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Abstract

Understanding protein–protein interactions (PPIs) is fundamental to describe

and to characterize the formation of biomolecular assemblies, and to establish

the energetic principles underlying biological networks. One key aspect of

these interfaces is the existence and prevalence of hot-spots (HS) residues that,

upon mutation to alanine, negatively impact the formation of such protein–
protein complexes. HS have been widely considered in research, both in case

studies and in a few large-scale predictive approaches. This review aims to pre-

sent the current knowledge on PPIs, providing a detailed understanding of the

microspecifications of the residues involved in those interactions and the char-

acteristics of those defined as HS through a thorough assessment of related

field-specific methodologies. We explore recent accurate artificial intelligence-

based techniques, which are progressively replacing well-established classical

energy-based methodologies.
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1 | INTRODUCTION

Protein–protein interactions (PPIs) are major components of cellular communication. They form a complex and sophis-
ticated network known as the “interactome.” It is estimated that the whole human interactome consists of 130 k–650 k
binary PPIs.1,2 The interactome has a fundamental role in physiological and pathological processes such as cell growth,
cell differentiation, apoptosis, signal transduction, and immune response.3 Aberrant regulation of these protein–protein
networks is known to be associated with many diseases including cancer, neurodegenerative, and infectious diseases,
among others.4,5 Recent studies showed that single amino acid variations (SAVs) typically found on PPI sites5 can inter-
fere (positively or negatively) with protein stability and/or complex formation,6,7 hence affecting the downwards reac-
tion/communication cascade.

Given their ubiquitous existence and involvement in disease, PPIs have been receiving increased attention as thera-
peutic targets. PPI targeting can potentially avoid the promiscuous effects on interactions pathways intrinsic to many
existing drugs, especially when targeting a hub-protein.8 Despite intensive efforts, developing PPI modulators remains a
rather daunting challenge for many reasons. First, the average interface area of PPIs ranges from 1500 to 3000 Å2, much
larger than the average contact area of small molecule binding pockets (300–1000 Å2). This results in a high-affinity
binding between interacting proteins, increasing the design complexity of small-compounds targeting those interac-
tions. Second, most protein–protein interfaces have topographically shallower surfaces than the lock-and-key-like deep
grooves and pockets found for conventional drug targets.9 Third, noncontiguous binding regions can occur, depending
on the size of the interacting partners. Fourth, we are still missing a detailed understanding of the contribution of flexi-
bility, dynamics, (partial) folding events, and such10 to the establishment of correct PPIs; transient pockets might be
involved in this process.11 Fifth, the absence of small molecule endogenous ligands for PPIs as starting points consti-
tutes an enormous test for structure-based drug design.12–14 Despite the number of available PPI modulators being rela-
tively small, PPIs are no longer considered uniformly undruggable due to the rapid advances of structural biology and
related methodologies.14 In fact, their modulation constitutes an important strategy undertaken by a variety of pharma-
ceutical industries and research groups,14 and a variety of PPI-directed drugs are now approved, especially in the oncol-
ogy area.15

Size and shape of protein–protein interfaces varies a lot. It is well known that protein regions have distinctive abili-
ties to interact with other proteins, nucleic acids, and ligands, depending on their local curvature and physiochemical
composition.16 Pioneer work by Wells et al.17–19 showed that only a small number of residues are truly responsible for
the binding free energy, the so-called hot-spots (HS), which constitute entry points for PPI modulators design.20 Besides
small-molecules, PPI modulators can also be antibodies or peptides, depending on a variety of factors including inter-
face size and polarity.14 PPIs and HS are essential for a variety of systems, including, for example, viral infection, which
is why researchers working to find new drugs to end this corona virus disease 2019 (COVID-19) pandemic are giving it
special attention.21–29

In this review, we focus first on the main physico-chemical and structural characteristics of protein–protein inter-
faces and HS (Sections 2 and 3). In Section 4 we then present existing HS prediction algorithms for different interface
types, with special emphasis on protein–protein complexes and artificial intelligence (AI)-based methodologies. A criti-
cal comparison is made regarding the used features and results achieved.

