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Rövid összefoglaló

Az utóbbi száz év talán leggyorsabban fejlődő matematikai ága a biomatematika, mely

eredetileg populációdinamikai modellekből alakult ki. Jelen dolgozatban két ilyen mod-

ellcsaláddal foglalkozunk.

A dolgozat első része járványterjedési modellekkel foglalkozik - ezek közül az egyik leg-

gyakrabban használt az ún. SIR modell. Ezen modell valamely tulajdonság (például meg-

betegedés) terjedését írja le egy adott populáción belül egy közönséges differenciálegyenlet-

rendszer segítségével. Mivel a klasszikus SIR modell a térbeli terjedésről semmiféle infor-

mációt se szolgáltat, ezért az eredeti modellt egy integrál hozzáadásával parciális integro-

differenciálegyenletté alakítjuk. Egy ilyen modell a disszertáció első fejezetében szerepel,

míg a második fejezet ezt egy késleltetés beépítésével módosítja, majd a harmadik fejezet

néhány további lehetséges módosítást tárgyal. Az említett szakaszok mindegyikében el-

sőként az egyenlet klasszikus megoldásának létezéséről és tulajdonságáról mondunk ki

tételeket, majd olyan numerikus módszert konstruálunk, mely megőrzi ezen (a biológiai

modellel szinkronban lévő) tulajdonságokat.

A dolgozat második részében a Húsvét-sziget (Rapa Nui) 16-17. századi ökológiai

összeomlásának matematikai modelljét vizsgáljuk. A modell alapját azon történeti ku-

tatások adják, melyek szerint nem csupán a felelőtlen emberi tevékenység, de a szigetre

behurcolt patkányok is hozzájárulhattak a katasztrófához. A korábban ezen folyamatokat

leíró modellt egy, a fák diffúzióját leíró tag hozzáadásával egészítjük ki. A módosítás oka,

hogy a fák magjait a szigeten élő állatok kültakarójukon elszállíthatják, illetve a szél is

mozgathatja ezeket. A dolgozat 4. és 5. fejezeteiben a fenti probléma különböző mate-

matikai modelljeit (közönséges, egy térváltozós parciális és két térváltozós parciális differ-

enciálegyenleteket) írjuk fel, és megvizsgáljuk a fák diffúziójának a sziget ökoszisztémájá-

nak stabilitására kifejtett hatását. A vizsgált modellek mindegyikében azt tapasztaltuk,

hogy a patkányok jelenléte a szigeten előidézhette annak ökológiai összeomlását.

A fenti eredményeket hat megjelent, egy elfogadott és kettő benyújtott publikáció

tartalmazza.



Short summary

In the past century one of the fastest growing sub-fields of applied mathematics has

been the area usually referred to as biomathematics, which originally developed from

population dynamics. In this work we focus on two such sets of models.

The first part deals with epidemic models: one of the most used such model is the

SIR model. This construction can describe the propagation of a given property (e.g.

illness) among a set of individuals using an ordinary differential equation. Since the

original model does not give us any information about the spatial distribution of the

illness, we extend the original system using an integral term resulting in an integro-

differential equation. Such an extension is presented in Chapter 1, while in Chapter 2

it is further modified by adding a delay term to the equation, and in Chapter 3 some

further extensions are mentioned. In the aforementioned sections we first state theorems

about the existence and some properties of the solution, then construct such a numerical

model which preserves these (biologically reasonable) properties.

In the second part we observe the ecological collapse of Easter Island (Rapa Nui)

which took place during the 16th and 17th centuries. The ground for these models are

the archaeological findings which propose that the cause of this catastrophe was not only

the irresponsible consumption of trees by the inhabitants, but also the effect of the rats

which were brought to the island by the settlers. We extend the previously proposed

models by adding a term describing the diffusion of the trees: the reason for this is

that the seeds could be transported on the fur of the animals or by the constant wind

on the island. In Chapters 4 and 5 we examine several different mathematical models

(ordinary, one space-variable partial and two space-variable partial equations) describing

the aforementioned phenomenon, and observe the effect of the added tree diffusion on

the stability of the island’s ecosystem. In all of the models we find that the presence of

the rats on the island could lead to the ecological catastrophe.

The aforementioned results are included in six published, one accepted and two sub-

mitted articles.
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Introduction

In the past century one of the fastest growing sub-fields of applied mathematics has been

the area usually referred to as biomathematics. With the recent genomics revolution

[7, 26, 39] there is a growing need for data analysts to be able to understand the data-rich

information sets resulting from such processes [85]. However, the topic that mathematical

biology originally developed from was population dynamics. In this work we will focus

on this latter one.

On the following pages we outline a short summary of the history of this branch of

mathematics, focusing only on the most significant improvements. For further reading,

we suggest the works of Bacaër [9], Daley and Gani [36] along with the references therein.

The very first instance in history (that the author knows of) when mathematics was

applied to biological processes was in the book Liber Abaci written by Fibonacci in 1202

[95]. In his work the merchant from Pisa described a problem concerning the growth of

the population of rabbits coming from a single pair, resulting in a difference equation and

the famous sequence named after him. Unfortunately, most of his work was forgotten

and the sequence was re-discovered later by Kepler and also by Daniel Bernoulli [18].

The 1662 book of John Graunt [56] can be considered the first work that observed

an epidemic in a scientific way. Although it only calculated the percentage a citizen

of London might die of a certain type of illness using death records from the previous

decades, it is still the piece that started the mathematical description of pandemics.

About 30 years later Halley [58] wrote a similar book about the deaths in the city of

Breslau (now called Wrocław) in which (using the assumption that the population of the

city remains constant) he could construct a life table estimating the number of people

aged a given number. The first work that tried to estimate the number of ill and healthy

individuals was written by Daniel Bernoulli [17]. In this he tried to find a solution to stop

the smallpox pandemic which was a big problem among soldiers in the seven-year war.

He argued that variolation (inoculation with live virus obtained directly from a patient

with a mild case of the illness) would decrease the number of infectious people. Later his

models were extended by several other authors (see e.g. [70]).

Although the model for the exponential growth of the human population is usually
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associated with Malthus who popularised the concept in his 1798 book [76], the idea of

using a geometric series had been already developed by Euler about 40 years before that

[44]. While the former used his model mainly to demonstrate that the increase of living

conditions cannot happen without the increase of food production, the latter used it to

demonstrate the idea that mathematically it is possible to populate the Earth in only

four millennia using a not too unrealistic growth rate of 6.25 percent (showing that the

biblical story of Noah cannot be rejected on mathematical grounds). Another model was

proposed by Verhulst [108] which had a solution tending to a constant value sometimes

referred to as the capacity of the territory we examine the growth in. Verhulst called its

model logistic, which was widely used in the following centuries: a similar idea is used in

Chapters 4 and 5 of this work. A later extension of this model was done by Lotka nearly

a century later [71, 91] in which he took into account the age dependence of fertility,

resulting in an integral equation.

An important step further in the history of population dynamics was the discovery

of the law of mass action. This theory, originally postulated in chemistry [19, 112, 113]

said that for a homogeneous system, the rate of a chemical reaction is proportional to

the active masses of the reacting substances. In population dynamics, the same idea can

be applied in the following way: if the individuals in a population mix homogeneously,

then the number of interactions between two observed subsets is proportional to the

cardinality of each of these subsets. This simple idea then gave rise to a large number

of new models and formed the basis for most of the differential equations which are used

today to describe such phenomena. All of the following examples in this chapter use this

idea in one way or another, along with the models described in the further parts of this

work.

In the 1920s the predator-pray models proposed by Lotka [72, 73] and Volterra [110,

111] were the first to propose periodic solutions in a biological system, which gave rise

to the in-depth observations of dynamical systems. Such methods are used in Part II of

this dissertation.

The first model in the mathematical theory of epidemics which used differential equa-

tions was developed by Ross [87] during his work trying to stop malaria in India and other

parts of the world. His main contribution to the theory was the idea that the disease

is transmitted by mosquitoes, which was confirmed by experiments. Consequently, the

reduction of the number of mosquitoes resulted in a significant decrease in the number

2



of deaths resulting from the illness. Later, Kermack and McKendrick [69, 79] developed

their model which is still widely used today: Part I of this work also considers an extension

of those ideas.

Although in this thesis we only consider deterministic models resulting in different

types of differential equations (ordinary, partial, delay, integro-differential), it is worth

mentioning that another powerful tool to model biological processes is stochastic methods.

One of the largest influences on this area was the work of Yule [115] modeling the change

of the number of species in time resulting from evolutionary processes. The derived model,

sometimes called the "Yule process" is still widely used today not only to model evolution,

but also to describe the growth of colonies of bacteria or to model the beginning of an

epidemic [4]. Another incredibly influential stochastic model used to describe epidemics

was introduced by Reed and Frost [1]. Their main idea was that infection is passed on by

an adequate contact of an infectious and a susceptible person in a relatively short time.

Each individual has a certain probability of infecting one of its contacts, making the model

stochastic. The probability that an epidemic might emerge in this model is a product

of a chain of binomials, hence it is sometimes called the chain binomial model. Since

then, many have extended these ideas [12], resulting in sometimes discrete or continuous

Markov chains [34, 35, 51]. Note though that stochastic modeling is usually suitable

only if the size of the population is not too large; likewise, deterministic models are not

favorable when we consider a small number of individuals. Since the observed systems in

this work usually involve a large number of entities, we choose to use deterministic tools

to describe them.

This dissertation consists of two parts: Part I considers some epidemic models and

proves that upon using a sufficient numerical model, the properties of these numerical

solutions will be similar to the ones of the original continuous model. These results are

included in the papers [33, 103, 104, 105]. Part II deals with the problem of the collapse

of the Easter island, and states some theorems about the stability of the corresponding

system of differential equations, which were published in the articles [98, 99, 101, 102].
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Part I

Epidemic models

During the millennia of the history of mankind, many epidemics have ravaged the human

population. Since the plague of Athens in 430 BC described by historian Thucydides (one

of the earliest description of such epidemics), researchers tried to model and describe the

outbreak of illnesses. More recently, the outbreak of the COVID-19 pandemic revealed

the importance of epidemic research and the development of models to describe the public

health impact of major virus diseases.

One of the most frequently used tools in mathematics to model the spread of diseases

is the SIR model. These models can be used to describe the spread of some feature among

a group of individuals. Let us split our population into three categories: class S contains

those who do not have the property yet, class I includes those who have the feature and

they can also transmit it to others, and class R has those who did have the property,

but they do not have it any more. Note that these models can, and are used not only in

epidemics, but also in several other fields: one such application is the modeling of forest

fires, in which S means the healthy trees, I denotes the plants on fire and R is the class

of burnt down trees. For other applications, see e.g. [5], [20], [86], [109] - however, in this

work we focus on epidemic models.

The aforementioned model can be written as the following first order system of ordi-
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nary differential equations



dS(t)

dt
= −aS(t)I(t),

dI(t)

dt
= aS(t)I(t)− bI(t),

dR(t)

dt
= bI(t),

(I)

where the given parameters a, b ∈ R+ correspond to the rate of infection and recovery

respectively, and S(t), I(t) and R(t) represent the number of susceptibles, infected and

recovered as functions of time t, respectively. We can also include another term, namely

c S(t), which describes immunization effects through vaccination, resulting in the system



dS(t)

dt
= −aS(t)I(t)− cS(t),

dI(t)

dt
= aS(t)I(t)− bI(t),

dR(t)

dt
= bI(t) + cS(t).

(II)

Equations (I) and (II) can be used to model an epidemic in a homogeneous population,

meaning that the number of infectious individuals does not depend on their position in

the domain. However, in applications usually this is not the case: one of the key elements

of the investigation of the disease is the spatial spread of the infection in the population.

This phenomenon is characterized by the effect of a single infectious individual, i.e., in

what radius does an infectious individual have an effect on the susceptibles (or, in other

words, one susceptible can be infected only by those whose are close to itself, namely those

who are closer than a given distance). Such extensions of the Kermack-McKendrick model

were first introduced by Kendall [67, 68] and the inclusion of such considerations result

in a system of partial integro-differential equations.

It is also possible to extend Kendall’s models with the introduction of latency period

into the system, which means that there are some individuals who are infected, but not

yet infectious - in this case class I includes not only the infectious, but also the infected

ones. Such extensions result in a system of delay integro-differential equations.

In Chapters 1 and 2 we examine the properties of the space dependent and the delay

system, respectively. In both sections we first prove that the equation has a unique solu-

tion, and then show that it possesses some biologically reasonable properties. Then some

5



numerical methods are constructed, and we show that (for a sufficiently chosen time step)

the methods preserve the discrete versions of the properties of the continuous models.

Sections 1.1–1.6 collect the results of [103] and [104], while Section 1.7 summarizes the

statements of [33]. Moreover, Chapter 2 collects the theorems of [105].

6



Chapter 1

Space dependent epidemic models

As it was mentioned in the introduction, the time-dependent functions in (II) represent

the number of individuals in each class, but contain no information about their spatial

distribution. Instead, one can replace these functions with space-dependent functions

that describe the density of healthy, infectious and recovered species over some bounded

domain Ω ⊂ Rd (d ∈ N+) [103]. From now on we consider a bounded domain in R2,

hence system (II) is recast as

∂

∂t
S(t, x, y) = −aS(t, x, y)I(t, x, y)− c S(t, x, y),

∂

∂t
I(t, x, y) = aS(t, x, y)I(t, x, y)− b I(t, x, y),

∂

∂t
R(t, x, y) = b I(t, x, y) + c S(t, x, y).

(1.1)

However, model (1.1) is still insufficient as it does not allow the disease to spread in the

domain but only accounts for a point-wise infection. Spatial points do not interact with

each other and infected individuals affect others only at their location.

In order to allow a realistic propagation of the infection, we assume that a healthy

individual at a given point (x, y) can be infected by ill species in a δ-radius neighborhood

around the point (x, y) denoted by Bδ (x, y). Note though that infectious individuals are

less likely to infect the healthy one at the center if the distance between them is bigger

- because of this, we introduce a non-negative weighting function G(r, θ) describing the

difference between of the effects of the different infectious species. Here the variable

r ∈ [0, δ] describes the distance between the infectious individual and the healthy one at

(x, y), and θ ∈ [0, 2π) is the angle. We will also use the notations x̄(r, θ) = x + r cos(θ)

and ȳ(r, θ) = y + r sin(θ) for the coordinates of the infectious individuals. Now let us

7



define the weighting function G(r, θ) as

G(r, θ) =

g1(r)g2(θ), if r ≤ δ, θ ∈ [0, 2π),

0, otherwise.
(1.2)

Here we assumed that the right-hand side of (1.2) is separable. The effect of the point

(x, y) depending on the distance from the center is described by g1(r): a decreasing,

non-negative function that is zero for values r ≥ δ (since there is no effect outside

Bδ (x, y)). The bounded and non-negative function g2(θ) characterizes the part of the

effect depending on the angle, i.e., the direction in which the center is compared to point

(x̄(r, θ), ȳ(r, θ)). The case of constant function g2(θ) is widely studied in [45] and [47],

while such a non-constant function may be useful in the case of modeling the spread

of diseases or a fire in a forest with a constant wind blowing in one direction. In

both cases it is supposed that the function is periodic and bounded in the sense that

g2(0) = limθ→2π g2(θ). Note that later in Chapter 2 we assume that g2 is a constant func-

tion. It is also worth mentioning that a weighting function depending on the location of

the center point (x, y) can also be introduced - such numerical experiments can be found

in [104].

The nonlinear terms of the right-hand side of (1.1) describe the interactions between

susceptible and infected species. We can now utilize (1.2) and replace the density of

infected species in these nonlinear terms by

∫ δ

0

∫ 2π

0

G(r, θ)I (t, x̄(r, θ), ȳ(r, θ)) rdθdr,

where we used the fact that G(x, y, r, θ) = 0 outside the ball Bδ (x, y). Therefore, the

model (1.1) can be extended as a system of integro-differential equations

∂S(t, x, y)

∂t
= −S(t, x, y)

∫ δ

0

∫ 2π

0

g1(r)g2(θ)I (t, x̄(r, θ), ȳ(r, θ)) rdθdr − cS(t, x, y),

∂I(t, x, y)

∂t
= S(t, x, y)

∫ δ

0

∫ 2π

0

g1(r)g2(θ)I (t, x̄(r, θ), ȳ(r, θ)) rdθdr − bI(t, x, y),

∂R(t, x, y)

∂t
= bI(t, x, y) + cS(t, x, y).

(1.3)

8



Since we have no diffusion in our problem, we consider homogeneous Dirichlet conditions

in the sense that we assume that there is no susceptible population outside of our domain.

This means that we are going to assign a zero value to any point which lies outside of

the domain Ω in which the problem is defined.

The structure of this chapter is as follows. In Section 1.1 we prove that the system

(1.3) has a unique solution, and in Section 1.2 it is shown that this solution possesses some

biologically reasonable properties. Since equation (1.3) can be rewritten as an integral

equation, in Section 1.3 we present a numerical approximation of this integral equation.

In Section 1.4 we discretize the system (1.3) in space, and then in Sections 1.5, 1.6 and 1.7

different time discretizations are examined, namely the method of Euler, Runge-Kutta

methods and operator splitting techniques, respectively. The corresponding numerical

experiments can be found at the end of each section.

1.1 Existence of the analytic solution

Analytic results for deterministic epidemic models have been studied by several authors,

see for example, [8, 68, 106]. Such models lie in the larger class of reaction-diffusion

problems and therefore one can obtain theoretical results by studying the more general

problem. We prove the uniqueness of the solution for system (1.3) by following the work

of Capasso and Fortunato [22].

We consider the following semilinear autonomous evolution problem
du

dt
(t) = −Au(t) + F (u(t)),

u0 = u(0) ∈ D(A),

(1.4)

where A is a self-adjoint and positive-definite operator in a real Hilbert space E with

domainD(A). Define λ0 = inf σ(A), where σ(A) denotes the spectrum of A. Let us choose

u = (u1, u2)T ∈ C1
(
[0, tf ), D(A)

)
for some final time tf ∈ R+ and E = L2(Ω) × L2(Ω),

where Ω is a bounded domain in R2, with a norm ‖·‖ defined by∥∥∥∥∥∥
u1

u2

∥∥∥∥∥∥ =
(
‖u1‖2

L2 + ‖u2‖2
L2

)1/2
. (1.5)

9



We also equip D(A) with the norm

‖u‖A = ‖Au‖ , u ∈ D(A).

Note that it is sufficient to consider only the first two equations in (1.3), since R(t, x, y)

can be obtained by using the fact that the sum S(t, x, y)+I(t, x, y)+R(t, x, y) is constant

in time for every point (x, y). Hence, in view of problem (1.3), the linear operator A is

defined as

A

u1

u2

 =

c 0

0 b

u1

u2

 , (1.6)

and D(A) = E. Since b and c are positive constants, it is easy to see that A is a self-

adjoint and positive-definite operator. Similarly, F (u) consists of the nonlinear terms,

and is defined as

F

u1

u2

 =

−u1F(u2)

u1F(u2)

 . (1.7)

The function F : L2(Ω)→ L2(Ω) contains the integral part of (1.3) and is given by

F
(
u2(x, y)

)
=

∫ δ

0

∫ 2π

0

g1(r)g2(θ)u2

(
x̄(r, θ), ȳ(r, θ)

)
r dθ dr. (1.8)

Note that in (1.3) I(t, x, y) can be viewed as the map I(t, x, y) : [0, tf )→ L2(Ω) acting as

t 7−→ It(x, y) ∈ L2(Ω), in which It(x, y) := I(t, x, y), thus the above definition makes

sense.

The main result of this section is Theorem 1.1.1 stating that a unique solution of

system (1.3) exists. Theorem 1.1.1 considers the system (1.4) as a generalization of (1.3)

and its proof relies on the fact that the function F in (1.7) is Lipschitz-continuous and

bounded in ‖·‖A. Therefore, we define the following conditions [22]:

(A1) F is locally Lipschitz-continuous from D(A) to D(A), i.e.,

‖F (u)− F (v)‖A ≤ ζ(d) ‖u− v‖A

for all u, v ∈ D(A) such that d ≥ 0, and ‖u‖A ≤ d, ‖v‖A ≤ d. (Here ζ(d) is a

constant depending on parameter d.)
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(A2) F is bounded, i.e., there exist ν ≥ 0 and γ ≥ 0 such that

‖F (u)‖A ≤ ν ‖u‖1+γ
A , ∀u ∈ D(A).

We also denote the Lebesgue measure of Ω by µ(Ω), and let

κ1 = max
r∈(0,δ)

{g1(r)}, κ2 = max
θ∈[0,2π)

{g2(θ)},

and ψ = max{b, c}/min{b2, c2}.

Theorem 1.1.1. Consider the problem (1.3) and assume that conditions (A1) and (A2)

hold. Then, a unique strong solution of system (1.3) exists on some interval [0, tf ).

The proof of Theorem 1.1.1 is a direct consequence of two main results by Capasso

and Fortunato [22]. For clarity, we state these two theorems below.

Theorem 1.1.2. [22, Theorem 1.1] If assumption (A1) holds, then a unique strong so-

lution in D(A) of problem (1.4) exists in some interval [0, tf ).

Theorem 1.1.3. [22, Theorem 1.3] Let us assume that (A1) and (A2) hold. Then for

any u0 ∈ K̃ a global strong solution in D(A), u(t), of (1.4) exists. Moreover the zero

solution is asymptotically stable in K̃. Here

K̃ =


{
u ∈ D(A)

∣∣ ‖u‖A < (λ0/ν)1/γ
}
, if γ > 0,

D(A), if γ = 0 and λ0 > ν.

In [104] (by proving some simple lemmas) we show that the function F , as defined in

(1.7), satisfies conditions (A1) and (A2).

We also get that the set K̃ in Theorem 1.1.3 can be computed by using that D(A) = E

and (
λ0

ν

)1/γ

=
min{b, c}√

2ψ κ1 κ2 µ(Ω)
,

where b and c are the diagonal elements of matrix A in (1.6), λ0 = inf σ(A), and ψ, κ1, κ2

are as defined before. However, it is worth mentioning here that the zero convergence of

the solution also holds for any non-negative initial condition, which will be a consequence

of Theorem 1.2.1.
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In the next section we show that the unique solution (whose existence and uniqueness

was stated in this section) has some biologically reasonable properties.

1.2 Properties of the analytic solution

When deriving a mathematical model to describe any physical, biological or chemical

phenomena (here the spread of an epidemic in both space and time), it is essential that

the real-life processes are being represented as accurately as possible. More precisely, not

only the solution of the continuous model should possess properties resembling the real

life processes, but numerical discretizations applied to such models should also preserve

the qualitative properties of the original epidemic model.

The first, and perhaps most natural property is that the number of each species is

non-negative at every time and point of the domain. Because in our models we use

densities, this property can be formulated as follows:

C1: The densities X(t, x, y) (X ∈ {S, I, R}) are non-negative at every point (x, y) ∈ Ω.

Assuming that the births and natural deaths are the same (vital dynamics have no effect

on the process), the total number of species (the sum of the species of each classes) should

not increase nor decrease. Thus we have the following property:

C2: The sum S(t, x, y) + I(t, x, y) + R(t, x, y) should be constant in time for every

(x, y) ∈ Ω, yielding∫
Ω

S(t, x, y) + I(t, x, y) +R(t, x, y) dx dy = const, ∀t.

Another property concerns the number of susceptibles: since an individual gets to the

recovered class after the infection, the number of susceptibles cannot increase in time.

C3: Function S(t, x, y) is non-increasing in time at every (x, y) ∈ Ω.

Similarly, the number of recovered species cannot decrease in time, thus:

C4: Function R(t, x, y) is non-increasing in t at every (x, y) ∈ Ω.

As in the previous section, instead of proving the preservation of properties C1–C4 for

the particular model (1.3), we can establish theoretical results for a more general system

of equations. First, we state the following lemma, whose proof can be found in [104].
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Lemma 1.2.1. The solution of (1.3) depends continuously on the right-hand side of the

system of equations, meaning that if we consider the equation

∂Sε(t, x, y)

∂t
= −Sε(t, x, y)

∫ δ

0

∫ 2π

0

g1(r)g2(θ)Iε
(
t, x̄(r, θ), ȳ(r, θ)

)
r dθ dr − cSε(t, x, y),

∂Iε(t, x, y)

∂t
= Sε(t, x, y)

∫ δ

0

∫ 2π

0

g1(r)g2(θ)Iε
(
t, x̄(r, θ), ȳ(r, θ)

)
r dθ dr − bIε(t, x, y) + ε,

∂Rε(t, x, y)

∂t
= bIε(t, x, y) + cSε(t, x, y),

(1.9)

in which 0 ≤ ε� 1 and consider a sequence of such ε values denoted by {εi}, then as {εi}
tends to zero, the solutions Sεi, Iεi and Rεi converge in norm to the same limit regardless

of the choice of the sequence {εi}.

The next theorem shows that the solution of (1.3) satisfies properties C1–C4.

Theorem 1.2.1. Suppose that the initial conditions of the system (1.3) are non-negative,

i.e. X(0, x, y) ≥ 0, ∀(x, y) ∈ Ω, X ∈ {S, I, R}. In such case, the properties C1–C4 hold

for the solution of (1.3) without any restriction on the time interval t ∈ [0, tf ].

Proof. The proof consists of two parts: first we prove the required properties for a mod-

ified version of (1.3), and then by using Lemma 1.2.1 we derive the statement of the

theorem.

Consider equation (1.9) and let us suppose that the initial conditions assigned to the

equation are all non-negative.

First, we would like to prove the non-negativity of Iε(t, x, y) by contradiction. Assume

that the function takes negative values for some time t at some point (x, y) ∈ Ω. Let us

denote by t0 the last moment in time for which Iε(t, x, y) takes non-negative values, i.e.,

t0 = inf{t | ∃(x, y) ∈ Ω : Iε(t, x, y) < 0}.

