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Fixation classification: how tomerge and select fixation candidates
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Abstract
Eye trackers are applied in many research fields (e.g., cognitive science, medicine, marketing research). To give meaning to
the eye-tracking data, researchers have a broad choice of classification methods to extract various behaviors (e.g., saccade,
blink, fixation) from the gaze signal. There is extensive literature about the different classification algorithms. Surprisingly,
not much is known about the effect of fixation and saccade selection rules that are usually (implicitly) applied. We want to
answer the following question: What is the impact of the selection-rule parameters (minimal saccade amplitude and minimal
fixation duration) on the distribution of fixation durations? To answer this question, we used eye-tracking data with high and
low quality and seven different classification algorithms. We conclude that selection rules play an important role in merging
and selecting fixation candidates. For eye-tracking data with good-to-moderate precision (RMSD < 0.5◦), the classification
algorithm of choice does not matter too much as long as it is sensitive enough and is followed by a rule that selects saccades
with amplitudes larger than 1.0◦ and a rule that selects fixations with duration longer than 60 ms. Because of the importance
of selection, researchers should always report whether they performed selection and the values of their parameters.
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Introduction

Eye trackers allow researchers to study various aspects
of human visual behavior and have been applied in
many different settings. Eye trackers do not automatically
provide the user with meaningful behaviors (e.g., fixations,
saccades, blinks). The process to extract fixations from
the eye-tracker signal can be conducted in different ways,
which we illustrate with two example studies. In the first
example, Hooge et al. (2007) were interested in how fixation
durations are controlled during visual search. In their study
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conducted with the SMI EyeLink I, they presented the
participants with visual search displays consisting of many
different elements among which was the target. They were
mainly interested in the fixation duration as a function of
the difficulty of the foveal inspection task of the currently
fixated and previously fixated search elements. To enable
researchers to compute variables such as the mean fixation
duration or the mean saccade amplitude, behaviors have
to be extracted from the eye-tracker signal. The process
used for this usually consists of two steps. In the first step,
the candidates are extracted with a classification algorithm.
In a second step, rules are applied to select or combine
the candidates to be analyzed. Hooge et al. (2007) used a
classifier based on an adaptive velocity threshold method
(van der Steen & Bruno, 1995) to select saccade candidates
in the eye-tracking data. In a second step, small saccades
(amplitude < 1.5◦ and duration < 12 ms) were removed
from the analysis. They operationalized fixation duration
as the inter-saccadic interval. Näsänen et al. (2001) did the
same and describe it as: “Samples that did not belong to a
saccade were interpreted to belong to a fixation”. When a
saccade was removed, the durations of the removed saccade,
and of the preceding and following fixations, were summed.
In contrast to others (e.g., Zani et al., 2020), Hooge et al.
(2007) did not apply a minimal fixation duration rule.
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Ultimately, Hooge et al. (2007) classified and selected
saccades to construct the fixations that they considered
meaningful for their analysis. This meant rejecting all
saccades with small amplitudes and short durations.

In the second example, Hessels et al. (2016a) inves-
tigated the characteristics of infant saccadic search. The
characteristics include fixation duration, saccade amplitude,
and direction. Hessels et al. (2016a) used a Tobii TX300
and were confronted with a more difficult data processing
problem than Hooge et al. (2007). The quality of infant eye-
tracking data may be much lower than data recorded from
adults, and this is usually reflected in a higher proportion
of data loss and lower precision (for an explanation of pre-
cision, see Holmqvist et al., 2012; Niehorster et al., 2020).
The precision of infant data may be so low that small sac-
cades may be hidden in the noise (see figure 8 of Hessels
et al., 2016b). Hessels et al. (2016a) used the I2MC fixa-
tion classifier (Hessels et al., 2016b), an algorithm that is
designed to work with eye-tracking data of low quality, to
find fixation candidates. Successive fixations were merged
if the inter-fixation distance was smaller than 0.7◦ and the
inter-fixation duration was shorter than 30 ms. Classified
fixations were excluded if these had durations shorter than
40 ms. Hessels et al. (2016b) operationalized the saccade as
the inter-fixation interval. Figure 1 shows a similar classi-
fication and selection as in Hessels et al. (2016a) but with
other selection parameters.

These two studies show how different aspects of
human visual behavior (control of fixation duration and
characteristics of infant saccadic search) can be studied
using eye trackers. In both studies, the researchers used
different classification algorithms and different selection
rules and parameters to determine fixations and saccades.
In Hooge et al. (2007), saccade classification and selection
were used to operationalize fixations indirectly. In Hessels
et al. (2016a), fixation classification and selection were
used to operationalize saccades indirectly. Karn (2000)

describes the classifier in Hooge et al. (2007) as a saccade
picker and the one used in Hessels et al. (2016a) as a
fixation picker. Researchers may choose their classification
algorithms based on arguments such as availability (SMI
users may be using the BeGaze data processing and analysis
program that came with their eye tracker), a specific quality
(I2MC for infant data) or the wish to have full control over
data processing and analysis by using (adapted) versions of
published algorithms (e.g., the use of the NH2010 algorithm
in Niehorster et al., 2015).

