_attrL : R(x, y × z) → R(x, y)
join_attr : R(x, y) → R(x, z) → R(x× y, z) get_attrR : R(x, y × z) → R(x, z)

Springer Nature 2021 LATEX template

24 Algebra of core concept transformations

We introduce an operator for the natural join of two unary concepts, and
for constructing multiple attributes from two unary concepts and vice versa.

groupbyL : r ∈ {C(x),R(x, q)} =⇒ (r → q′) → R(x× y, q) → R(x, q′)
groupbyR : r ∈ {C(y),R(y, q)} =⇒ (r → q′) → R(x× y, q) → R(y, q′)
groupby : q ⊂ Qlt =⇒ (C(k) → q) → R(k, v) → R(v, q)

This operator groups quantified relations by the left (right) key, summa-
rizing lists of quality values with the same key value into a new value per key,
resulting in a new unary concept. For example, using the function avg, we
can summarize relational fields by their left (right) location. Another variant
of this operator is used to summarize keys of unary concepts by their foreign
keys on the right hand side.

Operators on functions

compose : (b → c) → (a → b) → (a → c)

id : x → x

compose2 : (c → d) → (a → b → c) → (a → b → d)

swap : (x → y → z) → (y → x → z)

apply : (x → y) → C(x) → R(x, y)
apply1 : (x → y) → R(a, x) → R(a, y)
apply2 : (x → y → z) → R(a, x) → R(a, y) → R(a, z)
prod : (x → y → z) → R(a, x) → R(b, y) → R(a, R(b, z))

join_key : r ∈ {R(x, q2),R(y, q2)} =⇒ R(x× y, q1) → r → R(x× y, q2)

We use higher-order functions known from functional programming, like
function composition, argument swapping, the identity function, and the apply
operators to map a function to each member of a relation. prod combines
two unary concepts using a binary function. This operator is fundamental to
compute any quantified relations from unary concepts, like distance relations
between object regions. Finally, join_key substitutes the quality of a quantified
relation with some quality of one of its keys.

8 Evaluation
To support the claim that our algebra captures properties that are conceptu-
ally relevant for transforming spatial information, we test whether the building
blocks of our language are general enough to allow for the various tool deci-
sions made by workflow authors, yet specific enough to allow for distinguishing
workflows based on independent specifications of the underlying tasks.

Springer Nature 2021 LATEX template

Algebra of core concept transformations 25

8.1 Criteria of evaluation
Type correctness of workflows
The type inference algorithm addresses the first concern, by ensuring that the
computed output type of every tool application in a workflow is subsumed by
the stated input type of its successor. This shows that our algebraic descrip-
tions are at least general enough to accommodate the ways in which the tools
are applied in practice.

Descriptive power of workflow annotations
To address the second concern, we matched the expected types of the task spec-
ification to the types in the transformation graph as automatically constructed
from the tool descriptions.

A type in the workflow is considered a match if it specifies a strict subtype
of a type in the task, but not vice versa. A task description that does not match
a workflow for the associated task produces a false negative; one that matches
a different workflow makes a false positive. The latter case is, however, not
necessarily indicative of a mistake: two workflows might simply be conceptually
similar enough to serve as an approach for the same task.

The resulting degree of precision (i.e. relevant matches as a fraction of all
matches) is an indicator for whether our task descriptions are specific enough
to distinguish concrete workflows. The resulting degree of recall (i.e. relevant
matches as a fraction of all relevant workflows) is an indicator for whether
the tool descriptions and their constituent operators are adequately rich in
information, and whether the subsequently inferred types are correct and at
least as specific as those in the task description.

We perform several variants of this retrieval test to investigate whether
automatically annotating internal concept transformations, as we do, adds
essential information that would not be available if either the entire workflow,
or its constituent tools, were treated as ‘black box’ transformations between
more general concept types. That is, we test at three levels:

1. We test whether the source and goal types of the task specification match
that of the input and output of the workflow as a whole.

2. Additionally, we test whether all types that occur in the task specification
occur in the annotations as inputs or outputs of tools.

3. Finally, we test whether they occur anywhere, even internally.

At each level, we measure the effect of transformation order and type
inference:
• We test the effect of matching types in the chronological order specified in

the flowchart.
• We can compute internal types and output types of a tool based either on

the most general type that a tool can work with, or on the type of the

Springer Nature 2021 LATEX template

26 Algebra of core concept transformations

Table 1: Quality of the matching between task and workflow. Where it
made a difference, results for the loosened Floods task specification are in
parentheses.

Level Order Pass Type-I Type-II Precision Recall

1. Workflows n/a � 8 1 0.571 0.923
n/a X� 8 0 0.591 1.000

2. Tools � � 0 11 1.000 0.154
X� � 0 11 1.000 0.154
� X� 0 10 1.000 0.231
X� X� 0 10 1.000 0.231

3. Internal � � 2 2 (1) 0.846 (0.857) 0.846 (0.923)
X� � 2 2 (1) 0.846 (0.857) 0.846 (0.923)
� X� 2 1 (0) 0.857 (0.867) 0.923 (1.000)
X� X� 2 1 (0) 0.857 (0.867) 0.923 (1.000)

Table 2: Level 3 results with ordering and passthrough. Tasks are on the
columns, workflows are on the rows. An full circle indicates a match, an empty
one a mismatch. Crossing out means that the (mis)match is erroneous.