By our assumptions, such t0 value exists since Iε is continuous and the initial conditions

are not negative, i.e., Iε(0, x, y) ≥ 0. Because of the continuity of Iε and the definition of

t0, there is a point (x0, y0) for which Iε(t0, x0, y0) = 0, and

∂Iε(t0, x0, y0)

∂t
≤ 0. (1.10)
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We know that all the values of Iε at t0 inside Bδ

(
x0, y0

)
are non-negative by the definition

of t0, and F(Iε(t0, x0, y0)) ≥ 0 also holds.

However, if we observe the second equation in (1.9) at point (t0, x0, y0), we can see

that the term −b Iε(t0, x0, y0) is zero, so the term Sε(t0, x0, y0)F(Iε(t0, x0, y0)) must be

negative for condition (1.10) to hold (since ε is positive). We have already concluded

that F(Iε(t0, x0, y0)) ≥ 0, so we need that Sε(t0, x0, y0) < 0.

Now by dividing the first equation of (1.9) by Sε and integrating it with respect to

time t from 0 to t0 yields

log (Sε(t0, x, y))− log (Sε(0, x, y)) = −
∫ t0

0

F(Iε(t0, x, y)) dt− ct0.

By reformulating, we get for (x, y) = (x0, y0) that

Sε(t0, x0, y0) = Sε(0, x0, y0) exp

(
−
∫ t0

0

F(Iε(t0, x, y)) dt− ct0
)
. (1.11)

Therefore Sε(t0, x0, y0) is non-negative, so we get a contradiction.

As a result, Iε(t, x, y) ≥ 0 for every t ∈ [0, tf ] and (x, y) ∈ Ω. Consequently, since

Rε(0, x, y) is non-negative we get that Rε(t, x, y) is a non-decreasing and a non-negative

function. Note also that the calculations resulting in formula (1.11) are also true for any

time t and point (x, y) ∈ Ω, meaning that Sε is also non-negative, and since F(Iε(t0, x, y))

is non-negative, we also get the non-increasing property from the first equation of (1.9).

Hence, we proved that the solution of (1.9) satisfies C1–C4.

Finally, we also know that by Lemma 1.2.1,

lim
ε→0

Xε(t, x, y)
∣∣
t∈[0,tf ] −X(t, x, y)

∣∣
t∈[0,tf ]

= 0

holds for every X ∈ {S, I, R}. Therefore, properties C1–C4 are also satisfied by the

solution of system (1.3).

The following corollary is a consequence of the previously proved properties and can

be proved easily.

Corollary 1.2.1. Functions S(t, x, y) and I(t, x, y) in the solution of (1.3) tend to zero

as t→∞.

Due to the complicated form of the equations in (1.3) one can suspect that no analytic
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solution can be derived for this system. Because of this, we are going to use numerical

methods to approximate the solution of these equations. However, the analytic solution

of the original SIR model (I) has been described in the papers by Harko et al. [59]

and Miller [80, 81]. Thus, we can get similar results applying their observations to our

modified model (1.3).

The analytic solution of system (1.3) can be written as


S(t, x, y) = S(0, x, y)e−φ(t,x,y)−ct,

I(t, x, y) = M0(x, y)− S(t, x, y)−R(t, x, y),

R(t, x, y) = R(0, x, y) + b

∫ t

0

I(s, x, y) ds+ c

∫ t

0

S(s, x, y) ds,

(1.12)

where we use the notations

M0(x, y) = S(0, x, y) + I(0, x, y) +R(0, x, y),

φ(t, x, y) =

∫ t

0

F
(
I(s, x, y)

)
ds,

and F is given by (1.8).

It is evident that in (1.12), the values of the functions at a given time t∗ can only be

computed if all the values of this function are known at all the points in the interval [0, t∗).

Consequently, these formulas are not useful in practice, since (1.12) is an implicit system

in the solutions S(t, x, y), I(t, x, y) and R(t, x, y). Later (see Table 1.2 in Section 1.6.3),

an approximation of the solution of (1.12) will be compared to the numerical solution

computed using the first-order forward Euler scheme.

Since the values of the functions in (1.12) cannot be calculated directly, numerical

methods are needed to approximate them. We can take two possible paths:

1. approximate the values of φ(t, x, y) and the integrals in the third equation of (1.12)

by numerical integration; or

2. approximate the solution of the original equation (1.3) by a numerical method.

The first approach is discussed in Section 1.3, while Sections 1.4-1.7 consider the second

case. We focus on the convergence rate of our numerical methods, and ensure that qual-

itative properties C1–C4 of the analytic solution are preserved by the numerical method.
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For that, a discrete analogue of conditions C1–C4 (later denoted by D1–D4) is required;

see Section 1.5.

1.3 Numerical approximation of the integral solution

As noted before, if we would like to use the solution (1.12) then we have to approximate

the involved integrals. This can be achieved by partitioning the time interval [0, tf ]

into uniform spaced sections by using a constant time step τ . With this approach, the

integrals can be approximated by a left Riemann sum, meaning that if t ∈ [ti, ti+1), then

we approximate the densities X(t, x, y) by X(ti, x, y) (X ∈ {S, I, R}). Therefore, for any
integer 1 ≤ n ≤ N such that tf = τN , the integral of X(t, x, y) can be approximated by

∫ nτ

0

X(s, x, y) ds ≈ τ
n−1∑
k=0

X(kτ, x, y).

Note that later we will also use a right Riemann sum, in which the value X(t, x, y) is

approximated by X(ti+1, x, y) - in this case

∫ nτ

0

X(s, x, y) ds ≈ τ
n∑
k=1

X(kτ, x, y).

An important observation is that the integral equations (1.12) can be rewritten in a

recursive form

S
(
nτ, x, y

)
= S((n− 1)τ, x, y) exp

(
−
∫ nτ

(n−1)τ

F (I(s, x, y)) ds− cτ
)
,

R
(
nτ, x, y

)
= R((n− 1)τ, x, y) + b

∫ nτ

(n−1)τ

I(s, x, y) ds+ c

∫ nτ

(n−1)τ

S(s, x, y) ds,

I (nτ, x, y) = M0(x, y)− S(nτ, x, y)−R(nτ, x, y).

(1.13)
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Let Xn(x, y) ≈ X (nτ, x, y), X ∈ {S, I, R}, and define Fn = F(In). Using the approxi-

mations

τFn−1 ≈
∫ nτ

(n−1)τ

F
(
I(s, x, y)

)
ds,

τIn−1 ≈
∫ nτ

(n−1)τ

I(s, x, y) ds,

τSn ≈
∫ nτ

(n−1)τ

S(s, x, y) ds,

(note that in the first two were are using left, while in the third one a right Riemann

sum), we get an approximating scheme for (1.12), given by


Sn = Sn−1e−τF

n−1−cτ ,

Rn = Rn−1 + bτIn−1 + cτSn,

In = (Sn−1 + In−1 +Rn−1)− Sn −Rn.

(1.14a)

(1.14b)

(1.14c)

Note that in this case, the order of the equations in (1.14) is important as estimates at

time tn = nτ are used to update the rest of the components of the solution. Also, it is

worth mentioning that the choice for left or right Riemann sums was arbitrary - one can

also use the same type in all three cases.

Theorem 1.3.1. Consider the solution Xn(x, y), X ∈ {S, I, R} of scheme (1.14) on the

time interval [0, tf ], where 1 ≤ n ≤ N . Let N be the total number of steps such that

tf = τN , where τ denotes the time step. If the step-size restriction 0 < τ ≤ 1/b holds,

then the solution of (1.14) satisfies properties D1–D4 at times tn = nτ , 1 ≤ n ≤ N .

For the proof, see [104]

Remark 1.3.1. Using left Riemann sums to approximate the integrals in (1.13) results

in local errors of order O(τ 2). Therefore, the solution of (1.13) can only be first order

accurate.

In Section 1.4 we discretize (1.3) by first using a numerical approximation of the

integral on the right hand side of the system, and then in Sections 1.5, 1.6 and 1.7 apply

a time integration method. This approach results in numerical schemes that are (in most

cases) high order accurate, both in space and time, meaning that they are more favorable

than the method described in this section. However, it is worth mentioning here that it
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is also possible to use higher order cubatures for the approximation of the integrals in

the integral equations, but these methods are not discussed in this work.

1.4 Spatial discretization

It is evident that the key element of the numerical solution of problem (1.3) is the ap-

proximation of the double integrals in F
(
I(t, x, y)

)
. This can be done in two different

ways. The first approach is to approximate the function I(t, x̄(r, θ), ȳ(r, θ)) by a Taylor

expansion, and then integrating the Taylor polynomial as it was described in [45, 47].

It turned out that the spatial Taylor expansion of the term I(t, x̄(r, θ), ȳ(r, θ)) around

the point (x, y) results in a method which can be used successfully. However, this method

cannot be used efficiently in the general case, for the set of functions

H := {c1 sin θ + c2 cos θ + c3} .

This is a useful choice in biological terms for a set from which the function g2(θ) would

be chosen, since it contains smooth functions which are also periodic. One can also think

of the functions from H as a first order trigonometric approximation of some real-life but

much more complicated function. Later the function g2(θ) = β sin(θ+ α) + β is used (α,

β ≥ 0), which function is also from the set H.
For functions from H, we cannot use the fact that the first order terms in the Taylor

expansion are zero (which was used in [45, 47]). The reason behind this is the fact that

in the non-constant case (when c2
1 + c2

2 6= 0) these first order terms cannot be zero at the

same time, resulting in a more complicated numerical model.

The other approach is to use a combination of interpolation and numerical integration

(by using cubature formulas) to obtain an approximation of F
(
I(t, x, y)

)
.

We consider two-dimensional cubature formulas on the disc of radius δ with positive

coefficients. Denote byQ(x, y) the set of cubature nodes in the disk Bδ

(
x, y
)
parametrized

by polar coordinates, i.e.,

Q(x, y) :=
{

(xij, yij) =
(
x+ ri cos(θj), y + ri sin(θj)

)
∈ Bδ

(
x, y
)
, i ∈ I, j ∈ J

}
,

where ri denotes the distance from center point (x, y), θj is the angle, and I and J are
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the set of indices of cubature nodes. Using numerical integration, we get the system



∂S(t, x, y)

∂t
= −S(t, x, y)T

(
t,Q(x, y)

)
− cS(t, x, y),

∂I(t, x, y)

∂t
= S(t, x, y)T

(
t,Q(x, y)

)
− bI(t, x, y),

∂R(t, x, y)

∂t
= bI(t, x, y) + cS(t, x, y),

(1.15)

where

T
(
t,Q(x, y)

)
=

∑
(xij ,yij)∈Q(x,y)

wi,jg1(ri)g2(θj)I
(
t, x+ ri cos(θj), y + ri sin(θj)

)
,

and wi,j > 0 are the weights of the cubature formula.

Remark 1.4.1. Note that similar arguments as the proof of Theorem 1.2.1 can be applied

to system (1.15); hence, the properties C1–C4 hold without any restrictions for the ana-

lytic solution of this system. Moreover, it can be easily shown that T (t,Q(x, y)) satisfies

properties (A1) and (A2), by similar arguments that can be applied to the original system.

As a result, system (1.15) admits a unique strong solution.

1.4.1 The semi-discretized system

In this section we would like to solve (1.15) numerically. The first step is to discretize

the problem in space.

Let us suppose that we would like to solve our problem on a rectangle-shaped domain,

namely on Ω := [0,L1]×[0,L2]. For our numerical solutions we will discretize this domain

by using a spatial grid

G := {(xk, y`) ∈ Ω | 1 ≤ k ≤ P1, 1 ≤ ` ≤ P2} ,

which consists of P1 × P2 points with spatial step sizes h1 and h2, and approximate

the continuous solutions by a vector of the values at the grid points. After this semi-
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discretization, we get the following set of equations



dSk,`(t)

dt
= −Sk,`(t)Tk,`

(
t,Q(xk, y`)

)
− cSk,`(t),

dIk,`(t)

dt
= Sk,`(t)Tk,`

(
t,Q(xk, y`)

)
− bIk,`(t),

dRk,`(t)

dt
= bIk,`(t) + cSk,`(t),

(1.16)

where Xk,`(t) (X ∈ {S, I, R}) denotes the approximation of the function at gridpoint

(xk, y`). The approximation of F(t, xk, y`) is denoted by Tk,`(t,Q(xk, y`)) and defined as

Tk,`
(
t,Q(xk, y`)

)
:=

∑
(x̄k,ȳl)∈Q(xk,y`)

wi,jg1(ri)g2(θj)z(t, x̄k, ȳl), (1.17)

where x̄k = xk + ri cos(θj), ȳl = y` + ri sin(θj) and z is an interpolation of I(t, x̄k, ȳl) by

using a positivity preserving interpolation (e.g. bilinear interpolation) with the nearest

known Ik,` values and positive coefficients. The reason for this is that the points (x̄k, ȳl)

might not be included in G; in such case there are no Ik,` values assigned to them.

Theorem 1.4.1. A unique strong solution for system (1.16) exists, for which properties

C1–C4 hold locally at a given point (xk, y`).

Proof. The proof of existence and uniqueness comes from the Lipschitz continuity and

boundness of the right hand side, which can be proved similarly as in the case of the

original system (1.3). Properties C1–C4 can be proved in a similar manner as in Theorem

1.2.1.

Remark 1.4.2. The previous theorem can be stated not only in the case of bilinear inter-

polation, but also for any positivity preserving interpolation.

The next theorem characterizes the accuracy of interpolation and cubature techniques

of system (1.16).

Theorem 1.4.2. Suppose that a cubature rule approximates the integral (1.8) to order

p, i.e.,

∥∥F(I(t, x, y)
)
− T (t,Q(x, y))

∥∥
L2 = O(δp), (1.18)

where δ is the radius of the disk in which the integration takes place. Let us suppose that

the (positivity preserving) spatial interpolation z approximates the values of I to order q,
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i.e.,

‖I(t, x, y)− z(t, x, y)‖L2 = O(hq), (1.19)

where h = min{h1, h2} is the minimum of the spatial step sizes. Then if ũ is the vector of

the solution of (1.3) evaluated at the grid points of G and ṽ is the vector of the solution

of (1.16), it follows that

‖ũ− ṽ‖L2,d = O(δp) +O(hq).

in which ‖.‖L2,d is the discrete L2-norm.

For the proof, see [104].

A natural question arises: what is the best type of cubature and interpolation for

solving the system (1.16)? In the rest of the section we describe two numerical integration

procedures and also discuss suitable interpolation techniques.

1.4.1.1 Elhay–Kautsky cubature

One can use a direct cubature rule on the general disk, see for example [38, 97]. In such

cases the integral of a function f(x, y) over the disk with radius δ can be approximated

by

Q(f) = πδ2

Nr·Nθ∑
i=1

wif(xi, yi) = πδ2

Nr∑
i=1

Nθ∑
j=1

w̃if
(
ri cos(θj), ri sin(θj)

)
, (1.20)

where Nr is the number of radial nodes, Nθ is the number of equally spaced angles, and

wi and w̃i are weights in the [0, 1] interval. We use Nθ = 2Nr to have a cubature rule

that is equally powerful in both r and θ. The weights and cubature nodes are calculated

by a modification of the Elhay–Kautsky Legendre quadrature method [42, 65, 78]. The

top panel of Figure 1.1 shows the distribution of cubature nodes for Nr ∈ {3, 6, 12}. The
Elhay–Kautsky cubature results in nodes that are evenly spaced in the θ direction.

1.4.1.2 Gauss–Legendre quadrature

Alternatively, we can transform the disk into a square, and then use a one-dimensional

Gauss-Legendre rule to approximate the integral. First, we transform the disk with radius
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δ to the rectangle [0, δ]× [0, 2π] on the r − θ plane. Next, the rectangle [0, δ]× [0, 2π] is

mapped to [0, 1]× [0, 1] on the ξ − η plane by using the linear transformation

r = δξ, θ = 2πη,

that has a Jacobian 2πδ. Using these transformations, the original integral

∫ δ

0

∫ 2π

0

f
(
r cos(θ), r sin(θ)

)
r dθ dr

takes the form ∫ 1

0

∫ 1

0

f
(
δξ cos(2πη), δξ sin(2πη)

)
δξ 2πδ dη dξ. (1.21)

There are several approaches for computing multiple integrals based on numerical integra-

tion of one-dimensional integrals. In this paper, we use the Gauss–Legendre quadrature

rule on the unit interval [107]; other options include generalized Gaussian quadrature

rules as described in [75].

The integral (1.21) can be approximated by

Q(f) =

Nξ∑
i=1

Nη∑
j=1

wiwj2πδ
2ξif

(
δξi cos(2πηj), δξi sin(2πηj)

)
=

Nξ·Nη∑
m=1

w̃mf(xm, ym), (1.22)

where ξi and ηi are the ith cubature nodes corresponding to the Gauss–Legendre quadra-

ture with weights wi. The number of cubature nodes in the ξ and η direction are denoted

by Nξ and Nη, respectively, and we let xm = δξi cos(2πηj), ym = δξi sin(2πηj) and

w̃m = wiwj2πδ
2ξi. The distribution of the cubature nodes in the unit disk is not uniform

as with the Elhay–Kautsky cubature and can be seen in the bottom panel of Figure 1.1.

For a fair comparison we use Nη = 2Nξ. Experimental results reveal that the Elhay–

Kautsky cubature (1.20) performs better in cases the interpolated function f(x, y) is a

bivariate polynomial, whereas the Gauss–Legendre quadrature (1.22) or the generalized

Gaussian quadrature rule (see [75]) when f(x, y) is an arbitrary nonlinear function.

In order to determine which cubature rule performs better for the system (1.16), we

perform a convergence test by applying the cubature formulas (1.20) and (1.22) to the
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Figure 1.1: Top panel : The distribution of cubature nodes (Nr × Nθ) in the unit disk
using the Elhay–Kautsky cubature rule. Bottom panel : The distribution of cubature
nodes (Nξ ×Nη) in the unit disk using the Gauss–Legendre quadrature rule.

function g1(r)g2(θ)I0(r, θ)r, where

g1(r) = 100(−r + δ), g2(θ) = sin(θ) + 1,

and

I0(r, θ) =
100

2πσ2
exp

(
− r2

2σ2

)
is a Gaussian distribution with deviation σ and centered at zero. This resembles the

initial conditions for I at the origin, as we will use later in Section 1.6.3.

The exact solution of the integral over a disk of radius δ is given by

∫ δ

0

∫ 2π

0

g1(r)g2(θ)I0 r dθ dr = 5000

(
2δ −

√
2π σ erf

(
δ√
2σ

))
, (1.23)
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where erf(x) is the Gauss error function [6, 57]. Figure 1.2 shows the convergence of the

two cubature rules over the disk of radius δ, as δ goes to zero (σ = 1/10). We observe

that the Gauss–Legendre quadrature (1.22) gives much smaller errors (close to machine

precision) when more than 12 × 24 nodes are used, compared to the Elhay–Kautsky

cubature (1.20) which is third-order accurate.

0.0031 0.0063 0.0125 0.025 0.05 0.1 0.2

10-5

100

(a) Elhay–Kautsky cubature (1.20)

0.0031 0.0063 0.0125 0.025 0.05 0.1 0.2

10-15

10-10

10-5

100

(b) Gauss–Legendre quadrature (1.22)

Figure 1.2: Numerical integration errors of cubature formulas (1.20) and (1.22) applied
to the integral in (1.23). The colored curves correspond to different choices of cubature
nodes in the δ-radius disk.

The performance of the cubature formulas depends also on the choice and accuracy of

interpolation. As mentioned before, bilinear interpolation can be used since it preserves

the non-negativity of the interpolant. One possibility is to use higher order interpolations,

like cubic or spline, but in these cases the preservation of the required properties cannot

be guaranteed. However, numerical experiments show that piecewise cubic spline inter-

polation results in a positive interpolant for sufficiently fine spatial grid. A better choice

is the use of a shape-preserving interpolation, to ensure that negative values are not gen-

erated and the interpolant of I(t, x̄k, ȳl) in (1.17) is bounded by maxk,`{Sk,` + Ik,` +Rk,`}
for every point (xk, y`). This can be accomplished by a monotone interpolation that uses

piecewise cubic Hermite interpolating polynomials [41, 49]. In MATLAB (version R2020b)

the relevant function is called pchip but is only available for one-dimensional problems

(in Octave it is also avaible in two dimensions). Extensions to bivariate shape-preserving

interpolation have been studied in [23, 24, 50]; however, this topic goes beyond the

purposes of this work. Another choice is the modified Akima piecewise cubic Hermite in-

terpolation, makima. Numerical experiments demonstrate good performance as it avoids
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overshoots when more than two consecutive nodes are constant [2, 3], and hence preserves

non-negativity in areas where I(t, x̄k, ȳl) is close to zero.

1.5 Discretization in time: the method of Euler

Let us apply the explicit Euler method to system (1.16) on the interval [0, tf ], and choose

an adaptive time step τn > 0 such that tn = tn−1 + τn, n ≥ 1. After the full discretization

we get the set of algebraic equations


Sn = Sn−1 − τnSn−1 ◦ T n−1 − cτnSn−1,

In = In−1 + τnS
n−1 ◦ T n−1 − bτnIn−1,

Rn = Rn−1 + bτnI
n−1 + cτnS

n−1.

(1.24a)

(1.24b)

(1.24c)

Here, the operator ◦ denotes the element-by-element or Hadamard product of matrices.

Now we examine the bounds of time step τn such that the method (1.24) gives solutions

which are qualitatively adequate and satisfy conditions D1–D4.

Theorem 1.5.1. Consider the numerical solution (1.24) obtained by forward Euler

method applied to (1.16) with non-negative initial data. Then, the solution satisfies prop-

erty D2 without any step-size restrictions. Moreover, properties D1, D3 and D4 hold if

the time step satisfies

τn ≤ min

{
1

maxk,`{T n−1
k,` }+ c

,
1

b

}
, (1.25)

where

T n−1
k,` =

∑
(x̄k,ȳl)∈Q(xk,y`)

wi,jg1(ri)g2(θj)z
n−1(x̄k, ȳl) (1.26)

is an approximation of (1.17) at point (xk, y`) ∈ G.

For the proof, see [104].

A drawback of the time-step restriction (1.25) is that it depends on the solution at

the previous step. This has important complications for higher order methods as we

will see in Section 1.6. For any multistage method the adaptive time step bound (1.25)
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depends not only on the previous solution, but also on the internal stage approximations.

Consequently, an adaptive time-step restriction based on (1.25) cannot be the same for

all stages of a Runge–Kutta method; instead it needs to be recalculated at every stage

to guarantee that conditions D1–D4 hold. Therefore, such bound has no practical use

because it is prone to rejected steps and will likely tend to zero.

A remedy is to use a constant time step that is less strict than (1.25), but still

guarantee that τ ≤ 1/(T n−1
k,` + c) holds for all 1 ≤ k ≤ P1, 1 ≤ l ≤ P2 and at every step

n. At a given point (xk, y`) ∈ G the weights and cubature nodes in Bδ

(
xk, y`

)
are the

same regardless of the location of (xk, y`) in the domain. Therefore, we can find an upper

bound for each element of the matrix T n−1 in (1.26). Let

T̂ :=
∑

(x̄k,ȳl)∈Q(xk,y`)

wi,jg1(ri)g2(θj)m̃, (1.27)

where

m̃ = max
(xk,y`)∈G

{S(0, xk, y`) + I(0, xk, y`) +R(0, xk, y`)} . (1.28)

Since T n−1
k,` ≤ T̂ for all 1 ≤ k ≤ P1, 1 ≤ l ≤ P2 then if

τ̂ := min

{
1

T̂ + c
,
1

b

}
, (1.29)

then the condition

τ̂ ≤ min

{
1

maxk,`{T n−1
k,` }+ c

,
1

b

}

holds at every step n. Moreover, T̂ ≤ w̃ κ2m̃N , where

κ = max{κ1, κ2} = max

{
max
r∈(0,δ)

{g1(r)}, max
θ∈[0,2π)

{g2(θ)}
}
,

w̃ = maxi,j{wi,j}, and N is the number of the cubature nodes in Q(xk, y`). Hence, the

time step (1.29) is larger than the rather pessimistic time step

τ̃ := min

{
1

w̃ κ2m̃N + c
,
1

b

}
, (1.30)
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proposed in [103, Theorem 2]. Numerical experiments show that τ̂ is very close to the

theoretical bound in (1.25), and thus a relatively small increase of time step beyond the

bound (1.29) may produce qualitatively bad solutions which violate one of the conditions

D1–D4 (see Section 1.6.3).

It is also possible to consider an implicit-explicit (IMEX) scheme, and apply it to the

system (1.16), which results in the scheme
Sn+1 = Sn − τnSn ◦ T n − cτnSn+1,

In+1 = In + τnS
n ◦ T n − bτnIn+1,

Rn+1 = Rn + bτnI
n+1 + cτnS

n+1,

(1.31)

in which Sn, In, Rn denote the numerical solutions at tn as before.

Theorem 1.5.2. Property D2 holds without restrictions, and if the time step satisfies

τn ≤
1

maxk,`{T n−1
k,` }

, (1.32)

then properties D1, D3 and D4 also hold.

Proof. The proof is the same as the one of Theorem 1.5.1, except that in this case τ does

not have to be smaller than 1/b.

It is evident that the bound (1.32) is a less strict one than (1.25), so the use of this

implicit-explicit scheme enables the use of larger time steps. However, since these are

only first order methods, their use is not recommended - in the next section higher order

methods are considered.