While there is a lot of interest in the literature for
classification algorithms (see, e.g., Hein and Zangemeister,
2017, for an overview of approaches) less attention is
given to the selection rules and their parameters, with
these selection rules often being tacked onto a classifier
without significant discussion or an exploration of their
parameter space. Furthermore, we have previously found
that the output of various classification methods (consisting
of classification and selection) shows marked differences
in terms of the number of classified fixations and saccades
(Hessels et al., 2016b; Andersson et al., 2017). We wonder
whether these differences in output are due to the different
nature of the classification algorithms, or can be ascribed
to the variation in the selection rule parameters that were
applied. Conceptually, the selection rule parameters may
have a large impact on the final eye-movement parameters
such as the number of fixations, fixation duration, and saccade
amplitude. For instance, a saccade-selection rule that
merges fixations separated by less than 2◦ will remove
the differences between an algorithm that classifies only
saccades larger than 1.5◦ and another algorithm that
additionally classifies saccades as small as 0.2◦.

Overview of selection rules

What values for minimal saccade amplitude, saccade dura-
tion and minimal fixation duration can be found in the

Fig. 1 Fixation classification flowchart. Example flowchart show-
ing the steps to classify fixations from a gaze position signal. A: Gaze
position signal to be classified. B: Fixation candidates from the I2MC
algorithm (Hessels et al., 2016b) are shaded blue. C: Final set of explic-
itly classified fixations after applying a selection rule that merged (blue

arrows) all fixations closer than 30 ms in time and 0.8◦ in space. Fix-
ations shorter than 160 ms were furthermore removed (red arrow).
These parameters (30 ms, 0.8◦ and 160 ms) were chosen for illustrative
purposes
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literature? We were surprised that many researchers do not
report their selection rule parameters. We also found exam-
ples of selection rules other than the ones we already men-
tioned, namely maximum saccade duration (50 ms, Jacobs,
1986) and maximum fixation duration (2000 ms, Cornelis-
sen & Vo, 2017). The following examples are not exhaustive
and are meant as an illustration of the range of values.
For minimal saccade amplitude (maximal inter-fixation dis-
tance), we found 0.7◦ (Hessels et al., 2016a), 1.0◦ (Kemner
et al., 2008), 1.0◦ (Zelinsky, 1996), 2.1◦ (Hooge & Erke-
lens, 1996; 1999) and 3.0◦ (Diaz et al., 2013). For mini-
mal saccade duration (maximal inter-fixation interval), we
found 12 ms (Kemner et al., 2008), 22 ms (Krieber et al.,
2017), 30 ms (Hessels et al., 2016a), and 50 ms (Diaz
et al., 2013). For minimal fixation duration, we found 40
ms (Hessels et al., 2016a), 50 ms (Jacobs, 1986), 90 ms
(Helo et al., 2014), and 230 ms (de Barbaro et al., 2011).

Various types of justifications for specific parameter
choices are found in the literature. Here we will list a few.
Some fixation and saccade durations (e.g., single sample
saccades when recording at 500 Hz) are simply physically
not possible, and thus likely reflect erroneous classification
(e.g., Nyström & Holmqvist, 2010). Second, (experiment-
specific) assumptions about a cognitive process may guide
what saccades and fixations will be selected for further
analysis. An example is the minimum fixation duration
parameter in reading research (Rayner, 1999): fixations
shorter than 100 ms are removed because it is thought that
the decision to move on (saccade away from a word) could
not have been guided by visual processing during such a
short fixation. Third, only a certain subset of saccades or
fixations may be relevant for the research question, e.g.,
saccades of specific amplitudes (see Smeets & Hooge,
2003; van der Steen & Bruno, 1995; Hooge et al., 2015).

The question

In the present study, we restrict ourselves to the process
of fixation determination. As shown in the examples,
to determine fixations, both a fixation and a saccade
classification algorithm can be used. In the latter case,
a fixation is often operationalized as the inter-saccadic
interval. We distinguish two cases for the first selection rule
(selection of saccades with amplitudes larger than Amin):

1. After classification of saccade candidates, the first
selection rule is applied. Saccade candidates with small
amplitudes (smaller than Amin) are deleted from the
list of saccade candidates. By selecting only the larger
saccades, fixations (inter-saccade intervals) before and
after removed saccades are merged into a longer fixation.

2. After classification of fixation candidates, the inter-
fixation distance and inter-fixation duration are deter-
mined and fixations that are close to each other in time
and space are combined. The inter-fixation duration is
an important parameter in this process because it deter-
mines whether the inter-fixation interval qualifies as a
saccade.

