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Összefoglalás (in Hungarian) 75

Bibliography 77

5





CHAPTER 1

Random graphs and networks

1.1. Introduction

The topic of random graphs has become an intensively researched field of mathe-

matics in recent decades, mainly due to its wide applicability in solving practical

problems, like understanding the spread of infectious diseases or information, related

to large-scale networks such as the internet or different kind of biological, financial

and social networks. The structure of different random graph models can be very

diverse and various problems can be raised that may be of interest both theoretically

and practically. The various aspects and applications of random graph models are

discussed for example in the following books: Béla Bollobás [16], Rick Durrett [26]

and Remco van der Hofstad [37].

One such possible question is associated to the degrees of the vertices of the graph

model. In some of the applications, we may be interested in the proportion of the

vertices of a specific degree, which is provided by the so-called degree distribution,

i.e. the number of vertices with degree d divided by the total number of vertices for

every non-negative d. In theoretical problems this distribution can be generalized

for infinitely many vertices, that leads us to the notion of the asymptotic degree

distribution. Also, the average and the maximum degree of the vertices are well-

studied quantities that can be important in some of the applications.

Although the degrees of the vertices provide some information about the structure of

the graph, they do not reveal much about the wider neighbourhood of the vertices.

The so-called clustering coefficient is a metric that indicates the extent to which the

vertices of the graph tend to cluster together. There are several different ways to

define the clustering coefficient, i.e. there are both local and global versions as well.
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8 1. RANDOM GRAPHS AND NETWORKS

The local clustering coefficient of a specific vertex is defined as the proportion of

edges between its neighbours divided by the number of all edges that could possibly

exist between all its neighbours. The global clustering coefficient can be calculated

by using the number of open and closed triplets in the graph. A triplet is a set of

three vertices that can be either open, i.e. the vertices are connected by exactly two

edges, or closed, i.e. the vertices are connected by three edges. The global clustering

coefficient is defined as the proportion of closed triplets divided by the number of

all triplets (open or closed) in the graph. There are many large real-world networks,

particularly social networks, that tend to be highly clustered.

Another way to get to know more about the structure of a random graph is to

examine the lengths of the paths between every pair of vertices. Since either the

set of vertices or the edges (or both of them) are random, the distances in question

are (possibly) random variables, so we may be interested in the distribution of the

length of the path connecting two specific vertices, or two vertices chosen uniformly

at random (or according to any suitable distribution). The diameter of the graph is

defined as the maximum of all distances between any pair of vertices, which is also

an interesting measure that can be useful in solving specific problems. The notion of

small world graph is motivated by existence of certain networks in which the length

of the path between any two vertices is relatively short. There are many interesting

examples for these small world networks such as the collaboration graph or the

network of actors. In these models two vertices are adjacent if the corresponding

authors share a common publication or the represented actors play in the same

movie, see e.g. in [37].

Some other problems relevant to the connection between the vertices of the graph

belong to the question of robustness of the structure. In many applications, we may

be interested in how sensitive the network is to potential deletion of some of the edges

or some of the vertices and the edges that are incident to them. These problems are

often related to the spread of infectious diseases on social networks or the spread

of information on communications networks. Sometimes, when the structure of the
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graph is modified, we can inspect a phase transition, i.e. a significant change occurs

in the topological properties of the graph when the level of modifications reach a

so-called critical point.

Due to the recent Covid-19 pandemic the analysis spread of infectious diseases has

gained a lot of importance and it became an intensively studied research area. There

are several different ways of modelling such a disease. One of the most popular

approaches is using the so-called compartmental models, see e.g. [40]. Another way

is to use stochastic processes on large (random) graphs, [15, 26, 40]. A social

network can be modelled by a graph, where vertices represent the individuals in

the population, and two vertices are connected if there is a relationship between

the two corresponding entities. In order to understand the spread of an infectious

disease on the graph, we can label the vertices with different states (e.g. susceptible,

infectious, recovered, carrier, exposed and so on). In the labelled graph, a discrete

or a continuous-time stochastic process is defined on the phase space of the states

of vertices, that we can use to model the spread of the epidemics on the structure

of the underlying graph.

In the next section, we explain why it can be useful to enhance the structure of a

given model by assigning types to the edges of the graph in order to have a more

adequate model to have a better understanding of a real large network, such as the

internet and various biological and social networks. We also will describe different

families of well-known random graphs and summarize some of the results related

to these models, then we show the generalizations of these graphs by labelling the

edges of these graphs with different types.

1.2. Random graphs with multiple types of edges

In this thesis we will examine the asymptotic properties of random graph models

with multiple type edges and the spread of epidemics processes on these structures by

using the tools of probability theory, especially martingale theory and urn processes.
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In many applications, it is natural to assign some kind of characteristics to the

vertices or to the edges of the graph. For example, the strength of a connection

may be represented by weights on the edges, or vertices can have different fitness,

which has an impact on their degrees, see e.g. [25, 34]. Another class of random

graphs are those in which the evolution of the graph depends on groups of existing

vertices, e.g. triangles, or even more general configurations formed by the vertices,

see [6, 31, 32]. A different way to enhance the structure of the graph is embedding

the set of vertices and edges into a properly chosen space. There are many large

networks where space contains more information than the topology of the graph,

see e.g. [14].

It may also happen that the type of a vertex or an edge is chosen from a finite

set of possibilities. This leads to different phenomena as if we assign weights to

the vertices or to the edges. For example, in a social network, the vertices can

be considered as males or females, and the edges can be considered as family or

work relationships. Another example is the network of financial systems, where the

systemic risk is examined, see e.g. [3]. To understand these kind of financial systems

it is common to use graphs where the vertices represent financial institutions (e.g.

banks), and the edges correspond to different types of financial instruments traded

by the institutions. The risk arising from these assets (bonds, stocks or options etc.)

can be different, which must be taken into account in the calculation of the systemic

risk.

1.3. Erdős–Rényi graph

First, let us recall the definition of the classical Erdős–Rényi graph in the single

type case, then we define the generalized version in the multi-type case. Some of

the first applications of the probabilistic method in graph theory are related to Pál

Erdős and Alfréd Rényi, see e.g. [27, 28], and also to Edgar Gilbert [35]. In the

Erdős–Rényi graph, denoted by Gn(m), the number of vertices n is fixed and exactly

m pairs of vertices is connected by an edge, where every possible configuration is
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equally likely. In the Gilbert graph, denoted by Hn(p), the number of vertices n is

still fixed, and every pair of vertices is connected with probability p, independently

of each other.

In order to obtain the multi-type generalization of the Erdős–Rényi graph (with

N different types of edges), let us have m1, . . . ,mN positive integers, such that∑N
j=1mj = m. The N -type Erdős–Rényi graph, denoted by G(N)

n (m1, . . . ,mN), is

a graph on n vertices with exactly mj edges of type j, chosen uniformly at ran-

dom from all possible configurations. Similarly, the N -type Gilbert graph, denoted

by H(N)
n (p1, . . . , pN) (where

∑N
j=1 pj = p), is a graph on n vertices, where every

pair of vertices is connected with probability p, independently of each other, and

conditionally on being connected, the edge is of type j with probability pj.

1.4. Scale-free graphs

Scale-free graphs form a wide range of random networks, in which the proportion of

vertices of degree k approximately equals to C · k−γ for sufficiently large k, where γ

is known as the characteristic exponent. In other words, it means that the empirical

distribution is almost independent of the number of the size of the graph, if the

number of vertices is sufficiently large. Notice that the Erdős–Rényi graph is not

scale-free, because the proportion of vertices of a given degree follows an exponential

law, instead of a power law. There are many scale-free graphs that are widely used

in modelling real networks, e.g. the Barabási–Albert graph [13].

1.4.1. Preferential attachment graph. The analysis of the preferential at-

tachment graphs is motivated by large real networks, in which vertices of larger

degree have more chance to be connected to new vertices. Various types of ran-

dom graphs with preferential attachment dynamics have been examined in the last

decade, see e.g. [13, 22, 26, 29, 37].

There are some multi-type preferential attachment graph models that have been

investigated in which only the vertices have types. Antunović, Mossel and Rácz

introduced a model of competition on growing networks in [5]. In their model, when
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a new vertex is born, it attaches to the old vertices by preferential attachment, and

selects its type based on the number of its initial neighbours of each type. Their

main interest is the question of coexistence, i.e. the probability that one of the types

dies out asymptotically. Abdullah, Bode and Fountoulakis present a model in [1],

but they use a different rule for choosing the types. At each step, a new vertex

is born, it polls some of the old vertices and takes the majority type. A multi-

type preferential attachment model was introduced by Rosengren in [46] which has

similar dynamics to the model presented in [5]. The asymptotic degree distribution

is examined by using methods from the theory of multi-type branching processes.

1.4.2. Model of independent edges. The model of independent edges has

been introduced by Zsolt Katona and Tamás Móri in [38]. They consider a random

graph evolving in discrete time steps in which a new vertex is born in every steps, and

it is connected to all existing vertices with probabilities proportional to the degrees

of the other vertices, independently of each other. One possible way to define a

multi-type version of the model of independent edges is to enhance the dynamics of

the graph by assigning a type to the new edges with probabilities proportional to

the current number of edges of different types connected to the existing vertices. In

Section 2.2.2, we define another version of the model of independent edges in which

the new vertex is connected to all existing vertices with Poisson number of edges of

different types, where the distributions of the number of new edges depend on the

actual configuration of the graph.

1.4.3. Random graph with duplications and deletions. There are other

random graphs evolving in discrete time steps with different kind of dynamics com-

pared to the models described in the previous sections, e.g. the random graph with

duplications and deletions examined in [9, 10]. In this model, at every step, we

choose a vertex v uniformly at random. With probability ϑ we duplicate vertex v;

i.e. we add a new vertex and connect it to the neighbours of v and to v itself with

single edges. Otherwise, with probability 1−ϑ, all the edges of v are deleted. As for
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the multi-type generalization of the model, one possible approach is to simply copy

the types of the original edges whenever we duplicate an existing vertex. These kind

of random graphs can be used to model the structure of proteomes.

1.5. Spread of epidemics on random graphs

Random graphs enhanced with multiple type of edges can be used to model the

spread of epidemics. In a social network, infectious diseases spread through human

contact. Since the relationships between the individuals can be different in nature,

the probability of propagation is also different among different people. In this thesis,

we examine various types of epidemics on random graphs with multiple type of edges.

Then, the infectious disease spreads among the vertices of the graph, so that the

probability of infection is different on different types of edges. By using stochastic

simulations, we examine the behaviour of the spread of epidemics, when there is

also a connection between the types of the edges and the parameters of the process.

In some applications, we can control the spread of the disease, up to a certain level,

by separating infected individuals in order to slow down the contagion. We can also

assign a state to the edges of the graph, i.e. active or inactive. We assume that

the virus cannot spread on inactive edges. At this point, it is clear that if all the

edges of the graph are inactive, then the epidemic cannot spread further and all the

infected individuals will recover in time, but in practice our goal is to slow down

the spread of the infection by eliminating as few connections as possible. Again, by

stochastic simulations, we examine the effect of separation (or quarantine), which

can be considered as a graph with two types of edges, dynamically changing over

time.

We will show that the spread of the epidemic depends on the structure of the under-

lying graph model, and the introduction of the types of the edges (with the different

propagation probabilities) or the quarantine can lead to different results.

There are several articles on models describing the spread of epidemics that include

quarantine. One possible direction of the modelling of the spread of infectious
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diseases is the use of so-called compartmental models. In this approach, we use

differential equations to define the dynamics of the change in the number (or in the

proportion) of individuals of a given state. In [36], [41], [39] the state of quarantine

is also introduced in order to enhance the SIS-, SIR- and SEIR-processes.

In [4], they investigate the effects of individual decisions on social distancing and

isolation in graphs with multi-type vertices. In [2], they include groups of age and

risk in the SIR-model and find the optimal strategies for quarantine.

1.6. Main results

In this thesis we examine some properties of random graphs that have edges labelled

with N different types. We assume that there is a connection between the evolution

of the structure of the graph and the types of the edges. In the N -type case, we

define the (generalized) degree of a given vertex as d = (d1, d2, . . . , dN), where dk is

the number of edges of type k connected to it. By using martingale techniques, we

prove the existence of an almost sure asymptotic degree distribution. More precisely,

we show that for every d, the proportion of vertices with generalized degree d tends

to some random variable in certain random graph models with multiple type edges

as the number of steps (or equivalently the number of vertices) goes to infinity.

We also provide recurrence equations for the asymptotic degree distribution. The

results are verified not just for particular graph models; instead, we follow a model-

free approach and formulate sufficient conditions for the existence of asymptotic

degree distribution. Then we give two applications: for a multi-type version of

the Barabási–Albert random graph, and for a preferential attachment model with

Poisson number of edges. These examples show a new phenomenon: in the multi-

type case it can happen that the asymptotic degree distribution is not deterministic,

which is the case in many well-known models in the single-type case. We show that

the asymptotic degree distribution in the generalized Barabási–Albert random graph

and in the model of independent edges also depends on the asymptotic proportion

of edges of type k which makes it a stochastic distribution.
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In Section 2.4 we are interested in a version of robustness in preferential attachment

graph models with multi-type edges. Our aim is to compare a model in which the

probability of choosing a type is exactly the proportion of the current type among

the edges going out from the endpoint of the new edge; and its modified version,

when, after this step, types can change with certain probability. In particular,

we introduce perturbation in the multi-type Barabási–Albert random graph, and

prove that this shows different phenomena than the original version. That is, errors

in the dynamics of multi-type random graphs can lead to essential changes in the

asymptotic behaviour of the model. We prove the existence of the asymptotic degree

distribution in the perturbed Barabási–Albert random graph, and we also provide

recurrence equations for the asymptotic degree distribution. The main difference

between the perturbed and the non-perturbed Barabási–Albert random graph is the

deterministic or stochastic nature of the asymptotic degree distribution. The reason

for that is the asymptotic behaviour of the proportion of edges of different types

which can be described by using an urn model. If there is no perturbation, then the

proportion of edges of a given type converges to a non-degenerate random variable.

On the other hand, if there is perturbation, then it converges to a deterministic

constant almost surely. This is based on the properties of the underlying urn models

which is explained in more details in [42]. In the current thesis, we generalize the

results of [42] about the almost sure limit of the proportion of edges of different types

(or colours) for the case when we also allow multiple drawings with replacement.

Ostroumova, Ryabchenko and Samosvat [44] propose a general class of preferential

attachment models with single-type edges. They also introduce perturbation in the

dynamics, which is different from the one that we have in our model. They assume

that the error terms converge to zero with rate O(1/n), where n is the size of the

graph. In the perturbed (multi-type) Barabási–Albert random graph, we assume

that the probability of errors converges to a positive number.

In Chapter 3 we examine the spread of an infectious disease on several random graph

models with multiple type edges. As mentioned before, the introduction of the types



16 1. RANDOM GRAPHS AND NETWORKS

of the edges allows us to use more adequate models, because the probabilities of the

propagations may depend on the variety of the connections in the graph. First,

we generalize the SIR-process for graphs with multi-type edges. Then, we further

generalize the process by introducing latency (i.e. infected individuals do not show

symptoms for a random period of time) and quarantine (i.e. infected individuals

who show symptoms are temporarily separated from the population). Finally, em-

pirical results of some stochastic simulations related to the different processes and

underlying structures are presented.



CHAPTER 2

Asymptotic degree distribution in preferential attachment

graphs

In this chapter we define a general family of preferential attachment models with

multi-type edges, and examine the existence and some properties of the (generalized)

asymptotic degree distribution. Two specific graph models, the multi-type versions

of the Barabási–Albert graph and the model of independent edges are examined in

more details, which are special cases of the general graph model. Then the scale-

free property of these models is considered. Finally, the asymptotic properties of

a perturbed version of the multi-type Barabási–Albert graph is compared to the

non-perturbed case.