1a 1b 2 3 4 5 6 7 8 9 10
NoisePortion # # # # # # # # # #
NoiseProportionRaster # # # # # # # �Z # #
NoiseProportionVector # # # # # # # �Z # #
Population # # # # # # # # # #
Temperature # # # # # # # # # #
HospitalsNear # # # # # # # # # #
HospitalsNetwork # # # # # # # # # #
Deforestation # # # # # # # # # #
Solar # # # # # # # # # #
RoadAccess # # # # # # # # # #
Aquifer # # # # # # # # # #
Floods # # # # # # # # # �Z# #
Malaria # # # # # # # # # #

actual input data,6 which may be more specific. In the former case, the
types produced by a tool are the same no matter the context in which it is
applied; in the latter, types are inferred for each particular tool application.
We test the extent to which this passthrough affects the result?

Table 1 shows the retrieval quality for each variant. We must note here
that we additionally report the results with a modification of the Floods
task, in which the one concept type that hinders retrieval is dropped. Doing
so provides valuable information for the discussion.

These results can be reproduced with the tools in the CCT repository.

6This is a simplification, as source data has not been annotated with types: types are only
passed between the output of one tool to the next. This does not make a difference for our dataset,
but should be addressed when scaling up.

https://github.com/quangis/cct/tree/article1

Springer Nature 2021 LATEX template

Algebra of core concept transformations 27

8.2 Discussion of results
Observe that recall is very good if we treat workflows as a black box, but
precision suffers. This makes sense: we can assume that source inputs and final
output of a workflow will conform to the task’s sources and goal, but it casts
too wide a net to filter out false positives (type-I errors).

Conversely, at level 2, in which we look for the task’s intermediate concepts
and expect them to be directly produced by the corresponding workflow’s
tools, we get rid of those false positives — and gain many false negatives
(type-II errors).

To get the best of both worlds, we must capture more of the procedural
knowledge available in the task. Once we ascend to level 3, we can access the
concept types ‘inside’ the tools. As a result, recall and precision significantly
improve, although neither to the point of perfection.

To investigate why recall is not perfect, we turn to the specification of the
Floods task. In it, the final transformation between A and B represents a
grouping of a drainage time field by area size, during which we expected the
concept R(Ord, Reg) (the region covered by a time interval). As it turns out,
this intermediate type is never recorded in the transformation graph, as it is
hidden in the operation groupby.

This shows that the design decisions of the algebra have an effect on the
accuracy of results. The intention behind requesting the intermediate type
R(Ord, Reg) was that the output of the unit hydrograph workflow should mea-
sure the size of the regions covered by some interval of a drainage time field.
However, locations are aggregated only inside the groupby operation, which is
a primitive in the CCT algebra. This shows that the ‘resolution’ of operators
has an effect on accuracy. The smaller the atomic steps, the better conceptual
transformations may be distinguished, leaving room for future improvement.
Furthermore, while current task specifications were done with types alone,
more precise retrieval could be be achieved by including the operators them-
selves (size in this example). In a follow-up study, we intend to provide internal
structure to operators, as well as examine the structure of task specifications.

Perfect precision is likewise prevented by a single task: Aquifer, which, in
addition to the Aquifer workflow, also triggers the retrieval of the workflows
NoiseProportionVector and -Raster. The associated tasks are indeed
superficially similar, in that they both require turning (contour) coverages
into fields and output objects. However, in the case of Aquifer, these objects
are only selected, whereas in the NoiseProportion case, we aggregate fields
within the extent of the object. To differentiate this, we would either need to
specify operations in the task, or distinguish nominal values that are explicitly
not ordinal (called plain-nominal in [15]). Both can be done in future versions.

Taking into account the ordering of the task specification did not change
the results in our sample, for better or for worse. Evidently, unordered types
are usually enough to disambiguate our workflows, so less detailed procedural
annotations would have been sufficient. However, more subtle differentiation

Springer Nature 2021 LATEX template

28 Algebra of core concept transformations

may be needed if the workflow repository grows larger. In any case, it is worth
noting that the expected ordering really is present in each workflow.

Passthrough does have an effect. This is fully due to a single workflow,
NoisePortion. In Figure 7, we can see the reason. Its final tool, Region-
FromRasterExtent, can be applied very generally: it takes a R(Loc, Nom) and
produces a R(Nom, Reg). However, by taking advantage of type inference, we
can deduce that in this instance, a value of the more specific type R(Ord, Reg)
is produced. Again, future work should reveal whether similar behaviour is
common in larger workflow repositories.

As you can see in Table 2, task specifications are agnostic about whether
distances are measured in a Euclidean manner or over a network for Hos-
pital’s workflows, and about whether noise proportions are measured using
raster or vector formats for NoiseProportion’s workflows. We correctly
retrieve the two pairs of workflows that implement a single task in different
formats, ignoring the technicalities of software implementation.

Caveats
Our results make a credible case for the claim that annotating conceptual-
procedural knowledge may open new avenues to avoid the limitations of
describing GIS workflows via implementation details. However, it remains an
open question whether the particular vocabulary of operators we chose present
a satisfactory abstraction of GIS. To improve this, our preliminary algebra
should be condensed and tested with further tool applications and workflow
examples.