To limit the number of parameters in our study,
we coupled the maximal inter-fixation duration (minimal
saccade duration Tmin) directly to the maximal inter-fixation
distance (minimal saccade amplitude Amin) according to the
following rule T min = 2.2 ∗ Amin + 27. This formula holds
for saccades with amplitudes smaller than 40◦ (Collewijn
et al., 1988).

Since selection rules and their impact on fixation
classification outcomes have not been systematically
explored in the literature, it is currently not understood
how classification and selection differentially contribute
to how fixations are determined. In this article, we posit
that the selection rule step is an important part of fixation
classification that deserves more attention, both in the
literature and from researchers who use fixation and saccade
classifiers. The goal of this article is therefore to develop
an integrated understanding of the role of selection rules
in fixation classification. Such an understanding forms the
basis for deciding what selection-rule parameter settings are
appropriate for a given analysis. By means of experimental
methods we examine the impact of selection rules on the
outcomes of fixation classification. We want to answer the
following question: What is the impact of the selection-
rule parameters (minimal saccade amplitude and minimal
fixation duration) on the outcome measure (the distribution
of fixation durations) of the eye tracking study? The specific
questions that we will examine are

1. What minimal saccade amplitude and what minimal
fixation duration should be applied?

2. Is the impact of the selection parameters different for
different classification algorithms?

3. How does the impact of selection parameters depend
on quality of the eye-tracking data (precision and data
loss)?

To investigate these questions, we processed and analyzed
three eye-tracking data sets (consisting of data with high,
lower, and low data quality) with seven classification
algorithms and two selection parameters (minimal saccade
amplitude and minimal fixation duration). We explored the
selection parameters and we evaluated the obtained fixation
duration distributions.
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Methods

The eye-tracking data

We used three sets of eye-tracking data. The first set is the
EL1000+ data set and consists of eye-tracking data of eight
participants who took part in a free viewing task consisting
of 104 pictures taken in the arctic area around Tromsø. Trial
presentation was self-paced by the participant. Gaze of the
left eye was recorded at 1000 Hz with the SR Research
EyeLink 1000 Plus in desktop mode. Participants were
instructed to sit as still as possible, and their heads were
stabilized with a chin- and forehead rest. Distance to the
screen (1920 x 1080 pixels; 53.0 x 30.0 cm) was 80 cm.
The distance between the eye and the eye tracker was 55
cm. The total looking duration (of the eight participants)
was 5417 s (about 90 min). To characterize the eye-tracking
data quality, we computed the proportion of data loss and
determined the RMS deviation (RMSD) with a moving
window method (window duration 99 ms). RMSD was
computed per window, then we took the median RMSD of
all the windows per trial and averaged this over all 832 (=
8 x 104) trials. RMSD is 0.063◦ and the proportion of data
loss is 0.029. We consider this eye-tracking data set the high
quality data set.

The second set is the SMI RED250 data set and consists
of eye-tracking data of the same eight participants who each
conducted 104 trials. We used eye-tracking data measured
from the left eye with the SMI RED250 (@250 Hz). The
participant looked in her own pace at 104 other pictures
of arctic scenery and was instructed to move the head a
little bit and talk to the operator to make sure that the head
was continuously moving with a small amplitude. Distance
to the screen (1680 x 1050 pixels; 47.3 x 29.6 cm) was
approximately 65 cm. The distance between the eye and
the eye tracker was approximately 65 cm. The total looking
duration (of the eight participants) was 8229 s (about 137
min). The window to determine the RMSD had a duration
of 100 ms (25 samples). RMSD is 0.89◦ and the proportion
of data loss is 0.074. Note that the RMSD in the position
signal of the SMI RED250 set is 14.3 times higher than in
the signal from the EL1000+ data set, proportion of data
loss is 2.6 times higher. We consider the SMI RED250 data
set the low data quality data set.

The third eye-tracking data set is derived from the SMI
RED250 set, we refer to this set as the SMI RED250
CLEAN data set. It turned out that during many episodes
the data quality was so low that all classifier algorithms
(except I2MC, which was developed for classification of
eye-tracking data of low quality) had difficulty dealing with
these episodes (see (1) in Fig. 4). The nature of the episodes
can be best described with what Abdulin et al. (2017)

refer to as Rapid Irregularly Oscillating Noise of the Eye
Position Signal. We decided to remove these episodes from
the SMI RED250 set. To do so, we wrote a Matlab program
according to the pseudocode provided by Abdulin et al.
(2017). This program computes an inefficiency metric based
on a moving window technique (settings: window duration
= 50 ms, inefficiency threshold = 50). The detected episodes
of low data quality were extended in time in both directions
with 20 ms. In these episodes, gaze position coordinates
were replaced by NaN (not a number). The latter increased
the proportion of data loss significantly and therefore, we
removed all trials (n = 328) having proportions of data
loss exceeding 0.3. The total duration of the data set is
4277 s (about 71 min). In the SMI RED250 CLEAN data
set, the RMSD is 0.29◦ and the proportion of data loss
is 0.026. Note that the RMSD in the gaze signal of the
SMI RED250 CLEAN data set is 4.7 times higher than
in the EL1000+ set, the proportion of data loss is about
the same.

