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How can we enumerate the inhabitants of an algebraic datatype? This paper explores a datatype generic
solution that works for all regular types and indexed families. The enumerators presented here are provably
both complete and unique—they will eventually produce every value exactly once—and fair—they avoid bias
when composing enumerators. Finally, these enumerators memoise previously enumerated values whenever
possible, thereby avoiding repeatedly recomputing recursive results.

CCS Concepts: • Software and its engineering → Data types and structures; Functional languages;
Software notations and tools; • Theory of computation→ Type theory.

Additional Key Words and Phrases: property-based testing, interactive proof assistants, dependently typed
programming, datatype generic programming, Agda

ACM Reference Format:
Cas van der Rest and Wouter Swierstra. 2022. A Completely Unique Account of Enumeration. Proc. ACM
Program. Lang. 6, ICFP, Article 105 (August 2022), 27 pages. https://doi.org/10.1145/3547636

1 INTRODUCTION
To reduce the cost of formal verification, lightweight techniques—such as program testing—can
help catch some errors early. Property-based testing is one approach to software testing that has
been popularised by libraries such as QuickCheck [Claessen and Hughes 2000]. Property-based
testing libraries try to find counterexamples that falsify a property that is expected to hold by
passing automatically generated inputs to the programs being tested. If no counterexample can
be found, the property may not hold in general—but in practice many errors in the code and its
specification can be found in this fashion.

The central technology that underlies property-based testing libraries is the generation of suitable
test values to serve as input to the programs being tested. Rather than generate random input
values as QuickCheck does, this paper explores how to enumerate the values inhabiting a given
datatype. While this is not a new problem, or even an entirely new idea—this paper makes several
novel contributions:

• We give a datatype generic account of the enumeration of both regular datatypes (Section 3)
and indexed families (Section 4). Most existing approaches to enumerating datatypes rely on
some form of user-defined size bound and the datatype generic case is rarely considered. We
show how to make the recursive structure of enumerators explicit, thereby cleanly separating
the definition of enumerators from their execution. This allows for different interpretations of
enumerators, including a coinductive stream of values, or indeed, the finite set of elements
up to some bound. Furthermore, while there is large body of work on enumerating regular
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105:2 Cas van der Rest and Wouter Swierstra

types [Braquehais 2017; Duregård et al. 2012; Runciman et al. 2008], the case for indexed
families has remained unexplored until now.

• We identify and establish properties of these enumerators and provide a formalised proof
that these properties hold for all of our generic definitions. While some of these properties
are mentioned or established informally in existing work, their mechanization has lagged
behind. We establish several different properties of all of our enumerators: completeness and
uniqueness for both regular datatypes and indexed families (Sections 3.3 and 4.3), and the
fairness of the enumerators we use in our generic definitions (Section 2).

• We show how naive enumeration has an efficiency problem: the repeated recomputation of
recursive results. We can address this by memoising previous computations readily enough
for regular datatypes (Section 3), extending these results to indexed families is less obvious. If
we restrict ourselves to regular indices, however, we can show how to construct a generic trie
to memoise the enumeration of indexed families that can drastically speedup enumeration in
specific cases (Section 5).

• Finally, we illustrate how these generic definitions can be used to enumerate well typed
expressions (Section 6).

About this paper. All definitions and proofs shown or mentioned in this paper have been for-
malised in Agda [Norell 2009], although we have taken some notational liberties to improve the
presentation: we often omit universally quantified implicit arguments, making liberal use of Agda’s
variable construct. Although we use Agda in this paper to present our ideas, we believe that they
are applicable in other proof assistants using dependent types, such as Coq [Coq Development
Team 2020], Idris [Brady 2013], F★ [Swamy et al. 2016], or Lean [de Moura et al. 2015].

2 FAIR AND COMPLETE ENUMERATION
In this section, we will define the key types, combinators, and properties of enumerators that we
will use throughout this paper. What does it mean to enumerate the inhabitants of a type A? The
simplest definition might be some list of values of A:

Enumerator : Set → Set
Enumerator A = List A

Yet many recursive datatypes, such as trees or lists, have an infinite number of inhabitants. Hence
a (finite) list will not suffice; we could use a (potentially infinite) ‘co-list’ instead, but instead we
will choose a slightly different approach, introducing an additional level of indirection to make the
recursive structure of datatypes explicit. The central type of this paper, Enumerator, is defined as
follows:

Enumerator : Set → Set → Set
Enumerator A B = List A → List B

We define an enumerator as a function from lists to lists. Given a list of structurally ‘smaller’
ingredients of type A that we have already constructed, an enumerator builds a list containing
‘larger’ elements of type B. For the moment, however, we will not use the argument list passed to
an enumerator until considering the enumeration of recursive datatypes (Section 2.3), where we
will repeatedly apply such functions.

2.1 Enumerator Combinators
The simplest enumerators are the empty enumerator (producing no elements) and singleton enu-
merators (producing exactly one element).
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∅ : Enumerator A B
∅ = const []

pure : B → Enumerator A B
pure x = const [ x ]

Both these enumerators ignore their parameter and immediately return a list.
Furthermore, enumerators are functorial in their second argument; we can define the required

operation (⟨$⟩) by mapping over the resulting list of values:
_⟨$⟩_ : (A → B) → Enumerator C A → Enumerator C B
f ⟨$⟩ e = map f ∘ e

Next, we would like to combine the elements produced by two enumerations using the following
choice operator:

_⟨∣⟩_ : (e₁ e₂ : Enumerator A B) → Enumerator A B

The obvious way to define this operation, is by appending the resulting lists.
(e₁ ⟨∣⟩ e₂) as = (e₁ as) ++ (e₂ as)

At this point, however, it is worth thinking about the properties that we expect this combinator
to satisfy. One important property is that each element produced by either e₁ or e₂ should also
occur in e₁ ⟨∣⟩ e₂. To reason about the elements produced by our enumerators, we will use the _∈_
relation, capturing when an element occurs somewhere in a list:

data _∈_ : A → List A → Set where
Here : x ∈ (x :: xs)
There : x ∈ xs → x ∈ (y :: xs)

It is easy to prove that the append operator on lists preserves this relation:
inl : x ∈ xs → x ∈ (xs ++ ys)
inr : y ∈ ys → y ∈ (xs ++ ys)

In practice, however, combining lists in this fashion is biased : all the elements of xs will appear in
the resulting enumeration before the first element of ys. Using such biased enumerators may be
especially problematic in the context of property-based testing, where we typically want to find
a counterexample as quickly as possible. If xs contains values built with one constructor and ys
contains values built with another constructor, then checking a property on xs ++ ys will only
start checking elements from ys after having exhaustively checked those from xs. To avoid such
undesirable bias, we need to identify a property that rules out such biased definitions.

Fairness. To avoid this bias, we begin by defining an ordering on the elements of our enumerations.
To do so, we begin by mapping each position in a list to its corresponding natural number:

∣_∣ : x ∈ xs → N

∣ Here ∣ = zero
∣ There p ∣ = succ ∣ p ∣

Nowwe can compare two positions—not necessarily in the same list—by using the familiar ordering
on their underlying natural numbers:

_≺_ : x ∈ xs → y ∈ ys → Set
p ≺ q = ∣ p ∣ < ∣ q ∣

Now that we have an order on positions, we can return to our original problem: formulating and
proving fairness of the choice operator. The inl and inr lemmas above prove that the ++ operation
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does not discard elements; constructively, however, we can also regard them as functions that
compute where the elements of xs and ys will appear in the resulting list. Using our ordering on
positions, we can now use the inl and inr lemmas to formulate the following fairness properties,
capturing the intuition that the ++ operation should respect the ordering of elements in its argument
lists:

(p : x ∈ xs) (q : y ∈ ys) → p ≺ q → inl p ≺ inr q
(p : x ∈ xs) (q : y ∈ ys) → p ≺ q → inr p ≺ inl q

The ++ operator satisfies the first property, but not the second: the first element of ys will come after
the last element of xs in xs ++ ys. As the ++ operation does not respect the order of elements of its
argument lists, we consider it to be unfair.

Fair Choice. So what is a fair notion of choice operator? Unsurprisingly, the solution is to draw
elements, alternating between the two argument lists:

interleave : List A → List A → List A
interleave [] ys = ys
interleave (x :: xs) ys = x :: interleave ys xs

In contrast to the list append function, interleave does respect the order of elements in the resulting
list. To establish this, we begin by showing that it does not discard elements:

interleave∈-left : (xs ys : List A) → x ∈ xs → x ∈ interleave xs ys
interleave∈-right : (xs ys : List A) → y ∈ ys → y ∈ interleave xs ys

In contrast to appending lists, however, interleaving lists is fair, as witnessed by a pair of lemmas
with the following types:

(p : x ∈ xs) (q : y ∈ ys) → p ≺ q → (interleave∈-left xs ys p) ≺ (interleave∈-right xs ys q)
(p : x ∈ xs) (q : y ∈ ys) → p ≺ q → (interleave∈-right ys xs p) ≺ (interleave∈-left ys xs q)

We can additionally prove the other two possible combinations—left-left and right-right—hold as
expected. Note that the append operator also satisfies both these properties.