2 | PROTEIN-BASED INTERFACES

Various structural and sequence analyses of PPIs have been performed in previous years as these are fundamental to
better understand the potential of key residues as HS, which will help find new therapeutic options.30–33 One of the ear-
liest classifications of protein–protein complexes was based on their lifetime and divided them as permanent (complex
only stable in its oligomeric form) or transient (associates and dissociates in vivo). The distinction is sometimes difficult
due to the overcrowding in the cytoplasm.34 Some specific knowledge about the main characteristics of these types of
complexes could already be recognized. Generally, permanent interfaces display higher co-expression and conservation
rates than transient ones.35 On the other hand, interfaces in transient interactions are smaller in size,36 with a composi-
tion profile much more like the general surface and higher number of polar residues than permanent interfaces.37

Jayashree et al. also showed that over 75% of the amino acids at protein–protein transient interfaces are involved in
bifurcated interactions, where residues take part in both interprotein and intraprotein interactions simultaneously. It
was also postulated that the microenvironment around these residues is preformed and maintained after complex
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formation.38 Transient interactions are also often mediated by disordered protein segments, small linear motifs and can
require posttranslational modifications (PTMs),37,39 complicating even further the understanding of their binding mech-
anisms.10 Additionally, PTMs at functional sites can create new binding sites within transient pockets.40 As such, tran-
sient complex formation is much harder to experimentally characterize.33,41

Another classification of protein–protein complexes distinguishes between obligate, if the monomeric forms are
nonfunctional or unstable on their own in vivo, and nonobligate, if the monomers are stable and can exist on their
own.42,43 The interfaces of obligate complexes are usually larger and enriched in hydrophobic and aromatic residues
whereas nonobligate interfaces are smaller and more polar.43 Still, some proteins can change from nonobligate to obli-
gate forms, depending on the cellular conditions.43 Residues in protein–protein complexes can be split into:

1. Protein core, in which all residues are occluded from the solvent;
2. Protein surface, in which residues that have a relative surface area above a 0.20-0.25 cut-off value44–46 (the relative

surface area is defined as the ratio between the measured solvent accessible surface area (SASA) of a residue X and
its corresponding area in a Gly-X-Gly peptide–rSASA; and

3. Protein interface, corresponding to surface residues with one of their atoms within a 5 Å distance of any atom of a
residue from the binding partner.

Protein–protein interfaces are well packed regions with a high degree of chemical and physical complementarity
and with an inherent plasticity.47 These regions are not rigid, with most of the flexibility coming from loop perturbation
besides the classic sidechain movement.48 It was also shown that only 26% of all interfacial residues exist in an α-helix,
24% within a β-strand, whereas the remaining ones do not possess a regular secondary structure.48

Although the diversity is high, PPIs could be split by interface size into three categories: (i) small, 1150–1200 Å2,
(ii) standard-size, 1200–2000 Å2; and (iii) large, 2000–4660 Å2.49 Smaller protein complexes share physical elements
common to the more traditional enzyme targets concept of lock-and-key: (i) high affinity within a relatively small sur-
face area; and (ii) deeper pockets engaged by less than five major contributing amino acids to the binding free energy.50

Besides contact area, binding affinity can also be used to classify protein–protein interfaces, further splitting them into
four classes based on whenever they are narrow (surface area <2500 Å2) or wide (surface area >2500 Å2), and tight (Kd

<200 nM) or loose (Kd >200 nM). Among them, the “narrow and tight” PPIs are more amenable to the design of small-
molecule inhibitors.50,51 Protein–protein interfaces consist of complex, uneven areas that involve the surface amino
acids of a protein. Interfacial residues were further characterized using a three-layer model: (i) core (Equation (1)), bur-
ied residues in the interface with higher hydrophobicity and conservation, and small mobility; (ii) rim (Equation (2)),
partially buried, flexible interface residues; and (iii) support (Equation (3)), amino acids with a composition that resem-
bles the buried interior of a protein.46,52,53

Core¼ΔrSASA>0&rSASAm >25%&rSASAc < 25% ð1Þ

Rim¼ΔrSASA>0&rSASAm >25% ð2Þ

Support¼ΔrSASA>0&rSASAm <25% ð3Þ

where ΔrSASA is the difference in relative solvent accessible surface area between monomer and complex
(rSASAm–rSASAc) and rSASAm and rSASAc are the relative SASA in the monomer and in the complex, respectively. Sin-
gle amino acids variations are more prone to occur at the interface core, with a propensity 2.1 higher than for the rim
region, as the interface core is more conserved and more enriched in binding HS.54,55