The classification algorithms

To determine the role of selection rules in fixation
classification, we evaluated fixation duration distributions
produced by seven different classification algorithms.
We implemented our versions of existing and published
algorithms, namely I2MC (Hessels et al., 2016b), HC2013
(Hooge & Camps, 2013), NH2010 (Nyström & Holmqvist,
2010), KF (Komogortsev et al., 2010), MST (Komogortsev
et al., 2010) and CDT (Veneri et al., 2011). Here we also
introduce a new algorithm called I2MW (Identification by
Two Moving Windows) that is the simplest or most naive
algorithm that we could think of. The method consists of
two connected moving windows (e.g., 10 ms) separated by
one sample. For each of the two windows, the median gaze
position is computed. If the difference between the two
median gaze positions exceeds a threshold (e.g., 0.1◦), the
sample between the windows is labeled saccade.

Our Matlab implementations of the classifiers are avail-
able here: https://doi.org/10.5281/zenodo.5713693. Our
implementations differ in a few ways from the originals:

1. We separated the classification and selection steps
when possible. All explicit selection rules in the
original algorithm were removed and replaced by
our selection rules outside the algorithm. However,
selection may occur implicitly. A clear example of
implicit selection is that if one chooses a higher velocity
threshold in a velocity threshold saccade picker, the
smaller saccades are skipped. In this study, we did not
investigate the selection other than by explicit selection
rules.
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2. Some of our seven algorithms classify both fixations
and saccades. If the algorithm is used as a saccade
picker we only use the classified saccade candidates,
in case of a fixation picker we only use the fixation
candidates. To illustrate this, we use NH2010 as
a saccade picker despite that the original NH2010
classifies saccades, PSOs, fixations and noise episodes.
We consider NH2010 as a saccade picker because
it classifies saccades directly from the eye-tracker
signal. In NH2010, the fixations are classified indirectly
by choosing the periods not being saccade, PSO or
noise. KF and MST directly classify both fixations and
saccades from the eye-tracker signal. We choose to use
them as fixation pickers. Using them as saccade pickers
provided us with almost similar results.

3. Eye-tracking data may contain episodes with empty
samples (NaN values for the gaze direction). Some
original algorithms use interpolation to deal with holes
in the data. We removed all interpolation methods.
Instead, we coded the holes in the data explicitly
(Fig. 2b) for saccade pickers. For fixation pickers, we
applied the following rule. If a hole occurred within a
fixation, we coded the start of a hole as a fixation end
and the end of a hole as fixation start (Fig. 2a).

4. Some original algorithms use an explicit merge rule for
fixations. We removed these. In our implementations of

the algorithms, removing a hole or a small saccade by
not selecting it, has the effect of merging the fixations
preceding and succeeding the removed part (see Fig. 2).

5. To standardize the input for each classifier, we replaced
less meaningful units (e.g., pixels and samples) by
biophysically relevant units (degrees for gaze direction
and minimal saccade amplitude, degrees/s for angular
velocity and velocity thresholds and milliseconds for
all time related parameters such as window duration
for velocity filters). Parameters defined as such can
be related much more easily to the values from the
physiological, biological and biophysical literature. To
illustrate this, one could choose 1◦ as the lower limit for
the amplitude of voluntary saccades because this value
is in the order of the span of 1.2◦ of the fovea (Levin
et al., 2011).

6. In some original algorithms, the angular velocity is
computed by a velocity filter. We chose to equalize the
window duration (in ms not samples) of the filters for
all algorithms and eye-tracking data sets. Since these
velocity filters are implemented as symmetrical moving
windows with an unequal number of samples (n+1+n
samples), we choose 21 ms (10+1+10 samples) for the
velocity filters when working with the EyeLink1000+
data set and 20 ms (2+1+2 samples) for both the SMI
data sets.

Fig. 2 Classifying, merging, and selecting fixations. Example
flowchart showing the steps to classify fixations from a gaze position
signal. A: Fixation picker. The fixation picker (Karn, 2000) delivers
fixation candidates (green blocks labeled Fc). If the inter-fixation inter-
vals (e.g., the period from Fe3 to Fs4) exceed a minimal duration and
amplitude they are not removed from the list of inter-fixation intervals.
The inter-fixation interval indicated with the gray arrow (from Fe2 and
Fs3) is removed because Fe2 and Fs3 are too close in space and time
and as a result the (green) fixation candidates Fc2 and Fc3 are merged.
From the resulting fixation candidates (blue) only the dark blue ones
(F1 to F3) survive because they exceed the minimal fixation duration.

