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Summary

Since the discovery of the inner core almost 100 years ago, the seismological
community has found that the inner core contains significant heterogeneity
in its elastic structure. This observation is significant and in many ways
unexpected; we believe the inner core to be (relatively) chemically homoge-
neous consisting primarily of iron and nickel and certainly not containing
the thermal and chemical heterogeneity we see in the Earth’s crust and
mantle. Yet, despite this assumption, we observe that seismic waves which
pass through the inner core travel faster in a north-south direction than
an east-west direction and that the spectra of whole Earth oscillations are
anomalously split in a way which is consistent with the same velocity differ-
ence. This difference in velocity between two directions through the inner
core is called anisotropy, and from mineral physics we have reason to believe
that this anisotropy is caused by the alignment of iron crystals which are
themselves anisotropic at inner core temperatures and pressures. However,
this is not the end of the story, as many unanswered questions remain; What
causes these iron crystals to align into an anisotropic fabric? Why are some
regions of the inner core anisotropic and others not? Does the anisotropy
and its strength vary with depth? To help answer these questions, we have
to constrain the magnitude of the anisotropy and the location of anisotropy
in the inner core. The primary goal of this thesis is to constrain, as well as
possible, the elastic structure of the inner core.

To achieve our aim we first expand upon the body wave dataset by
adding new observations of paths which travel almost parallel to Earth’s
axis of rotation, giving us improved sensitivity to velocity in the north-south
direction in the inner core. We combine our new data with other body wave
datasets to produce a 3D seismic tomographic model of the inner core. This
model utilised a transdimensional Markov chain Monte Carlo methodology
which not only determines the best fitting anisotropy structure in the inner
core, but also the uncertainties in our model and it does not require any
prior assumptions on the parameterization of the inner core. The advantage
of this method is significant, especially because the relatively poor sampling
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of the inner core means that prior assumptions on the parameterization may
significantly affect the final model. In the transdimensional approach the
parameterization is a part of the inversion. In our new transdimensional
model we confirmed many previous observations, including an isotropic layer
of ∼ 100 km thickness at the top of the inner core and that the inner core
is split broadly into a western region and an eastern region. However,
with the new data and methodology we are now able to make new robust
observations, such as seeing for the first time that the western anisotropic
zone is isolated to the northern hemisphere and that the inner most inner
core exists but primarily in the eastern region. These observations are
significant as it provides new insight into the mechanisms of inner core
formation and dynamics, and we discuss the potential implications for inner
core geodynamics.

However, body waves represent only one possible type of data we can use
to investigate the inner core and it is important in deep Earth research to
bring together as many sources of information as possible. Thus we then also
added whole Earth oscillations and measure 18 normal modes sensitive to
the inner core. We used a splitting function approximation and utilise a grid
search methodology to constrain the uncertainties in the measurement. The
data were then used to produce a preliminary 1D transdimensional model
of inner core anisotropy using polynomial basis functions and find a model
which agrees reasonably well with the spherical average of compressional
anisotropy from the body wave model.

Finally, we describe a new method to combine the body waves and the
normal modes into a single 3D transdimensional model. We show promising
preliminary results from this methodology with a model which fits both the
body waves and the normal mode data well, reproducing the main structures
of our 3D body wave only model. Combining the body waves with the
normal modes comes with caveats. We are not able to fit all of our mode
measurements, and therefore we have not utilised all inner core sensitive
normal modes that have been measured. Furthermore combining the two
types of data results in multiple regions where the slowest direction is not
perpendicular to Earth’s axis of rotation. Previous authors have attributed
an anomalous slow direction in the inner core to a inner most inner core.
The complexity we recover in this anomaly confirms the difficulty in imaging
the inner most inner core. Given the preliminary results, we feel confident
that this is the right approach and should be extended in the future.
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Samenvatting

De binnenkern van de aarde is bijna honderd jaar geleden ontdekt en sinds-
dien heeft de seismologische gemeenschap aangetoond dat deze aanzienlijke
variatie in elastische structuur bevat. Dat is een belangrijke en enigszins
onverwachte observatie: de binnenkern wordt namelijk beschouwd als (re-
latief) chemisch homogeen, voornamelijk bestaand uit ijzer en nikkel, met
veel minder variatie in temperatuur en compositie dan we in de korst en de
mantel zien. En toch observeren we dat seismische golven door de bin-
nenkern sneller reizen in noord-zuidelijke richting dan in oost-westelijke
richting. Ook zien we dat frequentiespectra van normal modes, de eigen-
trillingen van de aarde, gesplit zijn en dat deze splitting overeenkomt met
dezelfde verschillen in seismische snelheid in de binnenkern. Dit fenomeen,
waarbij de snelheid van seismische golven afhangt van de richting door het
medium, wordt anisotropie genoemd. Onderzoek uit de mineraalfysica laat
zien dat ijzerkristallen anisoptroop zijn onder de hoge druk en temperatuur
die heersen in de binnenkern. De geobserveerde anisotropie in de binnenkern
zou dan veroorzaakt kunnen worden door het op grote schaal en in dezelfde
richting oriënteren van deze anisotrope ijzerkristallen. Maar daar is niet
alles mee gezegd, want er zijn nog veel openstaande vragen: wat veroorza-
akt de grootschalige oriëntatie van ijzerkristallen? Waarom zijn sommige
delen van de binnenkern anisotroop en andere niet? Zijn er dieptevariaties
in de sterkte en het voorkomen van anisotropie in de binnenkern? Bin-
nenkernanisotropie moet beter in kaart worden gebracht om deze vragen te
kunnen beantwoorden. Het hoofddoel van dit proefschrift is dan ook het zo
goed mogelijk bepalen van de elastische structuur van de binnenkern.

Om te beginnen breiden we de bestaande body-wave dataset uit door
observaties toe te voegen van golven met paden die bijna parallel lopen
aan de rotatie-as van de aarde. Hiermee verbeteren we de gevoeligheid
voor de snelheid in noord-zuidelijke richting in de binnenkern. Vervolgens
combineren we onze nieuwe data met bestaande body-wave datasets om
een 3-D seismisch tomografiemodel van de binnenkern te maken. Hiervoor
gebruiken we een trans-dimensionale Markov chain Monte Carlo methode
die de optimale anisotropiestructuur vindt om onze data te verklaren. De
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voordelen van deze methode zijn dat ook de onzekerheden van de mod-
elparameters worden bepaald en dat er geen aannames hoeven te worden
gedaan over de parametrisatie van de binnenkern, omdat de parametrisatie
onderdeel is van de inversie. Deze voordelen zijn aanzienlijk, met name om-
dat de slechte dekking van de binnenkern door de body-wave data betekent
dat vooraf vastgestelde aannames over de parametrisatie van de binnenkern
een grote invloed zouden hebben op het uiteindelijke model. Ons nieuwe,
trans-dimensionale model bevestigt veel voorgaande observaties, waaron-
der het bestaan van een isotrope laag van 100 kilometer dikte bovenin
de binnenkern en de grove verdeling van de binnenkern in een anisotrope
westelijke helft en een isotrope oostelijke helft. Daarnaast zijn we met onze
nieuwe dataset en methode in staat om een aantal nieuwe, robuuste obser-
vaties te doen. We zien voor het eerst dat de westelijke anisotrope zone
beperkt is tot de noordelijke hemisfeer en dat de binnenste binnenkern zich
voornamelijk in de oostelijke zone van de binnenkern bevindt. Dit zijn be-
langrijke observaties, omdat ze nieuwe inzichten bieden in de mechanismen
die verantwoordelijk zijn voor de formatie en dynamiek van de binnenkern.
We bespreken de potentiële implicaties van onze resultaten voor de geody-
namica van de binnenkern in dit proefschrift.

Onderzoek naar de diepe aarde profiteert van het samenbrengen van
zoveel mogelijk bronnen van informatie, waar body waves er maar één van
zijn. Zodoende meten we ook 18 normal modes die gevoelig zijn voor de bin-
nenkern, waarbij we gebruik maken van de splitting-functie benadering en
we een grid-search methode toepassen om de meetonzekerheden te bepalen.
Vervolgens gebruiken we deze metingen om een 1-D trans-dimensionaal
model van binnenkernanisotropie te maken dat redelijk overeenkomt met
de uitgemiddelde structuur van het body-wave model.

Ten slotte beschrijven we een nieuwe methode om observaties van body
waves en normal modes te combineren tot een enkel 3-D trans-dimensionaal
model. We laten veelbelovende, vroegtijdige resultaten zien van deze meth-
ode, waarmee we een model maken dat zowel de observaties van body waves
als normal modes verklaart en tegelijkertijd de belangrijkste structuren van
het 3-D body-wave model bevestigt. Ondanks dat niet al onze normal-mode
metingen goed worden verklaard door dit gecombineerde model, en we hi-
erdoor een aantal metingen buiten beschouwing laten, zijn we optimistisch
dat onze methode veel potentie biedt voor de toekomst.
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1
Prologue

The inner core lies at the centre of the Earth and at the centre of many
Earth processes. Most importantly, the solidification of the inner core from
the liquid outer core releases latent heat which helps drive the geodynamo
generating Earth’s magnetic field. The latent heat in turn provides a sig-
nificant portion of the heat budget at the core mantle boundary (CMB)
driving mantle convection and influencing tectonic processes visible at the
surface of the Earth, including mantle upwellings and subducting slabs. In
this way, it is important to think of the planet as a single system, and un-
derstanding the composition, structure and dynamics of the inner core is
key to understanding how the Earth system functions as a whole.

However, the inner core of the Earth is arguably the most difficult region
of our planet to study. The inner core lies ∼ 5150 km underneath the
Earth’s surface and yet it is easier to send probes millions of kilometers
through space to study remote bodies of the solar system than it is to
physically drill more than 10 km into the crust. That means we must resort
to indirect sensing, such as seismology, to understand what is happening
beneath our feet.

Oldham (1906) discovered the outer core through observing a P-wave
shadow zone between 103◦ and 142◦ epicentral distance where no P-waves
are observed. Gutenberg proposed that the outer core must be liquid after
observing a S-wave shadow zone between from 103◦ to 180◦ epicentral dis-
tance where no S-waves were observed. However, it was Lehmann (1936)
who observed P-waves arriving within this shadow zone and correctly con-
cluded that this was due to reflections from a inner core which was most
likely solid, although no direct evidence for the inner core’s solidity existed
at the time. Since Lehmann (1936) seismology has been key to studying
the inner core. While other disciplines, such as mineral physics, provide
valuable constraints on the physical properties of the inner core, or geody-
namics, which attempts to understand the inner core’s dynamic history, it is
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Chapter 1. Prologue
only seismology which provides direct observations of the elastic properties
of the inner core.

Initially seismometers were located sparsely around the world and with
many different standards, but from 1962 onwards the first standardised
global seismograph networks were installed. As the quality and quantity
of seismometers increased and computational resources became more acces-
sible the discipline of seismic tomography emerged. Seismic tomography
as a field began in the mid 1970’s where, typically, travel time data were
used make 3D models of velocity variations in the crust and mantle (Aki
and Lee, 1976). The field developed rapidly from then, where many groups
produced mantle models in parallel using ever larger datasets. Some groups
focused on imaging the mantle by using finite grids with P-wave arrival
times (Dziewonski et al. (1977); Dziewonski (1984); Spakman et al. (1988);
Hilst et al. (1997)) while others utilised a spherical harmonic parameteriza-
tion to describe surface wave and normal mode observations (Woodhouse
and Dziewonski (1984); Nataf et al. (1986); Li and Romanowicz (1996);
Ritsema et al. (1999)). Waveform fitting methods attempt to go further
than fitting travel time or phase information and to fit the whole wave-
form and take into account finite-frequency affects in 3D (Bamberger et al.
(1982); Zhao et al. (2000); Dahlen et al. (2000); Nolet and Dahlen (2000)).
Full waveform inversion (FWI) is computationally expensive and as such
was limited to regional studies, but significant progress has been made in
conducting global (FWI) and it is now possible to conduct full waveform
inversion for the whole mantle (Lekić and Romanowicz (2011); Bozdağ et
al. (2016); Thrastarson et al. (2022)).

However, while the mantle and the crust have been mapped extensively
in 3D using a wealth of seismic observations, the inner core poses a unique
challenge. Due to the inner core’s depth any seismic observations of the
inner core will be influenced by heterogeneity in the rest of the planet.
Furthermore, the liquid outer core acts as a filter preventing shear waves
travelling from the crust or mantle reaching the inner core. These two facts
inherently make the inner core a relatively data sparse region of the Earth.
This means that studies of the inner core have had to adopt different tech-
niques to overcome such data limitations. In this thesis we aim to convince
the reader that with the increase in reliable seismic data sensitive to the
inner core and the use of Bayesian methodologies to constrain uncertainties
in the data and model space, it is now possible to produce reliable and high
resolution 3D seismic tomographic models. We will then use these models
to observe exciting new features within the inner core with implications for
our understanding of the deepest region of our planet.
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1.1. Seismic observations of the inner core

1.1 Seismic observations of the inner core

The inner core is most commonly studied using travel times of compres-
sional body waves. Usually, the compressional wave that travels through
the mantle, outer core and inner core is measured alongside a reference
phase which only traverses the mantle and outer core. These body waves
are studied at short period (∼1Hz) and therefore are useful for finding small
scale structures and regional variations within the inner core.

Poupinet et al. (1983) were the first to observe that compressional waves
which travel in a north-south, or polar, direction in the inner core arrive
approximately 3-5 seconds earlier than waves which travel in an east-west,
or equatorial, direction through the inner core, (Figure 1.1). Morelli et
al. (1986) proposed that this is explained by cylindrical anisotropy (also
known as transverse isotropy) in the inner core. Seismic anisotropy arises
when the velocity of a seismic wave travelling through a medium depends on
its travel direction. Cylindrical anisotropy is a specific form of anisotropy
in which the velocity along the symmetry axis is different from the velocity
in the plane perpendicular to that axis. The symmetry axis in the inner
core appears aligned to Earth’s rotation axis. When using ray theory, body
wave data are approximated as raypaths from which you can calculate the
angle ζ, which is the angle between the inner core segment of the raypath
and Earth’s axis of rotation.

Woodhouse et al. (1986), corroborated the findings of Morelli et al.
(1986) by showing that cylindrical anisotropy in the inner core is also consis-
tent with observations of anomalously split normal modes. Normal modes
are whole Earth oscillations which are excited after a large earthquake, they
are long wavelength and most easily observed in the range of 0.0-10.0 mHz,
unlike inner core sensitive body waves which are best observed between 0.5-
2.0 Hz. This means that normal modes, can provide us with a independent
observation of the inner core’s elastic properties.

1.1.1 A heterogeneous inner core

Early studies of inner core anisotropy treated the inner core as homogeneous
with the same velocity properties relative to a reference model throughout,
which was justified considering the limited amount of data available. How-
ever, as data improved it became clear that the inner core exhibits signif-
icant lateral heterogeneity. Tanaka and Hamaguchi (1997) observed that
polar paths travelling through the western part of the inner core arrived
earlier than polar paths in the east (Figure 1.2). This hemispherical pat-
tern has been confirmed by numerous studies since Tanaka and Hamaguchi

3



Chapter 1. Prologue
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Figure 1.1 A cross section of the Earth showing 10 compressional
wave raypaths with the colour corresponding to the angle ζ, be-
tween the inner core segment of the raypath and Earth’s axis of
rotation.

(1997) and it is now widely accepted that there is an ‘eastern hemisphere’
with minimal anisotropy and an anisotropic ‘western hemisphere’ (Crea-
ger (1999); Garcia and Souriau (2000); Sun and Song (2008a); Irving and
Deuss (2011); Lythgoe et al. (2014)). Hemispheres in inner core anisotropy
are also observed with normal modes by looking at cross coupling between
inner core sensitive modes (Deuss et al., 2010).

According to body waves anisotropy in the west is as high as 4-8% while
anisotropy in the East is minimal, around ∼1% (Table 3.1). Differences be-
tween body wave studies may represent differences in the data used or the
parameterization. For example, the quantity of reliable polar data varies
greatly between studies, which will be the major topic of Chapter 3. The lo-
cation of the hemisphere boundaries also varies significantly across previous
studies, an issue we address in Chapter 4.

Anisotropy not only varies laterally but also strongly with depth in the
inner core. Body wave data which is only sensitive to the top ∼100 km
of the inner core show that there is minimal anisotropy here, but signif-
icant isotropic velocities differences exist between the hemispheres, with
an isotropically fast eastern hemisphere (∼1-2%) and an isotropically slow
western hemisphere (∼-0.5%) (Niu and Wen (2001); Waszek and Deuss
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1.1. Seismic observations of the inner core

Figure 1.2 Polar raypaths from the dataset of Tanaka and Ham-
aguchi (1997), solid circles represent paths which arrived earlier
(i.e. faster) than expected and hollow circles represent paths which
arrived later (i.e. slower) than expected. A larger circle corre-
sponds to a bigger anomaly. Figure taken from Tanaka and Ham-
aguchi (1997).

(2011); Burdick et al. (2019)). Anisotropy increases in the western hemi-
sphere from approximately 100 km beneath the inner core boundary (ICB)
until the centre of the inner core.

There is some evidence for an innermost inner core (IMIC), where the
direction of slowest velocity, ζslow, is not in the equatorial plane or perpen-
dicular to the symmetry axis (i.e. Earth’s rotation axis), but at an angle
of between 45◦ − 65◦ (Ishii and Dziewoński (2003); Beghein and Trampert
(2003); Frost and Romanowicz (2019); Stephenson et al. (2020); Lima et al.
(2022)). The existence of an IMIC is particularly difficult to verify as there
is less data sensitive to the deep inner core than the outer inner core and
the ζslow anomaly is subtle. However, there have now been multiple studies
which have observed an IMIC and most consider the IMIC to be a sphere
within the inner core with a radius between 300 and 690 km. In contrast
Lythgoe et al. (2014) found that direct compressional body wave observa-
tions of an IMIC could also be fit through hemispherical variations and that
the IMIC anomaly is a part of the eastern hemisphere.
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Chapter 1. Prologue

1.2 Mineral physics & geodynamics

Interpreting seismic observations of the inner core requires an understanding
of the composition, mineralogy and dynamic processes within the core. The
inner core is made up of ∼90% iron and nickel and ∼ 10% lighter elements
(Jephcoat and Olson (1987); Vocadlo and Price (2007)). Mineral physics
tells us that the crystal structure of pure iron takes one of three forms:
bcc (body centered cubic) at ambient conditions, transforming to fcc (face
centered cubic) at higher temperatures and hcp (hexagonal close packed) at
higher pressures. This information comes from two different sources: dia-
mond anvil cell laboratory experiments and ab initio computer simulation.
In diamond anvil cell experiments a sample of a material in question is ex-
posed to high temperatures and pressures and then the crystal structure
of the sample is inferred through X-ray diffraction (Boehler (1993); Tateno
et al. (2010), see Hirose et al., 2013 for a review). Ab initio calculations
computationally model the atomic arrangement of the iron crystals using
physical theory (Stixrude et al. (1997); Vočadlo et al. (2000)). While the
most stable phase of iron at inner core temperatures and pressures is hcp
(Stixrude and Cohen (1995); Hirose et al. (2013)), the differences in the
free energies between hcp, bcc and fcc and the effect of light elements in
the inner core mean the presence of fcc and bcc iron cannot be ruled out
(Stixrude (2012); Martorell et al. (2015)).

These mineral physics considerations are important as hcp, fcc and bcc
iron all exhibit anisotropy. They provide us with an explanation for the ani-
sotropy we observe in seismology. Indeed, given the three different sources
of evidence of anisotropy in the inner core: (i) body wave observations, (ii)
normal mode observations and (iii) mineral physics experiments, I think it
is unlikely that our observations of anisotropy in the inner core would be
due to noise in our data or misinterpretation of mantle structure.

However, it is not enough for anisotropic crystals to be stable at in-
ner core temperatures and pressures, there must be a process which aligns
these crystals, as a random arrangement of anisotropic crystals would ap-
pear isotropic overall. Geodynamics attempts to understand the forces act-
ing within the inner core and the dynamic evolution of the inner core with
time which may provide mechanisms to align the iron crystals. There is a
pattern in scientific studies of the inner core, where seismic observations of
the inner core improve, mineral physicists refine experiments to find crystals
with elastic parameters matching the seismic observations and geodynam-
icists attempt to reconstruct seismic observations with computational flow
modelling.

Major open questions for geodynamic studies of the inner core include

6



1.2. Mineral physics & geodynamics

finding the dominant cause of crystal alignment and the processes which
lead to a hemispherical difference in the inner core. When it comes to crys-
tal alignment this could either occur when iron crystals solidify locking in
a preferred alignment or due to deformation within the inner core after so-
lidification. In the solidification regime it has been proposed that crystals
align with the magnetic field, due to the paramagnetic properties of iron
(Karato, 1993), or that iron aligns with a prevalent heat flux due to in-
creased heat extraction at the equator (Bergman, 1997). The solidification
regime would result in strong anisotropy at the top of the inner core. Given
that significant anisotropy in the inner core only starts 100 km below the
ICB (Waszek and Deuss (2011); Burdick et al. (2019)) solidification regimes
seem less likely (Alboussiere and Deguen, 2012).

Alternatively, crystal alignment could be achieved post solidification
due to deformation within the inner core. Yoshida et al. (1996) suggested
that preferential heat extraction at the equator of the inner core results
in more crystallisation at the equator than the poles, causing gravitational
instability and flow from the equator to the poles of the inner core. It
would then be expected that the iron crystals would align with this flow
(Figure 1.3). Similarly, Lorentz forces, if strong enough, could produce
shear flow within the inner core (Karato (1999); Buffett and Wenk (2001)).
The resulting flow would be in the opposite direction to Yoshida et al.
(1996), with flow from the poles to the equator of the inner core, but still
resulting in the same pattern of crystal alignment.

Hemispheres in the inner core have proved more difficult to explain
with geodynamics. There are many processes in the Earth which posses
symmetry relative to Earth’s axis of rotation such as the Coriolis forces
or the geomagnetic field etc, however, there are not many obvious causes
for a hemispherical asymmetry. Broadly, two major mechanisms have been
proposed to produce hemispherical structures in the inner core. Sumita and
Olson (1999) and Aubert et al. (2008) propose that heat flux heterogeneity
at the Core Mantle Boundary (CMB) result in long term patterns of flow
within the outer core. This would occur due to the accumulation of cold
slabs at the CMB which in turn would increase the heat gradient across
the CMB locally. If this heat gradient could be maintained for at least 200
million years then it is possible this would induce a heterogeneous heat flux
on the ICB. If this heat flux remained static for a long time this could lead
to a difference in growth rate for the eastern and western hemispheres of
the inner core, resulting in the hemispherical asymmetry (Figure 1.4). This
mechanism has some unknowns however, as it is not clear how long we could
expect heat fluxes to stay stable at the CMB, and the effect it would have
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Figure 1.3 Cartoon illustrating the post solidification crystal
alignment mechanism whereby the direction of flow in the inner
core is driven by preferential heat extraction at the equator of the
inner core. Figure taken from Yoshida et al. (1996).

on the rapidly convecting outer core.
Another mechanism proposes that the inner core itself is convecting

due to thermal or compositional heterogeneity (Alboussiere et al. (2010);
Deguen et al. (2018)). For a specific viscosity range the form of inner core
convection becomes a translation, where the east of the inner core is melting
and the west is crystallising. This would result in gravitational instability
and as a consequence the inner core would translate to the east to maintain
its centre of gravity (Figure 1.5). This translation would then result in a
western hemisphere which was younger than the eastern hemisphere with
different elastic properties.

1.3 Motivation & outline

I hope that this prologue has made it clear to the reader that the inner core
is a fascinating yet challenging region of the Earth to study. Many open
questions remain for inner core seismology, such as why does the magnitude
of anisotropy observed in the inner core by normal modes and body waves
differ? What is the exact shape of the hemispheres in the inner core? And
is there an innermost inner core and if so what are its size, shape, and
elastic properties? Innovative techniques are required to extract as much
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1.3. Motivation & outline

Figure 1.4 The influence of CMB heat flux heterogeneity on the
solidification pattern of the inner core. Figure taken from Aubert
et al. (2008).

Figure 1.5 Showing translation from west to east in the inner
core due to preferential crystalisation and how this could result
in hemispherical asymmetry in the inner core. Figure taken from
Alboussiere and Deguen (2012).
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Chapter 1. Prologue

information from the seismic wavefield as possible, due to a relative lack of
data and imperfect earthquake and seismometer distribution on the Earth’s
surface. Improved imaging of seismic anomalies within the inner core can
provide new observations to inform geodynamic models of the inner core
and mineral physics experiments.

To answer some of the open questions mentioned above, this thesis aims
to improve body wave and normal mode observations of inner core aniso-
tropy and to produce a high resolution probabilistic 3D tomographic model
of inner core anisotropy, combining both types of data. This thesis is struc-
tured in such a way that data and model complexity increases with each
chapter. We start from simple models using just body waves and end with
a Bayesian transdimensional model jointly fitting normal modes and body
waves. This systematic approach lends confidence to our final model and
interpretations as the influence of each increase in complexity is clear.

Chapter 2 starts with a short primer on transverse isotropy and derive
some fundamental equations for later chapters.

Chapter 3 focuses on increasing the body wave dataset with special
attention on collecting more observations of ultra-polar raypaths (ζ < 20◦)
making use of recently installed seismic stations in Antarctica. Using our
newly collected data, we make initial estimates of inner core anisotropy and
first order observations of its lateral and depth variations.

Chapter 4 combines our new differential travel time data with two al-
ready existing body wave datasets, giving us sensitivity to inner core ani-
sotropy from the ICB to the centre of the inner core. We then apply a
3D transdimensional Markov Chain Monte Carlo (MCMC) methodology
to produce a tomographic model of inner core isotropic and anisotropic
compressional velocity variation. We then go on to interpret our model
observing many new and interesting features of the inner core.

Chapter 5 introduces normal modes and we measure 18 self-coupled
inner core sensitive normal modes using an up to date data set of spectra.
We measure the inner core sensitive normal modes in a new way which
explores the splitting function model space.

Chapter 6 takes the two normal mode zonal parameters which predom-
inantly are sensitive to inner core anisotropy from our measured splitting
functions to produce a 1D transdimensional model of inner core P-wave and
S-wave anisotropy. We evaluate the agreement between the modes and the
body waves by comparing our 1D normal mode model with the body wave
model from Chapter 4.

In Chapter 7 we show preliminary results of a combined model of in-
ner core anisotropy using both normal modes and body waves solving for
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3D variations in P-wave anisotropy and show, with some caveats, that the
normal modes and body waves agree on inner core structure.

In this thesis we show that the body waves and the normal modes both
require anisotropy in the inner core. Furthermore, through higher resolu-
tion modelling we show that the normal modes and body waves agree on the
overall magnitude of inner core anisotropy which was not the case with pre-
vious models of inner core anisotropy. This agreement is primarily achieved
by resolving for the first time that the western anisotropic zone is isolated
in the northern hemisphere, thus concentrating the high anisotropic zone in
a smaller region and reducing the overall anisotropy of the inner core. We
go on to conclude with our body wave data that the innermost inner core is
isolated to the eastern hemisphere. We do all this using innovative Transdi-
mensional MCMC modelling techniques which allow the parameterization
of the model space to be defined by the data. In a data poor region like
the inner core this allows us to extract as much information from the body
wave and normal mode data as possible.
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2
A short introduction to

anisotropy in the inner core

This chapter is a primer on mathematical descriptions of anisotropy in the
inner core. We assume that anisotropy in the inner core is best approxi-
mated by transverse isotropy where the symmetry axis is aligned with the
Earth’s rotation axis (also known as cylindrical anisotropy) which is de-
scribed using the five Love parameters, A, C, L, F and N (Love, 1927).
Since the first seismic observations of inner core anisotropy (Morelli et al.
(1986); Woodhouse et al. (1986)) the Love parameters have been used to
describe anisotropy with different combinations. In this thesis we use two
different parameterizations for transverse isotropy, which we name the body
wave parameterization for compressional wave anisotropy (utilised in Chap-
ters 3-4) and the normal mode parameterization which incorporates both
compressional and shear wave anisotropy (utilised in Chapters 6-7). We
feel it is important to explicitly derive these two parameterizations from
first principles to show how the two are related to each other and to high-
light how they are simply abstractions of the formal general description of
transverse isotropy. This chapter is intended as a reference for the reader
to come back to in later chapters, while all other methods related to the
model inversion or data processing will be explained in the corresponding
chapter.

2.1 The body wave parameterization

In an anisotropic medium wave speed depends on the direction of travel
through that medium. It is usually assumed that the inner core displays
transverse anisotropy with a symmetry axis parallel to Earth’s axis of ro-
tation, this is also called cylindrical anisotropy. Here we will include a
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2.1. The body wave parameterization

short description of P-wave velocity from first principles in an transversely
isotropic media. This derivation is largely based on the description from
Song (1997).

We start with the case of plane wave propagation, which in a general
elastic medium results in the following equation of motion (in Cartesian
coordinates)

ρ
δ2ui
δ2t

=
δ

δxj
(Cijkl

δuk
δxl

) (2.1)

where i, j, k, l = 1, 2, 3, where u is the displacement vector, Cijkl is the
stiffness matrix and ρ is density. For a plane wave uk(xl, t) = Ake

iω(t−plxl/c)

where Ak is the polarization vector, pj is propagation direction, ω is angular
frequency, t is time and c is phase velocity we have

Bil = c2Ai (2.2)

where Bil = Cijklpjpk/ρ which is the Christoffel matrix. Diagonalising the
Christoffel matrix leads to the eigenvalues which give the phase velocities,
c and the eigenvectors give the corresponding polarization directions. In
general there are three real eigenvalues with three orthogonal eigenvectors,
which in an isotropic media corresponds to one compressional P-wave, whose
polarization vector coincides with the propagation direction, and two shear
S-wave components. In an anisotropic medium the P eigenvector in general
is not parallel to the propagation direction but in a weakly anisotropic
media, such as the inner core this difference is minimal.

For a transversely isotropic medium, such as the inner core, we can
describe the anisotropy with the five independent Love parameters, denoted
as A, C, L, F and N (Love, 1927), which describe Cijkl. These elastic
parameters can be arranged into a matrix Cmn which is related to Cijkl
with the following index rules

m = i = j if i = j

m = 9− i− j if i 6= j

n = k = l if k = l

n = 9− k − l if k 6= l

(2.3)

Taking the x3 axis to be parallel to the axis of symmetry (in the case of the
inner core, this would be the axis of rotation) we have:
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Chapter 2. A short introduction to anisotropy in the inner core

Cmn =



C11 C11 − 2C66 C13 0 0 0
C11 − 2C66 C11 C13 0 0 0

C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

 (2.4)

Cmn =



A A− 2N F 0 0 0
A− 2N A F 0 0 0
F F C 0 0 0
0 0 0 L 0 0
0 0 0 0 L 0
0 0 0 0 0 N

 (2.5)

Using the above Cmn matrices we can solve Equation 2.2 analytically and
assuming the anisotropy is weak this provides us with the P-wave velocity
in terms of the love coefficients

ρV 2
p =

1

8
(3A+ 3C + 4L+ 2F ) +

1

2
(C −A)cos(2ζ)

+
1

8
(A+ C − 4L− 2F )cos(4ζ)

(2.6)

and the quasi S-wave velocities, whose particle motions are meridional and
equatorial:

ρS2
me =

1

8
(A+ C + 4L− 2F )− 1

8
(A+ C − 4L− 2F )cos(4ζ) (2.7)

ρS2
eq =

1

2
(L+N) +

1

2
(L−N)cos(2ζ) (2.8)

where ζ is the angle between the propagation direction and the symmetry
axis (Figure 2.1). The terms with cos(2ζ) cos(4ζ) are the anisotropy terms
while the first term is independent of direction.