1.6 Discretization in time: Runge-Kutta methods

The method of Euler (either the explicit or explicit-implicit one) is only first-order accu-

rate; hence, we would like to obtain time step restrictions for higher order Runge–Kutta

methods. Note that the spatial discretizations discussed in Section 1.4 can be chosen

so that errors from cubature formulas and interpolation are very small; therefore, it is

substantial to have a high-order accurate time integration method.
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1.6.1 Strong stability preserving Runge-Kutta methods

Consider an initial value problem, that usually results from semi-discretization of partial

differential equations: U
′(t) = P(U(t)),

U(0) = U0,
(1.33)

in which P is the operator describing the discretization in space, and U0 is a given

function. Then, if we apply the Runge-Kutta method given in the usual Butcher form

[21] to problem (1.33), the scheme we get is

U (i) = Un−1 + τ
n∑
j=1

aijP(U (j)), 1 ≤ i ≤ m,

Un = Un−1 + τ
n∑
j=1

bjP(U (j)),

(1.34)

in which Un = (Un
1 , . . . , U

n
N) is the numerical solution at time tn and U (i) = (U

(i)
1 , . . . , U

(i)
N )

is the approximation of the solution at the ith stage of the method, namely

U
(i)
j ≈ u(xj, tn + ciτ)

in which u is the solution of the original partial differential equation and ci =
∑m

j=1 aij

(this latter condition is needed for the consistency of the method).

The area of mathematics in which strong stability preserving methods were defined

was the theory of hyperbolic systems, in which the preservation of monoticity and posi-

tivity properties is an important requirement. The property which is usually guaranteed

is that the scheme is total variation diminishing (or TVD for short), which in this case

can be reformulated as the monotonicity condition

‖Un+1‖ ≤ ‖Un‖. (1.35)

The direct analysis of property (1.35) for Runge-Kutta methods (especially the ones

written in the Butcher form) is usually hard. Instead of this, the usual process of the

proof of such conditions consists of the following two steps:
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• Prove that for the forward Euler method condition (1.35) holds if

0 ≤ τ ≤ τFE. (1.36)

• Rewrite the Runge-Kutta method in a way that the guarantee of property (1.35)

can be easily proved when

0 ≤ τ ≤ C τFE,

in which C is usually referred to as the SSP (or strong stability preserving) coeffi-

cient.

The latter point can be achieved by rewriting the Runge-Kutta method into the Shu-

Osher form

U (i) = viU
n−1 +

m∑
j=1

(
αijU

(j) + τβijP
(
U (j)

))
, 1 ≤ i ≤ m+ 1,

Un = U (m+1),

(1.37)

in which the coefficients αij and βij can be written into (m+ 1)× (m+ 1) matrices and vi
can be written as a vector with length m+ 1. Such methods were introduced by Shu as

total-variation diminishing (TVD) discretizations [92], and by Shu and Osher in relation

to high order spatial discretizations [93, 94].

From now on we consider numerical methods which have the following property.

Definition 1.6.1. A Runge-Kutta method (or any other numerical scheme) is said to be

zero-well defined, if it gives a unique solution to the equation u′(t) = 0,

u(0) = u0.

The next theorem states that the Shu-Osher form is indeed a good choice for repre-

sentation.

Theorem 1.6.1. [54, Theorem 2.1] Let us consider the initial-value problem (1.33), and

assume that the operator G(Q) satisfies the condition (1.35) applied to the forward Euler

method, i.e.

‖u+ τP(u)‖ ≤ ‖u‖ ∀u
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for such a time step for which 0 ≤ τ ≤ τFE holds.

Now consider a zero-well defined Runge-Kutta method (written in the Shu-Osher

form), and apply it to the initial-value problem (1.33). Then the numerical solution

computed by this scheme satisfies the monotonicity condition (1.35) if

0 ≤ τ ≤ C(α,β) τFE,

in which C(α,β) is the SSP coefficient defined as

C(α,β) =


min
i,j

αij
βij

, if αij, βij are non-negative,

0, otherwise.

One can prove that if we denote by K the matrix

K =

 (aij) 0

bᵀ 0

 ,
(in which aij and b are the coefficients of the Butcher form) and by I the (m + 1)-

dimensional identity matrix, then a connection between the two representations can be

established using the rule

K = (I −α)−1β,

in which α and β are the matrices containing the coefficients of the Shu-Osher represen-

tation. It can also be shown that for zero-well defined methods the inverse (I − α)−1

exists.

It is evident that for a given Butcher form infinitely many Shu-Osher forms can be

found. However, by Theorem 1.6.1 we would like to have the representation with the

largest value of SSP coefficient, thus obtaining the largest possible bound for our time

step.

Let us assume that for the coefficients of the Shu-Osher representation, the relation

p =
αij
βij

, ∀ i, j

holds, and from now on we use the notations for the matrices αp and βp for which

αp = pβp. Then the coefficients of this special representation can be computed from the
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Butcher coefficients using the rules

βp = K(I + pK)−1,

αp = p K(I + pK)−1,

vp = (I + p K)−1e,

in which e is the all-one vector with length m + 1. Using these, one can construct the

canonical Shu-Osher form

U (i) = viU
n−1 +

m∑
j=1

αij

(
U (j) +

τ

p
P
(
U (j)

))
, 1 ≤ i ≤ m+ 1,

Un = U (m+1),

(1.38)

in which vi and αij are the elements of vp and αp, respectively.

The Shu–Osher representation with the largest value of p such that (I + pK)−1 exists

and αp, vp have non-negative components is called optimal and attains the SSP coefficient

C = max
{
p ≥ 0 | ∃ (I + pK)−1 and αp ≥ 0,vp ≥ 0

}
.

The interested reader may consult [52, 53, 54], as well as the monograph [55] and the

references within, for a throughout review of SSP methods.

1.6.2 The application of SSP-RK methods

We would like to investigate time step restrictions such that the numerical solution ob-

tained by applying method (1.38) to the problem (1.16) satisfies properties D1–D4. The

following theorem provides the theoretical upper bound for the time step such that these

properties are satisfied.

Theorem 1.6.2. Consider the numerical solution obtained by applying an explicit Runge–

Kutta method (1.38) with SSP coefficient C > 0 to the semi-discrete problem (1.16) with

non-negative initial data. Then property D2 holds without any time step restrictions.

Moreover, the properties D1, D3 and D4 hold if the time step satisfies

τ ≤ Cmin

{
1

T̂ + c
,
1

b

}
, (1.39)
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where T̂ is given by (1.27).

For the proof, see [104].

Note that the bound (1.39) is similar to the usual ones which are expected in the

case of strong stability-preserving Runge-Kutta methods, since the bound for which the

forward Euler method had properties D1–D4 was

τ ≤ τ̂ := min

{
1

T̂ + c
,
1

b

}
.

1.6.3 Numerical results

In this section we confirm the results proved in the previous sections by using several

numerical experiments. Computational tests are defined in a bounded domain and thus

the choice of boundary conditions is important. Because we have no diffusion in our

problem, we consider homogeneous Dirichlet conditions and we assume that there is no

susceptible population outside of our domain. This means that we are going to assign a

zero value to any point which lies outside of the rectangular domain in which the problem

is defined. In most cases the nodes of the cubatures rules (1.20) and (1.22) do not belong

to the spatial grid. Special attention must be given to the corners and boundaries of the

domain where cubature nodes, assigned to grid points near the boundary, lie outside of

the domain. To be able to handle solution estimates at corners and at the boundary of

the domain, we use ghost cells which are set to zero. This enables us to calculate the

values corresponding to the cubature nodes lying outside of the domain.

For the numerical experiments we are choosing the following functions. Let g1(r) be

a linearly decreasing function, which takes its maximum at r = 0 and becomes zero at

r = δ, i.e.,

g1(r) := a(−r + δ),

where a is similar to the parameter a in (II). Also, we are going to use a non-constant

symmetrical g2(θ) function given by

g2(θ) := β sin(θ + α) + β.

From now on, we are using the choices of α = 0 and β = 1, in other words assuming a

northern wind on the domain. In all numerical experiments - unless otherwise stated - we
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use the parameter values a = 100, b = 0.05, c = 0.01, and δ = 0.05, with 30 grid points in

each direction and 6 × 12 cubature nodes. We also choose the tenth-stage, fourth-order

SSP Runge–Kutta method (SSPRK104) for the time integration.

The initial conditions resemble the eruption of a wildfire, i.e., having infected cases

located in a small area. For the infected species, we use a Gaussian distribution con-

centrated at the middle point (L1/2,L2/2) of the domain Ω := [0,L1] × [0,L2], with

standard deviation σ̃ = min{L1,L2}/10. The spatial step sizes are h1 = L1/(P1− 1) and

h2 = L2/(P2 − 1), where P1 and P2 are the number of grid points in each direction. In

all numerical tests we set L1 = L2 = 1. We assume that the number of susceptibles is

constant except at the middle of the domain, and there are no recovered species at the

beginning. Therefore, for every 1 ≤ k ≤ P1, 1 ≤ l ≤ P2 the initial conditions are given

by

I0
k,` =

1

2πσ̃2
exp

−1

2


h1(k − 1)− L1

2
σ̃


2

+

h2(l − 1)− L2

2
σ̃


2

 ,

S0
k,` =

1

2πσ̃2
− I0

k,`,

R0
k,` = 0.

First we would like to study the behavior of our numerical solution. Figure 1.3 depicts

the numerical solution at times t = 50 and t = 500. As we can see, the number of

susceptibles is decreased, and the number of infected moves towards the boundaries,

while forming a wave. Both densities S and I tend to zero, which confirms that the zero

solution is indeed an asymptotically stable equilibrium for the first two equations of (1.3),

as it was proved in Section 1.1.

1.6.3.1 Comparison of the step size bounds for the Euler method

As we saw in Section 1.5, the improved bound τ̂ (see (1.29)) is larger than the pessimistic

bound τ̃ (see (1.30)), and thus closer to the best theoretically bound (1.25) that guarantees

the preservation of properties D1–D4. We would like to determine how close the bound τ̂

is to the adaptive step-size restriction, and compare it with the pessimistic bound τ̃ . In

Table 1.1 we have tested several different values of a and δ, for which both the bounds

τ̂ and τ̃ were computed. For comparison we calculated the minimum of the adaptive
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Figure 1.3: The number of susceptibles S (left), infected I (middle) and recovered R
(right) at times t = 50 (top panel) and t = 500 (bottom panel). The Gauss–Legendre
quadrature (1.22) has been used combined with the modified Akima (’makima’) interpo-
lation.

step bound (1.25), denoted by τe. As we can see, varying the parameter a and using

the time step bound τ̂ results in about 55% increase in efficiency and is much closer to

the theoretical bound for which the properties D1–D4 hold. By varying the parameter δ

instead of a, the time-step ratios remain similar and result in more than 70% difference

between the improved bound (1.29) and the time step (1.30). From Table 1.1 we conclude

that in the case of a small increase in the time step τ̂ , the forward Euler method continues

to preserve the desired properties. However, for values of τ bigger than (1.39), there is

34



a τ̃ τ̃/τe τ̂ τ̂ /τe τe
50 3.7458 0.4037 8.7682 0.9449 9.2792
100 1.9086 0.3923 4.5851 0.9424 4.8653
250 0.7723 0.3853 1.8859 0.9408 2.0046
500 0.3876 0.3857 0.9519 0.9470 1.0052

δ τ̃ τ̃/τe τ̂ τ̂ /τe τe
0.025 7.5188 0.3759 20.0 1.0 20.0
0.05 1.0060 0.2066 4.5802 0.9404 4.8703
0.075 0.3002 0.1959 1.4023 0.9151 1.5324
0.1 0.1269 0.2002 0.5964 0.9412 0.6337

Table 1.1: Step-size bounds τ̂ and τ̃ (see (1.29) and (1.30) respectively), and their com-
parison with the adaptive bound τe (see (1.25)) for the forward Euler method for different
values of a and δ. The computation uses the Elhay–Kautsky cubature rule (1.22) com-
bined with bilinear interpolation, and the final time is tf = 100.

no guarantee that properties D1–D4 will be satisfied by a high-order time integration

method.

1.6.3.2 Convergence of the method

Since we cannot approximate the exact solution accurately, we are going to compute

the numerical errors for different methods by using a reference solution. To have a fair

comparison the reference solution is computed by using the same parameters and method,

but with either a large number of cubature nodes or a very small time step.

First, we observe how well the different cubatures behave. As seen in Section 1.4,

using more nodes in cubature (1.22) results in smaller errors, and also faster convergence.

Numerical experiments show that this is also the case for the system (1.16). The L2-norm

errors for the different cubature formulas and interpolations can be seen in Figure 1.4. It is

clear that for a small number of cubature nodes there is no remarkable difference between

the interpolations, but for more cubature nodes modified Akima and spline interpolation

perform better. Bilinear interpolation results in similar errors for both cubatures (1.20)

and (1.22). As it can be seen, mofified Akima and spline interpolation perform the same

way for the Elhay–Kautsky cubature (1.20) and smaller errors are observed with spline

interpolation and Gauss–Legendre cubature (1.22).

Equally important is the order of the different time integration methods. Table 1.2

shows that the forward Euler method behaves similarly when compared to the first-

order integral solution described in Section 1.3. Numerical experiments show that the
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Figure 1.4: L2-norm errors using cubatures formulas (1.20) and (1.22) with n × 2n cu-
bature nodes, n ∈ {3, 4, 6, 9, 12} and different interpolations. The final time is tf = 50
and the reference solution for each cubature rule and interpolation is computed by using
17× 34 cubature nodes.

higher order schemes work as expected, namely that by using enough cubature nodes

and grid points, a reasonably small error can be achieved with the desired accuracy

order. Table 1.3 shows the convergence rates for second-, third- and fourth-order SSP

Runge–Kutta methods when the Gauss–Legendre quadrature rule (1.22) is used with

spline interpolation. The numerical solution is computed at time tf = 50 using 30 grid

points and 6 × 12 cubature nodes. We start with a reasonable time step 4.7, which is

slightly below the minimum of the adaptive bound (1.25) when forward Euler method is

used, and then successively divide by 2. For the reference solution we use a time step that

is the half of the smallest time step in our computations. It is evident that using higher

order methods is better than solving the integral equation (1.12) numerically. Moreover

the fourth-order SSP Runge–Kutta method (SSPRK104) attends a six times larger time

step than lower order methods since it has an SSP coefficient C = 6.

1.7 Discretization in time: Operator splitting tech-

niques

The main novelty of this section is (besides the traditional time discretization) that we

use another time discretization-like method: operator splitting. As one can see, the
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τ FE IM
1.0000 3.58× 10−1 8.17× 10−1

0.5000 1.82× 10−1 0.98 4.75× 10−1 0.78
0.2500 8.92× 10−2 1.03 2.53× 10−1 0.91
0.1250 4.19× 10−2 1.09 1.24× 10−1 1.02
0.0625 1.80× 10−2 1.22 5.48× 10−2 1.18

Table 1.2: L2-norm errors and convergence rates of forward Euler method (FE) and the
method (1.14), denoted by “IM". The solution is computed at time tf = 50 with the
Gauss–Legendre quadrature rule (1.22) combined with spline interpolation.

τ SSPRK22 SSPRK33 SSPRK104
4.7000 3.35× 10−1 6.22× 10−2 8.99× 10−4

2.3500 1.07× 10−1 1.65 1.05× 10−2 2.57 6.46× 10−5 3.80
1.1750 3.03× 10−2 1.82 1.53× 10−3 2.78 4.31× 10−6 3.91
0.5875 8.01× 10−3 1.92 2.07× 10−4 2.89 2.78× 10−7 3.95
0.2938 1.97× 10−3 2.02 2.65× 10−5 2.96 1.76× 10−8 3.98
0.1469 4.01× 10−4 2.30 3.00× 10−6 3.14 1.04× 10−9 4.08

Table 1.3: L2-norm errors and convergence rates of high-order integration methods. The
solution is computed at time tf = 50 with the Gauss–Legendre quadrature rule (1.22)
combined with spline interpolation.

right-hand side of problem (1.3) can be written as a sum of two terms: one containing

the integral and one with the remaining terms. The idea of operator splitting is to “split”

the problem into two sub-problems with the corresponding terms alone, and solve them

separately by using an appropriate initial condition to link their solution together. In the

present section we will introduce and study the sequential, the sequential weighted, and

the Strang splitting schemes.

As already mentioned, it is natural to split the space-discretized SIR model (1.16) into

the sub-problems with and without the integral term Tk,` specifying the space-dependency

of the infection process: 
∂tS

[1]
k,`(t) = −cS[1]

k,`(t),

∂tI
[1]
k,`(t) = −bI [1]

k,`(t),

∂tR
[1]
k,`(t) = bI

[1]
k,`(t) + cS

[1]
k,`(t)

(Sub.1)

and 
∂tS

[2]
k,`(t) = −S[2]

k,`(t)T
[2]
k,`(t,Q(xk, y`)),

∂tI
[2]
k,`(t) = S

[2]
k,`(t) T

[2]
k,`(t,Q(xk, y`)),

∂tR
[2]
k,`(t) = 0

(Sub.2)
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for all t ≥ 0 and (x, y) ∈ Ω. The link between the sub-problems is the initial condition,

as will be shown in the next sections.

For the later use we remark that sub-problem (Sub.1) can be solved exactly:
S

[1]
k,`(t+ ∆t) = e−c∆tS

[1]
k,`(t),

I
[1]
k,`(t+ ∆t) = e−b∆tI

[1]
k,`(t),

R
[1]
k,`(t+ ∆t) = R

[1]
k,`(t) + (1− e−c∆t)S

[1]
k,`(t) + (1− e−b∆t)I

[1]
k,`(t)

(1.40)

for all t ≥ 0 and (x, y) ∈ Ω, where ∆t ≥ 0 is an arbitrary time difference.

On the other hand, sub-problem (Sub.2) cannot be solved exactly. Its approximate

solution can be obtained by another time discretization method. For instance, the use of

the first-order explicit Euler method with time step τ > 0 leads to
S

[2]
k,`((n+ 1)τ) = S

[2]
k,`(nτ)− τS[2]

k,`(nτ)T
[2]
k,`(nτ,Q(xk, y`)),

I
[2]
k,`((n+ 1)τ) = I

[2]
k,`(nτ) + τS

[2]
k,`(nτ)T

[2]
k,`(nτ,Q(xk, y`)),

R
[2]
k,`((n+ 1)τ) = R

[2]
k,`(nτ)

(1.41)

for all n ∈ N with X [2](0, x, y) = X0(x, y) for each X ∈ {S, I, R}. We note that we take

0 ∈ N.

The use of the second-order Heun’s method in Shu–Osher form (which preserves the

strong stability, see [52]) with time step τ > 0 results in the following steps:
Ŝ

[2]
k,`((n+ 1)τ) = S

[2]
k,`(nτ)− τS[2]

k,`(nτ)T
[2]
k,`(nτ,Q(xk, y`)),

Î
[2]
k,`((n+ 1)τ) = I

[2]
k,`(nτ) + τS

[2]
k,`(nτ)T

[2]
k,`(nτ,Q(xk, y`)),

R̂
[2]
k,`((n+ 1)τ) = R

[2]
k,`(nτ),

(1.42)



S
[2]
k,`((n+ 1)τ) = 1

2
S

[2]
k,`(nτ)

+ 1
2

(
Ŝ

[2]
k,`((n+ 1)τ)− τ Ŝ[2]

k,`((n+ 1)τ)T̂
[2]
k,`(n+ 1)nτ,Q(xk, y`))

)
,

I
[2]
k,`((n+ 1)τ) = 1

2
I

[2]
k,`(nτ)

+ 1
2

(
Î

[2]
k,`((n+ 1)τ) + τ Ŝ

[2]
k,`((n+ 1)τ)T̂

[2]
k,`((n+ 1)τ,Q(xk, y`))

)
,

R
[2]
k,`((n+ 1)τ) = 1

2
R

[2]
k,`(nτ) + 1

2
R̂

[2]
k,`((n+ 1)τ) = R

[2]
k,`(nτ),

(1.43)

where T̂k,` is calculated similarly as Tk,`, but with the use of Îk,` instead of Ik,`. We do not

plug formulae (1.42) into (1.43), because the method will be more suitable for analysis
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in its present form.

We note that the use of an additional time discretization inside one time step might

also lead to a positivity preserving method. This technique may be applied only for one

sub-problem. Then the time step could be chosen independently of the constraints but

related to the accuracy of the scheme. For more details on such kind of adaptive time

stepping we refer to [40].

1.7.1 Technical tools

Before the derivation and analysis of the methods, we collect some notations and technical

tools we will use later on.

Notation 1.7.1. 1. LetM : RP1P2×P1P2 → RP1P2×P1P2 denote the bounded linear op-

erator (represented by a matrix in applications) that maps In to T n by the rule

T n =M(In). Furthermore, let

M := ‖M‖∞ · ‖S0 + I0 +R0‖∞

in which ‖.‖∞ means the maximum matrix norm taken element-wise. Note that

from now on we assume that the condition

S0(x, y) + I0(x, y) +R0(x, y) 6= 0 ∀(x, y) ∈ Ω

holds, which implies M > 0.

2. LetW−1 : [−1/e, 0)→ (−∞,−1] andW0 : (−1/e,+∞)→ (−1,+∞) denote the two

branches of the Lambert-W function, that is, the inverse of the map x 7→ xex.

3. For arbitrary p, q > 0, we define the set

Tp,q :=
[
0,−1

p
W0

(
− p

q

)]
∪
[
− 1

p
W−1

(
− p

q

)
,+∞

)
⊂ R.

Furthermore, we define

T0,q := [0, 1
q
) ⊂ R.

The latter notation makes sense because of the following consideration.
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Lemma 1.7.1. With Notation 1.7.1, the limit −1
p
W0

(
− p

q

) p→0−−→ 1
q
holds for arbitrary

q > 0.

Proof. It suffices to show that W0(x)/x
x→0−−→ 1 for x = −p/q < 0. The L’Hospital rule,

the derivative of the inverse function, and the identity W0(0) = 0 imply that

lim
x→0

W0(x)

x
= lim

x→0
W ′

0(x) = lim
x→0

1

eW0(x) +W0(x)eW0(x)
= 1.

Remark 1.7.1. Since we will use it several times throughout the paper, we analyse the

solution x < 0 to equation

xex = ρ (1.44)

for some parameter ρ < 0.

1. For ρ < −1/e, there is no solution to equation (1.44).

2. For ρ = −1/e, there is one solution: x1 = −1.

3. For ρ > −1/e, there are two solutions: x−1 = W−1(µ) and x0 = W0(µ).

We also know that x−1 ≤ x1 = −1 < x0. Hence, for the inequality

xex ≥ ρ (1.45)

we have the following cases.

1. For ρ < −1/e, the inequality (1.45) holds for every x < 0.

2. For ρ = −1/e, the inequality (1.45) holds for every x < 0 (we have xex = ρ for

x = −1).

3. For ρ > −1/e, we have: x < x−1 = W−1(µ) or x > x0 = W−1(µ).

The graph of function x 7→ xex is depicted in Figure 1.5.

In the next sections we will present the condition on the time step τ under which

the qualitative properties D1–D4 hold for the various operator splitting schemes. We are

especially interested in the cases when the application of operator splitting leads to less
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Figure 1.5: Graph of function x 7→ xex. The horizontal lines indicate the
ρ-values −0.25 and −1/e.

severe condition than the one obtained without splitting. As it was mentioned in Section

1.5, in [103] the authors applied the explicit Euler method without taking into account

the vaccination (c = 0). They found that property D2 was automatically satisfied, and

properties D1, D3 and D4 held true for time steps τ satisfying

τ ≤ min

{
1

M
,
1

b

}
.

The case c > 0 was studied in [104], and resulted in a similar bound, namely

τ ≤ min
{ 1

M + c
,
1

b

}
. (1.46)

From now on, the upper bound (1.46) will be considered as a reference value, and we will

study the conditions under which the application of operator splitting procedures leads

to a higher one.

1.7.2 Sequential splitting

Operator splitting is based on the idea of simplifying the problem by splitting it into

two or more sub-problems which are easier to solve or treat numerically. Since the sub-

problems need to be solved separately, we should derive a way to connect their solutions.

Depending on these rules, we distinguish several splitting methods. The most basic one is

the sequential splitting (initiated first in [10]) when the sub-problems are solved one after
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the other on a time interval of length τ > 0, always taking the solution of the previous

sub-problem as initial condition for the actual one. As we will see, the properties of the

sequential splitting depend on the order of the sub-problems, therefore, we will treat the

two different cases arising from the different orders separately.

Another splitting procedure is derived when the solutions of the two types of sequential

splittings are weighted by a parameter Θ ∈ (0, 1). This kind of method is called weighted

sequential splitting (see [31]) and will be discussed in Section 1.7.3. The third operator

splitting to be discussed in Section 1.7.4 is the Strang splitting (derived in [96] and [77])

solving three problems in a single time step: one with the first sub-problem over a time

interval of length τ/2, then with the second sub-problem on an interval of length τ , and

finally with the first sub-problem again on a τ/2 interval.

In what follows we analyse the splitting procedures in the light of whether they pre-

serve the qualitative properties D1–D4.

1.7.2.1 Sequential splitting 1–2

First we treat the sequential splitting in the case when the sub-problems are taken in the

order (Sub.1)–(Sub.2). Then the application of the sequential splitting means that in a

single time step we first solve sub-problem (Sub.1) whose solution (1.40) serves as the

initial condition to sub-problem (Sub.2):

X [1](nτ, x, y) = X [2](nτ, x, y),

X [2](nτ, x, y) = X [1]((n+ 1)τ, x, y)
(1.47)

for all n ∈ N with τ > 0, where X [2](0, x, y) = X0(x, y) is the original initial values of the

solution at t = 0 for each X ∈ {S, I, R}. After discretizing sub-problem (Sub.2) by the

explicit Euler method and discretizing sub-problems (1.40) and (1.41) in time, we get the

following two sub-problems:
S

[1],n+1
k,` = e−cτS

[1],n
k,` ,

I
[1],n+1
k,` = e−bτI

[1],n
k,` ,

R
[1],n+1
k,` = R

[1],n
k,` + (1− e−cτ )S

[1],n
k,` + (1− e−bτ )I

[1],n
k,`

(1.48)
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and 
S

[2],n+1
k,` = S

[2],n
k,` − τS

[2],n
k,` T

[2],n
k,` ,

I
[2],n+1
k,` = I

[2],n
k,` + τS

[2],n
k,` T

[2],n
k,` ,

R
[2],n+1
k,` = R

[2],n
k,` .