The strength of the evidence that the operators accommodate the decisions
of workflow authors is somewhat further limited by the fact that the operators
and tool descriptions have been, inevitably, created with knowledge of these
workflows. Similarly, because the task specifications require expert knowledge
that is in limited supply, they have been provided by the same authors who
produced the workflows’ tool descriptions. Therefore, although care has been
taken to separate the two specifications, we cannot rule out that knowledge of
the tools has influenced the specification of tasks. These caveats are unavoid-
able at this point. In the future, to provide a more rigorous evaluation, we plan
to describe independent workflows using the same tools, and thus to specify
tasks independently of the associated workflows.

Finally, the expert knowledge required to produce transformation expres-
sions is non-trivial. In this article, our annotations were done by two of the
authors in several rounds, which showed that annotator agreement is initially
low and improves only based on clear instructions. To generate a larger knowl-
edge base across various experts, detailed algebraic annotation instructions are
therefore needed. A particular challenge in this respect lies in the ambiguity
of interpreting data in concepts, which should be avoided for the purpose of
retrieval. For example, whether to interpret a contour map as coverage amount
or as a field is a question that requires scrutiny. This requires more research
on geodata conceptualizations.

Springer Nature 2021 LATEX template

Algebra of core concept transformations 29

9 Conclusion and outlook
We have introduced a relational model of core concepts of geographic informa-
tion, which can be used to specify tasks in terms of conceptual transformations
underlying GIS workflows. Our algebra provides a vocabulary to specify
transformations between these concepts and to automatically add procedu-
ral knowledge to geographic workflows using type inference. This allows us to
effectively retrieve workflows for a given task, disregarding data formats and
implementation details.

Our tests suggest that there is merit to this approach, by showing that
algebraic annotations and inferred types provide important but implicit proce-
dural knowledge associated with an analytical GIS task. We have implemented
a generic toolset to facilitate the production of procedural annotations in GIS
as a basis for distinguishing workflows. Situated in the well-established ecosys-
tems of Python and RDF, this modular toolset includes an algorithm for
type inference, a parser to turn workflows with annotated tools into rich RDF
graphs, and a method to query those graphs. The toolset is universal in that
it can be applied to any other knowledge domain in which procedures can be
captured as function signatures.

Building on this proof of concept, future work should focus on improving
the operator vocabulary and transformation expressions, creating indepen-
dent workflows and tool annotations, and increasing the size of the workflow
repository.

There are several possible areas of application of our algebra as a meta-
language. First, the algebra serves as a description and retrieval language for
workflows that allows querying over different implementations. Second, the
algebra provides a way to specify tasks, and thereby serves to account for
the purposes of analysis. A language to capture the different purposes of geo-
analytical transformations is currently lacking in GIScience [43]. In a similar
way, the algebra provides a missing link between workflows and the questions
they answer, by tying together the loose ends of recent work on grammatical
interpretation of geo-analytical questions in terms of conceptual transforma-
tion graphs [44]. Finally, the algebra could also be used in the future to describe
and compare software systems by measuring their conceptual similarity.

Springer Nature 2021 LATEX template

30 Algebra of core concept transformations

Appendix A Tasks and workflows
Scenario 2: Population
What is the number of inhabitants for each neighborhood in Utrecht? [38]

The task is to assess the number of inhabitants for each neighborhood in
Utrecht from the number of inhabitants given per 100×100m square statistical
cell[45]. On a conceptual level, the task consists of summing up amounts of
objects within the regions of objects: counts of objects covering cell regions (E)
are aggregated into neighborhood counts (A,B) within neighborhood regions
(C) obtained from neighborhood objects (D).

A R(Obj, Reg×Count)B R(Obj, Count)

C R(Obj, Reg)D R(Obj, Reg×Nom)

E R(Reg, Count)

To implement this task, the Population workflow involves a spatial join
of cells with neighborhood polygons using a sum operator and using some
topological relation.

Scenario 3: Temperature
What is the average temperature for each neighborhood in Utrecht? [38]

The task is to assess an average temperature for each neighborhood in the
Netherlands from point measurements7. Conceptually, this task corresponds to
averaging a field within the regions of objects: we first need to interpolate point-
wise measurements from weather stations (D) into a temperature field (C),
which is then averaged over neighborhood regions (E) obtained from neigh-
borhood data (F), resulting in an average temperature for each neighborhood
(B, A).

A R(Obj, Reg×Itv)B R(Obj, Itv)

C R(Loc, Itv)D R(Reg, Itv)

E R(Obj, Reg)F R(Obj, Reg×Nom)

To solve this task in the Temperature workflow, point measurements
for the entire Netherlands can be interpolated using Inverse Distance Weight-
ing (IDW) to generate a raster, which is then aggregated into administrative
regions using zonal statistics.

Scenario 4: Hospitals
What is the travel distance to the nearest hospital in California? [47]

In this scenario, we need to determine, for a number of accidents, the
distance to the closest hospital in California. Conceptually, this corresponds
to minimizing a distance matrix: We need to generate a distance matrix (B)

7Temperature time series per station by the Royal Dutch Meteorological Institute (KNMI). [46]

Springer Nature 2021 LATEX template

Algebra of core concept transformations 31

from events (C), here interpreted as objects, to objects D, and minimize B
over objects, resulting in minimal distances for each incident (A).