Focusing on P-wave anisotropy and considering only the perturbations
for weak anisotropy, we can describe transverse isotropy in the common
form:

δt

t
=
δVp
Vp

= a+ bcos2(ζ) + ccos4(ζ) (2.9)

where δt
t is equivalent to the velocity anomaly δv

v assuming low attenuation
in the inner core, the equatorial velocity anomaly is given by a (also denoted
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N

S

= 45

Figure 2.1 A cross section of the inner core, showing a raypath
(the red line) passing through the inner core at an angle of ζ = 45◦

to Earth’s axis of rotation.

as δVeq in Chapters 4 and 7), b and c are related to components of the elastic
tensor Cmn, by b = (−A+2L+F )/A and c = (A+C−4L−2F )/2A (Creager,
1992). The amount of anisotropy, δVani, is defined as the velocity difference
between polar and equatorial raypaths, given by b + c. This measure of
anisotropy is strictly for cylindrical anisotropy, and assumes that the slow
and fast directions are perpendicular. From the model parameters a, b and
c we calculate the isotropic velocity, or Voigt average velocity (Lythgoe et
al., 2014) commonly interpreted by mineral physicists;

δViso = a+
b

3
+
c

5
(2.10)

Equation 2.9 reveals that the slowest velocity direction is not restricted to
an angle of ζ = 90◦, but depends on combinations of b and c, thus can be
any angle between 0− 90◦. The slowest angle is obtained by differentiating
Equation 2.9 and calculating its maximum value, following Lythgoe et al.
(2014), which results in the following:

ζslow = cos−1

√
−b
2c

(2.11)

Some variations in ζslow are statistically insignificant: it is possible to have a
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large range of values of ζslow but with minimal absolute velocity differences
between ζslow and ζ = 90◦. To only keep statistically significant values of
ζslow we use a tolerance condition when calculating ζslow from our models of
inner core anisotropy. The difference between ζslow velocity and the velocity
at ζ = 90◦ must be greater than 0.5% relative to our reference model.

Alternatively, some authors use another form of Equation 2.9, where we
replace b = ε− σ, and c = σ:

δVp
Vp

= a+ (ε− σ)cos2(ζ) + σcos4(ζ)

δVp
Vp

= a+ εcos2(ζ)− σsin2(ζ)cos2(ζ)

(2.12)

where ε = (C −A)/2A and σ = (A+C − 4L− 2F )/2A. Several inner core
studies have used this alternative parameterization, including Morelli et al.
(1986), Song (1997), Frost and Romanowicz (2019) and Lima et al. (2022).

2.2 The normal mode parameterization; α, β, γ

When using normal modes we parameterize anisotropy in the inner core
differently to the body waves. Assuming that the axis of symmetry is par-
allel to Earth’s axis of rotation, then only the zonal, c20 and c40 parameters
of a normal mode splitting function would be affected by inner core ani-
sotropy (Woodhouse et al. (1986); Tromp (1995)). This anisotropy can be
described using three parameters α, β and γ, which are related to the Love
parameters:

α =
(C −A)

A0

β =
(L−N)

A0

γ =
(A− 2N − F )

A0

(2.13)

where A0 = ρ0v
2
p0 is the reference value at the centre of the inner core, which

we take from PREM (Dziewonski and Anderson, 1981). α describes the
P-wave anisotropy, β describes the S-wave anisotropy and γ describes the
anisotropy of waves not travelling parallel or perpendicular to the symmetry
axis. In this way we do not model the inner core using absolute values of
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2.2. The normal mode parameterization; α, β, γ

A, C, L, F and N , but rather differences between them relative to our
reference model.

The zonal parameters, c20 and c40, of a normal mode splitting function
can be calculated thus:

cs0 =

∫ ICB

0
α(r)Kα

s + β(r)Kβ
s + γ(r)Kγ

s dr (2.14)

where r is the radius, which we integrate from 0 to the inner core boundary,
s is the spherical harmonic degree, cs0 is our measured splitting function
value of c20 or c40 and Kα

s , K
β
s and Kγ

s are the sensitivity kernels of the
cs0 coefficient to these model parameters which are calculated using normal
mode theory (Tromp, 1995).

To calculate the fractional velocity of a P-wave in terms of α, β, γ and
ζ relative to PREM, we start from Equation 2.9:

δVp
Vp

= δVeq + bcos2(ζ) + ccos4(ζ) (2.15)

we have renamed a to δVeq to avoid confusion with α. From the definitions
of α, β and γ it follows that:

b = 2β − γ (2.16)

c =
1

2
α− 2β + γ (2.17)

and therefore the fractional differential travel time of a P-wave in terms of
α, β, γ, δVeq and ζ is:

δVp(ζ) = δVeq + (2β − γ)cos2(ζ) + (
1

2
α− 2β + γ)cos4(ζ) (2.18)

or alternatively rearranging the equations to separate each of the parame-
ters:

δVp
Vp

= δVeq+
1

2
αcos4(ζ)+2β[cos2(ζ)−cos4(ζ)]+γ[cos4(ζ)−cos2(ζ)] (2.19)

This equation follows from Morelli et al. (1986) and can also be found in
Beghein and Trampert (2003) (without the δVeq term, as they did not take
into account changes in equatorial velocity).
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2.3 Conclusion

Ultimately, whether using a, b and c or α, β and γ we are attempting to
simplify our description of transverse isotropy in such a way that we do not
have to constrain all 5 of the Love parameters, A, C, L, F and N . When
utilising normal mode data it is sensible to use α, β and γ as they have
unique sensitivity to each parameter, while when using body wave data it
is better to use a, b and c for the same reasons.

The difficulty comes when comparing models made using these two pa-
rameterizations or when trying to combine both types of data into a joint
inversion. Combining the two types of data requires compromises, which
we discuss at length in Chapter 7. In future work I would like to solve for
models which utilise a more general description of transverse isotropy in
the inner core, suitable for both normal modes and body waves and which
would allow for the symmetry axis of the anisotropy to vary, and not remain
fixed parallel to Earth’s axis of rotation. This is still a work in progress and
as such has not been incorporated into this thesis.
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3
Inner core anisotropy
measured using new

ultra-polar PKIKP paths

We measure the seismic anisotropy of the inner core using PKPbc-
PKPdf and PKPab-PKPdf differential travel times, as a function of the
angle ζ between the Earth’s rotation axis and the ray path in the inner
core. Previous research relied heavily on body waves originating in the
South Sandwich Islands (SSI) and traveling to seismic stations in Alaska
to sample inner core velocities with low ζ (polar paths). These SSI polar
paths are problematic because they have anomalous travel time anomalies,
there are no ultra polar SSI paths with ζ < 20◦ and they only cover a small
part of the inner core. Here we improve constraints on inner core aniso-
tropy using recently installed seismic stations at high latitudes, especially
in the Antarctic, allowing us to measure ultra polar paths with ζ ranging
from 20◦ − 5◦. Our new data shows that the South Sandwich Island’s po-
lar events are fast but still within the range of velocities measured from
raypaths originating elsewhere. We further investigate the effect of mantle
structure on our data set finding that the SSI data is particularly affected
by fast velocities underneath the SSI originating from the subducted South
Georgia slab which is currently located just above the CMB. This fast ve-
locity region results in mantle structure being misinterpreted as inner core
structure and we correct for this using a P-wave tomographic model. We
also analyse the effect of velocity changes on the raypaths within the inner

The research in this chapter was published as: Brett H., Deuss A., In-
ner core anisotropy measured using new ultra-polar PKIKP paths, Geophysical
Journal International, Volume 223, Issue 2, November 2020, Pages 1230–1246,
https://doi.org/10.1093/gji/ggaa348
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core and find that faster velocities significantly change the raypath result-
ing in the ray travelling deeper into the inner core and spending more time
in the inner core. To remove this effect we propose a simple but effective
method to correct each event-station pair for the velocity dependent ray-
path changes in the inner core, producing a more reliable fractional travel
time measurement. Combining the new ultra polar data with mantle and
raypath corrections results in a more reliable inner core anisotropy measure-
ment and an overall measured anisotropy of 1.9%-2.3% for the whole inner
core. This is lower than previous body wave studies (∼ 3% anisotropy)
and in better agreement with the value of inner core anisotropy measured
by normal modes (∼ 2% anisotropy). We also identify regional variation
of anisotropic structure in the top 500 km of the inner core which appears
to be more complex than simple hemispherical variations. These regional
variations are independent of the SSI data and are still present when these
data are excluded. We also find a potential innermost inner core with a
radius of 690 km and stronger anisotropy.

3.1 Introduction

Anisotropy was first observed in the inner core by Poupinet et al. (1983)
and they found that the travel time of polar paths (raypaths with a ζ < 35◦

where ζ is the angle between the raypath and the Earth’s axis of rotation)
was shorter than for equatorial paths (ζ > 35◦). Morelli et al. (1986) quan-
tified the inner core anisotropy explicitly, concluding that 1% cylindrical
anisotropy with the fast direction aligned with Earth’s rotation axis best
explained the observed travel time residuals. In the same year Woodhouse
et al. (1986) found that inner core anisotropy also explains observations of
anomalous zonal splitting of Earth’s free oscillations or normal modes.

The symmetry axis of anisotropy in the inner core has been a topic of
research with early studies suggesting the axis is at an angle of 6◦, relative
to Earth’s rotation axis (Shearer and Toy (1991); Creager (1992)); later re-
search placed the axis of anisotropy between 4◦ and 10◦ (Su and Dziewonski
(1995); Song (1996); Isse and Nakanishi (2002)). Irving and Deuss (2011)
and more recently Frost and Romanowicz (2019) found that there was no
evidence for a tilted anisotropy axis relative to the Earth’s rotation axis.

There is also evidence for a heterogeneous distribution of inner core ani-
sotropy into two hemispheres with different amounts of anisotropy (Tanaka
and Hamaguchi (1997); Creager (1999); Garcia and Souriau (2000); Gar-
cia (2002); Niu and Wen (2001); Wen and Niu (2002); Oreshin and Vinnik
(2004); Yu and Wen (2006); Deuss et al. (2010); Irving and Deuss (2011);
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Lythgoe et al. (2014)). A western hemisphere with slow isotropic velocity
at shallow depths up to approximately 200km and strong anisotropy deeper
in the inner core was recognised, along with an eastern hemisphere with a
fast isotropic velocity at shallow depth and little or no anisotropy at larger
depths. The boundaries between these hemispheres varies significantly be-
tween the different studies and the term hemisphere is misleading as the
eastern hemisphere is often found to be almost half the size of the west-
ern hemisphere. Thus, some research has started calling the hemispheres
the quasi-western and quasi-eastern hemispheres (Tanaka and Hamaguchi
(1997); Irving and Deuss (2011)). Most evidence for hemispheres comes
from body wave studies but normal modes have also observed the overall
hemispherical pattern of anisotropy using cross coupled splitting function
observations (Deuss et al., 2010).

In addition to the lateral variations, there are also observed variations
with depth. The uppermost 100 km of the inner core shows an isotropic
slower layer in the west and a faster isotropic layer in the east (Niu and
Wen (2001); Waszek and Deuss (2011)). Some studies have also found
evidence for an innermost inner core with a radius varying between 300
and 750 km, and a fast symmetry axis of anisotropy being oriented in the
pseudo equatorial plane and not showing hemispherical variations (Ishii et
al. (2002a); Beghein and Trampert (2003); Ishii and Dziewoński (2003); Sun
and Song (2008a)). The more recent body wave study by Lythgoe et al.
(2014), however, does not observe an innermost inner core and proposes
that observations of an innermost inner core are a result of averaging the
hemispherical structure. Recent research by Frost and Romanowicz (2019)
also shows that an innermost inner core is not required by their data but
that if it did exist it would have a radius of 750 km and have an anisotropy
axis quasi parallel to Earth’s rotation axis.
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Author Year Reference Phases Overall
Ani. Hemispheres Eastern

Ani.
Western
Ani.

Poupinet et al. 1983 P - - - -
Morelli et al. 1986 PKPbc, PKPab 1.0% - - -
Shearer et al. 1988 PKPbc 3.0% - - -

Shearer and Toy 1991 PKPbc 4.0% - - -
Creager 1992 PKPbc 3.5% - - -

Tanaka and Hamaguchi 1997 PKPbc 1.5% yes 0.5% 2.4%
Creager 1999 PKPbc, PKPab 2.0% yes 0.5% 2-4%

Garcia and Souriau 2000 PKPbc 3.0% - - -
Garcia 2002 PKPbc, PKPab 3.0% yes - -

Garcia et al. 2006 PKPbc, PKPab - yes - -
Sun and Song 2008 PKPbc, PKPab, PKPcd 2.0% yes 0.5% 2.0%
Leykam et al. 2010 PKPbc, PKPab 0.7% yes 0.1% -

Irving and Deuss 2011 PKPbc, PKPab 3.5% yes 1.4% 4.5%
Lythgoe et al. 2014 none 5% yes 0.5-1.5% 3.5-8%

Frost and Romanowicz 2019 PKPbc, PKPab, PKIIKP-PKPdf2 3.5% yes - -

Table 3.1 Summary of values of anisotropy from previous body wave studies, note that this list is not
exhaustive. Some papers that propose hemispheres but don’t explicitly state values of anisotropy, likewise
some papers don’t mention hemispheres at all, thus a lack of ’yes’ under column ’Hemispheres’ does not
mean that those authors conclude that hemispheres don’t exist. Some papers don’t explicitly state their
measured values of anisotropy and it has to be inferred. Papers which only used PKPcd as a reference phase
and therefore focused on the upper most inner core have been left out.
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3.1. Introduction

Author Year Overall Ani.
Woodhouse et al. 1986 3.35%

Tromp 1993 2.1%
Durek and Romanowicz 1999 2.50%

Ishii et al. 2002 1.75%
Beghein and Trampert 2003 2.94

Mäkinen et al. 2014 1.75%

Table 3.2 Summary of values of anisotropy from normal mode
studies of the inner core.

Table 3.1 summarizes previously published values of anisotropy and ob-
servations of hemispheres from body wave studies, while Table 3.2 does the
same for normal mode studies for completeness. The value of inner core
anisotropy found in previous body wave studies has an average value of
3% and ranges between 0.7% and 5%. The average value of anisotropy for
normal modes from recent studies is 2% and lower than the measurements
from body wave studies.

The main problem faced by studies which measure inner core anisotropy
from body waves has been the dominance of raypaths going from earth-
quakes in the South Sandwich Islands (SSI) to seismic stations in Alaska
in polar data (ζ < 35◦) and the lack of ultra-polar data (ζ < 20◦). The
SSI to Alaska raypaths are problematic as they have a much stronger posi-
tive travel time anomaly than other polar raypaths (i.e. arrive earlier than
expected). Due to the absence of ultra polar data, the anisotropy models
have been extrapolated for ζ < 20◦ leading to anisotropy values of up to 5%
for body waves (Table 3.1). The anisotropy from body waves has also been
difficult to reconcile with much smaller normal mode anisotropy values of
only 2%.

The source of the positive travel time anomaly from the SSI has been
the subject of many previous studies. One of the earliest studies to draw
attention to these raypaths was Romanowicz et al. (2003), who conducted
corrections using mantle tomography models on the SSI to Alaska raypaths.
They concluded that while some of the anomaly could be explained by man-
tle structure a significant source of the anomaly was necessary somewhere
in the core. They proposed an ‘outer core tangent cylinder’ with a posi-
tive P-wave velocity anomaly of 1% as an explaination for the SSI anomaly.
This cylindrical structure which is tangent to the inner core and parallel to
Earth’s axis of rotation was proposed by outer core geodynamical modelling
(Hollerbach and Jones (1995); Olson et al. (1999)). Tkalčić (2010) took a
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Chapter 3. Inner core anisotropy measured using new ultra-polar paths

different approach and analysed PcP paths originating from the South Sand-
wich Islands. He found that these lower mantle phases with no sensitivity
to the inner core, also exhibit strong positive travel time anomalies of the
same order as that observed in the inner core. He concluded that the source
of the travel time anomaly could be due to mantle structure beneath the
South Sandwich Islands. Long et al. (2018) proposed that a lower mantle
structure with a small size of only a few 100s of km underneath Alaska
could explain the anomaly and would not show up easily on global tomo-
graphic models due to its small size. Most recently, the work of Frost et al.
(2020), using array techniques in Alaska and 3D ray-tracing, shows that
the Alaskan slab has a profound effect on the arrival times of the PKPdf
phase, implying that the SSI anomaly is due to upper mantle affects on the
Alaskan side of the SSI to Alaska raypaths.

The recent installation of new Antarctic seismic stations and a complete
reanalysis of all suitable data available through the International Federation
of Digital Seismograph Networks (FDSN) has made it possible to observe
ultra polar paths and significantly increase the number of polar events which
do not have an origin in the SSI region. In this chapter we will present a
new large body wave data set of PKPdf-PKPbc and PKPdf-PKPab differ-
ential travel times with more polar and ultra-polar paths than previously
published. The new data allows us to improve constraints on inner core
anisotropy and to constrain the SSI anomaly. We also propose a simple
method to correct differential travel time measurements for the fact that
corresponding velocity anomalies lead to a shallower or deeper raypath in
the inner core. In addition we also correct for the significant influence of het-
erogeneous mantle structure, as imaged through tomography, on our data.
Combining the new data with raypath and mantle corrections greatly im-
proves the longitudinal and depth resolution of the inner core and gives us
greater insight into inner core structure. It also removes the need for using
the South Sandwich Island ray paths and allows us to investigate anisotropy
without using these data.

3.2 Methodology

3.2.1 Data collection and processing

We measure inner core anisotropy with compressional body waves, using the
arrival time of the PKPdf phase (which travels through the mantle, outer
core and inner core) in comparison to the arrival time of the PKPbc and
PKPab phases (which only travel through the outer core and the mantle),
see Figure 3.1 for their raypaths. Event-station pairs were collected for sta-
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3.2. Methodology

Figure 3.1 Raypaths of PKPdf (red),PKPab (blue) and PKPbc
(green) phases through the Earth. Made using Obspy and TauP.
The star represents the location of the source and the triangle is
the location of the seismometer that measures the arrivals.
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c) Station: SNAA, Network: GE, Event Time: 2001/8/26 18:28:23, : 4.0°, Ultra-Polar

Figure 3.2 Three seismograms of different values of ζ showing
PKPdf (red), PKPbc (green) and PKPab (blue) phases. The solid
lines are the arrivals picked by hand while the dashed lines are
the arrivals of each phase as predicted by AK135 (Kennett et al.,
1995) and is calculated using the TauP toolkit. (Crotwell et al.,
1999)
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Chapter 3. Inner core anisotropy measured using new ultra-polar paths

tions available through the FDSN recording between 1991 and 2019 with an
epicentral distance between 146.5◦ − 178◦ and an event bodywave magni-
tude greater than mb = 5.0. These seismograms are then bandpass filtered
with two poles and corner frequencies at 0.5 and 2Hz. We inspected the
vertical component seismograms for 188,257 event-station pairs by eye and
from this selected a high quality data set of 2186 seismograms (a pass rate
of 1.24%). The pass rate is so low due to the high attenuation of the PKPdf
phase; this means that this phase is not visible above the noise threshold in
the majority of seismograms.

We measure the travel time difference between PKPdf and PKPab or
PKPbc, to minimize the effect of mantle structure and inaccuracies in event
location and time (Creager, 1992). The difference in arrival times between
these phases has been assumed to be caused by inner core structure alone.
This assumption is based on the argument that the inner core (PKPdf)
and outer core phases (PKPbc and PKPab) travel nearly the same path
through the Earth, deviating only in the inner core. Looking at Figure 3.1
it can be seen this assumption is more valid for PKPbc than PKPab. We
will investigate if this assumption is indeed correct in Section 3.3.2, and
will show that especially for the South Sandwich Islands (SSI) this may
not be the case. The PKPbc-PKPdf differential travel time is measured
for epicentral distances between 146◦ − 155.5◦ while the PKPab-PKPdf
differential travel time is measured for epicentral distances between 150◦ −
180◦. As a result, PKPbc-PKPdf is only sensitive to the upper 350 km of
the inner core while the PKPab-PKPdf differential travel time is sensitive to
up to 1100 km below the inner core boundary (allowing sampling of almost
the entire volume of the inner core).

Using our measured arrival times, we calculate the differential travel
time δt;

δt = (tPKPref − tPKPdf)data − (tPKPref − tPKPdf)AK135 (3.1)

Where (tPKPref − tPKPdf)data is the difference in arrival time between a
reference phase (either bc or ab) and the PKPdf phase, as measured in
the data. The second term, (tPKPref − tPKPdf)AK135 is the difference in
arrival time as predicted by the 1D model AK135 (Kennett et al., 1995)
and calculated using the TauP toolkit (Crotwell et al., 1999). Differential
travel times are corrected for ellipticity using the method of Dziewonski and
Gilbert (1976).

We define the angle ζ between the raypath in the inner core and the
Earth’s rotation axis as:

cos(ζ) =
cos(θo)− cos(θi)√

2− 2 cos(θo) cos(θi)− 2 sin(θo) sin(θi) cos(φo − φi)
(3.2)
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3.2. Methodology

Figure 3.3 Map of the station locations used to measure polar
data (green triangles) and ultra polar data (red triangles).

where θo and θi are the co-latitudes of where the ray leaves and enters the
inner core while φo and φi are the longitudes (i.e. Irving and Deuss (2011)).
The pierce point locations (where the PKPdf ray enters and leaves the inner
core) are calculated using the AK135 model (Kennett et al., 1995) and the
TauP toolkit (Crotwell et al., 1999) in combination with the python package
’Geographicslib’. If a raypath has ζ > 35◦, we call it a equatorial path, if
it has ζ < 35◦ it is polar and if a raypath has ζ < 20◦ it is considered
ultra-polar.

Figure 3.2 shows three example seismograms and the phase arrival times
predicted by AK135 and our own picks. To measure the arrivals we pick
the times of the onset of each phase, minimizing the effect of attenuation
in the inner core which causes the PKPdf peak to be broadened relative
to the PKPbc and PKPab arrivals. It can be seen that the PKPdf phase
arrives approximately when predicted by AK135 on the equatorial seismo-
gram (Figure 3.2a) but for the polar path (Figure 3.2b) and ultra polar
path it arrives much earlier (Figure 3.2c). These travel time anomalies are
evidence for anisotropy with the fast axis in the polar direction.

One of the key aims of this research is to significantly increase the cur-
rently available data sets of PKPdf-PKPbc and PKPdf-PKPab paths, par-
ticularly focusing on extending the observations of polar paths and earth-
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ζ ab & bc Only bc Only ab Total
All ζ 742 821 623 2186
ζ > 35 350 268 468 1086

20 < ζ < 35 338 498 120 956
ζ < 20 54 55 35 144

Table 3.3 Numbers of differential travel times collected for each
phase and corresponding range of ζ. For some events both PKPab
and PKPbc have been measured, for other events only one of the
two phases has been measured. The "Total" column gives the total
number of unique raypaths. i.e. Nab & bc +Nonly ab +Nonly bc

quakes not originating in the SSI. Our aim was largely achieved through
the re-collection and re-analysis of all polar data available from the FDSN
since 1991 and resulted in a data set of 2186 high quality seismograms of
which 623 PKPbc (only), 821 PKPab (only), and 742 have both PKPab and
PKPbc measurements (Table 3.3). 584 measurements are polar paths which
do not originate in the SSI and of these 142 paths are ultra polar. This new
polar data was largely collected from stations at high latitudes, especially
the Antarctic; Figure 3.3 shows the locations of these stations. Leykam et
al. (2010) were the first to recognise the potential of using these new high
latitude seismic stations to better constrain inner core anisotropy. However,
since Leykam et al. (2010) many more earthquakes have been recorded and
yet more seismic stations installed at high latitudes allowing for a significant
increase in ultra polar data. For example Leykam et al. (2010) measured
17 PKPdf-PKPab and PKPdf-PKPbc ultra polar paths in comparison to
144 in our study (Table 3.3). Revisiting this data is significant as our val-
ues of anisotropy for the inner core are much higher than those of Leykam
et al. (2010) as a result of the increased data coverage. Data utilizing these
new Antarctic seismic stations have also been used to investigate inner core
anisotropy in the recent paper by Frost and Romanowicz (2019), however
the dataset we present here has been collected independently and includes
different event station pairs.

3.3 Results

3.3.1 Anisotropy

Amedium is said to be anisotropic when seismic velocity is dependent on the
direction of wave propagation through the medium. To accurately measure
anisotropy, it is important to have differential travel time (δt) data with a
good global coverage for all angles of ζ and spanning all longitudes. Figure
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3.3. Results

Figure 3.4 The global coverage of our data set with the left col-
umn being data with PKPbc as the reference phase and the right
column with PKPab as a reference phase. a) and b) Raypath cov-
erage within the inner core of polar data excluding the South Sand-
wich Islands, c) and d) Raypath coverage of polar South Sandwich
Islands data and e) and f) Raypath coverage of equatorial data.
The color of the triangles indicate the δt of each raypath and are
plotted at the location of the turning point of the raypath.
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3.4 shows the spatial sampling of our data set, and includes good even
coverage of polar data which do not have an origin in the South Sandwich
Islands (SSI) (Figure 3.4 a,b) due to our extensive use of stations in the
Antarctic (Figure 3.3). Our data set represents a significant improvement
in data coverage on previous research. Looking at the δt of all the paths
it can be seen that polar paths have mostly positive δt (i.e. faster) than
equatorial paths but that there are also examples of polar raypaths with
negative δt (i.e. slower). There are more equatorial paths with negative
δt than polar paths, but there are also regions of equatorial paths with
positive δt (Figure 3.4 e,f). The polar paths for events originating in the
SSI, have the strongest positive δt anomalies and high numbers of paths
traveling to Alaska can be seen (Figure 3.4 c,d). These are the paths which
have dominated inner core anisotropy measurements for so long due to their
high number and strong positive anomaly; they are the reason why finding
more polar and ultra polar data not originating in the SSI is important.

Figure 3.5 shows how δt
t varies with ζ for our data set. δt

t is the dif-
ferential travel time δt calculated using Equation 3.1 normalized by the
time spent in the inner core (t) as modelled using AK135. This normaliza-
tion takes into account the different amount of time travelled by rays going
deeper or shallower through the inner core. Raypaths with smaller values of
ζ have a stronger positive travel time anomaly than equatorial paths with
larger values of ζ, albeit with a large scatter (Figure 3.5 a,b). The SSI data
clearly stand out when compared to other polar data, and unfortunately
no ultra polar data exists for earthquakes originating in the SSI. Figure
3.6 shows the same figures without the SSI data further highlighting the
influence of this data.

To measure anisotropy from our data we need to quantify the change in
velocity as a function of ζ so that we can relate it to the relevant components
of the elastic tensor. We model anisotropy using the same equation as in
previous research (i.e. Creager (1992); Creager (1999); Irving and Deuss
(2011); Lythgoe et al. (2014)):

δt

t
=
δv

v
= a+ b cos2(ζ) + c cos4(ζ) (3.3)

where δt
t is equivalent to the velocity anomaly δv

v assuming low attenuation
in the inner core, and a, b and c are related to the Love coefficients (Love,
1927) (Equation 3.3 is derived in Section 2.1, Equation 2.9). The equato-
rial velocity perturbation is given by a and b + c describes the anisotropy
(Creager, 1999). By fitting Equation 3.3 to our data set of measured δt

t , we
determine the a, b and c parameters and relate these to velocity anisotropy.
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Figure 3.5 a) Variation of δt
t as a function of ζ for a) PKPbc-

PKPdf and b) PKPab-PKPdf. The black line is the function de-
scribed by Equation 3.3 fitted to all data with a least squares norm.
The red dashed line is the function described by Equation 3.3 fitted
to equatorial and South Sandwich Islands data only. The trian-
gles are equatorial data (ζ > 35◦), diamonds are polar data (not
including South Sandwich Islands) and the crosses are the South
Sandwich Islands data. c), d) variations of δt

t against ζ applying
mantle corrections using the UUP07 tomographic model. e), f)
variation of δtt applying mantle and raypath corrections.
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Figure 3.6 a) Variation of δt
t as a function of ζ for a) PKPbc-

PKPdf and b) PKPab-PKPdf with the SSI data removed. The
black line is the function described by Equation 3.3 fitted to the
data with a least squares norm. The triangles are equatorial data
(ζ > 35◦), diamonds are polar data (not including South Sandwich
Islands). c), d) variations of δt

t against ζ applying mantle correc-
tions using the UUP07 tomographic model. e), f) variation of δt

t
applying mantle and raypath corrections.
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When we fit Equation 3.3 to our whole data set (including the SSI and
our new ultra polar data) we get an average anisotropy for the inner core
of 2.5% for PKPdf-PKPab and 2.2% for PKPdf-PKPbc. These values are
lower than measurements from other body wave studies which normally
find values of 3-4%. Our lower anisotropy values are a direct result of
having more polar data and especially ultra polar data (ζ < 20◦). If we
fit Equation 3.3 only to the equatorial data and data from the SSI, then
we get a much larger anisotropy of 3.5% for PKPbc and 4.2% for PKPab.
Without the ultra polar data, the anisotropy will be extrapolated from the
SSI anomalies for ζ < 25◦ resulting in an overestimation of anisotropy.
This is why raypaths travelling from the SSI to stations in Alaska became
the focus of much debate (Tkalčić, 2015) and explaining the large positive
velocity anomaly arising from the South Sandwich Island data is a key
challenge in measuring inner core anisotropy.

3.3.2 The South Sandwich Islands

While the travel time anomalies δt
t for the South Sandwich Islands (SSI)

to Alaska raypaths are within the spread of other polar data, the source of
the fast velocities is still an important question. After inspection of over
186,359 seismograms, we found that the SSI data had some of the clearest
arrivals and were relatively easy to measure differential travel times. This
leads to the conclusion that the observed PKPbc/ab-PKPdf measurements
for the SSI are accurate, ruling out systematic measurement error. Thus
there seems to be three possible explanations for the large SSI δt

t :

1. Mantle and outer core heterogeneity is affecting the arrival times of
PKPdf/bc/ab phases unequally.

2. Our modelled raypaths are inaccurate.

3. The SSI δt
t is an accurate measurement of the inner core and there is

a large positive velocity anomaly along the SSI to Alaska raypaths.

Mantle heterogeneity

When we use differential arrival times to investigate inner core structure we
assume that PKPdf and the reference phases PKPbc and PKPab sample
the same structure in the mantle and that the outer core is laterally homo-
geneous. If this assumption is incorrect it would result in mantle structure
being misinterpreted as inner core structure. Looking at Figure 3.1 it can
be seen that there are large differences between the PKPab and PKPdf

33



Chapter 3. Inner core anisotropy measured using new ultra-polar paths

Figure 3.7 A cross section through the UUP07 model by Amaru
(2007)

raypaths in the lower mantle and outer core while the raypaths travel much
closer in the upper mantle. This is also reflected by the PKPbc raypaths
but the differences are smaller. If mantle heterogeneity is indeed affecting
the differential travel time measurements then it will most likely occur in
the lower mantle because this is where the PKPbc and PKPdf raypaths
differ most. However we cannot rule out upper mantle structure.

To investigate whether the PKPab, PKPbc and PKPdf phases sample
different structure in the lower mantle we use the UUP07 mantle P-wave to-
mographic model from Amaru (2007). A cross section through the UUP07
model going from the SSI to Alaska (Figure 3.7) shows that underneath
the SSI, there is a strong positive velocity anomaly interpreted to be the
subducted South Georgia slab (Meer et al., 2018). The PKPdf phase ap-
pears to just pass through this faster material underneath the SSI, while
the PKPbc and PKPab phases do not. Thus, mantle structure does affect
PKPbc, PKPab and PKPdf differently.