(1.49)

By taking into the initial conditions (1.47), the sub-problems have the following form for

all n ∈ N and given Snk,`, Ink,`, Rn
k,`:

S
[1],n+1
k,` = e−cτSnk,`,

I
[1],n+1
k,` = e−bτInk,`,

R
[1],n+1
k,` = Rn

k,` + (1− e−cτ )Snk,` + (1− e−bτ )Ink,`,

(1.50)


Sn+1
k,` = S

[1],n+1
k,` − τS[1],n+1

k,` T
[1],n+1
k,` ,

In+1
k,` = I

[1],n+1
k,` + τS

[1],n+1
k,` T

[1],n+1
k,` ,

Rn+1
k,` = R

[1],n+1
k,` .

(1.51)

Notation 1.7.1.(1) and the linearity of operatorM imply the following relation:

T
[1],n+1
k,` =M(I

[2],n
k,` ) =M(I

[1],n+1
k,` ) =M(e−bτInk,`) = e−bτM(Ink,`) = e−bτT nk,`. (1.52)

By combining the sub-problems (1.50)–(1.51), and the relation (1.52), we arrive at the

numerical scheme 
Sn+1
k,` = e−cτSnk,`(1− τe−bτT nk,`),

In+1
k,` = e−bτ (Ink,` + τe−cτSnk,`T

n
k,`),

Rn+1
k,` = Rn

k,` + (1− e−cτ )Snk,` + (1− e−bτ )Ink,`.

(1.53)

In what follows we show the connection between properties D1–D4, and investigate

the conditions under which they are fulfilled.

Proposition 1.7.1. We have the following assertions.

1. Property D2 holds for the numerical method (1.53) without any restriction.

2. Properties D3 and D4 are consequences of property D1.

Proof. (1) Property D2 follows by adding up the equations of system (1.53).
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(2) Since T nk,` ≥ 0 holds if Ink,` ≥ 0, and e−bτ > 0 in the first and the third equations of

system (1.53), we get that properties D3 and D4 also hold.

This concludes the proof.

Due to Proposition 1.7.1, the monotonicity properties D3 and D4 follow from the

non-negativity property D1. Thus, we do not need to treat them separately. Hence, as a

next step we study the conditions under which the non-negativity property D1 holds.

Proposition 1.7.2. With Notation 1.7.1, we have the following assertions.

1. For M < be, the non-negativity property D1 is satisfied for all values of time step

τ > 0.

2. For M ≥ be, the non-negativity property D1 holds if τ ∈ Tb,M .

For the proof, see [33].

Interestingly, the condition τ ∈ Tb,M in Proposition 1.7.2 means that there is a “for-

bidden interval” (
− 1

b
W0(− b

M
),−1

b
W−1(− b

M
)
)
⊂ R

where τ leads to negative S, I, R values. It is worth mentioning, however, that Proposition

1.7.2 gives a necessary condition only, so the forbidden interval can be shorter in real

applications. The correspondence between the “exact” and the necessary bounds will be

investigated in Section 1.7.5.

It is important to compare the bounds obtained for the time step in Proposition 1.7.2

with the similar result obtained for a numerical method without using operator splitting,

cf. bound (1.46).

Proposition 1.7.3. With Notation 1.7.1, we have the following assertions.

1. The estimate −1
b
W0

(
− b

M

)
> 1

M+c
holds for all M, b, c > 0 with M > be.

2. For an arbitrary M > 0, we have the limit −1
b
W0

(
− b

M

) b→0−−→ 1
M
.

Proof. 1. The relation W0(y) < y for all y < 0, the strictly increasing property of W0

and the assumption M > be imply the assertion.

2. Follows from Lemma 1.7.1 with p = b and q = M .
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Proposition 1.7.3 means that in the case M > be our method (1.53) gives a larger

upper bound for the time step τ as the application of explicit Euler method without

operator splitting. Namely, in this case M + c > M > be > b holds, which leads to

min{1/b, 1/(M + c)} = 1/(M + c). Moreover, for the case M ≤ be, our method (1.53)

satisfies the properties D1–D4 without any restriction on the time step τ . Hence, method

(1.53) is more convenient to use than the method proposed in Section 1.5 (and in [103]).

We note here, that although Proposition 1.7.2 allows large values for the time step,

the use of these is not advised, since it leads to considerable higher error in the numerical

solution.

Remark 1.7.2. Another possible way to perform the time step analysis is to check the non-

negativity preservation for each sub-problem separately, and then take the most severe

constraint on the time step. In case of the sequential splitting 1–2 (1.53) however, we

obtain a weaker result than the one presented in Proposition 1.7.2, namely, τ ≤ 1/M .

This can be seen from the following consideration. Sub-problem (1.50) preserves the non-

negativity for all τ > 0, while sub-problem (1.56) introduces the constraint τ ≤ 1/M .

This bound is always smaller than the one obtained in Proposition 1.7.2, which can be

seen from the proof of Proposition 1.7.3/(1). Thus, the point in analysing the combined

method (1.53) is that it might lead to sharper constrains on the time step, as it does in

this case.

1.7.2.2 Sequential splitting 2–1

We study now the sequential splitting with the other order of the sub-problems. In a

single time step we first solve (Sub.2) and then (Sub.1) with the initial conditions

X [2](nτ, x, y) = X [1](nτ, x, y),

X [1](nτ, x, y) = X [2]((n+ 1)τ, x, y)
(1.54)

for all n ∈ N and (x, y) ∈ Ω with X [1](0, x, y) = X0(x, y) for each X ∈ {S, I, R}. Thus,

we consider first the space discretized sub-problem (1.49) and then (1.48). Then the
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numerical method takes the form
S

[1],n+1
k,` = Snk,` − τSnk,`T nk,`,

I
[1],n+1
k,` = Ink,` + τSnk,`T

n
k,`,

R
[1],n+1
k,` = Rn

k,`,

(1.55)


Sn+1
k,` = e−cτS

[1],n+1
k,` ,

In+1
k,` = e−bτI

[1],n+1
k,` ,

Rn+1
k,` = R

[1],n+1
k,` + (1− e−cτ )S

[1],n+1
k,` + (1− e−bτ )I

[1],n+1
k,`

(1.56)

for all n ∈ N and (xk, y`) ∈ G. Combination of sub-problems (1.55) and (1.56) yields the

method
Sn+1
k,` = e−cτSnk,`(1− τT nk,`),

In+1
k,` = e−bτ (Ink,` + τSnk,`T

n
k,`),

Rn+1
k,` = Rn

k,` + (1− e−cτ )Snk,`(1− τT nk,`) + (1− e−bτ )(Ink,` + τSnk,`T
n
k,`).

(1.57)

We can state the same result as before.

Proposition 1.7.4. Proposition 1.7.1 holds for the method (1.57).

Proof. First, we add up the equations in (1.57) to obtain property D2. To prove the

next assertion, we consider an arbitrary step again. Property D1 implies that T nk,` is

non-negative. This and e−cτ < 1 imply that Sn+1
k,` ≤ Snk,`. Moreover, the non-negativity

of Sn+1
k,` implies that 1− τT nk,` ≥ 0, therefore, Rn+1

k,` ≥ Rn
k,` holds as well.

According to Proposition 1.7.4, it suffices to show the non-negativity property D1 to

obtain the monotonicity properties D3 and D4.

Proposition 1.7.5. The non-negativity property D1 holds true for the method (1.57) if

the time step τ satisfies the condition

τ ≤ 1

M
(1.58)

where M is defined in Notation 1.7.1.

Proof. Since the initial values are non-negative, we assume that Xn
k,` ≥ 0 and show that

Xn+1
k,` ≥ 0 for all n ∈ N, (xk, y`) ∈ G, and X ∈ {S, I, R}. Since the assumption τ ≤ 1/M
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implies 1 − τT nk,` ≥ 0, the non-negativity of Sn+1
k,` is fulfilled. Furthermore, since all

additive terms in the second and third equations of (1.57) are non-negative, we have

In+1
k,` ≥ 0 as well as Rn+1

k,` ≥ 0.

Hence, for M + c > b we get a better bound for the time step τ than for the explicit

Euler method without splitting, cf. (1.46). If M + c < b, it might happen that the bound

of the non-split method is better. Since the application of operator splitting usually needs

more CPU time than the explicit Euler method itself, it is not advised to use method

(1.57) but the first one (1.53).

We note that in case of the sequential splitting 2–1 we obtain the same bound (1.58)

on the time step τ both when analysing the combined method (1.57) or the separate

sub-problems (1.55) and (1.56).

1.7.3 Weighted sequential splitting

Especially on parallel computers, it is a good idea to combine the solutions obtained by

using the sequential splittings 1–2 and 2–1 with some Θ ∈ [0, 1] parameter as follows:

X = Θ ·X(1.53) + (1−Θ) ·X(1.57)

whereX(1.53) andX(1.57) denote the approximate solutions obtained by numerical methods

(1.53) and (1.57), respectively, for each X ∈ {S, I, R}. We note that the choice Θ = 0

results in the method (1.57), while Θ = 1 gives (1.53). In this way we get the following

numerical method:
Sn+1
k,` = e−cτSnk,`

(
1− τ(Θe−bτ + (1−Θ))T nk,`

)
,

In+1
k,` = e−bτ

(
Ink,` + τ(Θe−cτ + (1−Θ))Snk,`T

n
k,`

)
,

Rn+1
k,` = Rn

k,` + (1− e−cτ )Snk,`(1− (1−Θ)τT nk,`) + (1− e−bτ )(Ink,` + (1−Θ)τSnk,`T
n
k,`).

(1.59)

As before, we investigate the validity of properties D2– D4.

Proposition 1.7.6. Proposition 1.7.1 is valid for method (1.59).

Proof. The conservation of the size of the population is obtained again by adding up the

equations in (1.59). Since Θ, e−bτ , e−cτ > 0 and T nk,` ≥ 0 in the first equation of (1.59),
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we have Sn+1
k,` ≤ Snk,`. Due to property D1, all terms in the third equation of (1.59) are

non-negative, therefore, Rn+1
k,` ≥ Rn

k,` holds true.

In order to study the non-negativity preservation D1, we need the following notation.

Notation 1.7.2. For the parameter Θ ∈ [0, 1], we define

Θ∗ :=
e2

e2 + 1
≈ 0.8808.

It will turn out that we get remarkably different bounds for Θ being under or above

Θ∗.

Notation 1.7.3. 1. For Θ ∈ [0, 1] and b > 0, we define the function

VΘ,b : R+ → (0,+∞) as

VΘ,b(τ) = τ(1−Θ(1− e−bτ )).

2. We introduce the values 0 < τ0 < τ−1 as

τ−1 := 1
b

(
1−W−1

( e(Θ−1)
Θ

))
for Θ ∈ [Θ∗, 1),

τ0 := 1
b

(
1−W0

( e(Θ−1)
Θ

))
for Θ ∈ [Θ∗, 1].

in Figure 1.6 the graph of function VΘ,b is shown for Θ = 0.95 and b = 0.1. In order

to illustrate its dependence on Θ, we present the graph of function VΘ,b for various values

of Θ and b = 0.1 in Figure 1.7.

Figure 1.6: Graph of function VΘ,b(τ) = τ(1−Θ(1− e−bτ )) for Θ = 0.95 and
b = 0.1. The horizontal line indicates the value 3.5.
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Figure 1.7: Graph of function VΘ,b(τ) = τ(1− Θ(1− e−bτ )) for Θ = 0.6, 0.8,
0.9, 0.95, 1 and b = 0.1.

1.7.3.1 Case of “small” Θ

We take now Θ ∈ [0,Θ∗) and examine first whether the inverse of VΘ,b exists.

Lemma 1.7.2. For Θ ∈ [0,Θ∗), function VΘ,b is strictly increasing, thus, V −1
Θ,b exists and

is strictly increasing on (0,+∞).

Proof. To show that function VΘ,b is monotone, we calculate its derivative with respect

to τ :

V ′Θ,b(τ) = d
dτ

(
τ(1−Θ(1− e−bτ ))

)
= (1−Θ) + Θe−bτ (1− bτ).

We now determine its zeros:

V ′Θ,b(τ) = 0

(1−Θ) + Θe−bτ (1− bτ) = 0

e−bτ (1− bτ) =
Θ− 1

Θ

e1−bτ (1− bτ) = e
Θ− 1

Θ
.

With the notations x := 1 − bτ and ρ := e(Θ − 1)/Θ < 0, we need to examine the

solutions x to the equation (1.44). The relation Θ < Θ∗ implies ρ < −1/e, hence, there

is no solution x to equation (1.44) according to Remark 1.7.1. Thus, there are no zeros

of function V ′Θ,b, therefore VΘ,b is monotone. Furthermore, V ′Θ,b(1/b) = 1−Θ > 0 implies

that function VΘ,b is increasing on (0,+∞). Hence, its inverse V −1
Θ,b exists and is strictly

increasing on (0,+∞).
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We state now the result for the non-negativity preservation.

Proposition 1.7.7. For Θ ∈ [0,Θ∗), the non-negativity property D1 holds for the method

(1.59) if the time step τ satisfies the following criterion:

τ ≤ V −1
Θ,b

(
1
M

)
. (1.60)

For the proof, see [33].

1.7.3.2 Case of “large” Θ

We take now Θ ∈ [Θ∗, 1], and examine the behaviour of function VΘ,b.

Lemma 1.7.3. With Notations 1.7.1 and 1.7.3, we have the following assertions.

1. For Θ ∈ [Θ∗, 1), we have the following strictly monotonicity segments of function

VΘ,b:

(a) on (0, τ0) the function VΘ,b is strictly increasing, therefore, its inverse V −1
1

exists and is strictly increasing,

(b) on (τ0, τ−1) the function VΘ,b is strictly decreasing, therefore, its inverse V −1
2

exists and is strictly decreasing,

(c) on (τ−1,+∞) the function VΘ,b is strictly increasing, therefore, its inverse V −1
3

exists and is strictly increasing

2. For Θ = 1, the inverse of function V1,b = τe−bτ is strictly increasing on [0, 1/b) and

decreasing on (1/b,+∞).

For the proof, see [104].

We have then the following result for the non-negativity property in this case.

Proposition 1.7.8. For Θ ∈ [Θ∗, 1], the non-negativity property D1 is fulfilled for method

(1.59) in the following cases:

1. for 1
M
∈ (0, VΘ,b(τ−1)]: if τ ≤ V −1

1 ( 1
M

),

2. for 1
M
∈ (VΘ,b(τ−1), VΘ,b(τ0)]: if τ ∈

(
0, V −1

1 ( 1
M

)
]
or τ ∈

[
V −1

2 ( 1
M

), V −1
3 ( 1

M
)
)
,

3. for 1
M
> VΘ,b(τ0): if τ < V −1

3 ( 1
M

)
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with Notations 1.7.1 and 1.7.3.

Proof. The non-negativity of In+1
k,` and Rn+1

k,` follows from the non-negativity of Sn+1
k,` , so

we only have to prove only the latter one. Similarly as in the proof of Proposition 1.7.7,

we need to determine the intervals where

VΘ,b(τ) := τ(1−Θ(1− e−bτ )) ≤ 1

T nk,`
.

To do so, we need an inverse of function VΘ,b which has the three branches presented in

Lemma 1.7.3. Property D2 implies the estimate T nk,` ≤M which provides the assertions.

Remark 1.7.3. As we have already pointed out, the cases Θ = 0 and Θ = 1 correspond

to the sequential splitting methods (1.57) and (1.53), respectively. Since V1,b(τ) = τ , its

inverse V −1
1,b is the identity in (1.60), cf. Proposition 1.7.5. Furthermore, V0,b(τ) = τe−bτ

implies V −1
0,b (y) = −W (−by)/b having the two branches W = W−1 and W = W0 as in

Proposition 1.7.2. Hence, as expected, the corresponding results in Propositions 1.7.7

and 1.7.8 meet the conditions in Propositions 1.7.2 and 1.7.5.

Remark 1.7.4. As in the case of the sequential splitting 1–2 (cf. Remark 1.7.2), Propo-

sitions 1.7.7 and 1.7.8 yield sharper conditions of the time step than the bound is when

analysing the positivity preservation of the sub-problems separately. This is true due to

the following consideration. The weighted splitting consists of the two sequential split-

tings 1–2 (1.53) and 2–1 (1.57). In Proposition 1.7.3 we showed that the bound obtained

for sequential splitting 1–2 is sharper than 1/M . Furthermore, for the sequential splitting

2–1 we have the bound 1/M . Hence, the separate treatment of the sub-problems leads

to the constraint τ ≤ 1/M . The bounds obtained in the present section, however, are

always sharper. In the case of “small” Θ, the bound V −1
Θ,b(

1
M

) is larger than 1/M , since

V −1
Θ,b(τ) is a strictly increasing function in τ by Lemma 1.7.2, and V −1

Θ,b(τ) = τ holds for

Θ = 0 (so the bound here is simply 1/M), furthermore, V −1
Θ,b(τ) is monotonically decreas-

ing as Θ increases. For “large” values of Θ, we refer to Figure 1.7 to see that we can

have three cases with respect to the location of the graph of function VΘ,b(τ) relative to

the horizontal line 1/M . In all cases we have ∂VΘ,b(τ)/∂Θ < 0, that is, the left point of

intersection moves to the right when the value of Θ is increasing (the movement might

not be continuous but monotone). This means that the left bound is increasing as well.
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1.7.4 Strang splitting

In contrast to the sequential splittings presented in Section 1.7.2 and 1.7.3, Strang split-

ting needs three steps with the two sub-problems (Sub.1)–(Sub.2): the first step uses

(Sub.1) with time step τ/2, the second uses (Sub.2) with time step τ , and the third uses

(Sub.1) again with time step τ/2, always using the previous solution as an initial condi-

tion. Moreover, while the sequential splitting is of first order, the Strang is a second-order

method, therefore we need to use a second-order time discretization method to avoid order

reduction [32]. Hence, sub-problem (Sub.2) will be solved by Heun’s method as presented

in (1.42)–(1.43).

We note that the choice of (Sub.2) being the middle step is explained by the fact

that it needs more computational effort and time than sub-problem (Sub.1). Hence,

computing it only once at each step is more efficient than using the approach having

(Sub.1) in the middle, since in that case (Sub.2) should be evaluated twice.

The corresponding steps to be solved one after another have then the following form

with given Snk,`, Ink,`, Rn
k,` values:
S

[1],n+1
k,` = e−c

τ
2Snk,`,

I
[1],n+1
k,` = e−b

τ
2 Ink,`,

R
[1],n+1
k,` = Rn

k,` + (1− e−c
τ
2 )Snk,` + (1− e−b

τ
2 )Ink,`,

(1.61)


Ŝ

[2],n+1
k,` = S

[1],n+1
k,`

(
1− τT [1],n+1

k,`

)
,

Î
[2],n+1
k,` = I

[1],n+1
k,` + τS

[1],n+1
k,` T

[1],n+1
k,` ,

R̂
[2],n+1
k,` = R

[1],n+1
k,` ,

(1.62)


S

[2],n+1
k,` = 1

2
S

[1],n+1
k,` + 1

2
Ŝ

[2],n+1
k,`

(
1− τ T̂ [2],n+1

k,`

)
,

I
[2],n+1
k,` = 1

2
I

[1],n+1
k,` + 1

2

(
Î

[2],n+1
k,` + τ Ŝ

[2],n+1
k,` T̂

[2],n+1
k,`

)
,

R
[2],n+1
k,` = R

[1],n+1
k,` ,

(1.63)


Sn+1
k,` = e−c

τ
2S

[2],n+1
k,` ,

In+1
k,` = e−b

τ
2 I

[2],n+1
k,` ,

Rn+1
k,` = R

[2],n+1
k,` + (1− e−c

τ
2 )S

[2],n+1
k,` + (1− e−b

τ
2 )I

[2],n+1
k,`

(1.64)

for all n ∈ N and (xk, y`) ∈ G. Since the form of the combined method would be too

complex, we leave the steps individually written, and will study them separately. In this
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case we get constraints which are more transparent and easier to verify. As before, we

are going to show the validity of the properties D2– D4.

Proposition 1.7.9. Proposition 1.7.1 holds for the method (1.61)–(1.64).

Proof. It suffices to show the assertions for each steps (1.61)–(1.64) by taking into account

that they are constitutive steps, that is, their solution serves as an initial value for the

next step.

The conservation of the size of the total population can be shown by adding up the

equations in each step (1.61)–(1.64). Since it is conserved in each step, it remains the

same for the whole method as well.

By assuming the non-negativity property D1 and using e−b
τ
2 , e−c

τ
2 ∈ (0, 1), we have

that S[1],n+1
k,` ≤ Snk,` and R

[1],n+1
k,` ≥ Rn

k,` in (1.61). Moreover, we have T [1],n+1
k,` ≥ 0 which,

together with property D1 for (1.62), implies Ŝ[2],n+1
k,` ≤ S

[1],n+1
k,` and R̂[2],n+1

k,` ≥ R
[1],n+1
k,` in

(1.62). Again, the non-negativity of I [2],n+1
k,` implies T [2],n+1

k,` , therefore, property D1 holds

for step (1.63), too. Since e−b
τ
2 , e−c

τ
2 ∈ (0, 1), properties D3 and D4 follow for step (1.64)

as well.

Hence, as before, it suffices to analyse the conditions under which the non-negativity

holds. The only difference from the previous sections is that in this case we will perform

the analysis separately for each step (1.61)–(1.64). We will take into account, however,

that they are constitutive steps of the method.

Proposition 1.7.10. The non-negativity property D1 holds for the method (1.61)–(1.64)

if

1. τ ∈ Tc/2,M for 2M < be,

2. τ ∈ Tp,M with p = min{b, c}/2 for 2M ≥ be.

For the proof, see [33].

We remark that if the effect of the vaccination is not taken into account (c = 0), we

have the condition τ < 1/M , according to Lemma 1.7.1 with q = M . This means that

in this case we cannot guarantee a better sufficient condition on the time step than the

one without applying operator splitting procedure, cf. (1.46).
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1.7.5 Numerical results

The present section is devoted to the numerical illustration of our previously obtained the-

oretical results regarding (i) the preservation of the total density, (ii) the non-negativity

of S, I, R, and (iii) the monotonicity of S,R.

There are issues already mentioned earlier which become really important at this

point. Since the rectangular domain Ω is bounded, a special attention should be given

to the boundary. As pointed out in Section 1.4, we assume that there is no susceptible

population outside Ω, thus, we assign zero values there. Using either a uniform or a

non-uniform cubature, the cubature points usually do not belong to the spatial grid G.
To implement the cubature points at the boundary and in the corners as well, we define

ghost cells outside the domain Ω having zero values. This enables the correct calculation

of the values which correspond to the cubature points lying outside the domain.

For the numerical experiments, we use the same functions g1 and g2 which were defined

in (1.6.3), namely

g1(r) = a(−r + δ),

g2(ϑ) = β sin(ϑ+ α) + β,

where a > 0 is the infection rate. We use the parameter values α = 0 and β = 1 describing

a northern wind on the domain. In our numerical experiments we take a = 100, b = 0.1,

and δ = 0.05. We also use the Gaussian quadrature (1.22) defined in 1.4.

Regarding the initial conditions, we assume that there are no recovered individuals at

the beginning, that is, R0
k,` = 0 for all (xk, y`) ∈ G. For the infected individuals, we use a

Gaussian distribution concentrated at the middle of the domain (L1/2,L2/2) which has

a standard deviation σ̃ = min(L1,L2)/10:

I0
k,` =

1

2πσ̃2
exp

(
− 1

2

[(
hx(k − 1)− A

2

σ̃

)2

+

(
hy(`− 1)− B

2

σ̃

)2])
,

where L1 = (P1 − 1)hx and L2 = (P2 − 1)hy as introduced in Section 1.4. We set here

L1 = L2 = 1. Due to property D2, the sum of all individuals is constant in time at each

point (xk, y`) ∈ G. Thus, the initial distribution of the susceptibles can be chosen to

be S0
k,` = Nk,` − I0

k,` with some constant Nk,` describing the sum of the species at point
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(xk, y`). For our tests, we choose Nk,` = 20 for all (xk, y`) ∈ G.
In Figure 1.8 the numerical solution is plotted for different time levels (Sk,` is plotted in

the left column, Ik,` in the middle, and Rk,` on the right). One can see that the number of

susceptibles decrease, and the number of infected moves towards the boundaries forming

a wave. Both of them tend to the zero function, while the number Rk,` of recovered tends

to Nk,` = 20 at each grid points (xk, y`) ∈ G.

1.7.5.1 Testing the time step bounds

A natural question might arise on the strictness of the time step bounds derived in Section

1.7.2. Since Proposition 1.7.1 holds for all schemes presented, it suffices to analyse the

constraints on the non-negativity preservation. We note that the aforementioned choice

of the parameters yields M ≈ 2.0893.

a) Sequential splitting 1–2 (1.53)

Due to Proposition 1.7.2, the sufficient upper bound (the lower end of the forbidden

interval) is

τ̂ = −1
b
W0(− b

M
) = − 1

0.1
W0(− 0.1

2.0893
) ≈ 0.5033, (1.65)

while the sufficient lower bound (the upper end of the forbidden interval) is

τ̃ = −1
b
W1(− b

M
) = − 1

0.1
W1(− 0.1

2.0893
) ≈ 45.5583.

In Table 1.4 we present our results on the time steps where the non-negativity property

D1 is preserved by the sequential splitting (1.53). In the second row we indicate the ratios

τ/τ̂ (for small τ) and τ/τ̃ (for large τ). The deficiency means the maximum of the absolute

values of the negative values appeared in the solution at the final time level.