Using the interleave function, we can now define a fair choice operation on enumerators:
_⟨∣⟩_ : (e₁ e₂ : Enumerator A B) → Enumerator A B
e₁ ⟨∣⟩ e₂ = _ as → interleave (e₁ as) (e₂ as)

We can use the choice operation to enumerate types that have more than one constructor, such as
the booleans:

bools : Enumerator A Bool
bools = pure false ⟨∣⟩ pure true

2.2 A Fair Pair
Besides the choice operator, ⟨∣⟩, we would like to compute the cartesian product of two enumerators:

pair : Enumerator A B → Enumerator A C → Enumerator A (B × C)

The usual definition of the cartesian product of two lists relies on the concatMap function:
cp : List A → List B → List (A × B)
cp xs ys = concatMap (_ x → map (_ y → x , y) ys) xs

Yet concatenation-based cartesian products are not a suitable choice if we care about the fairness
of our enumerators. Just as the append operator is biased towards the first list, this definition of
the cartesian product using concatenation will favour pairs whose first component appears earlier
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on in the first argument list xs. Instead, we introduce the following custom prod function, inspired
by the product of power series [McIlroy 1999]:

prod : List A → List B → List (A × B)
prod [] ys = []
prod (x :: xs) [] = []
prod (x :: xs) (y :: ys) = (x , y) :: interleave (map (_ y → (x , y)) ys) (prod xs (y :: ys))

The prod function also computes the cartesian product of its two argument lists. The interesting
case, when both lists are non-empty, uses the interleave function to alternate between the elements
with x as their first component and the elements whose first component is drawn from the tail xs.
By interleaving these two intermediate lists, we can show that the prod function is fair.

To make this more precise, we need to start by showing that the prod function will produce all
possible elements of the cartesian product of its two inputs:

prod∈ : (xs : List A) → (ys : List B) → x ∈ xs → y ∈ ys → (x , y) ∈ prod xs ys

We can now formulate and prove the desired fairness property using the above lemma:
prodFair : (p₁ : x₁ ∈ xs) (p₂ : y₁ ∈ ys) (q₁ : x₂ ∈ xs) (q₂ : y₂ ∈ ys) →

p₁ ≺ q₁ → p₂ ≺ q₂ → prod∈ xs ys p₁ p₂ ≺ prod∈ xs ys q₁ q₂

The proof itself follows by induction over the positions passed as arguments. Although it requires
several auxiliary lemmas about the fairness ofmap and interleave, the proof itself is not particularly
complicated. The only non-trivial insight required is that prod∈ is a monotonically increasing
function: if an element x occurs in the i-th position in one of the input lists, pairs with the value x
as their first component will not occur before position i in the list of pairs produced. Using this
prod function, we can define the fair pairing operation on enumerators as follows:

pair : Enumerator A B → Enumerator A C → Enumerator A (B × C)
pair e₁ e₂ = λ cs → prod (e₁ cs) (e₂ cs)

Finally, we can use the prod function to also define the familiar applicative combinator:
_⊛_ : Enumerator C (A → B) → Enumerator C A → Enumerator C B
e₁ ⊛ e₂ = λ cs → map apply (prod (e₁ cs) (e₂ cs))

where
apply : (A → B) × A → B
apply (f , x) = f x

Although we will not use this combinator in our generic constructions, it can be useful for some of
the example enumerators we will define by hand in the remainder of this section.

It is worth pointing out that fairness is an intensional property: given an enumerator of type
Enumerator A B there is no way to check if it is fair or not. Instead, we need to check for each
combinator we use to construct these enumerators that it is fair. Having said that, there is a further
drawback to this definition of fairness: it is non-compositional.The enumerators (e₁ ⟨∣⟩ e₂) ⟨∣⟩ e₃ and
e₁ ⟨∣⟩ (e₂ ⟨∣⟩ e₃) are built using a fair interleaving combinator—yet as interleaving is not associative,
they will produce their results in a very different order, skewed towards e₁ and e₃ respectively. We
will discuss this point—and its consequences for our enumerators—further in the discussion in
Section 7.

2.3 Recursive Enumerators
How can we define an enumerator for a recursive type? This will be where we use the additional
argument passed to each enumerator. Consider the following datatype for binary trees:
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data Tree : Set where
Leaf : Tree
Node : Tree → Tree → Tree

If we naively try to compute the list of trees of a given size, we might use the applicative instance
for lists to write:

list-trees : N → List Tree
list-trees zero = []
list-trees (succ n) = [ Leaf ] ++ Node ⟨$⟩ list-trees n ⊛ list-trees n

In this way, a call to list-trees nwill compute a list of trees with depth at most n. There is, however, a
problem with this definition: the two calls to list-trees n give rise to an exponentially slow function.
Fortunately, there is a well-known solution: we can pass the result of the previous recursive call
as an argument to our enumerator, avoiding the superfluous recomputation. This is where our
additional list argument in the definition of the enumerator type will finally be used.

Firstly, we can define the following trivial enumerator, rec, that simply returns its argument list:

rec : Enumerator A A
rec = _ as → as

We can now use almost all the combinators we have seen so far to define a ‘recursive’ enumerator
for trees.

trees : Enumerator Tree Tree
trees = pure Leaf ⟨∣⟩ Node ⟨$⟩ rec ⊛ rec

Note that this enumerator is not really recursive: it simply defines a function List Tree → List Tree.
By iteratively applying this function to an initially empty list we can create lists of increasingly
deep trees. More generally, we can define the enumerate function that produces a finite list of
elements of type A from its argument enumerator by iterating its argument enumerator a fixed
number of times.

enumerate : Enumerator A A → N → List A
enumerate e n = iterate n e []

iterate : ∀ {A} → N → (A → A) → A → A
iterate zero f x = x
iterate (succ n) f x = f (iterate n f x)

Crucially, we avoid unnecessary recursive calls in this style, as we saw in the list-trees function.
Here all the ‘smaller’ trees are passed as an argument to the trees function; the trees function itself
describes a single step in the generation process, assembling larger trees from the subtrees in its
argument list. Phrasing our enumerators in this style ensures that we can efficiently enumerate
recursive datatypes in a datatype generic fashion, reusing previous computations whenever possible.
Note that there are other ways to apply our enumerator functions, such as producing an infinite
stream of lists of increasingly ‘large’ elements:

stream : Enumerator A A → Stream (List A) ∞
stream e = Codata.Stream.iterate e []

For the purpose of this paper, however, we will only concern ourselves with the enumerate function
that produces a finite approximation of the elements of a given datatype.
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2.4 Enumerator Completeness & Uniqueness
The types of our enumerators does not guarantee anything about their behaviour. For example, the
following enumerator for the booleans is type correct, but wrong:

boolsWrong₁ : Enumerator Bool Bool
boolsWrong₁ = ∅

To rule out such definitions, we identify the key property that our enumerators must satisfy:
completeness. An enumerator is complete when every possible value of a type will eventually be
generated. In the remainder of this section, we will make this precise.

We begin by defining the following Occurs relation:
data Occurs (x : A) (e : Enumerator A A) : Set where

occurs : (n : N) → x ∈ enumerate e n → Occurs x e

When there is some natural number n such that x ∈ enumerate e n, we say that x occurs in the
enumerator e. An enumerator e is complete when each x : A occurs in e:

Complete : Enumerator A A → Set
Complete e = ∀ x → Occurs x e

To prove an enumerator e is Complete amounts to showing that for every value x : A, we will
eventually produce x in the list enumerator e n for large enough values of n.

To demonstrate how completeness proofs may help to weed out erroneous, but type-correct
definitions, we consider the completeness proof for the simple enumerator of the booleans, bools,
that we saw previously.

bools-complete : Complete bools
bools-complete false = occurs 1 (Here)
bools-complete true = occurs 1 (There Here)

On the other hand, it is not possible to construct a proof that boolsWrong₁ is a complete enumerator;
a fortiori, we can prove that boolsWrong₁ is not complete.

Besides completeness, we will define enumerators that list elements without duplicates. The
following enumerator for booleans is complete:

boolsWrong₂ : Enumerator Bool Bool
boolsWrong₂ = λ bs → true :: true :: false :: []

Yet this enumerator contains two occurrences of true. To rule out enumerating the same element
more than once, our enumerators will only ever produce lists that are unique:

Unique : List A → Set
Unique xs = (x : A) → (p₁ p₂ : x ∈ xs) → p₁ ≡ p₂

All our enumerators will preserve uniqueness: given a list of unique ‘smaller’ terms as its input,
our enumerators will produce a new unique list of elements. In what follows, we will rarely write
completeness and uniqueness proofs by hand, but rather define generic enumerators that are built
from the combinators presented here that guarantee these properties hold.