Throughout the thesis, N will denote the set of non-negative integers, furthermore

ek will denote the kth unit vector in RN and 1 will be the vector with entries all

equal to 1.

2.1. Notation and assumptions

Let (Gn)∞n=0 be a sequence of finite random graphs. The sets of the vertices and

the edges of Gn are denoted by Vn and En, respectively. Throughout the sequel,

the number of possible types of edges, denoted by N , will be fixed. For every

k ∈ [N ] = {1, . . . , N} let E
(k)
n be the set of edges of type k in Gn. For every n we

have En =
⋃
k∈[N ]E

(k)
n and for every k, l we have E

(k)
n ∩ E(l)

n = ∅ whenever k 6= l.

That is the different types form a partition of the edges (where we allow empty sets

in the partition).

In the following definition we generalize the notion of degree for graphs with multiple

types of edges.

17
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Definition 1. For every graph G(V,E) with N different types of edges, the gener-

alized degree of a vertex v ∈ V in G is defined as

deg(v) =
(

deg(1)(v), deg(2)(v), . . . , deg(N)(v)
)T
∈ NN ,

where deg(k)(v) is the number of edges of type k connected to v in G.

Remark. For a sequence of graphs (Gn(Vn, En))∞n=0 with N different types of edges,

for every n the generalized degree of a vertex v ∈ Vn will be denoted by degn(v).

In order to define the (generalized) asymptotic degree distribution of a sequence of

random graphs with N different types of edges, we need to introduce the following

quantity: for every d ∈ ZN let us have

Xn(d) = |{v ∈ Vn : degn(v) = d}| .

This is the number of vertices in Gn with generalized degree d. Notice that Xn(d) =

0 if there is at least one k ∈ [N ] such that dk < 0.

Definition 2. Let us have a sequence of graphs (Gn)∞n=0 with N different types of

edges. If for every d ∈ NN we have

lim
n→∞

Xn(d)

|Vn|
= x(d) a.s.,

then the family of (possibly) random variables
{
x(d),d ∈ NN

}
is called the (gener-

alized) asymptotic degree distribution of (Gn)∞n=0.

Example I. We may consider the following simple 2-type graph model: the initial

configuration consists of one single edge of the 1st type. In every step we add a new

isolated edge to the graph that is chosen to be of the 1st or 2nd type based on the

parity of the index of the step, i.e. for every n ≥ 1, if n is odd, then the new edge

is of the 1st type, and if n is even, then the new edge is of the 2nd type. In this

graph sequence, in every step the degrees of all the vertices are equal to one, and

approximately half of the vertices have generalized degree (1, 0), and for the other
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half it is (0, 1). More precisely, we have

x(1, 0) = lim
n→∞

Xn(1, 0)

2n
=

1

2
and x(0, 1) = lim

n→∞

Xn(0, 1)

2n
=

1

2
,

thus the generalized asymptotic degree distribution is x(1, 0) = 1
2
, x(0, 1) = 1

2
and

for every d ∈ N2 \ {(1, 0), (0, 1)} we have x(d) = 0.

Example II. The generalized asymptotic degree distribution does not always exist.

As for a possible counterexample we may examine the following simple 2-type graph

sequence with alternating types. In the initial step the graph contains one single

edge of the 1st type. In every step we add one isolated edge to the graph, however

the types of all the edges are chosen to be of the 1st type in every odd step, and

the are chosen to be of the 2nd type in every even step, i.e. the types of the already

existing edges are also changed in every step in an alternating way. One can see

that for every n we have

Xn(1, 0)

2n
=

 1 if n is even

0 otherwise
and

Xn(0, 1)

2n
=

 1 if n is odd

0 otherwise

which means that

x(1, 0) = lim
n→∞

Xn(1, 0)

2n
and x(0, 1) = lim

n→∞

Xn(0, 1)

2n

do not exist, thus the generalized asymptotic degree distribution does not exist

either.

2.2. Asymptotic degree distribution in the general model

In this section we introduce a general family of random graph models with multiple

types of edges evolving in discrete time steps according to a stochastic dynamics.

First we determine the initial configuration, then we list the assumptions on the

dynamics of the models that determines the evolution of the structure of the graph

sequences.
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Initial configuration. The initial configuration is denoted by G0(V0, E0), where

V0 = {u1, u2, . . . , us} and s ≥ 1 are fixed. As for the structure of the graph, we

allow multiple edges, but loops are forbidden. We assume that for every k ∈ [N ]

we have
∣∣E(k)

0

∣∣ > 0, which means that there is at least one edge of each type. If the

last condition does not hold, then we may omit every type that is not present in the

initial configuration, since new types will not be added during the evolution of the

graph model.

Dynamics. The dynamics of the general family of random graphs, which is the

subject of the thesis, is the following: we add only one vertex in every step which is

connected to some of the old vertices with possibly multiple edges, then we assign

a type to every new edge. We also assume that new edges are not added or deleted

among the pairs of already existing vertices and the types of the edges do not change

during the evolution of the structure of the graph, i.e. we have E
(k)
n ⊆ E

(k)
n+1 for every

n ≥ 0 and for every k ∈ [N ].

The dynamics of the evolution of the general model can be described in the following

way: for every n, in the nth step,

(1) a new vertex, denoted by vn, is added to the set of vertices, thus we have

Vn = V0 ∪ {v1, v2, . . . , vn}.

(2) The new vertex vn is attached to some of the existing vertices with at least

one edge, so every element of the edge set En \ En−1 is connected to vn.

(3) Every new edge gets a type according to a stochastic rule. For example,

we may consider the following case: for every n, in the nth step, any edge

between the new vertex vn and an existing vertex v ∈ Vn−1 will be assigned

to type k with probabilities proportional to deg
(k)
n−1(v) for every k ∈ [N ].

Assumptions. In order to formulate the conditions on the evolution of the structure

of the graph sequence we are going to introduce some notations. For every n ≥ 1

let Fn denote the σ-algebra generated by the first n graphs with labelled edges,

and let F0 be the trivial σ-algebra, thus F = (Fn)∞n=0 is a filtration. The sum

of the coordinates of a given vector x = (x1, . . . , xN)T ∈ ZN will be denoted by
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s(x) = xT1 =
∑N

k=1 xk. Now we list the assumptions related to the dynamics of

the general model that we are going to use throughout the thesis.

(GM1): For every n, we assume that the conditional distribution of the num-

ber of new edges of type l connected to v ∈ Vn−1, conditionally with respect

to Fn−1, depends only on degn−1(v) for every l ∈ [N ]. By using this as-

sumption, we denote by p
(n)
d (i), where i = (i1, . . . , iN)T , the conditional

probability that a vertex with generalized degree d gets exactly il new

edges of type l for every l ∈ [N ], conditionally with respect to Fn−1. In

other words, for every existing vertex the probability of having a new edge

only depends on the actual generalized degree of the vertex.

(GM2): For every d ∈ NN , there exists δ > 0 and C > 0, such that

E
(
|Xn(d)−Xn−1(d)|2

∣∣Fn−1

)
≤ Cn1−δ

holds almost surely for every n. This means that the difference of the

number of vertices with generalized degree d in the actual step and in the

previous step is bounded in some sense. If the degree of the new vertex is

uniformly bounded, then this condition is automatically fulfilled.

(GM3): For every d ∈ NN , we define the sequence (un(d))∞n=1 by the follow-

ing equality:

p
(n)
d (0) = 1− un(d)

n
.

The sequence (un(d))∞n=1 is non-negative and predictable with respect to the

filtration F . We assume that there is a positive random variable denoted

by u(d), such that un(d) → u(d) almost surely as n → ∞. This means

that for a vertex with generalized degree d the probability of not receiving

any new edge stabilizes in some sense.
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(GM4): For every d = (d1, . . . , dN)T ∈ NN such that s(d) ≥ 1, let us intro-

duce the following set of indices:

H(d) =
{
i = (i1, . . . , iN)T ∈ NN : ∀k ∈ [N ] : ik ≤ dk and s(i) ≥ 1

}
.

We assume that for every d ∈ NN such that s(d) ≥ 1, and for every

i ∈ H(d) there are families of non-negative random variables denoted by

r(k)(·) where k ∈ [N ] with the following property:

lim
n→∞

np
(n)
d−i(i) =

 r(k)(d− ek) if i = ek

0 otherwise
(1)

holds almost surely. Assumption (GM4) states that for an existing vertex

the probability of receiving edges of different types in order to obtain gen-

eralized degree d has a non-trivial limit if and only if one of the edges of a

given type is missing. That is, although it may happen that a vertex gets

more than one edges in a step, this has probability of o
(

1
n

)
and disappears

from the asymptotic equations.

(GM5): For every n and for every d ∈ NN , we denote by q(n)(d) the con-

ditional probability that the new vertex vn is connected to the existing

vertices with exactly dl edges of type l, conditionally with respect to Fn−1.

We assume that there exists a non-negative random variable denoted by

q(d) such that q(n)(d) → q(d) almost surely as n → ∞. This means that

for the new vertex in the nth step the probability of having generalized

degree d converges as n→∞.

Remark. For every d = (d1, . . . , dN)T ∈ NN if there is at least one k ∈ [N ], such

that dk < 0, then u(d) and q(d) are chosen to be zero. Similarly, for every d ∈ NN

and for every k ∈ [N ] if there is at least one l ∈ [N ], such that (d− ek)l < 0, then

r(k)(d− ek) is chosen to be zero.

Remark. There are many other interesting features that could be included in the

dynamics of the graph models, e.g. the deletion of the edges can be also introduced,
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or we may allow the edges to be added between already existing vertices, and it

may also happen that existing edges change their types during the evolution of the

structure of the graph.

Now we can formulate our main theorem on the asymptotic degree distribution.

Theorem 1. If a sequence of N-type random graphs, denoted by (Gn(Vn, En))∞n=0,

satisfies the assumptions (GM1)-(GM5), then for every d ∈ NN we have

lim
n→∞

Xn(d)

|Vn|
= x(d) a.s.

The random variables
{
x(d),d ∈ NN

}
satisfy the following recurrence equations:

x(d) =
1

u(d) + 1

[
N∑
k=1

r(k)(d− ek)x(d− ek) + q(d)

]
.

Remark. Notice that the initial condition of the recurrence equations has not been

defined explicitly. If there is at least one l ∈ [N ] such that (d − ek)l < 0, then the

first term in the sharp bracket equals to zero, and if there is at least one l ∈ [N ]

such that dl < 0, then we also have q(d) = 0.

Preliminaries for the Proof of Theorem 1

In this section we present the tools that play an essential role in the proof of out

main theorem.

Definition 3. Two sequences (an)∞n=1 and (bn)∞n=1 are asymptotically equal (de-

noted by an ∼ bn) if they are positive except finitely many terms, and we have

limn→∞
an
bn

= 1.

Definition 4. A sequence (βn)∞n=1 is called regularly varying with exponent κ if

βn ∼ γnn
κ, where (γn)∞n=1 is a slowly varying sequence. A sequence (γn)∞n=1 is slowly

varying if for every positive s we have limn→∞
γ[sn]

γn
= 1.

We will use the following theorem, see also [25] for a similar statement.
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Lemma 1 (Lemma 1 in [7]). Let F = (Fn)∞n=1 be a filtration, (ξn)∞n=1 a nonnegative

adapted process with respect to F . Let (wn)∞n=1 be a regularly varying sequence of

positive numbers with exponent κ > −1. Suppose that for every n ≥ 1,

E
(

(ξn − ξn−1)2
∣∣∣Fn−1

)
= O

(
n1−δ+2κ

)
(2)

holds with some δ > 0. Let (un)∞n=1, (vn)∞n=1 be nonnegative predictable processes

with respect to F such that un < n for all n ≥ 1.

(a) Suppose that

E
(
ξn
∣∣Fn−1

)
≤
(

1− un
n

)
ξn−1 + vn,

and limn→∞ un = u, lim supn→∞
vn
wn
≤ v with some random variables u > 0,

v ≥ 0. Then we have

lim sup
n→∞

ξn
nwn

≤ v

u+ κ+ 1
a.s.

(b) Suppose that

E
(
ξn
∣∣Fn−1

)
≥
(

1− un
n

)
ξn−1 + vn,

and limn→∞ un = u, lim infn→∞
vn
wn
≥ v with some random variables u > 0,

v ≥ 0. Then we have

lim inf
n→∞

ξn
nwn

≥ v

u+ κ+ 1
a.s.

We will use this lemma for the sequence wn ≡ 1 and κ = 0.

Proof of Theorem 1. We prove the theorem by induction on the value of s(d) =

dT1 =
∑N

k=1 dk. The initial step of the induction, when we set s(d) = 0, is trivial.

Let d = (d1, . . . , dN)T ∈ NN be a fixed vector such that s(d) > 0. Notice that,

for every n ≥ 1, in the nth step, the value of Xn(d) may change due to one of the

following events:

• an existing vertex with generalized degree d is connected to the new vertex;
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• an existing vertex with generalized degree d − i = (dk − ik)Nk=1 is chosen,

and it gets ik new edges of type k;

• the new vertex is attached to the old vertices with dk edges of type k for

every k ∈ [N ].

For every n ≥ 1, in the nth step, we have

E
[
Xn(d)

∣∣Fn−1

]
= Xn−1(d)p

(n)
d (0) +

 ∑
i∈H(d)

Xn−1(d− i)p(n)
d−i(i)

+ q(n)(d),(3)

where

H(d) =
{
i = (i1, . . . , iN) ∈ NN : ∀k ∈ [N ] : ik ≤ dk and s(i) ≥ 1

}
.

Assumption (GM2) implies that there exists a positive δ and a positive C such

that for every n ≥ 1 we have

E
(∣∣Xn(d)−Xn−1(d)

∣∣2∣∣∣Fn−1

)
≤ Cn1−δ.

With this δ, equation (2) in Lemma 1 is satisfied with ξn = Xn(d). We want to

rewrite equation (3) in the following form:

E
[
Xn(d)

∣∣Fn−1

]
= Xn−1(d)

[
1− un(d)

n

]
+ vn(d),

where the processes (un(d))∞n=1 and (vn(d))∞n=1 satisfy the assumptions of Lemma 1.

Recall the definition of un(d) from Assumption (GM3). It is easy to see that this

process is predictable with respect to F . Assumption (GM3) implies that there

exists a positive random variable u(d) such that un(d) → u(d) almost surely as

n→∞. We define H ′(d) = H(d) \ {ek, k ∈ [N ]}.

We define

vn(d) =
N∑
k=1

Xn−1(d− ek)p(n)
d−ek(ek) +

 ∑
i∈H′(d)

Xn−1(d− i)p(n)
d−i(i)

+ q(n)(d).
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It is easy to see that this process is predictable with respect to F . Using Assumptions

(GM4) and (GM5) and the induction hypothesis, we conclude that there exists a

non-negative random variable v(d), such that

vn(d)→ v(d) =
N∑
k=1

r(k)(d− ek)x(d− ek) + q(d) a.s.

as n→∞. Lemma 1 implies that

lim
n→∞

Xn(d)

n
=

v(d)

u(d) + 1
a.s.

Since |Vn| ∼ n, the proof of Theorem 1 is complete. �

2.2.1. Generalized Barabási–Albert random graph. This is a multi-type

version and a generalization (or modification) of the graph model in [13], specified

in [18] (see also [37, 30, 44] for general setups).

The dynamics of this model is the following:

• for every n ≥ 1, in the nth step, the new vertex vn is connected with Mn (not

necessarily different) edges to some of the already existing vertices, where

Mn is a positive integer-valued random variable, which is independent of

Fn−1.

• The endpoints of the Mn new edges are chosen independently. The end-

point of each edge is chosen among the existing vertices with probabilities

proportional to the degrees. (Notice that we do not update degrees until

the end of step.)