One can see that the necessary bound τ̂ is relatively close to the numerically obtained

“exact” bound. Moreover, certain errors appear when the time step is further increased,

i.e., the solution becomes negative. It is also evident that after increasing the time step

close enough to the other bound τ̃ , the non-negativity property is satisfied again.

b) Sequential splitting 2–1 (1.57)
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Figure 1.8: The numerical solutions Sn
k,`, I

n
k,`, R

n
k,` shown in columns, respectively, at time

levels t = 0, t = 5, t = 10, t = 15, t = 30, for the sequential splitting (1.53).

In Proposition 1.7.5 we have the bound

τ̂21 =
1

M
≈ 1

2.0893
≈ 0.4763. (1.66)
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Table 1.4: Numerical results for sequential splitting 1–2 (1.53) for various time steps τ .
The deficiency is computed at final time tf = 50 for the upper, and at final time tf = 400
for the lower table.

Time step τ 0.48 0.50 0.52 0.54 0.56 0.58 0.60
Ratio τ/τ̂ 0.95 0.99 1.03 1.07 1.11 1.15 1.19

Property D1 yes yes yes yes yes no no
Deficiency 0 0 0 0 0 4.17e-3 2.42e-2

Time step τ 37 40 43 46
Ratio τ/τ̃ 0.81 0.88 0.94 1.01

Property D1 no no yes yes
Deficiency 9.98e-1 8.91e-2 0 0

Table 1.5 shows whether the non-negativity D1 is preserved. The numerical experiments

show that the behaviour of this method is similar to the previous one, although it produces

slightly bigger errors. Also, it does not become stable for any bigger values of τ , as

expected from Proposition 1.7.5.

Table 1.5: Numerical results for sequential splitting 2–1 (1.57) for various time steps τ .
The deficiency is computed at final time tf = 50.

Time step τ 0.47 0.49 0.51 0.53 0.55 0.57 0.59
Ratio τ/τ̂21 0.98 1.03 1.07 1.11 1.15 1.19 1.24
Property D1 yes yes yes yes no no no
Deficiency 0 0 0 0 1.75e-3 5.01e-3 3.99e-2

c) Weighted sequential splitting (1.59)

We study first the behaviour of the method for Θ = 0.5 < Θ∗. Proposition 1.7.7 leads

to the bound

τ̂w1 = V −1
Θ,b

(
1

M

)
≈ V −1

0.5,0.1

(
1

2.0893

)
≈ 0.4809, (1.67)

which is between the two previously obtained values (1.65) and (1.66). The corresponding

errors are also between the errors of the two previous methods, which can be seen in Table

1.6.

Next we study the case Θ = 0.9 > Θ∗. Then we get the following bounds from
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Table 1.6: Numerical results for the weighted sequential splitting (1.59) with Θ = 0.5 for
various time steps τ . The deficiency is computed at final time tf = 50.

Time step τ 0.47 0.49 0.51 0.53 0.55 0.57 0.59
Ratio τ/τ̂w1 0.98 1.02 1.06 1.10 1.14 1.18 1.23
Property D1 yes yes yes yes no no no
Deficiency 0 0 0 0 9.37e-4 5.00e-3 3.70e-2

Proposition 1.7.8:

τ−1 = 1
b

(
1−W−1

( e(Θ−1)
Θ

))
= 1

0.1

(
1−W−1

( e(0.9−1)
0.9

))
≈ 27.6587,

τ0 = 1
b

(
1−W0

( e(Θ−1)
Θ

))
= 1

0.1

(
1−W0

( e(0.9−1)
0.9

))
≈ 14.9596.

Since we have 1/M ≈ 0.4763, being smaller than both of the above values, we have case

(1) in Proposition 1.7.8. Therefore, we need to compute the following bound:

τ̂w2 = V −1
1 ( 1

M
) ≈ V −1

1 ( 1
2.0893

) ≈ 0.5006,

which is closer to the bound (1.65) than to (1.66). The corresponding results are listed

in Table 1.7.

Table 1.7: Numerical results for the sequential weighted splitting (1.59) with Θ = 0.9 for
various time steps τ . The deficiency is computed at final time tf = 50.

Time step τ 0.47 0.49 0.51 0.53 0.55 0.57 0.59
Ratio τ/τ̂w2 0.93 0.98 1.02 1.06 1.10 1.14 1.18
Property D1 yes yes yes yes yes no no
Deficiency 0 0 0 0 0 1.46e-3 5.63e-3

d) Strang splitting (1.61)–(1.64)

By the choice of parameters, we have

2M = 4.1786 > 0.2718 = be.

Hence, we consider case (2) of Proposition 1.7.10. Moreover, relation c = 0.01 < 0.1 = b
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leads to the bounds

τ̂S = −2
c
W0(− c

2M
) ≈ − 2

0.01
W0(− 0.01

4.1786
) ≈ 0.4798, (1.68)

τ̃S = −2
c
W1(− c

2M
) ≈ − 2

0.01
W1(− 0.01

4.1786
) ≈ 1626. (1.69)

As we can see, bound (1.68) is similar to the previously observed bounds (1.65), (1.66),

and (1.67). Due to our choice of parameters, any recognizable dynamics of S, I, R is

already over before time level t = 1626. Therefore, τ̃S in (1.69) is far too large to be

considered as a suitable time step. Hence, we omit the numerical experiments using it.

The numerical results are shown in Table 1.8.

Table 1.8: Numerical results for the Strang splitting (1.61)–(1.64) for various time steps
τ . The deficiency is computed at final time t = 50.

Time step τ 0.47 0.49 0.51 0.53 0.55 0.57 0.59
Ratio τ/τ̂S 0.98 1.02 1.06 1.10 1.15 1.19 1.23
Property D1 yes yes yes yes no no no
Deficiency 0 0 0 0 5.39e-4 7.30e-3 2.71e-2

1.7.5.2 Accuracy analysis

Besides the preservation of the qualitative properties, we also studied the accuracy of the

presented methods. Since the exact solution to system (1.3) in not known, we considered

a reference solution instead which was computed with a small time step. The time step

was first chosen to be the bound acquired in the previous sections, and then by halving

it six times, we got seven solutions. The last one was chosen to be the reference solution.

We had a spatial mesh of 20×20 points and a bilinear interpolation with a 5×5 Gaussian

quadrature, and the parameters a = 100, b = 0.1, c = 0.01, and δ = 0.1. We chose the

final time tf = 20. We define the relative global error at time level tf = Nτ as

ε(τ) :=
‖XN −XN‖
‖XN‖

with X ∈ {S, I, R}, where XN means the matrix with elements XN
k,` for (xk, y`) ∈ G, and

the underlying refers to the reference solution. We took the relative global error by using

the maximum norm and the discrete L1 and L2 norms.

In Figure 1.9 the order plot can be seen for the relative errors ε(τ) of the four presented
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splitting schemes, where the colours represent the methods and the line styles the various

norm types: the solid line states for the maximum norm, the dashed line for the discrete

L1 norm, and the dotted line for the discrete L2 norm. Since the slope of the curve on

the log-log plot corresponds to the order of the method, one can see that the sequential

and the weighted splittings are of first order, while the Strang splitting is of second order

convergent. We fit a line to the data and obtained the values given in Table 1.9. The

fairly good approximations to the theoretical orders can be clearly read from the data.

Figure 1.9: Order plot for the relative global error of the four splitting schemes identified
with colours. Solid line states for the maximum norm, dashed line for the discrete L1 norm,
and dotted line for the discrete L2 norm

Table 1.9: Slopes of the lines fitted to the curves in Figure 1.9 which approximate the
orders of the methods in the three norms considered.

splitting order in max. norm order in L1 norm order in L2 norm
Sequential 1–2 (1.53) 1.11046 1.11216 1.11263
Sequential 2–1 (1.57) 1.10598 1.10145 1.09238
Weighted (1.59) with Θ = 0.9 1.04794 1.04965 1.05635
Strang (1.61)–(1.64) 1.97442 1.98131 1.97148

1.8 Conclusions

In this chapter we observed an integro-differential equation, which can be used to model

space-dependent epidemic processes. Our main aim was to construct such numerical

schemes which do not only have high order, but also possess the discrete analogues of the

properties of the original continuous equation.
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First it was proved that the aforementioned equation (1.3) has a unique solution with

(biologically) reasonable properties. Later the original partial integro-differential equation

was transformed to an integral form and a numerical solution was also proposed to solve

it, but it turned out that the method is only of first order accurate, so its application is

not advised.

Then, another method was observed involving semi-discretization in space, and then

several different time discretizations were proposed, including the first order (forward

and backward) methods of Euler, higher order Runge-Kutta methods and also several

different operator splitting techniques. It turns out that for a sufficiently chosen time

step, these methods preserve the properties of the original continuous model.

A possible extension of this model involves the introduction of an incubation period,

which results in a delay integro-differential equation. This model is described in the next

chapter. Other possible extensions are mentioned in Chapter 3.
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Chapter 2

Epidemic models with latency period

The aim of this chapter is to extend the models which have already been studied in

Chapter 1. Some diseases take some time to develop inside an infected individual, so

they do not start to infect upon their infection but only after a short period of time

(so-called latency period). For this, we generalize the previous models by using delay

integro-differential equations. In this chapter we show that the solution of the continu-

ous problems possesses these features and give sufficient conditions that guarantee the

properties to the numerical solutions.

Delay can be introduced into the space-dependent SIR model described in Chapter 1

in several ways, which arise from different considerations. Here we will only examine the

ones resulting in a constant delay, which were also studied thoroughly by several authors

[28, 75, 114]. The key difference here from the previous models of Chapter 1 is the fact

that the infected group I does not only contain those who are infectious, but also those

who are infected, but cannot yet transmit the disease. This phenomenon might happen

when the disease needs some time to develop in a host, so during this time the infected

individual is not infectious. Consequently, the size of group I might change not upon

meetings of individuals coming from the groups of S and I, but rather ones from S and

an infectious one from I. However, since the illness takes a constant time to develop (let

us denote this constant value from now on as σ), the number of infectious individuals at

time t at place (x, y) is I(t−σ, x, y). Also, the processes of the recovery or the vaccination

is not changed, so that part of the equation remains the same as in (1.3).

Note that instead of collecting all of the infected people in group I, one can introduce

another group E usually called exposed, which contains all of the individuals who are

infected, but cannot yet infect others. These models are usually referred to as SEIR

models, but since this modification would considerably increase the number of equations

which have to be solved numerically, we will not discuss them here.

By the previous arguments, the equation describing our new process can be written
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in the form 

∂S(t, x, y)

∂t
= −S(t, x, y)F(t− σ, x, y)− cS(t, x, y),

∂I(t, x, y)

∂t
= S(t, x, y)F(t− σ, x, y)− bI(t, x, y),

∂R(t, x, y)

∂t
= bI(t, x, y) + cS(t, x, y).

(2.1)

in which F is defined as in (1.8).

Because (2.1) is a delay system, to obtain a properly posed problem we also need the

values of the function I on the time interval [−σ, 0]. This is the so-called history function

that will be denoted by Ih : [−σ, 0] × Ω → R, (t, x, y) 7→ Ih(t, x, y). Later we will show

that some assumptions are needed on the history function to assure that the solution

is continuous and behaves as expected. The history functions of S ans R are denoted

similarly but these functions do not appear in the model.

The model does not have boundary condition in a classical sense but due to the

integral in (1.8) we assume that I is equal to zero outside the domain Ω.

The structure of this chapter is as follows. In Section 2.1 we prove that the system

(2.1) has a unique solution, and in Section 2.1.1 it is shown that this solution possesses

some biologically reasonable properties. In Section 2.2.1 we discretize the system (2.1)

in space, and then in Sections 2.2.2 and 2.2.3 different time discretizations are examined,

namely the method of Euler and Runge-Kutta methods, respectively. The corresponding

numerical experiments can be found in Section 2.3.

2.1 Existence and properties of the analytic solution

In this section we discuss the solvability of system (2.1). The key tool will be the method

of steps introduced by Bellman [16], which involves the splitting of our time interval [0, tf ]

into smaller intervals with length σ with the grid points 0, σ, 2σ, 3σ, . . . , tf . The (n+ 1)th

element of this list will be denoted by tn. Let us denote the solution on the time interval

(tn−1, tn] by Sn(t, x, y), In(t, x, y) and Rn(t, x, y). Then the delay differential equation

(2.1) on a given interval (tn, tn+1] (n ≥ 1) becomes a classical partial integro-differential
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equation



∂Sn+1(t, x, y)

∂t
= −Sn+1(t, x, y)Fn(t− σ, x, y)− cSn+1(t, x, y),

∂In+1(t, x, y)

∂t
= Sn+1(t, x, y)Fn(t− σ, x, y)− bIn+1(t, x, y),

∂Rn+1(t, x, y)

∂t
= bIn+1(t, x, y) + cSn+1(t, x, y),

(2.2)

with initial conditions

Sn+1(tn, x, y) = Sn(tn, x, y), In+1(tn, x, y) = In(tn, x, y), Rn+1(tn, x, y) = Rn(tn, x, y),

and the notation

Fn(t− σ, x, y) = F
(
In(t− σ, x, y)

)
=

∫ δ

0

∫ 2π

0

g1(r)g2(θ)In
(
t− σ, x̄(r, θ), ȳ(r, θ)

)
r dθ dr.

(2.3)

In the case of t ∈ (0, σ], (2.2) has the form



∂S1(t, x, y)

∂t
= −S1(t, x, y)Fh(t− σ, x, y)− cS1(t, x, y),

∂I1(t, x, y)

∂t
= S1(t, x, y)Fh(t− σ, x, y)− bI1(t, x, y),

∂R1(t, x, y)

∂t
= bI1(t, x, y) + cS1(t, x, y),

(2.4)

with initial conditions

S1(0, x, y) = Sh(0, x, y), I1(0, x, y) = Ih(0, x, y), R1(0, x, y) = Rh(0, x, y),

and the notation

Fh(t− σ, x, y) = F
(
Ih(t− σ, x, y)

)
=

∫ δ

0

∫ 2π

0

g1(r)g2(θ)Ih
(
t− σ, x̄(r, θ), ȳ(r, θ)

)
r dθ dr.

(2.5)

Because the structures of (2.2) and (2.4) are the same, we will only consider the case of

(2.2) but all the statements also will be valid for (2.4).

If we proceed to solve the equation step by step (i.e. solving it on (0, σ] then on (σ, 2σ]

and so on) then the term Fn(t − σ, x, y) is known, since it only depends on In(t, x, y).

It is also important to notice that the first equation of (2.2) does not depend on the
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later ones, thus can be solved independently of the others. After this Sn+1(t, x, y) will be

known, which means that the only unknown is In+1(t, x, y) in the second equation, so it

can also be solved directly. Finally, the last equation can also be solved by integration,

resulting in the solution of system (2.2).

For the sake of simplicity, we introduce the function F̃n+1(t, x, y) := Fn(t−σ, x, y). In

other words, we shift the domain of Fn+1(t− σ, x, y) from (tn−1, tn]×Ω to (tn, tn+1]×Ω.

Then (2.2) has the form (t ∈ (tn, tn+1])



∂Sn+1(t, x, y)

∂t
= −Sn+1(t, x, y)F̃n+1(t, x, y)− cSn+1(t, x, y),

∂In+1(t, x, y)

∂t
= Sn+1(t, x, y)F̃n+1(t, x, y)− bIn+1(t, x, y),

∂Rn+1(t, x, y)

∂t
= bIn+1(t, x, y) + cSn+1(t, x, y).

(2.6)

Theorem 2.1.1. Assume that the history functions Sh(t, x, y), Ih(t, x, y) and Rh(t, x, y)

are continuous in time. Then system (2.1) has a unique solution, which is continuously

differentiable in time on (0, tf ].

For the proof, see [105].

In the next section we observe whether the continuous solution possesses some bio-

logical features.

2.1.1 Qualitative properties of the analytic solution

A mathematical model is considered to be reasonable not only when the system has only

one solution but the behavior of such solution should also possess the properties of the

biological model. Here we are going to observe four of these properties, namely the ones

which were already defined in Section 1.2. Our goal is to show that the properties C1 –

C4 are satisfied by the solution of system (2.1).

Theorem 2.1.2. Suppose that properties C1–C4 hold for our history functions, which are

also continuous. Then C1–C4 also hold for the solution of system (2.1) on a time interval

(0, tf ].

For the proof, see [105].

In the next sections we examine the semi-discretized and the fully discretized versions

of (2.1) and check whether their solutions satisfy the analogous versions of C1 – C4.
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2.2 Numerical approximation

2.2.1 The spatially discretized models and their properties

It is evident that Bellman’s method can only be used in practice when the integral of the

history function Ih at the time t = −σ is known, which is usually not the case. Because

of this, in the following sections we propose a numerical approach to approximate these

analytic solutions.

Upon looking at system (2.1), it is evident that the most problematic part is the fact

that it contains integrals on its right-hand side. We are taking a similar path as in Section

1.4: first we approximate the integral terms inside our equation, and then discretize it in

space using a grid defined in our domain.

We define some two-dimensional cubature formula on the disc Bδ(x, y) with positive

weights to approximate the integral F((t, x, y)). As in Section 1.4, let us denote by

Q(x, y) the set of cubature nodes in the disk Bδ

(
x, y
)
parametrized by polar coordinates,

i.e.,

Q(x, y) :=
{

(xij, yij) =
(
x+ ri cos(θj), y + ri sin(θj)

)
∈ Bδ

(
x, y
)
, i ∈ I, j ∈ J

}
,

where ri denotes the distance from center point (x, y), θj is the angle, and I and J are

the set of indices of cubature nodes. Using numerical integration, we get the system



∂S(t, x, y)

∂t
= −S(t, x, y)T

(
t− σ,Q(x, y)

)
− cS(t, x, y),

∂I(t, x, y)

∂t
= S(t, x, y)T

(
t− σ,Q(x, y)

)
− bI(t, x, y),

∂R(t, x, y)

∂t
= bI(t, x, y) + cS(t, x, y),

(2.7)

where

T
(
t− σ,Q(x, y)

)
=

∑
(xij ,yij)∈Q(x,y)

wi,jg1(ri)g2(θj)I
(
t− σ, x+ ri cos(θj), y + ri sin(θj)

)
,

(when t − σ ∈ [−σ, 0), we take Ih in the definition), and wi,j > 0 are the weights of the

cubature formula.

It is clear that the arguments detailed in Section 2.1 can be used similarly, which
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results in the following theorem.

Theorem 2.2.1. Assume that the history functions are continuous and properties

C1 – C4 hold for them. Then system (2.7) has a unique, continuously differentiable

solution, which also has properties C1 – C4.

A natural question is the choice of the numerical approximation of the integral. In

Section 1.4 two separate choices of cubatures were investigated. One of them, the Elhay-

Kautsky cubature results in a uniform distribution of points on the unit disc, while the

other, the Gauss-Legendre cubature (which involves a transformation of the integral to a

unit square) results in a non-uniform distribution. Numerical experiments show that while

the first one works well for polynomials, the second one is better for arbitrary nonlinear

functions. Since we cannot guarantee that our function I(t, x, y) is a polynomial, we are

going to use here the latter one. For further details of the different methods, see [104].

2.2.1.1 The properties of the semi-discretized model

As in Section 1.4, we assume that our domain Ω is a rectangle with one vertex at the

origin, i.e. Ω = (0,L1) × (0,L2), L1,L2 ∈ R+. Note that the following arguments also

hold for domains in a more general form, but involve much more careful choice of spatial

grids.

Let us discretize our rectangle shaped domain using the spatial grid

G = {(xk, y`) ∈ Ω | xk = (k − 1)h1, y` = (`− 1)h2, 1 ≤ k ≤ P1, 1 ≤ ` ≤ P2} ,

supposing that (P1 − 1)h1 = L1 and (P2 − 1)h2 = L1. This grid consists of P1P2 points

with spatial step sizes h1 and h2, and we approximate the continuous solutions by a

matrix containing the values at these grid points.

After this semi-discretization, we get the following set of equations:



dSk,`(t)

dt
= −Sk,`(t)Tk,` (t− σ,Q (xk, y`))− cSk,`(t),

dIk,`(t)

dt
= Sk,`(t)Tk,`(t− σ,Q (xk, y`))− bIk,`(t),

dRk,`(t)

dt
= bIk,`(t) + cSk,`(t),

(2.8)

in which Xk,`(t) (X ∈ {S, I, R}) denotes the approximation of the function at grid point
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(xk, y`) and at time t and

Tk,`
(
t− σ,Q(xk, y`)

)
:=

∑
(x̄k,ȳl)∈Q(xk,y`)

wi,jg1(ri)g2(θj)Îk,`(t− σ, x̄k, ȳ`), (2.9)

where x̄k = xk + ri cos(θj) and ȳl = y` + ri sin(θj) (when t− σ < 0, we have (Ih)k,` in the

formula).

Note that the points (x̄k, ȳk) might not be part of G, so there are no Ik,` values assigned
to them. Because of this, we will approximate them by some interpolation method using

the nearest known Ik,` values and positive coefficients. (This is the reason for the Î

notation.) In order to satisfy the qualitative properties, it is important to choose such

interpolations that preserve non-negativity in the sense that if the known values are non-

negative, then the function we get at the end of our process should also be non-negative.

Such interpolations include monotone interpolation that uses piecewise cubic Hermite

interpolating polynomials [41, 49] (’pchip’ for short), which will be used in the numerical

experiments.

As in the previous section, the methods described in Section 2.1 can be used again

for system (2.8), which results in the following theorem.

Theorem 2.2.2. Assume that the history functions are continuous and properties

C1 – C4 hold for them. Then system (2.8) has a unique, continuously differentiable

solution, which also has properties C1 – C4.

In Sections 2.2.2 and 2.2.3 we present two different numerical methods for system

(2.8): first we solve it using the explicit Euler method via the Elsgolts approach [43], and

later positivity-preserving Runge-Kutta methods [92, 93, 94].

2.2.2 Time discretization: explicit Euler method

One of the key elements in the solution of delay differential equations is the fact that

the discontinuities should be included in the mesh of the time discretization. Since our

history function is smooth, the only discontinuities in the higher order derivatives might

appear at the points kσ, k ∈ N. Based on this, we define them as

Gt =

{
tn/q ∈ [−σ, tf ]

∣∣∣∣ tn/q = n
σ

m
, n ∈ Z, −q ≤ n ≤ q

tf
σ
,

}
,

where q is a positive integer.
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On this above mesh, we can define the scheme
Sn+1 = Sn − τSn ◦ T n−q − cτSn,

In+1 = In + τSn ◦ T n−q − bτIn,

Rn+1 = Rn + bτIn + cτSn,

(2.10)

where 0 ≤ n ≤ q
tf
σ

and τ =
σ

q
. The symbol ◦ is the element-by-element or Hadamard

product of the matrices and the (k, `) element of the matrix Xn (X ∈ {S, I, R}) is

the approximation of the value Xk,`(tn/q), moreover the (k, `) element of T n−q gives the

approximation of T
(
tn/q − σ,Q(xk, y`)

)
by interpolating the elements of In−q.

Instead of analyzing the previous numerical method in terms of its convergence, we

are going to observe how well the model describes the real-life processes: more precisely,

whether our model preserves the discrete versions of qualitative properties C1 – C4. Sim-

ilarly as before, we denote these by D1 – D4.

Now we prove that for a sufficiently small time step (or in other words, a sufficiently

large m) properties D1-D4 hold for n > 0.

Theorem 2.2.3. Suppose that properties D1–D4 hold for the history functions discretized

on the grids G and Gt, then property D2 holds without restrictions. Furthermore, if we

assume that the time step satisfies

τ =
σ

q
≤ min

{
1

T̂ + c
,
1

b

}
, (2.11)

where T̂ is given by (1.27), then properties D1, D3 and D4 also hold up to the step

n ≤ q
tf
σ
.

For the proof, see [105].

An important remark is that the step size must be in the form
σ

q
, which means that

by condition (2.11), the theoretically best step size is in the form
σ

q̃
, where

q̃ = min

{
q ∈ N+

∣∣∣∣ σq < min

{
1

T̂ + c
,
1

b

}}
.
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2.2.3 Time discretization: Application of Runge-Kutta methods

To achieve higher order convergence in our numerical approximation, we need to use

higher order methods. One of the most widely used ones are the Runge-Kutta methods.

Since in this chapter we consider a constant delay, these methods are easily applicable.

In the sequel, the investigations will be based on the canonical Shu-Osher forms which

were introduced in Section 1.6.1. If these are applied to the initial value problemU
′(t) = P(U(t)),

U(0) = U0,
(2.12)

in which P is the operator describing the discretization in space, and U0 is a given

function, then the corresponding Runge-Kutta method had the form

U (i) = viU
n−1 +

m∑
j=1

αij

(
U (j) +

τ

p
P
(
U (j)

))
, 1 ≤ i ≤ m+ 1,

Un = U (m+1),

(2.13)

in which Un = (Un
1 , . . . , U

n
N) is the numerical solution at time tn and U (i) = (U

(i)
1 , . . . , U

(i)
N )

is the approximation of the solution at the ith stage of the method. Also, p is a parameter

describing the relation between the coefficients of the Butcher form.

In our case, the problem (1.16) can be written in the form

U ′(t) = P(U(t), U(t− σ)), u is given on [−σ, 0]. (2.14)

Because of this, the explicit Runge-Kutta method applied to (2.14) takes the form

U (i) = viU
n−1 +

m∑
j=1

αij

(
U (j) +

τ

C
P
(
U (j), Un−q)) , 1 ≤ i ≤ m+ 1,

Un = U (m+1),

(2.15)

(0 ≤ n ≤ q tf/σ) and C is the corresponding SSP-coefficient (see Section 1.6.1).

The next theorem states that for a sufficiently small time step, properties D1–D4 hold

for the above scheme.