Note: In an earlier iteration, the output type of A was specified as
R(Obj, Ratio). This fails due to incidental bundling multiple attributes
together, as described in Sect. 4. It will be addressed in a future version.

A R(Obj, Reg×Ratio)B R(Obj×Obj, Ratio)

C R(Obj, Reg×Nom)

D R(Obj, Reg×Nom)

To solve this task in a workflow, we used catchment area (closest facility)
analysis on a road network (workflow HospitalsNetwork). Alternatively,
an equivalent result can be obtained using the Near tool based on Euclidean
distances (workflow HospitalsNear).

Scenario 5: Deforestation
What is the impact of roads on deforestation in the Amazon rain forest? [48]

We determine the proportion of the deforested area within a buffer of
current roads in the Amazon, in order to estimate the size of deforested area
near a planned road. Conceptually, the task is to assess the proportion of area
covered by a landuse category within some distance of an object: Existing road
objects (J) are buffered, generating a boolean field (I) that denotes whether
a location is inside or outside the buffer distance. I is combined with the
deforested area field C to derive the intersection H, whose spatial coverage G
is measured as a proportion (F) of the coverage (K) of the road (M) buffers
(L). This proportion (F) is then used to derive the size of the area covered
(A) by the landuse field (B), which is the part of C within buffers (D) of new
roads (E).

A R(Bool, Ratio)

B R(Loc, Bool)C R(Loc, Bool)

D R(Loc, Bool)E R(Obj, Reg×Nom)

F R(Bool, Ratio)G C(Loc)H R(Loc, Bool)I R(Loc, Bool)J R(Obj, Reg×Nom)

K C(Loc)L R(Loc, Bool)M R(Obj, Reg×Nom)

In the workflow, we are given deforested areas as polygons, current and
planned roads in the Amazon in terms of line vectors, and we use vector buffer
and overlay operations to measure proportions.

Springer Nature 2021 LATEX template

32 Algebra of core concept transformations

Scenario 6: Solar power
What is the potential of solar power for each rooftop in the Glover Park
neighborhood in Washington, D.C? [49]

In this scenario, we are estimating the sum of solar energy available on each
rooftop in Glover Park. This corresponds to constraining a field and summing
it up over the area covered by objects: we use the terrain field (E) to constrain
the solar potential field F to D, which is aggregated over each region of a
building (rooftop) G to yield an average potential C, which together with the
size H of rooftops is used to sum an amount of energy per rooftop (B and A).

A R(Obj, Reg×Ratio)B R(Obj, Ratio)

C R(Obj, Ratio)D R(Loc, Ratio)

E R(Loc, Itv)

F R(Loc, Ratio)

G R(Obj, Reg×Nom) H R(Obj, Ratio)

The SolarPower workflow can be implemented using local map algebra
on a solar potential raster with both slope and aspect as Boolean constraints
using a digital terrain model, which is then averaged over the building polygons
using zonal statistics and multiplied by their size.

Scenario 7: Road access
What is the percentage of rural population within 2 km distance to all-season
roads in Shikoku, Japan? [50]

This scenario is about estimating the proportion of rural population that
have access to roads. Conceptually, this is asking for a proportion of object
count amounts within some distance from objects: given population counts
for each metropolitan region D, we select those C that are within rural E
administrative areas F. We then build buffers H around roads I and derive
content amounts G for those buffer areas by (areal) interpolation from C.
Finally, we build the proportion A of this amount G with respect to the total
population amount in rural areas B.

A R(Reg, Ratio)

B R(Reg, Count)C R(Obj, Reg×Count)

D R(Obj, Reg×Count)

E R(Obj, Reg)F R(Obj, Reg×Nom)

G R(Reg, Count)H R(Loc, Bool)I R(Obj, Reg×Nom)

In the RoadAccess workflow, rural population numbers are given for
metropolitan polygons, and we use a simple areal interpolation method (with
weighted overlay) to estimate the rural population living within road buffers.
We then build a ratio of this number with the total population.

Springer Nature 2021 LATEX template

Algebra of core concept transformations 33

Scenario 8: Aquifer
Which urban areas are at risk from water depletion in Ogallala (High Plains)
Aquifer, US? [51]

The scenario about water depletion in Nebraska deals with finding out
urban areas that are within 150 miles of the Ogallala aquifer, and which have
high irrigation needs and low precipitation. This is done by selecting (urban
area) objects overlapping with the coverage of some (low precipitation and
high irrigation) fields: from coverages of low precipitation (G) and high irri-
gation (I), we derive corresponding fields (F) and (H), which are combined
to select overlapping urban regions (D of objects E) that need to be within
some distance from the region B of the aquifer C.

A R(Obj, Reg×Nom)

B R(Obj, Reg)C R(Obj, Reg×Nom)

D R(Obj, Reg)E R(Obj, Reg×Nom)

F R(Loc, Nom)G R(Nom, Reg)

H R(Loc, Nom)I R(Nom, Reg)

The Aquifer workflow is implemented entirely using vector polygon
operations.