3 GENERIC ENUMERATION OF REGULAR TYPES
In the previous section, we defined example enumerators for booleans and trees. In this section, we
show to generalise these results and write a generic enumerator for a collection of simple algebraic
datatypes; that is, we show how suitable enumerators can be generated by induction over the
structure of such types.
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To achieve this, we will reify a collection of types as values of some universe U : Set. A universe
is accompanied by a semantics, ⟦_⟧, that interprets values in U as an Agda type. To define a generic
enumerator (approximately) amounts to defining a function:

enumerate : (u : U) → Enumerator ⟦ u ⟧ ⟦ u ⟧

To illustrate the general approach, we start by defining enumerators for the regular types before
moving on to a more complicated universe in the next section. Despite its simplicity, this universe
is able to describe many familiar algebraic datatypes.

3.1 Regular Types
The universe of regular types contains the empty type (zero), unit type (one), recursion (var) and
type constants (k), and is closed under products (⊗) and coproducts (⊕). We describe regular types as
values of the description type Desc:

data Desc (P : Set → Set) : Set1 where
zero : Desc P
one : Desc P
var : Desc P
k : (S : Set) → {P S} → Desc P
_⊗_ : (D₁ D₂ : Desc P) → Desc P
_⊕_ : (D₁ D₂ : Desc P) → Desc P

This definition is mostly standard. Descriptions have an extra parameter, P : Set → Set, that
describes what (if any) extra information needs to be recorded for the constants. In what follows,
we will use this to require information about how to enumerate the inhabitants of type constants
that appear in a description. Note that the Desc type, as presented here, is large as the constant
constructor k quantifies over all types. To avoid size problems, this construction can by stratified
by only drawing constants drawn from some smaller universe U : Set.

To write generic programs, we need to give an interpretation (or semantics) to descriptions. We
define the semantics of descriptions as a functor Set → Set in the usual fashion.

⟦_⟧ : Desc P → (Set → Set)
⟦ zero ⟧ X = ⊥
⟦ one ⟧ X = ⊤
⟦ var ⟧ X = X
⟦ k S ⟧ X = S
⟦ D₁ ⊗ D₂ ⟧ X = ⟦ D₁ ⟧ X × ⟦ D₂ ⟧ X
⟦ D₁ ⊕ D₂ ⟧ X = ⟦ D₁ ⟧ X ⊎ ⟦ D₂ ⟧ X

This definition is entirely standard. By taking the fix-point of these functors, we can model simple
recursive datatypes such trees and lists. The Fix datatype ties the recursive knot:

data Fix (D : Desc P) : Set where
In : ⟦ D ⟧ (Fix D) → Fix D

This explicit description of datatypes enables us to define (generic) functions by pattern matching
on the constructors of Desc.

Example: Lists. As an example, we consider how to encode the List type as a value of Desc:
data List (A : Set) : Set where

[] : List A
_::_ : A → List A → List A
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We choose the description ListD : Set → Desc such that Fix (ListD A) is isomorphic to List A:
ListD : Set → Desc (const ⊤)
ListD A = one ⊕ (k A ⊗ var)

The description ListD consists of a coproduct (or choice) of either one (representing the empty list,
[]), or a pair consisting of a constant value of type A, and a recursive position (corresponding to ::).
We can describe the singleton list 0 :: [], for example, as a value of type Fix (ListD N):

consZeroNil = In (inj₂ (0 , In (inj₁ tt)))

Here tt is the single constructor of the unit type ⊤; inj₁ and inj₂ are the two constructors for a
disjoint sum of types.

3.2 A Generic Enumerator for Regular Types
We are now ready to define a generic enumerator for regular types. Down the line, this means that
we give a definition for an generic enumerator, genumerator, with the following type:

genumerator : (D : Desc List) → Enumerator (Fix D) (Fix D)

Given any description D we will enumerate the recursive datatypes that can be built from this
description. Note that we expect a description, D : Desc List, that already stores a (finite) list of all
the constant types that occur in our descriptions.

We cannot define this genumerator function directly. In particular, because Desc is closed under
products and coproducts, we need to recurse over the description as we define its enumerator. To
do so, we must be careful to separate the description under consideration (D) from the description
that describes the type of recursive positions (D’):

enumerator : ∀ (D : Desc List) {D’ : Desc List} → Enumerator (Fix D’) (⟦ D ⟧ (Fix D’))

This is a common pattern when defining such generic functions—passing two descriptions to
a generic function: one representing the top-level description; whereas the other description is
traversed recursively.

The definition of this enumerator function is now immediate, using all the auxiliary functions
defined in the previous section:

enumerator : ∀ (D : Desc List) {D’ : Desc List} → Enumerator (Fix D’) (⟦ D ⟧ (Fix D’))
enumerator zero = ∅
enumerator one = pure tt
enumerator (k A {as}) = const as
enumerator var = rec
enumerator (D₁ ⊕ D₂) = (inj₁ ⟨$⟩ enumerator D₁) ⟨∣⟩ (inj₂ ⟨$⟩ enumerator D₂)
enumerator (D₁ ⊗ D₂) = pair (enumerator D₁) (enumerator D₂)

For the sake of completeness, we briefly go through the individual cases one by one. As there are
no inhabitants of the empty type, the case for zero returns the empty enumerator, ∅. Similarly,
there is a single inhabitant of the unit type. In the case for one we therefore return the singleton list
with the value tt. When we encounter a constant type A, we have an implicit argument as : List A.
We can simply return this list of values, ignoring the list of subtrees we receive as an additional
argument.

This leaves the three most interesting cases: recursive positions, coproducts and products. When
we encounter a recursive position designated by the var constructor, we return the list of ‘smaller’
values that we are passed as an argument. This is similar to how we generated subtrees for the
Node constructor in enumerator for binary trees in the previous section. In the case for coproducts,
D₁ ⊕ D₂, we make two recursive calls on both D₁ and D₂, map the injections inj₁ and inj₂ over

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 105. Publication date: August 2022.
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these results, and interleave the resulting values. Finally, in the case for products takes a Cartesian
product of the two recursive calls. The pair function that computes this Cartesian product is defined
in Section 2.

Using the enumerator function, we can now write our generic enumerator as follows:
genumerator : (D : Desc List) → Enumerator (Fix D) (Fix D)
genumerator D = _ ts → map In (enumerator D ts)

This function simply calls the enumerator function with the description D. This will result in a list
of values of type ⟦ D ⟧ (Fix D); mapping the In constructor over this list of values produces the
desired List (Fix D).

Example: enumerating lists. To illustrate our generic enumerator in action, we can revisit the
description of lists we saw previously. We begin by defining the following description for lists of a
given type A:

ListD : {A : Set} → List A → Desc List
ListD {A} as = one ⊕ (k A {as} ⊗ var)

The ListD function requires an argument as : List A, enumerating the elements of A. We can use
this description to enumerate all lists up to some length as follows:

lists : {A : Set} → (xs : List A) → N → List (Fix (ListD xs))
lists xs = enumerate (genumerator (ListD xs))

For example, the following expression enumerates all lists consisting of at most three constructors,
containing the characters 'a' and 'b':

lists ('a' :: ('b' :: [])) 3

This example illustrates most of the constructors of our Desc type. In particular, we can use the
enumerators for constant types to generate primitive values such as characters, that have no
associated datatype declaration.

In the enumerator for lists, we assumed that we had a list of elements enumerating the elements of
the list. This is fine if we aim to draw elements from some (finite) fixed set, such as ASCII characters.
Alternatively, however, we may want to pass a size-bounded finite list, N → List A, enabling the
enumeration of lists with elements drawn from an infinite type. To do so, we would only need to
change the type signature of the enumerator function, updating the implicit information stored for
constant types. In the genumerator and enumerate functions, this size bound can then be passed on
accordingly. For sake of simplicity, however, we have chosen the more simple approach—restricting
ourselves to lists of constant types—as this keeps the execution of enumerators (using a size bound)
and their definition clearly separated.