• The types of the new edges are chosen independently, and the probability of

each type is its proportion among the edges of the already existing endpoint

of the new edge (not counting the edges added in the actual step).

Now, we list the assumptions on the sequence of random variables (Mn)∞n=1.

Assumption (BA1) We assume that Mn is a positive integer-valued random vari-

able, which is independent of Fn−1 for every n ≥ 1.
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Assumption (BA2) We assume that there exists a positive random variable, de-

noted by M , such that Mn → M in distribution, and for every p ≥ 1 we have

E(Mp
n) → E(Mp) < ∞ as n → ∞. The expected value of M will be denoted by

m = E(M).

We will use the following lemma in order to understand the asymptotic behaviour of

the proportion of edges of type k as the number of steps (or equivalently the number

of vertices) goes to infinity.

Lemma 2. For every k ∈ [N ] let us define ζ
(k)
n = |E(k)

n |
|En| , i.e. the proportion of the

number of edges of type k in the generalized Barabási–Albert random graph. For

every k ∈ [N ] there exists a random variable ζ(k) such that ζ
(k)
n → ζ(k) almost surely

as n→∞.

Remark. If we have Mn ≡ 1 for all n ≥ 1, and the initial configuration is a tree,

i.e. the model is an N -type Barabási–Albert random tree, then
(
ζ(k), k ∈ [N ]

)
has

a Dirichlet distribution with parameters
(
|E(k)

0 |, k ∈ [N ]
)

. In this case the number

of edges with different types follows a Pólya urn process.

Proof of Lemma 2. First, let us fix k ∈ [N ]. For every n ≥ 1 the distribution

of the number of new edges of type k in the nth step conditionally with respect to

F+
n−1 is Bin

(
Mn,

∣∣E(k)
n−1

∣∣
|En−1|

)
. For every n ≥ 1 we have

E

(∣∣E(k)
n

∣∣
|En|

∣∣∣∣∣F+
n−1

)
=

∣∣E(k)
n−1

∣∣
|En−1|+Mn

+
Mn

∣∣E(k)
n−1

∣∣
|En−1|

|En−1|+Mn

=

∣∣E(k)
n−1

∣∣ (1 + Mn

|En−1|

)
|En−1|+Mn

=

∣∣E(k)
n−1

∣∣
|En−1|

.

This is Fn−1-measurable, hence this yields

E

(∣∣E(k)
n

∣∣
|En|

∣∣∣∣∣Fn−1

)
=

∣∣E(k)
n−1

∣∣
|En−1|

.

We conclude that
(
ζ

(k)
n ,Fn

)∞
n=1

is a nonnegative martingale, thus it is convergent

almost surely. Let us denote its limit by ζ(k) ≥ 0. The proof of Lemma 2 is complete.

�
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Asymptotic degree distribution in the generalized Barabási–Albert ran-

dom graph.

Theorem 2. If the assumptions (BA1) and (BA2) on the sequence (Mn)∞n=1 are

satisfied, then in the generalized Barabási–Albert model for every d = (d1, . . . , dN)T ∈

NN we have

lim
n→∞

Xn(d)

|Vn|
= x(d) a.s.

The random variables
{
x(d),d ∈ NN

}
satisfy the following recurrence equations:

x(d) =
N∑
k=1

dk − 1

D + 2
x(d− ek) +

2

D + 2
P (M = D)

D!∏N
k=1 dk!

N∏
k=1

(
ζ(k)
)dk

,

where ζ(k) is defined in Lemma 2 and D = s(d) =
∑N

k=1 dk.

Preliminaries for the proof of Theorem 2. First, for every n ≥ 0 we define

the following σ-algebra: F+
n = σ(Fn,Mn+1). Then we will show that we have

|En| ∼ mn, where m = E(M). For every n ≥ 1 the number of edges equals to

|En| =
∑N

k=1

∣∣E(k)
0

∣∣ +
∑n

i=1Mi. By the assumptions of the model, the sequence

(Mn)∞n=1 satisfies the following conditions:

lim
n→∞

1

n

n∑
i=1

E(Mi) = E(M) = m > 0 and
∞∑
n=1

Var(Mn)

n2
<∞.

Therefore Kolmogorov’s theorem can be applied (Theorem 6.7. in [45]) for the se-

quence (Mn)∞n=1, thus we have |En| ∼ mn.

We will use the following lemma, which can be proved by Bonferroni’s inequality.

Lemma 3. For every n ≥ 1 and x ∈ [0, 1] we have

|(1− x)n − (1− nx)| ≤
(
n

2

)
x2.

Proof of Theorem 2. We will directly use Theorem 1, so it is required to check if

the assumptions of the general model are fulfilled.
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Assumption (GM1). By the definition of the dynamics of the multi-type Barabási–

Albert model, it is easy to see that Assumption (GM1) trivially holds.

Assumption (GM2). Assumption (BA2) implies that, for every n ≥ 1 and

d ∈ NN we have

E
(∣∣Xn(d)−Xn−1(d)

∣∣2∣∣∣Fn−1

)
≤ E(M2

n)→ E(M2) <∞

as n→∞. If we choose δ = 1, then Assumption (GM2) is satisfied.

Assumption (GM3). For every n ≥ 1 and d ∈ NN the distribution of the number

of new edges added to an existing vertex with generalized degree d follows a binomial

distribution, thus the probability that a vertex with such a degree does not receive

any new edges equals to

p
(n)
d (0) = E

[(
1− s(d)

2|En−1|

)Mn

∣∣∣∣∣Fn−1

]
,

where s(d) =
∑N

i=1 di. To calculate the expected value above, we will use the

following formula:

E

[(
1− s(d)

2|En−1|

)Mn

∣∣∣∣∣Fn−1

]
= E

(
1−Mn

s(d)

2|En−1|

∣∣∣∣∣Fn−1

)
+ ηn(d),

where

ηn(d) = E

[(
1− s(d)

2|En−1|

)Mn

−
(

1−Mn
s(d)

2|En−1|

) ∣∣∣∣∣Fn−1

]
.

Lemma 3 implies that for every n ≥ s(d) we have∣∣∣∣∣
(

1− s(d)

2|En−1|

)Mn

−
(

1−Mn
s(d)

2|En−1|

)∣∣∣∣∣ ≤
(
Mn

2

)(
s(d)

2|En−1|

)2

.



30 2. ASYMPTOTIC DEGREE DISTRIBUTION IN PREFERENTIAL ATTACHMENT GRAPHS

By using the above bound, we obtain that

|ηn(d)| ≤ E

[∣∣∣∣∣
(

1− s(d)

2|En−1|

)Mn

−
(

1−Mn
s(d)

2|En−1|

)∣∣∣∣∣
∣∣∣∣∣Fn−1

]

≤ E

[(
Mn

2

)(
s(d)

2|En−1|

)2
∣∣∣∣∣Fn−1

]
=

(
s(d)

2|En−1|

)2

E
[(
Mn

2

)]

≤
(

s(d)

2|En−1|

)2

E(M2
n)

almost surely, by using the fact that |En−1| ∼ mn, and also assumption (BA2).

The definition of un(d) and ηn(d) implies that

un(d) = n

(
1−

[
E

(
1−Mn

s(d)

2|En−1|

∣∣∣∣∣Fn−1

)
+ ηn(d)

])

= n
s(d)

2
· E(Mn)

|En−1|
− n · ηn(d).

This is Fn−1-measurable, hence (un(d))∞n=1 is a predictable process with respect to

the filtration F . Recall that |En−1| ∼ mn and n · |ηn(d)| = o(1) almost surely.

Assumption (BA2) implies that

u(d) = lim
n→∞

un(d) =
s(d)

2
a.s.

Assumption (GM4). First, we fix k ∈ [N ]. For every n ≥ 1 and d ∈ NN , where

s(d) ≥ 1, by using the fact that the distribution of the number of new edges added

to an existing vertex with generalized degree d follows a binomial distribution, the

probability that a vertex with such a degree does not receive exactly one new edge

equals to

p
(n)
d−ek(ek) = E

[
Mn

(
dk − 1

2|En−1|

)(
1− s(d)− 1

2|En−1|

)Mn−1
∣∣∣∣∣Fn−1

]
(4)

=

(
dk − 1

2|En−1|

)
E

[
Mn

(
1− s(d)− 1

2|En−1|

)Mn−1
∣∣∣∣∣Fn−1

]
.



2.2. ASYMPTOTIC DEGREE DISTRIBUTION IN THE GENERAL MODEL 31

Similarly to the previous case, we obtain that

E

[
Mn

(
1− s(d)− 1

2|En−1|

)Mn−1
∣∣∣∣∣Fn−1

]

= E

[
Mn

(
1− (Mn − 1)

s(d)− 1

2|En−1|

) ∣∣∣∣∣Fn−1

]
+ ηn(d),

where

ηn(d) = E

[
Mn

(
1− s(d)− 1

2|En−1|

)Mn−1

−Mn

(
1− (Mn − 1)

s(d)− 1

2|En−1|

) ∣∣∣∣∣Fn−1

]
,

which is not the same sequence as the η’s from the previous section. Lemma 3

implies that for every n ≥ s(d) we have∣∣∣∣∣Mn

(
1− s(d)− 1

2|En−1|

)Mn−1

−Mn

(
1− (Mn − 1)

s(d)− 1

2|En−1|

)∣∣∣∣∣
≤Mn

(
Mn − 1

2

)(
s(d)− 1

2|En−1|

)2

.

Combining this with assumption (BA2), we obtain that

|ηn(d)| ≤ E

[∣∣∣∣∣Mn

(
1− s(d)− 1

2|En−1|

)Mn−1

−Mn

(
1− (Mn − 1)

s(d)− 1

2|En−1|

)∣∣∣∣∣
∣∣∣∣∣Fn−1

]

≤ E

[
Mn

(
Mn − 1

2

)(
s(d)− 1

2|En−1|

)2
∣∣∣∣∣Fn−1

]
=

(
s(d)− 1

2|En−1|

)2

E
[
Mn

(
Mn − 1

2

)]

≤
(
s(d)− 1

2|En−1|

)2

E(M3
n) = o

(
1

n

)
a.s.
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Getting back to equation (4), we conclude that

p
(n)
d−ek(ek) =

(
dk − 1

2|En−1|

)
E

[
Mn

(
1− s(d)− 1

2|En−1|

)Mn−1
∣∣∣∣∣Fn−1

]

=

(
dk − 1

2|En−1|

)(
E

[
Mn

(
1− (Mn − 1)

s(d)− 1

2|En−1|

) ∣∣∣∣∣Fn−1

]
+ ηn(d)

)

=

(
dk − 1

2|En−1|

)(
E(Mn)− E

[
Mn(Mn − 1)

s(d)− 1

2|En−1|

∣∣∣∣∣Fn−1

]
+ ηn(d)

)

∼ dk − 1

2
· 1

n
+ o

(
1

n

)
a.s.

Therefore, for every k ∈ [N ] we have

lim
n→∞

np
(n)
d−ek(ek) = r(k)(d− ek) =

dk − 1

2
a.s.

Let i ∈ H ′(d), i.e. ∀k ∈ [N ] : 0 ≤ ik ≤ dk and s(i) ≥ 2. In this case, we can bound

the conditional expectation as follows:

p
(n)
d−i(i)

= E

 Mn!(∏N
k=1 ik!

)
(Mn − s(i))!

[
N∏
k=1

(
dk − ik
2|En−1|

)ik](
1− s(d− i)

2|En−1|

)Mn−s(i)
∣∣∣∣∣Fn−1


≤

N∏
k=1

(
dk − ik
2|En−1|

)ik
E

 Mn!(∏N
k=1 ik!

)
(Mn − s(i))!

 ≤ ∏N
k=1(dk − ik)ik

(2|En−1|)s(i)
E
(
M s(i)

n

)
.

This yields

lim
n→∞

np
(n)
d−i(i) = 0 a.s.,

due to assumption (BA2) and the fact that |En−1| ∼ mn.
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Assumption (GM5). By the dynamics of the multi-type Barabási–Albert model,

we conclude that for every n ≥ 1 and d ∈ NN the following holds:

q(n)(d) = E

I (Mn = s(d))
s(d)!∏N
k=1 dk!

N∏
k=1

(∣∣E(k)
n−1

∣∣
|En−1|

)dk
∣∣∣∣∣Fn−1


= P (Mn = s(d))

s(d)!∏N
k=1 dk!

N∏
k=1

(∣∣E(k)
n−1

∣∣
|En−1|

)dk

.

Assumption (BA1) implies that P (Mn = s(d)) → P (M = s(d)) as n → ∞. It

follows from Lemma 2 that

q(d) = lim
n→∞

q(n)(d) = P (M = s(d))
s(d)!∏N
k=1 dk!

N∏
k=1

(
ζ(k)
)dk

a.s.

This yields

u(d) =
s(d)

2
,

r(k)(d− ek) =
dk − 1

2
(∀k ∈ [N ])

q(d) = P (M = s(d))
s(d)!∏N
k=1 dk!

N∏
k=1

(
ζ(k)
)dk

.

Applying Theorem 1 we get Theorem 2. �

2.2.2. Model of independent edges. This model is an enhanced and a multi-

type version of the models in [24] and [38], where the new vertex is connected to the

existing ones independently, with probability depending on the edges of the actual

vertex. In this model, instead of connecting with a single edge with a given prob-

ability, we add a Poisson number of new edges, with the multiplicative parameter

chosen randomly.

In the model of independent edges, we have the following dynamics:

• for every n ≥ 1, in the nth step, the new vertex vn attaches to all of the

already existing vertices with some new edges of type k independently.
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• For any existing vertex w ∈ Vn−1 let ∆
(k)
n (w) be the number edges of type k

between the vertices vn and w. We assume that, conditionally with respect

to Fn−1, for every k ∈ [N ] we have

∆(k)
n (w) ∼ Poi

(
λn

deg
(k)
n−1(w)

2|En−1|

)
,

where λn is a positive random variable. We also assume that for every w,

the random variables
(

∆
(k)
n (w)

)N
k=1

are conditionally independent of each

other with respect to Fn−1.

Remark. Since the Poisson distribution can be approximated by the binomial dis-

tribution we expect a similar behaviour from the two graphs models, although they

are clearly different in some sense.

Let λ1, λ2, λ3, . . . be a sequence of independent random variables. Similarly to the

previously discussed model, we need a few assumptions on their distribution.

Assumption (IE1) For every n ≥ 1 the random variable λn is positive and inde-

pendent of Fn−1.

Assumption (IE2) We assume that there exists a positive random variable, de-

noted by λ, such that λn → λ in distribution, and for every p ≥ 1 we have

E(λpn) → E(λp) < ∞ as n → ∞. The expected value and the variance of λ will be

denoted by µ = E(λ) and σ2 = Var(λ), respectively.

For every n ≥ 1 we define F+
n−1 = σ(Fn−1, λn). Let ∆n be the number of new edges

in the nth step, and let ∆
(k)
n denote the number of new edges of type k in the nth

step. For every n ≥ 1 we have ∆n|F+
n−1 ∼ Poi(λn), furthermore for every k ∈ [N ]

we have

∆(k)
n |F+

n−1 ∼ Poi

(
λn
|E(k)

n−1|
|En−1|

)
.

Note that the random variables
(

∆
(k)
n

)N
k=1

are conditionally independent given F+
n−1.
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Again, we need the following lemma to understand the asymptotics of the proportion

of edges of type k as the number of steps goes to infinity.

Lemma 4. For every k ∈ [N ] let us have ζ̂
(k)
n = |E(k)

n

|En| , i.e. the proportion of the

number of edges of type k in the model of independent edges. For every k ∈ [N ]

there exists a random variable ζ̂(k) such that ζ̂
(k)
n → ζ̂(k) almost surely as n→∞.