Scenario 10: Malaria
What is the malaria incidence rate per 1000 inhabitants in the Democratic
Republic of the Congo? [52]

In scenario 10, we form an incidence rate of malaria in proportion to pop-
ulation numbers for each administrative region of the Democratic Republic of
Congo. To obtain total population numbers, we need to sum up population
amounts given as statistical squares into administrative regions. Conceptually,
this corresponds to a proportion of event and object count amounts within
the regions of objects: we sum up population content amounts for squares C
within the regions of administrative areas D to obtain population counts B,
which together with malaria incidents F on the same administrative areas E
form proportions A.

A R(Obj, Reg×Ratio)

B R(Obj, Reg×Count)

C R(Reg, Count)

D R(Obj, Reg×Nom)

E R(Obj, Reg×Count)F R(Obj, Count)

The Malaria workflow implements this entirely in terms of various table
joins of vector polygon data.

Springer Nature 2021 LATEX template

34 Algebra of core concept transformations

Appendix B Type inference algorithm
The type inference algorithm is inspired by [41], who extended the Isabelle
theorem prover with automatic insertion of type coercions. Our algorithm
is simplified in that the separate steps of subtype constraint generation,
simplification, graphing and resolution are condensed into two steps: subtype-
unification and subtype resolution. Furthermore, our algorithm is extended
with typeclass constraints.

B.1 Notation
We will provide an informal overview of the procedure. To do so, we will first
establish notation and terminology.

An expression of a transformation algebra is a repeated application of
operators from a set of typed operators Σop = {f1 : φ1 → ψ2, . . . , fn : φn →
ψn} and a set of typed data sources Σdata = {x1 : τ1, . . . , xn : τn}.

A schematic type is an type containing schematic type variables, written α,
β, etcetera. Such a type stands for all the type instances that can be created
following the schema.

A type instance τ may be a concrete type variable, denoted a, b, etcetera,
or a type operation, denoted C τ1 · · · τn, D τ1 · · · τn, etcetera. Type operations
have an arity n; they are called base when n = 0 and compound otherwise.
The portion of a type operation preceding its parameters, if any, is called the
operator.

Any base type C may have no more than one supertype D such that C ⊆ D.
Each parameter of a compound type C τ1 · · · τn is associated with a vari-

ance, denoted ν(C) ∈ {⊕,	}n, expressing how the subtype of the compound
type relates to each of its constituent parameters. The i’th parameter of C is
called covariant if ν(C)i = ⊕ and contravariant if ν(C)i = 	. For example,
for C τ1 · · · τn ⊆ D τ1

′ · · · τn′ to hold, its operators must be equal (C = D),
and for every i’th parameter, ν(C)i = ⊕ implies τi ⊆ τi

′ whereas ν(C)i = 	
implies τi′ ⊆ τi.

Note that the function operator → is merely a special compound opera-
tor that is contravariant in its input parameter and covariant in its output
parameter, e.g., ν(→) = 〈	,⊕〉. This reflects that that a function should also
work on any value of a more conservative input type, and that it produces a
value that is also a member of a more liberal output type; see also [53].

The skeleton(τ) of a type τ is a version of that type where all base types
have been replaced with fresh type variables.

A substitution θ contains mappings t 7→ τ that assign a type τ to type
variable t. We write [θ]τ for a version of τ where all relevant type variables
have been substituted with those types.

A subtype constraint set θS contains lower bounds of the form (t ⊇̇ C) and
upper bounds of the form (t ⊆̇ C). They demand that t should eventually be
bound to some base type with subtype resp. supertype C.

Springer Nature 2021 LATEX template

Algebra of core concept transformations 35

A typeclass constraint set θC contains user-supplied constraints of the form
(σ ∈̇ {τ1, . . . , τn}) that indicate that there must be at least one instance [θ]τi
in the constraints such that [θ]σ ⊆ [θ]τi.

B.2 Algorithm
With this notation in hand, we sketch the general procedure. Suppose that a
transformation of type α → β is applied to an argument of type τ . We then
proceed as follows:

1. We try to find a substitution θ and a set of subtype constraints θS that
would ensure that τ has an appropriate type, that is, τ ⊆ α. To do this, we
use a variation of standard unification that takes into account subtypes, as
outlined in Algorithm 1. In this algorithm, the state of the substitution θ
and the constraints θS are kept in the global state as we recursively descend
through the type structure.

2. Now, we know which type variables should be bound to which types for
the argument type τ to match with the input type α. While some of the
type variables are not yet bound, we do know that they are supposed to be
bound to some base type. Although exactly which could not be determined
yet during the previous step, lower and upper bounds were put in place via
θS. Now, we are ready to resolve these variables to concrete base types. At
the top level, every type variable with a lower bound is substituted with
that bound. Type variables that occur in contravariant parameters will
instead be substituted with the bound of the opposite polarity. Note that
it is possible that types will not be fully resolved at the end of this process.
Consider, for example, applying a function of type (x → y) → x to one of
type Nom → Obj: while we know that x ⊆ Nom, Nom is not necessarily the
most specific bound on x. In this case, subtype constraints will carry over
to subsequent unifications.

3. Recall that the output type of our transformation α→ β was β. We apply
the substitution θ that was built during the previous steps to find the final
output type [θ]β.

