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Abstract

At first, the goal of this project was threefold: create the first version of a working

interface, obtain more data to train the algorithm, and improve the performance of

the deep learning classifier. Basically, to build upon what was implemented in the

previous project.

The first task was successfully completed, and a usable interface was created.

Obtaining new data from real world aircraft proved to be impossible to achieve be-

fore the delivery of the project. Although an agreement was reached with a manu-

facturer that could provide the required data for this project, the delivery dates did

not line up correctly.

The results shown in the previous project were outstanding. However they were

not reproducible in any kind of way. Moreover, many issues were found with the

work presented on the previous project. An investigation was performed to obtain

a deeper understanding of this matter. It was found that the previous project had a

wonderful facade, but the foundations were not well established. It was necessary

to start the project from the ground up if it was to be build up.

A new database was created by transforming the old database. After thoroughly

analyzing the previous dataset, a second dataset was created by removing certain

variables, transforming certain fields and creating new variables. Alongside this

new database, a new ANN code was also developed, with the intention of improving

the overall performance.

The results obtained with the new dataset and the new ANN were considered

acceptable.The accuracy of the model was not high, but this was to be expected.

Given the kind of data that was available for this project, only a small fraction of the

total defects could ever be detected.

All in all, although at first the goal was to build upon what was already done,

this project has been successful in creating a solid base for the future work on the

predictive maintenance tool. Without this, any attempt at building on top of the

flimsy foundations would have ended in total failure.
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Glossary

This list presents the definition of the most important terms used during this report.

Availability Ability to keep a functioning state in the given environment. 2

Deep learning An artificial intelligence function that imitates the workings of the

human brain in processing data and creating patterns for use in decision

making 3

Failure rate The frequency with which a system or item fails, expressed in failures

per unit of time 8

Maintainability Ability to be timely and easily maintained (including servicing,

inspection and check, repair and/or modification) 2

Predictive Maintenance A condition-based maintenance carried out as

suggested by estimations of the degradation state of an item 3

Reliability Ability of a product or service to perform as expected under deviant

conditions. 2

Safety Ability not to harm people, the environment, or any assets during a whole

life cycle 1
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Chapter 0: General introduction

From its humble beginnings and throughout its history, the safety of the aircraft

and their cargo has been of huge importance for the aviation industry. The first

airplane in history was flown by the Wright brothers in 1903. Only 5 years later,

the first airplane passenger death occurred [7]. On September 17, 1908 Thomas

Selfridge was a passenger in a demonstration flight when the right-hand propeller

of the aircraft broke, hitting a guy-wire bracing the rear vertical rudder. The rudder

swiveled to the horizontal and sent the Flyer into a nose dive, followed by a sudden

crash. Selfridge died after fracturing the base his skull. The figure 1 shows the

aftermath of the crash.

Figure 1: First fatal crash in aviation, 5 years after its beginning

This tragedy was not caused due to a human error of the pilot or due to adverse

flying conditions. It was caused by a mechanical failure. This could have been

avoided if the safety of the airplane had been subjected to higher standards. Since

then, it is estimated that over 100,000 people have died as a result of an airplane

crash. However, aircraft safety is not something that can be easily solved. Air-

planes are enormous and extremely complicated machines. They are composed of

hundreds of thousands of different parts crammed in relatively tight spaces, which

makes interactions very probable and potentially harmful. A somewhat minor safety

hazard that is dismissed for being considered irrelevant can end up causing a catas-

1
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trophic disaster.

Aviation safety is of much importance mainly for three reasons: human lives,

public trust, and economy. Firstly, catastrophic safety failures in aviation usually end

up with a huge death toll. Avoiding these situations justifies enormous investments

of resources. Secondly, a high degree of safety is to be expected for the general

public to trust aviation. Even today, with very high safety standards, fear of flying

is considerably widespread and as such, many potential clients are lost. Trust in

aviation is crucial for its stakeholders. And thirdly, from an economic point of view

safety is very important. The loss of an aircraft or some of its equipment has a

huge monetary cost for the affected company. Not only that, but the high safety

standards of the aviation industry make considerably more expensive every part

of the life cycle of an aircraft. For these reasons, improvements in the safety of

aviation result in less loss of life, more trust in the system, and a better economy.

Closely related to safety, reliability consists of the probability of an aircraft,

equipment or system to perform its intended function under working conditions

without any failure given a certain time frame. A high degree of reliability is re-

quired for critical equipment whose failure could cause a catastrophic effect, and

this has a high cost. However, not all failures lead to such grave consequences.

In these cases, maintainability plays a greater role. Maintainability refers to the

ease to perform the maintenance activities on the aircraft equipment. With greater

equipment reliability, the maintenance costs are reduced. Ans with greater main-

tainability of the equipment, the costs associated with aircraft safety are reduced.

Lastly, availability is defined as the ability to have equipment at hand for a given

amount of time. The different equipment and systems are of no use if they are

unavailable at the time and place where they are required.

The conjunction of these four terms (reliability, availability, maintenance, and

safety) form the acronym Reliability, Availability, Maintainability and Safety

(RAMS). Since these four concepts are closely related and should not be treated

independently from one and other, the umbrella term of RAMS provides the tools

to improve performance and reduce costs.

Circling back to the focus of this project, it is estimated that the cost of main-

tenance in aviation is approximately 50 to 60% of the total operation cost of an

aircraft [8]. Since aircraft equipment costs millions of euros, aviation maintenance

is a huge expense and of high importance to all stakeholders involved. Three dif-

ferent approaches to maintenance have been developed: reactive, scheduled, and

predictive. Reactive maintenance consists of simply applying a maintenance action

after the failure has occurred. Scheduled maintenance applies the maintenance

action after a set amount of operational or total time as given per the reliability of
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the equipment.

Finally, Predictive Maintenance, which can be abbreviated to Predictive Main-

tenance (PdM), consists of applying the maintenance action before the predicted

failure of the equipment. Each step of the maintenance ladder lowers the over-

all cost of maintenance at the expense of adding extra complexity. As such, the

development of a successful PdM tool using Big Data analytic and Deep learning

presents a huge opportunity in the field of aviation maintenance.

This study is the second step of a long-term project: the goal of this project

is to further build on the work previously carried out by improving the algorithm

performance, obtaining real aircraft data, and implementing a client interface. The

target of this project is ambitious, but there is a lot of potential and it presents a big

opportunity for the aviation industry.

Accurately predicting the instant an aircraft will fail is extremely complicated and

difficult. Airplanes are very complex machines composed of hundreds of thousands

of different parts. All these parts are crammed in tight spaces and interact between

each other, sometimes unintentionally. Each part, component and system have

multiple failure modes, and each failure mode can have different effects. Small

local failures can have huge ramifications for the entire aircraft. For this reason,

22% mechanical errors
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Chapter 1: Introduction

In this chapter, the targets that have to be achieved in this project is presented by

defining its objectives and justification. The scope and specifications of the thesis

are also detailed.

1.1 Objectives

This study is the second step of a long-term project on predictive maintenance. As

such, the general goal of this thesis is to build on the work that has been done to this

point. The firs step of the project was tasked with creating a prove of concept that

big data analytics can be used as reliable predictors using historical data. The aim

was to analyze the possible correlations of the failures of an aircraft with its flight

data and to predict the failures occur ed in an aircraft due to external conditions.

This was achieved by developing an algorithm and testing it. The results were

promising and supported the premise of the project. Three objectives have been

set for this project based on these results.