3.3 Completeness & Uniqueness
Completeness. We now briefly sketch the completeness proof, establishing that our generic enumer-
ators will eventually produce every possible value. Proving our generic enumerators are complete
amounts to showing that for all x : Fix D there is a number n : N such that x occurs in the
list enumerate (genumerator D) n. It should not come as a surprise that the required number n
corresponds to the number of times we need to unroll the fix-point to produce x. We refer to this
number as the depth of a given tree; it can be readily computed as follows:

mutual
depth : (D : Desc P) → {D’ : Desc P} → ⟦ D ⟧ (Fix D’) → N

depth zero = 0
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depth one = 0
depth (k ) = 0
depth var x = gdepth x
depth (D₁ ⊕ D₂) (inj₁ x) = depth D₁ x
depth (D₁ ⊕ D₂) (inj₂ y) = depth D₂ y
depth (D₁ ⊗ D₂) (x , y) = depth D₁ x ⊔ depth D₂ y

gdepth : (D : Desc P) → Fix D → N

gdepth D (In x) = succ (depth D x)

To prove that some x : Fix D is indeed in the corresponding enumerator requires some thought.
We need a careful recursive argument: in particular, the depth of a pair returns the maximum depth
of its elements. As a result, we need to use strong induction to show that our generic enumerator is
complete, i.e. we can formulate and prove the following property:

completeness-lemma : (D : Desc List) (x : ⟦ D ⟧ (Fix D’)) (xs : List (Fix D’)) →

((y : Fix D’) → gdepth D’ y ≤ depth D x → y ∈ xs) →

x ∈ enumerator D xs

Informally, this property states that x is guaranteed to occur in the the generic enumerator built
from the list of values xs, provided each subtree y that xmay contain already occurs in xs. The proof
itself follows from the key property of our enumerator combinators that we showed in Section 2:
they never discard elements.

Next, we can define the corresponding top-level proof that calls the completeness-lemma, while
passing itself recursively to prove the completeness of any recursive calls:

completeness : (D : Desc List) → Complete (genumerator D)

We have chosen to ignore constant types in this proof sketch. To complete the proof, we have
extended the completeness-lemma with a further assumption that the lists of elements associated
with the constant types that occur in D exhaustively enumerate all possible constants. Nonetheless,
the proof terms for complete and completeness-lemma are fairly straightforward—once these
definitions are fixed—spanning about twenty lines of proof and using a handful of auxiliary lemmas.

Uniqueness. Now that we have shown that our generic enumerators are complete, we will prove
that the lists they produce are free of duplicates. The proof itself follows a similar pattern as we
saw for completeness: a lemma by induction on D and a main result that relies upon this lemma.
The key uniqueness-lemma required can be formulated as follows:

uniqueness-lemma : (D D’ : Desc List) (xs : List (Fix D’)) →

Unique xs → Unique (enumerator D xs)

Proving this lemma is a bit harder than the completeness result we sketched previously. Intuitively,
for completeness we only need to construct a proof that x ∈ enumerator D xs, whereas for
uniqueness, we need to destruct such proofs. As a result, the proof requires a series of lemmas
about the interleave and prod functions. There is a pleasant duality between these lemmas and
those presented in Section 2: where the prod∈ and interleave∈ lemmas can be read as the familiar
introduction rules of propositional logic, the lemmas required to prove uniqueness are their dual
elimination rules:

interleave-elim : (xs ys : List A) → x ∈ interleave xs ys → (x ∈ xs) ⊎ (x ∈ ys)
prod-elim : ∀ (xs : List A) (ys : List B) → (x , y) ∈ prod xs ys → (x ∈ xs) × (y ∈ ys)

The proof of the uniqueness-lemma itself proceeds by induction on the description, using these
lemmas and the assumption that the list xs is free of duplicates, to prove that the call to the
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enumerator preserves uniqueness, Unique (enumerator D xs). Once again, to complete the proof
we require an additional assumption that all the enumerators for constant types contain unique
elements. Using this uniqueness lemma, we can now prove our main result:

uniqueness : (D : Desc List) (n : N) → Unique (enumerate (genumerator D) n)

This proof proceeds by straightforward induction on the natural number n. In the base case, the
list is produced empty and hence uniqueness proof is trivial. For the inductive case, we apply our
uniqueness-lemma, using our induction hypothesis and the fact that the In constructor is injective,
to establish that the resulting list is free of duplicates.

4 GENERIC ENUMERATORS FOR INDEXED FAMILIES
While regular types are fairly straightforward to enumerate, the enumeration of indexed families is
more of a challenge. To tackle this problem, we need to shift from our universe of regular types to
one capable of describing indexed families.

4.1 Universe Definition
The universe of indexed descriptions describes a wide collection of indexed families. We closely
follow the exposition by Dagand [Dagand 2013], but similar constructions are ubiquitous in generic
programming with indexed families [Benke et al. 2003; Chapman et al. 2010; Dagand and McBride
2012]. Where previously we constructed the codes for regular types directly as values in Desc P,
we need to generalise this to handle indexed families of types. To do so, we introduce the following
type constructor:

Func : (Set → Set) → Set → Set1
Func P I = I → IDesc P I

The type I corresponds to the index set. For example, vectors are indexed by a natural number. To
describe such indexed families, we define a function Func P I that computes the indexed description
for each possible value i : I.

The type of codes, IDesc, is similar to the codes for regular types that we saw previously:
data IDesc (P : Set → Set) (I : Set) : Set1 where

zero : IDesc P I
one : IDesc P I
var : (i : I) → IDesc P I
_⊕_ : (D₁ D₂ : IDesc P I) → IDesc P I
_⊗_ : (D₁ D₂ : IDesc P I) → IDesc P I
‘Σ : (S : Set) → {P S} →

(S → IDesc P I) → IDesc P I

The IDesc datatype has constructors for the empty type (zero), unit type (one), the recursive
positions (var) and is closed under products (⊗) and coproducts (⊕). Note that the recursive positions
now contain further index information: the var constructor takes a value i : I as its argument.
We use this value to designate the index associated with each recursive position. Finally, indexed
descriptions are closed under dependent pairs (‘Σ), consisting of a constant type S and a description
depending on S. We again include an extra parameter P : Set → Set to allow for extra information
to be stored about the constant type stored in the first component of a dependent pair. We shall see
examples of these indexed description shortly, but first we need to assign them semantics.

Note that this universe is not minimal—we could always encode coproducts (⊕) using dependent
pairs (‘Σ), but it can be useful to discriminate between the ‘choice of constructor’ and dependent
types—the prior being much simpler to handle than the latter.
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The associated semantics, ⟦_⟧, interprets a code with index type I to a function (I → Set) → Set.
The argument function, I → Set, is used to assign semantics to the recursive positions:

⟦_⟧ : IDesc P I → (I → Set) → Set
⟦ one ⟧ X = ⊤
⟦ zero ⟧ X = ⊥
⟦ var i ⟧ X = X i
⟦ D₁ ⊗ D₂ ⟧ X = ⟦ D₁ ⟧ X × ⟦ D₂ ⟧ X
⟦ D₁ ⊕ D₂ ⟧ X = ⟦ D₁ ⟧ X ⊎ ⟦ D₂ ⟧ X
⟦ ‘Σ S f ⟧ X = Σ S λ s → ⟦ f s ⟧ X

Finally, we use the datatype Fix to tie the recursive knot and take the least fix-point of indexed
descriptions:

data Fix {P : Set → Set} (φ : Func P I) (i : I) : Set where
In : ⟦ φ i ⟧ (Fix φ) → Fix φ i

Example: Vectors. As an example, we consider the familiar example of a dependent type, namely
vectors:

data Vec (A : Set) : N → Set where
[] : Vec A zero
_::_ : A → Vec A n → Vec A (succ n)

A value of type Vec A n is only inhabited by lists of length n. We can describe Vec as follows:
VecF : Set → Func (const ⊤) N

VecF zero = one
VecF A (succ n) = ‘Σ A (const (var n))

We choose the indexed description VecF carefully such that Fix (VecF A) n is isomorphic to Vec A n.
Rather than modeling the choice between the constructors [] and :: as a coproduct, we use the fact
that there is only one constructor of Vec available for each constructor of the index, returning
one (corresponding to []) if the length is zero, and a pair consisting of a value of type A and a
recursive position with index n (corresponding to ::) if the index is of the form succ n. Of course, the
lack of coproducts in this description is specific to vectors: each index is associated with a single
constructor.

4.2 A Generic Enumerator for Indexed Types
The generic enumerator for regular types is straightforward, once we defined the types and
combinators for defining enumerators. In this section, we show how it can be extended to an
enumerator for the indexed descriptions.

First, we revisit our type of enumerators. Rather than pass in a list of ‘smaller values’ as we did
previously, we need to account for the additional index information. In particular, we are no longer
passed a single list, but rather a function that maps each index i : I to a list of smaller values:

IEnumerator : { I : Set} → (I → Set) → Set → Set
IEnumerator { I} A B = ((i : I) → List (A i)) → List B

While we could also let the result type B depend on I, we will refrain from doing so—we will not
need this additional generality. The semantics of our indexed descriptions ⟦_⟧ simply returns a
Set—hence it suffices to generate a simple list of values. Note that these indexed enumerators are
strictly more general than the simple Enumerator type from the introduction. Instantiating the
index set to the unit type, yields a type that is isomorphic to the original enumerators defined
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in Section 2. Throughout the remainder of this section, we will use the familiar combinators for
writing enumerators—even if we should strictly speaking provide alternative versions with the
same definition, but a more general (indexed) type.