Theorem 2.2.4. Consider an explicit Runge-Kutta method in the form (2.15) with SSP
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coefficient C > 0 and applied to system (2.8) with non-negative history function. Then

D2 holds, and the properties D1, D3 and D4 also hold if the step-size satisfies

τ =
σ

m
≤ Cmin

{
1

T̂ + c
,
1

b

}
, (2.16)

where T̂ is given by (1.27).

For the proof, see [105].

We should also note here that like in the case of the explicit Euler method, we cannot

use arbitrary values for time steps, but they should be in the form σ/q. Therefore, the

theoretically best time step is σ/q̃, where

q̃ = min

{
q ∈ N+

∣∣∣∣ σq < Cmin

{
1

T̂ + c
,
1

b

}}
.

2.3 Numerical experiments

In this section we present some numerical experiments to confirm our previous results.

First we show that the bounds we got in Theorems 2.2.3 and 2.2.4 are sharp in the sense

that the use of bigger time steps results in qualitatively bad behavior. Then, in the second

part we present some graphs on which the solutions are compared for different values of

σ and their qualitative properties are checked.

2.3.1 Construction of the test problem

The equation (2.1) is solved on the rectangle domain Ω = (0,L1)× (0,L2) (L1,L2 ∈ R+).

We set the parameters as L1 = L2 = 1 and c = 0.01. In order to be able to define the

term F(t− σ, x, y), we choose the functions

g1(r) = a(δ − r) and g2(θ) = 1.

(Here a constant g2 function is used, since in the case of epidemics it is a reasonable

assumption.)

In the numerical experiments, the choice a = 100 is used. The radius δ, delay-

parameter σ and the rate of recovery b will be set later. The history functions are chosen
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as 

Sh(t, x, y) = 20− Ih(t, x, y),

Ih(t, x, y) =
1

2πσ̃2
exp

(
− 1

2

[(
x− 1

2

σ̃

)2

+

(
y − 1

2

σ̃

)2])(
1 +

t

σ

)
,

Rh(t, x, y) = 0,

(2.17)

for t ∈ [−σ, 0], where Ih(t, x, y) is a scaled Gaussian distribution with standard deviation

σ̃ = 1/10 concentrated at the center (1/2, 1/2) of the domain Ω. Note that since Ih
is a monotone increasing continuous non-negative function and 1/(2πσ̃2) ≈ 15.92 < 20,

functions (2.17) fulfill properties C1–C4. The graphs of the history functions at time t = 0

can be seen in Figure 2.1.

Figure 2.1: The history functions Sh, Ih, Rh at t = 0 shown in columns, respectively.

The semi-discretization is carried out on a standard rectangular mesh with step sizes

h1 = h2 = 1/19. As mentioned before, we can use different cubatures to approximate the

integral F
(
I(t, x, y)

)
(see [104]) - here we are going to use a 40× 40 Gaussian one which

was already described in Sections 1.4 and 1.6.3. Therefore, the cubature has the form

T (t− σ, x, y) =

=
40∑
i=1

40∑
j=1

wiwja(−ξjδ + δ)I
(
t− σ, x+ ξjδ cos(2πηl), y + ξjδ sin(2πηl)

)
ξi2πδ

2 =,

=
402∑
k=1

w̃ka(−rm + δ)I
(
t− σ, x+ x̃m, y + ỹm

)
,

where m = 40(i − 1) + j, x̃m = ξiδ cos(2πηj), ỹm = ξiδ sin(2πηj), w̃m = wiwj2πδ
2ξi and

rm =
√

(x+ xm)2 + (y + ym)2. Based on this, at the given spatial grid point (xk, y`), the
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approximation

Tk,`(t− σ, xk, y`) =
402∑
i=1

w̃k a(−r̃m + δ)Î(t− σ, xk + x̃m, y` + ỹm)

is used, where r̃m =
√

(xk + xm)2 + (y` + ym)2 and Î(t−σ, xk + x̃m, y` + ỹm) is computed

using piecewise cubic Hermite interpolation.

With the help of the previous constructions, the time discretization methods discussed

in Sections 2.2.2 and 2.2.3 now can be applied (see the next subsections).

2.3.2 Sharpness of the time step bounds

In the previous sections, namely in Theorems 2.2.3 and 2.2.4 we gave sufficient conditions

for the qualitatively good behavior of the numerical solution, i.e. if we use a smaller time

step than the bounds, then our numerical solution possesses properties D1 – D4. A

natural question which might arise in the case of such sufficient conditions is the effect

of the use of bigger time steps.

In Table 2.1, we can see the theoretical bound (2.11)

τ ≤ min

 1(
20
∑40

i=1

∑40
j=1wiwj 100 δ3(1− ξi)ξi2π

)
+ 0.01

, 10

 , (2.18)

denoted by "theor. b.", the actual time step in the form σ/q̃ (see the end of Section 2.2.2)

denoted by "time step", and the bound calculated by experiments, i.e. the time step in

the form σ/qexp for which the method works as expected but for σ/(qexp − 1) it gives

qualitatively inaccurate results - this value is denoted by "real b." in the table. Also, the

difference qexp − q̃ is denoted by "diff." in the table. The bound can be considered sharp

when this value is zero. The last column shows the ratio of the "time step" and the "real

bound", i.e. the sharpness of the bound we got from our theorem. As it can be seen, this

ratio is 1 for several parameter values.

We show an example for the qualitatively bad behaviour of the method and show

the sharpness of the obtained time step bound (2.18) in the second row of Table 2.1.

On the left panel of Figure 2.2, the numerical solution Sn can be seen at the time level

t = 3 obtained with time step τ = σ/4 = 1/4 = 0.25. We can see that the solution

is qualitatively correct, namely, the values are non-negative. But when we use the next
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δ σ theor. b. time step real b. diff. ratio
0.13 1 0.2169 0.2 0.2 0 1.0000
0.12 1 0.2755 0.25 0.25 0 1.0000
0.15 0.3 0.1413 0.1 0.1 0 1.0000
0.15 0.5 0.1413 0.125 0.125 0 1.0000
0.14 0.4 0.1737 0.1333 0.1333 0 1.0000
0.13 0.5 0.2169 0.1667 0.1667 0 1.0000

Table 2.1: Numerical results for the explicit Euler method (2.10) for various time steps with final
time tf = 15 and b = 0.05 (the other parameters are given before).

possible time step τ = σ/3 = 1/3 = 0.3333, we also get negative values. On the right

panel of Figure 2.2 the white area corresponds to those grid points at which the solution

is negative. Thus, the obtained bound is sharp.

Figure 2.2: The numerical solution Sn shown at final time T = 3 computed with time
steps τ = 0.25 (left) and τ = 0.333 (right), with parameters δ = 0.12 and σ = 1. The white
area corresponds to those grid points at which the solution becomes negative.

The results for the second order Runge-Kutta method are presented in Table 2.2.

Here we can see that the theoretical bound is not that sharp in all of the cases, so our

condition is only sufficient, but not necessary. However, in some cases the theory gives

time steps that are not far from the best possible one (when we have small numbers in the

’diff.’ column). For different choices of the parameters and initial conditions, we might

get even better results, resulting in a sharp bound even in the higher order case.
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δ σ b theor. b. time step real b. diff. ratio
0.13 1 0.1 0.2169 0.2000 0.5000 3 0.4000
0.12 1 0.1 0.2755 0.2500 0.5000 2 0.5000
0.13 0.5 0.05 0.2169 0.1667 0.2500 1 0.6667
0.135 0.5 0.05 0.1937 0.1667 0.2500 1 0.6667
0.135 0.4 0.01 0.1937 0.1333 0.2000 1 0.6667

Table 2.2: Numerical results for the RK2 method (2.10) for various time steps with final time T = 15.

2.3.3 Comparison of the cases with different delay parameters

In this section, we present some graphs of the numerical solutions of equation (2.1) with

different values of σ. We are plotting the solution at final time tf = 7 with parameters

b = 0.1 and δ = 0.1, computed with the possible largest time step below the theoretical

bound 0.4752 (computed similarly as (2.18) with C = 1) and the second order Runge-

Kutta method is used. As we can see in Figure 2.3, the increase of parameter σ results

in a slower spread of the infection, which corresponds to the biological requirements (a

longer latent period results in a slower pandemic).

2.4 Conclusions

In this chapter we examined space-dependent epidemic models in which we assumed that

there is a latency period, i.e. it takes some time for infected individuals to be infectious.

This resulted in a system of delay integro-differential equations. The main aim of the

chapter was the construction of such numerical methods which preserve the qualitative

properties of the original continuous equation.

In Section 2.1, we proved that the aforementioned delay integro-differential equation

has a unique solution. Moreover, this solution possesses biologically reasonable properties.

Later, in Section 2.2.1 the integral terms of the equations were approximated with some

quadrature, and then using a spatial discretization we got a system of delay differential

equations.

The next sections described the time discretizations which can be used to solve the

aforementioned system of delay differential equations numerically. Since we only consider

the case of a constant delay, the usual numerical schemes used to solve ordinary differential

equations can be applied: in Section 2.2.2 the method of Euler, while in Section 2.15 the
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Figure 2.3: The numerical solutions Sn, In, Rn at tf = 7 shown in columns, respectively,
σ values σ = 0.2, σ = 0.5, σ = 1.0 and σ = 2.0.

method of Runge-Kutta was observed. It turned out that by using a necessarily small time

step, the numerical solution possesses biologically reasonable properties. Then, in Section

2.3 some numerical experiments were conducted, including the observation whether the

obtained bounds are not only sufficient, but also necessary or not.
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Chapter 3

Possible further extensions

In Chapters 1 and 2, a mathematical model describing epidemics propagating in space,

and a space-dependent one with latency period are presented, respectively. In this chapter

we mention some possible further extensions of these models.

Another way to describe epidemics is to consider a graph which could model the con-

nections inside a population (with the nodes being the individuals), and then define an

ordinary differential equation at each vertex modeling the possible three stages of the

given individual. When we consider very large graphs, the connections might become

nearly impossible to track down - in these cases, it is sometimes useful to consider not

a very large graph, but a limit of such graphs in some sense [74]. Then, the equations

previously defined on finite graphs become a system of partial differential equations de-

fined on the limit object (a graphone), or more precisely on the square [0, 1]× [0, 1]. The

properties of such equations were examined in [66].

It is also important to realize that in the case of equations (1.15) the births and

natural deaths are neglected in the domain, i.e. in such cases the total number of species

at a given point is assumed to be constant in time. A possible extension of this model is

to introduce some terms which describe these neglected phenomena. In these cases the

proofs of Section 1.1 are very similar, and bounds similar to the ones in the later sections

can also be given. An important difference though is that property C1, and consequently

D1 is different in this case, since the number of species at a given point is not constant

- however, if the rate of birth and natural deaths are constants in time, an ordinary

differential equation can be given for the total number of species at a given point, which

can be solved, so the total number of species at a given point can be computed. A similar

argument can be used to extend the delay model (2.1).

An important remark regarding the models which were described before is that they ig-

nore any diffusion or other movements inside the observed region. Such effects of diffusion

can be introduced into the model by adding a Laplacian term to each of the equations,
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which might have even non-integer powers. However, if we use spatial discretizations

which approximate the Laplacian terms using linear combinations of the values of the

function with positive coefficients, then similar bounds can be given as in the previous

Chapters.

A possible extension of the delay model involves non-constant latency periods. In

these cases the method of Elsgolts cannot be used, since the point tn − σ(tn) might not

be part of the mesh defined on the time interval. Because of this, the values of the

solutions at these points are calculated using some interpolation. However, if we use

a positivity preserving interpolation (like piecewise cubic Hermite interpolation ’pchip’

which was mentioned in e.g. Section 2.3), then a similar bound can be proven like in the

previous cases. Note though that the size of memory in these schemes is considerably

larger, since one has to store all the values which were computed previously.

Another different approach is to discretize the space dependent or the delay systems in

space using the method of finite elements. In these cases the use of positivity preserving

elements results in similar bounds as discussed before.
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Part II

Modeling the collapse of Easter Island

In recent years numerous papers and books have discussed the events that led to the

demographic collapse on Easter Island (Rapa Nui) in the 16th and 17th century. When

in 1786 comte de Lapérouse, French explorer stepped on the island as the first European,

he found only 2000 people with a much less developed civilization than the one which

would have be required to build such big monuments. Another unusual observation was

the lack of trees on the island. In the next centuries, several papers and books tried to

describe the events that could lead to the demographic collapse. Most of them blamed

the irresponsible inhabitants and the reckless consumption of goods on the island. Some

of them even claimed that these events could happen globally, so our increasing growth

will lead to the fall of humanity (see [11]). Since the increasing popularity of the concept

of sustainable development, these theories have gained even more recognition.

In the early 2000s Terry Hunt, historian from the University of Hawai’i arrived on the

island to confirm these theories [60, 61]. However, he found no traces of the long decline

of economy proposed in the original theory. The collected data showed a shorter and

much drastic collapse, which led Hunt to the realization that some other factors could

have effects on the events. Because of the numerous rat corpses and chewed seeds, he

proposed a new model involving the Polynesian rats (Rattus exulans). These animals

could have been originally brought to the island by the settlers themselves (some theories

even suppose that these animals were transported to Rapa Nui for food – this concept was

studied in [90], but we will neglect this effect). However, because the rats ate the seeds

of the trees, the reproduction of trees was decreased so dramatically, that the population

of plants could not cope with the constant harvest done by the settlers.
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The theories of Hunt were formalized by Basener et al. in three papers. First they

examined the classical theories [13], then added the rats to it [14]. In their third work,

they constructed a spatial model from the previous one, adding diffusion terms to the

equations. On the ground of their surprising results, we added a new term to their

equations, and examined the effect of this action. This model is described in Chapter

4: Sections 4.1.1 and 4.1.3 collect the results of [99], Section 4.1.2 summarizes [98] while

Section 4.2 compiles the theories of [101]. In Chapter 5 we construct a two-dimensional

model similar to the one in the previous chapter: the main statements of [102] are listed

in this part. The last chapter of this part mentions some possible extensions of the

presented models.
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Chapter 4

One dimensional model

As mentioned before, we would like to model the ecological collapse that took place on

Easter Island. For this, we use ordinary differential equations describing the changes of

population on the island. The theories of Hunt were formalized by Basener et al. [14] in

the following way:
dP

dt
= aP

(
1− P

T

)
,

dR

dt
= cR

(
1− R

T

)
,

dT

dt
=

b

1 + fR
T

(
1− T

M

)
− hP,

(4.1)

in which P , R, T denote the number of people, rats and trees, and a, b and c are the birth

ratio for humans, for trees and for rats, respectively. Also, f is the destructive effect of

the rats on trees, M is the maximum amount of trees which can live on the island, and

h is the number of trees cut down by a person in a year.

Note that in these models P = 1 means one person, T = 1 means the number of trees

used by a person in a year, and R = 1 is the number of rats which could be supported

by one tree (where one tree means the number of trees described above).

4.1 Discretized model

In [15], Basener et al. used the following spatial invasive species model to represent the

dynamics on Easter Island: they thought of Rapa Nui as an island which has a volcano

in the middle, so they split the habitable coast into N regions and labeled them from 1

to N (Figure 4.1). Therefore, the neighbours of region s (if 1 < s < N) are the regions

with labels s − 1 and s + 1. Also, the region with label 1 and the one with label N are

next to each other.
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Figure 4.1: The split of the habitable coast into N regions.

They also introduced the Dp and Dr parameters to measure the constant diffusion of

people and rats, respectively. In this way, they got the following equations:

dP s

dt
= aP s

(
1− P s

T s

)
+Dp(P

s−1 − 2P s + P s+1),

dRs

dt
= cRs

(
1− Rs

T s

)
+Dr(R

s−1 − 2Rs +Rs+1),

dT s

dt
=

b

1 + fNRs
T s

1− T s

M

N

− hP s,

where P s, Rs and T s denote the number of people, rats and trees in region s respectively

(s ∈ {1, . . . N}).
In their article, it turned out that upon increasing either the constant Dp or Dr, the

system becomes unstable. This was a surprising result since it is usually supposed in

scientific models that diffusion has a stabilizing effect on the system. However, one can

suppose that the source of this instability comes from the system’s asymmetry: the first

two equations involve diffusion, while the third one does not. In a closed system like

Easter Island, the movement of seeds (by the wind or on the fur of the animals) cannot

be overlooked. Also, in ecology it is a well known phenomenon that tropical trees tend

to have descents far from themselves, which also shows the necessity of the addition of

this term (this effect is described by the Janzen-Connell hypothesis [27, 64]).

In this way we can extend the previous model in the way presented below, in which
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Dt is the diffusion coefficient of trees mentioned before.

dP s

dt
= aP s

(
1− P s

T s

)
+Dp(P

s−1 − 2P s + P s+1),

dRs

dt
= cRs

(
1− Rs

T s

)
+Dr(R

s−1 − 2Rs +Rs+1),

dT s

dt
=

b

1 + fNRs
T s

1− T s

M

N

− hP s +Dt(T
s−1 − 2T s + T s+1).

(4.2)

An important remark here is that when T s = 0, the first two equations are not well-

defined. A possible solution to this problem is presented in Section 4.1.4.

Apart from the trivial equilibriums (where one of the species die out), (4.2) will have

a coexistence equilibrium, which is the same as computed in [14] and has the following

form:

Pε = Rε = Tε =
1

N

M(b− h)

b+ hMf
, (4.3)

for every one of the N systems.

If we linearize the system at equilibrium (4.3), we get the following form:



dP s

dt

dRs

dt

dT s

dt

 =


−a 0 a

0 −c c

−h −fMh(b− h)

b(1 + fM)

fMh− b+ 2h

1 + fM




P s

Rs

T s

 +

+


Dp(P

s−1 − 2P s + P s+1)

Dr(R
s−1 − 2Rs +Rs+1)

Dt(T
s−1 − 2T s + T s+1)

 .

(4.4)

We decouple the equations using the Fourier transformation meaning that we trans-

form the previous system of 3N -many equations with unknown functions P s(t), Rs(t) and

T s(t) (where s is the index of the given region) into a new system of 3N -many equations

with unknown functions xq(t), yq(t) and zq(t) (where q is the index of the new variables).

Our main goal is to get rid of the connections between equations describing different
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regions.

For the first two equations (with functions xq and yq) we get the same results as [15],

while the equation of the zq function can be computed in the following way:

dzq
dt

=
1

N

N∑
s=1

e
−2πiqs
N

dT s

dt
=

=
1

N

N∑
s=1

e
−2πiqs
N[

−hP s − fMh(b− h)

b(1 + fM)
Rs +

fMh− b+ 2h

1 + fM
T s +Dt(T

s−1 − 2T s + T s+1)

]
.

(4.5)

From now on, we will use the following notations

A :=
fMh(b− h)

b(1 + fM)
,

B :=
fMh− b+ 2h

1 + fM
.

With these, we can rewrite (4.5) as follows:

1

N

N∑
s=1

e
−2πiqs
N

[
−hP s − ARs +BT s +Dt(T

s−1 − 2T s + T s+1)
]

=

= −h 1

N

N∑
s=1

e
−2πiqs
N P s − A 1

N

N∑
s=1

e
−2πiqs
N Rs +B

1

N

N∑
s=1

e
−2πiqs
N T s+

+Dt
1

N

N∑
s=1

e
−2πiqs
N T s−1 −Dt

2

N

N∑
s=1

e
−2πiqs
N T s +Dt

1

N

N∑
s=1

e
−2πiqs
N T s+1 =

= −hxq − Ayq +Bzq+Dte
−2πiq
N

1

N

N∑
s=1

e
−2πir(s−i)

N T s−1 − 2Dtzq+

+Dte
2πiq
N

1

N

N∑
s=1

e
−2πiq(s+i)

N T s+1 =

= −hxq − Ayq +Bzq +Dte
−2πiq
N zq − 2Dtzq +Dte

2πiq
N zq =

= −hxq − Ayq +

[
B − 2Dt

(
1− cos

2πq

N

)]
zq =

= −hxq − Ayq +
[
B − 4Dt sin2 πq

N

]
zq.
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Thus, the decoupled system can be written as:

dxq
dt

dyq
dt

dzq
dt

 =


−
[
a+ 4Dp sin2 πq

N

]
0 a

0 −
[
c+ 4Dr sin2 πq

N

]
c

−h −A B − 4Dt sin2 πq
N




xq

yq

zq

 .

(4.6)

If we use the values of the constants from [14], which were a = 0.03, b = 1, c = 10,

M = 12000 and h = 0.25, the matrix from equation (4.6) gets the following shape:

Sq :=


−
[
0.03 + 4Dp sin2 πq

N

]
0 0.03

0 −
[
10 + 4Dr sin2 πq

N

]
10

−0.25
−2250f

1 + 12000f

6000f − 1

2 + 24000f
− 4Dt sin2 πq

N

 .

(4.7)

For example, if we choose the values f = 0.001 and N = 10 (like in [15]), we get
−
[
0.03 + 4Dp sin2 πq

10

]
0 0.03

0 −
[
10 + 4Dr sin2 πq

10

]
10

−0.25 − 9
52

5
26
− 4Dt sin2 πq

10


for every q = 1, . . . 10 value.

The system is stable, if every matrix is stable. Thus, if we want to examine the

stability of the system, we have to examine all the N (in the previous example, ten)

matrices. One region is stable, if all the eigenvalues of the corresponding matrix have

a negative real part. If this property holds for every matrix, then the system is stable,

otherwise it is unstable.

In the next section, we fix the f and N parameters and investigate the effect of the

added tree diffusion to our system.

4.1.1 The effect of the diffusion of trees

As it was mentioned in the previous section, Basener et al. found in [15] that the increase

of Dp or Dr makes the system (4.6) unstable. In this section we show that the increase
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of Dt has an opposite effect, such that it makes our system stable.

Instead of calculating the eigenvalues of our matrices, we use the Routh-Hurwitz

criterion. For 3× 3 matrices, the theorem can be formulated as follows.

Theorem 4.1.1 ([63, 89]). A matrix S ∈ R3×3 is stable if and only if

• det(S) < 0,

• tr(S) < 0,

• tr(S)M2(S) < det(S),

where det(S) is the determinant of S, tr(S) is the trace of S and M2(S) is the sum of

the three 2× 2 principal minors of S.

Theorem 4.1.2. Let us suppose that the model parameters satisfy the condition

B2 − Ac− ah < 0. (4.8)

Then, if (4.7) is stable for Dt = 0, then it is stable for all positive Dt values.

For the proofs of this and the following theorems, see [99].

Remark 4.1.1. If the parameters satisfy the condition

max {B2, (B − 4D∗t )
2} − Ac− ah < 0

for a given D∗t > 0 value, then if the matrix in (4.6) is stable for D∗t , then it is stable for

every other Dt > D∗t values.

Remark 4.1.2. The condition (4.8) can be guaranteed for the values in (4.7) if we choose

f to be greater than

− 107

2184000
+

1

291200

√
282 ≈ 8.6751× 10−6.

Theorem 4.1.3. Let us suppose that the parameters in (4.6) satisfy the conditions

B < min {a+ c, A+ h},

B(Ac+ ah+ (a+ c)2) < c2(A+ a) +B2(a+ c) + a2(c+ h).
(4.9)
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Then for fixed positive Dp and Dr values there is a positive Dt value for which the system

(4.6) is stable for every Dt > Dt value.

Remark 4.1.3. The condition (4.9) is satisfied for the values in matrix (4.7), which means

that for any fixed (Dp, Dr) pair the matrix (4.7) is stable for sufficiently large Dt values.

On the following pages, our goal will be to draw a three-dimensional surface which will

be the border of the stable and the unstable (Dp, Dr, Dt) triplets for the values f = 0.001

and N = 10 (we call a triplet stable if the corresponding system is stable, and call the

triplet unstable if the corresponding system is unstable).

Instead of determine the points of the previously mentioned border precisely, we

calculate them numerically using a bisection method in the following way. Let us assume

that we examine one parameter (let us call it x) and we search for those values of x at

which our system changes its stability. In this case, we choose one point (x0) to be very

small (in the algorithm, we use 0) and the other (x1) to be very large (we choose this to

be 107). If the system is stable in x0 and unstable in x1, then the border is in between

these two, so we check the stability at point
x0 + x1

2
. If it is stable, then the border is

above this point, and if it is unstable, then it is under this point. Then we continue this

iteration until the distance of x0 and x1 is small (we usually use 0.0001), and then we say

that the border is the mean of the two endpoints of the last interval. Using this method,

we get the graph for Dt = 0 in Figure 4.2. On this graph, the horizontal axis is Dp and

the vertical axis is Dr. The stable points are below the graph, and the points on it and

above are unstable. Note that we got the same results as [15]: when Dp = 0, the system

gets unstable for Dr > 0.15 (0.155 in [15]) and in the case of Dr = 0 the same happens

for Dp > 0.09 (exactly the same as in [15]).

If we increase the Dt value, we get the graph in Figure 4.3. As we can see, the area

of stability gets larger as the diffusion of the trees increases. It can also be seen from

further analysis that the system becomes stable if Dt > 0.41 for every value of Dr and

Dp.

It can also give us important information if we examine those Dt points for which

the system changes stability at certain (Dp, Dr) pairs. For this, we will plot the critical

Dt points as the function of Dp, and plot these borders for several Dr values. When

Dr →∞, these borders tend to a certain function, which can be seen in Figure 4.4.

From these graphs we can suspect that for any (Dp, Dr) pair our system is stable if

Dt is bigger than a certain value (probably around 0.51). These results also confirm the
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Figure 4.2: The border of stability in the case Dt = 0. The stable points are below the
graph.

Figure 4.3: The increasing border of stability in the cases Dt = {0, 0.015, 0.03, . . . 0.15}.
The stable points are below the graph.

statement of Theorem 4.1.3.