Interfaces between proteins and nucleic acids, either protein–deoxyribonucleic acid (protein–DNA) or protein–
ribonucleic acid (protein–RNA), exhibit a few differences compared to protein–protein interfaces. In particular, it seems
that intrinsic conformational flexibility is particularly relevant for protein and nucleic acid complexes,56 which are
known to adapt their conformation to their binding partner.57 Besides being more flexible, the interface residues are
often more conserved, particularly at backbone-contacting positions.58 Protein–DNA interfaces are nonobligate as both
molecules exist in isolation as well as in the complex.59 They involve on average 24 mainly positive and polar residues
and 12 nucleotides.60 It is further acknowledged that Arg is, by far, the most common amino acid at protein–nucleic
acids interfaces as its side chain can establish multiple hydrogen bonds with the DNA phosphate, sugar, or nucleobase
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moieties.61 The second most enriched amino acid is Lys, followed by His, Ser, and Thr for DNA and Asn, His, and Gln
for RNA complexes.62 Tyr is also favored in both. The presence of these polar and charged residues shows that electro-
static is indeed the main driving force in these complexes by establishing multiple hydrogen-bonds, often water-
mediated.63 Hydrogen bonds established between amino acid sidechains and nucleotides bases seem to significantly
contribute towards specificity, whereas the ones established with the phosphate backbone are more relevant for stabili-
zation and orientation of the complex.64 Protein–DNA and protein–RNA interactions show, however, differences as in
the first, most hydrogen bonds involve phosphate atoms and in the second, base edge and ribose atoms.62 Recent stud-
ies show the rich diversity of hydrogen-bonding interactions at these interfaces, highlighting their role for protein–
nucleic acid recognition.65 While hydrogen bonds account for nearly 50% of all interactions, van der Waals (vdW), and
hydrophobic interactions are also common in these complexes.62 Corsi et al., inspired by the support–core–rim model
defined for protein–protein interfaces, defined a three archetypal model of protein–DNA interfaces, namely seed–
extension–outer layer.66 They used evolutionary conservation, physico-chemical properties, and local/global geometry
to classify residues for their role in the protein–DNA interaction.66

3 | BINDING HOT-SPOTS

Wells et al. first applied systematic experimental alanine scanning mutagenesis (ASM) to probe PPIs in a complex
between human growth hormone and its receptor. They defined HS as those residues that resulted in at least a 2.0 kcal/
mol difference in the binding free energy between mutant and wild type (ΔΔGbinding, Equation (4)) upon point alanine
mutation.17

ΔΔGbinding ¼ΔGmutant�ΔGwild-type ð4Þ

The degree of evolutionary conservation of an amino acid residue in a protein reflects a balance between its natural
tendency to mutate and its importance in the preservation of structural integrity and/or function of the protein. It was
postulated that HS are usually conserved amino acid positions, evolving more slowly, as they are essential to maintain
the proper binding mode of a protein complex, and thus its function. Amino acids have different propensities to be HS;
Arg, Tyr, and Trp are the most frequent ones due to their conformation, size and potential to establish meaningful
interactions such as hydrophobic contacts, hydrogen bonds, electrostatic interactions, and π–π stacking.20 SAVs55 were
found to be highly associated with these residues (Arg > Trp > Tyr > Gln > His > Gly > Cys).54 For example, Arg
accounts for 16%–19% of disease-causing SAVs, predominantly if located at the interface core regions.55,67

HS were found to be clustered and packed to form “hot regions”68 in complemented pockets, and are disfavored in
unfilled pockets, the ones that remain empty after protein–protein complexation.69 These regions were also assessed by
alanine shaving, the concerted mutation of two or more interfacial residues, to evaluate cooperativity.70 For example,
Moreira et al. showed that aromatic HS residues are especially relevant for protein–protein complexes and enriched
near other HS to form π–π and cation–π interactions within cooperative high-order clusters.71 It was indeed proposed
that HS contributions to the binding energy is additive between “hot regions” whereas cooperative within a “hot
region,” maybe due to local or global changes of the protein conformation, solvent structure, or other protein dynamic
properties.68,70 However, other studies point to long-range cooperative effects.72 Kuttner et al. demonstrated that the
backbone dynamic landscapes of these interacting surfaces form “stability patches” for which a diminished enthalpy–
entropy compensation effect is key.73,74