The key challenge to enumerating indexed families will be the treatment of dependent pairs,
‘Σ S {e} f. In this case, we are given an enumerator e that produces elements of type S, together
with a function f that computes an indexed description for each value of S. Crucially, we cannot
make a recursive call directly to these descriptions—but rather need a monadic bind to pass all
possible inputs to f, before recursing. In what should be a familiar pattern, we do avoid using the
usual bind of the underlying list monad implemented using concatMap. To avoid bias, we define a
version that interleaves all its intermediate results fairly:

bind : List A → (A → List B) → List B
bind [] f = []
bind (x :: xs) f = interleave (f x) (bind xs f)
_≫=_ : IEnumerator F A → (A → IEnumerator F B) → IEnumerator F B
(e ≫= f) = λ cs → bind (e cs) (λ x → f x cs)

To illustrate this combinator in action, we can write an enumerator for dependent pairs by hand as
follows:

sigmas : IEnumerator F A → ((x : A) → IEnumerator F (B x)) → IEnumerator F (Σ A B)
sigmas e f = e ≫= λ x →

f x ≫= λ y →
pure (x , y)

Since the type enumerated by f is dependent on its argument, the value generated for the first
element of the pair, x, needs to be in scope to extract the corresponding enumerator. It is instructive
to compare this enumerator with the one for pairs we saw previously: in the dependent case, the
choice of the value for the first component influences the enumeration of the second component.

We can now define the generic enumerator for indexed families. It consists of two parts: the
first pattern matches on its argument description; the second is used to recurse back to the top-
level description being enumerated. The first part, ienumerator, produces a list of values of type
⟦ D ⟧ (Fix φ), given a description D and interpretation of the recursive positions, φ. The definition
is reassuringly familiar, as most cases follow the same structure as we saw for the regular types.

ienumerator : (desc : IDesc List I) → IEnumerator (Fix φ) (⟦ desc ⟧ (Fix φ))
ienumerator zero = ∅
ienumerator one = pure [ tt ]

ienumerator (D₁ ⊗ D₂) = pair (ienumerator D₁) (ienumerator D₂)
ienumerator (D₁ ⊕ D₂) = (inj₁ ⟨$⟩ enumerator D₁) ⟨∣⟩ (inj₂ ⟨$⟩ enumerator D₂)
ienumerator (var i) = _ rec → rec i
ienumerator (‘Σ S {e} f) = sigmas e (ienumerator ∘ f)

The first four cases should be familiar: the empty type, the unit type, products and coproducts were
all covered previously. When we encounter a recursive subtree, var i, we once again use the list of
smaller values we are passed. Rather than return the list directly, as we did for regular types, we
return the list of values at index i. Finally, in the case for dependent pairs, ‘Σ, we use the (implicit)
enumerator, e, stored in the constructor to produce a value of type S; the second component, is
then produced using a recursive call to the ienumerator function using f s as the new description
to enumerate.

The top-level generic igenumerator invokes ienumerator, instantiating the indexed description
with φ i:
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igenumerator : ∀ φ (i : I) → IEnumerator (Fix φ) (Fix φ i)
igenumerator φ i = In ⟨$⟩ ienumerator (φ i)

Finally, we adapt the previous definition of our enumerate function to iteratively apply our enu-
merators a fixed number of times:

ienumerate : ((i : I) → IEnumerator A (A i)) → (i : I) → N → List (A i)
ienumerate f i zero = []
ienumerate f i (succ n) = f i (λ i → ienumerate f i n)

4.3 Completeness & Uniqueness
Completeness. One pleasant property of our development is that many definitions and proofs

on the universe of regular types can be extended to indexed families. Just as we defined the depth
function on regular types, the idepth function counts the number of times the (indexed) functor
must be unrolled to produce a given value:

idepth : (D : IDesc P I) → ⟦ D ⟧ (Fix φ) → N

gidepth : Fix φ i → N

With these definitions in place, we can once again proceed to define the key lemma, icomplete, by
induction on the indexed description D:

icomplete : (D : IDesc List I) (x : ⟦ D ⟧ (Fix φ)) (xsi : (i : I) → List (Fix φ i)) →

(∀ i → (y : Fix φ i) → gidepth y < idepth D x → y ∈ xsi i) →

x ∈ ienumerator D xsi

The general structure of this proof is the same as we saw for the regular universe. There are a few
differences worth pointing out. Instead of receiving a list of ‘smaller’ values that have previously
been constructed, we are passed a function xsi : (i : I) → List (Fix φ i), that computes a list of
values for each possible index. The stronger induction hypothesis in the penultimate argument
guarantees that any value of type Fix φ i will appear in the list associated with the index i. Each
case of this proof closely follows its regular counterpart. The base case for one is trivial; the cases
for products and coproducts relies on the completeness of the pair and interleave combinators; in
the case for recursive subtrees, we use our induction hypothesis. If D is a dependent pair, however,
the proof is slightly more challenging. Recall that ‘Σ correspond to dependent pairs—we can mimic
the completeness proof for pair, though we have to prove new auxiliary lemmas that establish that
the monadic bind operation is well behaved. To prove completeness, we do require completeness
of the enumerator for the set S that is used by the dependent pair—just as we did for constants in
the universe of regular types.

Finally, we can provide a suitable top-level completeness statement. The type of this statement is
daunting at first, but captures the same style of recursion as we saw for the complete lemma in the
previous section.

igcomplete : ∀ (φ : I → IDesc List I) (i : I) (x : Fix φ i) (n : N) →

idepth x ≤ n → x ∈ ienumerate (igenumerator φ) n i

Its proof is analogous: pattern matching on the In constructor and calling the icomplete lemma
sketched above. Once again, we have not explicitly mention the constant types that appear in
an indexed description, such as the type S that occurs in the ‘Σ constructor. To handle these, we
require an additional (implicit) argument that assumes that the lists stored for these values are also
complete.
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Uniqueness. Besides completeness, we would also like to prove that the generic enumerators of
indexed families produce unique values. Given that the apparent overlap between the two universes
of types we have considered, this may seem straightforward. Indeed, we can generalise the key
uniqueness-lemma for regular types to its counterpart for indexed families:

uniqueness-lemma : (D : IDesc List I) → (φ : I → IDesc List I) → (xs : (i : I) → List (Fix φ i))
→ (ih : ∀ i → Unique (xs i)) → Unique (ienumerator D xs)

Essentially, this lemma states that if we have a unique list of elements for each index, extending
this list using the ienumerator preserves uniqueness. The proof proceeds by induction on the
description D; most of the cases follow using the same lemmas about pairing and interleaving as
we saw for regular types. The dependent pairs, however, prove more of a challenge.

Where most cases follow the proof for regular types, the dependent pairs prove more of a
challenge. The auxiliary function, sigmas, uses the bind for lists. To reason about this, we need to
prove the following lemma:

bind-elim : y ∈ bind xs f → ∃[ x ] ((x ∈ xs) × (y ∈ f x))

This states that whenever y occurs in the list bind xs f, there is some x, such that we can find a
pair of proofs x ∈ xs and y ∈ f x. We can use this to establish a similar ‘elimination principle’ for
dependent pairs:

sigmas-elim: (xs : IEnumerator F A) (f : (x : A) → IEnumerator F (B x))
→ (x , y) ∈ sigmas xs f rec → x ∈ xs rec × y ∈ f x rec

Finally, we need to show both these functions are injective. This is the key component of each
uniqueness proof. Given two elements of our enumeration, we can recursively deconstruct them
into their constituent parts; using our induction hypothesis, together with the injectivity of our
constructors, we can then establish uniqueness.

The full proof requires an additional assumption, similar to the one we mentioned for regular
types, stating that all the constant types (that occur in the ‘Σ constructor) are enumerated uniquely.
Interestingly, however, we do not require any injectivity of the functions associated with these
constructors—these functions are only used to express the type dependency; to prove uniqueness,
we simply have to prove that pair of values occurs no more than once.

5 MEMOISATION
There is one important difference between the enumerators for regular datatypes and indexed
families: where the enumerators for regular types are passed a list of previously constructed values,
those for indexed families are passed a function of type (i : I) → List (A i), returning the list
of previously constructed values at each index. In Section 2.3, we illustrated the importance of
not recomputing previously enumerated values over and over again: doing so quickly leads to an
exponential slowdown in enumeration. Now consider the following example of an indexed family.

data Tree : N → Set where
Leaf : Tree 0
Node : Tree n → Tree n → Tree (succ n)

When enumerating such trees, we run into the same problem as we encountered in the naive
enumeration of simply typed binary trees: in the case for nodes, wewill make two calls to the indexed
enumerator passed. We have lost the sharing of previous results by shifting to the enumeration of
indexed families.