Proof of Lemma 4. Recall that for a fixed k ∈ [N ] we have

∆(k)
n ∼ Poi

(
λn
|E(k)

n |
|En|

)
and ∆n −∆(k)

n ∼ Poi

(
λn

[
1− |E

(k)
n |
|En|

])
,

furthermore ∆
(k)
n and ∆n−∆

(k)
n are conditionally independent given Fn−1. Because

of this, it is enough to prove this lemma for N = 2, which means there are only two

types.

We are going to show that we have ∆
(1)
n

∣∣∣F+
n−1 ∼ Bin

(
∆n,

|E(1)
n−1|

|En−1|

)
. For every n ≥ 1

we define F++
n−1 = σ(F+

n−1,∆n). For all i ≤ j the conditional distribution can be

calculated as follows:

P
(

∆(1)
n = i

∣∣∣∆n = j,F+
n−1

)
=

P
(

∆
(1)
n = i,∆n = j

∣∣∣F+
n−1

)
P
(

∆
(1)
n + ∆

(2)
n = j

∣∣∣F+
n−1

)
=

P
(

∆
(1)
n = i,∆

(2)
n = j − i

∣∣∣F+
n−1

)
P
(

∆
(1)
n + ∆

(2)
n = j

∣∣∣F+
n−1

) =
P
(

∆
(1)
n = i

∣∣∣F+
n−1

)
· P
(

∆
(2)
n = j − i

∣∣∣F+
n−1

)
P
(

∆
(1)
n + ∆

(2)
n = j

∣∣∣F+
n−1

)

=

(
λn
|E(1)

n−1|
|En−1|

)i

i!
· exp

(
−λn

|E(1)
n−1|

|En−1|

)
·

(
λn
|E(2)

n−1|
|En−1|

)j−i

(j−i)! · exp

(
−λn

|E(2)
n−1|

|En−1|

)
λjn
j!
· exp (−λn)

=

(
j

i

)(
|E(1)

n−1|
|En−1|

)i(
1−
|E(1)

n−1|
|En−1|

)j−i

.

For all n ≥ 1, similarly to the proof of Lemma 2, we have

E

(
|E(1)

n |
|En|

∣∣∣∣∣F++
n−1

)
=

|E(1)
n−1|

|En−1|+ ∆n

+
∆n
|E(1)

n−1|
|En−1|

|En−1|+ ∆n

=
|E(1)

n−1|
|En−1|

.
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Notice that En−1 and E
(1)
n−1 are Fn−1-measurable, which implies that

E

(
|E(1)

n |
|En|

∣∣∣∣∣Fn−1

)
=
|E(1)

n−1|
|En−1|

.

We conclude that
(
ζ̂

(1)
n ,Fn

)∞
n=1

is a non-negative martingale, thus it is convergent

almost surely. Let ζ̂(1) ≥ 0 be its limit. The proof of Lemma 4 is complete. �

Asymptotic degree distribution in the model of independent edges.

Theorem 3. If the assumptions (IE1) and (IE2) on the sequence (λn)∞n=1 are

satisfied, then in the model of independent edges for every d = (d1, . . . , dN)T ∈ NN

we have

lim
n→∞

Xn(d)

|Vn|
= x(d) a.s.

The random variables
{
x(d),d ∈ NN

}
satisfy the following recurrence equations:

x(d) =
N∑
k=1

dk − 1

D + 2
x(d− ek) +

2

D + 2

∏N
k=1

(
ζ̂(k)
)dk

∏N
k=1 dk!

E
(
λDe−λ

)
,

where ζ̂(k) is defined in Lemma 4 and D = s(d) =
∑N

k=1 dk.

Remark. For the calculation of the last term we can use the following observation.

Let us denote by gλ the moment generating function of the random variable λ, i.e.

gλ(t) = E(etλ), where t ∈ R. Let us have B = {t ∈ R : gλ(t) < ∞}, i.e. the set of

finiteness of gλ, and let B0 be the interior of B. Suppose that −1 ∈ B0. It is well

known that in this case gλ(t) is infinitely differentiable at t = −1, furthermore, we

have

g
(D)
λ (−1) = E

(
λDe−λ

)
,

where D = s(d) and g
(D)
λ is the derivative of order D of the moment generating

function gλ.
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Preliminaries for the proof of Theorem 3. We will use the following lemma.

Lemma 5. For the number of edges of the model of independent edges, we have the

following asymptotics: |En| ∼ µn.

Proof. Let us have ∆0 = |E0| and λ0 = 0. We define the following process:

Zn =
n∑
i=0

∆i − λi = |En| −
n∑
i=1

λi.

We show that (Zn,Fn)∞n=1 is a square integrable martingale, i.e. (Zn,Fn)∞n=1 is a

martingale, and we have E(Z2
n) <∞ for every n ≥ 1.

For every n ≥ 1 we have

E(Zn|Fn−1) = E(Zn−1 + ∆n − λn|Fn−1) =

= Zn−1 + E
[
E(∆n|F+

n−1)− λn|Fn−1

]
= Zn−1,

by using the fact that ∆n|F+
n−1 ∼ Poi(λn).

Furthermore, we can bound the expectation of the squares in the following way:

E(Z2
n) = E

( n∑
i=1

∆i − λi

)2
 = E

[
n∑
i=1

(∆i − λi)2 + 2
∑
i<j

(∆i − λi)(∆j − λj)

]

=
n∑
i=1

E
[
(∆i − λi)2

]
+ 2

∑
i<j

E [(∆i − λi)(∆j − λj)]

=
n∑
i=1

E
(
E
[
(∆i − λi)2

∣∣∣F+
i−1

])
+ 2

∑
i<j

E
(
E
[
(∆i − λi)(∆j − λj)

∣∣∣F+
j−1

])
=

n∑
i=1

E(λi) <∞,
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hence (Zn,Fn)∞n=1 is a square integrable martingale. The increasing process associ-

ated with Z2
n by the Doob decomposition is the following:

An =
n∑
i=1

Var (∆i|Fi−1) =
n∑
i=1

E(∆2
i |Fi−1)− E2(∆i|Fi−1)

=
n∑
i=1

E
[
E(∆2

i |F+
i−1)
∣∣∣Fi−1

]
− E2

[
E(∆i|F+

i−1)
∣∣∣Fi−1

]
=

n∑
i=1

E(λ2
i + λi)− E2(λi)

=
n∑
i=1

Var(λi) + E(λi) ≤ n(µ+ σ2).

By using [43], Proposition VII-2-4, we conclude that |En| = (
∑n

i=1 λi)n+o
(
n1/2+ε

)
almost surely as n→∞ on the event {An →∞} for all ε > 0.

For every n ≥ 1 we have |En| =
∑N

k=1

∣∣E(k)
0

∣∣+
∑n

i=1 ∆i. By the assumptions of the

model, the sequence (λi)
n
i=1 satisfies the following conditions:

lim
n→∞

1

n

n∑
i=1

E(λi) = E(λ) = µ and
∞∑
n=1

Var(λn)

n2
<∞.

Therefore, Kolmogorov’s theorem can be applied (Theorem 6.7. in [45]) for the

sequence (λn)∞n=1, similarly to the previous sections. We conclude that we have

|En| ∼ µn. �

Proof of Theorem 3. We will use Theorem 1, so we have to check the assumptions

of the general model.

Assumption (GM1). By the definition of the dynamics of the model of indepen-

dent edges, it is easy to see that Assumption (GM1) trivially holds.

Assumption (GM2). By using the fact that ∆n|F+
n−1 ∼ Poi(λn), we obtain that

for every d ∈ NN we have

E
[∣∣Xn(d)−Xn−1(d)

∣∣2∣∣∣Fn−1

]
≤ E(∆2

n|Fn−1) = E
[
E(∆2

n|F+
n−1)

∣∣∣Fn−1

]
= E(λ2

n + λn|Fn−1) = E(λ2
n + λn)→ σ2 + µ2 + µ <∞
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as n→∞. If we choose δ = 1, then assumption (GM2) is satisfied.

Assumption (GM3). For every n ≥ 1 and d ∈ NN we have

p
(n)
d (0) = E

[
exp

(
−λn

s(d)

2|En−1|

) ∣∣∣∣∣Fn−1

]
.

We will use Taylor expansion. In order to do this, we write the expectation in the

following form:

E

[
exp

(
−λn

s(d)

2|En−1|

) ∣∣∣∣∣Fn−1

]
= E

(
1− λn

s(d)

2|En−1|

∣∣∣∣∣Fn−1

)
+ ηn(d),

where

ηn(d) = E

[
exp

(
−λn

s(d)

2|En−1|

)
−
(

1− λn
s(d)

2|En−1|

) ∣∣∣∣∣Fn−1

]
.

It is well known that for all x ≥ 0 we have |e−x − (1− x)| ≤ x2

2
, which implies that∣∣∣∣exp

(
−λn

s(d)

2|En−1|

)
−
(

1− λn
s(d)

2|En−1|

)∣∣∣∣ ≤ 1

2

(
λn

s(d)

2|En−1|

)2

.

By using the above inequality, we obtain that

|ηn(d)| ≤ E

[∣∣∣∣exp

(
−λn

s(d)

2|En−1|

)
−
(

1− λn
s(d)

2|En−1|

)∣∣∣∣
∣∣∣∣∣Fn−1

]

≤ E

[
1

2

(
λn

s(d)

2|En−1|

)2
∣∣∣∣∣Fn−1

]
= E

[
λ2
n

(s(d))2

8|En−1|2

∣∣∣∣∣Fn−1

]

=E(λ2
n)

(s(d))2

8|En−1|2
= o

(
1

n

)
a.s.

by the assumption (IE2) and |En−1| ∼ µn. The definition of un(d) and ηn(d)

implies that

un(d) = n

(
s(d)

2
· E(λn)

|En−1|
− ηn(d)

)
.

We can see that un(d) is Fn−1-measurable, hence (un(d))∞n=1 is a predictable process

with respect to F . Recall that |En−1| ∼ µn, and n · ηn(d) = o(1) almost surely.
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Assumption (IE2) implies that

u(d) = lim
n→∞

un(d) =
s(d)

2
a.s.

Assumption (GM4). First, let us fix k ∈ [N ]. For every n ≥ 1 and d ∈ NN , where

s(d) ≥ 1, we have

p
(n)
d−ek(ek) = E

[
λn

dk − 1

2|En−1|
· exp

(
−λn

dk − 1

2|En−1|

) ∣∣∣∣∣Fn−1

]
(5)

=
dk − 1

2|En−1|
E

[
λn · exp

(
−λn

dk − 1

2|En−1|

) ∣∣∣∣∣Fn−1

]
.

Similarly to the previous case, we obtain that

E

[
λn · exp

(
−λn

dk − 1

2|En−1|

) ∣∣∣∣∣Fn−1

]
= E

[
λn

(
1− λn

dk − 1

2|En−1|

) ∣∣∣∣∣Fn−1

]
+ ηn(d),

where

ηn(d) = E

[
λn · exp

(
−λn

dk − 1

2|En−1|

)
− λn

(
1− λn

dk − 1

2|En−1|

) ∣∣∣∣∣Fn−1

]
.

Again, by using |e−x − (1− x)| ≤ x2

2
for all x ≥ 0, we conclude that∣∣∣∣λn · exp

(
−λn

dk − 1

2|En−1|

)
− λn

(
1− λn

dk − 1

2|En−1|

)∣∣∣∣ ≤ λn
2

(
λn

dk − 1

2|En−1|

)2

.

Combining this with assumption (IE2), we obtain that

|ηn(d)| ≤ E

[∣∣∣∣λn · exp

(
−λn

dk − 1

2|En−1|

)
− λn

(
1− λn

dk − 1

2|En−1|

)∣∣∣∣
∣∣∣∣∣Fn−1

]

≤ E

[
λn
2

(
λn

dk − 1

2|En−1|

)2
∣∣∣∣∣Fn−1

]
= E

[
λ3
n

(dk − 1)2

8|En−1|2

∣∣∣∣∣Fn−1

]

= E(λ3
n)

(dk − 1)2

8|En−1|2
= o

(
1

n

)
a.s.
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By using this we conclude that

p
(n)
d−ek(ek) =

dk − 1

2|En−1|
E

[
λn · exp

(
−λn

dk − 1

2|En−1|

) ∣∣∣∣∣Fn−1

]

=
dk − 1

2|En−1|

(
E

[
λn

(
1− λn

dk − 1

2|En−1|

) ∣∣∣∣∣Fn−1

]
+ ηn(d)

)

∼ dk − 1

2
· 1

n
+ o

(
1

n

)
a.s.

Putting this together, we obtain that for every k ∈ [N ] we have

lim
n→∞

np
(n)
d−ek(ek) = r(k)(d− ek) =

dk − 1

2
a.s.

Now let i ∈ H ′(d), i.e. ∀k ∈ [N ] : 0 ≤ ik ≤ dk and s(i) ≥ 2. For every n ≥ 1 we

have

p
(n)
d−i(i) = E

[
N∏
k=1

1

ik!

(
λn
dk − ik
2|En−1|

)ik
exp

(
−λn

dk − ik
2|En−1|

) ∣∣∣∣∣Fn−1

]

=

∏N
k=1(dk − ik)ik

(2|En−1|)s(i)
∏N

k=1 ik!
E

[
λs(i)n · exp

(
−λn

s(d− i)
2|En−1|

) ∣∣∣∣∣Fn−1

]

≤
∏N

k=1(dk − ik)ik

(2|En−1|)s(i)
∏N

k=1 ik!
E
(
λs(i)n

)
,

which implies that

lim
n→∞

np
(n)
d−i(i) = 0 a.s.
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Assumption (GM5). By the dynamics of the model, for every n ≥ 1 and d ∈ NN ,

the following holds:

q(n)(d) = E

[
P

(
N⋂
k=1

{
∆(k)
n = dk

} ∣∣∣F+
n−1

)∣∣∣∣∣Fn−1

]

= E

[
N∏
k=1

P
(

∆(k)
n = dk

∣∣∣F+
n−1

) ∣∣∣∣∣Fn−1

]

= E

 N∏
k=1

1

dk!

(
λn

∣∣E(k)
n−1

∣∣
|En−1|

)dk

exp

(
−λn

∣∣E(k)
n−1

∣∣
|En−1|

)∣∣∣∣∣Fn−1


=

1∏N
k=1 dk!

N∏
k=1

(∣∣E(k)
n−1

∣∣
|En−1|

)dk

E
(
λs(d)
n · exp (−λn)

∣∣∣Fn−1

)
.

By Lemma 4 and the independence of λn and Fn−1, we have

q(d) = lim
n→∞

q(n)(d) = lim
n→∞

∏N
k=1

(
ζ̂

(k)
n−1

)dk
∏N

k=1 dk!
E
(
λs(d)
n e−λn

)

=

∏N
k=1

(
ζ̂(k)
)dk

∏N
k=1 dk!

E
(
λs(d)e−λ

)
a.s.,

since the function ts(d)e−t is bounded and continuous and λn → λ in distribution.

We obtain that

u(d) =
s(d)

2
,

r(k)(d− ek) =
dk − 1

2
(∀k ∈ [N ])

q(d) =

∏N
k=1

(
ζ̂(k)
)dk

∏N
k=1 dk!

E
(
λs(d)e−λ

)
.

Applying Theorem 1 we get Theorem 3. �
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2.3. Scale-free property of random graphs in the multi-type case

A scale-free graph model is a random graph whose degree distribution follows a

power law, i.e. the proportion of vertices with degree d asymptotically equals to

Cd−γ, where γ > 0 is a deterministic constant. It is well known that many large

real networks have this property, see e.g. [37], although there are discussions about

how common they are [20].

The formal definition of scale-free property of random graphs with no types is the

following.