B: Saccade picker. The saccade picker (Karn, 2000) delivers saccade
candidates (yellow). Holes split fixations into two parts. To be able to
remove small holes from the data, we include holes (H1, red) in the
list of saccade candidates. From the saccade candidates the small or
short ones are removed with selection rules that include minimal sac-
cade amplitude and minimal saccade duration. The selected saccades
(orange) operationalize the fixation candidates (blue). The minimal
fixation duration rule filters out the first fixation candidate (light blue)
and the end result of classifying saccades and selecting saccades and
inter-saccade intervals are the dark blue fixations (F1 to F3)
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Procedure

In our collection of classifiers we distinguish two different
types, saccade pickers (I2MW and NH2010) and fixation
pickers (CDT, HC2013, I2MC, KF and MST), for which
we use different procedures (Fig. 2). If the classifier is
a fixation picker (e.g., I2MC or HC2013), it provides us
with fixation candidates and their starts and ends and eye
orientations. In Fig. 2a, the starts and ends are indicated
as Fs2 and Fe2 for the second fixation and as Fs3 and
Fe3 for the third fixation. An eye tracker does not always
provide valid gaze estimations, and this may result in a hole
of a few empty samples in the eye-tracking data stream.
Similar to small saccades, holes may divide fixations into
two parts (e.g., the period between Fe2 and Fs3 in Fig. 2a).
Saccade candidates are operationalized as inter-fixation
intervals (this operationalization includes holes). The goal
of the saccade selection rule is to remove the small saccade
candidates that split fixations. To rule out that holes having
long duration are included in fixations, we also apply
a minimal saccade duration selection rule. The minimal
duration (Tmin) of the saccade candidate is coupled to the
minimal saccade amplitude (Amin) by the formula1 T min =
2.2 ∗ Amin + 27. In Fig. 2a, fixation candidates 2 and 3
(green blocks with names Fc2 and Fc3) are merged into a
fixation F1 (dark blue), because the amplitude of the saccade
candidate (the inter-fixation interval indicated with a light
grey arrow) was smaller than Amin and the duration was
shorter than Tmin. The second selection rule concerns the
minimal fixation duration. Figure 2a shows the selected
fixations (dark blue, labelled F1 to F3).

If the classifier is a saccade picker (e.g., NH2010), it
provides us with saccade candidates and their starts and
ends and orientations. In Fig. 2b, these starts and ends are
indicated as Ss2 and Se2 for the second saccade. Saccade
pickers do not provide us with enough information to make
the assumption that fixations can be operationalized as inter-
saccade intervals. We added the beginning and end of the
trial (Fig. 2b, Sd and Ed) and the beginnings and ends of
holes in the data (Fig. 2b, e.g., Hs1 and He1). From the
saccade candidates and the holes we select those that span
the minimal saccade amplitude and duration by comparing
their start and ending timings and orientations. In this
example, three saccades candidates survive this selection,
the hole does not. The selected saccades are marked orange.
The fixation candidates are operationalized as the inter-
saccade intervals. The second selection rule is the minimal
fixation duration. Figure 2b shows the selected fixations
(dark blue, labelled F1 to F3).

1This formula is adapted from Collewijn et al. (1988), who describe
the relation between saccade duration and saccade amplitude.

Results

In the first analysis, we produced fixation duration
distributions for each of the seven classification algorithms
(Fig. 3) in the EL1000+ eye-tracking data set. We applied
four different sets of selection parameters (different values
for the minimum saccade amplitude Amin and the minimum
fixation duration Tmin). Figure 3a shows the fixation
duration distributions without selection (Amin = 0.0◦ and
Tmin = 0.0 ms). The different classifiers produce different
fixation duration distributions. For example, the distribution
of NH2010 resembles a skewed bell curve with a peak
around 200 ms, while MST produces many (very) short
fixations. After we removed all saccades with an amplitude
below 0.3◦, the fixation duration distributions of the
different classifiers became more similar (Fig. 3b). By
removing the small saccades, many shorter fixations were
merged into longer fixations (see Fig. 2). Figure 3c shows
the fixation duration distributions after removal of all
saccades with amplitudes smaller than 1◦, resulting in
distributions that appear even more similar. However, it
can clearly be seen that there are still many very short
fixations in the fixation duration distributions (see the
left part of Fig. 3c). With a Tmin of 60 ms, all short
fixations can be removed (Fig. 3d) without removing too
many fixations from the bottom part of the bell shaped
distribution. In summary, applying two selection rules in
the order of first removing small saccades followed by
removing short fixations, transforms the fixation duration
distributions produced by seven different classification
algorithms from very different to very similar. This can be
stated in another way. In this example, the selection rules
and their parameters affect the obtained fixation durations
much more than the choice of the classifier algorithm.