Fortunately, there is a well known representation of functions as datastructures [Hinze 2000]: if we
restrict ourselves to an index set that is regular, we canmemoise the enumeration of indexed families,
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thereby avoiding superfluous recomputation. This section sets out to achieve just that. It is worth
pointing out that this memoisation does not guarantee a drastic performance improvement—even
if there are certain datatypes for which this does hold.

5.1 Generic Tries
The key idea behind memoisation is to define an alternative—yet equivalent—representation of
functions. We will sketch the interface of the required functions first, before presenting their
datatype generic implementation. This section leans heavily on previous work [Hinze 2000; Hinze
et al. 2004], but extends these results to a total and dependently typed setting.

First and foremost, we need a type representing generic lookup structures or tries:
_ ↦→_ : Set → Set → Set

As we are interested in memoising a dependent function of the form (i : I) → List (A i), we will
need to generalise this slightly:

_ ↦→_ : (A : Set) → (B : A → Set) → Set

In addition to the type of generic tries, we will define a pair of functions to create and consult tries:
trie : ((x : A) → B x) → (A ↦→ B)
untrie : (A ↦→ B) → ((x : A) → B x)

As its name suggests, the trie function constructs a trie; the untrie function looks up the value
associated with a key of type A in a given trie. Finally, we require that untrie is the left inverse of
trie, that is untrie ◦ trie ≡ id.

We will now implement this interface generically for any function whose domain consists of a
regular type. That is, we consider the special case of memoising functions of the form:

(x : Fix D) → B x

This restriction enables us to define a memoisation structure, Memo D, by induction on the
description D:

Memo : (D : Desc P) → (R : (Fix D’ → Set) → Set) → (B : ⟦ D ⟧ (Fix D’) → Set) → Set
Memo zero R B = ⊤
Memo one R B = B tt
Memo var R B = R B
Memo (k S) R B = (s : S) → B s
Memo (D₁ ⊗ D₂) R B = Memo D₁ R (_ x → Memo D₂ R (_ y → B (x , y)))
Memo (D₁ ⊕ D₂) R B = Memo D₁ R (_ x → B (inj₁ x)) × Memo D₂ R (_ y → B (inj₂ y))

The type of Memo may seem daunting at first blush. The Memo type takes three arguments: the
description D, the type of recursive tries R, and the codomain of the function being memoised B.
When reading this definition, you may want to keep in mind that the type variable for recursive
tries, R, will later be instantiated with the _ ↦→_ type—corresponding to a (corecursive) Memo
structure. Most clauses of this definition follow from the familiar laws of exponentiation:

�
�+�

= �
� ×�

�
�
�×�

= �
�
�

�
0
= 1 �

1
= �

The only remaining cases are those for recursive parameters, constants k, and recursive parameters
one. For the sake of simplicity, we do not memoise functions over constant types for the moment—
althoughwe could use the additional P parameter in descriptions to storemore efficient memoisation
structures, such as Patricia trees for fixed width integers for instance. For recursive types, var, we
use the the additional type parameter R. We tie the recursive knot by defining the coinductive _↦→_
type as follows:
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record _ ↦→_ (D : Desc P) (B : Fix D → Set) : Set where
coinductive
constructor mkMemo
field

getMemo : Memo D (_ X → D ↦→ X) (_ x → B (In x))

Each such trie D ↦→ B is given by a memo structure—determined by D—where the recursive
components themselves are new memo structures. At this point, it may be instructive to consider
an example. We can define the description of natural numbers natD as follows:

natD = one ⊕ var

Every natural number is either zero (given by inj₁ tt) or a successor (given by inj₂ n for some natural
number n). Given these definitions, we can consider the type of tries memoising computations of
the form (x : Fix natD) → B x, that is: what is the type natD ↦→ B? Unfolding the Memo and
_ ↦→_ definitions above, this gives rise to the coinductive datatype arising as the greatest fix-point
of the following equation:

MemoNat B = B zero × MemoNat (B ∘ succ)

TheMemoNat structure corresponds to a stream of values of type B 0, B 1, B 2, and so forth. In this
way, the type natD ↦→ B describes the tabulation of a (dependent) function over natural numbers.

To create such tabulations, we define a pair of functions, gtrie and trie. Given a function
(x : Fix D) → B x, the gtrie function corecursively constructs the corresponding generic
trie, introducing the mkMemo constructor and calling the trie function:

gtrie : (D : Desc P) → ((x : Fix D) → B x) → D ↦→ B
gtrie D f = mkMemo (trie D (λ x → f (In x)))

The trie function proceeds by induction on its argument description, passing increasingly complex
arguments to the function argument f in each recursive call.

trie : (D : Desc P) → ((x : ⟦ D ⟧ (Fix D’)) → B x) → Memo D (_ X → D’ ↦→ X) B
trie zero f = tt
trie one f = f tt
trie var f = gtrie D’ f
trie (k S) f = f
trie (D₁ ⊗ D₂) f = trie D₁ (_ x → trie D₂ (_ y → f (x , y)))
trie (D₁ ⊕ D₂) f = (trie D₁ (λ x → f (inj₁ x)) , trie D₂ (λ x → f (inj₂ x)))

How can we use such generic tries? Given any argument of type Fix D, we can traverse the trie
structure to find the corresponding result. The pair of mutually recursive functions guntrie and
untrie do precisely that.

guntrie : (D : Desc P) → (D ↦→ B) → (x : Fix D) → B x
guntrie D m (In t) = untrie D (getMemo m) t

untrie : (D : Desc P) → Memo D (_ X → D’ ↦→ X) B → (x : ⟦ D ⟧ (Fix D’)) → B x
untrie one m tt = m
untrie var m x = guntrie D’ m x
untrie (k S) m x = m x
untrie (D₁ ⊗ D₂) m (x , y) = untrie D₂ (untrie D₁ m x) y
untrie (D₁ ⊕ D₂) (m₁ , m₂) (inj₁ x) = untrie D₁ m₁ x
untrie (D₁ ⊕ D₂) (m₁ , m₂) (inj₂ y) = untrie D₂ m₂ y
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Once again, the heavy lifting is done by the untrie function that proceeds by induction on D. In the
case for the unit type one, we return the memoised value m. In the case for constants, we apply
the function m to the argument x. The cases for products and coproducts pattern match on the
argument x and recurse accordingly. Finally, the case for recursive subtrees var calls the guntrie
function to peel off the In constructor and recurse.

We can now compose gtrie and guntrie to create a trie and lookup the argument x in it:

gmemo : (D : Desc P) (B : Fix D → Set) → ((x : Fix D) → B x) → (x : Fix D) → B x
gmemo D B f x = guntrie D (gtrie D f) x

Of course, this gmemo should simply be (a more expensive version of) the identity function. Indeed,
we can prove the following lemma by immediate induction on the description D:

correct : ∀ (D : Desc P) (f : (x : Fix D) → B x) (x : Fix D) → gmemo D B f x ≡ f x

Before using these generic tries to memoise the indexed enumerators we saw previously, however,
it is worth pointing out that these definitions are not immediately accepted by Agda.The codatatype
for tries, _ ↦→_, is not identified to be strictly positive, even though we can readily check by hand that
each of the right-hand sides of the Memo definition is. Furthermore, the trie function is incorrectly
marked as non-terminating. Whereas this definition is obviously guarded—the only corecursive call
in the branch for recursive types, var, is immediately guarded by the MkMemo constructor—the
definition is rejected by the guardedness checker and Agda’s ‘musical notation’ for coinductive
definitions. In practice, however, as long as we can prove that the gmemo function behaves as
the identity, however, there need not be a problem with disabling the termination and positivity
checkers for these definitions.

5.2 Memoising Enumerators
With these generic tries defined, we can now use them to avoid recompution during enumeration.
The key insight is that, when the index set is itself regular, we can replace the argument function
with a generic trie storing the previously computed results. To achieve this, we define the following
type for memoising indexed enumerators, or memorators for short:

Memorator : (D : Desc P) → (Fix D → Set) → Set → Set
Memorator D A B = (D ↦→ (List ∘ A)) → List B

It is worth comparing this type with that of indexed enumerators defined on page 13. The gtrie and
guntrie functions defined previously can be used to convert between these two representations,
when the index set I is of the form Fix D for some description D.