Definition 5. We assume that the proportion of vertices with degree d converges

to a deterministic constant cd a.s. for all d ≥ 0, and the sum of the sequence (cd)
∞
d=0

equals to 1. In this case the sequence (cd)
∞
d=0 is an asymptotic degree distribution.

Furthermore, if cdd
γ → C as d → ∞ holds with some positive C, then the model

has the scale-free property, and γ is the so-called characteristic exponent.

In the following section we generalize the scale-free property for graphs with multi-

type edges. First, let us define the (asymptotic) marginal degree distribution for a

given type in a multi-type graph model.

Definition 6. Let us have a sequence of N -type random graphs, denoted by

(Gn(Vn, En))∞n=0. The marginal degree distribution for the edges of type k ∈ [N ] is

defined as the following sequence of possibly random variables:(
x

(k)
l (n)

)∞
l=0

=

(
X

(k)
n (l)

|Vn|

)∞
l=0

,

where we have

X(k)
n (l) =

∣∣∣∣ {v ∈ Vn : deg(k)
n (v) = l

} ∣∣∣∣,
i.e. the number of vertices in Gn with l edges of type k connected to them.
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The asymptotic marginal degree distribution for the edges of type k ∈ [N ] is defined

as

x
(k)
l = lim

n→∞

X
(k)
n (l)

|Vn|
a.s.,

where l ≥ 0.

Definition 7. Let us have a sequence of N -type random graphs, denoted by

(Gn(Vn, En))∞n=0. If for every k ∈ [N ] the marginal distribution of the edges of

type k has scale-free distribution, moreover, the degree distribution of the graph

without taking into consideration the types of the edges also has the scale-free prop-

erty (in the single-type sense), then we say that (Gn(Vn, En))∞n=0 has the scale-free

property in the multi-type sense.

We are going to use the following theorem in order to prove that the generalized

Barabási–Albert random graph and the model of independent edges have the scale-

free property.

Theorem A (Theorem 1 in [8]). Consider the following recurrence equation:

xn =
n−1∑
j=1

wn,jxn−j + rn, wn,j = aj +
bj
n

+ cn,j, (n = 1, 2, 3, . . . ),

where wn,j ≥ 0, and an, bn, cn,j, rn satisfy the following conditions.

(r1): an ≥ 0 for n ≥ 1, and the greatest common divisor of the set

{n : an > 0} is 1;

(r2): rn ≥ 0, and there exists such an n that rn > 0;

(r3): there exists z > 0 such that

1 <
∞∑
n=1

anz
n <∞,

∞∑
n=1

|bn|zn <∞,

∞∑
n=1

∞∑
j=1

|cn,j|zj <∞,
∞∑
n=1

rnz
n <∞.
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Suppose that the sequence (xn)∞n=1 satisfies the recurrence equation, conditions (r1)-

(r3) hold, and (xn)∞n=1 has infinitely many positive terms. Then xnn
−γqn → C

as n → ∞, where C is a positive constant, q is the positive solution of equation∑∞
n=1 anq

n = 1, and

γ =

∑∞
n=1 bnq

n∑∞
n=1 nanq

n
.

2.3.1. Scale-free property of the generalized Barabási–Albert random

graph. In addition to the assumptions in Section 2.2.1, we require the following

assumption:

Assumption (BA+): we assume that (Mn)∞n=1 is a sequence of identically dis-

tributed random variables and there exists z > 1 such that we have

∞∑
l=1

E(M l
1)

l · l!
zl <∞.

The above assumption is trivially fulfilled if we have supl E(M l
1) <∞.

First, let us fix k ∈ [N ]. Recall that in every step the endpoints of the new edges

are chosen independently of each other and the degrees of the existing vertices are

not updated until the end of the step. By using this, we conclude that for every

l ≥ 0 the change in the value of X
(k)
n (l) only depends on the edges of type k, thus

we have

E
[
X(k)
n (l)|Fn−1

]
= X

(k)
n−1(l)E

[(
1− l

2|En−1|

)Mn

∣∣∣∣∣Fn−1

]
(6)

+
l−1∑
i=1

X
(k)
n−1(l − i) · E

[(
Mn

i

)(
l − i

2|En−1|

)i(
1− l − i

2|En−1|

)Mn−i
∣∣∣∣∣Fn−1

]

+ E

[(
Mn

k

)(
ζ

(k)
n−1

)l (
1− ζ(k)

n−1

)Mn−l
∣∣∣∣∣Fn−1

]
,

where ζ
(k)
n−1 is the proportion of edges of type k in Gn−1. By using Lemma 1 and the

same arguments as in the proof of Theorem 2, we can show that x
(k)
l exists for all

l and we can find the recurrence equations for the asymptotic degree distribution.
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The only part which is different compared to the previous sections is finding the

almost sure limit of the last term in equation (6) as the number of steps goes to

infinity. Since Mn is independent of Fn−1 and ζ
(k)
n−1 is measurable with respect to

Fn−1, we have

E
[(
Mn

l

)(
ζ

(k)
n−1

)l (
1− ζ(k)

n−1

)Mn−l ∣∣∣Fn−1

]
= E

[(
Mn

l

)
tl(1− t)Mn−l

] ∣∣∣∣∣
t=ζ

(k)
n−1

.(7)

Recall that (Mn)∞n=1 is a sequence of identically distributed random variables, thus

we define f(t) = E
[(
M1

l

)
tl(1− t)M1−l

]
, where t ∈ [0, 1].

In order to show that f(t) is a continuous function on [0, 1], we will use the Weier-

strass M-test.

Theorem 4 (Weierstrass M-test). Suppose that (ϕn)∞n=1 is a sequence of real-valued

functions defined on a set denoted by T , furthermore there is a sequence of non-

negative numbers denoted by (αn)∞n=1 satisfying the following conditions:

• for every n ≥ 1 and t ∈ T we have |ϕn(t)| ≤ αn and

•
∑∞

n=1 Mn converges.

Then the series defined as
∑∞

n=1 ϕn(t) converges absolutely and uniformly on T .

In many cases, the Weierstrass M-test is used in combination with the well-known

uniform limit theorem. If we also assume that T is a topological space and the

functions ϕn are continuous on T , then
∑∞

n=1 ϕn(t) is an absolutely continuous

function on T .

For all t ∈ [0, 1], we have

f(t) = E
[(
M1

l

)
tl(1− t)M1−l

]
=
∞∑
i=l

(
i

l

)
tl(1− t)i−lP(M1 = i)

≤
∞∑
i=l

(
i

l

)
P(M1 = i) = E

[(
M1

l

)]
≤ E

(
M l

1

)
<∞,
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by the assumption (BA2), thus f is continuous. Since ζ
(k)
n → ζ(k) almost surely as

n→∞ and f is continuous, equation (7) implies that

lim
n→∞

E
[(
Mn

l

)(
ζ

(k)
n−1

)l (
1− ζ(k)

n−1

)Mn−l ∣∣∣Fn−1

]
= E

[(
M1

l

)(
ζ(k)
)l (

1− ζ(k)
)M1−l

]
a.s.

By using Lemma 1, for every l ≥ 0 we have

x
(k)
l =

l − 1

l + 2
x

(k)
l−1 +

2

l + 2
E
[(
M1

l

)(
ζ(k)
)l (

1− ζ(k)
)M1−l

]
.(8)

We are going to apply Theorem A. Notice that the last equation can be written as

x
(k)
l =

[
1− 3

l
+

(
3

l
− 3

l + 2

)]
x

(k)
l−1 +

2

l + 2
E
[(
M1

l

)(
ζ(k)
)l (

1− ζ(k)
)M1−l

]
.

If we choose the following parameters as described below:

• a1 = 1 and aj = 0 (j ≥ 2),

• b1 = −3 and bj = 0 (j ≥ 2),

• cl,1 = 3
l
− 3

l+2
and cl,j = 0 (j ≥ 2),

• r(k)
l = 2

l+2
E
[(

M1

l

) (
ζ(k)
)l (

1− ζ(k)
)M1−l

]
,

then the assumptions (r1) and (r3) of Theorem A are fulfilled by also using As-

sumption (BA+). We know that there exists l > 0 such that P(M1 = l) > 0. By

using Lemma 2, we conclude that ζ(k)|M1 = l is positive with positive probability

thus r
(k)
l > 0 and the assumption (r2) is satisfied.

Remark. If in addition to the assumptions in Section 2.2.1 we also assume that

Mi ≡M for all i ≥ 1 where M is a positive integer, then in this case the proportion

of edges of type k has an absolutely continuous almost sure limit (see e.g. Theorem

3 in [21]), thus none of the types die out asymptotically with probability one.

By using Theorem A, we conclude that for every k ∈ [N ] we have

x
(k)
l l3 → Ck

as l→∞ for some positive Ck, thus the characteristic exponent equals to 3.
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Finally, for all d ≥ 0 we define Zn(d) =

∣∣∣∣ {v ∈ Vn :
∑N

k=1 deg(k)
n (v) = d

} ∣∣∣∣, i.e. the

number of vertices in Gn with d edges connected to them. This way we get back

to the single-type graph models. The asymptotic degree distribution is denoted by

(zd)
∞
d=0, where zd is defined as the almost sure limit of the sequence

(
Zn(d)
|Vn|

)∞
n=0

as

n→∞. For every d ≥ 0 we have

E [Zn(d)|Fn−1] = Zn−1(d)E

[(
1− d

2|En−1|

)Mn

∣∣∣∣∣Fn−1

]

+
d−1∑
i=1

Zn−1(k − i)E

[(
Mn

i

)(
d− i

2|En−1|

)i(
1− d− i

2|En−1|

)Mn−i
∣∣∣∣∣Fn−1

]
+ P (Mn = d|Fn−1) .

By using the same argument as in the previous section, we have

zdd
3 → C

as d → ∞ for some positive C, thus the characteristic exponent equals to 3. This

provides a generalization on some of the results of preferential attachment models

(see e.g. [37]). As the calculation above shows, this model fits into the general

framework of [30] or [44] for single-type preferential attachment random graphs.

2.3.2. Scale-free property of the model of independent edges. In the

model of independent edges we can use the same arguments as in the previous

section. In addition to the assumptions in Section 2.2.2, we have the following

additional assumption:

Assumption (IE+): we also assume that (λn)∞n=1 is a sequence of identically dis-

tributed random variables and there exists z > 1 such that we have

∞∑
l=1

E(λl1)

l · l!
zl <∞.
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In the model of independent edges for every type k we have

r
(k)
l =

2

l + 2
E


(
λ1ζ̂

(k)
)l

l!
e−λ1ζ̂

(k)

 ,
where ζ̂(k) is the asymptotic proportion of edges of type k. Similarly to the previous

subsection, by using Lemma 4, we know that
(
ζ̂(k),Fn

)∞
n=1

is a martingale and for

every k ∈ [N ] we have
∣∣E(k)

0

∣∣ > 0, thus ζ̂(k) is positive with positive probability and

the last assumption of Theorem A is fulfilled.

In this special case we can prove the same results as in the previous subsection. For

every k ∈ [N ] we have

x̂
(k)
l → Ĉk

as l→∞ for some positive Ĉk, and the characteristic exponent equals to 3. Again,

for every d ≥ 0 we define Ẑn(d) =
∣∣∣{v ∈ Vn :

∑N
k=1 deg(k)

n (v) = d
}∣∣∣. The asymptotic

degree distribution is (ẑd)
∞
d=0, where ẑd is defined as the almost sure limit of the

sequence
(
Ẑn(d)
|Vn|

)∞
n=0

as n → ∞. By using the same argument as in the previous

subsection, we have

ẑdd
3 → Ĉ

as d→∞ for some positive Ĉ, thus the characteristic exponent equals to 3.

2.4. Generalized Barabási–Albert random graph with perturbation

In this section we compare the asymptotic degree distributions of the multi-type

Barabási–Albert graph and a perturbed version of this model. First, let us describe

the dynamics and list the assumptions of this model.

2.4.1. Assumptions. In order to introduce perturbation, we have to define the

matrices of error probabilities denoted by F n. For every n ≥ 1 let

F n = (ε
(n)
k,l : k, l ∈ [N ]) ∈ [0, 1]N×N
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be a matrix such that for every fixed k ∈ [N ] we have
∑N

l=1 ε
(n)
k,l = 1. That is, ε

(n)
k,l is

the probability that a type k edge becomes type l in the nth step. We assume that

there exists a matrix denoted by

F = (εk,l : k, l ∈ [N ]) ∈ [0, 1]N×N

such that for every fixed k ∈ [N ] we have
∑N

l=1 εk,l = 1 and for every k, l ∈ [N ] we

have ε
(n)
k,l → εk,l as n → ∞. That is, for every k, l, the probability that a type k

edge becomes type l, converges to εk,l.

The dynamics of the perturbed Barabási–Albert random graph is the following. Let

us fix a positive integer denoted by M . In the nth step

(1) a new vertex vn is born.

(2) The vertex vn attaches to some of the already existing vertices with M (not

necessarily different) edges with probabilities proportional to the actual

degrees of the existing vertices. The endpoints of the M new edges are

chosen independently. We do not update the degrees of the vertices until

the end of the nth step.

(3) Every new edge gets a type randomly. The types of the new edges are

chosen independently, and the probability of each type is its proportion

among the types of the edges of the already existing endpoint of the new

edge (not counting the edges added in the actual step).

(4) The types of the new edges change independently of each other with proba-

bilities given by F n, i.e. if there is a new edge of type k, then its type after

perturbation is l with probability ε
(n)
k,l .

2.4.2. Asymptotic degree distribution in the perturbed Barabási–Albert

model. First, recall the definition of irreducible matrices.

Definition 8. A matrix with non-negative entries denoted by F ∈ RN×N
+ is called

irreducible if for every i, j there exists m such that (Fm)i,j > 0.
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We are now ready to state our main theorem on the asymptotic degree distribution

of the perturbed Barabási–Albert random graph.

Theorem 5. In the perturbed Barabási–Albert random graph, if we assume that F

is irreducible, then for every d = (d1, . . . , dN)T ∈ NN

lim
n→∞

Xn(d)

|Vn|
= x(d) a.s.

holds for a deterministic x(d) ∈ [0, 1]. Furthermore, for every d ∈ NN we have the

following recurrence equation:

if s(d) = M , then x(d) =
2 ·M !

M + 2

 N∏
l=1

1

dl!

(
N∑
k=1

ψ(k) · εk,l

)dl


if s(d) > M , then x(d) =
N∑
l=1

(d− el)TF •,l
s(d) + 2

x(d− el),

where

• s(d) = dT1 =
∑N

l=1 dl,

• ψ(k) is the almost sure limit of the proportion of edges of type k, which is a

deterministic constant and

• F •,l denotes the lth column of the matrix F .

If we also assume that F is symmetric, then for every d = (d1, . . . , dN)T ∈ NN we

have the following recurrence equation:

if s(d) = M , then x(d) =
2 ·M !

M + 2
· 1∏N

l=1 dl!

(
1

N

)M
if s(d) > M , then x(d) =

N∑
l=1

(d− el)TF •,l
s(d) + 2

x(d− el).

Remark. Notice that x(d) = 0 if s(d) < M , because every new vertex that is

added to the initial configuration is attached to the existing vertices with exactly M

new edges and all the vertices only receive new edges throughout the evolution of

the graph, i.e. the proportion of vertices with less than M edges tend to disappear.
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For comparison, let us assume that there is no perturbation, i.e. F n is the identity

matrix for every n. It also means that the condition on the irreducibility of F

fails in Theorem 5. However, Theorem 1 in Section 2.2 describes the asymptotic

degree distribution in the non-perturbed version of the model. Recall that, in the

multi-type Barabási–Albert random graph for every d ∈ NN , we have

lim
n→∞

Xn(d)

|Vn|
= x(d) a.s., where now x(d) is a non-deterministic random variable.