We correct for our whole data set for mantle structure using UUP07,
including the SSI data and non-SSI data (Figure 3.5 c,d). This is done using
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1D rays calculated for AK135 and then integrating the velocity anomaly
from the tomographic model over the entire path of the ray. While taking
into account 3D effects would be a more thorough approach, doing this
for a global dataset and global tomographic model is not straightforward
and considered as a subject for future study. Initially the effect appears
minor, only reducing the anisotropy for PKPbc-PKPdf to 2% (Figure 3.5
a,c) and for PKPab-PKPdf to 2.4% (Figure 3.5 b,d). However, a closer
look reveals that the SSI data is more strongly affected compared to the
rest of the data. Furthermore the misfit (calculated using an L2 norm),
shown in the title of each panel on Figure 3.5 is reduced in both the PKPbc
and PKPab data by these corrections. Doubling or tripling the UUP07
corrections reduces the δt

t anomaly from the SSI significantly, while the rest
of the data experiences much lower δtt reductions (Figure 3.8). The choice of
doubling or tripling the velocities in the UUP07 model is chosen only to get
a first order estimate of the magnitude of the velocity anomalies necessary.
Tripling UUP07 corrections moves the SSI measurement to be much more
similar to the non-SSI data and brings them into better agreement. This can
be seen by comparing the black and grey dashed lines in Figure 3.8 e) and f),
which represent Equation 3.3 fitted to all the data (black line) and only the
equatorial and SSI data respectively (grey dashed line). The PKPbc-PKPdf
anisotropy reduces to 1.6% and the PKPab-PKPdf to 2.1% when UUP07
amplitudes are tripled. It may be an oversimplification to simply scale the
amplitudes of UUP07, but it is well known from full waveform inversion
studies that ray based travel time tomography significantly underestimates
the amplitudes of velocity anomalies in the lower mantle. It can be seen
on Figure 3.8 that doubling or tripling the tomographic velocity anomalies
decreases the overall misfit of the bc-df data, but increases the misfit for
the ab-df data. It is likely that such magnitude of change is reasonable
for the SSI region, but a bad fit for the rest of the data. Further work
is required to quantify and isolate this effect, so for the rest of the paper
we shall primarily consider data with mantle corrections using the unscaled
velocities from UUP07 (Amaru, 2007).

It is interesting to note that two recent papers, Long et al. (2018) and
Frost et al. (2020), analysed the SSI to Alaska raypaths and also found
that mantle structure was influencing the SSI data significantly. Long et
al. (2018) showed that a small anomaly at the base of the mantle on the
Alaskan side could cause the SSI travel time anomaly, while Frost et al.
(2020) propose that the SSI data is affected by the slab underneath Alaska.
While our mantle corrections do not find that the PKPdf, PKPbc and
PKPab phases experience different velocities under Alaska we certainly do
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not rule it out because we are using a global tomography model to correct
our entire data set and not a high resolution local model under Alaska to
specifically look at the SSI to Alaska raypaths. Indeed it seems possible
that a combined influence from the Alaska and South Georgia slabs could
be at the heart of the anomalous travel times and in the future it will be
important to conduct full waveform tomography on the region covered by
the SSI to Alaska raypaths.

In either scenario, present research does cast doubt on interpreting the
SSI travel time anomalies as inner core structure because they may be
severely affected by mantle structure.

Raypath corrections

The PKPdf raypath in the inner core changes significantly when the inner
core velocity is varied by ±5% for an epicentral distance of 152◦ (the average
of the SSI to Alaska paths), see Figure 3.9. Increasing the inner core velocity
by 4% results in a raypath which travels 75 km deeper into the inner core.
The corresponding inner core travel time, t, increases by 10 seconds (Figure
3.10b). Only raypaths with a small epicentral distance are severely affected,
because at very large epicentral distances (> 170◦) it is not possible to find
a faster path through the inner core by travelling deeper. The raypaths
from the SSI to Alaska have small epicentral distance, so they are most
severely affected.

We propose a new method to determine δt
t , incorporating the change in t

due to the velocity change. The traditional method of measuring fractional
travel time, as described in Equation 3.1, involves measuring an observed
value of differential travel time: PKPref-PKPdf (shown as the horizontal
red dashed line in Figure 3.10a) and then finding the difference with the
AK135 prediction (the blue dashed line) and dividing this by the inner
core travel time as predicted by AK135. Instead, we find the uniform %
change in AK135 inner core velocity (i.e. no scaling with depth) required
to fit the observed differential arrival time δt and use that to calculate a
new raypath and corresponding inner core travel time tcorr and use this
new inner core travel time to calculate δt

tcorr
instead of δt

tAK135
. The newly

calculated tcorr changes the differential travel time measurement δt
tcorr

by a
maximum of 13.5% (Figure 3.5 e,f) which is enough to decrease the overall
anisotropy measurement by 0.1% for both PKPab and PKPbc data sets to
1.9% and 2.3% respectively. This correction depends greatly on the mag-
nitude of the δt measurement and the epicentral distance. The effect is
greater for smaller epicentral distances and becomes insignificant for epi-
central distances greater than 155◦. It is interesting to note that the data
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Figure 3.8 a) Variation of δt
t as a function of ζ for a) PKPbc-

PKPdf and b) PKPab-PKPdf with mantle corrections using the
UUP07 model. The black line is Equation 3.3 fitted to all data
with a least squares norm. The red dashed line is the function de-
scribed by Equation 3.3 fitted to equatorial and South Sandwich
Islands data only. The triangles are equatorial data (ζ > 35◦),
diamonds are polar data (not including South Sandwich Islands)
and the crosses are the South Sandwich Islands data. c), d) varia-
tions of δtt against ζ applying mantle corrections using the UUP07
tomographic model but with amplitudes x2. e), f) variation of δt

t
applying mantle corrections using the UUP07 tomographic model
but with amplitudes x3.
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Figure 3.9 Different raypaths for a distance of 152◦ with the green
path being the path modelled by AK135, the red paths are slower
by up to -4% and the blue paths are faster by up to +4% of overall
AK135 inner core velocity

from the SSI are more affected than other data because they have a large
δt measurement and relatively small epicentral distance.

Another approach than the one described above is also possible where
the velocity model and raypath are updated iteratively until convergence is
reached, this produces identical results across all values of distance and δt
as our methodology.

Sun and Song (2008a) also identified the problem that the raypath
changes as a function of inner core velocity. They used the adaptive ray
bending method from Koketsu and Sekine (1998) to incorporate the ray-
path changes in tomographic modelling, and requires significant numerical
modelling. Our approach is very simple and can be easily and effectively ap-
plied to data measurements without requiring intensive computer modeling
or raytracing.

The SSI data are accurate

There is an alternative explanation which should not be ruled out: that the
SSI anomaly is a consequence of real inner core structure. There are some
merits to this idea. Indeed, despite the possible mantle influence and ray-
path errors described previously, the differential travel time methodology is
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Figure 3.10 A visual explanation of the raypath corrections for
an event originating in the South Sandwich Islands at 2016/07/31
and going to station COLD in the AK network with an epicentral
distance of 152◦. a) Predicted PKPab-PKPdf differential time, rel-
ative to AK135, as a function of increased or decreased inner core
velocity (solid black line). The horizontal red dashed line shows
the observed PKPab-PKPdf differential travel time. The vertical
red dashed line indicates which percentage increase in inner core
velocity best fits the observed PKPab-PKPdf. The vertical blue
dashed line shows the δt that would be calculated using AK135 in-
ner core velocities. b) Effect of increasing or decreasing inner core
velocity on time time spent in the inner core (solid black line).
For our example event and epicentral distance, the AK135 pre-
dicted inner core travel time is indicated by dashed blue lines, and
the corrected inner core travel time value calculated by taking the
3.1% change found in a) is shown by the dashed red lines.
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Chapter 3. Inner core anisotropy measured using new ultra-polar paths

a tried and tested methodology in seismology for removing event misloca-
tion effects and mantle and outer core structure. Furthermore it cannot be
denied that the SSI anomaly is a robust observation; there is no polar path
in the inner core better sampled than the SSI to Alaska raypaths. Further-
more, there have been multiple attempts to isolate and identify the root
cause of the SSI anomaly outside of the inner core and while the analysis
in recent years are improving (Frost et al. (2020); Long et al. (2018)) none
(including this research), have yet been totally conclusive. The consequence
of accepting the SSI anomaly as a product of inner core anisotropy is that
it requires anisotropy in the inner core within a (relatively) small region to
be 4% or greater and an increased level of heterogeneity.

3.4 Inner core structure

Having corrected for mantle velocity anomalies using UUP07 and raypath
changes in the inner core (Figure 3.5 e,f), we investigate how our new data
set constrains inner core structure. Our data shows large variations in
anisotropy with longitude and depth. The analysis here is an initial estimate
and the basis from which we will conduct more rigorous modelling in the
following chapters.

3.4.1 Variations with longitude

A first order observation made by multiple other studies is the stronger
anisotropy in the ’western’ hemisphere than in the ’eastern’ hemisphere at
depths greater than approximately 200 km (Tanaka and Hamaguchi (1997);
Creager (1999); Garcia and Souriau (2000); Garcia (2002); Niu and Wen
(2001); Wen and Niu (2002); Oreshin and Vinnik (2004); Yu and Wen
(2006); Deuss et al. (2010); Irving and Deuss (2011); Waszek and Deuss
(2011); Lythgoe et al. (2014)). The hemispherical variation in anisotropy is
also visible in our data with polar paths being faster than equatorial paths
in the west while in the east there is a smaller difference in travel time
between polar and equatorial paths (Figure 3.11).

To quantitatively define boundaries between regions of different aniso-
tropy and test the resolution of the inner core that can be achieved with
our data, we compute a value of anisotropy for overlapping windows of fixed
longitude width (Figure 3.12). We fit Equation 3.3 to a subset of the data
defined by a window of a fixed width centred around a specific longitude.
For example, the anisotropy centred at longitude 0◦ with a window width
of 180◦ is defined by determining the anisotropy for all the data between
90◦W and 90◦E defined by their turning point location. We then move this
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3.4. Inner core structure

Figure 3.11 Values of δt
tcorr

plotted against the longitude of the
inner core turning point for the mantle corrected (UUP07 ampli-
tudes x1) and raypath corrected data for a) the PKPab-PKPdf
data and b) the PKPbc-PKPdf data. Triangles are equatorial
data, diamonds are polar data not including the South Sandwich
Islands and crosses are the data from the South Sandwich Islands.
The color shows the value of ζ for each data point where blue is
polar and red is equatorial.
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Chapter 3. Inner core anisotropy measured using new ultra-polar paths

window by 1◦ across all the longitudes. This allows us to test for structures
on different scales. Hemispheres, which are thought to split the inner core
approximately in half, are investigated by using a width of 180◦ (Figure
3.12a). We confirm previous studies and find stronger anisotropy of 2-3%
in the west and only 1-1.5% in the east. Even when we increase the mantle
corrections to x2 or x3, or when we leave out the SSI data, still we find
stronger anisotropy in the west than in the east. The mantle corrections
do, however significantly reduce the magnitude of the western hemisphere’s
anisotropy from 3% to 2%, while not changing the anisotropy in the east.
Figure 3.12a shows reductions in anisotropy around longitudes 60◦W and
120◦E representing the best locations for the hemisphere boundaries.

Decreasing the window width will lead to an increase in longitudinal res-
olution, but at the same time decreases the amount of data in each window
and therefore increasing the uncertainty in the anisotropy calculation. We
choose to limit our window widths so that no sub-set of data can have less
than 50 polar data points, and find we require a minimum window width
of 60◦ longitude. Decreasing the window width to 90◦ and 60◦ (Figure 3.12
b,c) results in changing from one highly anisotropic western region and one
low anisotropic eastern region (Figure 3.12a) to three regions with distinct
anisotropy (Figure 3.12c). We find a region with strong anisotropy of 3-
4% between 110◦W and 40◦W , moderate anisotropy of 2% between 30◦W
and 75◦E, and a broad region of low anisotropy of 0.5% between 100◦E
and 170◦W . Increasing the amplitude of the mantle corrections once again
only affects the highly anisotropic region, further outlining how the mantle
corrections preferentially affect the SSI data. Interestingly however, even
when the SSI are not included in this analysis (the black line) there is still a
recognisable increase in anisotropy around 100◦W. This sharp peak cannot
be seen in Figure 3.12a), where the window width is much larger masking
this smaller feature. This shows that even without the SSI a region of higher
anisotropy in the west is still required by the data. This analysis represents
an increase in resolution when it comes to identifying inner core structure
and is a direct result of an increase in polar and ultra polar data.

3.4.2 Variations with depth

It has been hypothesized that there is an innermost inner core with a distinct
anisotropic structure (Ishii et al. (2002a); Beghein and Trampert (2003);
Ishii and Dziewoński (2003); Sun and Song (2008a); Wang et al. (2015);
Wang and Song (2018)), although this is an open question as some research
also finds a lack of evidence for an innermost inner core (Cormier and Strou-
jkova (2005); Lythgoe et al. (2014); Frost and Romanowicz (2019)). An
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Figure 3.12 Anisotropy measured within a window of longitudes
with window widths of a) 180◦ , b) 90 ◦ and c) 60◦. Each window
panel shows results from data with mantle corrections (MC) with
1x, 2x, 3x UUP07 amplitudes and 1x UUP07 amplitudes but no
data from the South Sandwich Islands. The L2 misfit is shown
in blue for data with mantle corrections (MC) with 1x, 2x, 3x
UUP07 amplitudes and 1x UUP07 amplitudes but no data from
the South Sandwich Islands. All raypaths have been corrected for
faster inner core velocities.
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Chapter 3. Inner core anisotropy measured using new ultra-polar paths

innermost inner core was originally inferred by Ishii et al. (2002a) who pro-
posed a region with 300 km radius and a slow axis with an angle of 45◦

to the fast direction. To investigate the potential evidence of an innermost
inner core, we conduct a misfit analysis on our data set, splitting the data in
two layers based on the radius of the turning point of each raypath and cal-
culating anisotropy and misfit for both subsets of data. Figure 3.13 shows
the results of this analysis including the South Sandwich Islands (SSI) data.
Comparing the variation of misfit with layer radius (Figure 3.13b) and the
histogram showing the numbers of data for each radius (Figure 3.13a) it
can be seen that the lowest misfit comes from a layer with a radius of 947
km, which corresponds to the maximum depth extent of the SSI data which
mostly travel the top 300 km of the inner core. This shows that the large
anomalous SSI data set is masking deeper structure and misfit reductions.
While most SSI data travel the upper 300 km, there are also some SSI data
(shown in Figure 3.13c) which travel deeper in the inner core between a
radius of 450 and 947 km.

To be able to see any further misfit reductions we repeat the analysis
with the SSI data removed (Figure 3.14). The variation of misfit with layer
radius for a data set with no SSI raypaths has a misfit minima at a radius
of 690 km (or 530 km below the inner core boundary) (Figure 3.14b). We
find that the innermost inner core is significantly more anisotropic (Figure
3.14c). In contrast to Ishii and Dziewoński (2002) the slow direction appears
to be perpendicular to the direction of fastest velocity which is still aligned
with Earth’s axis of rotation and our innermost inner core is 690 km in
radius, much larger than their 300 km, but in better agreement with values
proposed from the recent study by Frost and Romanowicz (2019). The
ultra polar data which travels through the innermost inner core spans a large
range of longitudes and there appears to be no justification for hemispherical
variations within the innermost inner core.

It is interesting to see that increasing the strength of the mantle correc-
tions show the same pattern of misfit with layer radius but that stronger
mantle corrections increase overall misfit (although not significantly, Fig-
ures 3.13b, 3.14b). This can be seen in Figure 3.8, where the overall trend
of the mantle corrections is to decrease the δt

t anomaly of the SSI data, but
that some SSI paths are not affected creating a slightly larger overall misfit.

3.5 Conclusion

We present a new high quality differential arrival data set for inner core
P-wave phases containing a large number of polar data not originating in
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Figure 3.13 a) Histogram showing the numbers of data observed
for each turning point radius. When both PKPbc and PKPab
phases are observed only the PKPbc observation is used in mis-
fit and anisotropy calculations. b) The variation of misfit with
boundary radius used to separate data into two, for varying mag-
nitude of the mantle corrections (x1,x2,x3). The vertical dashed
line denotes the radius with the minimum misfit and (c,d) the
corresponding plots of δt

t against ζ for data with a turning point
radius between 0 and 947 km and between 947 km (the minimum
misfit boundary found by all data) and the inner core boundary
respectively.
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Figure 3.14 a) Histogram showing the numbers of data observed
for each turning point radius. When both PKPbc and PKPab
phases are observed in the same seismogram, then only the PKPbc
observation is used in misfit and anisotropy calculations. This
analysis does not include data from the South Sandwich Islands.
b) The variation of misfit with boundary radius used to separate
data into two, for varying magnitude of the mantle corrections
(x1,x2,x3). The vertical dashed line denotes the radius with the
minimum misfit and (c,d) the corresponding plots of δt

t against ζ
for data with a turning point radius between 0 and 690 km and
between 690 km (the minimum misfit boundary found by all data)
and the inner core boundary respectively.
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3.5. Conclusion

the South Sandwich Islands (SSI) taking advantage of new stations in the
Antarctic. The addition of ultra polar paths allows us to more reliably
determine inner core anisotropy because extrapolation to small ζ is no longer
required. We demonstrate that mantle structure and raypath changes have
a larger effect on the anomalous SSI data than the other data, due to their
short epicentral distances and large travel time anomalies. Our anisotropy
values for the whole inner core including mantle and raypath correction
range between 1.9% and 2.3%, which is significantly lower than previously
published research.
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4
3D Transdimensional seismic
tomography of the inner core

using body waves

Body wave observations of the Earth’s inner core show that it contains
strong seismic heterogeneity, both laterally and radially. Models of inner
core structure generated using body wave data are often limited by their
parameterization. Thus, it is difficult to determine whether features such
as anisotropic hemispheres or an innermost inner core truly exist with their
simple shapes, or result only from the chosen parameterization and are in
fact more complex features. To overcome this limitation, we conduct seis-
mic tomography using transdimensional Markov Chain Monte Carlo on a
high quality dataset of 5296 differential and 2344 absolute P-wave travel
times. In a transdimensional approach, the data defines the model space
parameterization, providing us with both the mean value of each model pa-
rameter and its probability distribution, allowing us to identify well versus
poorly constrained regions. We robustly recover many first order obser-
vations found in previous studies without the imposition of a priori fixed
geometry including an isotropic top layer (with anisotropy less than 1%)
which is between 60 and 170 km thick, and separated into hemispheres
with a slow west and a faster east. Strong anisotropy (with a maximum of
7.2%) is found mainly in the west, with much weaker anisotropy in the east.
We observe for the first time that the western anisotropic zone is largely con-
fined to the northern hemisphere, a property which would not be recognised

The research in this chapter was published as: Brett, H., R. Hawkins, L. Waszek, K.
Lythgoe, and A. Deuss (2022). “3D transdimensional seismic tomography of the inner
core”. In: Earth and Planetary Science Letters Volume 593, 117688.
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in models assuming a simple hemispherical parameterization. We further
find that the innermost inner core, in which the slowest anisotropic velocity
direction is tilted relative to Earth’s axis of rotation (ζ = 55◦±16◦), is offset
by 400 km from the centre of the inner core and is restricted to the eastern
hemisphere. We propose that this anomalous anisotropy might indicate the
presence of a different phase of iron (either bcc or fcc) compared to the rest
of the inner core (hcp).

4.1 Introduction

As global seismic data coverage increased, seismic investigations began to
resolve 3D lateral variations and radial heterogeneity in the inner core.
Hemispherical differences were first proposed by Tanaka and Hamaguchi
(1997) and later confirmed by many other studies (Niu and Wen (2001);
Waszek and Deuss (2011); Lythgoe et al. (2014); Burdick et al. (2019)).
These hemispherical differences are characterized by a eastern hemisphere
with weak anisotropy and fast isotropic velocity, and a western hemisphere
with strong anisotropy and low isotropic velocity. The outermost layer of the
inner core has been proposed as isotropic, both in the east and west (Wen
and Niu, 2002; Waszek and Deuss, 2011). Furthermore, an innermost inner
core (IMIC) with a different fast or slow symmetry axes may exist, although
the details remain unconfirmed regarding the exact direciton of the slow
axes, its regional distribution or its origins (Beghein and Trampert, 2003;
Ishii and Dziewoński, 2003; Sun and Song, 2008b; Lythgoe et al., 2014; Frost
and Romanowicz, 2019). Sun and Song (2008b) produced an impressive
early 3D tomographic model of the inner core using differential travel times.
Their model recovered many of the main features in the inner core that we
still see today, including isotropic quasi hemispheres, an innermost inner
core and strong anisotropy in one quasi hemisphere.

One limitation in interpreting seismic body wave observations in terms
of distinct regional features (like hemispheres) is that the resultant models
strongly depend on the chosen parameterization. Furthermore, trade-offs
exist between different structures depending on the model parameterization.
Not accounting for lateral variations may explain why some studies find a
sharp change in anisotropy at an apparent IMIC (Stephenson et al., 2020;
Frost and Romanowicz, 2019), while others find a gradual IMIC boundary,
if it exists at all (Lythgoe et al., 2014). In addition, hemispheres are often
assumed to be defined by meridians and features such as the innermost
inner core usually have a constant radius, which may be overly simplifying
their shapes.
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Chapter 4. 3D seismic tomography of the inner core using body waves

Another major challenge when imaging the inner core is removing the
influence of mantle heterogeneity. A particular subset of raypaths, travel-
ling from the South Sandwich Islands (SSI) to Alaska, have been noted to
travel anomalously fast. It has been debated to what extent these travel
times reflect inner core structure or mantle structure (Tkalčić (2010); Frost
et al. (2020); Chapter 3 of this thesis). To address the issue of mantle
heterogeneity, we use multiple tomographic mantle models to assess unac-
counted for mantle structure, and we develop inner core models which both
include and exclude the South Sandwich Islands data.

In this study, we apply a transdimensional Markov Chain Monte Carlo
(MCMC) inversion technique (Bodin and Sambridge, 2009) to a large high-
quality body wave data set to make a 3D model of inner core velocity and
anisotropy. We consider our model to be the next step in inner core to-
mography, with the main difference that we use a transdimensional Monte
Carlo approach and that we can now utilise significantly more data due to
the increased coverage of seismic stations and events. The advantage of
a transdimensional MCMC methodology over an inversion using a static
paramaterization, is that the parameterization of the model space evolves
with the Markov chain and is not predetermined. Thus, the model pa-
rameterization is driven by the data itself, with no prior assumptions on
the parameterization, such as the existence of an IMIC or hemispheres.
Previously, Burdick et al. (2019) and Pejić et al. (2019) used a transdimen-
sional MCMC approach to image a single layer of inner core velocity and
attenuation respectively. These previous studies were 2D spherical surface
inversions and in this research we go further by conducting the first fully
3D transdimensional MCMC for the inner core, which allows us to resolve
jointly for both lateral and radial variations in P-wave anisotropy, which is
essential to answering questions on the mechanisms and causes of anisotropy
in the inner core.

4.2 Data and pre-processing

We image the inner core using the phase PKPdf, which travels the man-
tle, outer core, and inner core as a compressional body wave. PKPdf is
used either individually, or in combination with a reference phase (PKPcd,
PKPbc, PKPab), which only traverses the mantle and outer core. We em-
ploy independent datasets from three previous studies consisting of 1603
PKPbc-PKPdf, 627 PKPab-PKPdf (Brett and Deuss (2020), or Chapter
3 of this thesis), and 3102 PKPcd-PKPdf (Waszek and Deuss, 2011) dif-
ferential travel time measurements, and 2344 absolute PKPdf arrival times
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4.2. Data and pre-processing

Figure 4.1 Raypath coverage of our entire dataset for different
layers in the inner core. It shows all raypath segments through
each given layer.

(Lythgoe et al., 2014). The arrival times of Brett and Deuss (2020) and
Lythgoe et al. (2014) are visual picks, while Waszek and Deuss (2011) used
a combination of both visual inspection and cross correlation between the
inner core and outer core phases. Combining these datasets provides good
coverage of the inner core from its surface to 200 km radius (see Figure
4.1). We will need to consider the direction of travel of the PKPdf raypath
through the inner core to image anisotropy. For cylindrical anisotropy, we
describe the direction of travel by the angle ζ defined as the angle be-
tween the PKPdf raypath in the inner core and Earth’s rotation axis. We
have good raypath coverage for polar raypaths (defined as raypaths with
ζ < 35◦), which is important for constraining inner core cylindrical aniso-
tropy (Figure 4.2).

Following the methodology of Creager (1992), which is the same as in
Chapter 3, we define the fractional differential travel time as:

δt

t
=

(tPKPref − tPKPdf)data − (tPKPref − tPKPdf)Model

t
(4.1)

where (tPKPref − tPKPdf)data is the observed difference in arrival time be-
tween a reference phase and the PKPdf phase, (tPKPref− tPKPdf)Model is the
theoretical arrival time difference predicted by a model, and t is the inner
core travel time of the PKPdf raypath as predicted by a reference model.
We use the 1D reference model AK135 (Kennett et al., 1995). For absolute
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Figure 4.2 Data coverage of the polar raypaths in our data at
different layers in the inner core

travel times, we remove the reference phase from the above equation.
Multiple studies have highlighted the significant influence of mantle

structure on inner core travel times (Tkalčić (2010); Frost et al. (2020);
Brett and Deuss (2020)). Mantle corrections will be especially large for ab-
solute travel time measurements, but may also be important for differential
travel time data. To correct for the influence of mantle structure and es-
timate any corresponding uncertainties introduced we calculate differential
travel times using six different global P-wave models, integrated across the
1D raypaths from AK135. The global P-wave models used are: UUP07
(Amaru, 2007), MITP08 (Li et al., 2008), GyPSuM, LLNL-G3Dv3 (Sim-
mons et al., 2012), SAW642AN (Panning and Romanowicz, 2006) and SPani
(Tesoniero et al., 2015). This results in six synthetic travel times for each
PKPcd, PKPbc, PKPab and PKPdf travel time observation in our data set,
from which we calculate six different values of δt (Figures 4.3-4.4). Inspec-
tion of Figures 4.3-4.4 reveals a significant uniform negative shift for the
mantle-corrected absolute PKPdf travel times. We expect that this shift
is due to 1D mantle structure that differs from the reference model used
(AK135); we remove it by subtracting the mean of the mantle-corrected
equatorial data from each measurement. Using the six δt

t values for each
data point for each model, we determine the mean and standard deviation,
σmantle. The standard deviation σmantle is used as a starting estimate of
the noise introduced into the data by the mantle structure which is then
extended through hierarchical sampling (see Section 4.4.3).
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Figure 4.3 Residual travel times, δt, varying as a function of ζ,
the angle between the PKPdf raypath and Earth’s axis of rotation.
The travel times use each of the following mantle P-wave models
to correct for mantle structure: AK135 (Kennett et al., 1995),
UUP07 (Amaru, 2007), MITP08 (Li et al., 2008), and GyPSuM
(Simmons et al., 2012).
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Figure 4.4 Residual travel times, δt, varying as a function of ζ,
the angle between the PKPdf raypath and Earth’s axis of rotation.
The travel times use each of the following mantle P-wave models
to correct for mantle structure: LLNL-G3Dv3 (Simmons et al.,
2012), SAW642AN (Panning and Romanowicz, 2006), and SPani
(Tesoniero et al., 2015). The bottom panel shows the mean of each
of these differential travel times (also including the 3D models from
Figure 4.3.

54



4.3. The forward problem

Figure 4.5 The variation of mean δt with the angle ζ for a)
PKPcd-PKPdf, b) PKPbc-PKPdf, c) PKPab-PKPdf and d) abso-
lute PKPdf differential travel times. The horizontal lines show the
standard deviation σmantle of the δt due to ‘mantle noise’ from the
6 global P-wave mantle models used. The number of data points
and the average of σmantle is shown in each subtitle. Plots showing
the differential travel times for each mantle model, from which the
means, are derived are shown in Figures 4.3-4.4.

While the mantle corrections will do a good job of correcting large scale
lower mantle structure, strong velocity perturbations locally around events
or seismic stations will not be as well resolved by these global tomographic
models. However, we assume that such differences will be removed by
the differential travel time methodology, because the primary and refer-
ence phases are most similar near the source and receiver. As expected,
the PKPab-PKPdf and absolute PKPdf data are more affected by mantle
structure than the PKPcd-PKPdf and PKPbc-PKPdf data (Figure 4.5).
Regardless, the mantle corrections in all datasets are an order of magnitude
less than the measurements themselves.

4.3 The forward problem

For a fast direction parallel to Earth’s axis of rotation, cylindrical body
wave anisotropy in the inner core is defined as follows (Creager, 1992) (see
also Chapter 2)
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δt

t
=
δv

v
= a+ b cos2(ζ) + c cos4(ζ) (4.2)

where δt
t is equivalent to the velocity anomaly δv

v (assuming low attenuation
in the inner core). The difference in the velocity of equatorial raypaths
relative to the reference model (AK135), δVeq, is given by a in Equation
4.2. (Equation 4.2 is derived in Section 2.1, Equation 2.9). The amount
of anisotropy, δVani, is defined as the velocity difference between polar and
equatorial raypaths, given by b + c. This measure of anisotropy is strictly
for cylindrical anisotropy, and assumes that the slow and fast directions
are perpendicular. The b and c parameters of Equation 4.2 are related to
components of the elastic tensor, Cij , which describes the anisotropy of a
medium by b = (−C11 + C44 + C13)/C11 and c = (C11 + C33 − 4C44 −
2C13)/2C11 (Creager, 1992) . From the model parameters a, b and c we
calculate the isotropic velocity, or Voigt average velocity (Lythgoe et al.,
2014) commonly interpreted by mineral physicists;

δViso = a+
b

3
+
c

5
(4.3)

Equation 4.2 reveals that the slowest velocity direction is not restricted to
an angle of ζ = 90◦, but depends on combinations of b and c, thus can be
any angle between 0− 90◦. The slowest angle is obtained by differentiating
Equation (4.2) and calculating its maximum value, following Lythgoe et al.
(2014), which results in the following:

ζslow = cos−1

√
−b
2c

(4.4)

Some variations in ζslow are statistically insignificant: it is possible to have a
large range of values of ζslow but with minimal absolute velocity differences
between ζslow and ζ = 90◦. To only keep statistically significant values of
ζslow, we use a tolerance condition, such that the difference between ζslow
velocity and that at ζ = 90◦ must be greater than 0.5%. We will present our
model showing variations in δVeq, δViso, δVani, and ζslow. It is important to
note that throughout this paper we define anisotropy to be the difference
between the polar and the equatorial velocity (as is conventional for body
wave studies of the inner core). However, in some regions of our model the
difference between the polar and equatorial velocity is small (δVani ∼ 1.0%)
while the difference between the ζslow direction and the ζ = 0◦ is stronger
(∼ 2.0%). These regions should still be thought of as anisotropic even
though the value of δVani is small.
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For a single raypath with ζ and set of coefficients (a, b, c) we predict the
normalised differential travel time using Equation 4.2. However, this treats
the inner core as a homogeneous volume, whereas we are interested in 3D
variations. For an inner core with multiple sub-volumes, we split the ray
into different portions for each model sub-volume travelled, resulting in the
following linear forward problem:

Gm = dsyn (4.5)

G =


A11t1 A11t1 cos2(ζ) A11t1 cos4(ζ) A12t1 · · ·
A21t2 A21t2 cos2(ζ) A21t2 cos4(ζ) A22t2 · · ·
A31t3 A31t3 cos2(ζ) A31t3 cos4(ζ) A32t3 · · ·

...
...

. . .

 (4.6)

m =


a1

b1
c1

a2
...

 (4.7)

d =


δt1
δt2
δt3
...

 (4.8)

where G is the sensitivity kernel matrix which has the same number of
rows as the number of travel times in our dataset, and the same number
of columns as the length of vector m. Aij within G is a value between
0 and 1 describing the fraction of raypath i which travels through volume
j and

∑N
j=1Aij = 1 for a total of N volumes. The model vector, m,

contains the parameters aj , bj , cj for each volume j. d is the data vector
containing the differential travel time δti of each raypath i. Note that
the inner core travel time ti has been moved from the left hand side in
Equation 4.2 to the right hand side, and is now part of matrix G. In a static
MCMC, the parameterization of the sensitivity kernel matrix G remains
constant, forming a fixed forward problem. In the transdimensional MCMC,
the sensitivity kernel matrix G changes at each step of every new model
parameterization.