We can now define a memoising version of our indexed enumerators. To do so, we follow the
familiar iterative pattern we have seen twice already.

gmemorate : ((i : Fix D) → Memorator D B (B i)) → (i : Fix D) → N → List (B i)
gmemorate f i zero = []
gmemorate f i (succ n) = f i (gtrie D (λ i → gmemorate f i n))

This definition closely mimics the enumerate and ienumerate functions defined previously. The key
difference, however, is that it maintains a trie storing the previously produced values at every index.
Similarly, we need to adapt the indexed enumerators from the previous section slightly to produce
memorators, rather than the indexed enumerators we saw previously. The required changes are
mostly superficial modifications in the type signatures, hence we refrain from presenting the code
here.
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Table 1. Profiling the enumeration of perfect trees

Tree size Without memoisation With memoisation
1 82.28 μs 104.3 μs
2 154.6 μs 181.2 μs
4 616.7 μs 386.8 μs
8 12.27 ms 1.523 ms
16 3.522 s 111.2 ms

Performance. As Agda uses a call-by-need evaluation strategy, the memoised computations are
shared during enumeration. Although the current implementation of the compiler1 and abstract
machine2 have some limitations when memoising coinductive computations, the presentation here
avoids these. To illustrate the performance gain memoisation offers, consider the following indexed
description of the perfect trees we saw previously:

treeD : Fix natD → IDesc List (Fix natD)
treeD (In (inj₁ tt)) = one
treeD (In (inj₂ n)) = var n ⊗ var n

We can now define a small benchmarking suite, calling the memoising and non-memoising enu-
merator for such perfect trees:

memo-tree = _ size → gmemorate (gmemorator treeD) (fromNat size) (succ size)
non-memo-tree = _ size → ienumerate (igenumerator treeD) (fromNat size) (succ size)

Given an argument size, these functions call one of the enumerate functions we have seen.The index
we are interested in is given by fromNat size, converting a given natural number to its corresponding
generic representation in Fix natD. Finally, we bound the computation by succ size—providing just
enough room to unfold the recursive structure of our enumerators.

Using the agda-bench3 benchmarking tool we can enumerate such trees with and without
memoisation, measuring the time necessary to enumerate perfect trees of various sizes. The results
are shown in the Table 1. While the absolute numbers are not so important, these figures clearly
highlight the performance gain that memoisation offers: enumerating the perfect tree of depth
16 using memoisation is more than 30 times faster than the naive enumerators presented in the
previous section. While these results are encouraging, it is worth noting that there is only ever one
perfectly balanced binary tree of a given depth. As a result, memoisation requires a modest amount
of additional memory; as every recursive call is re-used, we can see substantial performance gains.
These numbers, however, do not always hold up quite so nicely, as we shall see in the next section.

6 CASE STUDY: ENUMERATING WELL TYPED EXPRESSIONS
To illustrate how to use the datatype generic enumerators for indexed families, this section explores
a small case study. In particular, we consider the types (C ) and expression language (4) given by the
following BNF equations:

C ::= nat | bool 4 ::= N | B | 4 + 4 | 4 ∧ 4 | 4 6 4 | G | let 4 = G in 4

1https://github.com/agda/agda/issues/2918
2https://github.com/agda/agda/issues/5722
3https://github.com/UlfNorell/agda-bench/
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ExprD : (Fix (k (List Type) ⊗ k Type)) → IDesc List ((Fix (k (List Type) ⊗ k Type)))
ExprD (In (Γ , t@nat))

= (‘Σ { [ 0 ] } λ → one) – nlit
⊕ (var (In (Γ , nat)) ⊗ var (In (Γ , nat))) – add
⊕ (‘Σ (t ∈ Γ) {vars t Γ} λ → one) – var
⊕ ((var (In (Γ , nat)) ⊗ var (In (nat :: Γ , t))) – let nat
⊕ (var (In (Γ , bool)) ⊗ var (In (bool :: Γ , t)))) – let bool
⊕ (case Γ of λ where [] → zero

(s :: Γ) → var (In (Γ , t))) – wk
ExprD (In (Γ , t@bool))

= ‘Σ Bool { true :: false :: []} (λ b → one) – blit
⊕ (var (In (Γ , bool)) ⊗ var (In (Γ , bool))) – conj
⊕ (var (In (Γ , nat)) ⊗ var (In (Γ , nat))) – leq
⊕ (‘Σ (t ∈ Γ) {vars t Γ} λ → one) – var
⊕ ((var (In (Γ , nat)) ⊗ var (In (nat :: Γ , t))) – let nat
⊕ (var (In (Γ , bool)) ⊗ var (In (bool :: Γ , t)))) – let bool
⊕ (case Γ of λ where [] → zero

(s :: Γ) → var (In (Γ , t)))

Fig. 1. A description of well-typed expressions

The types of our expression language correspond to natural numbers or booleans. The language
itself is closed under literals, addition, conjunction, comparison, variables and let bindings. Before
giving the indexed description corresponding to this expression language, it can be useful to give
a direct datatype declaration for the types and expressions involved. Defining a datatype for the
types of our language is entirely trivial:

data Type : Set where
nat bool : Type

To model well typed (and well scoped) terms needs a bit more work. By indexing a datatype by
both its type and context, we can ensure that we cannot construct ill formed expressions:

data Expr : List Type → Type → Set where
nlit : N → Expr Γ nat
blit : Bool → Expr Γ bool
add : (x y : Expr Γ nat) → Expr Γ nat
conj : (x y : Expr Γ bool) → Expr Γ bool
leq : (x y : Expr Γ nat) → Expr Γ bool
var : t ∈ Γ → Expr Γ t
letin : Expr Γ s → Expr (s :: Γ) t → Expr Γ t
wk : Expr Γ t → Expr (s :: Γ) t

Here we have modeled the context as a list of types, describing the types of all the variables in scope.
A variable, given by the var constructor, simply refers to a particular element of this context. The
remaining constructors aremostly unsurprising, with the exception of thewk constructor. By adding
this explicit weakening operation to our language, we hope to facilitate memoisation—enabling us
to re-use previously computed expressions after going under a let-binder.

Figure 1 gives an indexed description corresponding to the Expr datatype. While the definition of
ExprD seems rather complicated, it can be mechanically reconstructed from the definition of Expr.
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Table 2. Profiling the enumeration of well-typed expressions with type nat

Depth Without memoisation With memoisation Number of terms
1 96.79 μs 132.0 μs 1
2 699.0 μs 1.225 ms 5
3 11.57 ms 14.13 ms 143
4 — — 208471

Doing so is quite straightforward: we match on the description’s index, a tuple of a context and
a type, and return a coproduct of descriptions for each constructor that can be used to construct
an expression with that index. We have simplified this definition in one or two places, in an
attempt to keep the number of expressions manageable. In the case for letin, we “inline” all possible
combinations to avoid having to choose a type variable with the ‘Σ combinator. We also treat natural
number and Boolean literals as constant types, drawn from a small set of possible choices. Although
it is possible to compute such indexed descriptions automatically using Agda’s metaprogramming
facilities, this is beyond the scope of the current paper.

6.1 Using the Generic Enumerator: Memoise or Not?
With the indexed description ExprD at hand, we can immediately obtain an enumerator for well-
typed terms, simply by invoking the generic enumerator.

expressions : (Γ : List Type) → (t : Type) → N → List (Fix ExprD (In (Γ , t)))
expressions Γ t n = ienumerate (igenumerator ExprD) (In (Γ , t)) n

It is worth pointing out that, we know that the resulting enumerator is complete, unique and
constructed from fair combinators. Furthermore, we can construct a memoising enumerator equally
easily.

expressions-memo : (Γ : List Type) → (t : Type) → N → List (Fix ExprD (In (Γ , t)))
expressions-memo Γ t n = gmemorate (gmemorator ExprD) (In (Γ , t)) n

It is worth comparing the performance of these two enumerators. Table 2 shows the execution
times for enumerating all closed expressions of type nat up to various depths, together with the
length of the lists involved. Once again, the absolute numbers are not particularly important. First
of all, we note that the number of terms rapidly explodes—there are more than 200K expressions of
depth four or less. While we can compute the total number of elements quickly enough, computing
such long lists (and storing them in memory) is intractable. For the purpose of property-based
testing, however, one can still compute the first thousand elements at this depth in a handful of
milliseconds.

Contrary to our previous benchmark, however, it appears that memoisation is slower than using
the non-memoising enumerator. We ascribe this to the sheer length of the lists involved. The
memoising enumerator will initially cache many relatively inexpensive computations. It is only
as the cost of recomputation increases that memoisation will yield substantial performance gains.
Unfortunately, as the depth parameter increases, the number of terms grows so quickly, that this
becomes the dominating cost in enumeration. We discuss this point—and the overall performance
of our enumerators—further in the next section.
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7 DISCUSSION
7.1 Related Work
There is a large body of related work on property-based testing, datatype generic programming,
and datatype enumeration. The original work on QuickCheck [Claessen and Hughes 2000] has
generated a great deal of research in the area of property-based testing. The test data generation
that we propose here, however, is not random, but more inspired by similar libraries based on
exhaustive enumeration of values such as SmallCheck [Runciman et al. 2008]. We will roughly
divide the related work into these two camps: random generators and enumeration.