The formation of these “hot regions” implies that HS from opposite monomers face each other and are generally
enriched at the center of the binding protein–protein interface. Bogan and Thorn showed that these regions are typi-
cally surrounded by energetically fewer essential residues, resembling an O-ring, whose function seems to occlude HS
from bulk water molecules.20,75–77 This “O-ring theory” or “Water Exclusion” hypothesis implies that HS exist within a
low dielectric environment with a low solvent exposure, favoring the establishment of relevant interactions.20,75–77 As
such, most computational HS detection methods use an energy term/feature related to solvation.78 Ramos et al. also
demonstrated that HS in protein–DNA complexes tend to be occluded from the solvent, extending the applicability of
the O-ring theory to other protein-based complexes.77

Even though HS are main contributors for binding affinity and stability, not all are fundamental for specificity, as
they could be shared among different partners, particularly if within a hub-protein. In fact, hub-proteins can be split
into “date” and “party” hubs, whenever the interactions occur discretely, using the same or overlapping interfaces, or
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simultaneously, using multiple interfaces on its surface to couple to various partners.79 “Date” hubs reutilize HS in dif-
ferent ways to perform different functions.80 In an analogy to HS, Gavenonis et al. used the term hot-loops (HL) to clas-
sify a set of loops (5.6% of the overall interface) that significantly contribute to binding interactions.81 They revealed
that 36% of HL were responsible for more than half of all interfaces binding energy. The typical residues found on these
regions were Trp, Phe, His, Asp, Tyr, Leu, Glu, Ile, and Val.81 Camacho et al. have also introduced the term “anchor
residues.” These residues were defined as the ones with ΔSASA higher than 0.5 Å2 upon complex formation and a bind-
ing free energy difference higher than 0.5 kcal/mol.82 Cold-spots (CS), another concept introduced by Shirian et al., are
residues where three or more different substitutions lead to at least 0.3 kcal/mol improvement in binding affinity
(decrease in ΔΔGbinding—Equation (4)).80 They showed that CS were positions at the wild-type complex where the
intermolecular interactions were not optimal.

HS have also been shown to correspond to key binding regions, able to couple small molecule ligands.17,83 Concur-
rent with the development of protein–protein HS, protein binding sites are also explored to detect druggable HS using
fragment size or organic probes. Zerbe et al. showed that this HS concept is largely complementary with PPI ones with
a few additional topological requirements.84 These druggable PPI regions were shown to have a higher number of aro-
matic residues and methionines.85 FTMap is a well-known consensus strategy that uses organic probes within a grid to
identify binding HS and new binding sites to small molecules.86–88 Kozakov et al. showed that only fragments with a
good spatial overlap with top-ranked HS were expected to be extended to larger, useful ligands.89 However, when deal-
ing with a shallower protein–protein interface, the lack of protein flexibility may introduce demanding problems to the
detection of key HS.90 Molecular dynamics (MD) application, although very useful to overcome this issue, continues to
be time consuming, and as such the systematically use of organic/aqueous mixed solvents has been proposed to predict
binding modes and affinities, or to guide the fragment evolution process. One example was the recent development of
FragMaps.91 Energetics and plasticity were also assessed by Mertz et al. in their binding HS identification algorithm,
used to predict ligand binding modes.92 More recently, Bajusz et al. developed SpotXplorer0 library, a minimal set of
fragment pharmacophores upon critical analysis of HS at target proteins.93 More details about these methods can be
found in Table 1.

As protein–protein surfaces are not rigid, their inherent conformational fluctuation can open pharmacologically rel-
evant transient pockets that are important for the binding of new drugs.164–166 Indeed, the knowledge of such druggable
HS has been shown to help identifying transient pockets in interleukin-2 complexes.166,167 Moreover, transient PPIs
(TPPIs)33 are also involved in a variety of disease-related pathways, and a few drugs were found to bind via “interfacial
inhibition.”168 This mechanism focuses on the drug binding to transient exposed HS at a protein–protein complex, sta-
bilizing its normally transient transition state, a structurally and energetically unbalanced state.169 A few in silico
methods were already developed to identify these cryptic pockets or to better characterize TPPIs, and typically involve
MD simulations to surpass the lack of experimental structures and facilitate in-depth analysis of structural, functional
dynamic aspects of PPI models.170 For example, Rosell et al. used a combination of MD-generated side-chain con-
formers, which produced thousands of transient cavities across the protein surface, and protein–protein docking
methods to find druggable HS.171