The random variables x(d) satisfy the following recurrence equation for every pos-

sible d ∈ NN :

x(d) =
N∑
l=1

dl − 1

s(d) + 2
x(d− el) +

2

s(d) + 2
P(M = s(d))

s(d)!∏N
l=1 dl!

N∏
l=1

(
ψ(l)
)dl

,

where ψ(l) is the almost sure limit of the proportion of the edges of type l. In this case

the asymptotic degree distribution is random, which means that it also depends on

the asymptotic proportion of edges of different types. If M = 1, that is, the graph is

a tree, then (ψ(l), l ∈ [N ]) has Dirichlet distribution with parameters (E
(l)
0 , l ∈ [N ]).

However, in the perturbed Barabási–Albert random graph the asymptotic degree

distribution is deterministic.

A general urn model. In order to prove Theorem 5, we need to understand the

asymptotic behaviour of the composition of edges of different types. We introduce a

general urn model to describe the proportion of the edges in the multi-type perturbed

Barabási–Albert random graph. This model is a generalization of a special case

of the urn model introduced by Laruelle and Pagès in [42]. We remark that the

generalization of the results of [33] could also be used for our purposes.

We assume that there areN colours represented by the elements of the set {1, 2, . . . , N}.

The composition vector of the urn in the nth step is denoted by Cn ∈ NN , i.e. Cn,i

is the number of balls of colour i. The total number of balls in the urn in the nth

step is denoted by s(Cn) =
∑N

i=1 Cn,i. We assume that in every step we draw M

balls, with replacement, independently of each other and at the end of the step we

add some additional balls to the urn. In the nth step for trial i (where i ∈ [M ]),
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let χ
(i)
n be the N dimensional indicator vector of the colour drawn, and let R(i)

n be

the N ×N dimensional replacement matrix with possibly random but non-negative

entries. This means that
(
R(i)
n

)
k,l

is the number of balls of colour l added to the

urn if a ball of colour k was chosen in the nth step for trial i.

For every n, we have

Cn+1 = Cn +
M∑
i=1

R
(i)
n+1χ

(i)
n+1.(9)

For every n, we denote by Gn the σ-algebra of the draws and replacements in the

first n steps, that is, the σ-algebra generated by

C0,
(
χ

(i)
j , i = 1, 2, . . . ,M

)n
j=1

and
(
R

(i)
j , i = 1, 2, . . . ,M

)n
j=1

.

We have the following assumptions on the urn model:

(U1): the initial configuration C0 is non-negative and at least one of the

coordinates is positive;

(U2): for every n, i and j we have P
(
χ

(i)
n = ej

∣∣∣Gn−1

)
=

Cn−1,j

s(Cn−1)
, where ej is

the jth unit vector in RN ; that is, the probability of choosing a colour is its

proportion in the urn;

(U3): for every n, the random variables χ
(1)
n ,χ

(2)
n , . . . ,χ

(M)
n are identically

distributed given Gn−1, and similarly the random matrices denoted by

R(1)
n ,R(2)

n , . . . ,R(M)
n are identically distributed given Gn−1, furthermore we

assume that

χ(1)
n ,χ(2)

n , . . . ,χ(M)
n ,R(1)

n ,R(2)
n , . . . ,R(M)

n

are conditionally independent given Gn−1. This implies that, even if the

replacement matrix is random, it is independent of the actual draw.

For every n, we define the generating matrices as the conditional expectation of the

replacement matrix, i.e. Hn = E
(
R(1)
n

∣∣∣Gn−1

)
. We assume that
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(U4): for every n and i the replacement matrix R(i)
n has non-negative values

almost surely;

(U5): for every n and i every column of the replacement matrix has the same

weight almost surely, i.e. for every n, i and j we have s
(

(R(i)
n )•,j

)
= γ1,

that is, the number of balls added to the urn is constant;

(U6): every column of the generating matrices has the same weight almost

surely, i.e. for every n and j we have s ((Hn)•,j) = γ2. This constant is also

known as the balance of the urn.

Finally, we assume that

(U7): there exists an irreducible N ×N matrix denoted by H such that

Hn
a.s.−−−→
n→∞

H .

We denote by v∗H the normalized eigenvector of H corresponding to the largest

eigenvalue of H such that ‖v∗H‖2 = 1.

Remark. If M = 1, then we get back the urn model in [42].

The next theorem states that the asymptotic composition of colours can be described

with the normalized eigenvector corresponding to the largest eigenvalue.

Theorem 6. For all integers M > 0, assumptions (U1)-(U7) imply that

Cn

s(Cn)

a.s.−−−→
n→∞

v∗H .

To prove this theorem, we will use the same method as Laruelle and Pagès in [42],

also known as the ordinary differential equation (ODE) method, which is a powerful

tool of stochastic approximation.

Let us have a filtered probability space denoted by (Ω, (Gn)n≥0,P) and consider the

following recurrence equation:

ϑn+1 = ϑn − γn+1h(ϑn) + γn+1 (∆Mn+1 + rn+1)
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for n ≥ n0, where h : RN → RN is a locally Lipschitz continuous function, ϑn0 is an

RN -valued Gn0 measurable random variable, (γn)n≥n0+1 is a (deterministic) sequence

of positive numbers, (∆Mn)n≥n0+1 is a martingale difference in (Gn)n≥n0 and finally

(rn)n≥n0+1 is a sequence of (Gn)n≥n0+1-adapted random variables.

Theorem B (Almost sure convergence with ODE method, Theorem A.1 in [42]).

Assume that we have

rn
a.s.−−−→
n→∞

0, sup
n≥n0

E
(
‖∆Mn+1‖2

2

∣∣∣Gn) <∞ a.s.

and the sequence (γn)n≥n0 satisfies the following assumptions

∞∑
n=n0

γn =∞ and
∞∑

n=n0

γ2
n <∞.

We denote by Θ∞ the almost sure limiting values of the sequence (ϑn)n≥n0 as n→∞.

Then Θ∞ is almost surely a compact connected set.

Let us have a look at the following ordinary differential equation:

ϑ̇(t) = −h(ϑ(t)), where t ≥ t0.(10)

The flow of the above differential equation on Θ∞ is ϕ(t, t0,ϑ0) = ϑ(t), if ϑ(t) is

the solution of the this differential equation with initial value ϑ(t0) = ϑ0.

We assume that for every ϑ0 ∈ Θ∞ the flow ϕ(t, t0,ϑ0) is stable, i.e. for every ε > 0

and t1 > t0 there exists δ > 0 such that

if |τ − ϕ(t1, t0,ϑ0)| < δ, then |ϕ(t, t1, τ )− ϕ(t, t0,ϑ0)| < ε for every t ≥ t1.

If ϑ∗ ∈ Θ∞ is a uniformly stable equilibrium on Θ∞ of the ordinary differential

equation defined in (10), i.e.

sup
ϑ0∈Θ∞

|ϕ(t, t0,ϑ0)− ϑ∗| −−−→
t→∞

0,
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then we have

ϑn
a.s.−−−→
n→∞

ϑ∗.

Proof of Theorem 6. For every n ≥ 1 we have

Cn+1 = Cn +
M∑
i=1

R
(i)
n+1χ

(i)
n+1 = Cn + E

(
M∑
i=1

R
(i)
n+1χ

(i)
n+1

∣∣∣∣∣Gn
)

+ ∆Mn+1,(11)

where

∆Mn+1 =
M∑
i=1

R
(i)
n+1χ

(i)
n+1 − E

(
M∑
i=1

R
(i)
n+1χ

(i)
n+1

∣∣∣∣∣Gn
)
.

Recall that the generating matrices are defined as H(i)
n = E

(
R(i)
n

∣∣∣Gn−1

)
. By using

this and assumption (U3) on the conditional independence of R
(i)
n+1 and χ

(i)
n+1, we

have

E

(
M∑
i=1

R
(i)
n+1χ

(i)
n+1

∣∣∣∣∣Gn
)

=
M∑
i=1

E
(
R

(i)
n+1χ

(i)
n+1

∣∣∣Gn)

=
M∑
i=1

N∑
j=1

E
(
R

(i)
n+1Ind(χ

(i)
n+1 = ej)ej

∣∣∣Gn)

=
M∑
i=1

[
N∑
j=1

E
(
R

(i)
n+1

∣∣∣Gn)P(χ(i)
n+1 = ej

∣∣∣Gn) ej]

=
M∑
i=1

[
H

(i)
n+1

N∑
j=1

Cn,j
s(Cn)

ej

]
=

(
M∑
i=1

H
(i)
n+1

)
Cn

s(Cn)
.

By normalizing equation (11), we have

Cn+1

s(Cn+1)
=

Cn

s(Cn)
+

1

s(Cn+1)

[(
M∑
i=1

H
(i)
n+1

)
−MIN

]
Cn

s(Cn)
+

∆Mn+1

s(Cn+1)
,(12)

where IN is the N -dimensional identity matrix. To verify the above reformulation

we can check that

Cn

s(Cn)
− 1

s(Cn+1)
·MIN

Cn

s(Cn)
=

Cn

s(Cn+1)
,
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by using the fact that s(Cn+1) = s(Cn) +M .

Let us define C̃n = Cn/s(Cn). Equation (12) can be rewritten as the canonical

stochastic approximation process in the following way:

C̃n+1 = C̃n +
1

s(Cn+1)

[(
M∑
i=1

H
(i)
n+1

)
−MIN

]
C̃n +

∆Mn+1

s(Cn+1)

= C̃n −
1

s(Cn+1)
M (IN −H) C̃n +

1

s(Cn+1)
(∆Mn+1 + rn+1)

with step size γn = 1/s(Cn) and the error term is defined as

rn+1 =

[(
M∑
i=1

H
(i)
n+1

)
−MH

]
C̃n.

To apply the ODE method we need to check the assumptions of Theorem B.

Since C̃n is bounded a.s., by using assumption (U7) we have rn
a.s.−−−→
n→∞

0. Notice

that, we have ∥∥∥∥∥
M∑
i=1

R
(i)
n+1χ

(i)
n+1

∥∥∥∥∥
2

2

≤M2,

since the number of balls added in a step equals to M , which is fixed. Consequently

we have

sup
n≥1

E

∥∥∥∥∥
M∑
i=1

R
(i)
n+1χ

(i)
n+1

∥∥∥∥∥
2

2

∣∣∣∣∣Gn
 <∞,

thus we obtain that supn≥1 E
(
‖∆Mn+1‖2

2

∣∣∣Gn) <∞ almost surely.

It is obvious that the (almost sure) limiting values of C̃n as n → ∞ are in the

N -dimensional simplex denoted by S =
{
u ∈ RN

+ |s(u) = 1
}

. Let us have a look at

the following ordinary differential equation:

ẏ = −M(IN −H)y,

where y : RN → RN is a differentiable function. By using assumption (U7) we

obtain that v∗H is the unique zero of the following function: y 7→ −M(IN −H)y
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on y ∈ S. Let us take the restriction of the above differential equation to the

set V0 =
{
u ∈ RN

+ |s(u) = 0
}

. By using assumption (U7) we conclude that the left

eigenvalues of M(IN−H) have positive real part. As a consequence we get that v∗H

is a uniformly stable equilibrium of the equation on S. By using the ODE method

we conclude that

Cn

s(Cn)

a.s.−−−→
n→∞

v∗H .

�

Proof of the main theorem. First, we need to prove the following lemma on the

asymptotic proportion of edges of different types. This is where we use Theorem 6

for the urn models.

Lemma 6. In the perturbed Barabási–Albert random graph, if we assume that F ∈

(0, 1)N×N , then for every l ∈ [N ] we have ψ
(l)
n = |E(l)

n |
|En| → ψ(l) almost surely as

n → ∞, where ψ(l) ∈ (0, 1) is a deterministic constant. If we also assume that

F = (εk,l)
N
k,l=1 is symmetric, then for every l ∈ [N ] we have ψ(l) = 1

N
.

Proof. In the perturbed Barabási–Albert model, we can use the following urn

model to understand the asymptotic composition of the number edges of type l for

every l ∈ [N ]. Let us have C0 = (|E(l)
0 |, l ∈ [N ]) and for every n ≥ 1 and i ∈ [M ]

we define R(i)
n = (τ

(i)
n;k,l)

N
k,l=1, where τ

(i)
n;k,l is a Bernoulli distributed random variable

with expectation equal to ε
(n)
l,k , furthermore we assume that for every l ∈ [N ] we

have
∑N

k=1 τ
(i)
n;k,l = 1 and the columns of the matrix R(i)

n are independent of each

other. Clearly, we have

Hn = E
(
R(1)
n

∣∣Gn−1

)
= F T

n .

To apply Theorem 6 we have to check the assumptions of the general urn model and

find v∗H to complete the proof of Lemma 6.

Assumption (U1) holds due to the fact that there is at least one edge of each type

in the initial configuration of the perturbed Barabási–Albert random graph. By the
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dynamics of the model assumptions (U2)-(U3) hold (recall that we do not update

the degrees of the vertices until the end of the steps). Assumptions (U4)-(U6) hold

because of the choice of R(i)
n . Notice that in this case γ1 = γ2 = 1. For assumption

(U7) we need to show that there exists an irreducible N × N matrix denoted by

H such that Hn
a.s.−−−→
n→∞

H . In the perturbed Barabási–Albert random graph we

assumed that HT
n = F n → F in every entry. Since F is irreducible, we can choose

H = F T . Hence all assumptions of Theorem 6 hold.

The normalized (right) eigenvector of H corresponding to the eigenvalue with the

largest real part is v∗H =
(
ψ(1), . . . , ψ(N)

)
. Notice that this is also the normalized

left eigenvector of F corresponding to the same eigenvalue. By using Theorem 6 we

get the first part of the lemma.

If we also assume that F is symmetric, then F is a double-stochastic matrix. It

follows that for every l ∈ [N ] we have ψ(l) = 1
N

. �

Now, we can prove our main result on the asymptotic degree distribution of the

perturbed Barabási–Albert random graph.

To prove the existence of the asymptotic degree distribution, we can use Theorem

1 in Section 2.2.

In the proof of the main theorem, we will use Lemma 3. Recall the statement of

this lemma which claims that for every n ≥ 1 and x ∈ [0, 1], we have

|(1− x)n − (1− nx)| ≤
(
n

2

)
x2.

Proof of Theorem 5. We need to check assumptions (GM1)-(GM5) of the general

model. We will use the following set of indices: for any d ∈ NN (where s(d) ≥ 1),

we define

α(d) =
{
i = (i1, . . . , iN)T ∈ NN : il ≤ dl ∀l ∈ [N ] and 1 ≤ s(i) ≤M

}
.
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For every i ∈ NN we define

β(i) =
{
I = (ik,l)

N
k,l=1 ∈ NN×N : s (I•,l) = il ∀l ∈ [N ]

}
.

By the dynamics of the perturbed Barabási–Albert random graph, assumption

(GM1) trivially holds.

To see that assumption (GM2) is satisfied, notice that for every n we have

E
[
(Xn(d)−Xn−1(d))2

∣∣Fn−1

]
≤M2 <∞,

because there are M new edges.

For assumption (GM3), we need to show that un(d) → u(d) > 0 almost surely as

n→∞, where

1− un(d)

n
= p

(n)
d (0) =

(
1− s(d)

2|En−1|

)M
.

To find the almost sure limit of un(d) as n→∞, we can use the following formula:(
1− s(d)

2|En−1|

)M
= 1− Ms(d)

2|En−1|
+ ηn(d),

where

ηn(d) =

(
1− s(d)

2|En−1|

)M
−
[
1− Ms(d)

2|En−1|

]
.