Calculating the Aij terms is a function of the raypath discretization and
the basis functions used. For this study, we use fixed raypaths as modelled
by AK135 using the Taup Toolkit (Crotwell et al., 1999) and assume the
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inner core is spherical (note that we do correct our data for ellipticity us-
ing the methodology of Dziewonski and Gilbert (1976)). We do not adjust
the raypaths in our model using 3D raytracing, the transdimensional inver-
sion is already a computationally expensive non-linear inversion and tests
incorporating 3D raytracing through an anisotropic model significantly in-
creased the time taken to approximate the posterior making it unfeasible.
Likewise, it would be more rigorous to incorporate finite frequency kernels
rather than using a raypath approximation, as outlined by Calvet et al.,
2006a and Calvet et al., 2006b, however due to the increased computational
cost this would incur we decided that for this study it was sufficient to
use fixed raypaths and assess the uncertainties in the travel times through
hierarchical sampling.

The basis functions are 3D Voronoi cells, which provide a fast method of
tessellating a domain with non-overlapping volumes. Appendix A describes
in plain language simple algorithms to determine which Voronoi cell in a
domain contains a given set of locations, from these algorithms it is then
possible to conduct a raypath integration.

4.4 The inverse problem

4.4.1 Bayes’ theorem

We solve the inverse problem using a Bayesian approach, where we do not
consider one single solution but instead regard the solution to be a collection
of models (an ‘ensemble’) from which uncertainties can be determined. In
practise, the Bayesian approach combines prior information on a model
space with data to produce a posterior probability distribution. Following
Bodin and Sambridge (2009), the posterior probability p(m|dobs) is given
by

p(m|dobs) ∝ p(dobs|m)p(m) (4.9)

where the likelihood function p(dobs|m) is the probability of observing a set
of data given a set of model parameters. The prior function p(m) describes
our knowledge of the model space before considering the data. The poste-
rior p(m|dobs) represents how the data and our prior knowledge combine,
providing us with the probability that a given set of model parameters are
true.

4.4.2 Markov Chain Monte Carlo

We then use Markov Chain Monte Carlo (MCMC) to sample the poste-
rior probability distribution of our data-model system (Cowles and Carlin,
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1996). For a given prior probability and data, we evaluate the forward
problem over many proposed models, with each proposed model related to
the previous model with a small random perturbation (Section 4.5). Af-
ter randomly perturbing an initial model, we use the Metropolis-Hastings
algorithm (Hastings, 1970) to probabilistically accept or reject perturba-
tions. The Metropolis-Hastings criteria ensures that accepted models are
representative of the posterior probability distribution.

4.4.3 Likelihood and hierarchical noise

The likelihood function, p(dobs|m), describes how well a set of model pa-
rameters reproduces the data:

p(dobs|m) ∝ exp
−φ(m)

2
(4.10)

where φ is the least squares misfit of a model normalized by data noise. We
use an L2 norm which is frequently used in seismic tomography:

φ(m) =

∣∣∣∣∣∣∣∣dsyn − dobs
λd

∣∣∣∣∣∣∣∣2 (4.11)

where dsyn is the synthetic data predicted by the model m (calculated usine
Equation (4.5)), λd is the hierarchical parameter and is the estimated data
noise. λd has a profound influence on the MCMC because the algorithm
will only fit the data to within this noise limit. Thus, λd is analogous
to the damping parameter in a damped least squares inversion. However
unlike the damping parameter, it is possible to assess the value of λd from
the data itself using hierarchical methods. We separate λd into λDataType
for each data type, since the four data types (PKPcd, PKPbc, PKPab
differential travel times and absolute PKPdf travel times) have different
levels of noise. For each individual δt data point we use the mantle noise,
σmantle, estimated from the six global tomographic models (see Section 4.2)
as a minimum level of noise. From this, each measurement then has its own
λd =

√
λ2
DataType + σ2

mantle. The misfit then becomes:

φ(m) =

√√√√√NData∑
n=1

(
(dsyn − dobs)n√

λ2
DataType + σ2

mantle,n

)2

(4.12)

The hierarchical parameter λDataType is not a term that we choose,
but is sampled as an additional perturbation step in the MCMC, which
is also accepted following the Metropolis-Hastings algorithm. In this way,
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λDataType estimates the noise by examining contradictions within the data
itself, and combining this with the prior estimate of the data noise from
the tomographic models. For example, if two or more observations that
sample the same region of the model are contradictory then they will be
fit poorly and drive the hierarchical parameter to higher values indicating
a greater level of uncertainty in the data. This approach handles data un-
certainties thoroughly, using the estimates of σmantle from the tomographic
models to provide a minimum misfit on individual data points, then using
the λDataType terms to maintain an overview of the noise of each subset of
data. Substituting Equation (4.12) into Equation (4.10) provides us with
the first term on the right hand side of Equation (4.9).

4.4.4 Prior

The prior, p(m) (the second term on the right hand side of Equation 4.9),
is a probability distribution function representing any knowledge on the
physical system before data is considered. We use Gaussian probability
distributions for model parameters, a, b and c with a mean of 0 and a
standard deviation, σ, of 0.1 (or 10% velocity perturbations relative to
AK135). That is, for the ith a parameter we have in our model we have:

p(ai) =
1

σ
√

2π
exp(− a

2
i

2σ
) (4.13)

with the same equation for b and c, giving a prior of the form:

p(m) =
∏
i

p(ai)p(bi)p(ci). (4.14)

This prior reflects current knowledge on inner core structure while not re-
stricting the size of the model space prohibitively. For example, it has the
capacity to incorporate anisotropy (b + c) of 10% in our model. We con-
sider Gaussian priors to be more appropriate than uniform priors as uniform
priors can overly restrict the size of the model space.

4.5 Model perturbations

In a traditional MCMC inversion the parameterization of the model space is
static (i.e. the number and locations of the Voronoi cells remains the same
across all iterations) and defined prior to the inversion. Thus, only the
model parameters a, b and c within each Voronoi cell would be perturbed.
However, in our transdimensional MCMC, the data defines how the model is
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parameterized through perturbing the number and locations of the Voronoi
cells. Thus, the transdimensional method samples models with different
complexity (i.e. number of model parameters and volumes) resulting in an
ensemble of varying dimensioned models that plausibly explain the obser-
vations. This is implemented as a ‘reductionist’ methodology, i.e. if the
dataset can be fit equally well with 10 volumes instead of 11, then the final
ensemble will include more models with 10 volumes than 11.

The velocity perturbations to the model parameters a, b and c are de-
scribed in Section 4.5.1. The additional perturbations to the parameter-
ization of the model space require three more perturbation types: move
(moving cells), birth (generating new cells), and death (removing cells) and
are described in detail in Sections 4.5.2-4.5.4.

4.5.1 Velocity perturbations and acceptance

In an MCMC, new model parameters are proposed based on a previous set
of model parameters. For changes in a, b, or c (i.e. velocities of Voronoi
cells) the proposal process is straightforward:

1. A volume, V , is randomly chosen in the current model m

2. It is randomly chosen whether to change the value of a, b, or c in
volume V

3. A new value of a, b, or c is randomly drawn from a Gaussian distri-
bution centred on the previous value and with a standard deviation,
σprop

The Gaussian probability density of drawing a new value of a is defined
thus:

q(a′|a) =
1

σprop
√

2π
exp(−(a′ − a)2

2σ2
prop

) (4.15)

where a′ is the new value based on the previous model value a and σprop
is the proposal standard deviation describing how large the deviation from
model m will be. Following the conventions of many previous MCMC stud-
ies (Cowles and Carlin, 1996) we tune these values such that acceptance
rates are ∼30%. This provides a balance between resolving small scale
structures while also exploring the full model space in reasonable computa-
tional time. This process is analogous for perturbations of b and c.

We combine the prior p(m), likelihood, and proposal probabilities of
the current model m, and of the proposed model m’, to calculate the ac-
ceptance probability α(m|m’), following the Metropolis-Hastings algorithm
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(Hastings, 1970). The Markov chain will converge to the posterior distri-
bution if proposals are accepted with a probability defined as:

α(m’|m) = Min(1,
p(m’)
p(m)

× p(dobs|m’)
p(dobs|m)

× q(m|m’)
q(m’|m)

) (4.16)

which shows that the acceptance probability is equal to the ratio of the
priors multiplied by the ratio of the likelihoods multiplied by the ratio of
the proposals. For a Gaussian proposal where the size of the model space
has not changed, the probability q(m|m’) is equal to the probability of the
reverse step q(m’|m) and thus the proposal ratio is equal to 1.

A random number r between 0 and 1 is drawn and if r < α then the
model m’ is kept and becomes model m for the next iteration. Otherwise,
m’ is discarded, model m is added another time to the chain and the next
iteration again perturbs model m. Inspection of Equation (4.16) reveals
that if the new model m’ has a lower misfit (reflected in p(dobs|m)) and
a higher prior probability (reflected in p(m’), Equation (4.13)) than the
initial model m, then α > 1 and m’ will always be accepted. However, if
m’ does not decrease misfit, it might be accepted with probability α.

4.5.2 Parameterization perturbations: Move

The move perturbation type involves selecting a random Voronoi cell in the
current model m, then moving the nucleus of that cell to produce model
m’ (Figure 4.6). In 3D, the nucleus is perturbed according to a Gaussian
distribution centred on its current position, with a standard deviation of 50
km, and the limitation that it cannot move outside of the inner core. The
probability that a Voronoi nucleus moves from position p to p’ is equal to
the reverse step, i.e. the probability of the same Voronoi nucleus moving
from p’ to p. This means that the proposal ratio ( q(m|m’)

q(m’|m) from Equation
4.16) is 1 and Equation 4.16 simplifies to only the prior and likelihood ratios:

α(m’|m) = Min(1,
p(m’)
p(m)

× p(dobs|m’)
p(dobs|m)

) (4.17)

thus the acceptance criterion for a move perturbation is the same as for
model parameter perturbations.

4.5.3 Parameterization perturbations: Birth

Creating a new Voronoi cell changes the size of the model space (Figure
4.7). This means that, unlike a move step, the proposal ratio, ( q(m|m’)

q(m’|m) , is
not equal to one, complicating the acceptance criteria calculation. When a
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birth step is conducted, a new nucleus in the model space with a random
location at point p’ is added and the new Voronoi tessellation calculated.
This new Voronoi cell will then have model parameters (a, b, c) equal to a
Gaussian perturbation centred on the equivalent model parameters of the
cell that occupied the point of the new nucleus in the previous model.

The acceptance term (alpha criterion) reduces to the following for the
birth step:

αBirth = σprop
√

2πP(a′)
1

exp(−1
2

(a′−a)2

σ2
prop

)

× σprop
√

2πP(b′)
1

exp(−1
2

(b′−b)2
σ2
prop

)

× σprop
√

2πP(c′)
1

exp(−1
2

(c′−c)2
σ2
prop

)

× p(dobs|m’)
p(dobs|m)

(4.18)

where a′ and a are the values of a in the new volume and the volume which
previously contained the new nucleus respectively, σprop is the same as in
Equation (4.15) and represents the standard deviation of the Gaussian from
which a new value of a, b, or c is drawn, and P(a′) is the prior probability
of the new value a being drawn. This is analogous for the terms b, b′,
P(b′), c, c′, and P(c′). Thus, there is a trade off between the (a′ − a)2,
(b′ − b)2, (c′ − c)2 terms inside the exponent, which dominate, and the
misfit (contained within the likelihood ratio, p(dobs|m’)

p(dobs|m) ), which determines
whether the perturbation will be accepted. For example, the perturbation
is more likely to be accepted if the (a′ − a)2, (b′ − b)2, (c′ − c)2 terms are
large. However, this change in the model parameters is balanced by the
likelihood ratio, which will be smaller if the misfit of the new model m’ is
greater than m resulting in a lower value of α (i.e. acceptance becomes less
probable).

4.5.4 Parameterization perturbations: Death

When a Voronoi cell is removed from a model space, the surrounding Voronoi
cells occupy the space left behind (Figure 4.8). This is one of the reasons
why Voronoi cells are extremely useful for transdimensional methods: it is
relatively simple to discretize quickly a domain when adding and removing
volumes. This removal of a volume reduces the size of the model space
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and, like the birth step, results in a proposal ratio not equal to one. The
acceptance term reduces to the following for the death step:

αDeath =
1

σprop
√

2πP(a′)
exp(−1

2

(a− a′)2

σ2
prop

)

× 1

σprop
√

2πP(b′)
exp(−1

2

(b− b′)2

σ2
prop

)

× 1

σprop
√

2πP(c′)
exp(−1

2

(c− c′)2

σ2
prop

)

× p(dobs|m’)
p(dobs|m)

(4.19)

which has a similar form to Equation (4.18) but taking the inverse and
where a′ and a are the values in the volume which occupies the old Voronoi
node and the volume which is being removed respectively.

A analysis of the acceptance criterion can be made in a similar way to
that of the birth acceptance criterion. The terms (a − a′)2, (b − b′)2, and
(c − c′)2 inside the exponent dominate, if the misfit of the new model m’
is greater than the misfit of the previous model m and then the likelihood
ratio p(dobs|m’)

p(dobs|m) is smaller resulting in the perturbation being less likely to
be accepted. Equally, if the change in the model parameters ((a − a′)2,
(b − b′)2, (c − c′)2) is large then the perturbation is also less likely to be
accepted. Thus, the death step is effectively testing whether a model with
fewer volumes (i.e. fewer degrees of freedom) can fit the data as well as
the previous model, so it is more likely to be accepted if the volume which
replaces the ‘dying’ Voronoi cell has similar velocity characteristics.

4.6 Ensemble analysis

We applied the transdimensional MCMC algorithm (Section 4.5) to our data
(Section 4.2) and ran 20 chains for 4,000,000 iterations with an acceptance
rate (the percentage of accepted perturbations) of 30.5%. Figure 4.9a shows
how the misfit changes as a function of iteration in the inversion for all
20 chains. The misfit drops rapidly in the first 200,000 iterations before
reaching a misfit minimum; the transdimensional algorithm then samples
models around this minimum value.

Once the inversion has completed the desired number of iterations, the
models are collected into an ensemble from which statistics are calculated.
We remove the influence of the starting model by excluding the first third
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Figure 4.6 A 2D example of a move perturbation with a) the
model space before the move perturbation and b) the model space
after the move perturbation.
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Figure 4.7 A 2D example of a birth perturbation with a) the
model space before the birth perturbation and b) the model space
after the birth perturbation.
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Figure 4.8 A 2D example of a death perturbation with a) the
model space before the death perturbation and b) the model space
after the death perturbation.
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of all iterations in the ensemble of models; the so-called ‘burn in’. It is also
common practice to ‘thin’ the chain by only retaining every 100th model,
which ensures that each model in an ensemble is independent. Following
’burn in’ and ’thinning’ leaves a final ensemble of 533,380 models. For fur-
ther discussion regarding appropriate values for the ‘burn in’ and ‘thinning’
we refer the reader to Cowles and Carlin (1996).

For an MCMC investigation, it is important to ensure that the model
sampling has converged, whereby the model space has been sufficiently ex-
plored and the models are no longer evolving substantially. To assess con-
vergence, we examine the number of volumes in each chain as a function
of iteration (Figure 4.9b). The number of volumes across all chains drops
rapidly within the first 10,000 iterations, as the starting model is refined
and Voronoi cells which do not reduce misfit are removed. After this ini-
tial reduction of volumes, the MCMC algorithm better assesses the noise
level within the data, and the number of volumes across all chains starts
to increase before flattening out after 1,000,000 iterations. For the next
3,000,000 iterations, the mean number of volumes across all chains does not
change substantially, implying convergence. After convergence, the average
model misfit has reduced from 1.0 to 0.55, and the models have between 23
and 38 volumes.

We also investigate the average hierarchical noise parameters for each
data type (Section 4.4.3) from the 533,380 models in our final ensemble
(Figure 4.9c). As expected, the PKPcd-PKPdf data has the lowest noise
level with 0.29s on average of uncertainty in each measurement, followed by
PKPbc-PKPdf data with a noise level of 0.63s. Finally, the PKPab-PKPdf
data and absolute PKPdf data show the largest levels of noise with similar
values of approximately 0.95s. Thus, the hierarchical sampling found the
PKPcd-PKPdf data to have the lowest noise level, and will fit those ob-
servations more closely than the PKPab-PKPdf and absolute PKPdf data.
From this analysis we expect that the top of the inner core is the best re-
solved region of our model due to the low noise level in the PKPcd-PKPdf
data and the fact that we have more data sensitive to the top of the inner
core than the centre of the inner core.

4.7 Results

Our final model was generated by calculating the mean and standard devi-
ations of four different model parameters from the a, b and c values of the
533,380 models in our ensemble: the equatorial velocity (δVeq), the isotropic
or Voigt average velocity (δViso), the anisotropic velocity difference (δVani),
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Figure 4.9 a) Variation of misfit with iteration in all 20 chains
for our transdimensional model. b) Variation of no. of vol-
umes with iteration in all 20 chains for our transdimensional
model. The greyed out area in a) b) is the ‘burn in’. c)
The total hierarchical parameter of each of our data types, i.e.
λtotalDataType =

√
λ2
DataType +mean(σDataTypemantle )2 calculated from the

ensemble from our transdimensional model.
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and the angle of slowest direction (ζslow) (see Section 4.3). Models in our
ensemble will contain different numbers of Voronoi cells at different loca-
tions and these individual models will contain sharp boundaries. However
when we average across all 533,380 models the boundaries will not be in
exactly the same place in every model, meaning that the average model can
contain smoothly varying and irregular shaped boundaries.

We will explore our results in terms of large-scale general observations
that have been seen before, including the isotropic hemispheres (Section
4.7.1), the anisotropic zone (Section 4.7.2) and the innermost inner core
(Section 4.7.3), but mainly focus on the finer-scale details which have be-
come obvious because of our transdimensional approach.

4.7.1 Isotropic hemispheres

Our model confirms the previously found hemispherical pattern with seismic
P-waves travelling anomalously fast in the ‘eastern hemisphere’ of the in-
ner core and anomalously slow in the ‘western hemisphere’. This is evident
in maps of equatorial velocity throughout the inner core (Figure 4.10a-c),
and at the top of the inner core in isotropic velocity (Figure 4.10g). The
hemispherical pattern is also clearly visible in cross sections through the
equatorial plane (Figure 4.11a,c) and meridional cross sections through the
North and South pole (Figure 4.12a,c). This is in agreement with numer-
ous previous studies (Tanaka and Hamaguchi (1997); Niu and Wen (2001);
Waszek and Deuss (2011); Lythgoe et al. (2014); Burdick et al. (2019);
Brett and Deuss (2020)). We avoid describing the hemisphere boundaries
using single meridians because the hemisphere boundaries are not straight
lines through the poles; this is most visible in the equatorial velocity at the
ICB around southern Africa and Hawaii (Figure 4.10a.)

It is interesting to note that the hemispherical pattern in the equato-
rial velocity (Figure 4.11a and 4.12a) persists and the magnitude of the
equatorial velocity increases with depth in the eastern hemisphere. The
advantage of our use of the transdimensional approach, is that we are not
limited to simple hemispherical shapes anymore and so are now able to
identify regional heterogeneity within the hemispheres. Further complexity
is particularly visible in the meridional cross section (Figure 4.12a), which
reveals that the boundary separating the fast and slow equatorial velocities
appears sharp and undulating. Some faster equatorial velocities associated
with the eastern hemisphere encroach on the slower velocities of the west-
ern hemisphere. These new observations would be challenging to identify
robustly without using a transdimensional methodology, as it would be dif-
ficult to know the extent to which the final model was influenced by the
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Figure 4.10 Maps of the mean and standard deviation (SD) of
δVeq, δVani and δViso at the ICB (1217.5 km radius), 800 km ra-
dius and 400 km radius throughout our model. The same plot
showing a transdimensional inversion using the same model setup
but excluding data originating from the South Sandwich Islands
is shown on Figure 4.24.
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Figure 4.11 Cross sections showing the average and standard de-
viation (SD) of the δVeq, δVani, δViso and ζslow variations through-
out our model. The cross section is a horizontal slice through the
equator with constant latitude. The view of the reader is shown
in the perspective panel. The same plot showing a transdimen-
sional inversion using the same model setup but excluding data
originating from the South Sandwich Islands is shown on Figure
4.27
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Figure 4.12 Cross sections showing the average and standard de-
viation (SD) of the δVeq, δVani, δViso and ζslow variations through-
out our model. The cross section is a vertical slice spanning all
latitudes and going from 90◦W to 90◦E. The view of the reader is
shown in the perspective panel. The same plot showing a transdi-
mensional inversion using the same parameters but excluding data
originating from the South Sandwich Islands is shown on Figure
4.26
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Figure 4.13 A profile through the inner core going from 90◦W,0◦N
at the top to 90◦E,0◦N at the bottom. a) shows the mean and
standard deviation (SD) of δVeq, δVani, δViso while the profile on
b) shows the variations in ζslow direction throughout our model.
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Figure 4.14 Maps of the mean and standard deviation (SD) of
ζslow at the ICB, 800 km radius and 400 km radius throughout
our model. The same plot showing a transdimensional inversion
using the same model setup but excluding data originating from
the South Sandwich Islands is shown on Figure 4.25.

initial fixed parameterization.

Comparing our model of the equatorial velocity to that of Burdick et
al. (2019) we see good overall agreement in the location of the hemisphere
boundaries, but with some extra complexity, this is due to the fact that we
also solve for the 3D velocity structure and have more data both of which
will influence the location of the boundaries at the ICB.

The hemispherical pattern in the isotropic velocity is present until about
60-170 km depth below the ICB (Figure 4.10g, 4.11c and 4.12c), with bound-
aries between slow ‘west’ and fast ‘east’ located approximately at 170◦W
and 30◦E in broad agreement with previous studies (Tanaka and Hamaguchi
(1997); Waszek and Deuss (2011); Burdick et al. (2019)). The reason that
the isotropic velocity difference does not persist deeper in the inner core,
is because the isotropic velocity is a Voigt average of the velocities in all
directions. Although the hemispherical variations persist in the equatorial
velocity with depth, the contribution of anisotropy (i.e. higher polar veloc-
ities) causes the isotropic velocity to lose its hemispherical pattern deeper
than 60-170 km below the ICB (Figure 4.13a).
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Figure 4.15 a) Cylindrical anisotropy curves from three charac-
teristic locations in our model. The western region represents the
velocity variations from location: 90◦W, 0◦N, 800 km radius. The
IMIC curve is from the location: 90◦E, 45◦N, 100 km radius. The
eastern hemisphere curve is from the location: 90◦E, 0◦N at the
inner core boundary. The horizontal green dashed line highlights
the ζslow direction for the IMIC location. b) show predicted sin-
gle crystal anisotropy for three different iron crystal arrangements
hcp, bcc, and fcc iron phases relative to velocity at ζ = 0◦ as-
suming the c-axis of the hcp crystal is at ζ = 0◦. c) shows the
prediction if the azimuth of maximum velocity through a single
bcc or fcc crystal is at ζ = 54◦. Values for the stiffness matrix for
hcp and fcc iron are taken from Martorell et al. (2015) at 6600K
and at 360GPa, while the values of the stiffness matrix for bcc iron
was taken from Vočadlo (2007) at 6000K.
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4.7.2 Anisotropic zone

In agreement with previous studies (i.e. Tanaka and Hamaguchi (1997); Niu
and Wen (2001); Lythgoe et al. (2014); Brett and Deuss (2020)), our model
also contains a strong anisotropic zone in the west where inner core seismic
P-waves travelling in the north-south or polar direction travel faster than
waves that travel in the east-west or equatorial direction. The lateral extent
of the western anisotropic zone is clearly visible in maps of the anisotropic
velocity difference (Figure 4.10n-o) at 400 and 800 km radius and also in
cross-sections through our model (Figure 4.11e and 4.12e). The inner core
displays very little anisotropy near the ICB (Figure 4.10m), with the excep-
tion of a strong patch with high uncertainty around South America, similar
in location to a high uncertainty region found in Pejić et al. (2019).

A 1D profile through our model (Figure 4.13a) furthermore shows that
indeed anisotropy is weak at the top of the inner core (0 to 1%) and con-
firms strong anisotropy to be located within the western hemisphere approx-
imately between 50 and 1100 km radius, and only weak anisotropy (< 0.5%)
in the eastern hemisphere. The anisotropic strength increases rapidly with
depth, reaching a maximum of 7.2% in the western hemisphere. The radius
of the transition to strong anisotropy in this region occurs between 1170
km and 1050 km (Figure 4.13a). It is difficult to define more precisely this
radius due to a lack of raypaths with turning points between 1110 km and
1060 km (Blom et al., 2015), resulting in a partial null space. This lack
of data is reflected in the standard deviation (Figure 4.11f), which shows a
broad region of high uncertainty at the top of the anisotropic zone.

Tanaka and Hamaguchi (1997) described the anisotropic zone as being a
‘quasi-hemisphere’, i.e. it does not precisely span 180◦ of longitude. Indeed,
we also observe that the anisotropic zone does not span 180◦ but runs
between 170◦W and 30◦E (Figure 4.11e), spanning a width of 200◦ in broad
agreement with previous models (Sun and Song (2008a); Irving and Deuss
(2011); Lythgoe et al. (2014))

Most importantly, because of our transdimensional approach we do not
prescribe simple hemispherical shapes; this enabled us to find that the
anisotropic zone does not continue all the way to the south pole. Instead,
we observe for the first time that the western anisotropic zone is largely
confined to the northern hemisphere (Figure 4.12e). The anisotropy at the
South pole of the inner core at 800 km radius is 2% with an uncertainty
of 1.5%, while the anisotropy around North America is 8% with an uncer-
tainty of 2% (Figure 4.12e) meaning that within the bounds of uncertainty
in our model the South pole has significantly lower anisotropy than the
the region around North America. This regional feature would have been
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difficult to map using traditional seismic tomography employing fixed pa-
rameterizations, and has important implications for models of inner core
growth (Section 4.8). Given that this region of strong anisotropy does not
span half the inner core in either longitude or latitude, we use the descriptor
of an ‘anisotropic zone’ (instead of hemisphere).

We conducted a resolution test, to ensure the concentration of aniso-
tropy in the northern part of the western hemisphere was not an artefact
of imperfect data coverage. To do this, we ran an inversion using synthetic
data for a known synthetic model, containing simple hemispheres (with 8%
anisotropy and 0% equatorial velocity in the west and 0% anisotropy and
2% equatorial velocity in the east) spanning all latitudes and a spherical
IMIC (with 0.5% anisotropy and 1% equatorial velocity) located at the cen-
tre of the model (Figure 4.17-4.19). From this model we generated synthetic
data using our real raypaths and added realistic Gaussian noise. The same
transdimensional inversion was then conducted on the synthetic data as for
the real data. We reproduced all major features from the synthetic model
reliably (Figures 4.20-4.23), including an anisotropic hemisphere across all
latitudes. This confirms that if the anisotropic region in the west of the
inner core spanned all latitudes our data would be able to recover this fea-
ture.

We also ran a separate inversion excluding the particular subset of ray-
paths travelling from the South Sandwich Islands to Alaska (Figures 4.24-
4.27). These raypaths appear to travel anomalously fast, and it has been
debated to what extent these travel times reflect regional-scale inner core
structure versus mantle contamination (Tkalčić (2010); Frost et al. (2020);
Brett and Deuss (2020)). Our model excluding SSI data shows the same
main features, in particular that the western anisotropic zone is still located
primarily in the northern hemisphere. Thus, we conclude that the effect of
the SSI data on our inversion is minimal and that the western anisotropic
zone is indeed confined to the northern hemisphere.

4.7.3 Offset IMIC

The innermost inner core (IMIC) has been defined in previous studies as
a anisotropic region where the slowest direction (i.e. ζslow of Equation
4.4) is at an angle less than 90 degrees from the fastest direction. ζslow is
harder to constrain than δVeq and δVani since variations in ζslow produce a
more subtle effect on P-wave travel times. Despite this, we detect a clear
region in which ζslow is 55◦ ± 16◦; this is most notable in the cross-sections
through our model (Figure 4.11g and 4.12g). Within this region, δVani (the
difference between purely polar paths with ζ = 0◦ and equatorial paths with

76



4.7. Results

ζ = 90◦ is small (∼ 1%). What matters here instead, is that the difference
in velocity between polar paths with ζ = 0◦ and paths with ζslow is as large
as 2% and therefore, despite having a small value of δVani this region should
still be considered anisotropic.

Interestingly, it appears not to be a spherical feature at the centre of
the inner core. In fact, the centre of the IMIC in our model is offset from
the centre of the inner core by approximately 400 km, and our IMIC is
contained within the eastern hemisphere (Figure 4.13b and Figure 4.14c).
Our ‘non-spherical’ or offset IMIC appears to reconcile previous differing
IMIC models (Ishii and Dziewoński, 2003; Beghein and Trampert, 2003;
Sun and Song, 2008b; Lythgoe et al., 2014; Frost and Romanowicz, 2019).
The model of Sun and Song (2008b) was an early 3D inner core model which
observed an IMIC, in their model the parameterization of the IMIC was
fixed, with the IMIC in the central 600 km of the inner core. However, Sun
and Song (2008b) also ran a model without a fixed IMIC. They concluded
that their model with and without a fixed IMIC was approximately the
same and that the IMIC was spherical. However, looking at their model
again it seems possible that they were already seeing evidence of an offset
IMIC but did not have the data at the time to be certain. Lythgoe et al.
(2014) went further and proposed that the IMIC is in fact part of a larger
hemispherical pattern which is in effect what we still see in our model today
with more data and a more advanced technique.

We ensured that this offset is not an artefact of data coverage by run-
ning two synthetic tests. In one test we included a central spherical IMIC
in our synthetic model (Figure 4.17-4.19) and produced synthetic data. Af-
ter running a transdimensional inversion with this synthetic data we were
able to resolve this regional feature (Figure 4.20-4.23), showing that if the
IMIC was spherical our data would be able to resolve this. In the second
synthetic test we used an offset IMIC which was only present in the eastern
hemisphere (Figure 4.28-4.29) and we were also able to fully recover this
synthetic model after running a transdimensional inversion (Figure 4.30-
4.31).

4.7.4 Summary

Summarising the findings from our model, we identify three robust and
particularly interesting features in our model:

1. Strong anisotropy is isolated to a zone within the western hemisphere.
The anisotropy is strongest north of the equator and weakens to virtu-
ally no anisotropy near the south pole. The top of the inner core near
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the ICB displays very little anisotropy, however, anisotropy increases
sharply below 200 km depth in the west.

2. We interpret a region with ζslow = 55◦± 16◦, located primarily in the
eastern hemisphere at a radius less than 700 km as the IMIC, with
the centre of the IMIC offset from the centre of the inner core by 400
km.

3. Equatorial and isotropic velocity anomalies are separated into two
hemispheres, with a slow western hemisphere and a fast eastern hemi-
sphere. The isotropic velocity difference between the hemispheres is
present in the top 60-170 km of the inner core, and disappears at
greater depth. The hemispherical pattern in equatorial velocity, on
the other hand, persists to the centre of the inner core with the equa-
torial velocity increasing with depth in the eastern hemisphere.

4.8 Geodynamic implications

Relating our seismic observations to geodynamical processes in the inner
core is challenging due to the multiple mechanisms proposed to explain
the formation of anisotropy and the generation of hemispheres. It is now
widely accepted that anisotropy is caused by the alignment of iron crystals,
which occurs either during solidification or afterwards through texturing.
However, the phase of iron which is stable at inner core conditions remains
debated. At inner core temperatures and pressures iron takes the form of
hcp (hexagonal close packed), bcc (body centred cubic), or fcc (face centred
cubic) crystals. Each phase displays varying intrinsic anisotropy, although
the magnitude of anisotropy observed seismically also depends on the degree
of crystal alignment.

In order to test if our seismic observations would be able to constrain the
phase of iron, we calculated the anisotropy of a single crystal of each phase of
iron at inner conditions using values obtained by ab initio simulations from
Vočadlo (2007) and Martorell et al. (2015). We calculate the velocity of a
seismic wave travelling through a single crystal following the methodology
of Stixrude and Cohen (1995) with the following equation:

ρV 2 =
3∑

i,j,k,l=1

winjwknlCijkl (4.20)

where ρ is density, V is velocity, w is the polarization direction, n is the prop-
agation direction, and Cijkl is the stiffness matrix (obtained from Vočadlo
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(2007) and Martorell et al. (2015)). We then calculate the P-wave velocity
(where w = n) and plot the velocity as a function of the propagation di-
rection for each phase of iron on polar plots (Figure 4.16a-c). On Figure
4.16a, the vertical direction through the hcp crystal is at the centre, and
the edge of the plot represents different directions through the horizontal
plane. The fastest velocities for hcp crystals are in a vertical direction (in
the centre), while the slowest velocities are closer to the edge of the polar
plot (58◦ from the vertical direction).