4 | IN SILICO METHODOLOGIES FOR HS IDENTIFICATION/PREDICTION

4.1 | Databases

Experimental ASM involves the systemic point mutation of binding interface positions, followed by expression and
purification of mutants and measurement of their binding affinities. These experiments are time consuming and labor
intensive, highly depend on the used assays, and consequently not widely applied. A few databases with available
experimental information are listed in Table 2, some of which gather information from other mutagenesis experiences
besides alanine. For protein–protein complexes there are four main databases: the alanine scanning energetics database
(ASEdb),11 protein–protein complex mutation thermodynamics (PROXiMATE,174 previously known as PINT172), the
binding interface database (BID116), and structural database of kinetics and energetics of mutant protein interactions
(SKEMPI), whereas for protein–nucleic acid, we can access protein–nucleic acid interactions (PRONIT176) and protein–
nucleic acid binding energetic database (NABE177). Table 2 also includes some other curated, nonredundant datasets of
mutations that satisfy a few requirements:
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1. An existing set of relative binding free energy difference (ΔΔGbinding) values for interfacial residues coming from
experimental alanine mutagenesis;

2. Availability of a three-dimensional (3D)-structure in the protein databank (PDB); and
3. A maximum of 35% sequence identity in each interface, hence preventing repeated complexes.

4.2 | Classical prediction methods

To overcome the problems inherent to experimental procedures, we have witnessed for the last two decades the raise of
in silico methods for HS identification/prediction due to their lower cost, faster procedures, simplicity, and reliability178

(Figure 1). Typically, algorithms for HS identification/prediction for protein–protein interfaces depend on the availabil-
ity of a 3D structure, with a few exceptions: SpotONE,119 based on features retrieved from protein sequence only such
as one-hot encoding, relative position, amino acid basic knowledge and sliding window combinations of those, and
HotSpotEC, an ensemble classifier based on SASA and physiochemical properties of amino acid sequences.114,118

Table 1 also lists the available methods to detect HS on protein–protein and protein–nucleic acid systems, classifying
those into atomistic, energy-based, or AI-based approaches, which vary on the type of used protein characteristics
(structural and/or sequence-based).

Energy-based methods to perform computational ASM (cASM) have the advantage of providing quantitative analy-
sis by capturing the free energy change upon alanine mutation and can be continuously improved either by the longer
or multiple MD simulations and/or by using more accurate Hamiltonians (force fields). These approaches can be split
into: (i) rigorous methods such as free energy perturbation (FEP)179 and thermodynamic integration (TI)180 or (ii) more
simplistic approaches like molecular mechanics Poisson–Boltzmann (Generalized Born) surface area (MM/PB(GB)
SA)181–188 or other simple energy-based calculations. The MM/PB(GB)SA methodology combines a molecular mechan-
ics approach with continuum solvent models for the calculation of the relative binding free energy (Equation (4)). For
mutant and wild type, the binding free energy is the difference between the free energy of the complex and the two
coupled monomers (Equation (5); e.g., protein A and protein B). The free energy of any involved molecule
(Equation (6)) includes enthalpic and entropic contributions and is given by the sum of the internal covalent energies
(bond, angles, and dihedrals), the electrostatic and the vdW nonbonded interactions, the polar solvation free energy,
the nonpolar solvation free energy and the entropic contribution.

ΔGbinding-molecule ¼Gcomplex� Gprotein_AþGprotein_B
� � ð5Þ

Gmolecule ¼EinternalþEelectrostaticþEvdWþGpolar_solvationþGnonpolar_solvation�TS ð6Þ

For the calculations of the relative free energies between closely related complexes (point alanine mutant vs. wild-
type), it is assumed that the total entropic term in Equation (6) is negligible as the partial contributions essentially can-
cel each other in Equation (4).180,183,184,186,187,189 The Gnonpolar solvation comes from the vdW interaction between the sol-
ute and the solvent, and it is proportional to the SASA value (Equation (7)).