By using Lemma 3 and the fact that |En| ∼Mn, we obtain that

|ηn(d)| ≤
(
M

2

)(
s(d)

2|En−1|

)2

≤M2

(
s(d)

2|En−1|

)2

= o

(
1

n

)
,

which yields

un(d) = n[1− p(n)
d (0)] = n

[
1−

(
1− s(d)

2|En−1|

)M]

= n

[
1−

(
1− Ms(d)

2|En−1|
+ ηn(d)

)]
= n

[
Ms(d)

2|En−1|
− ηn(d)

]
= n

Ms(d)

2|En−1|
− nηn(d)→ u(d) =

s(d)

2
> 0
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almost surely as n→∞.

For assumption (GM4), we will show that for every i ∈ NN , such that s(i) ≥ 1

lim
n→∞

np
(n)
d−i(i) =

 1
2
(d− el)TF •,l if i = el,

0 otherwise

holds almost surely. Notice that if dk − ik < 0 for any k ∈ [N ] or d − i = 0, then

p
(n)
d−i(i) = 0 for every n.

Let us fix I = (ik,l)
N
k,l=1 ∈ β(i) where i ∈ α(d). In the perturbed Barabási–Albert

random graph for a fixed vertex and for every k, l ∈ [N ] we denote by ik,l the number

of edges connected to the given vertex which were originally of type k and changed

their types to l. In this case the value of p
(n)
d−i(i) is given by

p
(n)
d−i(i) =

∑
I∈β(i)

p̂
(n)
d−i(I),

where

p̂
(n)
d−i(I) =

M !(∏N
k,l=1 ik,l!

)
(M − s(i))!

 N∏
k,l=1

[(
dk − ik
2|En−1|

)
ε

(n)
k,l

]ik,l[1− s(d− i)
2|En−1|

]M−s(i)
.

First, let us fix l ∈ [N ]. Similarly to the previous calculations, we can use the

following formula

p
(n)
d−el(el) = M

[
N∑
k=1

dk − (el)k
2|En−1|

ε
(n)
k,l

](
1− s(d)− 1

2|En−1|

)M−1

= M

[
N∑
k=1

dk − (el)k
2|En−1|

ε
(n)
k,l

](
1− (M − 1)(s(d)− 1)

2|En−1|
+ η′n(d)

)
where

η′n(d) =

(
1− s(d)− 1

2|En−1|

)M−1

−
[
1− (M − 1)(s(d)− 1)

2|En−1|

]

and (el)k denotes the kth element of el, i.e. (el)k =

 1 if k = l

0 if k 6= l
.
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Again, by using Lemma 3 and the fact that |En| ∼Mn, we get that

|η′n(d)| ≤
(
M − 1

2

)(
s(d)− 1

2|En−1|

)2

≤ (M − 1)2

(
s(d)− 1

2|En−1|

)2

= o

(
1

n

)
.

Recall that ε
(n)
k,l → εk,l ∈ (0, 1) as n→∞ for every k, l ∈ [N ]. We conclude that

np
(n)
d−el(el) = nM

[
N∑
k=1

dk − (el)k
2|En−1|

ε
(n)
k,l

](
1− (M − 1)(s(d)− 1)

2|En−1|
+ η′n(d)

)

→
N∑
k=1

dk − (el)k
2

εk,l =
(d− el)TF •,l

2

as n→∞.

Fix i ∈ α(d)\{el, l ∈ [N ]}. We need to prove that in this case limn→∞ np
(n)
d−i(i) = 0.

Recall that

p
(n)
d−i(i) =

∑
I∈β(i)

p̂
(n)
d (I).

Because of the choice of i, we have s(i) = s(I) ≥ 2. By using this and the fact that

|En| ∼Mn, we conclude that

p̂
(n)
d−i(I) =

M !(∏N
k,l=1 ik,l!

)
(M − s(i))!

 N∏
k,l=1

[(
dk − ik
2|En−1|

)
ε

(n)
k,l

]ik,l[1− s(d− i)
2|En−1|

]M−s(i)

≤ M !(∏N
k,l=1 ik,l!

)
(M − s(i))!

 N∏
k,l=1

[(
dk − ik
2|En−1|

)
ε

(n)
k,l

]ik,l = o

(
1

n

)
.

This shows that (GM4) holds with r(l)(d− el) = 1
2
(d− el)TF •,l.

Finally, for assumption (GM5), we have to find the almost sure limit of q(n)(d)

as n → ∞. Recall that, in the nth step, every new edge will be of type l with

probability ψ
(l)
n = |E(l)

n |
|En| .

In the perturbed Barabási–Albert random graph we have

q(d) = lim
n→∞

q(n)(d) = lim
n→∞

Ind(M = s(d))
∑

D∈β(d)

q̂(n)(D)

 ,
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where

q̂(n)(D) =
s(D)!∏N
k,l=1 dk,l!

[
N∏

k,l=1

(
ψ(k)
n · ε

(n)
k,l

)dk,l]
.

Notice that s(D) = s(d). By using Lemma 6, the multinomial theorem and the fact

that ε
(n)
k,l → εk,l almost surely as n→∞, we get that

q(d) = Ind(M = s(d))
∑

D∈β(d)

q̂(D)

= Ind(M = s(d))
∑

D∈β(d)

s(D)!∏N
k,l=1 dk,l!

[
N∏

k,l=1

(
ψ(k) · εk,l

)dk,l]

= Ind(M = s(d))M !

 N∏
l=1

1

dl!

(
N∑
k=1

ψ(k) · εk,l

)dl
 .

We conclude that

un(d)→ u(d) =
s(d)

2

q(n)(d)→ q(d) = Ind(M = s(d))M !

 N∏
l=1

1

dl!

(
N∑
k=1

ψ(k) · εk,l

)dl


as n→∞. For the quantity defined in equation (1), we have

lim
n→∞

np
(n)
d−i(i) =


(d−el)TF •,l

2
if i = el,

0 otherwise

almost surely, that is, r(l)(d− el) = 1
2
(d− el)TF •,l.

Applying Theorem 1, we get Theorem 5. �





CHAPTER 3

Epidemic spread on random graphs with multiple type

edges

In this chapter, we examine the spread of epidemics (or information) on random

graphs with multiple type edges. Due to the recent Covid-19 pandemic the spread of

infectious diseases has became an intensively studied research area. The introduction

of different types of the edges may result in more adequate models that can be used

in the analysis. Since the probability (or the intensity) of the spread of the virus

is different between individuals who live in the same household, work together or

only meet rarely, labelling the edges with different propagation probabilities requires

having various type of edges.

After summarizing the most important properties of the structures of the underly-

ing graph models, we have a look at the different versions of the spread of epidemic

processes on these graphs. The high-level overview of the approach is the following:

we assign a state to the vertices of the graph, e.g. susceptible, infectious and recov-

ered, then the spread of epidemic is modelled as a process on the phase space of the

vertices. The different dynamics of these processes result in individual versions of

these processes that can be used to model different phenomena. Then, we have a

look at the empirical results of stochastic simulations related to these models and

spread of epidemic processes with different parameters and examine the sensitivity

on these specific parameters we will discuss in details. Results can also be found in

[47].

65
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3.1. Models

In this section, we define the graphs that are used as the underlying structures in

the modelling of the spread of epidemics. These are the (multi-type) preferential

attachment graph (which is different from those that we have seen in the previous

sections), the model of independent edges (see Section 2.2.2) and a generalized

version of the duplication and deletion model (which is a modification of the model

defined in [7]). In terms of their definitions, these graph models can be either static

or dynamic. This means that the structure of the graph of a given size is either

defined by a specified rule, or as an element of a sequence of graphs where the set

of vertices or edges are evolving according to a given dynamics.

Let us recall some notations from the previous chapter that we will use for the

dynamic graph models. Let (Gn)∞n=0 be a sequence of finite random graphs. The

set of vertices and edges of Gn are denoted by Vn and En, respectively. The number

of different types of edges, denoted by N , will be fixed. For every k ∈ [N ] =

{1, 2, . . . , N} let E
(k)
n denote the set of edges of type k in Gn. We assume that the

different types form a partition of the edges, i.e. for every n we have En =
⋃N
k=1 E

(k)
n

and for every k, l we have E
(k)
n ∩ E(l)

n = ∅ whenever k 6= l. We assume that the

initial configuration, denoted by G0, is a finite deterministic graph, moreover for

every k ∈ [N ] we have
∣∣E(k)

0

∣∣ > 0. Finally, for every n let Fn denote the σ-algebra

generated by the first n labelled graphs. We may choose F0 to be the trivial σ-

algebra (since G0 is deterministic), thus F = (Fn)∞n=0 is a filtration.

For the static graph models, we simply omit the notation indicating the size of the

graph from the indices of the vertex and edge sets.

3.1.1. Preferential attachment graph. In this section, we are going to define

the multi-type preferential attachment graph model. The single-type version of this

model is defined in [19]. First, let us have a look at the definition of the single-

type version, then we define the multi-type preferential attachment graph model.

Let β > 0 be a fixed parameter and let V = {v1, v2, . . . , vn} be the set of vertices.
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In order to construct the set of edges we are going to create a sequence (v∗i )
2m
i=1

from the elements of V . We start with the empty sequence. If the current length

of the sequence equals to k, then the next element v∗k+1 is chosen to be equal to

v ∈ V with probability d(n)+β
k+nβ

, where d(v) is the multiplicity of v in the sequence

v∗1, . . . , v
∗
k. The edge set is defined as E =

{
{v∗2i−1, v

∗
2i}, i = 1, 2, . . . ,m

}
. The single-

type preferential attachment graph with n vertices, m edges and parameter β is

denoted by PAGβ(n,m).

Remark. We are going to choose m = n, that means we use the sparse preferential

attachment graph, since the simulation processes are much faster and more reliable.

Remark. Notice that the single-type preferential attachment graph is not the same,

however it is motivated by the (sparse) Barabási–Albert graph model in [13], spec-

ified in [18].

In order to obtain a multi-type preferential attachment graph denoted by

N -PAGβ(n,m1,m2, . . . ,mN),

we constructN independent single-type preferential attachment graphs on the vertex

set V . Let us denote these independent graphs by

PAG
(1)
β (n,m1), PAG

(2)
β (n,m2), . . . , PAG

(N)
β (n,mN).

Then, the different edges which belong to PAG
(k)
β (n,mk) form the set of edges of type

k, where k ∈ [N ]. Notice that the number of edges of N -PAGβ(n,m1,m2, . . . ,mk)

equals to N ·
∑N

k=1mk.

3.1.2. Model of independent edges. The model of independent edges is

another dynamic graph model. There are two different versions. The 2nd one was

defined in Section 2.2.2.

Version I. This graph model is a modification and a multi-type version of the

models defined in [24] and [38]. Let λ > 0 be a fixed parameter. In the nth step,

we have the following dynamics:
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(i): a new vertex vn is born, thus Vn = V0 ∪ {v1, . . . , vn};

(ii): every existing vertex v ∈ Vn−1, independently of each other, is connected

to vn with an edge of type k with probability equal to
deg

(k)
n−1(v)

2|En−1| . The choices

for the edges of different types are also independent of each other.

Version II. Another version of the model was defined in Section 2.2.2. Let us recall

the basic aspects of this model. We have a sequence (λn)∞n=1 which meets certain

conditions. In this chapter, we assume that λn = λ for every n, where λ > 0 is fixed.

In the nth step we have the following dynamics:

(i): a new vertex vn is born, thus Vn = V0 ∪ {v1, . . . , vn};

(ii): every existing vertex v ∈ Vn−1, independently of each other, is connected

to vn with ∆
(k)
n (v) edges of type k, where ∆

(k)
n (v) ∼ Poi

(
λ

deg
(k)
n−1(v)

2|En−1|

)
. The

number of edges of different types are also independent of each other.

3.1.3. Duplication model. Let us describe the dynamics of the duplication

model. For every vertex v ∈ V we denote by Nn(v) the set of neighbours of v in

Gn−1. Let us assume that there is an initial configuration with N different types of

edges.

In the nth step we have the following dynamics:

(i): a new vertex vn is born, thus Vn = V0 ∪ {v1, . . . , vn}.

(ii): We choose a vertex v from Vn−1 uniformly at random and we connect vn

to every vertex in Nn−1(v). The type of the new edges will be exactly the

same as the type of the edges connected to v. (Duplication.)

(iii): We choose a vertex w from Vn−1 uniformly at random and we delete all

the edges which are incident to w in Gn−1. Notice that the vertices v and

w are not necessarily different. (Deletion.)
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3.2. Epidemic spread

In this section we introduce the processes that may be suitable for modelling the

spread of infectious diseases. These processes can be categorized according to the

possible states of vertices of the underlying graph model.

For every epidemic spread process, we have an underlying graph to model the struc-

ture of the individuals of the population. Let us have a finite random graph on n

vertices, denoted by Gn, with multi-type edges. Recall that the set of vertices and

the set of edges of type k are denoted by V and E(k), where k ∈ [N ], respectively.

We will use the following notations:

Πk =

{
π = (π1, π2, . . . , πk) ∈ Pn(V ) :

n⋃
i=1

πi = V and πi ∩ πj = ∅ for every i 6= j

}

Σk =

{
σ = (σ1, σ2, . . . , σk) ∈

(
N+

0

)k
:

k∑
i=1

σi = n

}
.

3.2.1. SIR-process. In this spread of epidemic process there are three different

states for the vertices, these are susceptible, infectious and recovered. Susceptible

vertices represent individuals who are healthy, but can be infected. Infectious ver-

tices play the role of entities who are infected and infectious, i.e. they can spread the

infection to susceptible vertices. Finally, recovered vertices represent the individu-

als who are not infectious any longer, and immune, i.e. cannot be infected again.

The transitions between the different states can be represented by the following flow

diagram.

Susceptible Infectious Recovered

Let us fix J ∈ N+, i.e. the total number of steps. For every j ∈ [J ], in the jth step

the set of susceptible, infectious and recovered vertices are denoted by Sj, Ij and

Rj, respectively. We will also use the notations Sj = |Sj|, Ij = |Ij| and Rj = |Rj|.

Since the structure of the underlying graph does not change during the spread of the

epidemics, for every j ∈ [J ]∪{0}, we have Sj ∪Ij ∪Rj = V , thus Sj + Ij +Rj = n.
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Let us define the following (discrete-time) stochastic processes:

X : {0} ∪ [J ]→ Π3, X = (Xj)
J
j=0 = (Sj, Ij,Rj)

J
j=0

Y : {0} ∪ [J ]→ Σ3, Y = (Yj)
J
j=0 = (Sj, Ij, Rj)

J
j=0 .

Remark. Notice that we have Yj ∼ σ(Xj) for every j ∈ [J ], i.e. Yj is measurable

to Xj, which means that the value of Yj can be calculated from Xj.

Recall that the σ-algebra generated by the underlying random multi-type graph G

is denoted by Fn. Let us define Gj = σ
(
Fn, (Xi)

j
i=0

)
, i.e. the σ-algebra generated

by G and the first j steps of the spread of epidemic process X.

We assume that the initial sets of the vertices of different states S0, I0 and R0 are

given at the beginning. For every j ∈ [J ], in the jth step we have the following:

(i): every susceptible vertex v ∈ Sj−1 becomes infectious with probability

P
(
v ∈ Ij

∣∣Gj−1

)
= 1−

N∏
k=1

(1− pk)i
(k)
j−1(v),

where i
(k)
j−1(v) is the number of edges of type k which connect v to an

infectious vertex in step j−1. Notice that the types of edges do not change,

but the states of the vertices may be different over the steps.

(ii): Every infectious vertex v ∈ Ij−1 becomes recovered with probability

P
(
v ∈ Rj

∣∣Gj−1

)
= q.

An illustration of the dynamics of the SIR-process can be seen in the figures below.
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Top left: Vertex v may infect w1 and

w2 with different probabilities, because

they are connected to v with different

types of edges. Here, vertex w3 cannot

be infected, because it has already been

infected.

Top right: Let us assume that vertex

w2 has been infected by v.