The first objective is to improve the working database by obtaining more and

better data from first hand measurements. The database used in the previous part

of the project was created by combining the failures of the aircraft FRACAS with the

flight data obtained using Open-Sky and Meteosat. The database would be consid-

erably improved if on-board measurements recorded during aircraft flights could be

obtained. To do this, an agreement would have to be reached with an aviation com-

pany that keeps a record of on-board measurements. Afterwards, this data should

be processed and curated in order to be added or replace the existing database.

If this is achieved, it is expected that the algorithm will produce significantly better

results.

The second objective is to improve the algorithm that has already been de-

veloped. The algorithm that was developed in the previous part of this long-term

project has much room for improvement. It was somewhat generic and not tuned

for its intended role. As such, a new approach will be used to create a new algo-

rithm version. Better results should be obtained by better adapting the algorithm

to the specifications of predictive maintenance. This would also make it easier to

negotiate with third parties.

The third objective is a first implementation of the algorithm on Robin RAMS

software. With considerable effort, this implementation would become the first step
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in the commercialization of the product. Moreover, giving the algorithm a decent

interface would immensely improve the process of data training and model creation.

Besides, implementing the algorithm on Robin RAMS would give more weight to the

project and improve the standing with potential clients.

1.2 Scope

The activities developed to achieve the main aim of this project are:

• Brief literature review on reliability and different systems to compute it.

• Literature review on deep learning and different classifiers.

• Describe and present the work that has already been done.

• Contact and negotiate with potential clients in order to obtain real monitoring

data of aircraft.

• Improve, enlarge or replace the working database.

• Create a new and improved version of the working algorithm.

• Compare the results obtained with the two algorithm versions.

• Implement the algorithm on Robin RAMS as a new module.

• Analysis of the results and main conclusions.

1.3 Requirements and specifications

The basic specifications and hypotheses of this study are summarized below:

• The flight database previously created will form the base for future databases.

• All code files already created for this project might be used at some point with

changes.

• The new algorithm version will be based on the first algorithm created.

• The algorithm will be implemented on Robin RAMS as a new separate mod-

ule.

Related programming requirements of this project are summarized below:

• Back-end: Python, Django, Pandas and SQL (Postgresql)

• Front-end: JavaScript, HTML and CSS

• Artificial Intelligence fundamentals: Keras and TensorFlow
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1.4 Justification of the project

Every failure in aviation entails a certain cost. The failed equipment has to be

removed from the aircraft, replaced with a working part and repaired in order to

be returned to service. However, the expenses associated to maintenance can be

severely reduced by improving the approach. As seen in Figure 1.1, currently there

are three types of maintenance:

• Reactive maintenance is based on replacing failed component. It is the most

simple but also most expensive.

• Preventive maintenance is based on replacing components after scheduled

operational hours. In terms of complexity and cost, this maintenance type

represents a middle ground.

• Predictive maintenance is based on replacing components based on a de-

veloped model. It has the most effective cost, but it requires a lot of work to

obtain a good and reliable model to predict failures.

Figure 1.1: Maintenance classification

By developing a predictive maintenance tool for aircraft, a huge advancement in

the field of aviation would be possible. If this PdM tool is successfully implemented,

the maintenance costs in aviation could be significantly reduced. Moreover, the

company in charge of the project should enjoy fruitful rewards and recognition. But

most importantly, aviation safety could be significantly improved. If this is achieved,

many lives could be saved. If the aviation industry is provided with a tool that is able

to accurately predict failures before they happen, mechanical failures that posed a

safety hazard would be eliminated to a great extent: no more engine failures, no

more losses of control, no more landing gear blockades, no more cabin fires.
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If one looks at aviation history, it is not hard to find several instances where

a PdM tool could have avoided a terrible catastrophe. The following list contains

some of these cases. The complete list is much larger. These people could have

been saved. And many people that would have been involved in similar crashes will

be saved if this project is successful.

• Southwest Airlines Flight 812: Depressurization caused by the structural

failure of the fuselage skin. 2 injuries.

• BKS Air Transport Flight C.6845: The left flap operating rod failed due to

metal fatigue. 6 fatalities.

• Formosa Airlines Flight 7623: System failures caused by the failed RH Main

Bus. 13 fatalities.

• Aeroflot Flight 3932: failure of the electrical supply, causing incorrect indica-

tions by the main artificial horizon and the compass system. 108 fatalities.

• Aeroflot Flight 964: Multiple navigation instrument failures, including the

compass and artificial horizon. 122 fatalities.

However, it must be made clear that the development of a predictive mainte-

nance tool would not entirely replace reactive maintenance. Even if the best model

to predict failures is created, there is always a slime probability of a random failure

of a component. Moreover, some failures are produced rare occurrences, such as

accidents or bird strikes.
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Chapter 2: Literature Review

With the goal of framing the project and explaining some essential concepts that

will be used during the rest of the report, this chapter presents a general literature

review of reliability, predictive maintenance and machine learning.

2.1 Reliability

In engineering, reliability is defined as the probability of an item to perform its re-

quired function under given conditions for a stated time interval [9]. A failure occurs

when an item stops performing its function. As such, the reliability of an item or

system is usually expressed in two different ways, with the failure rate, denoted by

the Greek letter lambda (λ ), or as the Mean Time Between Failures (MTBF). The

failure rate is usually expressed in failures per million hours, while the MTBF is ex-

pressed in hours. To go from failure rate to MTBF and vice-versa, it’s as simple as

doing the multiplicative inverse.

2.1.1 Reliability prediction with RPA

The manufacturers and designers of aircraft components and systems are required

to predict the reliability of their product. This is mainly because the reliability of

the system is to be estimated for the product certification, and because customers

and clients usually demand to want to know the reliability before closing a deal. As

such, the reliability of a system or item is predicted during the design phase, before

being used in its intended use in the real world.

The reliability of a product is predicted using the Reliability Prediction Analy-

sis (RPA). This analysis consists of breaking down the product into all of its basic

components, calculating the failure rate of each component according to its opera-

tional conditions, and adding all of the failure rates to obtain the failure rate of the

whole system or item. The figure 2.1 shows the general view of an RPA from Robin

RAMS.

To obtain the failure rates of the different components, a priority order is often

followed. This is based on the level of reliability and accuracy of the calculated

failure rate values. This is important because failure rates that are obtained using

a low accuracy calculation have a high degree of tolerance. Therefore, the failure

rate value is increased in order to take into account this high degree of deviation
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Figure 2.1: General view of an RPA with different levels from Robin RAMS [2]

between the estimation and the performance of the product in the real world. This

means that a lower accuracy entails a higher degree of conservativeness. It follows

that most of the times, the failure rate values calculated with higher accuracy are

considerably lower than those with less accuracy.

First of all, the preferred method to calculate the failure rate of a component is to

obtain said value from the supplier. If the component supplier has done the required

research and analysis on the reliability of their product, the resulting failure rate

value is very close to what should be expected on operational conditions. However,

if the suppliers properly do their job, they update the failure rate of their product with

more accurate values obtained from the analysis of the performance of the product

in real world operating conditions. This is explained in more detail in the following

subsection 2.1.2.

The second best option is to estimate the failure rate of the components is to use

a reliability prediction standard. Some examples of these standards that are used in

the aviation industry are the MIL-HDBK-217F, the FIDES guide 2009 and the RiAC-

HDBK-217Plus. Basically, these standards offer different formulas to calculate the

failure rate of a component based on two factors: the nature of the component, such

as it’s type, construction, year of manufacture, number of pins, and the like; and the

operating conditions, such as ambient temperature, applied voltage, cycling rate,

and others. However, the various standards have distinct approaches to the failure

rate calculation and different levels of complexity, accuracy and conservativeness.

All the various reliability prediction standards produce reasonable results, but the

choice of standard to be used should be made with solid reasons and be consistent

throughout the analysis.