Gnonpolar_solvation ¼ 0:00542�SASAþ0:92 ð7Þ

The Gpolar solvation can be more rigorously calculated by traditionally solving the linear Poisson–Boltzmann (LPB)
equation or the nonlinear Poisson–Boltzmann (NLPB) equation, accounting for the importance of salt concentration in
the medium (useful for protein–nucleic acid complexes). Poisson–Boltzmann is based on the second-order elliptic par-
tial differential equation that describes the electrostatic potential surrounding a charge distribution. A variety of pack-
ages exist to solve this equation, such as Delphi190 that uses a finite difference method, based on discretizing the
workspace into a uniform grid. This continuum model involves a low dielectric protein surrounded by a high dielectric
continuum solvent/water. Due to the elevate computational time involved, PB can also be substituted by an approxi-
mated method using the GB model.191

The MM/PB(GB)SA approach first developed by Massova et al.187 was further improved by Moreira et al. that by
using a set of three different internal dielectric constants (ε) to calculate Gpolar solvation that simulate the degree of
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relaxation upon alanine mutation, achieving the chemical accuracy with a mean error of 0.80 kcal/mol.184 Posteriorly,
Martins et al. compared the method to TI for 22 mutants from four complexes and concluded that both presented simi-
lar accuracy (average error 1.18 vs. 1.53 kcal/mol, respectively), further validating the efficiency of the developed
method.180 MM/PB(GB)SA methods were also applied to protein–nucleic acid interfaces. For example, Ramos et al. fol-
lowing similar protocols also achieved a high accuracy.185 More recently, other groups have been implementing a set of
different ε to analyze the mutation effect at various types of interfaces.192,193 These methods allow to access protein het-
erogeneous ensembles of fluctuating conformations and consider dynamics, flexibility, formation of transient interac-
tions, and pockets. In contrast, as they rely on heavy MD simulations for conformational sampling at an atomistic
resolution, typically in an explicit solvent representation, they are computational expensive and therefore difficult to
apply in a high throughput mode.9 Moreover, MM/PB(GB)SA still tend to neglect changes in the conformation entropy
due to its large computational cost (S is neglected in Equation (6)). However, recent approaches have successfully used
a new term, the interaction entropy (IE), combined with a MM/GBSA approach to calculate the binding free energy dif-
ference upon alanine mutation.194

4.3 | AI-based prediction methods

As energy-based methods are often time-consuming and difficult to apply in high-throughput mode, machine learning
(ML), a subset of AI, has been widely used to address the question of HS prediction, particularly in the last few years.
Both the big boom in data availability as well as more powerful and cheaper software/hardware allowed AI to enhance
and accelerate scientific discovery by creating useful knowledge from fragmented information. AI algorithms are very
different from traditional analytics as they can analyze much larger datasets and adapt when exposed to new data. Such
algorithms have the potential to make accurate predictions given a dataset without needing to be explicitly programmed
as they can learn and self-correct to improve their accuracy based on some feedback loop.195 In fact, their performance
improves by learning from previous computations producing reliable and reproducible decisions.

The foundation of ML algorithms is diverse as, for example, some are based on probabilistic models (they model the
uncertainty based on probability theory and, in particular, Bayes´ theorem) and others on connectionist approaches
(networks of various numerical processors, interconnected and running in parallel such as artificial neural networks
[ANNs]). They show different behaviors when applied to different scientific problems and as such it is fundamental to
test a variety of regression or/and classification algorithm when examining a new biological problem. As the no-free-

FIGURE 1 HS detection methods workflow: from experimental to in silico methodologies
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lunch theorem from Wolpert states: “The best classifier may not be the same for all datasets.”196 The “ALGORITHM” col-
umn in Table 1 shows that the most used ML algorithms in this field are: support vector machine (SVM) and random
forest (RF) classifiers. The performance of these methods is usually reported by several threshold-dependent statistical
measures derived from a confusion matrix where TP stands for true positive (predicted HS that are actual HS), FP for
false positive (predicted HS that are not actual HS), FN for false negative (nonpredicted HS that are actual HS), and TN
for true negatives (correctly predicted null-spots). The frequently used metrics are accuracy (ACC), true positive rate
(TPR, also called recall or sensitivity), true negative rate (TNR, specificity, or selectivity), positive predictive value (PPV
or precision), Matthew's correlation coefficient (MCC), and F-score (F1). Most authors do not publish all available met-
rics, hampering a proper performance comparison between existing algorithms. Still, Table 1 lists the most relevant
metrics for the available algorithms to facilitate the understanding of current state-of-the-art (SOTA) tools.