To facilitate the comparison between the single crystal anisotropy from
the mineral physics and the anisotropy variations in our models, we used the
mean a, b, and c parameters from our models for three different locations
and plot the corresponding predicted fractional travel times (Figure 4.15a).
We select locations from the western anisotropic zone (90◦W, 0◦N, 800 km
radius), the IMIC (90◦E, 0◦N, 100 km radius), and the eastern hemisphere
( 90◦E, 0◦N, ICB). The western zone clearly exhibits strong cylindrical
anisotropy, whereby polar raypaths are 5.9% faster than equatorial. There
is negligible anisotropy in the eastern hemisphere (< 0.5%), and rays which
travel in a polar direction are slower than equatorial rays. In the IMIC, the
equatorial and polar velocities are similar; the slowest direction is oriented
at ζ = 55◦, with a velocity decrease of almost 2% relative to the polar
velocity.

The anisotropy in the western zone (Figure 4.15a) appears most similar
to the anisotropy predicted for a single hcp crystal with symmetry axis
aligned N-S (Figure 4.15b), while anisotropy in the IMIC is more complex.
Polar raypaths passing through the IMIC are only slightly faster than the
equatorial raypaths; the largest travel time difference is instead between the
slowest direction (at ζ = 55◦) and the equatorial and polar directions. This
anomalous anisotropy could be caused by the dominance of the bcc or fcc
iron phases with a tilted fast symmetry axis. For example, If we align the
anisotropy symmetry axis with the fastest direction through a bcc or fcc
crystal (which is at ζ = 54◦, see Figure 4.16b-c) then we get the predicted
travel times shown in Figure 4.15c. The travel times for fcc and bcc (Figure
4.15c) bear a resemblance to the anisotropy we observe in the IMIC (Figure
4.15a). It is important to note, that this analysis is an approximation as we
are assuming that the anisotropy of a large volume made of many crystals
can be described by a single crystal with 100% alignment relative to Earth’s
axis of rotation. We are, however, making this comparison to encourage
further research into the possibility that seismic anisotropy within different
regions in the inner core could be explained by different phases of iron.

Anisotropic phases of iron, by themselves, do not account for the ob-
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Figure 4.16 This shows the P-wave velocity through a single crys-
tal as a function of propagation direction for a) hcp, b) bcc, and
c) fcc crystals. This is a polar plot where the Z-direction is at
the centre. The lines show a 90◦ arc from the fastest towards the
slowest velocities across a crystal, where we assume the fastest
direction is located at ζ = 0◦
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served pattern of inner core anisotropy. The crystals must be aligned in
a lattice preferred orientation (LPO) or alternatively in a shape preferred
orientation (SPO), as a texture of randomly oriented anisotropic crystals
would appear isotropic overall. Given a particular phase of iron, the ques-
tion arises how this LPO is generated, and which mechanism(s) result in
a heterogeneous distribution of this LPO. LPOs are commonly caused by
post-solidification deformation, for the inner core one possible deformation
mechanism would involve induced stresses causing axis symmetric flow, re-
sulting in iron crystals aligning with this flow. A number of mechanisms
have been proposed to create such texturing, including topographic relax-
ation (also known as equatorial growth, Yoshida et al. (1996)), whereby
preferential growth at the equator of the inner core causes flow toward the
poles due to geostatic forces. An alternative mechanism involves Maxwell
stress or Lorentz forces induced by the magnetic field, causing deformation
strongly influenced by outer core flow (Karato (1999); Buffett and Wenk
(2001)). It is likely that a combination of these mechanisms is required
to explain the observed seismic complexity. For example, models of to-
pographic relaxation typically produce symmetric flow around the equator
which would create seismic anisotropy at both poles. This is in contrast
to our observation that anisotropy in the inner core does not extend from
south pole to north pole. Given this new observation, it is important that
future geodynamical models assess whether topographic relaxation mecha-
nisms can produce asymmetric flow around the equator, resulting in stronger
anisotropy at the north pole than the south pole.

Hemispherical structures in the inner core are equally complicated to
account for, and must further be compatible with the processes to generate
anisotropy. Proposed hemispherical models are separated broadly based on
whether the density or thermal profile in the inner core is stable. If the inner
core has an unstable density or thermal profile, then convection becomes
probable (Lythgoe and Deuss, 2015). For specific conditions (large viscosity
and low thermal conductivity), this convection will be in the form of inner
core translation which can result in a hemispherical pattern (Alboussiere et
al. (2010); Deguen et al. (2018)). An anisotropic fabric will be able to form
if this translation is combined with a texturing mechanism such as topo-
graphical relaxation (Yoshida et al. (1996); Deguen et al. (2011)), deforma-
tion due to magnetic forces (Karato, 1999) or annealing during translation
(Bergman et al., 2010). For example, recent work by Frost et al. (2021) has
shown that translation in the inner core is able to produce a region in the
west with strong anisotropy. However, translation models require a high
inner core viscosity (> 1018 Pa s), which is not in agreement with current
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viscosity estimates of 1013−1017 (Koot and Dumberry, 2011; Ritterbex and
Tsuchiya, 2020).

Alternatively, variations in crystallization rate at the inner core bound-
ary could result in hemispherical differences being ‘frozen in’ as the inner
core grows (Aubert et al., 2008). In this case, heat flux at the ICB would
be influenced by flow in the outer core, the magnetic field, and potentially
thermal anomalies at the core mantle boundary (Karato, 1993). This mech-
anism of hemisphere formation implies that structures at increasing depth
within the inner core record older properties of ICB properties, outer core
flow, and magnetic field strength. This opens the potential to use seismol-
ogy to infer paleomagnetic properties, but it is also unclear if anomalies in
the outer core could last long enough to maintain a consistent pattern of
crystallisation in the inner core, and whether this pattern could truly be
preserved for substantial periods of time.

4.9 Conclusion

Our transdimensional MCMC model of inner core seismic velocity shows
that hemispherical structures and regional-scale variations in anisotropy
are required to explain inner core body wave data. The observed features
remain when removing anomalous data from earthquakes originating in the
South Sandwich Islands, and also when using data corrected for 3D mantle
structure. Our results reveal for the first time that the strong anisotropic
region in the west is primarily located in the northern hemisphere, with
implications for geodynamical models of inner core formation. This result
is guided only by the data itself without any prior structure imposed in the
parameterization, and is robust even when considering uncertainties in the
data and model space. We propose to call this an anisotropic zone (rather
than hemisphere) to better describe its shape. We also find robust evidence
for a innermost inner core, in which the slowest velocity is at an angle of
55◦±16. The IMIC is offset by 400 km from the centre of the inner core and
is contained mainly within the eastern hemisphere. Its distinct anisotropy
could indicate a different phase of iron (either bcc or fcc) than the rest of the
inner core (hcp), and potentially result from multiple stages of inner core
growth, while its offset is compatible with models of slow lateral translation.
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4.10 Supplementary material

Figure 4.17 Maps of the variations of δVeq, δVani, δViso, and ζslow
at the ICB (1217.5 km radius), 800 km radius, and 400 km radius
for our synthetic model, used to generate synthetic data
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Figure 4.18 Cross sections showing Veq, δVani, δViso, and ζslow
variations throughout our synthetic model. The cross section is a
vertical slice spanning all latitudes and traversing 90◦W to 90◦E.
The view of the reader is shown in the perspective panel.

Figure 4.19 Cross sections showing the δVeq, δVani, δViso, and
ζslow variations throughout our synthetic model. The cross section
is a horizontal slice through the equator with constant latitude.
The view of the reader is shown in the perspective panel.
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Figure 4.20 Maps of the mean and standard deviation of δVeq,
δVani, and δViso at the ICB (1217.5 km radius), 800 km radius,
and 400 km radius for a transdimensional model run on synthetic
data.
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Figure 4.21 Maps of the mean and standard deviation of ζslow
at the ICB, 800 km radius, and 400 km radius throughout for a
transdimensional model run on synthetic data.
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Figure 4.22 Cross sections showing the average and standard
deviations of the δVeq, δVani, δViso, and ζslow variation for a trans-
dimensional model run on synthetic data. The cross section is a
vertical slice spanning all latitudes and going from 90◦W to 90◦E.
The view of the reader is shown in the perspective panel.
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Figure 4.23 Cross sections showing the average and standard
deviations of the δVeq, δVani, δViso and ζslow variation for a trans-
dimensional model run on synthetic data. The cross section is a
horizontal slice through the equator with constant latitude. The
view of the reader is shown in the perspective panel.
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Figure 4.24 Maps of the mean and standard deviation of δVeq,
δVani, and δViso at the ICB, 800 km radius, and 400 km radius
throughout our model
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Figure 4.25 Maps of the mean and standard deviation of ζslow at
the ICB, 800 km radius, and 400 km radius throughout our model

Figure 4.26 Cross sections showing the average and standard
deviations ofδVeq, δVani, δViso, and ζslow variations throughout for
our model excluding SSI data. The cross section is a vertical slice
spanning all latitudes and going from 90◦W to 90◦E. The view of
the reader is shown in the perspective panel.
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Figure 4.27 Cross sections showing the average and standard
deviations of the a, b+ c, δViso, and ζslow variation for our model
excluding SSI data. The cross section is a horizontal slice through
the equator with constant latitude. The view of the reader is shown
in the perspective panel.
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Figure 4.28 Cross sections showing Veq, δVani, δViso, and ζslow
variations throughout our second synthetic model with an offset
IMIC. The cross section is a vertical slice spanning all latitudes
and traversing 90◦W to 90◦E. The view of the reader is shown in
the perspective panel.

Figure 4.29 Cross sections showing the δVeq, δVani, δViso, and
ζslow variations throughout our second synthetic model with an
offset IMIC. The cross section is a horizontal slice through the
equator with constant latitude. The view of the reader is shown
in the perspective panel.

92



4.10. Supplementary material

Figure 4.30 Cross sections showing the average and standard
deviations of the δVeq, δVani, δViso, and ζslow variation for a trans-
dimensional model run on synthetic data produced with the syn-
thetic model shown in Figures 4.28-4.29. The cross section is a
vertical slice spanning all latitudes and going from 90◦W to 90◦E.
The view of the reader is shown in the perspective panel.
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Figure 4.31 Cross sections showing the average and standard
deviations of the δVeq, δVani, δViso and ζslow variation for a trans-
dimensional model run on synthetic data produced with the syn-
thetic model shown in Figures 4.28-4.29. The cross section is a
horizontal slice through the equator with constant latitude. The
view of the reader is shown in the perspective panel.
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5
Measuring splitting functions
of inner core sensitive normal

modes

Splitting function measurements of inner core sensitive normal modes typi-
cally have anomalously large absolute values of the zonal parameters c20 and
c40. These large values imply that there is strong anisotropy in the inner
core with an approximately north-south direction, in general agreement with
body wave observations of inner core anisotropy. The most common way to
measure normal modes is using a splitting function methodology, which are
obtained in an iterative least squares inversion using normal mode spectra
as data. These splitting functions describe the lateral variation in frequency
from the centre frequency of a given normal mode. Unfortunately, it has
been found that the starting values of c20 and c40 in the splitting function
inversion has a significant affect on the final measurement. To overcome this
problem we conduct a grid search starting from thousands of combinations
of c20 and c40 values for a range of damping parameters for 18 inner core
sensitive self-coupled modes. From this grid search we robustly recover the
best fitting measurement and the range of values for c20 and c40 which fit
the data, allowing us to assess which modes are well determined from our
data, and also provide us with measurement uncertainty.
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5.1 Introduction

Corroborating the body wave studies, Woodhouse et al. (1986) first noticed
anomalous zonal splitting in inner core sensitive normal modes and con-
cluded that this could be explained by an anisotropic inner core. Normal
modes are whole Earth oscillations which are excited after a large earth-
quake. They are independent measurements from body waves, observed
only when looking at the frequency spectra of several days-long seismo-
grams. They have long wavelength sensitivity which gives them uniform
sampling within the deep Earth independent of event or station locations.
This makes normal mode data valuable as a independent source of infor-
mation from body waves on seismic parameters in the deep Earth. Normal
modes are often included in tomographic models through a two-step inver-
sion. In the first step we invert for splitting functions, where frequency
deviations from a reference centre frequency for a specific mode are mea-
sured. Splitting functions are a depth-average of a how a mode sees the
Earth. The splitting function technique was pioneered by Giardini et al.
(1987) and has been applied to both mantle and core sensitive modes. In
the second step, splitting functions are then inverted for 3D variations in
mantle and core structure.

When measuring normal modes that are sensitive to the inner core, their
splitting functions commonly have anomalously large absolute values of the
zonal c20 and c40 parameters, as was first extensively studied by Woodhouse
et al. (1986). This is significant as strong c20 and c40 parameters indicate
that there is inner core anisotropy which is primarily aligned in a north-
south direction, similar to observations of inner core anisotropy from body
waves. Woodhouse et al. (1986) originally measured 7 inner core sensitive
modes, but as the number of seismometers, recordings of large earthquakes
and computational power increased more inner core sensitive normal modes
were measured and with greater accuracy (Li et al. (1991); Widmer et al.
(1992); He and Tromp (1996); Resovsky and Ritzwoller (1998); Durek and
Romanowicz (1999); Deuss et al. (2013)).

Body waves suggest that the inner core is split broadly into two hemi-
spheres with an anisotropic western hemisphere and a isotropic eastern
hemisphere (Tanaka and Hamaguchi, 1997). Inner core sensitive modes are
usually only measured with the self coupled approximation. Self-coupled
modes are only sensitive to even-degree structure meaning they are not
independently sensitive to odd-degree structure such as hemispheres. Odd-
degree structure can only be observed using cross-coupled pairs of modes.
Deuss et al. (2010) made the first measurements of pairs of inner core sen-
sitive cross-coupled modes, using a splitting function approximation and
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from this they were able to make the first normal mode observations of
hemispherical structure in the inner core. Here we will ignore the cross-
coupled modes and focus only on self-coupled modes in order to keep the
problem simple and tractable in a grid search.

It is important to note that splitting functions are only a useful approx-
imation and that in principle a one step inversion should be used. Durek
and Romanowicz (1999) used a one-step direct spectra inversion to make
a model of inner core anisotropy. In a direct spectra inversion you solve
for structure in the Earth in a single step, without first measuring splitting
functions. This has advantages as you apply regularisation only once and
you fit all the modes simultaneously. However, it also comes at an increased
computational cost, it is not feasible to use with sampling methods, such as
Markov Chain Monte Carlo (MCMC) and it is more complex to combine
with body waves than using splitting functions. Jagt and Deuss (2021) have
been working on applying one-step inversions, but it only becomes feasible
for the inner core once mantle velocity, density and anisotropy has been
fully resolved.

Recently, Pachhai et al. (2020) used a nearest neighbour methodology
to measure elastic and anelastic splitting functions jointly for 19 spheroidal
inner core sensitive modes. They found that for modes which have strong
shear-wave energy in the inner core it is important to also measure the
anelastic part, such as was done by Mäkinen et al. (2014) for inner core
sensitive modes. Again, for simplicity we will focus on the elastic splitting
function only.

The main aim of this chapter is to deal with the problem that when
measuring splitting functions for inner core sensitive normal modes, the
final measurement strongly depends on the starting model used (Megnin
and Romanowicz (1995); Durek and Romanowicz (1999)). To overcome this
problem, we will perform a grid search over a large range of starting models
for 18 inner core sensitive modes using a splitting function approximation.
Through this grid search we are able to identify global and local misfit
minima and use this information to make estimates of the uncertainty on
our splitting function measurements.

5.2 Normal mode theory and method

Normal modes are whole Earth oscillations, or standing waves, which occur
after a large earthquake. they exist for discrete frequencies in the Earth
and can be split into two types: spheroidal modes and toroidal modes.
Spheroidal modes consist of P-SV motion and are comparable to Rayleigh

97



Chapter 5. Measuring inner core sensitive splitting functions

surface waves, while toroidal modes consist of SH motion and so are com-
parable to Love waves. In this study we will only use spheroidal modes,
nSl, which are specified by their overtone number n and angular order l.
The overtone number roughly describes the complexity of the radial pattern
while angular order is the number of nodal lines over the Earth’s surface.
Modes with n = 0 are called fundamental modes, while modes with n > 0
are overtones.

A mode with overtone number n and angular order l consists of 2l + 1
singlets. The singlets of one mode together form a multiplet. Singlets are
labeled by the azimuthal order m where −l < m < l. For a Spherical Non-
Rotating Elastic and Isotropic Earth model (SNREI) the singlet frequencies
of a mode are the same which is called degeneracy. However, deviations from
SNREI removes the degeneracy which results in the singlets of modes devi-
ating from each other. This is called splitting and can be caused by rotation,
ellipticity and 3D variations in velocity, density, anisotropy, attenuation and
boundary topography.

It is relatively simple to calculate the effect of rotation and ellipticity of
the Earth for a given mode and then the challenge is to relate the remaining
splitting to 3D Earth structure. Splitting can also be caused by the reso-
nance of two or more modes with each other, which is called cross-coupling
(Deuss et al., 2010), however in this thesis we will focus on inner core sensi-
tive self-coupled modes only. Within the self-coupling approximation modes
are assumed to be isolated in frequency.

5.2.1 Splitting functions

We measure normal mode splitting functions using the methodology of
Deuss et al. (2013). Splitting functions are a depth average of what a
particular mode observes in the Earth and describe the splitting of a mode.
It shows us where the frequency of a mode is locally higher or lower than
its centre frequency and in that way describes 3D heterogeneity as a depth
averaged perturbation from a reference model, for which we use PREM
(Dziewonski and Anderson, 1981).

A significant advantage of using splitting functions is that they are lin-
early dependent on heterogeneous structure in the Earth (including velocity
and density) and so can be efficiently incorporated into inversions with body
waves and ensure that computationally expensive Markov Chain Monte
Carlo (MCMC) methods are feasible.

Splitting function coefficients, cst, are defined for each mode with a given
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angular order l and overtone number n and can be computed thus;

cst =

∫ a

0
δmst(r)K(r)dr +

∑
d

δhstH
d
s (5.1)

where δmst and δhst are coefficients describing Earth’s heterogeneity (vp,
vs and ρ) and discontinuity topography in terms of spherical harmonics and
Ks(r), Hd

s are known kernels (Woodhouse, 1980). s and t are the angular
order and azimuthal order of the spherical harmonic used to describe the
structure in the Earth while a is the radius of the Earth. I only measure
self-coupled modes, in which s is an even integer and is maximum 2l.

The cst coefficients are defined following the conventions of Masters et
al. (2000) and Resovsky and Ritzwoller (1998). Re(c00) and Im(c00) define
the shift in centre frequency, fc, and radial quality factor Q relative to the
1-D reference model, PREM (Dziewonski and Anderson, 1981), using the
following relation:

fc = f0 + (4π)−
1
2Re(c00) (5.2)

Q =
fc

2( f0
2Q0

+ (4π)−
1
2 Im(c00))

(5.3)

where fc is the centre frequency in Hz and f0 and Q0 are the frequency and
quality factor of the reference model. We can represent splitting functions
on maps to show local deviations in the frequency of a mode using the
following relation:

F (θ, φ) =
2l∑
s=0

s∑
t=−s

cstY
t
s (θ, φ) (5.4)

where Y t
s (θ, φ) are the complex spherical harmonics (Edmonds, 1960), θ

and φ are the latitude and colongitude of the spherical coordinate system.

5.2.2 Synthetic seismograms

The principle behind a splitting function measurement is to start from a
1D reference model. We then calculate the change to the degenerate centre
frequency and how the mode singlets are split compared to the reference
model and investiate how much splitting is required to fit a dataset of spec-
tral segments. To calculate this fit we must be able to calculate synthetic
seismograms. We use a methodology similar to Li et al. (1991) and used
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extensively in previous research (Deuss and Woodhouse (2001); Deuss et al.
(2013); Talavera-Soza and Deuss (2020); Talavera-Soza and Deuss (2021)).

A synthetic seismogram, u(t), can be described as a harmonic function
of time t:

u(t) = Re[r · ei
√

Mt · s] (5.5)

where s is the source vector describing the moment tensor of the event, r
is the receiver vector and describes instrument orientation and response.
Both r and s are computed for PREM. M is the matrix which contains the
splitting coefficients and also contributions from ellipticity and rotation. In
a spherical non-rotating Earth model without aspherical heterogeneity, M
would be a diagonal matrix which only contains the degenerate multiplet
frequencies ω2

0

When incorporating rotation, ellipticity and aspherical heterogeneity,
then M is no longer diagonal. M is now a complex matrix containing the
degenerate multiplet frequencies, ω2

0 for PREM and the contributions of
rotation, ellipticity and Earth’s heterogeneity. When assuming self coupling
for a mode with angular order l, M is a square matrix with (2l+ 1)(2l+ 1)
rows and columns. We can write M involving splitting function coefficients
cst for a pair of modes k and k′ with degenerate frequencies ωk and ωk′ as
follows:

M(kk′)
m′m′ = ω2

0δ(kk′) + ω0Wkk′
mm′ +

l+l′∑
s=l−l′

s∑
t=−s

γmm
′t

ll′s cst(kk′) (5.6)

where ω0 = (ωk + ωk′)/2 and δkk′ = 0 if k 6= k′ and 1 if k = k′, In the self-
coupling approximation k = k′ however we have kept Equation 5.6 general
for completeness. The coefficients γmm′tll′s are given by:

γmm
′t

ll′s =

∫ 2π

0

∫ π

0
Y m∗
l (θ, φ)Y t

s (θ, φ)Y m′
l (θ, φ)sinθdθdφ (5.7)

where Y m
l are the fully normalised complex spherical harmonics. Equa-

tions for evaluating this integral using Wigner 3-j symbols can be found in
Woodhouse (1980) and Dahlen and Tromp (1998).

As we have to take its exponential when calculating synthetics (Equation
5.5) we first need to diagonalise M. Eigenvalue decomposition results in
MU = UΛ, where the matrix U contains the eigenvectors and λ is the
diagonal matrix of non-degenerate eigenvalues ω2. We can then rewrite
Equation 5.5 as:

u(t) = Re[(r ·U)ei
√

Λt(U−1 · s)] (5.8)
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5.2.3 Partial derivatives

The synthetic seismograms depend non-linearly on the splitting function
coefficients. We need to be able to calculate partial derivatives of the syn-
thetic seismogram u(t) with respect to the splitting function parameters cst.
The partial derivative is given by:

∂u(t)

∂cst
=Re[eiωt(r · ∂U

∂cst
)(U−1 · s) + (r ·U)(

∂U−1

∂cst
· s)

+ (r ·U)it
∂ω

∂cst
(U−1 · s)]

(5.9)

where the diagonal matrix ω =
√

Λ. A perturbation in δcst causes a re-
sulting perturbation in matrix M. Using Rayleigh’s principle we find the
resulting perturbations in δU and δΛ to the eigenvalues and eigenvectors
see Deuss et al. (2013) for details. This leads to the eigenvalue perturbation:

δω2
n = δΛ = u−1

n δMun (5.10)

where un is a column vector of U and u−1
n is a row vector of U−1. The

eigenvector perturbations are given by:

δun =
∑
l 6=n

=
u−1
l δMun
ω2
n − ω2

l

u−1
l (5.11)

δu−1
n =

∑
l 6=n

=
u−1
n δMul
ω2
n − ω2

l

u−1
l (5.12)

where ωn are the diagonal elements of ω. These eigenvector corrections are
then substituted in Equation 5.9 for ∂ω

∂cst
, ∂U
∂cst

and ∂U−1

∂cst
to compute the

derivatives.

5.2.4 Inversion method

With the ability to calculate the derivatives of a cst to a synthetic seismo-
gram, we are now able to invert for the cst values which best fit a dataset of
spectral segments. As a seismogram u(t) depends non-linearly on the split-
ting function coefficients cst, we need to measure the coefficients using an
iterated damped least squares inversion as outlined by Tarantola, Valette,
et al. (1982). The recursive formula for a cst measurement is then given by:
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ci+1 =ci + (AT
i C−1

d Ai + C−1
m )−1

× [AT
i C−1

d (d− u(ci))−C−1
m (ci − c0)]

(5.13)

where Ai is the matrix of partial derivatives calculated from Equation 5.9,
c0 is the starting model, ci is the model parameter vector containing the
splitting function coefficients at iteration i, d is the data vector containing
the observed normal mode spectra, u(ci) are the synthetic normal mode
spectra calculated using Equation 5.8. Cd and Cm are the a priori data
and model covariance matrices.

We assume that the data and model covariances Cd and Cm are the
same for all data or model parameters. In this case Equation 5.13 can be
rewritten so that it only depends on the ratio of Cd/Cm and we apply
damping by using one value of λ = Cd/Cm. The smaller the ratio λ, the
less damping applied.

5.3 Data

Normal mode splitting function measurements require seismograms which
are several days to weeks long records of large events (typically Mw > 7.4)
with a high signal to noise ratio, in order to make the distinct frequencies
of Earth’s normal modes visible in the frequency spectrum (Figure 5.1).
Events preceded or succeeded by another large event (within Mw = 1.5 of
the original event’s magnitude) by a week are excluded as this would distort
and contaminate the spectra. The data needs to be Fourier transformed into
the frequency domain, which requires processing of the time domain prior
to transformation.

First, glitches or delta pulses were removed manually from the time
domain of the seismograms along with the tidal signal. Secondly, the first
few hours after the origin time of an event are removed. This removal has
two desired affects; (i) to remove the influence of body waves which arrive
within the first hour of an event and add noise to the frequency domain
and (ii) to remove the signal of strongly attenuating mantle modes with
similar frequencies to the inner core modes we are interested in. For most
modes between 5-10 hours are excluded at the start, but in some specific
cases with the longest period modes up to 30 hours were removed (2S3 and
13S3). Finally prior to transformation, the time series is tapered and padded
with zeros to the next power of 2. After transformation into the frequency
domain, spectra are inspected by eye, with spectra with low signal to noise
ratios excluded from the final dataset.
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Figure 5.1 a) The observed spectra for an event with Mw = 8.2
which occurred on 19/8/2018 near Fiji at a depth of 555 km for
station CHF. b) The same spectrum, zoomed in on mode 13S3

showing the observed spectrum compared to the predicted spectra
for PREM (including rotation and ellipticity) and the same spec-
trum predicted for our measured splitting function of this mode.
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When picking segments for each mode we consider the Q-cycle of a
mode, which defines the time window of the Fourier transform (Dahlen,
1982). The Q-cycle is defined as the quality factor, Q, of a mode divided
by it’s frequency in Hz. It is the time taken for a wave to decay to e−π of
it’s original amplitude, and Dahlen (1982) suggested that 1.1 × Q-cycle is
the optimal time window to measure a given mode.

5.3.1 Event catalogue

We use an updated catalogue of events which combines the data used by
Deuss et al. (2013) (events up to 2010), with data (from 2010-2018) previ-
ously used and processed by Talavera-Soza and Deuss (2021) and Schneider
and Deuss (2021), and two new events from 2019 and 2021 were added
in this study. The events used are listed in Table 5.1. Table 5.2 shows
how many spectral segments we have per mode for the splitting function
measurement.

It can be seen that some modes have more segments than others, this
usually means that they generally have a high signal to noise ratio or that
they are better isolated from other modes. For this research we focus solely
on measuring inner core sensitive modes that are isolated from other modes,
meaning we will use the self-coupled splitting function approximation. In
reality, no mode is truly self coupled, all modes exchange some energy with
other modes. For some modes the amount of energy which is exchanged is
minimal and so it is valid to assume self-coupling. It is possible to measure
cross-coupled modes in pairs or small groups including the exchange of
energy across multiple modes, but this increases the computational cost
and complexity preventing the grid search methodology we apply here. The
same reason applies for measuring anelastic splitting functions as conducted
by Mäkinen et al. (2014) and Pachhai et al. (2020); we would have too many
parameters over which to perform a grid search (four instead of two).

When measuring splitting functions for each mode we set the maximum
angular order s of the splitting function. A mode with angular order l is
sensitive up to twice its angular order (so 3S2 with angular order l = 2
is sensitive to structure up to s = 4). However, we incorporate a limit
that there must be at least five times as many spectral data segments as
there are unknown cst model parameters in our measurement to prevent
over parameterization. This means that for the three modes 13S6, 15S4 and
21S6, we do not measure up to their maximum sensitivity, see table 5.2 for
a list of modes and their maximum s in the cst measurement.
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Table 5.1 All the events we used in our normal mode splitting
function measurements for inner core sensitive modes, as shown
by their origin time, location, depth, magnitude and number of
seismograms used during measurement. In bold are the two new
events, while the other events are taken from Talavera-Soza and
Deuss (2021), Schneider and Deuss (2021) and Deuss et al. (2013).