As an example, the figure 2.2 displays the required inputs for the failure rate

calculation of a capacitor using the military standard MIL-HDBK-217F on Robin

RAMS. It can be seen that the user is required to introduce capacitor style, the
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Final Master’s Degree Project

capacitance, the stress ratio, the circuit resistance and the quality of the capacitor.

Afterwards, the calculation is performed and the figure 2.3 displays the outputs

of this prediction. The most important value from the output is the failure rate,

expressed in failures per operating hours. This is displayed at the top.

Figure 2.2: Inputs required for the reliability calculation of a capacitor using MIL-HDBK-

217F on Robin [2]

The third option is to estimate the failure rate using historical data of similar

components. There are several databases, such as the EPRD 2014 or the NPRD-

2016, that provide failure rate for all kinds of components based on historical per-

formance. Compared to reliability prediction standards, historical databases offer

very little customization, often just the type of component, the quality level and the

operating environment. As such, their results tend to be less accurate and more

conservative than those calculated with a standard. As an example, the figure 2.4

shows the different options available in NPRD-2016 to obtain the failure rate for a

piston. Note that the only inputs here are quality level, environment and confidence

level.

The final option and last resort is to estimate the failure of the component with
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Figure 2.3: Outputs obtained from the reliability calculation of a capacitor using MIL-HDBK-

217F on Robin [2]

a reasonable informed guess. This only happens when the supplier does not pro-

vide information on the reliability of the product and the component very new or

specific that it is not present on the reliability prediction standards nor the historical

databases. In such cases, the only option left is to estimate a conservative value

based on the general conditions of the component.

When all the different components of the system have been analyzed and their

failure rate has been estimated, the reliability of the system can be calculated by

adding all the different values. Then, the MTBF can then be easily calculated from

the obtained failure rate. It has to be noted that the RPA only estimates the reliability

of the product. As such, it provides no information on the effects of the failures, only

on their probability during operational conditions.
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Figure 2.4: NPRD-2016 options for a piston on Robin [2]

2.1.2 Reliability calculation with FRACAS

After the system or item has entered operational use, the reliability of the product

under real world conditions can be calculated. The resulting failure rate should be

lower or equal than that which was estimated during the design phase. The cal-

culation is usually done with the Failure Reporting, Analysis and Corrective Action

System (FRACAS). This system is used to collect analyze and correct all failures

and defects occurring during the production and testing of a product [9]. The figure

2.5 illustrates the general functioning of FRACAS.

Figure 2.5: FRACAS process by DMD Solutions

To calculate the real reliability of the product, the FRACAS is used to collect all

the reported failures and defects that occur during the use of the system. In the

field of aviation, two reports are of interest for the FRACAS: the Aircraft Malfunction

Report (AMR) and the Defect Investigation Report (DIR).

After each landing, the pilot or crew reports to the maintenance team any de-

fects or failures that the equipment has sustained during the flight. Most of the
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times, the maintenance crew present at the airport simply replace the faulty part

with a spare part available in the facilities. Sometimes, some testing is done on

site to try to replicate the reported issue on ground, however this is not required

every time. The different equipment and systems of the aircraft are designed to be

easily and quickly replaceable. As such, the aircraft can be put back into action

in any kind of facility that has spare parts and in a reasonable amount of time. A

description of the failure tat occurred during flight, all the actions that have been

done to fix the reported issue and the on-ground testing results of the equipment

have to be written on the AMR, alongside all the necessary aircraft and equipment

information. It is required that after the maintenance of the aircraft is completed,

the AMR is sent to the aircraft company.

The part or system replaced in the aircraft is sent back to its manufacturer for

closer inspection and repair. All the following process is done at customer charge

if there is no valid warranty. The manufacturer is then tasked with testing the faulty

equipment, and most of the times the reported defect can be replicated on the test

bench. The source of the issue has to be found with thorough inspection and test-

ing. Then, the part is usually repaired, although some times the item is scrapped

due to being beyond economical repair. Following that, the part is submitted to the

testing described in the Acceptance Test Procedure (ATP) to ensure that the item

is in working condition again. After the ATP is passed, the component is then re-

turned to the airport facilities to be used as a spare part or any other purpose. All

the work that has been done on the part and the findings that have emerged during

the investigation, have to be written on the DIR. The manufacturer is required to

send the DIR to the aircraft company after all the work on the part is completed.

After the DIR is received, a RAMS engineer has to analyze and categorize the

failure. Not all failures are the same, since only the failures that have been verified

count towards the reliability calculation. The following list displays different main

categories of failures. It has to be noted that the notation used may vary from

system to system and that there are also other categories that are rarely used.

• Defect Verified (DV): Assigned when the failure has been confirmed.

• Open: Defect not investigated yet. Generally, there is a policy fixed by the

company which computes these defects as DV. (e.g. 90% of Open are DV)

• No Fault Found (NFF): Assigned when once the part has been tested, the

failure is not detected and the part is fully functioning to specifications

• Discard (DSR): Assigned when the malfunctioned part cannot be repaired

and it is directly removed and scrapped without any further analysis.
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• Scheduled Maintenance (SCM): Assigned when the part is removed for a

programmed maintenance.

• Scheduled Service Bulletin (SBS): Assigned when the part is removed to

carry out an modification called Service Bulletin.

• No Defect (ND): Assigned when the defect is not addressable to the unit itself,

but to an an external factor which can be environmental (e.g. lighting, bird

strike), a man-induced malfunction (e.g. mishandling) or wrong-performed

maintenance. Removals due to usage wear of consumables such as tyres

are also categorized as ND.

After categorizing the failure, the information of the aircraft, the part and defect

subject to investigation are introduced to the FRACAS database. The table 2.1

displays all the required FRACAS input data. If both the AMR and DIR have been

received and are correctly completed, there should never be any kind of problem to

introduce the failure data into the FRACAS.

Aircraft information

AC type Aircraft type (Manufacturer, model, etc)

AC SN
Aircraft Serial Number (Given when man-

ufactured)

AC Flying

Hrs

Current flying hours accumulated by the

aircraft when the defect occurred.

Part information

Part Number Part number that identifies it.

Part SN
Part serial number given when manufac-

tured.

ATA Chapter Identifies where the part is located.

Part Flying

Hrs

Accumulated flying hours of the part

when the defect occurred.

Defect information

Defect date Date of the defect

Description
Description of how the defect was de-

tected and its consequences

Defect type

The defects can be categorized. It de-

pends on the company’s policy.

Finding

After the removal for investigation, the

DIR is received with the finding. The find-

ing explains the cause of the defect and

the repair action applied to the part.

Table 2.1: FRACAS input data
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At any point, the aircraft manufacturer can use FRACAS to calculate the relia-

bility of their product. The Mean Time Between Failures indicates the average time

between the occurrence of two failures in the product with operating conditions. The

figure 2.6 illustrates the time between failures of an aircraft. As explained before,

the MTBF is the inverse of the failure rate.

Figure 2.6: Time between failures (Source: [3])

To calculate the MTBF using FRACAS, the equation 2.1.1 is used. Basically, all

the operating hours of the aircraft are added and then divided by the total number

of failures that have been verified (in the case of the FRACAS database used in this

project, these are the categories DV, acrDSR and acrRDV). Also, it is estimated that

about 90% of the failures that are currently still open, due to missing documentation

or awaiting a response, will be verified. As such, they are also taken into account

in the calculation of the MTBF.

MT BF =
Piaircra f t FHiaircra f t

#DV +#DSR+#RDV + f ⋅#Open
(2.1.1)

The failure rate of the product can be easily obtained from the MTBF using

equation 2.1.2.