Random generators. Since the initial work on QuickCheck, there have been numerous articles
porting these ideas to proof assistants. Early work by Dybjer et al. [2004] and Haiyan [2007] was
the first to explore the uniform random generation of indexed families in Agda. Work by Bulwahn
[2012a,b] shows how to enumerate the inhabitants of a syntactic subset of Isabelle. A more recent
notable example, is the work on QuickChick [Dénès et al. 2014] that ports QuickCheck to the Coq
proof assistant.

Datatype generic generators for indexed families have been developed for QuickChick [Lam-
propoulos et al. 2018]. Like QuickCheck, the generic generators require an explicit size bound.
QuickCheck identifies a completeness property, similar to the one in this paper, by mapping gener-
ators to the set of values with a non-zero probability and ensuring all possible inhabitants of a type
have such non-zero probabilities of being enumerated.

Proving properties and writing generic instances of these random generators is less straight-
forward than the definitions given here [Paraskevopoulou et al. 2015] as “QuickChick uses an
incomplete heuristic for trying out different sizes in an efficient way.”The proofs aboutQuickChick’s
behaviour try to abstract over the size parameter where possible. Contrasting this to the approach
presented here, where we make the recursive structure an enumerators explicit, we see that the
only place where we use size bounds is in proving completeness of the top-level enumeration
functions that ‘tie the recursive knot’ so to speak. The individual combinators, such as those for
interleaving and cartesian products, do not mention sizes at all, nor do their proofs of fairness,
uniqueness, and completeness.

Claessen et al. [2015] explores how to generate constrained random data that satisfies some
predicate. The interface is similar to the combinators presented here, with constructs for handling
products, coproducts, empty types, singleton values, and an applicative star operation. However, to
handle recursive types requires an explicit Pay constructor to bound the size of the generated data
and avoid divergence. Similarly, the proof of uniformity presented has not been formalised in a
proof assistant.

Enumeration. To the best of our knowledge, the existing work on datatype enumeration focuses
on regular datatypes, rather than the indexed families considered here. The approach we take here
is similar in spirit to LeanCheck [Braquehais 2017], that strives to define enumerators using a
minimal set of combinators. LeanCheck, however, structures its enumerators using tiers, much
in the same way as the stream semantics we defined above. To ensure that the enumerators
are productive, however, users may need to insert explicit delay when defining enumerators.
Furthermore, LeanCheck does not attempt to prove completeness, fairness, or uniqueness of its
enumerators, even in the case for regular datatypes.

The work on functional enumerations of algebraic types (FEAT) [Duregård et al. 2012] takes
a similar approach to ours—instead of enumerating all possible values, we consider finite lists
approximating the elements of an algebraic datatype. The work on FEAT, however, once again
requires an explicit pay construct to handle recursive types. The ideas underlying the FEAT library
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is to sample random elements up to a given size efficiently by caching the size of sub-enumerations.
These enumerations, however, are limited to regular datatypes.

Yakushev and Jeuring [2009] consider a similar problem in the context of Haskell, showing
how to use the spine views [Hinze et al. 2006] on GADTs, extended with a form of existential
quantification, to define enumerators—mostly with the aim of enumerating well-typed lambda
terms. Their approach is, however, restricted to those invariants that can be expressed using a
GADT, rather than the dependent types that can be expressed using the indexed families—including
dependent pairs—covered in this paper.

New et al. [2017] give a more thorough treatment of fairness for enumerators, especially aimed
at the fair enumeration of infinite lists. New et al. consider fairness of (infinite) enumerators
to correspond to a non-starvation property—every sub-enumerator will eventually produce its
values—the case for finite lists is considered degenerate, using list concatenation rather than the
interleaving presented here. The notion of fairness presented in this paper relies on using dependent
types extensively: we need to prove the completeness lemmas to even formulate the desired fairness
properties. Furthermore, we can avoid some spurious cases by only ever comparing valid positions
in a list, x ∈ xs, as opposed to any pair of natural numbers. All in all, this work establishes a stronger
notion of fairness that holds for finite enumerations.

The work by New et al. does, however, raise an important point that we have ignored in this
paper: although binary products and binary sums suffice to model datatypes with any number of
constructors, doing so may yield unbalanced enumerators. For example, representing a datatype
with three constructors using binary sums will necessarily skew the enumeration towards one of
the three constructors. The solution is clear: generalising the binary products and sums to n-ary
products and sums, much in the style of the ‘true sums-of-products’ approach to datatype generic
programming [de Vries and Löh 2014]. Adapting our enumerators is reasonably straightforward,
replacing interleaving with transposition and generalising the pair enumerator to compute n-ary
cartesian products. We have refrained from doing so in this work, largely to keep the generic
presentation as simple as possible.

7.2 Future Work
Performance. When writing these enumerators, we have not focused on performance. There are
plenty of other opportunities for optimisations, such as fusing the repeated map operations over
intermediate lists, that we have not pursued in this paper. Furthermore, Duregård et al. [2012] have
shown how caching the intermediate sizes of the enumerated sub-terms can drastically improve
performance when arbitrarily sampling from the enumeration. It would be interesting to attempt to
extend their techniques to the (indexed) datatypes studied here, where we may be able to show how
another iteration of our generic enumerator extends the size of the (indexed) list of values generated
in a predictable fashion. Using these ideas, we could then uniformly sample the inhabitants of an
indexed family up to a given size.

Memoisation. The case study in Section 6 illustrates that memoisation does not always improve
performance. One advantage of having defined a generic enumerator, is that we can easily compare
the performance ofmemoising and non-memoising enumerators for a variety of datatypes. Although
we do not yet have an entirely clear picture for when memoisation is beneficial, we can share our
preliminary results here.

The good news is that, as far as we can tell, the overhead that memoisation introduces at small
depths remains modest. Furthermore, an obvious requirement for memoisation to work is that
there must be sufficient opportunity for sharing previously computed results. Indeed, we have
observed significant speedups in particular cases, such as perfect binary trees or vectors, where the
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number of inhabitants of a given datatype may still grow exponentially, but less quickly than the
expression datatype from our case study, where the many different constructors quickly lead to
intractably large enumerations. We also note that our enumerators are defined using a tail-recursive
iterate function. Agda, unfortunately, does not do any tail call optimisation; as a result, memory
quickly becomes a bottleneck. By porting our case study to Haskell, we learned that such tail-call
optimisation is crucial to avoid memory leaks, especially as the number of inhabitants grows
rapidly.

Finally, it is worth pointing out that in our generic programs, the structure of our datatypes is
explicitly available. As a result, we can estimate the rate of exponential growth and opportunities
for sharing statically—simply by inspecting the description of the type involved. Estimating when
memoisation makes sense (or not), based on this information remains a topic for further work.

Automation. As our case study shows, there is still quite some overhead involved in manually
writing the descriptions corresponding to a user-defined datatype. Using Agda’s reflection and
metaprogramming facilities [van der Walt and Swierstra 2012], it should be possible to automate
the derivation descriptions for datatypes, and their isomorphism converting between the two
representations. By also using Agda’s instance search [Devriese and Piessens 2011], we can then
automatically generate enumerators for user-defined datatypes.

Specification Discovery and Tactics. A surprising application of property-based testing is the auto-
matic generation of specifications. QuickSpec [Claessen et al. 2010] is one such tool that, based on
QuickCheck. Given a set of functions, QuickSpec automatically generates collection of candidate
equalities.This collection of equations is then iteratively refined by checking them against randomly
generated inputs produced by QuickCheck, and removing those equations that are falsified. The
HipSpec tool [Claessen et al. 2012] takes these ideas one step further, by automatically proving the
generated equalities.

Given these enumerators of indexed families, however, we can do even better. Tools such as
QuickSpec only ever find equalities between terms—but oftentimes, we are more interested in
proving that some inductive relation is inhabited. For example, given an insert function and isSorted
predicate, one might imagine generating the following statement:

∀ x xs → isSorted xs → isSorted (insert x xs)

Testing such suitable candidate theorems requires the ability to generate arbitrary indexed families,
which QuickSpec cannot do. One potential application area of these results is the automatic
generation and testing of such statements.

Another potential application of these enumerators is in proof automation. Given a proof goal
encoded as an indexed description, we try to generate an inhabitant by calling our enumerator. One
might imagine extending this idea further, allowing the user to provide certain hypotheses that
may be used in the enumeration. In this way, we can write our own version of Coq’s constructor
tactic that can be programmatically configured to restrict the search depth, constructors used, or
hypotheses available.

Conclusion
This paper shows how both regular datatypes and indexed families can be enumerated. We have
sketched the mechanised proof of completeness and uniqueness for both these generic enumerators,
guaranteeing that they eventually produce every possible inhabitant of every type exactly once;
these enumerators use combinators that we have shown to be fair. Furthermore, we have shown
how to avoid recomputation by sharing recursive calls and applying memoisation. The uniform
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presentation of these enumerators, the simplicity of our definitions, and the formal verification of
their properties, provides a fairly complete account of datatype generic enumeration.
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