4. We check that the typeclass constraints θC have not been violated.

The above description constitutes a generic type inference system with
subsumption. For our particular transformation algebra CCT, base types are
those drawn from ∆V, and compound types are those that can be constructed
with the type operator R.

Springer Nature 2021 LATEX template

36 Algebra of core concept transformations

Algorithm 1 Subtype-unification.
Data: Unification candidates φ and ψ, substitution θ, constraints θS.
Result: Final substitution θ and subtype constraints θS.

1 Function UnifySubtype(φ, ψ):
2 set φ := [θ]φ and ψ := [θ]ψ if φ = C τ1 · · · τn and ψ = D σ1 · · ·σn then
3 if (n = 0 and C 6⊆ D) or (n ≥ 1 and C 6= D) then
4 unification fails
5 for i = 1 to n do
6 if ν(C)i = ⊕ then
7 UnifySubtype(τi, σi)
8 else if ν(C)i = 	 then
9 UnifySubtype(σi, τi)

10 end for
11 else if φ = C τ1 · · · τn and ψ = t then
12 if n = 0 then
13 AddLowerBound(t ⊇̇ C)
14 else
15 add t 7→ skeleton(φ) to θ UnifySubtype(φ, ψ) once more
16 else if φ = t and ψ = C τ1 · · · τn then
17 if n = 0 then
18 AddUpperBound(t ⊆̇ C)
19 else
20 add t 7→ skeleton(ψ) to θ UnifySubtype(φ, ψ) once more
21 else if φ = t and ψ = s then
22 add the substitution t 7→ s to θ foreach t ⊇̇ C ∈ θS do

AddLowerBound(s ⊇̇ C)
23 foreach t ⊆̇ C ∈ θS do AddUpperBound(s ⊆̇ C)
24 Function AddUpperBound(t ⊆̇ C):
25 the current bounds on t, if any, are (t ⊇̇ L), (t ⊆̇ U) ∈ θS if C ⊂ L, or

neither C ⊆ U nor C ⊇ U then
26 unification fails
27 else
28 insert t ⊆̇ C into θS, remove t ⊆̇ U if needed
29 Function AddLowerBound(t ⊇̇ C):
30 the current bounds on t, if any, are (t ⊇̇ L), (t ⊆̇ U) ∈ θS if C ⊃ U , or

neither C ⊆ L nor C ⊇ L then
31 unification fails
32 else
33 insert t ⊇̇ C into θS, remove t ⊇̇ L if needed

Springer Nature 2021 LATEX template

Algebra of core concept transformations 37

Data availability
The datasets generated for the results (cf. Tables 1 and 2) are available in
the figshare repository at [54]. Alternatively, they can be reproduced with the
software and instructions available at https://github.com/quangis/cct/tree/
article1.

Conflict of interest
The authors declare that they have no conflict of interest.

References
[1] Van Dillen, S. M., de Vries, S., Groenewegen, P. P. & Spreeuwenberg,

P. Greenspace in urban neighbourhoods and residents’ health: adding
quality to quantity. J Epidemiol Community Health 66 (6), e8–e8 (2012).

[2] Geluidskaart 2018. https://maps.amsterdam.nl/geluid/. Accessed: 2022-
05-01.

[3] De Smith, M. J., Goodchild, M. F. & Longley, P. Geospatial analy-
sis: a comprehensive guide to principles, techniques and software tools
(Troubador publishing ltd, 2007).

[4] Hofer, B., Mäs, S., Brauner, J. & Bernard, L. Towards a knowledge base
to support geoprocessing workflow development. International Journal
of Geographical Information Science 31 (4), 694–716 (2017).

[5] Gil, Y. et al. Examining the challenges of scientific workflows. Computer
40 (12), 24–32 (2007).

[6] Paolucci, M., Kawamura, T., Payne, T. R. & Sycara, K. Semantic
matching of web services capabilities, 333–347 (Springer, 2002).

[7] Fitzner, D., Hoffmann, J. & Klien, E. Functional description of geopro-
cessing services as conjunctive datalog queries. Geoinformatica 15 (1),
191–221 (2011).

[8] Lutz, M. Ontology-based descriptions for semantic discovery and compo-
sition of geoprocessing services. Geoinformatica 11 (1), 1–36 (2007).

[9] Lemmens, R. et al. Integrating semantic and syntactic descriptions to
chain geographic services. IEEE Internet Computing 10 (5), 42–52 (2006).

[10] Gahegan, M. Specifying the transformations within and between geo-
graphic data models. Transactions in GIS 1 (2), 137–152 (1996).

https://github.com/quangis/cct/tree/article1
https://github.com/quangis/cct/tree/article1
https://maps.amsterdam.nl/geluid/

Springer Nature 2021 LATEX template

38 Algebra of core concept transformations

[11] Albrecht, J. Universal analytical gis operations: A task-oriented sys-
tematization of data structure-independent gis functionality. Geographic
information research: Transatlantic perspectives 577–591 (1998).

[12] Albrecht, J. Semantic net of universal elementary gis functions (Citeseer,
1995).

[13] Scheider, S., Ballatore, A. & Lemmens, R. Finding and sharing gis meth-
ods based on the questions they answer. International journal of digital
earth 12 (5), 594–613 (2019).

[14] Kuhn, W. & Ballatore, A. in Designing a language for spatial computing
309–326 (Springer, 2015).