λ =
1

MT BF
(2.1.2)

The resulting MTBF and failure rate calculated using FRACAS is considered

to be the real reliability of the component. This value is very important because

customers tend to be very interested in this parameter. If a product is more reliable

than the competition, the way to prove it is by comparing the failure rate values.

Also, by comparing the predicted reliability obtained with the RPA and the calculated

reliability obtained with FRACAS, it can be discerned if the component is under-

performing or over-performing in the field of reliability.
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2.2 Predictive maintenance

Up to this point, it has been shown how to estimate and calculate the reliability of a

product using RPA and FRACAS respectively. The resulting MTBF is used in some

systems to perform preventive maintenance. For example, if a component is known

to regularly fail after a certain time of operation with a high degree of accuracy, a

preventive maintenance task can be scheduled at intervals equal to the calculated

MTBF. However, for most components, the use of the MTBF to schedule mainte-

nance tends to result in either unnecessary repairs if the value is too conservative

or in catastrophic failures if the value is not conservative enough.

Predictive maintenance (PdM) offers a better alternative to preventive mainte-

nance. PdM is a condition-driven preventive maintenance program. Its objective

is to obtain better results than preventive maintenance by lowering the amount of

unnecessary repairs and the number of catastrophic failures. To do this, instead

of using the MTBF to schedule maintenance activities, PdM uses direct monitoring

of the mechanical condition, system efficiency, and other indicators to determine

the actual mean time to failure [4]. A correctly established PdM program will min-

imize unscheduled breakdowns and detect failures before they become serious.

Since the cost of repair is usually tied to the seriousness of the failure, detecting

the failures before becoming serious will reduce maintenance costs. The figure 2.7

illustrates the basics of the predictive maintenance process.

Figure 2.7: Predictive Maintenance process [4]

There are many benefits associated to implementing a PdM system. Overall

safety of the product is improved due to components being replaced or repaired

before failing. Downtime, that is, time that the system is out of action, is reduced,

as well as the size and scale of repairs. The potential exposure to liability is de-

creased, the same way as the cost associated to needing spare and stand-by units.

A PdM system reduces the overall maintenance costs through better use of labor

and materials [10].

To successfully create a predictive maintenance system, two things are needed:
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Final Master’s Degree Project

an algorithm to train the artificial intelligence using machine learning and a large

amount of data to feed the algorithm. The different approaches and issues of ma-

chine learning and artificial intelligence are discussed in the section 2.3. Nonethe-

less, it can be argued that the problems and issues associated with the data needed

to train the algorithm have a higher influence on the PdM results than the algorithm

used. A model trained with a bad algorithm may take longer time and training data

to reach acceptable results, or the results may be poorer than those obtained with

an optimized algorithm. However, a model trained with bad data may not produce

any kind of passable results at all, no matter how good or optimized is the algorithm.

In the current state of affairs, the following list presents the most common issues

related to training data that a project like this could face during its development:

• Data acquisition: In most industries, and in the aviation industry in particu-

lar, most companies that do extensive monitoring are reluctant to share their

product data. This is mainly for two reasons. On the one hand, the data pro-

tection policy of each company may make it impossible to share the product

data generated by users to third parties. And on the other hand, companies

tend to be protective of the data they collected, since they expect an important

return for sharing their data. As such, they may be difficult to convince.

• Data size: All around the world there are tens of thousands of aircraft that

take part in millions of flights each year. Each aircraft may have thousands

of sensors recording data each instant. As such, it is obvious to see that the

amount of data generated by a fleet of aircrafts quickly becomes very cum-

bersome and very difficult to work with. When the data is enormous, some

filtering and size reduction has to be performed before training the algorithm.

• Data noise: When it comes to artificial intelligence, most algorithms are sen-

sitive to noise, that is, uncompleted data. Holes in the database have to be

fixed in some way, so as not to interfere with the training of the algorithm.

This may prove difficult as data is often gathered using different methodolo-

gies, which may lead to some noise.

• Ineffective data: Among all the collected data, irrelevant or ineffective data

should be filtered out to avoid confusing the algorithm. The algorithm should

only be trained with data that may be relevant to predict maintenance in or-

der to diminish the necessary computational workload and, most importantly,

avoid unacceptable results caused by feeding the training algorithm with irrel-

evant or ineffective data.

Although the development of a predictive maintenance system may pose some
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difficult obstacles, the potential benefits of its implementation clearly outweigh their

potential drawbacks. This is starting to be seen on the aviation industry. For exam-

ple, SAS (Scandinavian Airlines System), a European airline mainly based on the

Nordic countries, reached an agreement with Airbus to become the first customer

for the Skywise Predictive Maintenance Solution. Around 70 aircrafts of the A320

family will be subjective to proactive PdM with the goal of preempting operational

disruptions and accelerate maintenance decisions [11]. This is a clear example of

the future developments that will experience the aviation industry.

2.3 Machine learning

Since the beginning of computer science, the subject of Artificial Intelligence (AI)

has gathered much interest and resources. From the early days, problems that can

be described using a series of logical and mathematical rules have been easy to

solve for computers. However, in order to solve complex problems with no clear

logical rules, the computer has to learn from experience in order to understand

complicated concepts by building them out of simple ones. The subject of this

section is to explain this process and introduce the basic concepts required to follow

the rest of the thesis. The source for most of this section is a book considered to

be the “bible” of deep learning, a comprehensive guide to deep learning featuring

mathematical and conceptual background and techniques used in industry [5].

In order to define the concept of deep learning, first several concepts have to be

clarified. These are AI, machine learning, and representation learning. The figure

2.8 displays the relation between the different concepts and it is of great use to

follow the next explanations.

The subject of Artificial Intelligence can be approached in many different

ways. For example, there have been attempts to code knowledge in formal lan-

guages in what is know as knowledge bases. However, this approach has been

proven to have a lot of limitations. This is because the world is too complex to be

described with a set of formal rules. As an example, it is very easy for humans

to identify what is and what is not a chair. However, to describe this identification

process with logical rules would be very difficult.

A better approach to AI is machine learning. Instead of directly coding the

world knowledge into the algorithm, the system is left to acquire the knowledge

on its own by extracting patterns from data. Machine learning is not necessarily

complex, since a simple logistic regression is considered to be a machine learn-

ing algorithm. Logistic regressions and similar kinds of simple machine learning

present some limitations. These algorithms depend on the representation of the
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Figure 2.8: Venn diagram of deep learning [5]

input data. This means a lot of times human input is required to process the data.

For example, a logistic regression algorithm can be used to identify the optimal ve-

locity of a road given its features. However, it would be impossible for the algorithm

to identify said properties on its own.

Representation learning is a more complex approach to machine learning that

tries to solve these issues. Instead of only trying to understand the mapping from

the representation to the output, representation learning also tries to discover the

representation itself. This is done with an autoencoder, which codes the input data

into a different representation and decodes the new representation back into the

original format. The main problem with this approach lies with the factors of vari-

ation. In order to learn the different features of the data, representation learning

requires to be fed the different factors that influence the observed data. For exam-

ple, a representation learning algorithm that tried to identify cars in images would
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need to be fed all the different factors that influence the appearance of a car in an

image, such as time of day, light, position, and many others.

Finally, deep learning solves this problem of representation learning by intro-

ducing representations that are expressed in terms of simpler representations. This

is done with a deep network or Multi-Layered Perceptron (MLP). Basically, deep

learning is fed input data in what is known as the visible layer, which could be the

different pixels of an image. A series of hidden layers extract increasingly abstract

features from the previous layer, such as the edges, then the corners, and finally

the objects. In the end, the last hidden layer is used to create the deep learning

output, which in this case would identify the image elements.

