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I. EXTENDED ABSTRACT

A. Introduction

In modern FPGA devices, place and route has become a
difficult task for the underlying FPGA implementation tools.
This is caused by an increase of device size and complexity.
As devices grow in size and number of resources, their
topology also grows in complexity. Larger devices are divided
in different regions. While this allows to pack a larger number
of resources in a single device, it creates a new set of
challenges in order to obtain good quality of results while
using as many resources as possible. Devices such as Xilinx’s
Alveo accelerators are comprised of multiple regions called
Super Logic Regions (SLR). Crossing from one region to
another adds some delay to signal propagation. This can hurt
overall timing if implementation tool decides to scatter a
single accelerator among different SLRs. Thus, the design
may not reach operating frequencies expected by the user.
In a similar fashion as the SLRs, they usually have multiple
independent memory banks that interface with DDR modules.
This requires memory allocations and interconnection to be
manually managed by the user, causing extra burden to users.
Otherwise, the design will not be able to take profit of the
aggregated available bandwidth.

We propose methods to improve resource and bandwidth
usage that allow a user to direct how a design is built
and implemented while maintaining device abstraction and
minimal development overhead.

B. Design

1) Memory access: In order to address memory access con-
tention, data allocations are scattered across device’s different
memory banks. This is done by adding interleaver modules
between accelerators or PCIe and the memory interconnection.
These modules are shown in the right diagram of figure 1 as the
highlighted blocks. These modules scatter memory accesses
across all available memory modules. This allows memory
accesses to a single piece of data to be performed in parallel
by different accelerators as different parts of the same data
structure can be stored in different banks. This increases the
overall available bandwidth.

However, early designs consisted of two level intercon-
nection, as shown in the left diagram of figure 1. While this
allowed reducing resource usage due to each module being
much simpler, it also prevents accesses from being performed

in parallel due as a single bus is connecting both intercon-
nection modules. In order to solve this issue, interconnection
has been reworked so it can be implemented in single stage as
shown on right hand side of figure 1. Then high performance
configuration options can be enabled to allow parallel accesses
to different memory modules.
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Fig. 1: Interconnection modes: 2 stage vs. single stage with
interleave modules.

2) Placement: In order to prevent accelerators to be placed
among different SLRs and properly implement region crossing,
users are allowed to assign accelerator instances to SLR
regions. Implementation tool is then instructed not to allow
any resource belonging to an accelerator to be placed outside
the region assigned by the user. Along with this, register
slices are then properly inserted between accelerator interfaces
and interconnection infrastructure when needed. This improves
timing as region crossings are done in a controlled fashion.

Figure 2a shows a diagram of a design containing multiple
accelerators. Each of them is restricted to its region, and SLR
crossings are done by special register slices.
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Fig. 2: Placed accelerator diagram and implemented designs.

Figures 2b and 2c show a physical view of the device
without (2b) and with (2c) placement options enabled. High-
lighted cells correspond to resources belonging to different
accelerator instances. Note that the highlighted cells belonging
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to accelerators are not scattered among different SLRs in figure
2c. Also note that device resource usage is higher and we
can fit one extra accelerator therefore increasing application
performance.

C. Evaluation

1) Experimental setup: Benchmarks used for evaluation
have been implemented using OmpSs@FPGA and Vivado
HLS pragmas. Experiments are run a Xilinx Alveo U200
(XCU200-FSGD2104). This card is attached to a host via
PCIe. The host itself consists of dual Intel Xeon CPU X5680
@ 3.33GHz.

2) Benchmarks: To perform the evaluation, we used two
different applications that cover a wide range of characteristics
of HPC benchmarks: a matrix multiplication (Matmul) and a
Cholesky decomposition. All applications have been imple-
mented by dividing computation in smaller tiles so they can
be efficiently implemented in an FPGA. All applications use
single precision floating point data.

The matrix multiplication benchmark is a well-known
embarrassingly parallel application with a regular dependence
pattern. The application operates with three square matrices of
size N ×N , A,B and C, and computes C = C +A×B.

The Cholesky benchmark performs a Cholesky decom-
position of a Hermian, positive definite matrix into a lower
triangular matrix, which multiplied by its transpose results in
the original matrix. I.e., the application generates an output
matrix L from an input C, assuring that C = L×LT providing
that C fulfils the restrictions. The code uses four kernels:
gemm, trsm, syrk and potrf. In addition, the particularity of
this benchmark is that the potrf kernel is hard to accelerate in
FPGA due to its memory access pattern. Previous evaluations
[1] demonstrate that it is faster to execute it in the host rather
than in the FPGA. We use the OpenBLAS implementation of
the kernel, which is in fact a Cholesky decomposition of a
single block.

3) Results: Figure 3 shows how proposed features affect
these applications. It shows performance (in GFLOPS) of the
applications in three different cases. First, without using any
of the proposed features (Baseline), then using the proposed
memory access improvements (Memory) and finally using both
improvements in memory access as well as placement (Mem
& placement).

In the Cholesky application, bandwidth increase due to
interconnection and interleave features have not a dramatic
impact. This is due to the application complexity as it involves
different kernels with a critical path more demanding than
the Matmul application Also one of them (potrf ) is run in
the main CPU. We are also able to fit two more gemm
accelerators in the improved version compared to baseline or
memory improved version due to the improvements regarding
accelerator placement. This further increases performance, but
as is the case with memory related optimizations, complex
application structure prevents performance improvements from
being dramatic even though performance increase is still
significant (18%).

In Matrix multiply we can see a big performance increase
(50%). This is caused, on one hand, due to increased available
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Fig. 3: Application performance.

bandwidth that memory access interleaving and single level
interconnection provide. This result is significant not only by
itself but because it paves way to even more improvements in
future prototypes that use new memory subsystems like HBM.
On the other hand, we were able to place two more accelerator
instances in the placement improved version, increasing usage
of available computational resources, which allows further
performance increase over the memory improved version.

D. Conclusion

This paper presents an extension of the OmpSs@FPGA
ecosystem in order to more efficiently use available resources.
Proposed extensions allow better use of available memory
bandwidth through automated memory access interleaving. It
also allows improved computational resource usage through
accelerator placement improvements. Moreover this is done
without causing extra burden to the user and abstracting low
level architectural features.
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