We can also use a three-dimensional surface to represent the region of stability. The

graph in Figure 4.5 is the border of the stability region. The vertical axis is Dr, the one

going left is Dp and the right one is Dt. We can see that as we increase Dt, the stability

region gets bigger and bigger, until the system becomes stable for every Dr and Dp value.

As we increase Dr, the system becomes unstable after a certain point, unless Dt is bigger

than the value 0.51 discussed above, because in this case the system does not change

stability.

It is clear from the previous claims that there are certain (Dr, Dt) pairs for which

the change of the diffusion of the people will have no effect on the stability, because it

is stable for every Dp value. When Dt and Dr are small, then the increase of Dp will
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Figure 4.4: Upper: The critical Dt points as the function of Dp. The graphs are plotted
from bottom-up with the values Dr = 50k2, k ∈ {1, 2, . . . 10}. Lower: the same functions
zoomed in to the [0, 3] interval.

Figure 4.5: The border of stable (Dp, Dr, Dt) triplets. The stable ones are below our
surface, and the unstable ones are above it.
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cause the system to become unstable. For example, if we look at the stability region for

Dr = 0, we get the graph in Figure 4.6, where the points above the graph are stable and

under it are unstable.

Figure 4.6: The border of stable (Dp, Dt) points for Dr = 0. The stable points are above
the graph.

We can also see that for some other (Dr, Dt) pairs our system might remain stable

(e.g for Dt > 0.51). However, for certain (Dr, Dt) values the diffusion of people has a

stabilizing effect. For example if we look at the line of (Dr, Dt) = (100, 0.2), our system

is unstable for Dp = 0, will be stable for around Dp = 0.15 and will be unstable again if

Dp > 0.2.

In conclusion, we can say that these numerical results support the theorems stated

before. Also, the increase of parameter Dr destabilizes our system, the increase of Dt has

the opposite effect, and Dp can act both ways depending on the values of Dp and Dr.

4.1.2 The choice of the parameters f and N

As it was mentioned before, the values f = 0.001 and N = 10 were chosen in [15], and

only the parameters of diffusion were changed (we also used the same method in the

previous section). However, it is not clear how this choice affects the stability of the

system. On the following pages, we will carry out this analysis: we fix the (Dp, Dr, Dt)

triplet and only change the parameters f and N . In this way we will search for those

(f,N) pairs (for a fixed (Dp, Dr, Dt) triplet) where our system is stable and those for

which it is unstable.

From now on, we call an (f,N) pair stable, if our system is stable at those values

(with a fixed diffusion parameter triplet (Dp, Dr, Dt)). Similarly, we call it unstable if
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our system is unstable for those f and N values. Therefore, we define the function

g : N \ {0} → R in the following way:

g(N) := fN ∈ R s.t. ∀ε > 0, (fN − ε,N) is stable and (fN + ε,N) is unstable.

In other words, we will search for that value of f for a fixed N where upon increasing

f the system becomes unstable. We will assume that there is at most one such value for

every N : numerical experiments show that this is the case. Note that it may happen that

g(N) < 0 or g(N) =∞, which means that for some (Dp, Dr, Dt) triplets the system will

be either always unstable or always stable. From now on, we will examine those cases

when 0 ≤ g(N) <∞, because these are the interesting ones (these are the ones in which

stability changes).

Proposition 4.1.1. For every fixed (Dp, Dr, Dt) triplet

g(N) −→ inf
n∈N+

g(n), as N →∞.

The convergence of g(N) means that there is such a constant N0 that if N > N0,

then the values of g(N) are very close, meaning that the value f where the system

changes stability will be similar for every value of N > N0. Also, since the form of the

limit is known, if we know the value of inf
n∈N+

g(n) and there is such a value Nmin for

which g(Nmin) = inf
n∈N+

g(n), then in our examination we can choose the value of N to

be N = Nmin. In our numerical experiments we got that in all cases Nmin = 2 (see

Conjecture 4.1.4), meaning that the use a large N is unnecessary since for large values

of N (which would mean the calculation of the eigenvalues of N -many matrices) we get

the same behaviour as in the case of N = 2. (Of course, a larger value of N would mean

a better approximation of the biological model so it is usually necessary.)

For the proof of Proposition 4.1.1, we define the following sequence for every

value of f :

af (N) :=

 1, if the system is stable for (f,N),

−1, if the system is unstable for (f,N).

Proposition 4.1.2. For every fixed value of f 6= inf
n∈N+

g(n), af (N) converges as N →∞.
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Note that since af has finite range, the convergence means that

∃Nconv : ∀n,m > Nconv : af (n) = af (m).

For the proof of proposition 4.1.2, see [98]. Here we mention only the facts that in

the proof it turns out that if af (n) = −1 for any value of n, then lim
N→∞

af (N) = −1, and

also lim
N→∞

af (N) = 1 if and only if af (N) is the constant 1 sequence. We will only present

here the proof of proposition 4.1.1.

Proof. (Proposition 4.1.1) We prove the proposition by contradiction. Let us assume that

there is an ε > 0 for which ∀N there exists an n > N for which
∣∣∣∣g(n)− inf

n∈N+
g(n)

∣∣∣∣ ≥ ε.

Let us consider the value f0 = inf
n∈N+

g(n) + ε and observe the sequence af0(N). By

Proposition 4.1.2, we know that af0(N) converges. By the assumption, there is a value

denoted by n1 ∈ N+ at which g(n1) > f0 and also another one denoted by n2 ∈ N+ where

g(n2) < f0. The latter one means that af0(n2) = −1, so by the proof of Proposition 4.1.2,

lim
N→∞

af0(N) = −1, but this contradicts the original assumption.

The value inf
n∈N+

g(n) might be different depending on the (Dp, Dr, Dt) triplet. However,

we can state the following proposition about the maximum of this function.

Proposition 4.1.3. For every (Dp, Dr, Dt) triplet

max
n∈N+

g(n) = g(1).

For the proof, see [98]. Using the method from the proof of proposition 4.1.2, we can

compute g(1), which will be g(1) = 1.3353 · 10−3 for every (Dp, Dr, Dt) value (upon using

the same choices for parameters a, b, c,M and h as in the beginning of this chapter).

For the numerical calculations, we will use the same bisection method as in the pre-

vious section. However, in this case we fix the value N and search for those values of

f where the system (4.6) changes stability. In Figure 4.7, we can see the graph we get

for the (Dp, Dr, Dt) values (0.1, 0.003, 0.003), where the points above the graph are un-

stable, and the ones below it are stable. In this way we got the function g(N) with the

convergence property proved before.

For (Dp, Dr, Dt) values (0.1, 0.03, 0.03) we get the graph in Figure 4.8. Note that we

also got the value of g(1) calculated before in both cases.
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Figure 4.7: The border of stability (and also the image of the function g(N)) for
(0.1, 0.003, 0.003). Note that the function g(N) is defined for N ∈ N+ only and the
discrete values are connected only for better understanding.

During our examinations, we tested several values, but found only functions either

constant or with the property g(n) = g(2) for every even n. Because of this, and other

observations connected to the proof of proposition 4.1.2, we can state the following con-

jecture:

Conjecture 4.1.4. For every (Dp, Dr, Dt) triplet

min
n∈N

g(n) = g(2).

In this way, proposition 4.1.1 has the following form:

g(N) −→ g(2) as N →∞,

Which also leads to the following property of the g(n) function:

g(2) ≤ g(n) ≤ g(1).

Without the conjecture, we only have an upper bound for this function, which means

that for every f > g(1), the system is unstable.

Therefore, we can conclude that the choice f = 0.001 in [15] is under the value g(1),

so the system can change stability there for some (Dp, Dr, Dt) values, but not necessarily

(see the (0.1, 0.03, 0.03) case above).
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Figure 4.8: The border of stability (and also the image of the g(N) function) for
(0.1, 0.03, 0.03).

However, we can make a better choice than N = 10 using the previous propositions:

if our conjecture is true, it is enough to examine our system for N = 2. If the conjecture

is false, then we can also use the N = 2 value (it is not worse than N = 10), or we have

to calculate min
n∈N

g(n) for every triplet (Dp, Dr, Dt).

4.1.3 Numerical solution of the equations

In the previous two sections we examined the way the parameters of diffusion or the f

and N values affect the stability of the coexistence equilibrium. However, we do not know

what the instability of this point means: what would happen to our system, if the initial

conditions were not exactly at the equilibrium, but a small distance from it. Also, it is

still an open question whether the stability of the point (4.3) is global or local. It can

happen that only the orbits of points in a small neighbourhood of the equilibrium tend to

the point (4.3) as t −→ ∞. This would also mean that even if our system was stable at

point (4.3), the ecological collapse would still occur on the island if the initial conditions

are outside of this neighborhood.

For the investigation of the mentioned surrounding of point (4.3), we use the vector

v ∈ R3N for initial condition, which is defined as

vi :=
(
1− randζ

) 1

N

M(b− h)

b+ hMf
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where rand is a uniformly distributed random number between 0 and 1, and ζ is a fixed

number, describing how much we differ from the equilibrium: when ζ is large we are close

to the coexistence equilibrium, and when ζ is small we are (usually) far from it. (Of

course in this case the values of vi will always be between the equilibrium point and the

origin - one can also construct a more general initial condition and get similar results.)

For the sake of simplicity, we will use the values f = 0.001 and N = 10 in this

section. We have seen in Section 4.1.2 that this choice of f is a reasonable one (the

system changes stability here). Although we have concluded that N = 2 is the most cost-

efficient choice, this only applies for the stability of the equilibrium. The larger N values

are more interesting ecologically, because we get some data on the geological distribution

of our species.

First we examine what the stability of our system means in the point of the actual

solutions. For this, we use a fourth order Runge-Kutta method with initial value v.

First we test if the point (4.3) is stable globally, or at least locally in a surrounding with

considerable sizes. For this, we choose the diffusion parameters to be (0.1, 10, 0.1) which

is a stable point (as it can be seen in Figure 4.5). The results for ζ = 10 and ζ = 2

are presented in Figure 4.9. As we can see, in both cases the orbits tend to the stable

equilibrium point, although this convergence is slower for points further away.

Now we investigate what exactly the instability of point (4.3) means. For this, we

choose such parameters for which the equilibrium is unstable, in our case (0, 0.8, 0). As we

can see in Figure 4.10, the ecological catastrophe can happen for various initial conditions.

For the further investigations, we will use another, much more realistic initial condi-

tion. Let w = (wi)i=1,...,3N ∈ R3N be defined as

wi :=


50 for i ∈ {1, 2},
M
N

for 3|i,

0 otherwise .

In this way, we have
M

N
trees in every region, while having 50 people and rats in the

first sector, which is the moment when the settlers arrived on the island bringing the rats

with them. From now on, we will call our system unstable, if there is a region in which

one of the species die out, and otherwise stable. Consequently, stability means that our

orbit tends to point (4.3) (so it is globally stable), or to any other attracting set. Also,
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Figure 4.9: The number of people (blue), rats (red) and trees (orange) in region 1 for
diffusion parameters (0.1, 10, 0.1). On the upper panel we used ζ = 10 and on the lower
one ζ = 2, while on the horizontal axis we have the number of years. The orbit of the
rats is very close to the one of the trees’, thus it is not visible.

the instability defined this way does not imply the instability of the equilibrium point: it

only means that w is not in the stable neighbourhood of point (4.3).

With the initial vector w, we examine the orbits of solutions in light of the results of

Section 4.1.1. For this, we first investigate the effect of the rat diffusion in our system.

As we can see it in Figure 4.11, the effect of this parameter only influences the speed of

the rats: if Dr = 0.01, then it took the animals two years to get to the other side of the

island - however, if Dr = 1, then one year was enough. From the several numerical tests

which were made, it can be concluded that Dr has a negligible effect on the system’s

stability, and the other two parameters are the main influential factors.

Now we examine how the change of parameter Dp affects our system. We have seen

in Section 4.1.1 that for well chosen (Dr, Dt) pairs this parameter has a stabilizing effect.

Note that this effect only occurred when the system was unstable for small Dp values. In
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Figure 4.10: The number of people (blue), rats (red) and trees (orange) in the time-
intervals t ∈ [0, 90] and t ∈ [0, 180] in region 5 for diffusion parameters (0, 0.8, 0) and
with the number of years on the horizontal axis. As we can see, the collapse can happen
for various initial conditions. The orbit of the rats is very close to the one of the trees,
thus it is not visible.

our case the small Dp values mean that people will not diffuse, so the instability is caused

by the rats. However, because of the observations in the previous paragraph, the rats will

not have a significant effect on the stability of our system. Therefore, those points which

could be stabilized by the Dp value are not unstable for small Dp values, but will lose

their stability for large ones. For the numerical tests, we use the pair (Dr, Dt) = (1, 0.01).

As we can see in Figure 4.12, when we increase Dp, our system loses stability.

In Section 4.1.1, we have concluded that the increase of Dt makes our system stable

for a sufficiently large Dt value. For various numerical tests we can see that the increase

of Dt does not make the unstable systems stable. Also, the increase of this parameter

makes the stable systems unstable in a way that first the convergence becomes slower

as a periodic orbit appears. For sufficiently large Dt values, this orbit vanishes and we
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Figure 4.11: The number of people (blue), rats (red) and trees (orange) in region 5 for
diffusion parameters (0.1, 0.01, 0.1) (upper) and (0.1, 1, 0.1) (lower).

get an unstable system (see figure 4.13). In this way we can see that the stability of the

coexistence equilibrium does not necessarily correspond to the stability defined for w.

From these results we can see that the stability of the coexistence equilibrium does not

necessarily corresponds to the stability of the system. Because of this, further examination

of the global behaviour of the system would be beneficial. The results of these studies

can be found in Section 4.1.4.
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Figure 4.12: The number of people (blue), rats (red) and trees (orange) in region 5 for
diffusion parameters (0.02, 0.01, 0.1) (upper) and in region 1 for parameters (0.02, 1, 0.1)
(lower).

4.1.4 Global stability of the equilibrium points

As it was mentioned at the end of the previous section, the stability of the coexistence

equilibrium point does not necessarily correspond to the stability of the system (which

is defined in the previous section). Therefore it is vital to acquire some properties of the

behaviour in some other ways. One such way involves the examination of the stability of

the other equilibrium points of system (4.2) apart from the previously studied coexistence

equilibrium.

The island before the arrival of the settlers

First let us consider the case when there are no people and rats on the island but only

trees. This corresponds to the state of the island prior to the arrival of the settlers.
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Figure 4.13: The number of people (blue), rats (red) and trees (orange) in region 1 for dif-
fusion parameters (Dp, Dr) = (0.02, 0.01), and Dt = 2 (upper), Dt = 4.2813 (middle) and
Dt = 4.2816 (lower). First our system is stable, then it is still stable but converges slower
(there’s perhaps a stable periodic orbit around Dt = 4.2814), and then it is unstable.

Proposition 4.1.4. If P s = 0 and Rs = 0 for all s = 1, . . . , N then the system has only

one equilibrium point, namely (P ∗, R∗, T ∗) =

(
0, 0,

M

N

)
.
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Proof. For an equilibrium point we have the equation

0 =
dT s

dt
= bT s

1− T s

M

N

+Dt

(
T s−1 − 2T s + T s+1

)

for every region s ∈ {1, 2, . . . N}.
If all the T s values are the same, the diffusion term is zero, and consequently we get

the T s =
M

N
values. If the T s values differ, then (because we have finitely many of them)

we have a smallest one - let us denote it by T s1 . (Note that if there are several smallest

values, then we choose the one which has a neighbour with a bigger value.) For this, the

diffusion term T s1−1 − 2T s1 + T s1+1 is positive, which means that

bT s1

1− T s1

M

N

 < 0,

which can only happen if T s1 >
M

N
. We will also have a largest value, for which the

diffusion term is negative - we will denote it by T s2 (also, if there are several largest ones,

we choose one which has a neighbour with a smaller value). From this we get that

bT s2

1− T s2

M

N

 > 0,

which leads to the fact T s2 <
M

N
but this is a contradiction since

M

N
< T s1 < T s2

holds.

For the next and later examinations we use the linearized equation, which is

dP s

dt

dRs

dt

dT s

dt

 = Ss


P s

Rs

T s

 +


Dp(P

s−1 − 2P s + P s+1)

Dr(R
s−1 − 2Rs +Rs+1)

Dt(T
s−1 − 2T s + T s+1)

 , (4.10)
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where matrix Ss is defined as

Ss =



a− a2P s

T s
0 a

(P s)2

(T s)2

0 c− c2Rs

T s
c
(Rs)2

(T s)2

−h T s
(

1− NT s

M

)
−bfN

(1 + fNRs)2

b

1 + fNRs

(
1− 2N

M
T s
)


.

For the equilibrium point
(

0, 0,
M

N

)
the matrix Ss takes the form

Ss =


a 0 0

0 c 0

−h 0 −b

 .

Like in the case of the coexistence equilibrium, we apply a Fourier transform to our

system, from which we get the equations

dxq
dt

dyq
dt

dzq
dt

 =


a−DpCq 0 0

0 c−DrCq 0

−h 0 −b−DtCq




xq

yq

zq

 ,

in which we used the notation

Cq = 4 sin2 πq

N
.

The three eigenvalues of the matrix are a −DpCq, c −DrCq and −b −DtCq, which are

all real numbers, so we only have to check whether they are negative or not. It is easy to

see that −b − DtCq is always negative but the other two might change their signs. For

example, for the first one we need that a −DpCq < 0 which means a < DpCq. However

for q = N the right side is zero, but the value of a is positive, which means that the

system is always unstable for q = N . In this way we can state the following proposition.

Proposition 4.1.5. The equilibrium point
(

0, 0,
M

N

)
is locally unstable, and conse-

quently globally unstable.

102



This means that with the arrival of the settlers and the rats the system got out of this

equilibrium, and can not get back into it, which corresponds to the events on the island.

The uninhabited island with the rats

Now let us examine the case of P s = 0 (s = 1, . . . , N). This corresponds to the hypothet-

ical situation when there are no people on the island, but the rats live there. Although

in the theories of Hunt the rats are brought by the settlers, our dynamical system will

have an equilibrium with such properties, so it is beneficial to consider the stability of

this point also.

Proposition 4.1.6. If P s = 0 (s = 1, . . . , N), the system has only one equilibrium point,

namely (P ∗, R∗, T ∗) =

(
0,
M

N
,
M

N

)
.

Proof. Note that the division of b by 1 + fNRs does not change the sign of the term,

which means that the same method can be applied here as in the proof of proposition

4.1.4.

The matrix at this point is in the form

Ss =


a 0 0

0 −c c

−h 0
−b

1 + fM

 .

After the application of the Fourier transform we get the equation

dxq
dt

dyq
dt

dzq
dt

 =


a−DpCq 0 0

0 −c−DrCq c

−h 0
−b

1 + fM
−DtCq




xq

yq

zq

 .

The three eigenvalues of the matrix are a−DpCq, −c−DrCq and
−b

1 + fM
−DtCq, which

are real values. The second and third ones are always negative, but the first is positive

for q = N , which means that the matrix is unstable.
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Proposition 4.1.7. The equilibrium point
(

0, 0,
M

N

)
is locally unstable, and conse-

quently globally unstable.

This means that the rats and the trees cannot survive the extinction of people on the

island.

The equilibrium of the rat-free model

Now let us consider the case of Rs = 0 (s = 1, . . . , N), which corresponds to the original,

rat-free model. In this case the matrix we have takes the form

Ss =


−a 0 a

0 c 0

−h −fMh(b− h)

b
2h− b

 .

After the Fourier transformation we get the system

dxq
dt

dyq
dt

dzq
dt

 =


−a−DpCq 0 a

0 c−DrCq 0

−h −fMh(b− h)

b
2h− b−DtCq




xq

yq

zq

 .

One of the eigenvalues of the stability matrix is c−DrCq, which is positive for q = N . We

did not answer the question whether this equilibrium point is unique or not. However,

it is easy to see that the second row of the stability matrix does not depend on which

equilibrium point we study in our system (since Rs = 0). Thus, every such matrix will

have a positive eigenvalue for q = N .

Proposition 4.1.8. Every equilibrium point for Rs = 0 (s = 1, . . . , N) is locally unstable

and consequently globally unstable.

This also means that the rats cannot die out without the extinction of the other two

species on the island. It is an important remark that although the Polynesian rat had

disappeared from Easter island, it was not because of the people, but because of the

European rats brought to the island by the settlers in the eighteenth century - of course,

this latter phenomenon is not described by our model.
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The state of extinction

Now let us consider the phenomena that occur near the origin in our system. In [14],

Basener et al. only state that this equilibrium is a singular one, therefore cannot be

examined with the previous methods. However, one of the most important states (next

to the coexistence equilibrium) is extinction, which means that the study of this point

cannot be neglected.

It is also not clear whether the origin is an equilibrium point: if we take the limit

lim
Q−→0

dP s

dt

(
or lim

Q−→0

dRs

dt

)
where Q is the vector of all the P s, Rs and T s values (and

here 0 means the all zero vector of the same size), we get a term in the form
0

0
. Also,

it can be shown that the limit lim
Q−→0

dP s

dt

(
or lim

Q−→0

dRs

dt

)
does not exist: take e.g. the

sequences (P s
k , T

s
k ) =

(
1

k
,

1

k

)
and (P s

` , T
s
` ) =

(
1

`
,

1

`2

)
and compute the corresponding

values of
dP s

k

dt
and

dP s
`

dt
. Then,

lim
k−→∞

dP s
k

dt
6= lim

`−→∞

dP s
`

dt
.

However, our original equations aren’t even defined in the case of T s = 0: because of

this, we are going to modify our original system of equations (4.2) in the following way.

Let us say that equations (4.2) only hold when P s, Rs, T s > ε for some ε > 0 suffi-

ciently small constant (e.g. ε < 1). This can be assumed since the processes from which

the equations are derived only take place when the amount of the species is not zero, e.g.

P s > 1 (this is also a reasonable assumption since P s = 1 means one person). Because

of this, one can extend the system of equations (4.2) in a way that (4.2) holds only when

P s, Rs, T s > ε and 
P s = 0,

Rs = 0,

T s = 0,

otherwise.

It is evident that in this case our solution is not differentiable when P s = ε, Rs = ε or

T s = ε and it is not even continuous there. However, since the case P s ≤ 1 means that

the reproduction of people is impossible on the island, then it is reasonable to consider the

state P s = 1 to be the extinction of humans. Similar arguments hold for the other species
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also, possibly with other constants (when they are unable to reproduce, e.g. Rs ≤ 1 or

T s < 1). By these assumptions, the state of extinction, e.g. when P s, Rs, T s = 0 for all

s = 1, . . . , N can be thought of as an equilibrium point (since the derivatives are zero

there).

Now let us discuss the stability of this equilibrium point. By the construction detailed

above, we cannot use the methods which were applied previously in the case of the other

points. Instead of this, we can use a geometric method discussed in [100].

Proposition 4.1.9. There exists a neighbourhood around the origin in which
dT s

dt
> 0.

Seemingly this result means that the origin is unstable, therefore extinction cannot

happen on the island, and it would also contradict the graphs we got in Section 4.1.3.

However, by the proof it can also be seen that as we approach the origin, this positive

regions decreases until the point when the whole Q > 0 region (the inequality is meant

element-wise) has a negative
dT s

dt
value. The reason for this is that the size of the

aforementioned region depends on the values of T in the neighboring regions, so if these

values decrease, this region will also shrink. It is also clear from the proof that in this

case this region has negative
dP s

dt
and

dRs

dt
values too.

In this way we can state that although there are some values from which there is no

orbit tending towards the origin, but as we approach zero from outside of this region, the

area of these values decreases. Consequently we can conclude that orbits approaching the

origin from a suitable direction might tend to it while others will not. In our numerical

solutions we found orbits which had the convergence property (see Figure 4.10) and also

some which do not (see orbits on the third graph of Figure 4.13: first they turn back, but

then they get to the origin).

4.2 Continuous model

In this section we consider a continuous version of the previous, discrete model, meaning

that instead of splitting the coast of the island into N regions, we model it as a connected

one dimensional space. Then we observe the effect of the increase of the diffusion of the

trees, and get similar results to the ones proved in the previous case.
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4.2.1 Construction of the model

Let us suppose that we have a partition of the coast of the island into N regions. Because

of the assumption that there are no differences in the densities of the species radius-wise

(meaning that the number of each of the species is the same along a line drawn from the

center of the island towards the coast), we can think of the coast as a one-dimensional

line and model our problem as a one-spatial-dimensional one with periodic boundary

conditions. In this way our domain will be an interval, let us denote it by Ω = [0,L)

and let its partition be {Ωα}α=1,2,...N . Let P (t, x), R(t, x) and T (t, x) be the density

of people, rats and trees at point x ∈ Ω at time t, respectively. Thus, the number of

individuals in region α at time t denoted by Qα(t) can be calculated as

Qα(t) =

∫
Ωα
Q(t, x) dx,

where Q ∈ {P,R, T}, and Ωα denotes the domain corresponding to the region indexed

by α. Now let us assume that the density of a given species is the same inside a given

region. (For a sufficiently large N , this is a good approximation.) In this way we get the

equation

LαQ(t, x) = Qα(t),

where Lα is the length of region Ωα and x ∈ Ωα arbitrary. For the sake of simplicity, let

us suppose that the lengths of the regions are equal. Writing these into equation (4.2)

omitting the diffusion terms, we get the following:

∂P (t, x)

∂t
= aP (t, x)

(
1− P (t, x)

T (t, x)

)
,

∂R(t, x)

∂t
= cR(t, x)

(
1− R(t, x)

T (t, x)

)
,

∂T (t, x)

∂t
=

b

1 + fLR(t, x)
T (t, x)

1− T (t, x)
M

L

− hP (t, x),

(4.11)
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where we used that NLα = L. Let us introduce the notations f̃ = fL and M̃ = M/L. In
order to model the motion of the species we add some diffusion terms to the equations:

∂P (t, x)

∂t
= aP (t, x)

(
1− P (t, x)

T (t, x)

)
+DP∆P (t, x),

∂R(t, x)

∂t
= cR(t, x)

(
1− R(t, x)

T (t, x)

)
+DR∆R(t, x),

∂T (t, x)

∂t
=

b

1 + f̃R(t, x)
T (t, x)

(
1− T (t, x)

M̃

)
− hP (t, x) +DT∆T (t, x),

(4.12)

in which ∆ is the Laplace operator taken in the second variable.