Event Time Location Depth (km) Mw Ns

29/07/2021 Alaska Peninsula 29.6 8.2 19
26/05/2019 Northern Peru 126.6 8.0 26
19/08/2018 Fiji Islands 555.0 8.2 29
08/09/2017 Chiapas, Mexico 50.2 8.2 14
29/07/2016 Mariana Islands 208.9 7.7 44
26/10/2015 Afghanistan 209.4 7.5 23
16/09/2015 Central Chile 17.4 8.3 32
30/05/2015 Bonin Islands Japan 680.7 7.9 36
24/05/2013 Sea of Okhotsk 611.0 8.3 79
31/08/2012 Philippine Island 45.2 7.6 1
14/08/2012 Sea of Okhotsk 598.2 7.7 16
11/03/2011 Tohoku, Japan 20.0 9.1 109
27/02/2010 Central Chile 23.2 8.8 84
05/07/2008 Sea of Okhotsk 610.8 7.7 64
12/05/2008 Sichuan, China 12.8 7.9 41
09/12/2007 South of Fiji Islands 149.9 7.8 44
14/11/2007 Northern Chile 37.6 7.7 3
28/09/2007 Volcano Islands 275.8 7.5 54
15/08/2007 Coast of Peru 33.8 8.0 34
08/08/2007 Java, Indonesia 304.8 7.5 49
01/04/2007 Solomon Islands 14.1 8.1 18
13/01/2007 Kuril Islands 12.0 8.1 54
15/11/2006 Kuril Islands 13.5 8.3 60
17/07/2006 South of Java 20.0 7.7 14
03/05/2006 Tonga Islands 67.8 8.0 43
20/04/2006 Eastern Siberia 12.0 7.6 9
27/01/2006 Banda Sea 397.4 7.6 73
08/10/2005 Pakistan 12.0 7.6 7
26/09/2005 Northern Peru 108.1 7.5 63
09/09/2005 New Ireland 83.6 7.6 59
28/03/2005 Northern Sumatra 25.8 8.6 86
26/12/2004 Northern Sumatra 28.6 9.0 77
23/12/2004 Macquarie Islands 27.5 8.1 49
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Event Time Location Depth (km) Mw Ns

17/11/2003 Rat Islands 21.7 7.7 1
25/09/2003 Hokkaido, Japan 28.2 8.3 28
04/08/2003 Scotia Sea 15.0 7.6 1
15/07/2003 Carlsberg Ridge 15.0 7.5 5
03/11/2002 Central Alaska 15.0 7.8 25
08/09/2002 Papua New Guinea 19.5 7.6 1
19/08/2002 South of Fiji 699.3 7.7 51
14/11/2001 Qinghai China 15.0 7.8 24
07/07/2001 Coast of Peru 25.0 7.6 1
23/06/2001 Coast of Peru 29.6 8.4 82
26/01/2001 India 19.8 7.6 7
13/01/2001 El Salvador 56.0 7.7 18
18/06/2000 South Indian Ocean 15.0 7.9 25
04/06/2000 Southern Sumatra 43.9 7.8 32
28/03/2000 Volcano Islands 99.7 7.6 55
20/09/1999 Taiwan 21.2 7.6 1
17/08/1999 Turkey 17.0 7.6 2
29/11/1998 Ceram Sea 16.4 7.7 9
25/03/1998 Balleny Islands 28.8 8.1 50
04/01/1998 Loyalty Islands 114.3 7.4 31
05/12/1997 Kamchatka 33.6 7.8 21
08/11/1997 Tibet 16.4 7.5 4
14/10/1997 South of Fiji Islands 165.9 7.7 42
12/11/1996 Coast of Peru 37.4 7.7 21
17/06/1996 Flores Sea 584.2 7.8 53
10/06/1996 Andreanof Islands 29.0 7.9 7
17/02/1996 West Irian 15.0 8.2 19
01/01/1996 Minahassa 15.0 7.9 2
03/12/1995 Kuril Islands 25.9 7.9 8
09/10/1995 Jalisco, Mexico 15.0 8.0 23
30/07/1995 Northern Chile 28.7 8.0 44
28/12/1994 Coast of Honshu 27.7 7.7 24
04/10/1994 Kuril Islands 68.2 8.3 45
09/06/1994 Northern Bolivia 647.1 8.2 56
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Event Time Location Depth (km) Mw Ns

02/06/1994 South of Java 15.0 7.8 1
09/03/1994 Fiji Islands 567.8 7.6 45
12/07/1993 Hokkaido, Japan 16.5 7.7 13
15/01/1993 Hokkaido, Japan 100.0 7.6 22
12/12/1992 Flores Island 20.4 7.7 8
11/10/1992 Vanuatu 141.1 7.4 30
02/09/1992 Nicaragua 15.0 7.6 4
22/12/1991 Kuril Islands 31.2 7.6 3
22/04/1991 Costa Rica 15.0 7.6 1
30/12/1990 New Britain, P.N.G. 204.8 7.4 10
16/07/1990 Luzon, Philippines 15.0 7.7 3
18/04/1990 Minahassa 33.2 7.6 3
03/03/1990 South of Fiji 25.3 7.6 4
23/05/1989 Macquarie Islands Region 15.0 8.0 14
06/03/1988 Gulf of Alaska 15.0 7.7 3
30/11/1987 Gulf of Alaska 15.0 7.8 7
20/10/1986 Kermadec Islands 50.4 7.7 5
07/05/1986 Andreanof Islands 31.3 7.9 2
03/03/1985 Central Chile 40.7 7.9 3
20/11/1984 Philippines 180.7 7.5 10
06/03/1984 Honshu Japan 446.0 7.4 3
24/11/1983 Banda Sea 157.1 7.4 9
04/10/1983 North Chile 38.7 7.6 2
26/05/1983 Honshu, Japan 12.6 7.7 6
18/03/1983 New Ireland 69.9 7.7 13
22/06/1982 Banda Sea 473.4 7.4 7
25/05/1981 South Island, N.Z. 33.3 7.6 1
17/07/1980 Sta. Cruz Islands 34.0 7.7 3
12/12/1979 Coast of Ecuador 19.7 8.1 4
06/12/1978 Kuril Islands 181.0 7.8 7
29/11/1978 Oaxaca, Mexico 16.1 7.7 1
19/08/1977 Sumbawa Island 23.3 8.3 4
22/06/1977 Tonga Islands 61.3 8.0 5
04/03/1977 Romania 83.6 7.5 1
30/11/1976 Chile-Bolivia 133.7 7.5 3
16/08/1976 Mindanao, Philippine Islands 33.0 8.0 1
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mode Smax Nev Ns PREM Misfit Deuss Misfit cst Misfit
2S3 6 69 558 1.22 0.36 0.36
3S2 4 34 385 1.62 0.13 0.16
9S3 6 67 522 1.38 0.40 0.36
9S4 8 64 470 1.17 0.45 0.41
11S4 8 59 772 2.00 0.29 0.39
11S5 10 69 963 1.78 0.28 0.34
13S1 2 35 521 2.94 0.31 0.28
13S2 4 37 759 1.87 0.16 0.17
13S3 6 41 455 1.87 0.34 0.35
13S6 8 43 313 2.00 0.39 0.63
15S3 6 58 554 1.81 0.35 0.51
15S4 6 32 152 1.29 0.52 0.65
18S3 6 43 390 2.99 0.45 0.49
18S4 8 49 678 1.65 0.27 0.30
20S1 2 19 147 1.00 0.34 0.33
21S6 10 39 357 3.28 0.35 0.38
25S2 4 39 392 1.34 0.50 0.50
27S2 4 28 362 1.52 0.32 0.28

Table 5.2 A table which shows for each mode the maximum har-
monic degree we measured to, the number of events we used for
the measurement, the number of spectral segments were incorpo-
rated, the misfit of PREM to the spectral segments (relative to
no mode modelled at all), the misfit of the cst measurement from
Deuss et al. (2013) and the misfit of our cst measurement. Misfit is
measured relative to the scenario where we didn’t model the spec-
trum of that mode at all, and averaged across all spectral segments
incorporated into that measurement.

108



5.4. Starting model grid searches

5.4 Starting model grid searches

Previous studies have shown that for inner core sensitive modes, the as-
sumed starting model (c0 in Equation 5.13) can significantly affect the final
measurement (Megnin and Romanowicz (1995); Durek and Romanowicz
(1999); Deuss et al. (2013)). The problem is that inner core anisotropy
causes large perturbations in the zonal parameters, c20 and c40 and the
non-linear iterative nature of splitting function measurements makes it dif-
ficult to reach values that are significantly different from the starting model.
The c20 and c40 parameters frequently have absolute values of 20 or greater,
while the other cst parameters typically have much smaller values (< 5µHz),
which means that if we start a splitting function measurement from PREM
(all cst = 0.0) it is likely that the the cst measurement will not reach the
global misfit minima. Here, we overcome this problem using a starting
model grid search: we start many splitting function measurements with dif-
ferent combinations of c20 and c40 as starting model for a range of damping
parameters and running each splitting function measurement for 10 itera-
tions. Then for each mode we analyse the misfit for the collection of final
models together.

Figure 5.2 shows an example of how c20 and c40 change in a splitting
function grid search in each iteration for the mode 18S4. For iteration 0,
the c20 and c40 pairs are the starting model values which are organised in a
grid from -30 to 30 with a step size of 1 in both c20 and c40 making a total
of 3600 starting model c20 and c40 pairs. As the iteration progresses each
individual measurement moves towards a nearby cst with lower misfit. By
iteration 10 the lowest misfit for mode 18S4 is for c20 = 20.2 and c40 = −0.2,
which started at: c20 = 11 and c40 = −6. In the final panel of Figure 5.2
we see the final misfit of each c20 and c40 splitting function measurement
after ten iterations plotted at that measurement’s starting location. This
panel clearly shows that only a subset of our measurement starting locations
(approximately between 10 < c20 < 30 and −10 < c40 < 15) results in a
measurement which comes close to the global misfit minima.

Performing an individual splitting function measurement is not compu-
tationally intensive, however doing thousands of measurements for multiple
damping parameters for 18 modes and up to degree s = 10 results in a
large computational problem. What we gain, however, is a more robust
measurement whereby we obtain inversion results for a large range of start-
ing c20 and c40 parameters so that we can clearly identify global and local
misfit minima and gain information on the uncertainty of our measured cst
parameters.

After completion of the grid searches we analyse each mode individually.
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Figure 5.2 c20 and c40 values and their corresponding misfit for
mode 18S4 where each point is the c20 and c40 combination from
a splitting function measurement for 10 iterations. The last panel
shows the final misfit at iteration 10 as a function of the c20 and
c40 starting values. The colour shows the misfit.
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The main considerations are what the most appropriate damping is for each
mode (we run each grid search for a range of damping parameters) and how
well defined each mode is in the context of the grid search. Are there
multiple measurements with a similar misfit but significantly different c20

and c40 values? Or is there a cluster of low misfit models around the same
final values of c20 and c40?

We will first outline the grid search analysis procedure using the mode
11S4 (Section 5.4.1) as an example and discuss an interesting well deter-
mined mode; 13S2 (Section 5.4.2). We will then look in detail at three
modes which were more complicated to measure: 13S6, 15S4 and 15S3 (Sec-
tions 5.4.3-5.4.4). Fortunately most of our grid searches resulted in an ob-
vious minimum misfit location and we compare all our measurements with
previous measurements and predictions from mantle and crustal models in
Section 5.5. The grid search results for any mode not discussed in detail
are shown in Figures 5.14-5.27 in the supplementary material at the end of
the chapter for all measured modes.

5.4.1 11S4

Mode 11S4 is a well defined mode with a clear misfit minimum. Figures
5.3-5.5 show the results of our grid searches for three different damping
parameters, including λ = 0.1, λ = 0.01 and λ = 0.001. The first step
when analysing the grid searches is to pick the optimal damping parameter
which minimises misfit and model size. The choice is usually made by
looking at L-curves (panels a-b, in Figures 5.3-5.5, which show for a given
starting model the minimum misfit and model size as a function of damping
parameter. Comparing the minimum misfit of the grid searches at λ = 0.1,
λ = 0.01 it can be seen that λ = 0.01 results in the lowest misfit and
smallest model size. Furthermore, the final c20 and c40 measurement of
these two damping parameters are similar, suggesting that c20 and c40 are
well constrained regardless of damping.

It is clear from Figure 5.5 that applying damping of λ = 0.001 results
in an unstable inversion with none of the starting models achieving a misfit
as low as the misfit minima of λ = 0.1 or λ = 0.01. In a linear inversion
this would not occur as a smaller damping parameter would always result
in a lower misfit until some misfit minimum was reached (restricted by the
noise in the data and number of free parameters). However, spectra depend
non-linearly on the splitting function, resulting in a non-linear inversion
where there can be multiple local and global misfit minima. To navigate
this complex misfit topography we calculate the gradient of the model to
the data and iteratively move down the gradient towards a lower misfit
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Figure 5.3 Grid search for mode 11S4 with a damping of λ = 0.1.
a-b) The variation of misfit and model size with damping for
the same starting model which results in the minimum misfit for
λ = 0.1. The red line on a) is the starting model misfit. c) final
misfit as a function of the starting c20 and c40 values of each mea-
surement, d) final misfit as a function of the c20 and c40 values of
each measurement at the final iteration. The colour of each mea-
surement displays the misfit, the red cross shows the measurement
with the minimum misfit. Measurements are shown in grey when
the singlets move outside of the frequency bounds of the spectral
data.
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Figure 5.4 Grid search for mode 11S4 with a damping of λ =
0.01. a-b) The variation of misfit and model size with damping
for the same starting model which results in the minimum misfit
for λ = 0.01. The red line on a) is the starting model misfit.
c) final misfit as a function of the starting c20 and c40 values of
each measurement, d) final misfit as a function of the c20 and
c40 values of each measurement at the final iteration. The colour
of each measurement displays the misfit, the red cross shows the
measurement with the minimum misfit. Measurements are shown
in grey when the singlets move outside of the frequency bounds of
the spectral data.

113



Chapter 5. Measuring inner core sensitive splitting functions

Figure 5.5 Grid search for mode 11S4 with a damping of λ =
0.001. a-b) The variation of misfit and model size with damping
for the same starting model which results in the minimum misfit
for λ = 0.001. The red line on a) is the starting model misfit.
c) final misfit as a function of the starting c20 and c40 values of
each measurement, d) final misfit as a function of the c20 and
c40 values of each measurement at the final iteration. The colour
of each measurement displays the misfit, the red cross shows the
measurement with the minimum misfit. Measurements are shown
in grey when the singlets move outside of the frequency bounds of
the spectral data.
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(Equation 5.13). Being non-linear means that this gradient can change
with each iteration. If the damping parameter is too small then this results
in ‘steps’ which are too large, such that the cst measurement ‘overshoots’
local and global misfit minima and results in an unstable inversion. For a
single starting model this may even lead to a final measurement with greater
misfit than the first iteration.

From our analysis above we choose a damping of λ = 0.01 for 11S4;
for this damping the lowest misfit measurements are all clustered around
c20 = 17.42 ± 0.83 and c40 = 2.98 ± 1.05. Figure 5.4c) shows the range of
starting models which approximately end up at this measurement and with
similar small misfit.

We estimate the range of valid c20 and c40 values by assuming any mea-
surement within 0.01 misfit difference from the lowest misfit measurement
to be an equally valid result. When modelling inner core anisotropy with
our normal mode measurements (Chapters 6-7) we will use the c20 and c40

values from our minimum misfit measurement as the centre of a Gaussian
distribution and treat the range of values as the standard deviation of this
Gaussian distribution. This uncertainty definition describes the measure-
ment quite well for many of our grid searches (such as 11S4) where there
is a single obvious misfit minimum location. However for some of our grid
searches this definition is less valid, such as 13S6 and 15S4 (see Section 5.4.3
for a more detailed discussion), where multiple distinct misfit minima exist.
In future work we would like to better capture all the information these grid
searches provide (going beyond simple Gaussian models of c20 and c40) but
for now we will use this simplification when estimating the uncertainty.

We repeat these steps for each mode and in the supplementary material
show the grid search results for each mode not discussed in depth for their
optimal damping parameter (Figures 5.14-5.27).

5.4.2 13S2

Mode 13S2 is a inner core sensitive mode which was discussed at length in
Durek and Romanowicz (1999), because it was a good example of a mode
with multiple global misfit minima at the time. Durek and Romanowicz
(1999) were more limited in computational resources than our current study
and only measured 13S2 starting from six different combinations of mantle
and inner core models. That inversion resulted in six cst measurements (at
different damping parameters) and from these six starting models Durek
and Romanowicz (1999) identified that 13S2 had two different misfit minima
and so two different cst measurements. They then proceeded to rule out one
model through inspection of the spectra themselves and found that one of
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Figure 5.6 Grid search for mode 13S2 with a damping of λ = 0.1.
a-b) The variation of misfit and model size with damping for
the same starting model which results in the minimum misfit for
λ = 0.1. The red line on a) is the starting model misfit. c) final
misfit as a function of the starting c20 and c40 values of each mea-
surement, d) final misfit as a function of the c20 and c40 values of
each measurement at the final iteration. The colour of each mea-
surement displays the misfit, the red cross shows the measurement
with the minimum misfit. Measurements are shown in grey when
the singlets move outside of the frequency bounds of the spectral
data.
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the two better explained spectra for stations at high latitudes. Durek and
Romanowicz (1999) only state their preferred measurement and they do not
explicitly give the cst values of their alternative measurement.

In our study, we are less restricted in computational resources and so
are able to measure 13S2 (and the other modes) not from 6 but many 1000’s
of starting models. Furthermore, we now have much more data due to in-
creased global seismometer coverage and a larger catalogue of events than
Durek and Romanowicz (1999), resulting in 759 spectral segments compared
to their original 104. Inspection of Figure 5.6 shows that with our method-
ology and our increased data set, 13S2 is now a well defined mode with one
clear global misfit minimum instead of two minima. Interestingly, our mea-
surement is close to the preferred measurement of Durek and Romanowicz
(1999) confirming their previous analysis. The advantage of our method is
that we can also use the grid search to estimate the noise in the splitting
function measurements, and further rule out any other misfit minima.

5.4.3 13S6 & 15S4

While most of our grid searches resulted in well defined misfit minima, 13S6

and 15S4 resulted in broad regions of low misfit (Figures 5.7-5.8). This
means that for each mode the c20 and c40 values are poorly constrained by
the data.

We believe this is due to not having enough data to fully constrain
the splitting function measurement. Inspection of Table 5.2 reveals that
13S6 and 15S4 have the 2nd and 3rd least number of segments (313 and
152 respectively) of our dataset. The mode which has the least number
of segments is 20S1 which is well defined, however 20S1 has a much lower
spherical order l and therefore has fewer cst values to constrain (i.e. there
are more segments per free parameters for 20S1 than either 13S6 or 15S4).
We have decided to still incorporate 13S6 and 15S4 data into our inversions
(Chapters 6-7) but always taking into account their significant uncertainty.

5.4.4 15S3

For 15S3 we adjusted the measurement procedure. Previous measurements
and predicted values from S20RTS show that 15S3 has large real c22 and c42

values. Initially when measuring 15S3 we found that we couldn’t fit c20, c40,
c22 and c42 with the same damping. Either we had to damp too much to fit
c20 and c40 or damp too little to fit c22 and c42. To overcome this problem,
we set every cst except c20, c40 in our starting models to the predicted values
from S20RTS (Ritsema et al., 1999) plus the predicted values from CRUST
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Figure 5.7 Grid search for mode 13S6 with a damping of λ = 0.01.
The variation of misfit and model size with damping for the same
starting model which results in the minimum misfit for λ = 0.01.
The red line on a) is the starting model misfit. c) final misfit as
a function of the starting c20 and c40 values of each measurement,
d) final misfit as a function of the c20 and c40 values of each mea-
surement at the final iteration. The colour of each measurement
displays the misfit, the red cross shows the measurement with the
minimum misfit. Measurements are shown in grey when the sin-
glets move outside of the frequency bounds of the spectral data.
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Figure 5.8 Grid search for mode 15S4 with a damping of λ =
0.001. a-b) The variation of misfit and model size with damping
for the same starting model which results in the minimum misfit
for λ = 0.001. The red line on a) is the starting model misfit.
c) final misfit as a function of the starting c20 and c40 values of
each measurement, d) final misfit as a function of the c20 and
c40 values of each measurement at the final iteration. The colour
of each measurement displays the misfit, the red cross shows the
measurement with the minimum misfit. Measurements are shown
in grey when the singlets move outside of the frequency bounds of
the spectral data.
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Chapter 5. Measuring inner core sensitive splitting functions

5.1 Mooney et al. (1998). The c20 and c40 values varied normally like the
other grid searches. In this way the c22 and c42 values were already close
to their required values, as they are strongly influenced by the mantle and
crust, aiding the measurement stability.

120



5.4.
Starting

m
odelgrid

searches

Mode c20 c40
PREM

fc

cst
fc

PREM
Q

cst
Q

2S3 8.15 ± 0.17 0.14 ± 0.29 1242.19 1242.82 ± 0.01 415.46 435.06 ±18.36
3S2 16.3 ± 11.3 1.3 ± 14.95 1106.21 1106.36 ± 2.44 366.57 323.28 ±19.2
9S3 2.18 ± 3.28 -7.32 ± 2.86 3554.98 3555.42 ± 0.42 777.6 748.72 ±52.55
9S4 8.17 ± 5.97 -11.33 ± 5.03 3877.95 3877.37 ± 1.02 515.46 511.8 ±36.27
11S4 17.42 ± 0.83 2.98 ± 1.05 4766.86 4765.76 ± 0.06 701.75 641.35 ±33.2
11S5 8.52 ± 0.95 -0.37 ± 1.09 5074.41 5072.48 ± 0.08 665.34 608.78 ±18.58
13S1 24.29 ± 1.6 - 4495.73 4494.59 ± 0.14 735.29 674.11 ±2.35
13S2 18.72 ± 1.06 12.34 ± 1.36 4845.26 4844.5 ± 0.02 878.74 904.84 ±20.78
13S3 16.7 ± 0.67 3.61 ± 0.82 5193.82 5193.68 ± 0.08 908.26 914.19 ±17.36
13S6 14.96 ± 12.27 -0.47 ± 11.95 6161.19 6157.77 ± 0.91 648.93 555.68 ±14.19
15S3 25.86 ± 1.85 20.26 ± 2.11 6035.22 6032.05 ± 0.12 805.8 703.01 ±11.15
15S4 25.58 ± 28.81 9.52 ± 14.37 6332.35 6325.39 ± 1.79 398.88 363.76 ±60.08
18S3 33.73 ± 0.0 19.73 ± 0.0 6891.93 6889.4 ± 0.0 851.79 735.2 ±0.0
18S4 20.18 ± 0.17 -0.2 ± 0.08 7241.0 7238.68 ± 0.02 943.4 971.59 ±10.36
20S1 23.37 ± 4.62 - 6954.04 6954.24 ± 0.47 876.42 778.76 ±5.68
21S6 23.95 ± 1.58 -5.95 ± 2.29 8850.77 8848.28 ± 0.12 740.19 575.97 ±54.54
25S2 19.87 ± 2.27 -7.66 ± 3.2 9022.91 9025.07 ± 0.15 788.02 749.76 ±8.77
27S2 27.42 ± 10.23 4.14 ± 13.42 9865.33 9871.8 ± 1.32 789.89 788.49 ±11.31

Table 5.3 Our measured values of c20 and c40 for each of the self-coupled inner core modes along with
their uncertainty estimate, the centre frequency and attenuation for each mode predicted by PREM and our
measured centre frequency and attenuation
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Chapter 5. Measuring inner core sensitive splitting functions

5.5 Discussion

Our splitting function measurements are broadly in agreement with previous
studies (Figure 5.9) and have a consistent pattern where all modes exhibit
a positive c20 while c40 can be either positive or negative. Most of our
measurements of c20 and c40 are significantly different from predictions of
the mantle and crust, for tomographic model S20RTS (Ritsema et al., 1999)
and crustal model CRUST 5.1 (Mooney et al., 1998). This difference implies
that our anomalous measurements of c20 and c40 are unlikely to be due to
mantle or crustal structure.

Table 5.3 shows for each mode the best fitting c20 and c40 values, the
uncertainties in these values, the predicted centre frequency and attenuation
factor from PREM and our measured centre frequency and attenuation
values. Our measured deviation in centre frequency and attenuation from
PREM is shown in Figure 5.10 and it can be seen that our change in centre
frequency relative to PREM is in very close agreement with Deuss et al.
(2013) and in reasonable agreement with the corresponding measurements
from Durek and Romanowicz (1999), He and Tromp (1996) and Resovsky
and Ritzwoller (1998).

Our measured attenuation relative to PREM is more variable, with most
modes requiring greater attenuation than PREM. This is in agreement with
previous body wave and normal mode studies (Mäkinen et al. (2014); Pejić
et al. (2019); Pachhai et al. (2020)) which conclude that the inner core has
significant attenuation. Our estimates of δQ are mostly in good agreement
with Deuss et al. (2013) but differ from the estimates of Durek and Ro-
manowicz (1999) and He and Tromp (1996) for the higher frequency modes
(13S3 and beyond). This can be attributed to the fact that we have incor-
porated significantly more spectral segments than Durek and Romanowicz
(1999) and He and Tromp (1996) and that attenuation is a more difficult
parameter to constrain than centre frequency, with greater uncertainty.

Modes 9S3, 9S4, 21S6 and 25S2 all stand out because they have a pos-
itive c20 and a negative c40. With the exception of 21S6 we see that our
measurements of the zonal parameters of these modes is in good agreement
with previous studies. Taking into account the uncertainties from the grid
searches the negative c40 values seem robust. In Chapters 6-7 we see how
the negative c40 parameters in these modes are well described by a positive
S-wave anisotropy anomaly at the top of the inner core. This explanation
can also be seen intuitively from inspection of the sensitivity kernels of these
modes (Figure 6.2-6.3), where a positive S-wave anisotropy anomaly at the
top of the inner core would result in positive c20 and negative c40.

Comparing maps of our splitting function measurements with the same
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Figure 5.9 Our final dataset of c20 and c40 coefficients along with
predicted values from S20RTS (Ritsema et al., 1999) and Crust 5.1
(Mooney et al., 1998) and previous measurements by Deuss et al.
(2013), Durek and Romanowicz (1999), He and Tromp (1996) and
Resovsky and Ritzwoller (1998)
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Figure 5.10 Our measured values of centre frequency and at-
tenuation factor, Q, relative to our reference model PREM, and
the equivalent measurements from Deuss et al. (2013), Durek and
Romanowicz (1999), He and Tromp (1996) and Resovsky and Ritz-
woller (1998).
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splitting functions measured by Deuss et al., 2013 and the predicted cst
maps from S20RTS and CRUST 5.1 (Figures 5.11-5.13) we see that for
many modes our splitting function maps are similar to that of Deuss et
al. (2013), which is not surprising because we have overlapping datasets.
Most of our measurements show structures different in shape or magnitude
from mantle and crustal predictions. Indeed, we see the typical anomalous
‘zonal splitting’ with strong positive anomalies near the poles and negative
anomalies along the equator.

Our measured zonal values for 15S3 and 18S3 are significantly different
from previous studies (Figure 5.9). We have increased the number of spectra
for 15S3 from 426 spectral segments in Deuss et al. (2013) to 554 and for
18S3 from 285 to 390 through the inclusion of new events since Deuss et al.
(2013) which we believe is the cause of this difference.

5.6 Conclusion

In this chapter we present new measurements of splitting functions for 18
inner core sensitive normal modes using an updated data set of normal mode
spectra combining events and stations from Deuss et al. (2013), Talavera-
Soza and Deuss (2021) and Schneider and Deuss (2021) and two previously
unused events. It has been observed previously that the starting model
(specifically the c20 and c40 values) of an inner core sensitive splitting func-
tion measurement has a significant effect on the final measurement. We
conduct a systematic grid search over a large range of c20 and c40 starting
models in our splitting function measurement, to resolve this starting model
dependence. From our grid searches we are able to map out and identify
local and global misfit minima and use it to determine the best fitting c20

and c40 values for each mode and their respective uncertainties.
We find a consistent pattern in the zonal parameters c20 and c40 in our

measured splitting functions, where all the c20 values are positive while only
some of the c40 are negative. When comparing our measurements to predic-
tions from mantle and crustal models we find that the c20 and c40 values of
our measured modes cannot be explained by mantle and crustal structure,
and conclude that these anomalous measurements are due to inner core
anisotropy. Our measurements are broadly consistent with previous studies
but with higher uncertainties for some modes, including 15S4 and 3S2. We
believe that our approach of performing a grid search over the starting val-
ues for c20 and c40 is essential to better constrain the measurement of inner
core sensitive modes and to obtain realistic uncertainties.
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Chapter 5. Measuring inner core sensitive splitting functions

Figure 5.11 Maps of our measured splitting functions compared
to the measurement by Deuss et al. (2013) and the predicted cst
from S20RTS (Ritsema et al., 1999) and CRUST 5.1 (Mooney et
al., 1998), alongside the degree s = 0 sensitivity kernels where the
solid black line is vp, the solid red line is vs and the black dotted
line is ρ.
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Figure 5.12 Maps of our measured splitting functions compared
to the measurement by Deuss et al. (2013) and the predicted cst
from S20RTS (Ritsema et al., 1999) and CRUST 5.1 (Mooney et
al., 1998), alongside the degree s = 0 sensitivity kernels where the
solid black line is vp, the solid red line is vs and the black dotted
line is ρ.
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Figure 5.13 Maps of our measured splitting functions compared
to the measurement by Deuss et al. (2013) and the predicted cst
from S20RTS (Ritsema et al., 1999) and CRUST 5.1 (Mooney et
al., 1998), alongside the degree s = 0 sensitivity kernels where the
solid black line is vp, the solid red line is vs and the black dotted
line is ρ.
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5.7 Supplementary material

Figure 5.14 Grid search for mode 2S3 at a damping of λ = 0.01.
a-b) The variation of misfit and model size with damping for
the same starting model which results in the minimum misfit for
λ = 0.01. The red line on a) is the starting model misfit. c) final
misfit as a function of the starting c20 and c40 values of each mea-
surement, d) final misfit as a function of the c20 and c40 values of
each measurement at the final iteration. The colour of each mea-
surement displays the misfit, the red cross shows the measurement
with the minimum misfit. Measurements are shown in grey when
the singlets move outside of the frequency bounds of the spectral
data.
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Figure 5.15 Grid search for mode 3S2 at a damping of λ = 0.01.
a-b) The variation of misfit and model size with damping for
the same starting model which results in the minimum misfit for
λ = 0.01. The red line on a) is the starting model misfit. c) final
misfit as a function of the starting c20 and c40 values of each mea-
surement, d) final misfit as a function of the c20 and c40 values of
each measurement at the final iteration. The colour of each mea-
surement displays the misfit, the red cross shows the measurement
with the minimum misfit. Measurements are shown in grey when
the singlets move outside of the frequency bounds of the spectral
data.
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Figure 5.16 Grid search for mode 9S3 at a damping of λ = 0.1.
a-b) The variation of misfit and model size with damping for
the same starting model which results in the minimum misfit for
λ = 0.1. The red line on a) is the starting model misfit. c) final
misfit as a function of the starting c20 and c40 values of each mea-
surement, d) final misfit as a function of the c20 and c40 values of
each measurement at the final iteration. The colour of each mea-
surement displays the misfit, the red cross shows the measurement
with the minimum misfit. Measurements are shown in grey when
the singlets move outside of the frequency bounds of the spectral
data.
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Figure 5.17 Grid search for mode 9S4 at a damping of λ = 0.001.
a-b) The variation of misfit and model size with damping for
the same starting model which results in the minimum misfit for
λ = 0.001. The red line on a) is the starting model misfit. c) final
misfit as a function of the starting c20 and c40 values of each mea-
surement, d) final misfit as a function of the c20 and c40 values of
each measurement at the final iteration. The colour of each mea-
surement displays the misfit, the red cross shows the measurement
with the minimum misfit. Measurements are shown in grey when
the singlets move outside of the frequency bounds of the spectral
data.
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Figure 5.18 Grid search for mode 11S5 at a damping of λ =
0.01. a-b) The variation of misfit and model size with damping
for the same starting model which results in the minimum misfit
for λ = 0.01. The red line on a) is the starting model misfit.
c) final misfit as a function of the starting c20 and c40 values of
each measurement, d) final misfit as a function of the c20 and
c40 values of each measurement at the final iteration. The colour
of each measurement displays the misfit, the red cross shows the
measurement with the minimum misfit. Measurements are shown
in grey when the singlets move outside of the frequency bounds of
the spectral data.
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Figure 5.19 Grid search for mode 13S1 at a damping of λ = 0.1.
a-b) The variation of misfit and model size with damping for
the same starting model which results in the minimum misfit for
λ = 0.1. The red line on a) is the starting model misfit. c) final
misfit as a function of the starting c20 and c40 values of each mea-
surement, d) final misfit as a function of the c20 and c40 values of
each measurement at the final iteration. The colour of each mea-
surement displays the misfit, the red cross shows the measurement
with the minimum misfit. Measurements are shown in grey when
the singlets move outside of the frequency bounds of the spectral
data.
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Figure 5.20 Grid search for mode 13S3 at a damping of λ = 0.1.
a-b) shows The variation of misfit and model size with damping for
the same starting model which results in the minimum misfit for
λ = 0.1. The red line is the starting model misfit and model size.
c) is the starting c20 and c40 values of each measurement while
d) Shows the c20 and c40 values of each measurement at the final
iteration. The colour of each measurement in c) and d) displays
the misfit. The red cross shows the measurement which results
in the minimum misfit and measurements in grey occur when the
singlets move outside of the frequency bounds.
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Figure 5.21 Grid search for mode 15S3 at a damping of λ = 0.1.
a-b) The variation of misfit and model size with damping for
the same starting model which results in the minimum misfit for
λ = 0.1. The red line on a) is the starting model misfit. c) final
misfit as a function of the starting c20 and c40 values of each mea-
surement, d) final misfit as a function of the c20 and c40 values of
each measurement at the final iteration. The colour of each mea-
surement displays the misfit, the red cross shows the measurement
with the minimum misfit. Measurements are shown in grey when
the singlets move outside of the frequency bounds of the spectral
data.
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Figure 5.22 Grid search for mode 18S3 at a damping of λ =
0.01. a-b) The variation of misfit and model size with damping
for the same starting model which results in the minimum misfit
for λ = 0.01. The red line on a) is the starting model misfit.
c) final misfit as a function of the starting c20 and c40 values of
each measurement, d) final misfit as a function of the c20 and
c40 values of each measurement at the final iteration. The colour
of each measurement displays the misfit, the red cross shows the
measurement with the minimum misfit. Measurements are shown
in grey when the singlets move outside of the frequency bounds of
the spectral data.
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Figure 5.23 Grid search for mode 18S4 at a damping of λ =
0.01. a-b) The variation of misfit and model size with damping
for the same starting model which results in the minimum misfit
for λ = 0.01. The red line on a) is the starting model misfit.
c) final misfit as a function of the starting c20 and c40 values of
each measurement, d) final misfit as a function of the c20 and
c40 values of each measurement at the final iteration. The colour
of each measurement displays the misfit, the red cross shows the
measurement with the minimum misfit. Measurements are shown
in grey when the singlets move outside of the frequency bounds of
the spectral data.
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Figure 5.24 Grid search for mode 20S1 at a damping of λ =
0.01. a-b) The variation of misfit and model size with damping
for the same starting model which results in the minimum misfit
for λ = 0.01. The red line on a) is the starting model misfit.
c) final misfit as a function of the starting c20 and c40 values of
each measurement, d) final misfit as a function of the c20 and
c40 values of each measurement at the final iteration. The colour
of each measurement displays the misfit, the red cross shows the
measurement with the minimum misfit. Measurements are shown
in grey when the singlets move outside of the frequency bounds of
the spectral data.
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Figure 5.25 Grid search for mode 21S6 at a damping of λ =
0.001. a-b) The variation of misfit and model size with damping
for the same starting model which results in the minimum misfit
for λ = 0.001. The red line on a) is the starting model misfit.
c) final misfit as a function of the starting c20 and c40 values of
each measurement, d) final misfit as a function of the c20 and
c40 values of each measurement at the final iteration. The colour
of each measurement displays the misfit, the red cross shows the
measurement with the minimum misfit. Measurements are shown
in grey when the singlets move outside of the frequency bounds of
the spectral data.
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Figure 5.26 Grid search for mode 25S2 at a damping of λ =
0.01. a-b) The variation of misfit and model size with damping
for the same starting model which results in the minimum misfit
for λ = 0.01. The red line on a) is the starting model misfit.
c) final misfit as a function of the starting c20 and c40 values of
each measurement, d) final misfit as a function of the c20 and
c40 values of each measurement at the final iteration. The colour
of each measurement displays the misfit, the red cross shows the
measurement with the minimum misfit. Measurements are shown
in grey when the singlets move outside of the frequency bounds of
the spectral data.
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Figure 5.27 Grid search for mode 27S2 at a damping of λ =
0.01. a-b) The variation of misfit and model size with damping
for the same starting model which results in the minimum misfit
for λ = 0.01. The red line on a) is the starting model misfit.
c) final misfit as a function of the starting c20 and c40 values of
each measurement, d) final misfit as a function of the c20 and
c40 values of each measurement at the final iteration. The colour
of each measurement displays the misfit, the red cross shows the
measurement with the minimum misfit. Measurements are shown
in grey when the singlets move outside of the frequency bounds of
the spectral data.
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6
1D Transdimensional seismic
tomography of the inner core

using normal modes
(preliminary)

Inner core sensitive normal modes provide important constraints on inner
core anisotropy. Here we use our new splitting function measurements to
conduct a 1D transdimensional inversion of inner core anisotropy. Instead of
Voronoi cells, which are particularly useful for body waves, we use polyno-
mials as basis functions to parameterize inner core anisotropy as a function
of depth. Our transdimensional 1D normal mode model finds 2.9% P-wave
anisotropy in the middle of the inner core and 1.0% S-wave anisotropy at
the Inner Core Boundary (ICB). We also see tentative evidence for an inner-
most Inner Core (IMIC). However, this result has to be considered alongside
the relatively low sensitivity of the normal modes to the deepest 400 km of
the inner core and also the corresponding large uncertainty for that depth
range in our model. Comparing our normal mode model (this chapter) to
the 1D average of our 3D body wave model (Chapter 4), we find that they
agree on the magnitude of compressional anisotropy in the inner core.
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Chapter 6. 1D seismic tomography of the inner core using normal modes

6.1 Introduction

Inner core anisotropy was first measured using 7 normal mode splitting
functions by Woodhouse et al. (1986); they found 3.35% P-wave anisotropy
and 0.35% S-wave anisotropy on average through the inner core (Table 6.1
and Figure 6.1). Tromp (1993) extended the data to 18 splitting function
measurements and allowed for depth variations. His model has 2.1% P-
wave anisotropy decreasing from the ICB to the centre and 0.63% S-wave
anisotropy on average in the inner core, peaking at 900 km radius (Figure
6.1).