[15] Scheider, S., Meerlo, R., Kasalica, V. & Lamprecht, A.-L. Ontology of
core concept data types for answering geo-analytical questions. Journal
of Spatial Information Science 2020 (20), 167–201 (2020).

[16] Scheider, S. & Ballatore, A. Semantic typing of linked geoprocessing
workflows. International Journal of Digital Earth 11 (1), 113–138 (2018).

[17] Kuhn, W. Core concepts of spatial information for transdisciplinary
research. International Journal of Geographical Information Science
26 (12), 2267–2276 (2012).

[18] Kruiger, J. F. et al. Loose programming of gis workflows with geo-
analytical concepts. Transactions in GIS 25 (1), 424–449 (2021).

[19] Brauner, J. Formalizations for geooperators-geoprocessing in spatial data
infrastructures (2015).

[20] Tomlin, C. D. Geographic information systems and cartographic modelling
910.011 T659g (New Jersey, US: Prentice-Hall, 1990).

[21] Mennis, J., Viger, R. & Tomlin, C. D. Cubic map algebra functions
for spatio-temporal analysis. Cartography and Geographic Information
Science 32 (1), 17–32 (2005).

[22] Frank, A. U. & Kuhn, W. Specifying open gis with functional languages,
184–195 (Springer, 1995).

[23] Frank, A. U. One step up the abstraction ladder: Combining algebras-from
functional pieces to a whole, 95–107 (Springer, 1999).

[24] Ferreira, K. R., Camara, G. & Monteiro, A. M. V. An algebra for spa-
tiotemporal data: From observations to events. Transactions in GIS
18 (2), 253–269 (2014).

Springer Nature 2021 LATEX template

Algebra of core concept transformations 39

[25] Camara, G. et al. Fields as a generic data type for big spatial data,
159–172 (Springer, 2014).

[26] Güting, R. H. Geo-relational algebra: A model and query language for
geometric database systems, 506–527 (Springer, 1988).

[27] Scheider, S., Gräler, B., Pebesma, E. & Stasch, C. Modeling spatiotem-
poral information generation. International Journal of Geographical
Information Science 30 (10), 1980–2008 (2016).

[28] Codd, E. F. Extending the Database Relational Model to Capture More
Meaning. ACM Transactions on Database Systems 4 (4), 38 (1979).

[29] Scheider, S. & de Jong, T. A conceptual model for automating spatial
network analysis. Transactions in GIS (2021).

[30] Kuhn, W., Hamzei, E., Tomko, M., Winter, S. & Li, H. The semantics
of place-related questions. Journal of Spatial Information Science (23),
157–168 (2021).

[31] Galton, A. Fields and objects in space, time, and space-time. Spatial
cognition and computation 4 (1), 39–68 (2004).

[32] Top, E., Scheider, S., Xu, H., Nyamsuren, E. & Steenbergen, N. The
semantics of extensive quantities in geographical information (2022). In
press.

[33] Chrisman, N. R. Exploring geographic information systems (Wiley New
York, 2002).

[34] OWL Web Ontology Language. https://www.w3.org/TR/
owl2-overview/ (2012). Accessed: 2022-05-01.

[35] Guarino, N., Guizzardi, G. & Mylopoulos, J. On the philosophical founda-
tions of conceptual models. Information Modelling and Knowledge Bases
31 (321), 1 (2020).

[36] RDF - Semantic Web Standard. https://www.w3.org/RDF/. Accessed:
2022-05-01.

[37] Polygon to raster - conversion. https://pro.arcgis.com/en/pro-app/2.9/
tool-reference/conversion/polygon-to-raster.htm. Accessed: 2022-05-01.

[38] GI Minor - Learn GIS: Geographic Information Systems, Science and
Studies. https://nationalegiminor.wordpress.com/. Accessed: 2022-05-01.

[39] Learn ArcGIS. https://learn.arcgis.com/. Accessed: 2022-05-01.

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/RDF/
https://pro.arcgis.com/en/pro-app/2.9/tool-reference/conversion/polygon-to-raster.htm
https://pro.arcgis.com/en/pro-app/2.9/tool-reference/conversion/polygon-to-raster.htm
https://nationalegiminor.wordpress.com/
https://learn.arcgis.com/

Springer Nature 2021 LATEX template

40 Algebra of core concept transformations

[40] ESRI. Predict floods with unit hydrographs. https://learn.arcgis.com/
en/projects/predict-floods-with-unit-hydrographs/. Accessed: 2022-05-
01.

[41] Traytel, D., Berghofer, S. & Nipkow, T. Extending Hindley-Milner type
inference with coercive structural subtyping, 89–104 (Springer, 2011). URL
https://www21.in.tum.de/~nipkow/pubs/aplas11.pdf.

[42] DE-9IM. https://en.wikipedia.org/wiki/DE-9IM. Accessed: 2022-05-01.

[43] Couclelis, H. The abduction of geographic information science: Trans-
porting spatial reasoning to the realm of purpose and design, 342–356
(Springer, 2009).

[44] Xu, H., Nyamsuren, E., Scheider, S. & Top, E. A grammar for interpret-
ing geo-analytical questions as concept transformations. International
Journal of Geographical Information Science (2022). In press.