Is the previous also true if we analyze an eye-tracking
data set of lower quality? Fig. 3e, f, g and h clearly show
that applying the selection rules with Amin = 1.0◦ and Tmin =
60 ms do not result in similar fixation duration distributions
for the seven classifier algorithms. Manual inspection of the
gaze signals with fixation and saccade candidates plotted
together, revealed that the data quality for the SMI RED250
set is too low for most of the algorithms. Except for I2MC,
they produce many small fixations (see examples Fig. 4).
We decided to continue with the SMI RED250 CLEAN
dataset. Subsequently we also removed all trials in which
the proportion of data loss exceeded 0.3. Figure 3i, j, k and
l show a similar result as for the EL1000+ set. The fixation
duration distributions are different when no merging (e.g.,
by removing small saccades) and selection are applied to the
fixation candidates (Fig. 3i). After removing of the saccades
with small amplitudes and removing of the fixations with
short durations, the fixation duration distributions look
remarkably similar (Fig. 3l).
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Fig. 3 Fixation duration distributions for different selection rule
parameters. Panels A, B, C, and D depict the distribution of fixa-
tion duration obtained from the EL1000+ eye-tracking data set for the
seven classifier algorithms with different selection rule parameters.
Panels E, F, G, and H depict results for the SMI RED250 data set.

Panels I, J, K, and L depict results for the SMI RED250 CLEAN data
set. The main conclusion of this figure is that the distribution of fix-
ation duration is similar for different classifiers after selection rules
with Amin = 1.0◦ and Tmin = 60 ms are applied (panels D and L)

The similarity between the fixations produced by the
seven classification algorithms after selection with two
rules can also be determined with an objective method.
Hooge et al. (2018) developed an event-based F1-score
method to compare the results of different classifiers.
Table 1 contains F1 scores that quantify the agreement
between classifiers for the fixation candidates obtained
from the EL1000+ eye-tracking data set before merging
and selection. The average F1 score is 0.47 and the F1
scores range from 0.15 (agreement between KF and CDT)
to 0.77 (NH2010 and CDT). Table 2 contains F1 scores
for the fixations after merging and selection with Amin =
1.0◦ and Tmin = 60 ms. The F1 scores are much higher
and range from 0.88 (CDT and KF) to 0.99 (HC2013
and I2MW) and the average value is 0.93. We repeated
this procedure for the classification of the SMI RED250
CLEAN dataset. We found values ranging from 0.56
to 0.93 before merging and selection (average value is
0.69) and values ranging from 0.91 to 0.98 after merging

and selection (average value is 0.94). Based on the F1
scores we conclude that the fixation duration distributions
produced by seven different classification algorithms in
two eye-tracking data sets are remarkably similar after
merging fixations by removing saccades smaller than
1◦ and subsequently removing fixations shorter than
60 ms.

Discussion

Summary of results

In this study we are interested in the role of selection rules
in fixation classification. We formulated three questions.
1) What minimal saccade amplitude and what minimal
fixation duration should be applied? 2) Is the impact of the
selection parameters different for the different classification
algorithms? 3) How does the impact of selection parameters
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Fig. 4 SMI 250RED eye-tracking data set with classifications of
seven algorithms. Panel A shows horizontal and vertical components
of eye orientation with fixations (gray) and fixation starts (blue line)
and fixation end (red line). The grey rectangles (bottom part of panels
A and B) depict the classified fixations for each of the seven different
algorithms. The classified fixations of KF are marked red, indicating
that the fixations plotted over the eye-tracking signals (top parts of
panels A and B) are produced by KF. Panel A shows the unfiltered
classified fixations (Amin = 0.0◦ and Tmin = 0 ms). Panel B shows the
same as in panel A but for the filtered data (Amin = 1.0◦ and Tmin
= 60 ms). The differences between the fixations between the left and
the right panel are clear. Fixations in panel B are longer than these of

panel A (due to merging), Panel B contains no extreme short fixations
and the classified fixations of panel B are more similar between algo-
rithms. 1) Denotes an episode of low-quality data and a clear example
of rapid irregularly oscillating noise of the eye position signal (Abdulin
et al., 2017). The white arrow points to how HC2013 classifies this
episode with many very short fixations separated by fast phases with a
large amplitude. This is an episode that is deleted and is not present in
the SMI 250RED CLEAN eye-tracking data set. 2) Only I2MC coded
the low-quality data episode as part of a longer fixation. 3) This long
episode of relative stillness is classified differently by most classifiers
(CDT, NH2010 and KF classify one long fixation). 4) Due to merging,
the long fixation is classified similarly by all classifiers

Table 1 Event-based F1 scores for the seven classification algo-
rithms. The F1 scores represent agreement between classifiers for the
fixation candidates obtained from the EL1000+ eye-tracking data set

before merging and selection (Amin = 0.0◦ and Tmin = 0 ms). 0.0 means
disagreement, 1.0 means agreement