Durek and Romanowicz (1999) represents a big step forward in normal
mode models of inner core anisotropy, utilising more modes than either
Woodhouse et al. (1986) or Tromp (1993) (25 in total). Furthermore, they
conducted a direct spectra inversion, avoiding errors associated with the
starting model when measuring inner core sensitive splitting functions (as
discussed in Chapter 5). They also tested different model parameterizations
that go beyond the 1D case, focusing on models with a central cylinder in
the inner core representing strong anisotropy. Their models of inner core
anisotropy have on average 2.5% P-wave anisotropy and 0.4% S-wave ani-
sotropy. Interestingly, their P-wave anisotropy is 2% at the ICB decreasing
at ∼1000 km radius, before increasing again. This feature is not observed
by other inner core models (Figure 6.1), but appears at depths similar to
the innermost inner core (IMIC).

The IMIC was first proposed by Ishii and Dziewoński (2003) as a region
at the centre of the inner core with distinct anisotropy; primarily that the
direction of the slowest velocity is not perpendicular to the symmetry axis.
We have discussed the IMIC in detail in Chapter 4 (Section 4.7.3), but it is
still an open question whether this anomalous anisotropy can be observed
with normal modes. To investigate the inner most inner core we look at
the ζslow angle, which is the angle of the slowest direction of inner core
anisotropy relative to Earth’s axis of rotation. The prediction for ζslow
from previous models is shown on Figure 6.1d).

Beghein and Trampert (2003) used the neighbourhood algorithm (Sam-
bridge, 1999) to search for the best fitting model using splitting functions.
This model space search resulted in a model with 2.9% P-wave anisotropy
and 0.85% S-wave anisotropy on average throughout the inner core but
with significant radial variation. Through the neighbourhood algorithm
they were able to provide uncertainty estimates on these model parameters.
They propose that anomalies at the centre of their model can be explained
by increasingly tilted hcp iron in the inner core, but found that a different
phase of iron would be necessary at the centre of the inner core to explain
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Table 6.1 Radial averages of α, β and γ (in %) for previous inner
core models which used normal modes as data. 1models which do
not vary radially. 2parameterized as a+ br2. ∗also included body
wave data in a joint inversion.

Author(s) α β γ

Woodhouse et al. (1986)1 6.70 0.70 2.70
Woodhouse et al. (1986)2 6.24 1.14 1.98

Tromp (1993) 4.21 1.27 2.33
Durek and Romanowicz (1999) 5.00 0.80 0.50

Ishii et al. (2002a)∗ 3.49 0.99 0.88
Beghein and Trampert (2003) 5.87 1.71 1.53

Mäkinen et al. (2014)1 2.99 0.72 0.15
Mäkinen et al. (2014)2 3.46 0.85 -0.54

their findings, possibly alluding to an IMIC.
The most recent inner core model is from Mäkinen et al. (2014), who

produced a joint elastic and anelastic anisotropy model for the inner core
by incorporating both anelastic and elastic splitting functions, finding 1.5%
P-wave anisotropy and 0.35% S-wave anisotropy on average throughout the
inner core. S-wave anisotropy stays almost constant throughout the inner
core while P-wave anisotropy decreases from a maximum of 3% at the ICB
to ∼ 0.0% at the centre of the inner core. While, Mäkinen et al. (2014) does
not explicitly discuss the IMIC in their paper (focusing more on the anelastic
structure), we have calculated their predicted value of ζslow throughout the
inner core (Figure 6.1d) and found a ζslow anomaly remarkably similar in
depth and magnitude to what we would expect of the IMIC from body
waves.

Since Woodhouse et al. (1986) inner core anisotropy models inferred
from normal modes have varied in the amount of modes incorporated and
also in the type of basis functions used to parameterize the depth depen-
dence (polynomials or b-splines). Only one previous paper has used a
Bayesian sampling methodology (Beghein and Trampert, 2003); all others
utilised linear inverse methodologies. In this chapter we will use our new
splitting function measurements (Chapter 4) for a 1D transdimensional in-
version of inner core anisotropy. The transdimensional algorithm will allow
the data to define how many model parameters are required to parameterize
the depth dependence of the anisotropy and additionally allow us to recover
uncertainties on these model parameters. We will also compare P-wave ani-
sotropy and ζslow from our 1D normal mode model with the average of
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Figure 6.1 Variations of P-wave anisotropy (α/2), S-wave aniso-
tropy (β/2), γ (the velocity at intermediate angles) and ζslow from
previous inner core models made with normal mode data, including
Woodhouse et al. (1986), Tromp (1993), Durek and Romanowicz
(1999), Beghein and Trampert (2003) and Mäkinen et al. (2014).
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our 3D body wave model and we will show that the two are in reasonable
agreement.

6.2 Methodology

6.2.1 Anisotropy parameterization

We model inner core anisotropy assuming transverse cylindrical isotropy
with the symmetry axis parallel to Earth’s axis of rotation. From normal
mode theory (Woodhouse et al. (1986); Tromp (1995)) it follows that the
zonal coefficients (c20 and c40) are then linearly dependent on only three
model parameters, α, β and γ which describe seismic anisotropy:

cs0 =

∫ ICB

0
α(r)Kα

s + β(r)Kβ
s + γ(r)Kγ

s dr (6.1)

where r is the radius, which we integrate from 0 to the ICB, s is the spher-
ical harmonic degree, cs0 is our measured splitting function value of c20 or
c40. α, β and γ are three anisotropic parameters describing P-wave aniso-
tropy, S-wave anisotropy and the velocity of waves not travelling parallel
or perpendicular to the symmetry axis. Kα

s is the sensitivity kernel of the
zonal parameter with spherical harmonic degree s to the model parameter
α and which varies as a function of radius (and similarly for Kβ

s K
γ
s ). α, β

and γ are related to the love parameters A, C, L, N and F (Love, 1927) in
the following way:

α =
(C −A)

A0
(6.2)

β =
(N − L)

A0
(6.3)

γ =
(A− 2N − F )

A0
(6.4)

where A0 is the value of the elastic parameter A at the centre of the Earth
from the reference model.

The fractional velocity of a P-wave at a given angle of ζ (the angle the
raypath makes with Earth’s axs of rotation) as a function of α, β and γ can
be calculated thus (derived in Section 2.2, Equation 2.18) :

δt

t
= δVp(ζ) = (2β − γ)cos2(ζ) + (

1

2
α− 2β + γ)cos4(ζ) (6.5)

here we use the equation without δVeq as the zonal parameters of the nor-
mal mode splitting functions are not sensitive to changes in the equatorial
velocity.
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The slow direction is calculated by taking the derivative of Equation
6.5, setting it to zero and solving for the angle ζslow:

ζslow =
1

2
cos−1(

α

α− 4β + 2γ
) (6.6)

As in Chapter 4 we set a threshold such that the magnitude of the velocity
at ζslow must be 0.5% slower than the velocity at ζ = 90◦ to ensure that
the anomalous anisotropy is a robust observation, otherwise ζslow = 90◦.

From normal mode perturbation theory we are able to calculate the
sensitivity kernels Kα

st, K
β
st and Kγ

st (Tromp, 1995) of each cst to α, β
and γ. Figures 6.2-6.3 display sensitivity kernels for all modes used in this
chapter; they show that our normal mode data has strong sensitivity to
inner core anisotropy in the upper and middle inner core, with reduced
sensitivity from 400 km radius and below. This is to be expected as normal
modes have zero sensitivity at the centre of the Earth as it represents a
nodal point.

We use our c20 and c40 measurements from Chapter 5 (see Table 5.3) and
correct each measurement for crustal structure using CRUST 5.1 (Mooney
et al., 1998) and mantle structure using S20RTS (Ritsema et al., 1999). We
then apply a transdimensional inversion (see below) for α, β and γ as a
function of depth.

6.2.2 Transdimensional polynomial models

Previous studies used polynomials (Woodhouse et al. (1986); Tromp (1993);
Durek and Romanowicz (1999); Mäkinen et al. (2014)) or b-splines (Beghein
and Trampert, 2003) for the depth dependence of α, β and γ. When mod-
elling inner core anisotropy with the body wave data it is a good choice to
use a basis function with sharp discrete boundaries such as Voronoi cells
because the sensitivity of the body waves (when using ray theory) are them-
selves discrete, i.e. a raypath either passes through a volume or not. With
normal modes the opposite is true, normal modes have broad sensitivity
which varies smoothly as a function of radius. Thus, it is preferable to use
smooth basis functions when using normal modes as the sensitivity kernels
of normal modes to Earth structure are themselves smooth functions which
are sensitive to the whole inner core.

Following previous studies we will use polynomial basis functions to
model radial variations in α, β and γ. For each model parameter we define
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our polynomials in increasing polynomial order;

α(r) = aα + bαr
2 + cαr

4 + dαr
6 . . . (6.7)

β(r) = aβ + bβr
2 + cβr

4 + dβr
6 . . . (6.8)

γ(r) = aγ + bγr
2 + cγr

4 + dγr
6 . . . (6.9)

where r is the radius of the inner core normalised between 0.0 and 1.0.
The parameters in blue are the polynomial coefficients which we solve for.
Figure 6.4 shows how the sensitivity of a, b, c and d vary as a function of
radius. It can be seen that a is uniform throughout the inner core, while b
has sensitivity which decreases with depth in the inner core and that each
parameter after this has steadily stronger sensitivity to the top of the inner
core.

Markov Chain Monte Carlo (MCMC) is a sampling methodology which
utilises the Metropolis-Hastings (Hastings, 1970) algorithm alongside Bayes
theorem (Bayes, 1763) to combine prior information on model space with
data to approximate the posterior probability distributions of the data-
model system. MCMC works by calculating many millions of models, each
a small perturbation on the previous model forming a Markov-Chain. Model
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perturbations will be accepted or rejected following the Metropolis-Hastings
algorithm, with models that reduce the misfit to the data always being ac-
cepted and model perturbations which increase the misfit, sometimes being
accepted. Once the MCMC algorithm has finished, an ensemble of mod-
els can be analysed deriving statistical measures such as the mean of each
model parameter and the standard deviation at different locations in the
ensemble.

Transdimensional MCMC goes further by incorporating the size of the
model space into the inversion. Thus not only the magnitude of the polyno-
mial coefficients (in blue in Equation 6.9) is perturbed but also the number
of polynomial coefficients is allowed to change independently for each model
parameter α, β and γ. To achieve this we have adapted our transdimen-
sional algorithm from Chapter 4 to ensure that we do not over fit one model
parameter or under fit another. More heterogeneity and a low noise level in
the normal mode data will result in more polynomial coefficients and more
complex radial structure, and vice versa.

The transdimensional inversion will produce an ensemble of models with
varying numbers of polynomial coefficients for each model parameter. This
is achieved by incorporating three types of model perturbations:

1. Velocity perturbations: a random model parameter from α, β or γ
is chosen and a random polynomial coefficient from this parameter
is then perturbed relative to a previous model (in the same way as
outlined in Section 4.5.1).

2. Birth of a polynomial coefficient: a random parameter is chosen from
α, β or γ and a polynomial coefficient is added. This coefficient will
always be of the next order (i.e. if there are already 2 polynomial
coefficients a and b and a birth step is accepted then the new coefficient
will be c).

3. Death of a polynomial coefficient: a random parameter is chosen from
α, β or γ and the last coefficient from their respective polynomial
expansion is removed.

6.2.3 Hierarchical noise

Wemodel the noise in our data using the uncertainty estimates from our grid
searches and a hierarchical noise methodology. For each cst the uncertainty
from our grid searches from Chapter 5 is used as a minimum noise level.
We then additionally add a hierarchical noise parameter which is solved for
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iteratively in the MCMC. Thus, for a specific cst the noise is calculated
using:

λst =
√
σ2
st + λ2 (6.10)

where λst is the total noise combining the hierarchical parameter and the
estimated uncertainty from the grid searches, σst is the uncertainty derived
from the grid searches for each cst in Chapter 5 and λ is the hierarchical
noise parameter. The hierarchical noise assesses agreement between data in
the model-data system. Consider a simple example; If two cst measurements
have exactly the same sensitivity to anisotropy in the inner core, but it is
not possible to fit both measurements simultaneously then the difference in
the cst measurements will be interpreted as noise and results in an increase
in the hierarchical parameter. A larger hierarchical parameter therefore
means that the transdimensional algorithm fits the data less well (as the
noise is increased) and so results in fewer polynomial coefficients.

6.3 Results

Just like in Chapter 4 for the body waves, we run 20 Markov chains for 1
million iterations which after thinning (removing every 100th model) and
burn in (disregarding the first third of models) results in an ensemble of
133380 models. We use Gaussian priors on our model parameters with
a mean of 0.0 and a standard deviation of 0.2 (i.e. 20% perturbations
relative to PREM, well within the expected range of anisotropy in the inner
core). The misfit in each chain quickly drops to a mean misfit of 0.55, i.e.
45% reduction relative to PREM (Figure 6.5a). The number of polynomials
varies across the models in our chains; we found that the majority of models
requires between 1-3 coefficients for α. For β the most common number of
coefficients is 2, while for γ it is 2-3, but in our ensemble there were also
a significant number of models with 5-6 coefficients for β and γ. Overall,
the majority of the variance in the data can be described by polynomial
functions with 3 coefficients a, b and c in Equation 6.9. The mean noise
in our data is 8.3µHz, which is the average of all the hierarchical noise
parameters in our ensemble plus the mean noise in our cst measurements.
This noise level means that on average each cst is fit to within 8.3µHz.

Our model fits the c20 data better with a 71% misfit reduction (relative
to PREM) than the c40 data with only a 13% misfit reduction (Figure 6.6).
This implies that there is more noise or disagreement in our c40 measure-
ments than our c20 measurements. Alternatively the way in which we have
parameterized the inner core, either in terms of polynomial basis functions
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or in terms of cylindrical anisotropy, does not describe the c40 parameters
well.

Figure 6.7 shows how δVpani (
α
2 ), δVsani (

β
2 ), γ, and ζslow vary as a

function of radius throughout our model. We see that our normal mode
model predicts Vpani varying from 1.2% at the ICB to a maximum of 2.1%
at 1000-950 km radius and then reducing to 1% at the centre of the inner
core. Variations in δVsani are less strong, with 0.7% anisotropy at the ICB,
dropping to 0.17% between 800-850 km and increasing again towards the
centre of the inner core reaching a maximum of 0.96%, but with increasing
uncertainty. γ shows stronger variations with -9.9% at the ICB increasing
to 3.7% at 800 km and reducing back to 0.3% at the centre of the inner
core.

The combination of α, β and γ is then used to calculate the angle of
slowest direction, ζslow (Equation 6.6). ζslow is interesting because it has
been proposed that there in is an innermost inner core (IMIC) with anoma-
lous ζslow and we indeed found the IMIC in our body wave transdimensional
model in Chapter 4. Here, we use the same tolerance condition as defined in
Section 4.3, such that the difference between the velocity at the slowest di-
rection and the velocity at ζ = 90◦ has to be greater than 0.5%. Our normal
mode model finds ζslow = 90◦ at the ICB, which decreases to ζslow = 75◦ at
730 km radius, before increasing back to ζslow = 85◦ at the centre (Figure
6.7d). This ζslow anomaly could potentially be the modes picking up some
structure from the inner most inner core (IMIC), however, the anomaly is
shallower than we would expect from our body wave model (Chapter 4), or
from recent studies on the IMIC (Frost and Romanowicz (2019); Stephen-
son et al. (2020)) where the IMIC boundary is found to be between 600-700
km radius.

6.3.1 Comparison with body wave model

Before making a combined model for body waves and normal mode data
(Chapter 7), it is useful to compare the models made with only the body
wave data (Chapter 4) and only the normal mode data (this chapter) as
this will help us identify elements of the different models that are likely to
agree or disagree. Our body wave model uses AK135 as a reference model
(Kennett et al., 1995) while the normal mode model uses PREM (Dziewon-
ski and Anderson, 1981). In the following figures we adjust the anisotropy
from our body wave model to use PREM as a reference model. The af-
fect is small given the similarities in compressional velocity between PREM
and AK135 in the inner core. Furthermore, each model is parameterized
differently. The body wave model uses a, b and c parameters and the nor-
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Figure 6.5 a) shows how misfit relative to PREM varies as a func-
tion of iteration across all our chains, b-d) shows the distributions
of the number of polynomial coefficients required by our ensemble
to describe α, β and γ. e) is a histogram showing the distribu-
tion of mean noise in our data across our ensemble, calculated:
λtotalNM =

√
λ2
NM +mean(σst)2 where λNM is the hierarchical pa-

rameter and σst is the noise in our data estimated from the grid
searches.
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Figure 6.6 A comparison between our c20 and c40 measurements
and the predicted values from our 1D transdimensional model
shown in green.
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mal mode model uses α, β and γ (Chapter 2). There are two parameters
which are common to both models that we can readily compare: the P-wave
anisotropy, δVpani, (δVpani = b+ c = α

2 ) and ζslow between each model.

When looking at the models in cross section (Figure 6.8) it appears at
first that the two models are very different. The maximum value of Vpani in
the body wave model is 7.2% while it is only 2.1% in the normal mode model.
However, if we compare the normal mode model with a spherical average
of the body wave model (Figure 6.9a) we see there is good agreement for
Vpani between the two models throughout the inner core. The average Vpani
structure from the normal mode model is always within the uncertainty of
the body wave model.

Both models find a deviation of ζslow away from 90◦, however the body
wave model finds the ζslow anomaly to be deeper and stronger than in the
normal mode model (Figure 6.9b). This could be due to the differences
in sensitivity between the normal modes and body waves, as inspection
of Figures 6.2-6.3 reveals that the normal modes have minimal sensitivity
below 400 km radius.

6.4 Discussion

An optimal 1D parameterization is difficult for normal modes in the inner
core. We chose to use polynomials with a dependence of rn where n is an
even integer. This parameterization follows from similar models by Wood-
house et al. (1986) and Mäkinen et al. (2014). It has the advantage that the
gradient of the model parameters at the centre of the inner core is always
0, which is a logical condition to meet as the centre of the inner core in our
1D model represents a single point. It is also the reason for the main diffi-
culty of using other 1D parameterizations such as splines; as it is difficult to
construct a spline parameterization with this zero gradient condition. The
disadvantage of using the polynomial parameterization is that these basis
functions are much less sensitive to the centre of the inner core than to
the ICB. Furthermore, each polynomial coefficient has significant overlap
in sensitivity with every other polynomial coefficient. Improving the choice
of basis function and parameterization in our 1D models for the inner core
is a step we wish to take in the future and the reason why this chapter is
considered preliminary.
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Figure 6.8 Equatorial cross sections showing δV pani and ζslow for
the body wave and normal mode models.
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6.5 Conclusion

In this chapter we use the splitting functions of 18 inner core sensitive
normal modes which we measured in Chapter 5 and combine them with a
transdimensional methodology utilising polynomial basis functions to con-
struct a probabilistic 1D model of inner core P-wave and S-wave anisotropy.
Our normal mode data can be fitted reasonably well by a model with 1.6%
P-wave anisotropy and 0.5% S-wave anisotropy. Our normal mode model
is also in good agreement with our body wave model from Chapter 4 espe-
cially for the magnitude of the 1D P-wave anisotropy structure and when
considering that the normal mode model is 1D and the body wave model is
3D. The normal mode model also shows a change in ζslow with depth which
may correspond to the IMIC, but this anomaly has a high uncertainty and
its details have to be weighed against the low sensitivity of the modes to
the centre of the inner core.
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7
3D Transdimensional seismic
tomography of the inner core
using body waves and normal

modes (preliminary)

In this chapter we outline a new methodology to incorporate normal modes
and body waves in a joint 3D transdimensional tomographic model. This
is the first time that transdimensional methods have been used jointly with
normal mode and body wave data. The methodology to calculate the deriva-
tives and sensitivity kernel for a normal mode splitting function coefficient
to a Voronoi cell parameterization is described in full and can be adapted in
future to calculate the sensitivity of other discrete basis functions. Fitting
both types of data in a joint inversion requires compromises. To reduce
trade offs, we only solve for compressional velocity anomalies in the inner
core, assuming a constant background shear wave anisotropy model. We
also exclude 5 modes from our normal mode dataset which we were unable
to fit jointly with the body wave data. With these caveats, however it is
possible to fit both our normal mode and body wave data with a single
anisotropy model. Preliminary results show remarkably similar structures
in compressional anisotropy for our body wave only model, including an
isotropic layer at the top of the inner core, and an anisotropic zone iso-
lated to the west and north of the inner core from 100 km depth and below.
However, we now observe a more complex variations in slow direction, ζslow,
which is the angle between the slowest velocity direction and Earth’s axis
of rotation and is often interpreted as indicative of an inner most inner
core. This heterogeneous structure spread across both hemispheres, and
also present at shallower depth, in contrast to our body wave model which
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found a distinct homogeneous region with anomalous ζslow only near the
centre of the inner core.

7.1 Introduction

In Chapter 3 we looked at increasing the quantity and quality of body
wave travel time observations for constraining inner core anisotropy and in
Chapter 4 we used these observations to create a 3D model of inner core
anisotropy. In Chapter 5 we measured inner core sensitive normal modes
using a grid search methodology to map out the splitting function model
space and in Chapter 6 we produced a 1D model of inner core anisotropy
using the normal mode data. In this chapter we are going to present pre-
liminary results combining both normal mode and body wave data into a
joint inversion model. This is an interesting challenge as each data type
has overlapping yet different sensitivities; this is also why the approach of
combining them could be valuable, where each data type makes up for the
shortcomings of the other.

The last joint inversion for both body wave and normal mode data for
inner core anisotropy was conducted by Ishii et al. (2002a). The fact that
this study was published 20 years ago, is a testament to how difficult it
is to reconcile the two types of data. Most normal mode studies invert
for normal mode data only (Woodhouse et al. (1986); Tromp (1993); He
and Tromp (1996); Deuss et al. (2010); Mäkinen et al. (2014)) and then
make a prediction for body wave data to aid comparison, while most body
wave studies don’t compare their final models with normal mode data at
all (Creager (1992); Tanaka and Hamaguchi (1997); Garcia (2002); Waszek
and Deuss (2011); Frost et al. (2021)). Ishii et al. (2002a) was a pioneer-
ing study, combining PKPbc-PKPdf, PKPab-PKPdf, absolute PKPdf body
wave travel times with 123 spheroidal and 42 toroidal modes measured by
multiple groups. A majority of these modes are sensitive to the mantle, so
Ishii et al. (2002a) also incorporated 1D mantle structure in their model.
They found that radially varying anisotropy was able to fit the modes and
absolute PKPdf body wave data simultaneously with 1.75% P-wave aniso-
tropy and 0.44% S-wave anisotropy on average, and in general with aniso-
tropy decreasing from the ICB to the centre of the inner core. Nevertheless,
they also found that the differential travel time data and normal modes
were difficult to reconcile with each other.

In a follow up paper, Ishii et al. (2002b) produce laterally varying models
which fit the differential travel time data and do not contradict the normal
modes. They found that an isotropic layer at the top of the inner core did
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not fit their body wave data and that if there was an isotropic layer it would
have to be less than 150 km thick to fit their normal mode measurements.
They also argued that hemispherical variations in the body wave data could
be an artefact of imperfect sampling of the inner core and pointed out that
the hemispherical pattern could also be explained by a north-south divide
instead of an east west divide. 20 years later and these findings remain
robust; with more data we do see a western anisotropic zone with a north-
south and east-west divide. Furthermore, an isotropic layer of less than 150
km thick at the top of the inner core is within current estimates from body
wave models.

In our approach we will solve for inner core anisotropy in 3D using a
Transdimensional MCMC methodology, utilising 13 splitting function mea-
surements described in Chapter 5 and the body wave data used when con-
ducting a transdimensional inversion in Chapter 4. The normal mode data
is sensitive to long wavelength structure in the inner core, specifically to
P-wave and S-wave anisotropy. If we assume that the anisotropy symmetry
axis is Earth’s axis of rotation, then only the zonal parameters are sensitive
to this anisotropy. This means that normal modes will give us the variation
in elastic parameters in the inner core as a function of radius but no regional
variation. Body waves on the other hand are short wavelength (0.5 - 2 Hz)
observations which are sensitive primarily to P-wave anisotropy in the in-
ner core, and unlike the normal modes are able to provide us with regional
variation of inner core anisotropy. In effect normal modes will constrain the
average radial pattern in anisotropy and body waves will provide regional
3D information.

In this chapter, we will first describe our choice of data and justify our
use of a constant background S-wave anisotropy model, then we will describe
our inverse problem, and how we calculate the sensitivity of normal mode
splitting function coefficients to Voronoi cells. Finally, we will show the
preliminary results from our transdimensional inversion and discuss what
can be improved in the future.

7.2 Data

We use the same body wave observations as in Chapter 4, but with a small
alteration. Our combined model needs to use PREM (Dziewonski and An-
derson, 1981) as a reference model instead of AK135 (Kennett et al., 1995),
because only PREM is able to fit the normal mode data while also fitting
the body wave data. The drawback is that PREM only predicts PKPbc
arrivals up to 152◦ epicentral distance, while AK135 predicts PKPbc up to
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155.5◦ and our data set contains 541 PKPbc-PKPdf differential travel times
with an epicentral distance between 152-155.5◦. Thus, for these paths we do
not get a prediction from PREM for the PKPbc arrival time. To solve this
problem these raypaths are now included in the absolute PKPdf dataset
instead. This results in a total dataset of 7668 raypaths, with 3103 PKPcd-
PKPdf, 1060 PKPbc-PKPdf, 640 PKPab-PKPdf and 2865 absolute PKPdf
raypaths. This is 11 raypaths less than in Chapter 5 because we found that
11 of the raypaths that were formerly measured relative to PKPbc contained
strong mantle influence (See Section 4.2), which could not be accounted for
without a reference phase.

We use 13 of our 18 normal mode measurements from Chapter 5 as
our normal mode dataset. Through initial modelling and testing we found
that we were not able to reconcile the body wave data with the splitting
function coefficients for modes; 3S2, 9S3, 9S4, 25S2 and 27S2. Figure 7.1
shows predictions for our normal mode data from our body wave model
developed in Chapter 4. While most modes are well fit by our body wave
model, the five modes 3S2, 9S3, 9S4, 25S2 and 27S2 are not well fit, especially
for c40 (Figure 7.1b), and account for 53% of all the misfit. As we cannot fit
both the body waves and these 5 modes, the question then becomes whether
the measurement of these modes is at fault or if there is structure in the inner
core or elsewhere we are not correctly accounting for? This problem requires
further study. Potentially the incorporation of more modes will inform us
as to whether these modes are poorly measured or if their is some common
structure they are sensitive to which we are not correctly accounting for, in
or outside of the inner core. For simplicity we have chosen to simply remove
these modes from our current preliminary model.

7.3 Methodology

7.3.1 Transdimensional Markov Chain Monte Carlo

As in Chapter 4 and Chapter 6 we will utilise a Transdimensional Markov
Chain Monte Carlo (MCMC) methodology (Bodin and Sambridge, 2009).
The details of this method can be found in Chapter 4, but in summary:
transdimensional MCMC is a sampling methodology, which solves not only
for the best fitting model parameters but also incorporates the parame-
terization of the model space into the inversion. This involves creating a
Markov chain of models where each model is a small perturbation on the
previous model, this perturbation can either be in the velocity characteris-
tics of sub volumes, or by the addition, removal or movement of these sub
volumes. Perturbations which decrease the misfit to the data will always
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Figure 7.1 Predictions for our normal mode dataset (a-b) and (c-
f) body wave dataset using our body wave model, made in Chapter
4.
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be accepted, while perturbations which increase the misfit to the data will
either be accepted or rejected following the Metropolis-Hastings algorithm
(Hastings, 1970). In this way we explore the model space and sample the
posterior probabilities of our model parameters and parameterization.