In summary, deep learning is an approach to machine learning, which in turn is

an approach to AI. Deep learning achieves great power and flexibility by represent-

ing abstract concepts using a series of layers of simple concepts.
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Chapter 3: Previous Work Summary

As stated before, this thesis builds up and expands on the previous work done by

Lovejinder Singh and Josep Lopez as part as a long-term project to create a work-

ing PdM tool. This work represents the second step of the creation of a predictive

maintenance tool integrated in Robin RAMS. For this reason, this chapter is dedi-

cated to explaining and summarizing the work that has already been accomplished

to this point, with the goal of understanding the starting point of this thesis [1].

3.1 Database structure

At first, one of the goals of the project was to use real on-board data recorded during

flights, which would have to be obtained from an aircraft manufacturer. However,

this resulted impossible to accomplish, and was left as potential future development

to be accomplished by the next steps of the long-term project.

With this setback, an alternative approach was to be implemented. Instead of

gathering on-board data, the database used to train the algorithm would be con-

structed from three different databases. These were the following:

• FRACAS database, which contained all the defects and failures of the fleet of

an aircraft manufacturer.

• FLIGHT database, which contained the routes followed by all the aircrafts.

• METEO database, which contained all the environmental and external flight

conditions.

This three databases would then be used to create a unified database follow-

ing the input requirements of the Artificial Neural Network (ANN) in order to train

the model. The resulting database would then be subdivided into three different

databases, each in charge of training the model, validating the progress, or test-

ing the results of the algorithm. The figure 3.1 displays a diagram of the database

structure.
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Figure 3.1: Database diagram

3.2 Data gathering

With the database structure explained on the previous section, the next step was to

gather or collect all the relevant data. Thus, the goal of this section is to explain all

the data gathering process and how that data was processed in order to build the

different databases.

3.2.1 FRACAS database

The FRACAS database was created from the data of the FRACAS of an aircraft

manufacturer. As explained on section 2.1.2, the FRACAS contains all the recorded

defects and failures sustained by the entire fleet, as well as the monthly operational

hours of each aircraft. After processing the data, three different tables were created

for the FRACAS database, which were the following:

• Aircraft table: a list of all the aircraft of the manufacturer’s fleet, with their

type, serial number, registration born date and, most importantly, the ICAO

24 code. The total number of aircraft was 18.

• Flight hours table: for each month, this table contained all accumulated flight

hours and landings of each aircraft of the aforementioned fleet. There was

22 Bernat Garreta Piñol
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some noise in the data, which was fixed with interpolation. This table had a

length of 1,912.

• Defects table: this table contained all the recorded defects that the fleet sus-

tained. For each defect, the table stored the date of the defect and the aircraft

involved in the failure. A total of 893 defects were recorded.

All the data used to create these three tables was extracted from a Microsoft

Access application in a Comma Separated Values (CSV) format.

3.2.2 Flight database

At first, it was tried to obtain the flight data from FlighRadar24, a flight tracking

service that provides real-time information about thousands of aircraft around the

world. However, this proved unsuccessful. As such, the database was to be built

with the second option, OpenSky Network, a non profit association that provides

open access to flight control data. A library that provides a Python interface to

historical flight data from OpenSky Network called pyOpenSky was used to collect

the data. However, this library had a major inconvenience. It only provided historical

data from 2016 onwards. For this reason, the database would have to be built with

historical data from 2016 to 2021.

To build the database, OpenSky was used to obtain the flight data of all 18

aircraft previously mentioned. Using the aircraft table of the FRACAS database,

a list of ICAO24 codes was obtained. These were the aircraft that were relevant

for the creation of the flight database. As such, OpenSky was used to retrieve

the aircraft (ICAO24 code), the coordinates(latitude and longitude), velocity (over

ground), altitude (barometric and GNSS), heading (track angle), vertical speed and

position (on-ground or on-air). This was done for a number of instants of all flights

of the aircraft fleet.

All this data was downloaded over the course of roughly 20 days. Out of the

studied 18 aircraft, this data gathering process generated a database containing

700,000 entries, with each entry representing an instant of flight.

3.2.3 Meteorological database

As explained above, the flight database did not contain any data regarding exter-

nal conditions of the aircraft during the time of flight. As such, the objective of

the meteorological database was to obtain the external conditions associated with

the flight paths of the aircraft fleet. The locations and dates stored on the flight

database were to be cross referenced with historical meteorological data to obtain

the external conditions that the flight endured.
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To achieve this goal, the Meteostat Python library was used. Meteostat pro-

vides a simple API for accessing weather and climate data, where historical ob-

servation and statistics are collected from different public interfaces. By using the

flight database, the exact location of the aircraft at any point of time during the flight

could be obtained. Then, Meteostat would be used to retrieve the measurements of

the three closest stations to the aircraft. Using their measurements, the values for

the aircraft location would be estimated using the weighted sum of the triangulated

stations.

The meteorological data obtained with Meteostat consists of the following fields:

air temperature, dew point, relative humidity, one hour precipitation, snow depth,

average wind direction and speed, peak wind gust, average sea-level air pressure,

one hour sunshine, and weather condition code. This data was downloaded over

the course of roughly 20 days and contained information about the studied 18 air-

craft.

3.3 Data processing

After creating the three different databases, the resulting data was to be processed

in order to create the definitive database. The figure 3.2 shows the relations be-

tween the different databases, as it has been explained in the previous sections.

To reduce processing load, decimal values were rounded to the third digit. And to

avoid issues, rows with Not a Number (NaN) in any field were deleted.

Figure 3.2: Dataflow between the three database sources [1]

24 Bernat Garreta Piñol
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The definitive database of the project contained 23 columns. These can be

seen on table 3.1. The 23 columns can be divided in three types of data. Firstly,

the column icao consisted of the aircraft identifier, which was transformed from an

alphanumerical field to an integer (“aca1d6” to “2”, “a42653” to “3”, etc.). Secondly,

there were the 21 different fields that contained the data needed to train the algo-

rithm. And thirdly, the column deffect contained the defect label, that is, what the

algorithm is tasked with predicting based on the input data.

time Current time (of each state)

icao Unique identification for each aircraft.

lat Latitude coordinate of the aircraft

lon Longitude coordinate of the aircraft

onground
Indicates if the aircraft is on

ground (onground=1) or not (onground=0)

baroaltitude Altitude measured by the barometer [m]

geoaltitude Altitude provided by the GNSS (GPS receiver) [m]

velocity Current speed of the aircraft [m/s]

heading Direction of movement of the aircraft [º]

vertspeed
Vertical speed of the aircraft.

Ascending (vertspeed>0) or Descending (vertspeed<0) [m/s]

temp Current temperature [ºC]

dwpt Dew point temperature [ºC]

rhum Relative humidity (%)

prcp One hours precipitation total [mm]

snow Snow depth [mm]

wdir Average wind direction [º]

wspd Average wind speed [km/h]

wpgt Peak wind gust [km/h]

pres Average sea-level air pressure [hPa]

tsun One hour sunshine total [min]

coco Weather condition code

flyhours Accumulated flying hours until the current time

deffect Defect label

Table 3.1: Definitive database columns

Two kinds of defect labels were created, which were named binary and inter-

val. Binary labels contained a single digit, either 0 or 1, indicating whether there
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was a reported defect in FRACAS on the same day as the flight. On the other

hand, interval labels contained an integer that could go from 0 to 10 indicating the

number of fly hours to the next failure in the aircraft. A 0 indicated that a failure was

imminent, while a 10 indicated that there were more than 900 hours until the next

failure. Each integer in between represented a 100 hour interval.