I2MC HC2013 NH2010 KF MST CDT I2MW

I2MC - 0.55 0.74 0.18 0.56 0.68 0.53

HC2013 0.55 - 0.51 0.29 0.49 0.48 0.67

NH2010 0.74 0.51 - 0.15 0.60 0.77 0.45

KF 0.18 0.29 0.15 - 0.19 0.15 0.29

MST 0.56 0.49 0.60 0.19 - 0.58 0.47

CDT 0.68 0.48 0.77 0.15 0.58 - 0.44

I2MW 0.53 0.67 0.45 0.29 0.47 0.44 -
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Table 2 Event-based F1 scores for the seven classification algo-
rithms. The F1 scores represent agreement between classifiers for the
fixation candidates obtained from the EL1000+ eye-tracking data set

after merging and selection (Amin = 1.0◦ and Tmin = 60 ms). 0.0 means
disagreement, 1.0 means agreement

I2MC HC2013 NH2010 KF MST CDT I2MW

I2MC - 0.95 0.94 0.93 0.96 0.92 0.96

HC2013 0.95 - 0.96 0.91 0.92 0.91 0.99

NH2010 0.94 0.96 - 0.90 0.93 0.90 0.96

KF 0.93 0.91 0.90 - 0.91 0.88 0.92

MST 0.96 0.92 0.93 0.91 - 0.92 0.93

CDT 0.92 0.91 0.90 0.88 0.92 - 0.91

I2MW 0.96 0.99 0.96 0.92 0.93 0.91 -

depend on quality of the eye-tracking data (precision and
data loss)? The main results for this study are:

1. The fixation duration distributions produced by seven
different algorithms and two selection rules with
minimal saccade amplitude (Amin = 1.0◦) and minimal
fixation duration (Tmin = 60 ms) are similar (see Fig. 3
and Table 2).

2. The previous is true for eye-tracking data with high
quality (RMSD = 0.06◦) and eye-tracking data with
lower quality (RMSD = 0.3◦) without severe artifacts
(e.g., Abdulin et al., 2017).

3. I2MC is the only of the seven algorithms that can deal
with episodes of very low data quality (RMSD = 0.9◦,
see Fig. 4).

The order of application of the selection rules

In our procedure we first remove small saccades (with the
effect of merging fixations) followed by removing short
fixations. One may ask why we put the selection rules in
this specific order. The first answer is that to our knowledge
it is a convention, we have done this for decades already.
We also do not know any example where the opposite
order is applied. Interestingly, we find a remarkably similar
approach in section 3.1.6 of the Tobii I-VT fixation filter
algorithm description (Olsen, 2012) which describes a rule
for discarding small saccades with two parameters (Tmax

= 75 ms; Amin = 0.5◦) followed by a rule to discard short
fixations (Tmin = 60 ms) in section 3.1.7. The EyeLink data
viewer has a similar approach with merge rules followed
by an option to remove short fixations (SR-Research, 2021,
section 5.3.3.3).

The second answer is that removing small saccades
followed by removing of short fixations leads to less
data loss in the analysis. Imagine that one starts with
the selection of fixations based on a minimal fixation
duration. Each removal of a short fixation creates a hole
in the data. Starting with the selection of saccades based

on their size and duration is more obvious because in
a proper operationalization of a fixation, it is included
how much eye movement is tolerated within the fixation
(see for an extensive discussion, cf. Hooge et al., 2018;
Hessels et al., 2018). The subsequent removal of small
saccades has the effect of merging fixations and does
not lead to data loss. This makes even more sense if
a researcher wants to keep the temporal structure of
the eye tracking data intact. Examples of experimental
tasks for which temporal order may be relevant are for
example visual search, reading, free viewing and mind
wandering.

Is the classification correct?

Imagine one states: “The fixation duration distributions
look similar, the F1 scores are very high, but perhaps all
classified fixations are completely off in the same way”.
In other words, the fixations may be all wrongly classified
by the seven different algorithms. A solution for this
problem can be a comparison with a ground truth. Before
we can do that we have to agree on what may act as a
ground truth. Andersson et al. (2017) used expert human
coders and compared their classifications with those of ten
classification algorithms. In their view, the algorithm that
produced saccades and fixations closest to those coded by
two human experts was the best. However, we have at least
two problems with this approach:

1. A practical problem. In Hooge et al. (2018), the fastest
humans coded about one fixation (e.g., fixation start
or fixation end) per second. In the present study, we
have 161 (= 90 + 71) min of eye-tracking data. Under
the conservative assumption that our eye-tracking data
sets contain about 2.5 fixations per second, this means
13.5 h of manual coding. Another problem is whether
a human coder can classify this amount of data without
making errors or whether one can stay unbiased (or
at least maintain the same bias) (Komogortsev et al.,
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2010). Of course we can decrease this problem by only
considering a portion of the eye-tracking data.

2. A philosophical problem. We do not acknowledge
the classifications by human expert coders as the
ground truth. Expert coders may have a range of
ideas, definitions or operationalizations of fixations and
saccades (see for extensive discussions Hooge et al.,
2018; Hessels et al., 2018). Are the classifications of
one expert better than the classifications of another
expert? How do we know which expert provides us
with “the real truth”? Or should we take a democratic
approach and average the classifications of the experts?
Or should we instruct the experts to classify in a certain
way? But who should we then ask to instruct them?