In principle, a prediction tool should follow several specific procedures to ensure maximum confidence and perfor-
mance through a multistep implementation:

1. Construction of a valid benchmark dataset, with a well-though split into training (data used to construct the model)
and testing (data used to measure the final model performance) sets;

2. Formulation of a set of key features that show some correlation with the quantity to be analyzed/predicted;
3. Introduction and/or development of a powerful algorithm (or engine);

FIGURE 2 Timeline of representative methods developed to HS detection at protein-based complexes (protein–protein, protein–nucleic
acid, and protein–ligand). These methods were further split in the three used methodologies: energy-based, AI-sequence-based and AI-

structure-based
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4. Properly performing N-fold or jackknife cross-validation test, subsampling test and independent dataset test to eval-
uate the performance of the used method; and

5. Ideally, the provision of a user-friendly web-server fully accessible to the public or a simple to use and install version
of the software for local use.109

The current big data era is resulting in a huge number of rich sources of molecular level information for proteins.
These are extremely useful for ML applications which depend on the selection of key features that encode the main
characteristics of the biological problem at hands.197 Usually, researchers will provide a high number of local and global
characteristics/features and let the algorithm choose by itself the ones that provide the higher discriminatory power.
This learning depends not only on feature correlation but also on their encoding, renormalization and mix between dif-
ferent formats. The increased number of features that can be considered brings however challenges in defining their rel-
ative weight.197

The used features in the development of different data-driven models typically fall into two broad categories:

1. Sequence-based that use an encoding of sequence-derived features of the residues and their neighbors and explores
amino-acid identity, physico-chemical properties of amino-acids, predicted solvent accessibility, position-specific
scoring matrices (PSSMs), interface propensities, sequence conservation, and co-evolution; and

2. Structure-based features of the target residues and neighbors such as interface and surface propensities, interface
size, geometry, roughness, SASA, atomic interactions, secondary and tertiary structural information, sequence
entropy, surface shape, and physico-chemical-based features (amino acid composition and properties, GO-driven
frequency-based similarity, and semantic similarity).

As shown, SASA was already reported as a key feature to improve HS detection. It is essential in a wide variety of
AI-based models.75,76,109,131,141,181 However, it has been shown that even conservation and SASA, which were
highlighted as key contributors in a binding interface, can alone not unambiguously define a HS.198 Most developed AI-
methods focus on structural features and do not depend on the type of analyzed interface. In contrast to protein–protein
interfaces that have been studied for the past 15 years, the development of methods for nucleic acids only took off since
2015. The recent release of new databases of alanine mutations at protein–nucleic acid interfaces will for sure fuel the
application of AI-methods to these complexes. Figure 2 illustrates the time evolution of the available algorithms for HS
detection.

Applying computational AI methods to high-throughput genomics/proteomics is not a straightforward technical
task. In addition to the expected complexity of algorithms, collecting the data, storing them, performing real-time analy-
sis, and distributing the resulting insights are also technical challenges. If enough data are available, a new subset of
ML, deep-learning (DL) algorithms could transform HS detection approaches not only as a high-performance prediction
tool, but also as a ground-breaking technology. DL is a collection of techniques and methods that are used to build com-
posable differentiable architectures. The more relevant one's for the field are probably multilayered perceptron (MLP),
convolutional deep neural networks (CNNs), graph convolutional networks (GCN), and its common variants.199,200

DL success in structural biology was recently demonstrated by the development of a neural network-based model,
AlphaFold2 (AF2), to accurately predict the 3D structure of a human proteome, among others. Arguably one of the big-
gest achievements in the structural biology and AI fields, AF2 has demonstrated an exceptional performance in the 14th