3.4 Algorithm implementation

The implementation of the algorithm was performed using Python as the program-

ming language. A part from the usual generic libraries, the code used the machine

learning platform TensorFlow. Running on top of that library, Keras was used as a

deep learning API. Keras was used for the implementation due to its simplicity and

fast experimentation.

It was decided to use the Binary Cross-entropy loss function since it was the

function with the better performance. Out of the different options, ADAM was found

to be the best optimizer because of its speed and performance. The classifying

algorithm consisted of a MLP (multi-layered perceptron), with added 1-D convolu-

tional and LSTM (Long Short-Term Memory) layers.

One problem with the data that was found was that the two categories were

unbalanced, since the total number of entries of corresponding with defects was

much smaller than those corresponding with no defects. To solve this issue, the

methods of Adaptive Synthetic (ADASYN) and Synthetic Minority Over-sampling

Technique (SMOTE) were used to over-sample the dataset, that is, to create more

defect entries in order to have a better balance.

Another tool used in the implementation was Scikit-learn, a library centered

on machine learning. This was used to randomly split the data into the training

and testing datasets, and to perform a standardization of the datasets, that is to

transform the variables to a Gaussian distribution with zero mean and unit variance.

On top of that, Scikit-learn also provided the functions needed to both train the

algorithm and perform predictions using the trained model. And finally, this library

was also used to obtain metrics on the overall performance of the algorithm, such

as obtaining the performance indicators (precision, recall, accuracy) and plotting

the confusion matrix.

3.5 Algorithm results

The first results obtained by the algorithm were the evolution of the loss and accu-

racy values over epochs (fig 3.3). These two figures show that the algorithm quickly
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converges, since with very few epochs the algorithm is able to considerable reduce

the loss function value and improve the accuracy of the model. According to the

report of the previous project, these figures also show that “there are no signs of

over-fitting or under-fitting”.

(a) Training vs Validation Loss (b) Training vs Validation Accuracy

Figure 3.3: Training vs Validation evolution [1]

The figure 3.4 shows the normalized confusion matrix of the validation data (left)

and the test data (right). On one hand, the validation confusion matrix shows that

the algorithm managed to converge very effectively. On the other hand, the test

confusion matrix shows that the algorithm was able to train a very accurate model,

capable of predicting most failures with a high degree of precision.

(a) Validation Confusion Matrix (b) Test Confusion Matrix

Figure 3.4: Validation and Test confusion matrix [1]

The overall great algorithm performance is also corroborated by looking at the

performance indicators shown in table 3.2. These indicators show an incredible

27 Bernat Garreta Piñol
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performance of the trained model, which is capable of predicting most defects ac-

cording to the report of the previous project.

Performance Indicators Test (%)

Accuracy 67.724

Precision 98.968

Recall 79.991

F-score 78.627

Table 3.2: ANN performance [1]

Finally, the previous project also performed a comparison between the different

classifying methods. This can be seen on figure 3.5. Contrary to what could be

expected, the best results where not obtained using with the ANN but with the

Random Forest and the AdaBoost Classifier methods. No further explanation is

given on the report.

Figure 3.5: Result comparison between different methods [1]

In conclusion, from the results shown in the previous project report, it can be

stated that the algorithm provides excellent results. A high degree of accuracy in

predicting defects has been shown.
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Chapter 4: Interface implementation

The previous project focused on creating an algorithm that was capable of pre-

dicting aircraft failures. Once this is successfully accomplished, the obvious next

step is creating usable interface. This chapter explains the work on this matter and

presents the first version of the Robin module for Predictive Maintenance.

4.1 Justification of interface implementation

At first, developing the interface of the predictive maintenance algorithm may seem

to be of little importance. It could be said that the important and difficult part of the

project is creating an algorithm capable of detecting upcoming defects in aircraft

previous to their flight, and that the implementation of the interface is a secondary

and very simple part of the project. However, this is far from the truth, and this

section will put forward the reasons of why this part of the project is not as simple

as it seems and is of considerable importance.

4.1.1 Interface implementation complexity

To any person uninitiated in programming in general and the programming of inter-

faces in particular, a decent interface is taken as something that is taken for granted.

If the interface works perfectly the user does not pay much attention to it, in fact, it

tends to go unnoticed. However, when the interface has some problems or issues,

the user is quick to notice and complain. Moreover, instead of thinking that interface

implementation is a complex matter that can be difficult to solve adequately, users

tend to think of a malicious intentions or an inept implementation behind the failed

interface.

The fact is that implementing a good user interface can be very complex and

difficult. Many hours of programming and design have to be poured onto a project

in order to obtain an acceptable result. The user can interact with the interface in

an almost infinite number of ways, and the interface has to be robust enough to be

able to deal with each and every one of the user actions. Also, there is always a fine

balance on the amount of information provided to the user, since the design has to

find away to relay all the relevant information to the user without overwhelming them

with too much data.
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4.1.2 Interface implementation importance

Not only is the implementation of the interface complex enough, but it is also quite

important in the overall scope of the project. Obviously, the predictive maintenance

tool will not be commercialized until the interface is finished. But even before that

point in the development process, the interface implementation can be very useful

to the project for the following reasons:

• Data acquisition: The main difficulty of any machine learning project is ob-

taining the required data. For this reason, the data acquisition process is of

high relevance. The implementation of a good interface can considerably im-

prove the prospects of this matter. Potential clients might be more willing to

reach an agreement to share their data if they see a usable working interface

rather than some unintelligible lines of code.

• User perspective: Implementing the first version of a user interface can pro-

vide some insight in the user perspective, that is, how could future users use

the tool. For example, one could obtain info about how do users interact with

data, how is the process of predicting defects from the user point of view, and

how could this be improved.

• Process improvement: Last but not least, if the implementation is really suc-

cessful, the interface could severely improve the process of data processing,

data analysis, model training and model analysis. Before the implementation,

this had to be done using raw code. A good interface can considerably reduce

the amount of work needed to be inputted to obtain results.

4.2 General considerations

Before starting to explain the main part of this chapter, some considerations have

to be put forward. A handful of things have to be put into context so that things are

clear and well situated when they are shown. These are shown in the list below.

• First of all, the user interface is created as an integral part of the Robin RAMS

tool. This project was born under the umbrella of DMD Solutions, and as

such, the intention is to commercialize it as a new module in the Robin RAMS

tool. The marketing part of this part of the tool is yet to be formulated.

• As part of Robin, the implementation of the interface has been completely de-

veloped using the Django environment. Plenty of open documentation about

Django exists for those unfamiliarized with the environment [12].
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• The interface shown in this chapter is intended to be a first version of the final

product. This means that this will form the basis for the end product but that

more iterations and polish are required to reach that point.

• The algorithm used to train the defect models is that which was obtained in the

previous project. The implementation of the interface and the development of

a new better algorithm were parallel processes, and as such, it was unwise to

use the latest algorithm version.

• As of present time, no effort has gone yet into the server deployment of the

user interface. All work has been done locally, and it is left for the future to

upload the new Robin module to the server and solve any issues that may

arise.

• Finally, it has to be understood that there are some limitations due to code

confidentiality. Robin RAMS is the flagship product of DMD Solutions, and as

such, the company is interested in limiting the amount of code that may end

up in the public domain.

4.3 Preliminary design

Before one starts programming the user interface, a considerable amount of work

has to go into creating a preliminary design. Little coding can be performed without

a clear reference of what is to be achieved. Obviously, the final design will more

than probably be different from the preliminary design, since many obstacles and

opportunities can be found during the programming process. But in the end, the

preliminary design will provide the basic foundations of the final product.