Bottom: After a while infectious ver-

tices become recovered and they can no

longer become infectious again. Here,

vertices v an w3 became recovered.

In the SIR-process, the parameters are the propagation probabilities of the spread

of infection on the different types of edges (p1, p2, . . . , pN), the probability of recovery

(q) (which is the same for all vertices), the finite time horizon (T ) and the underlying

graph.

3.2.2. Dynamical SI1I2R-process. Many infectious diseases are known in

which the infected patient does not initially produce symptoms but the patient

is contagious. Epidemics caused by such diseases are particularly difficult to con-

trol. It may be useful to separate any infectious patient from other people as soon
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as possible, but in this case the fact of the infection is initially unknown. In this

section, we present a modification of the previously discussed model that can be

used to model the spread of infectious diseases that have a latency period.

This is a modified version of the SIR-process. There are four different states for the

vertices: susceptible, infectious without symptoms (I1), infectious with symptoms

(I2) and recovered.

The following flow diagram shows the transitions between the different states.

Susceptible Infectious without symptoms

Infectious with symptoms Recovered

In this model we assume that the edges of the underlying graph model are either

open or closed. Closed edges represent the separation of the corresponding points,

i.e. the disease cannot spread through these edges.

Let us fix J ∈ N+, i.e. the total number of steps. For every j ∈ [J ], in the jth

step the set of vertices of state susceptible, infectious without symptoms, infectious

with symptoms and recovered are denoted by Sj, I(1)
j , I(2)

j and Rj, respectively.

We will also use the notations Sj = |Sj|, I(1)
j = |I(1)

j |, I
(2)
j = |I(2)

j | and Rj =

|Rj|. As discussed in the previous section, for every j ∈ [J ] ∪ {0}, again we have

Sj ∪ I(1)
j ∪ I

(2)
j ∪Rj = V , thus Sj + I

(1)
j + I

(2)
j +Rj = n.

We define the following (discrete-time) stochastic processes:

X : {0} ∪ [J ]→ Π4, X = (Xj)
J
j=0 =

(
Sj, I(1)

j , I(2)
j ,Rj

)J
j=0

Y : {0} ∪ [J ]→ Σ4, Y = (Yj)
J
j=0 =

(
Sj, I

(1)
j , I

(2)
j Rj

)J
j=0

.

As in the previous section, we have Gj = σ
(
Fn, (Xi)

j
i=0

)
, i.e. the σ-algebra generated

by G and the first j steps of the process X.
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We assume that the initial sets of the vertices of different states S0, I(1)
0 , I(2)

0 and

R0 are given. For every j ∈ [J ], in the jth step we have the following:

(i): every susceptible vertex v ∈ Sj−1 becomes infectious without symptoms

with probability

P
(
v ∈ I(1)

j

∣∣∣Gj−1

)
= 1−

N∏
k=1

(1− pk)i
(k)
j−1(v),

where i
(k)
j−1(v) is the number of open edges of type k which connect v with an

I2-vertex in the step j−1. Notice that the types of edges remain unchanged,

but the states of the vertices may be different over the steps.

(ii): Every I1-vertex v ∈ I(1)
j−1 becomes an I2-vertex with probability

P
(
v ∈ I(2)

j

∣∣∣Gj−1

)
= r.

Then, every edge becomes closed which is incident to the vertex v.

(iii): Every I2-vertex v ∈ I(2)
j−1 becomes recovered with probability

P
(
v ∈ Rj

∣∣∣Gj−1

)
= q.

Then, every edge becomes open which is incident to v, except those which

is incident to an I2-vertices.

As in the previous section, an illustration of the dynamics of the SI1I2R-process can

be seen in the figures below.
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Top left: Vertex v may infect w1 and w2

with different probabilities, because they

are connected to v with different types of

edges. Here, vertex w3 has already been

infected, thus it is temporarily removed

from the rest of the graph like all other

I2-vertices.

Top right: Let us assume that vertex

w1 has been infected by v.

Bottom: After a while I1-vertices be-

come I2-vertices and they show symp-

toms of the disease. Then, they are sepa-

rated from the rest of the graph, like ver-

tex v in this graph. The I2-vertices be-

come recovered after a random period of

time. Then, they are reconnected to the

rest of the graph, except to their neigh-

bours which are I2-vertices. Here, vertex

w3 became recovered.
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In the SI1I2R-process, the parameters are the probabilities of the spread of infection

on the different types of edges (p1, p2, . . . , pN), the probability of appearance of

symptoms (r), the probability of recovery (q) (which are the same for all vertices),

the finite time horizon (T ) and the underlying graph.

3.3. Sensitivity analysis of the parameters

In this section, we examine the results of some stochastic simulations related to the

spread of epidemics. We generated random graphs with two types according to the

models in scope, then we simulated the spread of epidemics on these graphs.

First, we examine the SIR-process for each graph model. Recall that in the SIR-

process the symptoms of the infectious disease become visible immediately after

the infection. After recovery, the individuals become immune to the disease which

means that they can no longer become infected. In the following sections, we have

a look at the evolution of the proportion of vertices with different states over time,

and we compare the results of different parametrizations. Then, we also have a

look at the SI1I2R-process. Recall that in the SI1I2R-process it takes some random

number of steps until the symptoms of the infectious disease become visible after

the infection. Similarly to the SIR-process, the individuals become immune to the

disease after recovery so that they can no longer become infected.

3.3.1. Preferential attachment graph. In this section, we use the multi-type

preferential attachment model as the underlying graph of the process. For a given

parametrization, we generated 10 random graphs on 1000 vertices with two types of

edges. We had 2000 edges of the first type and 1000 edges of the second one. We

examined three different parametrizations of the SIR-process:

p1 p2 q T

1st parametrization 0.1 0.1 0.1 50

2nd parametrization 0.05 0.1 0.1 50

3rd parametrization 0.1 0.05 0.1 50



76 3. EPIDEMIC SPREAD ON RANDOM GRAPHS WITH MULTIPLE TYPE EDGES

For the SIR-processes, 10% of the vertices are infectious and all the other vertices

are susceptible at the beginning, and for the SI1I2R-processes, 10% of the vertices

are infectious without symptoms and the rest of the vertices are susceptible. The

trajectories of the average of the scenarios for the three parametrizations can be

seen on the following images. The blue, the red and the green trajectories represent

the 1st, the 2nd and the 3rd parametrization, respectively.

The blue trajectory represents the ”single-type case”, i.e. we have p1 = p2. We can

see the constant decrease of the proportion of susceptible vertices and the constant

increase of the recovered vertices. However, as for the infectious vertices, we observe

the rapid increase and then the slow decrease.

Since the number of the edges of the 1st is twice as mush as for the 2nd types,

decreasing the probability of propagation on the edges of the 1st type has a more

severe impact than the same decrease on the edges of the 2nd type.

We use the same parametrization for the SI1I2R-process with an additional pa-

rameter, which is r = 0.1 (the probability that symptoms of an infected individual

become detectable). As a result of the isolation of patients, who are infectious with

symptoms, the epidemic curve flattens. Even though there is a latency period, if

we isolate people when the symptoms appear, it already improves a lot. This holds

in general, regardless of the type of edges. We can see that the introduction of

quarantine makes the model less sensitive to changes in the parameters. However,

the slowing effect of the quarantine is much severe for the 2nd and 3rd than it is in

the single-type case.
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3.3.2. Model of independent edges - version I. In this section, we use

the first version of the model of independent edges as the underlying graph of the

process. Again, for a given parametrization, we generated 10 random graphs on

1000 vertices with two types of edges. The parametrization of the SIR-process is

the same as in the previous section.

The structure of both versions of the model of independent edges depend on the

finite initial configuration. In the simulations, this initial configuration is a graph

with two vertices which are connected with 2 edges of the 1st and 1 edge of the 2nd

type. Similarly to the preferential attachment model in the previous section, the

underlying graph contains more edges of the 1st type than the 2nd type, but the

results are less sensitive to changes in the propagation probabilities. We can also
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see that the spread of the infection is slower even in the single-type case compared

to the preferential attachment model. This is due to the fact that edges of the same

type are more likely grouped in the model of independent edges.

For the SI1I2R-process, we use the same parametrization as in the previous section.

In this case, the impact of having two different types for the edges is less severe.

The observable data is almost the same as it is in the single-type case.

3.3.3. Model of independent edges - version II. In this section, we use

the second version of the model of independent edges as the underlying graph of

the process. Again, for a given parametrization, we generated 10 random graphs

on 1000 vertices with two types of edges. We have chosen λ = 1, i.e. the fixed

parameter of the graph model.
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Although the construction of the underlying graph is different, the results are very

similar to the other version of the model of independent edges. In the first version

of the model, the (random) degrees of the vertices are binomially distributed, while

in the second version they follow Poisson distribution. In this case when the number

of vertices is sufficiently large, these distributions have almost the same behaviour.

3.3.4. Duplication model. In this section, we use the duplication model as

the underlying graph of the process. Again, for a given parametrization, we gener-

ated 10 random graphs on 1000 vertices with two types of edges. Similarly to the

model of independent edges, the structure of the duplication model depends on the

initial finite configuration. In our simulations, the initial configuration contains two

independent Erdős–Rényi graphs on 900 vertices, and the probability that a pair

of vertices is connected is set to 0.1. Because of the choice of parameters, both

graphs contain a single giant connected component with high probability. Then, we

apply 100 duplication and deletion steps. The edges of these graphs define the set

of edges of different types in the multi-type configuration. The resulting graph is

highly clustered, i.e. it mainly consists of independent cliques. This corresponds to

a model where we segregate well-isolated groups through restrictive measures, such
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as the individuals only meet with those who are living in the same household, or the

schools are partially open but the classes are isolated. If there are many independent

components and only a negligible part of the vertices are infectious, then the results

depend on the structure of the typical components and not on the global structure

of the graph.

Because of the clustering properties of the underlying graph model, the results are

not sensitive to the changes in probabilities of propagation. Initially, 10% of the

vertices is infectious (for the SIR-process) or infectious without symptoms (for

the SI1I2R-process). Within the dense connected components which contain some

infectious vertices at the beginning, the epidemic will spread, no matter how small

the infection probabilities are.

Because of the clustering properties of the underlying model, the effect of quarantine

is less significant. In the connected components, the epidemic will spread among

the individuals before we can detect the symptoms and remove the edges between

some of the vertices. It also means that if we create isolated bubbles with the help of

restrictive measures (e.g. school classes are well-separated), then no more quarantine

is necessary, and it is not a problem if there are edges with higher propagation

probabilities, the epidemic will spread too a much smaller extent.
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3.4. Further research possibilities for epidemic spread

We have seen that the introduction of different types of edges and the presence of

segregated groups can have a severe impact on the spread of the epidemic.

Due to the diversity of processes describing the spread of the epidemic, there are

many opportunities for further research. One possibility is to introduce a model in

which a group of vertices of the graph represent the medical employees. In some

applications, the infected individuals require some kind of medical treatment. In

this case, the medical employees (doctors, nurses, etc.) are assigned to the infected

individuals. We may assume that the medical employees can also be infected, and

then, they also require medical treatment. One can examine how much capacity is

required in the healthcare for the infected patients to receive appropriate treatment

under different parameters of the infection.

Another possibility is to study continuous-time models, i.e. models in which the

events describing the infections and recoveries occur on a continuous time scale. For

example, we can use exponentially distributed random times that determine when

these events occur. Continuous-time models are typically more complex than the
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discrete-time versions, but they often describe epidemics in reality in a more natural

way.



Summary

In this thesis, we investigated the asymptotic properties of a general family of ran-

dom graphs with multiple type edges.

In Chapter 2 we defined the generalized asymptotic degree distribution for graphs

with multiple type edges. Then we defined a general random graph model evolving

in discrete time steps by listing some assumptions related to the dynamics of the

evolution of the structure. We proved the existence of the generalized asymptotic

degree distribution in the general model and provided recurrence equations that are

satisfied by this distribution. Then we examined two random graphs in more details

that are special cases of the general model: a multi-type version of the well-known

Barabási–Albert graph and the model of independent edges. These examples show a

new phenomenon, which is the stochastic nature of the asymptotic degree distribu-

tion. More precisely the asymptotic degree distribution depends on the asymptotic

proportion of edges of different types, which is random due to the dynamics of these

two graph models. Then we generalized the scale-free property of random graphs

in the presence of different types of edges and showed that the multi-type gener-

alization of the Barabási–Albert graph and the model of independent edges have

this property. Afterwards, we defined a perturbed version of the Barabási–Albert

model with multiple type edges and compared our results to the previously examined

model. Due to the difference between the asymptotic behaviour of the proportion

of edges of different types in the two models we obtain a deterministic asymptotic

degree distribution in contrast to the non-perturbed model.

In Chapter 3 we investigated the spread of infectious disease on several random

graph models with multiple type edges. By using stochastic simulations we examined

the epidemic spread process in that case when the probabilities of the propagation

depend on the types of the edges of the underlying structure. Empirical results of

these simulations are presented by using various type of epidemic spread processes

with different parametrizations.
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Összefoglalás (in Hungarian)

Ebben az értekezésben többt́ıpusú élekkel rendelkező véletlen gráfok egy általános

családjának aszimptotikus tulajdonságait vizsgáltuk meg.

A 2. fejezetben definiáltuk a általánośıtott aszimptotikus fokszámeloszlást olyan

gráfokra, amelyek élei többféle t́ıpusba sorolhatók. Ezután definiáltunk egy diszkrét

lépésekben fejlődő általános gráfmodellt a fejlődési dinamikára vonatkozó néhány

feltétel felsorolásával. Bizonýıtottuk az általánośıtott aszimptotikus fokszámeloszlás

létezését és megadtuk rekurziós egyenletek egy rendszerét, amit kieléǵıt a kérdéses

eloszlás. Ezután részletesebben megvizsgáltunk két gráfmodellt, amelyek az általános

modell speciális esetei: egy többt́ıpusú változata a jól ismert Barabási–Albert-

modellnek és a független élek modellje. Ezek a példák rámutatnak egy új je-

lenségre, ami az aszimptotikus fokszámeloszlás sztochasztikus jellege. Pontosabban,

az aszimptotikus fokszámeloszlás függvénye a különböző t́ıpusú élek aszimptotikus

arányától, ami az emĺıtett gráfok fejlődési dinamikája miatt függ a véletlentől.

Ezt követően általánośıtottuk a skálafüggetlenség fogalmát olyan gráfokra, amelyek

többféle t́ıpusú éllel rendelkeznek, majd megmutattuk, hogy a többt́ıpusú Barabási–

Albert-gráf és a független élek modellje rendelkeznek ezzel a tulajdonsággal. Ezután

definiáltuk a többt́ıpusú Barabási–Albert-gráf egy perturbált változatát, és összeha-

sonĺıtottuk az erre vonatkozó eredményeket a korábban megvizsgált modellével. A

különböző t́ıpusú élek aszimptotikus arányának eltérő viselkedése miatt azt kaptuk,

hogy az aszimptotikus fokszámeloszlás már nem függ a véletlentől a nem-perturbált

változattal ellentétben.

A 3. fejezetben megvizsgáltuk fertőző betegségek terjedését különféle gráfmodelleken,

amelyek többt́ıpusú élekkel rendelkeznek. Sztochasztikus szimulációk seǵıtségével

megvizsgáltuk a járványterjedési folyamatot olyan esetben, amikor a fertőzési való-

sźınűségek függnek a kérdéses gráf éleinek t́ıpusaitól. Ezen szimulációk empirikus

eredményeit mutattuk be különféle járványterjedési folyamatok és paraméterezések

esetén.
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[6] Á. Backhausz and T. F. Móri, A random graph model based on 3-interactions. Annales

Univ. Sci. Budapest., Sect. Comp., 36, pp. 41-52, (2012).
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