We also use hierarchical noise sampling (explained in detail in Section
4.4.3) which produces an estimate of the noise in our data by analysing the
contradictions between groups of data with the same sensitivity. This can
be most intuitively understood by imagining two differential travel times,
whose PKPdf raypaths travel exactly the same path in the inner core and
therefore have the same sensitivity. Any difference in the differential travel
times between these two data points will then be interpreted as noise and
increase the hierarchical parameter. We combine the hierarchical noise pa-
rameter with estimates of the noise from mantle structure for the body wave
data (Section 4.2) and with estimates of uncertainty from the grid searches
for the normal mode data (Section 5.4).

7.3.2 Combined inner core anisotropy from body waves and
normal modes

Combining the body waves and the normal modes into a joint tomographic
inversion is an interesting challenge. The body waves provide good con-
straints on regional variations in anisotropy while the normal modes pro-
vide valuable information on average structure to constrain the velocities in
regions of the inner core without any body wave observations. Body waves
are only sensitive to Vp while normal modes are sensitive to Vp and Vs.
However, one of the problems is that once we start incorporating transverse
isotropy, we also see that the fractional travel time of the P-wave observa-
tions are non-uniquely sensitive to S-wave anisotropy, which can be seen in
the following equation (derived in Section 2.2, Equation 2.19):

δVp = δVeq +
1

2
αcos4(ζ) + 2β[cos2(ζ)− cos4(ζ)] +γ[cos4(ζ)− cos2(ζ)] (7.1)

where δVeq is the deviation of compressional equatorial velocity from a ref-
erence model. δVeq was called a in Chapters 3-4; we have renamed it to
δVeq in this chapter to avoid confusion with α. α is the compressional wave
anisotropy, β is the shear wave anisotropy and γ is the velocity of waves
travelling at angles between the symmetry axis and the perpendicular plane.

It can be seen from Equation 7.1 and Figure 7.2 that the body wave
sensitivity to β trades off with γ. This means that with only body wave
information we do not separately resolve variations in β and γ. The normal
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modes have independent sensitivity to β and γ, because the zonal coeffi-
cients, c20 and c40, are related to α, β and γ:

cs0 =

∫ ICB

0
α(r)Kα

s + β(r)Kβ
s + γ(r)Kγ

s dr (7.2)

However, when only using the c20 and c40 coefficients the normal modes do
not have sensitivity to 3D variations in α, β and γ and are only sensitive
to the 1D average and may only provide depth (or radial) variations.

To avoid a trade off between γ and β we have decided to use the mean
model of β from Chapter 6 in our joint inversion and only solve for δVeq,
α and γ. This means that for every iteration in the MCMC inversion our
model of β is constant. In future work we will allow 1D β vary in the
inversion but for now it was easiest to keep β constant. Ideally we would
also have wide spread observations of S-wave body wave observations in
the form of PKJKP arrivals from which we could constrain β on a regional
basis and incorporate it as a fully 3D parameter in our model, but reliable
observations of PKJKP arrivals are sparse (Deuss et al. (2000); Cao et al.
(2005); Wookey and Helffrich (2008)). Perhaps coda-correlation methods in
the future will help constrain some regional variations of S-wave anisotropy
(Wang and Tkalčić, 2021). Likewise, incorporating measurements of cross-
coupled inner core modes could also provide constraints on the 3D variations
in α, β and γ.

Figure 7.3 shows predictions for our normal mode and body wave data,
using only the values of β from our normal mode model, with α = 0.0 and
γ = 0.0. It can be seen that it mainly affects P-waves at intermediate angles
around ζ = 45◦ and improves misfit to our data overall, but increases misfit
with respect to the c40 values of our splitting function data. Interestingly,
the negative c40 values are fit very well using only β. In our normal mode
only model from Chapter 6 the fit to the positive c40 values was compensated
for by α and γ.

7.3.3 The forward problem

We will solve for 3D variations in δVeq, α and γ, with both normal mode
and body wave data. We will use Voronoi cells as our basis functions as
that will allow us to rapidly discretise a 3D domain and conduct a transdi-
mensional inversion. In Section 7.3.4 we will explain how to calculate the
sensitivity of a normal mode splitting function coefficient to a Voronoi cell
parameterization.

To define the forward problem lets first consider a simple scenario, where
we have one differential travel time, δt, and one cst as our data and we want
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Figure 7.3 Our combined dataset compared to the predictions on
each data point from β in the model derived in Chapter 6.
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to construct a forward problem with one Voronoi cell of the form:

Gm = d (7.3)

the data matrix is simple:

d =

(
δt
cst

)
(7.4)

and for one Voronoi cell the model matrix is thus;

m =

δVeqα
γ

 (7.5)

The sensitivity kernel G can be separated into two parts, the body wave
sensitivity, Gbw and the normal mode sensitivity, Gnm. To calculate Gbw we
separate the δVeq, α and γ terms from Equation 7.1 and find the sensitivity
of a raypath to each model parameter as a function of the raypaths’ angle
ζ;

Gbw =
(
Aijt, Aij

1
2cos4(ζ)t, Aij [cos4(ζ)− cos2(ζ)]t

)
(7.6)

such that the first, second and third columns correspond to the sensitivity
of a raypath to the δVeq, α and γ model parameters in the model matrix m,
Aij is the fraction that raypath i spends in Voronoi cell j, in our scenario
with one raypath and one Voronoi cell then i = 1 and j = 1 and Aij = 1.0.
As in Chapter 4 we move the reference inner core time, t from the left hand
side of Equation 7.1 to the right hand side.

7.3.4 cst sensitivity to Voronoi cells

Parameterizing spherical harmonic data using Voronoi cells is complicated,
but we came up with an elegant solution. The sensitivity kernel of a spheri-
cal harmonic coefficient cst to a Voronoi cell is denoted as Gst

nm where s and
t is the angular order and azimuthal order of the cst and nm denotes that it
is a normal mode sensitivity (as opposed to Gbw). The sensitivity kernel of
a cst varies as a function of radius. Calculating the sensitivity of a Voronoi
cell to a cst involves calculating the radial sensitivity of a Voronoi cell, R.
The radial sensitivity R is how much a Voronoi cell occupies a particular
radius or ‘layer’ of the inner core. The cst sensitivity kernels are smooth
functions (see Figures 6.2-6.3), which we discretise into Nk layers through-
out the inner core. To calculate the radial sensitivity of a Voronoi cell to a
cst we have to calculate the fraction that a Voronoi cell makes up of a layer
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k. We use a Fibonacci sphere (González, 2010) to define for each layer k,
a mesh of Np points which are equally spaced1. As the points are equally
spaced they each represent the same 1

Np
proportion of the layer k. We can

determine for each node on the mesh which Voronoi cell (denoted by j) con-
tains that node and the number of nodes per Voronoi cell is proportional
to its radial sensitivity Rkj .

This process is best understood graphically as outlined in Figure 7.4.
Figure 7.4a shows for a single layer a Voronoi cell distribution, with each
node location chosen at random. We then produce a mesh of (approxi-
mately) equally spaced points on this layer using a Fibonacci sphere algo-
rithm and determine which nodes are contained in each Voronoi cell in this
mesh, as shown on Figure 7.4b. We then count the number of nodes in
each Voronoi cell, which is proportional to how much a Voronoi cell makes
up a specific layer. This number then provides us with the fraction of each
Voronoi cell, shown on Figure 7.4c, where it is clear that Voronoi cells which
make up more of this layer in Figure 7.4a have a higher radial fraction. This
process is then repeated for each layer, corresponding to the layers that we
used to discretise Kα

s , K
β
s and Kγ

s (Equation 6.1).
We combine the radial sensitivity and the sensitivity kernel of a given

cst to α or γ in the following way:

Kj
α =

Nk∑
k=1

Rkjκ
α
k (7.7)

Kj
γ =

Nk∑
k=1

Rkjκ
γ
k (7.8)

where the index j stands for a individual Voronoi cell, k is the index for
each layer that the sensitivity kernels are calculated. The sensitivity of one
cst to one Voronoi cell with δVeq, α and γ model parameters is given by:

Gnm =
(

0 Kj
α Kj

γ

)
(7.9)

We then combine both Gbw and Gnm to form a single forward problem

G =

(
Aijt Aij

1
2cos4(ζ)t Aij [cos4(ζ)− cos2(ζ)]t

0 Kj
α Kj

γ

)
(7.10)

1This is an approximation, the points are not perfectly equally spaced, but with
increasing Np the error becomes minimal relative to the number of Voronoi cells. In our
algorithm we ensure that there are three orders of magnitude more points on the mesh
than the number of Voronoi cells.
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Figure 7.4 a) Explanation of the calculation of cst sensitivity
using Voronoi cells, showing for Rkj a single layer of a Voronoi cell
distribution, b) a Fibonacci sphere mesh where colour indicates
which Voronoi cell contains each node and c) the fraction that
each Voronoi cell makes up of this layer.
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m =

δVeqjαj
γj

 (7.11)

d =

(
δt
cst

)
(7.12)

This forward problem is easily expanded to more Voronoi cells or non zonal
normal mode cst data having longitudinal variation such as hemispheres
from cross-coupled modes (Deuss et al., 2010).

7.4 Results

We run 20 Markov chains for 1,000,000 iterations, which after burn in and
thinning results in an ensemble of 133,380 models. The average misfit of the
models in our ensemble is 0.54 (Figure 7.5a) which corresponds to a 46%
misfit reduction compared to our reference model PREM. The number of
Voronoi cells required to fit the data ranges from 15 to 28 volumes across
all our chains. This number represents a range of differently dimensioned
models from which we derive the mean and standard deviation of our model
parameters throughout the inner core. As in Chapter 6 we use Gaussian
priors on our model parameters, with a mean of 0.0 and a standard deviation
of 0.2.

Inspection of Figures 7.5c-d and Table 7.1 reveals that the mean com-
bined hierarchical noise estimate for the body waves is 0.23s for PKPcd-
PKPdf, 0.55s for PKPbc-PKPdf, 1.21s for the PKPab-PKPdf and 0.97s for
the absolute PKPdf data and 5.0µHz for the normal modes. In Table 7.1
we see that the noise in our combined model for the body waves is very
similar to the noise from our body wave only model. Our combined model
has a lower noise estimate for the PKPcd-PKPdf and PKPbc-PKPdf data
and a higher noise for the PKPab-PKPdf and absolute PKPdf data. This
difference can be attributed to two reasons. Firstly, a significant portion
of the PKPbc-PKPdf data from Chapter 4 is now incorporated as absolute
PKPdf data, which decreases the PKPbc-PKPdf noise estimate (as there
is less disagreement between raypaths) and correspondingly increases, the
noise estimate for the absolute PKPdf data. Secondly, the combined model
is now also trying to fit the normal modes which will have a knock-on effect
by making it more difficult to simultaneously fit the body wave data. The
noise in the normal mode data is less in our combined model (4.8µHz) than
in our normal mode only model (8.3µHz), but this is due to the fact that we
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Data Body wave model Normal mode model Combined model
PKPcd-PKPdf 0.29s - 0.23s
PKPbc-PKPdf 0.63s - 0.53s
PKPab-PKPdf 0.95s - 1.21s
Abs. PKPdf 0.96s - 0.97s

Normal Modes - 8.3µHz 4.8µHz

Table 7.1 Comparison of the recovered hierarchical noise estimate
for each type of data for our body wave only model (developed in
Chapter 4), our normal mode only model (Chapter 6) and our
combined model.

have removed five modes, meaning that there is less disagreement between
the normal mode data.

The average model from our ensemble reduces the misfit for the normal
mode data by 67% and for the body wave data by 45% (relative to PREM)
with an overall misfit reduction of 54% (Figure 7.6). The lower noise in
the normal mode data also means that the combined model fits the normal
mode data 11% better than our normal mode only model from Chapter 6.
This is most likely because we have five normal modes less in our combined
model which reduces the misfit significantly. We fit the c20 measurements
better than the c40 measurements for all our normal modes, similar to our
normal mode only model (Chapter 6). For comparison we also include
in Figure 7.6 the predictions for the five modes 3S2, 9S3, 9S4, 25S2 and
27S2, which were excluded from the inversion and misfit calculation. The
45% misfit reduction for our body wave data is the same as in our body
wave only model (Chapter 4), which is encouraging as it implies that we
are recovering as much information from the body waves in the combined
model as the body wave only model.

Looking at the model in cross section and in maps (Figures 7.7-7.10)
reveals heterogeneity in δVeq and δVpani which is similar to the body wave
only model of Chapter 4. It is encouraging that the observations of inner
core anisotropy from normal mode and body waves are not contradictory.
We find a fast eastern hemisphere and slow western hemisphere in the upper
inner core, with an anisotropic zone isolated to the northern hemisphere in
the west, starting at ∼100 km below the ICB. The maximum magnitude of
the anisotropy for the combined model is 11% which is greater than 7.2%
in the body wave only model. The maximum magnitude of the equatorial
velocity is 1.8% in the combined model, which is the same as in the body
wave only model. The overall pattern of the heterogeneity is very similar
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Figure 7.6 Predictions from our combined transdimensional
model to our data, modes 3S2, 9S3, 9S4, 25S2, 27S2 are shown
but were not included in the inversion and are not used when cal-
culating the misfit.
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Figure 7.7 A cross section through our combined transdimen-
sional model, going through the equator.

when comparing Figures 4.10-4.14 to Figures 7.7-7.10.
Our model for ζslow changes significantly with the inclusion of the normal

mode data, with a more heterogeneous structure than in Chapter 4. There
is still a region with a strong ζslow anomaly in the east of the inner core, but
it is no longer only located near the centre of the inner core. ζslow is however,
a difficult property to constrain and we believe that more research is needed
to properly image and constrain this anomaly. Allowing 3D variations in the
anisotropy symmetry axis away from Earth’s axis of rotation might be the
key to imaging this anomalous anisotropy region. Furthermore, we know
that β influences the velocity of P-waves at intermediate angles and we have
for simplicity used a constant background β model. However,we are certain
that β varies throughout the inner core, and while it is not possible to
constrain 3D β variations (Section 7.3.2), allowing the average 1D β model
to vary as a part of the inversion will most likely improve our fit to these
raypaths at intermediate angles and better constrain ζslow.
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Figure 7.8 A cross section through our combined transdimen-
sional model going through a meridian crossing between 90◦W
and 90◦E and the poles.
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Figure 7.9 Maps showing variations in δVeq and δV pani through-
out the inner core from our combined transdimensional model at
the inner core boundary, 800 km radius and 400 km radius along
with their uncertainties.
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Figure 7.10 Maps showing variations in δV sani and ζslow through-
out the inner core at the inner core boundary, 800 km radius and
400 km radius along with the uncertainty in ζslow.
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7.5 Conclusion

We have conducted 3D transdimensional inversion of the inner core for a
combined dataset of body wave and normal mode data and make a pre-
liminary model of inner core anisotropy. Our methodology to calculate
the splitting function sensitivity to a 3D Voronoi cell parameterization can
easily be adapted to any discrete basis function and also be used to incorpo-
rate regional variations from normal mode data. We find that we are able
to fit our body wave dataset and a subset of our splitting function zonal
measurements providing we use a background β model to reduce trade offs.

Our preliminary model is similar to the body wave only model from
Chapter 4 for the compressional equatorial velocity anomaly, (δVeq or a in
Chapter 4) and the compressional anisotropy (δVani in Chapter 4 or α in
Chapter 6). We find a fast eastern hemisphere and slow western hemisphere
in the upper inner core, with an anisotropic zone isolated in the northern
hemisphere in the west, starting at ∼100 km below the ICB. There is also
a region with a particularly strong ζslow anomaly in the east of the inner
core, but it is no longer consistently located near the centre of the inner
core. This anomaly previously called the IMIC requires further study. Our
model is only preliminary, but we are confident that with the right approach
it should be possible to reconcile the two ζslow anomalies as seen by the body
wave and normal mode data.
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The aim of this thesis was to better constrain the elastic structure of the
inner core. To achieve this we first increased the number of observations of
differential travel times, focusing especially on observations of paths which
travel in ultra-polar directions (Chapter 3).

We then took these new observations and combined them with other
travel time datasets to produce a 3D transdimensional model of inner core
anisotropy (Chapter 4). This new approach allowed us to produce a high
resolution 3D model along with the uncertainties in the model parameters.
From this combination of novel methodology and new data we were able to
robustly observe for the first time that the western anisotropic zone is in
fact primarily located in the northern hemisphere. This result has important
implications for our geodynamic understanding of the inner core. With the
body wave data we also observe an inner most inner core (IMIC) which is
primarily isolated in the eastern half of the inner core.

In Chapter 5 we then moved from short period body waves to long
period normal modes and we started by improving the measurements of
splitting functions of inner core sensitive modes. Especially the zonal coef-
ficients c20 and c40 are strongly anomalous and their measurement heavily
depends on starting values for c20 and c40 in the inversion. Thus, we con-
ducted large grid searches systematically varying c20 and c40 for 18 modes
using a self-coupled splitting function approximation. This method proved
more complicated than we initially expected, yielding complex measure-
ments with some modes having multiple misfit minima or large ranges of
c20 and c40 values which fit the spectra equally well. We think these prob-
lems highlight something that has been seen before in the literature, that
measuring inner core sensitive normal modes is far from simple.

Despite the complex nature of measuring these splitting functions, in
Chapter 6 we used our new c20 and c40 measurements to produce a 1D
transdimensional model of inner core anisotropy which significantly reduced
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the misfit of our cst measurements and agreed with the compressional ani-
sotropy of the body wave model of Chapter 4.

In Chapter 7 we finally conducted 3D transdimensional inversion com-
bining our body wave data with a subset of our normal mode data to pro-
duce a model which fits both data jointly. This model does come with some
caveats however, for example we had to assume a 1D model of shear wave
anisotropy because the body waves only provide 3D Vp variations and we
had to remove 5 of our 18 measured normal modes to fit the normal modes
and the body waves jointly. Because of these caveats we want to emphasise
that the work in Chapter 7 is preliminary and we hope to explore this fur-
ther in the future. But equally we feel it is still an achievement to produce
a reasonable model of inner core anisotropy that significantly reduces the
misfit of both the body wave and normal mode data. It has been said in
previous studies that normal modes and body waves disagree on the magni-
tude of inner core anisotropy and while we don’t pretend to have answered
all the questions, we do think there is now reason to believe that is not the
case. We find similar mean values of anisotropy in the inner core across
both data types; previous studies argued that body waves see stronger ani-
sotropy in the inner core than modes, but when we average our body wave
model we find the anisotropy to be comparable to our normal mode model.

Bringing the major conclusions together, Figure 8.1 shows a simplified
summary of the compressional velocity structure we observe in the inner
core. We find the inner core is split broadly into 4 regions of distinctive
compressional velocity properties. In the west we robustly find a isotrop-
ically slow western layer in the top 100 km of the inner core as indicated
by the body waves, and not contradicted by the normal modes. From 100
km depth to the center we find an anisotropic western zone primarily iso-
lated in the northern hemisphere. This zone is strongly indicated by the
body waves (even when excluding data from the South Sandwich Islands
to Alaska raypaths) and is able to fit the normal mode observations when
balanced with weaker anisotropy in the eastern part of the inner core. The
eastern part of the inner core is a large region with fast isotropic veloci-
ties extending to the centre of the inner core. This difference is seen with
the body waves and is required by the normal modes to average out the
strong compressional anisotropy in the west (i.e. given that there is strong
anisotropy in the west of the inner core, the east of the inner core must
be isotropic to reduce the spherical average anisotropy to fit the normal
modes). Finally, in the central 600 km of the eastern ‘hemisphere’ we see
some indication of anomalous anisotropy with a slow direction, ζslow, which
is not equal to 90◦, the previously called inner most inner core (IMIC). The
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Figure 8.1 Simple schematic figure summarising the general find-
ings of this thesis in terms of δVpani, δVeq, ζslow, where BW means
body wave data and NM normal mode data.

details of the IMIC in the east change when adding the normal mode data,
but the normal mode data are inconclusive because we have assumed that
β is constant and they only provide 1D and no 3D variations. There is
some indication of a ζslow anomaly in the inner core from the modes, but
the modes and the body waves do not agree on its location or form.

This thesis also highlights the benefit of applying transdimensional meth-
ods to improve imaging the deep Earth. While this is not the first study
to apply this method to the inner core (Burdick et al. (2019); Pejić et al.
(2019)) we have pushed the method further by combining different types
of data and extend the transdimensional method from 2D to 3D. When
it comes to parameterization of tomographic models, in general our phi-
losophy has been whenever possible to allow the data to make choices for
you; either through transdimensional methods to resolve uncertainties due
to the parameterization or through hierarchical noise sampling to improve
the modelling of noise in the data. However, of course, it is not possible to
avoid all decisions. Choices such as the type of basis function, the physical
parameterization and ultimately what data to incorporate into a model all
have significant influence on the final model. When these choices are un-
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avoidable we have tried to be clear why we prefer one option over another,
and if possible test both options and investigate if there is any difference
(such as whether to incorporate the South Sandwich Islands to Alaska data
in our body wave model).

Ultimately interpretations and understanding will change as new data
is acquired and new modelling methodologies are applied but what matters
more in our opinion than one model or dataset is the insight that you gain.
It seems that inner core seismology is at a turning point where we are now
able to start to rigorously resolve 3D elastic structure in the inner core and
begin to better understand what drives the dynamic processes in the inner
core and reveal its dynamic past.

8.1 Future work

This research comes at an interesting time in inner core seismology. While
at the moment it is computationally intractable to conduct Full Waveform
Inversion (FWI) of the inner core it seems inevitable that it will be achieved
in the coming years. This opens up new information as inner core seismol-
ogists will begin to fit not only the arrival times but the whole waveform
with all of the complexity it entails. Similarly, when using normal modes
a direct spectra inversion would reduce uncertainties from regularisation
and fit the spectra of many modes simultaneously instead of using the in-
termediate step of measuring splitting functions (Jagt and Deuss, 2021).
Durek and Romanowicz (1999) already conducted a direct spectra inver-
sion for the inner core, but now we have significantly more data than Durek
and Romanowicz (1999) and need to consider incorporating the body wave
data simultaneously. At the same time, we believe that modelling using ray
theory and splitting functions will still have an important role to play in
future inner core studies. The reduced computational cost of these approx-
imations allows more data to be incorporated, more starting models to be
considered and a more rigorous statistical foundation on which to base the
modelling than FWI or direct spectra methods. Indeed we see these two
philosophies in inverse theory as complementary: more precise theory and
minimal statistics versus approximate theory and rigorous statistics.

Other interesting developments in inner core seismology include the re-
cent use of coda correlation methods (Pha.m et al. (2018); Wang and Tkalčić
(2021); Lima et al. (2022)) which makes use of a part of the seismic wave-
field not yet fully exploited (between 5-50s period). Coda correlation might
provide new information on the elastic parameters of the inner core separate
from normal modes and body waves. Indeed it would be feasible to make
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a model based on all three data types in the future (using ray theory and
splitting function approximations).

Also worthwhile is the recent work combining seismology with geody-
namics conducted by Frost et al. (2021) and which should be continued
as new seismic data and observations become available, along with more
regional array studies focused on inner core data (Frost and Romanowicz,
2019). Indeed, perhaps an array should be installed in the South Sandwich
Islands to further explore whether the anomalous South Sandwich Islands
to Alaska data is being influenced by the subduction zone close to the earth-
quake epicentres, as proposed in Chapter 3 and by Tkalčić (2010).

While these are all longer term suggestions for future work, there are
also a number of intermediate steps that would logically follow from the
work in this thesis and would be the kind of research to focus on in the near
future:

• Measure attenuation splitting functions, dst, for inner core sensitive
normal modes and incorporating them into the grid searches, espe-
cially because the work of Mäkinen et al. (2014) and Pachhai et al.
(2020) has shown the importance of measuring anelastic splitting func-
tions alongside the elastic splitting functions,

• Measure cross-coupled inner core sensitive normal modes (Deuss et al.,
2010) in a grid search to further constrain 3D inner core tomography,

• Construct a better basis function to describe 1D variations in model
parameters for the inner core without the drawbacks of either splines
or polynomials.

• Investigate radial anisotropy at the top of the inner core from radial
modes (Lythgoe and Deuss (2015); Talavera-Soza and Deuss (2020)),

• Incorporate raypath bending in our 3D transdimensional models, by
allowing the raypaths through the inner core to vary as a function
of the inner core velocity structure. We already showed the impor-
tance of this affect in Chapter 3, but for simplicity and computational
tractability did not incorporate this into our models in Chapter 4 and
Chapter 7,

• Use finite frequency kernels for our body wave data in the inner core,
taking into account the broad Fresnel zones of these PKPdf paths,

• Investigate models with varying anisotropy symmetry axes,
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• Increase the body wave dataset further, seeking to improve sensitivity
to the very centre of the inner core, with the goal of improving the
constraints on ζslow.
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Appendix A

Voronoi cell algorithms

Voronoi cells are a useful way of quickly discretising a domain with non-
overlapping volumes (Okabe et al., 1994). They are defined by a set of
nuclei, ci, where a point pq exists within the Voronoi cell whose nucleus
is closest to pq. So taking a simple example, it can be seen on Figure A.1
that we have a domain discretised with 9 Voronoi cells each with a regularly
spaced nucleus (producing a grid of cells).

c1

c2

c3

c4

c5

c6

c7

c8

c9

Pq

NCells: 9

Figure A.1 A diagram of Voronoi cell boundaries, their corre-
sponding nuclei (ci) and a query point pq.

We want to know which cell, ci, contains the point pq, from inspection
of the diagram it is obvious to us that it is cell c5, computationally however
we have to calculate the distances between pq and each cell nuclei ci and
then the nuclei corresponding to the smallest distance is the correct answer
(Figure A.2). This is the easiest way to implement Voronoi cells as a ba-
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sis function for inversions, and I recommend to anyone who wishes to get
started with Voronoi cells to implement this themselves.

c1

c2

c3

c4

c5

c6

c7

c8

c9

Pq

NCells: 9

Figure A.2 A diagram of Voronoi cell boundaries, their corre-
sponding nuclei (ci) and a query point pq.

The problem with this algorithm is that the number of calculations re-
quired to find the Voronoi cell which contains pq increases linearly with
Nc. This is not very cumbersome when you want to query a small number
of points with a few Voronoi cells or if you only need to run the algorithm
once (i.e. with non-transdimensional or ‘static’ inversions), however, when
running transdimensional inversions you need to re-evaluate the sensitivity
kernels with each transdimensional step. With body waves this means cal-
culating how much of a given raypath travels through a Voronoi cell (Ai,j in
Equation 7.6) and with normal modes, re-evaluating the radial fraction of
a Voronoi cell (Rsti,j). Each of these calculations require the model space to
be discretised into thousands of points and to evaluate which Voronoi cells
contain each of these points. This is where more complex Voronoi cell algo-
rithms can be introduced, if we know which Voronoi cells share a boundary
(i.e. which cells are neighbours to each other) we can drastically reduce
the number of distance calculations required to evaluate which Voronoi cell
contains a point.

We use the software package QHull published by Barber et al. (1996)
which can rapidly provide us with this ‘neighbour’ information (the compute
time is insignificant up to ∼1000 Voronoi cells in 3 dimensions). This is
invaluable as we can now define algorithms which make use of this neighbour
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Algorithm 1 Which Voronoi Cell? (Simple)
1: procedure Which Voronoi Cell?
2: ci = list of Voronoi cell nuclei locations (Array)
3: Nc = length of ci (Integer)
4: pq = query point (Array)
5: dmin = the minimum distance between pq and ci (Float)
6: dtemp =a distance between pq and a Voronoi nuclei (Float)
7: iq = the Voronoi cell index which contains point pq (Integer)
8:
9: for i = 1 : Nc do

10: dtemp=distance(ci,pq)
11: if i = 1 then
12: dmin = dtemp
13: iq = i
14: else
15: if dtemp < dmin then
16: dmin = dtemp
17: iq = i
18: end if
19: end if
20: return iq
21:
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information to avoid having to compute all Nc distances.

Figure A.3 show’s a new problem whereby we have more Voronoi cells,
we still want to find the cell which contains pq, but this time we also have
the neighbour information. For our new algorithm we will start off by
(arbitrarily) guessing that cell c9 (shown with an orange nuclei on Figure
A.3) contains pq, if this is the case, then the distance between c9 and pq

must be smaller than the distance between pq and all of the neighbours of
c9 (which are shown by green nuclei on Figure A.3).

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

c16

c17

Pq

Guess #1, NCells 17

Figure A.3 A diagram of Voronoi cell boundaries, their corre-
sponding nuclei (ci) and a query point pq. The initial guess cell
is shown with an orange nuclei and it’s neighbours are shown with
green nuclei.

After calculating the distances between c9, c6, c15, c8 and pq, we find
that c15 is closer to pq than our initial guess of c9.
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c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

c16

c17

Pq

Guess #2, NCells 17

Figure A.4 A diagram of Voronoi cell boundaries, their corre-
sponding nuclei (ci) and a query point pq. The initial guess cell is
shown with an orange nuclei, its neighbours whose distances with
pq which still need to be calculated are shown with green nuclei
and the cells for which this distance has already been calculated
have grey nuclei.

We now repeat the algorithm calculating the distances between the
neighbours of c15 and pq (Figure A.4), to see if any of those Voronoi cell
nuclei are closer (without repeating the distances between c9, c6, c8 and
pq). From this next step we find that the distance between c5 and pq is
smaller than the distance between c15 and pq, now from inspection of Fig-
ure A.4 we can see that c5 is the Voronoi cell which contains pq, but we
still have to calculate the distance between the neighbours of c5 and pq to
confirm that c5 is the correct Voronoi cell (Figure A.5). Through keeping
track of which Voronoi cell distances have been calculated and knowing the
neighbour information of the Voronoi cells we have reduced the number of
distance calculations necessary to evaluate which cell contains pq from 17
(the number of cells) down to 12, and this improvements scales significantly
with the number of cells.
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c1
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c4
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c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

c16

c17

Pq

Guess #3, NCells 17

Figure A.5 A diagram of Voronoi cell boundaries, their corre-
sponding nuclei (ci) and a query point pq. The initial guess cell is
shown with an orange nuclei, its neighbours whose distances with
pq which still need to be calculated are shown with green nuclei
and the cells for which this distance has already been calculated
have grey nuclei.

Furthermore, in this scenario we were unlucky that our initial guess of
cell c9 was far away from the actual Voronoi cell which contained p9, it can
be seen that if we had guessed the correct cell, c5 straight away we would
have only made 9 distance calculations. In the case of evaluating which
Voronoi cells contains a series of points on a mesh or along a raypath you
can utilise this optimisation by taking the Voronoi cell which contains the
previous point along a raypath or in a mesh as your initial guess for the
next point, assuming the raypath or mesh has been discretised finely enough
they are likely to be close together and contained by the same Voronoi cell.
This can be seen on Figure A.6 where a raypath crosses our model space
discretised into Voronoi cells. To calculate Ai,j we have discretised our
raypath into points (shown in red) and we need to calculate which Voronoi
cell contains which point, (and if we know the distance between the points
on the raypath we can calculate Ai,j).
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NCells 17

Figure A.6 A diagram of Voronoi cells, their corresponding nuclei
(ci) and a raypath in red, with nodes along the path.
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Algorithm 2 Which Voronoi Cell? (Neighbour)

1: procedure Which Voronoi Cell? (Neighbour)
2: ci = list of Voronoi cell nuclei locations (Array)
3: Nc = length of ci (Integer)
4: pq = query point (Array)
5: dist = a list which is Nc long and initially is filled with Boolean

‘False’ but will be filled in with distances (Array)
6:
7: Neighbouri = list of indexes which provide information on which

Voronoi cells neighbour Voronoi cell i (Array)
8:
9: iguess = the Voronoi cell index which we currently propose contains

pq (Integer)
10:
11: VCellFound = a parameter which is initially false but will stop

the algorithm once the containing Voronoi cell has been determined
(Boolean)

12:
13: dist[:]=False
14: VCellFound=False
15: while notVCellFound do
16: dist[iguess]=distance(ciguess ,pq)
17: for i in Neighbouriguess do
18: if dist[i]=False then
19: dist[i]=distance(ci,pq)
20: end if
21: end for
22:
23: if any(dist[i] < dist[iguess]) then
24: iguess=argmin(dist)
25: else
26: VCellFound=True
27: end if
28: end while
29: return iguess
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