Critical assessment of protein structure prediction (CASP14) with a median backbone and all-atom accuracy of 0.96
and 1.5 Å root-mean-square-deviation (RMSD), respectively201 using transformers in an innovative manner since, previ-
ously this algorithm was used for image analysis and natural language processing.202 In fact, AF2 was able to under-
stand complex interrelationships between sequence and structure, and use that information to predict multiple
structural features, and ultimately to predict reliable 3D models.203 Upon the open-source release of AF2, the sizzling
scientific community has been publishing encouraging results regarding protein interaction predictions. AF2 was used
to assess protein–peptide complex structures and achieved great results with around 40% of the complexes modeled
with an accuracy under 2.0 Å (Cα-RMSD) (Ko et al., unreviewed results, doi: 10.1101/2021.07.27.453972). Likewise, pro-
tein–peptide docking was the focus of the work developed by Schueler-Furman laboratory, which demonstrated that a
simpler approach only using AF2 was able to mimic SOTA models with the advantage of the algorithm being simple
sequence-based (Tsaban et al., unreviewed results, doi: 10.1101/2021.08.01.454656). Elofsson et al. also developed a
“fold and dock” pipeline to accurately predict protein–protein complexes. They used AF2 to this end and achieved bet-
ter results than SOTA software. Adding to the ability to predict the complexes, they could also discriminate between
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interacting and noninteracting protein dual sets (Bryant et al., unreviewed results, doi: 10.1101/2021.09.15.460468).
Despite being a standalone tool, AF2 was also combined with ClusPro204,205 which increased the success rate by 23%
for the top 5% predictions and 40% for the top 10%. Inspired by the release of AlphaFold, before its debut as a public
available tool, Baker and co-workers developed and published RoseTTA-Fold.206 At that time, RoseTTA Fold debut
with comparable performance to AlphaFold, the possibility to predict protein–protein complexes, and availability as a
public server.206

DeepMind took one step further and released AlphaFold-Multimer, a model that aims to predict multichains pro-
tein complexes contrasting to their original single-chain structure predictor, AF2. The latest AlphaFold-Multimer could
correctly predict 67% and 69% of the heteromeric and homomeric interfaces, respectively, and with high-accuracy pre-
dictions in 23% and 34% of the complexes (Evans et al., unreviewed results, doi: 10.1101/2021.10.04.463034). To add to
the AF2 breakthrough, other groups are contributing with parallel releases encompassing extra features for the original
model. Lin and coworkers. developed ParaFold, a solution to improve the central processing unit/graphics processing
unit (CPU/GPU) use of AF2 that can be of use to deal with the computational requirements since they were able to
speed the predictions almost by 14-fold (Zhong et al., unreviewed results, doi: arXiv:2111.06340, 2021). Perrakis et al.
developed AlphaFill which adds cofactors and ligands to the AF2 predictions to enhance the biological interpretation
(Hekkelman et al., unreviewed results, doi: 10.1101/2021.11.26.470110). Skolnick et al. postulate that AF2 models have
still to be carefully prepared before used in drug discovery to tackle the protonation state, activation state, presence of
ions/solvent, among other relevant factors.207

A few authors have also merged characteristics of both methodologies, energy- and AI-based, achieving interesting
results. For example, Ibarra et al. developed BudeAlaScan, a consensus ML based function that allows the use of multi-
ple HS detection methods, including energy- and AI-based ones. Moreover, by allowing the upload of nuclear magnetic
resonance (NMR) ensembles or MD trajectories, their consensus function exploit intrinsically disordered regions (IDRs)
and transient or dynamic noncovalent contacts, further amplifying the potential of HS detection and drug
development.163,208

5 | CONCLUSION

Despite technological advances, the explosion of genomic and proteomic data and the inherent advances of structural
bioinformatics, there is still room to improve the overall performance of HS detection methods. One of the main diffi-
culties lies in the interpretation and mining of an ever-growing, scattered, and overwhelming wealth of diverse data
from global systemic approaches with an increased granularity of evidence of which large searchable databases already
exist. This deluge of information has also provided us access to a panoply of protein-interactions-related data; a source
that remains underexplored. Determining the relative importance of different pieces of evidence when combining the
available information to suggest potentially successful binding motifs, and in particular HS, all crucial steps for drug
discovery, is another challenge.

Given the latest advances in the field of AI application to structural biology (with AF2 as a recent example), this
enormous task can now be pursued. In fact, innovative, fast, and accurate AI procedures are being continuously devel-
oped to detect HS at all types of protein-based interfaces. These tools are typically assembled in online, user-friendly
platforms, that bridge the gap to the wet-lab, appealing to the scientific community as a less costly and time-effective
approach. Undoubtedly, these new techniques are the basis for a new disruptive paradigm in the drug development
field.
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