[45] Aantal inwoners - 500 meter vierkant (2018). https://cbsinuwbuurt.nl/
#sub-vierkant500m2018_aantal_inwoners. Accessed: 2022-05-01.

[46] KNMI Dataplatform. https://dataplatform.knmi.nl/. Accessed: 2022-05-
01.

[47] ESRI. Identify the closest facility. https://pro.arcgis.com/en/pro-app/2.
9/help/analysis/networks/closest-facility-tutorial.htm. Accessed: 2022-
05-01.

[48] ESRI. Predict deforestation in the Amazon
rain forest. https://learn.arcgis.com/en/projects/
predict-deforestation-in-the-amazon-rain-forest/. Accessed: 2022-05-01.

[49] ESRI. Estimate solar power potential. https://learn.arcgis.com/en/
projects/estimate-solar-power-potential/. Accessed: 2022-05-01.

[50] ESRI. Estimate access to infrastructure. https://learn.arcgis.com/en/
projects/estimate-access-to-infrastructure/. Accessed: 2022-05-01.

[51] ESRI. Find areas at risk from aquifer depletion. https://learn.arcgis.com/
en/projects/find-areas-at-risk-from-aquifer-depletion/. Accessed: 2022-
05-01.

[52] ESRI. Monitor malaria epidemics. https://learn.arcgis.com/en/projects/
monitor-malaria-epidemics/. Accessed: 2022-05-01.

[53] Cardelli, L. Kahn, G., MacQueen, D. B. & Plotkin, G. (eds) A semantics
of multiple inheritance. (eds Kahn, G., MacQueen, D. B. & Plotkin,
G.) Semantics of Data Types, 51–67 (Springer Berlin Heidelberg, Berlin,

https://learn.arcgis.com/en/projects/predict-floods-with-unit-hydrographs/
https://learn.arcgis.com/en/projects/predict-floods-with-unit-hydrographs/
https://www21.in.tum.de/~nipkow/pubs/aplas11.pdf
https://en.wikipedia.org/wiki/DE-9IM
https://cbsinuwbuurt.nl/#sub-vierkant500m2018_aantal_inwoners
https://cbsinuwbuurt.nl/#sub-vierkant500m2018_aantal_inwoners
https://dataplatform.knmi.nl/
https://pro.arcgis.com/en/pro-app/2.9/help/analysis/networks/closest-facility-tutorial.htm
https://pro.arcgis.com/en/pro-app/2.9/help/analysis/networks/closest-facility-tutorial.htm
https://learn.arcgis.com/en/projects/predict-deforestation-in-the-amazon-rain-forest/
https://learn.arcgis.com/en/projects/predict-deforestation-in-the-amazon-rain-forest/
https://learn.arcgis.com/en/projects/estimate-solar-power-potential/
https://learn.arcgis.com/en/projects/estimate-solar-power-potential/
https://learn.arcgis.com/en/projects/estimate-access-to-infrastructure/
https://learn.arcgis.com/en/projects/estimate-access-to-infrastructure/
https://learn.arcgis.com/en/projects/find-areas-at-risk-from-aquifer-depletion/
https://learn.arcgis.com/en/projects/find-areas-at-risk-from-aquifer-depletion/
https://learn.arcgis.com/en/projects/monitor-malaria-epidemics/
https://learn.arcgis.com/en/projects/monitor-malaria-epidemics/

Springer Nature 2021 LATEX template

Algebra of core concept transformations 41

Heidelberg, 1984).

[54] Steenbergen, N., Top, E., Nyamsuren, E. & Scheider, S. S. Core concept
transformation algebra: early evaluations (2022). URL https://figshare.
com/articles/dataset/Core_concept_transformation_algebra_early_
evaluations/19727233. https://doi.org/10.6084/m9.figshare.19727233.v2.

https://figshare.com/articles/dataset/Core_concept_transformation_algebra_early_evaluations/19727233
https://figshare.com/articles/dataset/Core_concept_transformation_algebra_early_evaluations/19727233
https://figshare.com/articles/dataset/Core_concept_transformation_algebra_early_evaluations/19727233
https://doi.org/10.6084/m9.figshare.19727233.v2

	Introduction
	Related work
	GIS and algebra
	Core concepts and amounts
	Type inference

	Methodology
	Requirements and approach
	Overview

	Types
	Values of measurement
	A relational model of spatial information
	Collections
	Unary concept types
	Binary concept types
	Multiple attributes
	Simple example of a conceptual transformation

	Tasks and workflows
	Conceptual workflow description
	Workflows as tool applications
	Type inference
	Subtype polymorphism
	Parametric polymorphism

	Workflows as transformations

	Geo-analytical transformations
	Transformations of geo-analytic values
	Value derivations
	Aggregations of collections
	Statistical summaries

	Geometric transformations
	Constructors for binary concepts
	Conversions
	Interpolation and buffering
	Map algebra

	Amount operations
	Relational operators
	Set operators
	Projection operator
	Selection operator
	Join operators
	Operators on functions

	Evaluation
	Criteria of evaluation
	Type correctness of workflows
	Descriptive power of workflow annotations

	Discussion of results

	Conclusion and outlook
	Tasks and workflows
	Type inference algorithm
	Notation
	Algorithm