4.3.1 Intended approach

The interface framework can be understood as the ideas that tie everything to-

gether. During the design and implementation of the user interface many little and

seemingly independent decisions are made. All these decisions are made with a

same set of ideas in mind. Each decision has different context and outcome, but

they all share a basic set of principles or approach:

• User focus

• Simplicity

• Clarity

• Consistency
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• Streamline actions

4.3.2 Target capabilities

Beforehand, the set of target capabilities were set, in other words, what would the

user be able to do with the interface. These are shown below. It has to noted that

each capability tends to correspond with a distinct page.

• Organize work in projects

• Upload and manage aircraft datasets

• Analyze each dataset

• Train and manage defect models

• Analyze each model

• Make defect predictions

4.3.3 Page distribution

After outlying the different capabilities that the interface should have, these have

to be distributed in the different pages. This was done by basically assigning each

capability to a different page. This way, the user would have the interface very

structured and clear, without much interference between the different capabilities.

Once this is done, each the distribution of each page has to be somewhat

thought and sketched. By drawing each page in a very simple manner, one can

obtain a very clear idea in their head of how each feature will be implemented and

where each part of the page should go. This step is by no means necessary, but if

the interface implementation is to be successful it is a must.

4.4 Database structure

In the Django environment, the project data is organized using a set of models. It

is unfortunate that the very same word is used to define so different concepts such

as Django models and classification models. In order to avoid confusion, the prefix

of “Django” is usually added to the word model where it’s deemed necessary.

In the context of Django, a model refers to a Python class that contains the

essential fields and behaviours of the data being stored. Each model is a subclass

of a generic Django model, which is personalized for the data requirements of the

project. Each attribute of the model represents a database field. All models of this

project are saved on the project database, but this is not required by default. The

32 Bernat Garreta Piñol
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structure of the Django models, the relationships between them and how do they

interact with one another represents the foundations of the Django environment.

The figure 4.1 displays a schematic showing the structure of the project

database. This structure of the model relationships was entirely derived from the

preliminary design that was made at the beginning of the interface implementation.

Although it is possible that this could change in the future, the model relationships

represents the most solid part of the implementation of the interface.

Figure 4.1: Database structure schematic

First of all, on the leftmost part of the schematic 4.1, Robin represents the um-

brella of the project. There is no model named “Robin”, instead, Robin is the project

itself. Robin can be hosted locally or in the server, and each “hosting” of the project

acts totally independently. Robin has multiple modules, and this interface imple-

mentation represents the newest added module.

Each project contains multiple users. The user model is a generic class that had

already been developed for Robin when the interface implementation started. It is

intended that each person that works with Robin RAMS has their own unique user.

However, account sharing is not expressively forbidden and there it is something

not uncommon in Robin.

Each user can create a number of projects. This is done to organize the work

done in Robin in the way that the user wants. At the beginning, each project is only

related to a single user. However, the capability of sharing projects between users

is a feature that will not be very difficult since it has already been implemented in

other modules.

Each project can contain multiple datasets. Each dataset contains a table with

the data that would be used to train a model. The idea is that users upload new

datasets to their projects as the data is being generated. This dataset model would

serve as a way to both storage and organize all the different training data.

Each project also can contain multiple models, not to be confused with Django
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models. Every model can be created using different datasets, and each dataset

can be used to train different models. It is intended that each user can train models

with their own data and that there exists a set of generic models trained by DMD

Solutions available to all users.

Finally, each dataset and model have different associated plots. These plots are

unique to each instance and provide an important insight on both data and models.

They are intended to be used to take decisions such as what dataset to use or not

use, and which model to choose over the others to make predictions.

4.5 Interface display

Although there are still some placeholders, the overall interface display is pretty

much finished. All the different pages have been implemented following what was

previously explained.

4.5.1 Home page

The first page of the module is the home page (fig 4.2), which contains the different

projects used to organize the work and some various statistics and numbers.

Figure 4.2: Home page of PdM module in Robin

4.5.2 Datasets page

When entering a project, the first page that pops up is the manage datasets page

(fig 4.3). This page displays all the datasets that are present on the database and

allows the user to manage them.
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Figure 4.3: Manage datasets page of PdM module in Robin

From the previous page, the user can import new datasets. This is done using

a special page (fig 4.4) that allows to easily upload CSV files through the interface.

The input required by the user is heavily reduced with the use of the “autocom-

plete”, which fills the columns with the most appropriate options without any need

of indication. Obviously, this can also be manually be entered by the user.

Figure 4.4: Import datasets page of PdM module in Robin

4.5.3 Data analysis page

With all the different datasets, the next page (fig 4.5) allows the user to perform

a basic analysis of the data contained in those datasets present on the database.

Basically, several graphs and statistics are displayed on the page, and the user is
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left to interpret those results and act on those conclusions. This could be useful to

learn about which datasets could be more useful to train the algorithm.

Figure 4.5: Data analysis page of PdM module in Robin

4.5.4 Models page

Similarly to the datasets page, the manage models page (fig 4.6) displays the dif-

ferent models and allows the user to interact with them. It is worth noting that there

are a set of generic models that are provided by Robin to all users. These have

been trained using different kinds of varied data and should be able to provide a

decent performance for most cases. However, the user is also able to create and

train new models. The intention is that these would be less generic, therefore they

could provide a better performance when used in the specific kinds of aircraft they

were trained in. These are not shared between users.

From the previous page, the user is able to create new models using the train
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Figure 4.6: Manage models page of PdM module in Robin

models page (fig 4.7). The user is able to select the different datasets that they

wish to use to train the algorithm from the list of datasets. Some settings will be

available to the user in order to tune the training of the algorithm.

Figure 4.7: Train models page of PdM module in Robin

4.5.5 Model analysis page

In a similar way to the datasets, the different models created by the user and the

generic provided by Robin can be analyzed in the model analysis page (fig 4.8). In

this page different plots and figures are shown for each model, providing valuable

information to the user about the performance of the models.
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Figure 4.8: Model analysis page of PdM module in Robin

4.5.6 Failure prediction page

Finally, the last page (fig 4.9) is used to make failure predictions. Basically, the

user uploads a dataset without labels, Robin uses the selected model to predict the

labels of the dataset, and it is downloaded by the user. It has to be noted that the

import page is similar to that previously shown since they perform a very similar

function.

Figure 4.9: Predict maintenance page of PdM module in Robin
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4.6 Summary of the Robin implementation

In conclusion, the interface of the prediction maintenance tool has been success-

fully implemented with a first version on Robin as a new separate module. The im-

plementation was designed to be as robust as possible and to easily allow changes

on the deep learning algorithm. It would not be difficult to change the predictive

maintenance classifier part of the implementation. It has to be admitted that there

is still more work needed and many improvements can still be implemented, how-

ever this first version of the interface represents a big step forward in the completion

of the project.
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Chapter 5: Analysis of previous work

From the beginning of this work, the goal of the project was set to build upon the

previous work done, by expanding and improving the methods and results obtained

at an earlier date. However, during the development of this project several issues

with the approach and methods have been found. The goal of this chapter is to

explain these issues and to analyze certain decisions taken in the previous project,

always keeping in mind that a big portion of the previous work has been and will be

very useful.

5.1 The problem with previous results

The results shown on the report of the previous project [1] are nothing short of

impressive. These results alone should prove beyond any reasonable doubt that the

project successfully achieved its goals. In some aspects, it could even be argued

that the results obtained are beyond expectations.

5.1.1 Results as shown on the report

The results of the previous projects are shown and discussed in section 3.5. Here

is presented a brief summary. As seen on table 5.1, the ANN achieved high values

of accuracy, recall, and above all, precision. These outstanding results can also be

visualized in the confusion matrix 5.1.