We are not against using human coding as a pragmatic
method in the evaluation and adaptation of a new
classification method. Notably, the first two authors of the
present study have adapted the sensitivity parameters (e.g.,
lambda in NH2010 and HC2013) and thresholds (e.g., CHI-
squared for KF and saccade detection threshold for MST)
to enable the algorithms to produce reasonable output (in
their expert eyes) with two eye-tracking data sets. Manual
inspection with a dedicated data viewer was part of this
process.

Let us return to the original question. How do we
know whether our implementations of the algorithms do
provide the “correct” classification? To be honest, we do
not know. Firstly, we do not know whether there is a correct
classification and secondly, if the answer exists we do not
know how to access it. Actually, we do not believe that there
are objectively true fixations and objectively true saccades.
Developers often design their algorithms with a specific
goal in mind. For example, Nyström and Holmqvist (2010)
designed their algorithm such that PSOs are not added to
the saccade or the fixation and Engbert and Kliegl (2003)
designed their algorithm to classify microsaccades.

We do not know whether our implementations of the
algorithms deliver the correct classifications. What we do
know is that our method of using a sensitive classifier
with selection rules delivers consistent classifications under
different conditions. We asked eight subjects to free view
two sets of similar pictures with arctic scenery. In one set,
gaze was recorded with the EyeLink 1000 plus eye tracker
in the other we used the SMI RED250 eye tracker. We
have no theoretical reason to believe that fixation durations
should differ between these two conditions. This is exactly
what our results show us. The distributions of fixations
are remarkably similar between the two eye-tracking data
sets. We also know that all the algorithms are already
independently validated by at least their designers. There
would have to be a limit to how wrong they are, and
if they are wrong, they would be so consistently wrong

together with the wrong intuitions of their designers that
they, ironically, ultimately end up being right.

How to design a classifier

In the present study, we showed that stripped down and
slightly modified versions of seven different classification
algorithms from the literature can be used to produce very
similar fixation duration distributions from two different
eye-tracking data sets. The trick is to use a classifier
that is sensitive enough followed by selection rules that
remove small and short saccades (< 1.0◦) and subsequently
remove short fixations (< 60 ms). We showed that selection
is an important process and that researchers should not
worry too much about their classification algorithm as
long as it is sensitive enough. Only if a researcher uses
data of low quality (e.g., precision between 1◦ and 2.5◦),
the I2MC classifier should be considered because the
other methods cannot deal with eye-tracking data of low
precision. How does a researcher know whether the current
classifier is sensitive enough? Or how does a researcher
know whether the quality of eye-tracking data is so good,
that he should not consider using I2MC? The answer is
simple: extensive manual inspection of the gaze signal
with the classifications plotted on top should be a standard
procedure for researchers to decide how to classify their
fixations. Depending on the quality of the eye-tracking
data, a researcher may also decide to use the method of
Abdulin et al. (2017) to remove what they refer to as “rapid
irregularly oscillating noise of the eye position signal”. In
the present study, this happened to be an effective method
to clean up eye-tracking data from the SMI RED250.

Advantages of our implementations of existing
algorithms

What is the difference between our implementations of the
classification algorithms with selection rules at the end,
versus an algorithm with all these selection rules baked-
in or implicit to the algorithm? Is it only a difference
in transparency? Probably, but transparency is not a goal
in itself. Researchers should know their eye-tracking data,
their classifiers (and settings) and should be aware of
the effect of the selection rules as a function of their
parameters. Researchers should have a clear idea what they
expect from their classification (including selection). It does
not matter whether they use closed-source, published or
our implementations of existing classifiers. A deviation
from the expected outcome (e.g., an unexpectedly high
number of small saccades and/or short fixations should
make a researcher cautious and willing to inspect the eye
tracker signals with classifications plotted on top. Our
implementations have at least two properties that make
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them preferable over the originals in our opinion: 1) they
accept episodes of data loss and deal with them without
interpolation and 2) they are fed with biophysically and
physiologically relevant parameters that can be inspired by
or found in the literature (e.g., span of the fovea, relations
between amplitude, duration, and velocity of saccades).
We also introduced I2MW (designed in a 10-min group
discussion between the authors) that performs equally well
as many of the more fancy algorithms. I2MW does not
contain any “magic” and has only a few easy to adjust
parameters. We recommend that researchers look at their
gaze signal. Researchers should always report whether they
performed selection and if they do, they should report the
values of their parameters.

Conclusions

Selection rules play an important role in merging and select-
ing fixation candidates. For eye-tracking data with good to
moderate precision (RMSD < 0.5◦), the classification algo-
rithm of choice does not matter too much as long as it
is sensitive enough. Two selection rules with minimal sac-
cade amplitude (Amin = 1.0◦) and minimal fixation duration
(Tmin = 60 ms) give remarkably good results in two repre-
sentative eye-tracking data sets. Researchers should always
report whether they performed selection and report what
parameters they used.
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