As mentioned before, we will assign a periodic boundary condition to the problem,

meaning that:

∂βxQ(t, 0) = ∂βxQ(t,L), β ∈ {0, 1, 2},

where Q ∈ {P,R, T}, and ∂x denotes partial derivative with respect to the second coor-

dinate, in the sense that at point x = 0 it is a right derivative, and at point x = L a left

derivative. The previous system can be rewritten as follows:
∂tQ(t, x) = F (Q(t, x)) +D∆Q(t, x),

∂βxQ(t, 0) = ∂βxQ(t,L), β ∈ {0, 1, 2},

Q(0, x) = ϕ(x),

(4.13)

where Q(t, x) = (P (t, x), R(t, x), T (t, x)), F is the R3 → R3 function describing the

interactions between the species, ∂t is the time derivative, ∂x is meant as before but

element-wise, D denotes the diagonal matrix containing the diffusion coefficients and

ϕ(x) gives the initial distribution of the species on the island. In this way we get a

reaction-diffusion equation with periodic boundary conditions. We are searching for the

classical solution Q(t, x) which is in C1,2(Ω) i.e. it is continuously differentiable in its

time variable once, and twice in the spatial coordinate.

4.2.2 The effect of the diffusion of the trees

A convenient way to examine the behavior of system (4.12) is to search for its con-

stant stationary solutions and check their stability properties, i.e. those solutions which

take the same value at every point of the shore. It is easy to see that this is a bi-
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jection between these and the equilibrium points of the system (4.2). In other words,

Q(t, x) = (P ∗, R∗, T ∗) is a stationary solution of (4.12) if and only if

Q(t) = (LP ∗,LR∗,LT ∗) is an equilibrium point of (4.2), where P ∗, R∗ and T ∗ are

constants. Because of this, system (4.12) has only one coexistence constant stationary

solution, which is

P ∗(t, x) = R∗(t, x) = T ∗(t, x) ≡ M̃(b− h)

b+ hM̃f̃
, ∀x ∈ Ω, t ∈ R+. (4.14)

This is a corollary of the similar property of (4.2), which can be easily proved.

For the examination of the stability of this solution, we are going to use the follow-

ing method (also described e.g. in [84]). Let us linearize around the aforementioned

stationary solution, and search for perturbations in the form

w(t, x) = w0 e
λtW (x). (4.15)

Because we have periodic boundary conditions, any solutions can be written as the sum

of sinusoidal waves of the form

W (x) = c1e
ikx + c2e

−ikx.

Our steady solution is stable if all of the growth rates λ have negative real parts, and is

unstable otherwise.

If we substitute (4.15) into system (4.12), after a brief calculation we get the following

system of equations:

λP (t) = −k2DPP (t)− aP (t) + aT (t),

λR(t) = −k2DRR(t)− cR(t) + cT (t),

λT (t) = −k2DTT (t)− hP (t) + AR(t) +BT (t),

in which we used the notations Ã =
−f̃M̃h(b− h)

b(1 + f̃M̃)
and B̃ =

f̃M̃h− b+ 2h

1 + f̃M̃
. This system
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can be rewritten as a matrix in the following way
−λ− k2DP − a 0 a

0 −λ− k2DR − c c

−h Ã −λ− k2DT + B̃




P (t)

R(t)

T (t)

 =


0

0

0

 . (4.16)

Our system is stable if λ has negative real part, meaning that the matrix

M :=


−k2DP − a 0 a

0 −k2DR − c c

−h Ã −k2DT + B̃

 (4.17)

has negative eigenvalues.

The next key observation is that this matrixM is very similar to the one which was

observed in Section 4.1.1 (and also in [99]). The only difference between the two is that

in that case the matrix had Neumann eigenvalues instead of the terms k2, but because

both are positive, they behave the same way. Consequently, the proofs presented there

(using the Routh-Hurwitz criteria) are applicable also for this problem, and thus, we can

state similar theorems.

Theorem 4.2.1. Let us suppose that the model parameters satisfy the condition

B̃2 − Ãc− ah < 0. (4.18)

Moreover, let us suppose that DP and DR are fixed positive diffusion values. Then, if

system (4.12) is stable for DT = 0 then it is stable for all positive DT values.

Remark 4.2.1. The values of the parameters originally chosen in [13, 15] are the following.

(L is chosen to be 60000, since the coast of the island is approximately 60000 meters long,

however, it does not affect the condition.)

a = 0.03, b = 1, c = 10, M = 12000, f = 0.001, h = 0.25, L = 60000.

Condition (4.18) is satisfied if f > 8.6751×10−6 (or f̃ > 0.52051), which can be assumed

since rats have a significant effect on the reproduction rate of the trees.
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In this way, if the system was stable in the case of no tree diffusion, it will remain

so even if DT is increased, so the region of stability cannot shrink as the diffusion is

increased.

Theorem 4.2.2. Let DP and DR be two fixed positive numbers, and suppose that the

following conditions hold:

B̃ <min{a+ c, Ã+ h},

B̃(Ãc+ ah+ (a+ c)2) <c2(Ã+ a) + B̃2(a+ c) + a2(c+ h).
(4.19)

Then there is a positive number DT such that the system (4.12) is stable for all DT > DT

values.

Remark 4.2.2. Condition (4.19) is satisfied with the parameter values described above.

Consequently, the increase of DT makes our system stable even if it was unstable for

small values of the diffusion of the trees.

Now let us examine whether the previous analytic results can be confirmed by some

numerical experiments. For these, a finite difference scheme is used in the following way.

Let us consider a grid G on our interval [0,L) which consists of N number of points

{ωi : iL
N }
N−1
i=0 , and let us denote the numerical approximation of our function Q(t, x)

at these points by Qi(t). Also, let us approximate the diffusion terms D∆Q(t, x) by

D(N /L)2(Qi−1(t) − 2Qi(t) + Qi+1(t)). Note that this way we got the same system as

(4.2), meaning that the numerical solution of this semi-discretized problem would be the

same as the one already calculated in Section 4.1.3. In that a fourth order Runge-Kutta

method is used with initial vector w ∈ R3N which has elements defined as

wi :=


0.001 for i ∈ {3j − 2, 3j − 1 | j ∈ Z+, j ≤ 0.1 N},

M̃ for 3|i,

0 otherwise.

In this way, we have trees with density of M̃ in every region, and a relatively small density

of people and rats in a small part of our coast, which corresponds to the moment when

the settlers arrived on the island bringing the rats with them.

With the initial vector w we examine the way the previous analytic results occur in

the terms of the orbits of solutions. On the left panel of Figure 4.14 we can see that for the
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diffusion parameters (DP , DR, DT ) = (0.02, 0.01, 0.0005) the system is unstable, meaning

that the populations die out. However, if the diffusion of the trees is increased and the

parameters (0.02, 0.01, 0.001) are considered, then the solutions tend to the stationary

solution (4.14), which confirms the analytic results.

Figure 4.14: The number of people (blue), rats (red) and trees (orange) at point x = 0
with N = 100 spatial mesh points for diffusion parameters (0.02, 0.01, 0.0005) (left) and
for parameters (0.02, 0.01, 0.001) (right). As we can see, the increase of the diffusion of
the trees stabilizes the stationary solution corresponding to coexistence. Note that the
density of rats is very close to the density of the trees, thus it is not visible.

4.3 Conclusions

In the previous pages we extended the model describing the dynamics of Easter Island

originally proposed by Basener et al. In Section 4.1.1 we studied the way the addition of

the parameter Dt affects the stability of our system at the coexistence equilibrium. We

have seen that while Dt has a stabilizing effect on point (5.5) and Dr has the opposite,

Dp can have a stabilizing one for small, and destabilizing one for larger values. In Section

4.1.2 we have also examined the best choice of the parameters f and N for interesting

results and time-efficient computing.

After these, we investigated the numerical solutions of the original system and the

meaning of the stability of point (5.5) in the terms of the orbits of the points near it. We

have found that both stability and instability have the properties expected before. We

also modelled the scenario which could have happened on the island. We found out that

for some parameter values a stable equilibrium can occur, but the ecological catastrophe

is also possible.

As mentioned before, when the first European settlers arrived on the island, they
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found no trees and very few rats on the island. As we can see in Figures 4.10 and 4.11,

the number of people is always larger at the time of the catastrophe than the number of

trees and rats. Because of this, we can suspect that after the trees (and rats) disappeared

from our island, the inhabitants looked for other resources on the island, for example

tried to fish from the coast.

One of the remarkable innovations in the theory of Hunt was the fact that the eco-

logical collapse happened much faster than expected. In our numerical test we have seen

that in most cases the collapse happens about 180 years after the arrival of the settlers

(see the right side of Figure 4.12). However, with a careful choice of parameters we can

extend this moment for a few hundred years, and can even have a periodic solution (see

Figure 4.13), although these happen only for a carefully chosen triplets of diffusion, which

is highly unlikely to happen in real life.

We have also seen that sometimes the numerical results did not correspond to the local

stability of the coexistence equilibrium point. Because of this, we studied the stability of

the other equilibria of the system in Section 4.1.4, where we found that the only other

one with a stable region is the origin, which corresponds to the original ecological model.

In Section 4.2, the previous model was modified in a way that the previous system

of ordinary differential equations was transformed into a system of partial differential

equations. It turned out that the stabilizing effect of the diffusion of the trees holds in

this case too.
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Chapter 5

Two-dimensional model

In the previous chapter we proposed a model in which we looked at Easter island as an

island which has a big volcano in the middle and only its shore is habitable. However,

Easter island has a shape of an isosceles right triangle with hills near the three vertices

(see Figure 5.1). Therefore, it is more accurate to propose a two-dimensional model. On

the following pages we show that similar properties hold in this two-dimensional case as

in the previous one, namely that the increase of the tree diffusion stabilizes the system.

Figure 5.1: The Island of Rapa Nui with the two volcanoes.

A natural extension of equation (4.2) would be to construct a grid on the island (see

Figure 5.2). However, note that in the one dimensional case we used Fourier transforma-

tion which required that regions 1 and N are connected in that model. It is easy to see

that in two dimensions we do not have such properties, so the use of the aforementioned

transformation is not beneficial. Also, such two-dimensional grids are much more compli-

cated to handle in the stability investigations than the one dimensional ones. Because of

all of these, we will not use such models, but will construct a system of partial differential

equations to describe not only the evolution in time, but also the spatial propagation of

the different species.

114



Figure 5.2: A possible grid for the island.

5.1 Construction of the model

Although we will not use the grid method mentioned above, it is easier to understand the

continuous model if we construct it from such a semi-discrete one. First let us neglect

the diffusion between the regions of our two-dimensional one and assume that the same

processes take place inside every region as in the one-dimensional case. Then, this two-

dimensional version of (4.2) takes the form

dPα(t)

dt
= aPα(t)

(
1− Pα(t)

Tα(t)

)
,

dRα(t)

dt
= cRα(t)

(
1− Rα(t)

Tα(t)

)
,

dTα(t)

dt
=

b

1 + fÑRα(t)
Tα(t)

1− Tα(t)
M

Ñ

− hPα(t),

(5.1)

where α denotes the index of the examined region, Ñ is the number of regions and Qα(t)

(Q ∈ {P,R, T}) gives the number of the given species in region α at a given time t.

Let us represent the island as a domain on R2 denoted by Ω, and let its boundary be

∂Ω. Also, let us examine the number of individuals of a given species in a given region

on the island. If we denote by P (t, x), R(t, x) and T (t, x) the density of the given species

at time t at a point x on the island, then the number of individuals of a given species

can be calculated in the following way:∫
Ωα
Q(t, x) dx = Qα(t),

where Q ∈ {P,R, T} and Ωα denotes the domain corresponding to the region indexed

by α. Now let us assume that the density of a given species is the same inside a given
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region. (For a sufficiently large Ñ , this is a good approximation.) Consequently, we get

the equation

AαQ(t, x) = Qα(t),

where Aα is the area of region Ωα and x ∈ Ωα arbitrary. For the sake of simplicity let us

suppose that the areas of the regions are equal. Writing these into equation (5.1) we get

the following:

∂P (t, x)

∂t
= aP (t, x)

(
1− P (t, x)

T (t, x)

)
,

∂R(t, x)

∂t
= cR(t, x)

(
1− R(t, x)

T (t, x)

)
,

∂T (t, x)

∂t
=

b

1 + fAR(t, x)
T (t, x)

1− T (t, x)
M

A

− hP (t, x),

(5.2)

where we used that ÑAα = A, where A denotes the area of the island. Let us introduce

the notations f̂ = fA and M̂ = M/A. In order to model the motion of the species we

add some diffusion terms to the equations:

∂P (t, x)

∂t
= aP (t, x)

(
1− P (t, x)

T (t, x)

)
+DP∆P (t, x),

∂R(t, x)

∂t
= cR(t, x)

(
1− R(t, x)

T (t, x)

)
+DR∆R(t, x),

∂T (t, x)

∂t
=

b

1 + f̂R(t, x)
T (t, x)

(
1− T (t, x)

M̂

)
− hP (t, x) +DT∆T (t, x).

(5.3)

We also know the boundary conditions for this problem, because the species will not leave

the island, so we can state a homogeneous Neumann boundary condition:

∂vP (t, x) = ∂vR(t, x) = ∂vT (t, x) = 0, x ∈ ∂Ω,

where ∂v denotes the directional derivative taken on the vector v which is the outward

normal vector of the set Ω. The previous system can be rewritten as follows:
∂tU(t, x) = F (U(t, x)) +DU∆U(t, x),

∂vU(t, x) = 0, ∀x ∈ ∂Ω,

U(0, x) = ϕ(x),

(5.4)
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where U(t, x) = (P (t, x), R(t, x), T (t, x)), F is the R3 → R3 function describing the in-

teractions between the species, ∂t is the time derivative, DU denotes the diagonal matrix

containing the diffusion coefficients and ϕ(x) is a function describing the initial distri-

bution of the species on the island. Therefore, we got a reaction-diffusion equation with

Neumann boundary conditions. We are searching for the classical solution U(t, x) which

is in C1,2(Ω), i.e. it is continuously differentiable in its time variable once, and in the

spatial coordinate twice.

5.2 The effect of the diffusion of trees

To understand the behaviour of system (5.4), we will examine the stability of its constant

stationary solutions, i.e. which take the same value at every point of the island and do

not change in time. It is easy to see that these are equivalent to the equilibrium points of

the system (4.1). In other words, U(t, x) = (P ∗, R∗, T ∗) is a stationary solution of (5.4)

if and only if U(t) = (AP ∗,AR∗,AT ∗) is an equilibrium point of (4.1), where P ∗, R∗ and

T ∗ are constants. Because of this, we can state the following lemma:

Lemma 5.2.1. System (5.4) has only one coexistence constant stationary solution, which

is

P ∗(t, x) = R∗(t, x) = T ∗(t, x) ≡ M̂(b− h)

b+ hM̂f̂
, ∀x ∈ Ω, t ∈ R+. (5.5)

Proof. This is a corollary of the similar property of (4.1), which can be easily proved.

Now we would like to state similar theorems about the stability properties to the ones

given in the one dimensional case in Chapter 4. For this, we will use the following result.

Theorem 5.2.1 (See [25, 83]). Consider the following reaction-diffusion equation given

on a bounded domain Ω with smooth boundary in a finite dimensional Euclidean space: ∂tu(t, x) = F (u(t, x)) +D∆u(t, x), ∀x ∈ Ω,

∂vu(t, x) = 0, ∀x ∈ ∂Ω,
(5.6)

in which D is a positive valued diagonal matrix. Let us suppose that it has a constant

stationary solution, namely u(t, x) = C∗. This is asymptotically stable if and only if the

real parts of the eigenvalues of the matrices in the form L − λnD are negative for every
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n ∈ N, in which L is the linearization of F (u(t, x)) around the point C∗, and λn is a

Neumann eigenvalue, i.e. it is the solution of the eigenvalue problem:−∆wn(x) = λnwn(x), ∀x ∈ Ω,

∂vwn(x) = 0, ∀x ∈ ∂Ω.
(5.7)

It is well known that on a domain described in the theorem the eigenvalues of (5.7)

are 0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . (see e.g. [30]).

Now we have to calculate the matrix L − λnD around equilibrium (5.5). Because of

the aforementioned connection between systems (4.1) and (5.4), L is similar to the matrix

in equation (4.4) in Section 4.1, namely

L =



−a 0 a

0 −c c

−h −f̂M̂h(b− h)

b(1 + f̂M̂)

f̂M̂h− b+ 2h

1 + f̂M̂


.

From now on, let us use the notations Â =
−f̂M̂h(b− h)

b(1 + f̂M̂)
and B̂ =

f̂M̂h− b+ 2h

1 + f̂M̂
.

Hence, the matrix L− λnD takes the form

L− λnD =


−a− λnDP 0 a

0 −c− λnDR c

−h Â B̂ − λnDT

 . (5.8)

Now we have to determine whether the eigenvalues of this matrix have a negative real part.

For this, we use the Routh-Hurwitz criteria [63, 88] which was already stated in Theorem

4.1.1. We will use these three conditions to determine the signs of the eigenvalues of

matrix L− λnD.

First we would like to show that the increase of the diffusion term in the third equation

of (5.3) does not destroy stability, i.e. if the constant solution was stable for DT = 0,

then it will remain stable for any positive value of DT . For this, we will use the following

theorem, which is an extension of the previous one, this time allowing zero values in D.
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Theorem 5.2.2 (Corollary 2 in [25]). Consider the following reaction-diffusion equation

given on a bounded domain Ω with smooth boundary in a finite dimensional Euclidean

space:  ∂tu(t, x) = F (u(t, x)) +D∆u(t, x), ∀x ∈ Ω,

∂vu(t, x) = 0, ∀x ∈ ∂Ω,
(5.9)

in which the diagonal matrix D has the form

D =

 D̃ 0

0 0

 .

Let us suppose that (5.6) has a constant stationary solution, namely u(t, x) = C∗. Let

matrix L be the linearization of F (u(t, x)) around the point C∗ and let us write matrix L

in the form

L =

 L̃ L1

L2 L3

 ,

where L̃ has the same size as D̃. We also suppose that all the eigenvalues of L3 have a

negative real part.

The constant solution u(t, x) = C∗ is asymptotically stable if and only if the real parts

of the matrices L − λnD are negative (n ∈ N), in which λn is a Neumann eigenvalue

defined as the solution of (5.7).

We can now state the result regarding the stability of our system. From now on we

call our system (5.4) stable if the coexistence constant solution (5.5) is stable, and call it

unstable if (5.5) is unstable.

Theorem 5.2.3. Let us suppose that the model parameters satisfy the conditions

B̂2 − Âc− ah < 0,

f̂ <
b− 2h

M̂h
. (5.10)

Moreover, let us suppose that DP and DR are fixed positive diffusion values. Then, if

system (5.4) is stable for DT = 0 then it is stable for all positive DT values.

For the proof, see [102].
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Remark 5.2.1. Assumption (5.10) is needed for the use of Theorem 5.2.2, in which the

condition for the eigenvalues of submatrix L3 is only sufficient, but we do not know

whether it is necessary (see Remark 10 in [25]).

Now we formulate the theorem that states that for a sufficiently large DT the equi-

librium will be stable.

Theorem 5.2.4. Let DP and DR be two fixed positive numbers, and suppose that the

following conditions hold:

B <min{a+ c, A+ h},

B(Ac+ ah+ (a+ c)2) <c2(A+ a) +B2(a+ c) + a2(c+ h).
(5.11)

Then there is a positive number D̃T such that the system (5.4) is stable for all DT > D̃T

values.

For the proof, see [102].

5.3 Numerical solution

In this section we solve equation (5.4) numerically, and for this we use the finite element

method. First we state the weak form of the problem: we multiply both sides of our

equation by a function v ∈ H1(Ω), and then integrate it on Ω. In this way we get the

equation ∫
Ω

v(x)∂tQ(t, x)dx =

∫
Ω

F (Q(t, x))v(x) + v(x)DQ∆Q(t, x)dx. (5.12)

From now on we will search for such a function Q(t, x) ∈ H1(Ω) for which (5.12) holds

for every v ∈ H1(Ω). For the sake of simplicity, we use the usual L2 scalar product:

(u, v) :=

∫
Ω

uv.

In this way the previous equation takes the form

(∂tQ(t, x), v(x)) = (F (Q(t, x)), v(x)) + (DQ∆Q(t, x), v(x)). (5.13)
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Using the Gauss–Ostrogradsky theorem and the Neumann boundary condition, we can

rewrite the right-hand side in the following way:

(∂tQ(t, x), v(x)) = (F (Q(t, x)), v(x))− (DQ∇Q(t, x),∇v(x)). (5.14)

Let us search for our numerical solution in a Vh ⊂ H1(Ω) subspace (here we will use

triangular quadratic Lagrange elements) in the form

Q(t, x) ≈
∑
j

cj(t)bj,

where {bj}j=1,...,n is a basis in Vh. Also, let us choose our function v to be one of these

basis functions. Consequently, (5.14) has the form(
∂t
∑
j

cj(t)bj, bk

)
=

(
F

(∑
j

cj(t)bj

)
, bk

)
−

(
DQ

∑
j

cj(t)∇bj,∇bk

)
, (5.15)

for every k = 1, 2, . . . , n.

Let us denote our mass matrix byM, which has elements

Mk,j := (bj, bk),

and our stiffness matrix by S with elements

Sk,j := −(DQ∇bk,∇bj).

We also use the notation

Fk(c(t)) :=

(
F

(∑
j

cj(t)bj

)
, bk

)
.

Therefore, equation (5.15) can be rewritten as

Mc′(t) = Sc(t) + F (c(t)). (5.16)

This is a system of ordinary differential equations, which can be solved with any standard

method; here we use the BDF method. Moreover, quadratic Lagrange elements are used
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as a base on a triangular grid. The numerical simulations were conducted in COMSOL.

In the numerical experiments we choose the initial distribution as follows. People are

only present near one of the shores of the island, rats are chosen similarly and trees are

distributed homogeneously on the island. This initial condition corresponds to the time

of the arrival of the settlers. We will use the following values for the parameters in system

(5.4), similarly as in Chapter 4:

a = 0.03, b = 1, c = 10, M = 12000, f = 0.001, h = 0.25, A = 162.

Now we examine whether the analytic results can be verified numerically. As we can see

in Figure 5.3, for parameters (DP , DR, DT ) = (0.1, 0.3, 0.01) the system is unstable as the

population of the trees dies out where people first start to harvest. Note that in the case

of T = 0 the derivatives in the first two equations will become infinitely large, resulting

in the loss of validity of our model. To avoid such problems we will only consider the case

of sufficiently large values of T and say that for values near zero the populations will die

out.

Figure 5.3: The unstable case - the number of trees at times t = 1 (upper left), t = 57
(upper right) and t = 105 (bottom) for constants (DP , DR, DT ) = (0.1, 0.3, 0.01). The
trees die out at time t = 106 at the first human settlement.

However, as we increase the value of DT , system (5.4) becomes stable e.g. for values
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(DP , DR, DT ) = (0.1, 0.3, 1), as the solution converges to the coexistence equilibrium (5.5)

(see Figure 5.4). Note that in this case the sufficient condition in Theorem 5.2.3 does not

hold, but Theorem 5.2.4 does hold, i.e. the system may become unstable for certain DT

values but will become stable for sufficiently large ones.

Figure 5.4: The stable case - the number of trees at times t = 6 (upper left), t = 120
(upper right) and t = 476 (right) for constants (DP , DR, DT ) = (0.1, 0.3, 1). Although
the number of the trees decreases as time goes by, they do not die out, but rather have
a constant positive density on the island, which corresponds to the value which can be
computed from (5.5).

5.4 Conclusions

In this chapter a two-dimensional extension of the previously discussed equation modeling

the ecological collapse of Easter island was introduced. In Section 5.1 the previous one-

dimensional model was modified into a two (space)-dimensional system of partial differen-

tial equations. Then, in Section 5.2 it was shown that the increase of the diffusion of the

trees stabilizes the system similarly as in the one dimensional case. Finally, in Section 5.3

the system of partial differential equations was solved numerically using a finite element
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method. The numerical results confirmed the previously proved theoretical results.
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Chapter 6

Possible further extensions

In Chapters 4 and 5, we described a one- and a two-dimensional model describing the

ecological collapse of Easter island, respectively. In this chapter, some further possible

extensions and observations are mentioned.

In Section 4.1.2 we showed a bound for parameter f above which the system becomes

unstable. Similar observations can also be done in the case of the two-dimensional model.

We also know that there is a constant eastern wind on the island, which could be

included in our model, even in the one dimensional spatial case. For this, the addition of

a convection term would be necessary, and then we can get a partial differential equation.

As it was mentioned before, it would also be useful in the two-dimensional case.

It is also important to note that we have only observed the stability of the equilibrium

points or the stationary solutions of the systems - however, the dynamics can be under-

stood better if we also search for periodic orbits in the system. Figure 4.13 hints at the

existence of such an orbit, so its existence (or stability) might be an interesting question

for further research. It is also not rare for three dimensional systems that some other

(sometimes even chaotic) orbits might appear, so the observation of such would also be

interesting.

Note that this second part of the dissertation focuses on the qualitative properties

of the analytic solution, while in the first one numerical methods were examined. It

would also be interesting to construct such methods which preserve the properties of the

original continuous model (e.g. positivity) and give sufficient bounds for the time steps

under which these conditions hold.
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