Performance Indicators Test (%)

Accuracy 67.724

Precision 98.968

Recall 79.991

F-score 78.627

Table 5.1: Previous ANN performance [1]

5.1.2 Replication of the results

In order to replicate the results, the very same code used to train the previous

algorithm was used without changing a single comma. The same can be said

for the data, which was not changed and remained as it was. Also, the very same
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Figure 5.1: Previous confusion matrix [1]

software tool was used to run these tests to replicate the output shown in the report.

The only noticeable difference is that the hardware was different, as the graphics

card was upgraded. The hardware difference should not matter to a big extent. Its

effects would be negligible at best, and barely noticeable at worst. There is also a

randomized factor. Every time that the code is run, different results will be obtained

based on luck. However, overall, these differences are very small. And by executing

several times the same code a high degree of confidence can be achieved.

For these reasons, it would be expected that very similar results could be easily

replicated. The code was executed several times in two different hardware systems

in order to minimize the randomness factor. However, every time that the code was

executed a very similar outcome was obtained: the results were completely off. Out

of the many executions on either system, the results came nowhere close to those

shown in the report of the previous work.
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5.1.3 Replicated results

The replicated results of the previous projects are shown below. As seen on table

5.2, the ANN achieved nowhere near the high values of accuracy, recall, or preci-

sion of the previous project. These results can also be visualized in the confusion

matrix 5.2.

Performance Indicators Test (%)

Accuracy 30.450

Precision 50.214

Recall 51.482

F-score 50.840

Table 5.2: Replicated ANN performance

Figure 5.2: Replicated confusion matrix
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5.1.4 Observations on the obtained results

After comparing the two results, the ones from the report of the previous project 5.1

and the ones obtained from replicating the results 5.2, only one conclusion can be

reached. The performance of the deep learning algorithm is totally insufficient. All

the performance indicators significantly deviate from the results shown in the report

of the previous project. The absolute drop in performance ranges from 30% to 50%

in all indicators. As explained above, some deviation is to be expected, but this is

beyond any acceptance. The results of the previous ANN showed that it could very

well classify the different data points. However, the replicated results show that the

deep learning algorithm is not better than a coin flip.

To explain this further, in the classification problem of this project there are two

classes. Either there is a defect or there isn’t one. Therefore, one totally random

method to classify any new data point would be to toss a coin. If it lands on tails,

the data point is classified as a “defect”, and if it lands on heads, it is classified

as a “no defect”. After a large enough number of data points, all the performance

indicators (accuracy, precision, recall, F-score) would stabilize at around 50%. This

is because this classification method has a fifty-fifty chance of guessing the correct

class of any data point.

If one looks at the replicated ANN performance 5.1, the comparison with the

coin flip is very grim. In precision, recall and F-score, the algorithm barely outper-

forms the coin flip. The total improvement is only around 1%. This is totally not

significant and could even be explained by other factors. Moreover, when looking

at accuracy, the ANN vastly under-performs. The algorithm only has a 30% chance

of classifying correctly any given data point. Tossing a coin has a 50% chance. If

a classifying method is outperformed by a totally random method, it can only be

accepted as a total failure to achieve the intended result.

The causes of this can be partially uncovered by looking at the validation results

obtained during the training of the algorithm. These are shown on the following

table 5.3.

Performance Indicators Test (%)

Accuracy 50.136

Precision 58.367

Recall 50.136

F-score 53.939

Table 5.3: Replicated ANN validation results

The validation results show that the algorithm barely improves their performance
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during the training. The precision rises by only 8 points, while the accuracy stag-

nates at around 50%. Therefore, it can be concluded that the algorithm is unable to

properly learn during the training. Moreover, the meagre increase in performance

obtained from the validation data vanishes when trying to classify the test data.

However, it is very difficult to obtain the reason behind this apparent lack of learn-

ing. Deep learning can sometimes be similar to a black box, meaning that the input

and output can be thoroughly analyzed, while what happens inside is more difficult

to understand.

5.1.5 F-score issue

Even though the raw results of the previous project can not be accessed, some

basic scrutiny quickly casts a shadow of doubt over their validity. There is one

performance indicator, F-score, that can be calculated by only using the other in-

dicators. To test the validity of the results 5.1, the F-score is calculated from the

precision and recall, and then it is compared to the value shown in the results. This

is shown as follows in equation 5.1.1.

F-score =
2

1
Recall +

1
Precision

=

2
1

0.7999 +
1

0.9897

= 0.8847 = 88.47% ≠ 78.63% (5.1.1)

The results shown in equation 5.1.1 can not be explained. The F-score results of

the calculation and those shown in the report should coincide, they should at least

be very similar However there is an absolute difference of 10 points between the

two values. To obtain these values, the function precision recall fscore support of

the sklearn package was used. This function and package have been widely used

for many years. There is little space to doubt the output it provides. Therefore, it

is inexplicable that the performance indicators shown in the report of the previous

project are not mathematically consistent.

5.1.6 Results assessment

In conclusion, for the matters of this current project, the results presented in the

report of the previous project can not be accepted as valid since they could not be

replicated. If the results can not be replicated, they shall be ignored. However, it

has to be noted that the rest of the work done in the previous project is still valuable.

5.2 The reasons for deep learning

At its core, this project tries to solve a classification problem: from a set of classified

data points, the goal is to develop a classification model for future data points. The
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previous project [1] decided to accomplish this using a deep learning algorithm.

This decision is not acknowledged nor justified in any part of the report. It is only

implied that deep learning is the correct method to solve the classification problem

of this project. However, there are many methods or procedures that can be used to

solve the classification problem. None of them are perfect, as they all have different

advantages and disadvantages. Different situations require different methods. In

any case, the choice of a method over the others should be justified because this

is not trivial.

As a classification method, the main advantage of deep learning is that it is

able to discover hidden patterns and to understand complex relationships between

a large number of interdependent variables. The main drawback is that it requires

a higher amount of resources, mainly input data and processing power, than other

classification methods. This means that in complex problems with enough available

resources, deep learning will outperform the rest of classification methods. How-

ever, in simple problems, and/or situations where the resources are insufficient,

machine learning is vastly inefficient and it tends to under-perform. Another im-

portant drawback of deep learning that has to be considered is the lack of insight

into the inside of the algorithm, since the decision-making process of the algorithm

tends to be obscured and difficult to access.

In other words, the reasons for choosing deep learning over other classification

methods are the following:

• The problem has a high degree of complexity.

• Enough reliable data can be provided.

• Enough processing power can be allocated.

• Algorithm insight is less important than result accuracy.

Taking this into consideration, let us analyze point by point if the problem of this

project is suited to be solved using deep learning.

5.2.1 Problem complexity

The typical classification problems in deep learning consist of speech recognition,

image categorization and natural language processing. These problems are well

suited for deep learning because they are really complex, as can be seen below.

• Speech recognition: the recommended sample rate for audio data is of

16.000Hz, which means in each second 16.000 different measures are taken.

Since training requires a large enough audio data set, the total volume of
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audio data quickly skyrockets. The complexity of the problem arises from try-

ing to classify the audio data from the raw input data. The algorithm has to

extract the pitch, identify the phonemes and understand the spoken words.

Deep learning finds the patterns and relations between the different layers of

the problem.

• Image categorization: the usual resolution of input images is of 256x256,

however a deep learning algorithm can have good results with images with

a minimum resolution of 96x96, which means that for each data point 9.216

different samples are taken, one for each pixel. Moreover, if the image is in

colour, this number has to be approximately multiplied by 4. When trying to

classify an image, many layers have to be discovered and relations between

the different samples have to be understood.

• Natural language processing: there are approximately 500.000 different

words and terms in the English language. It is not difficult to see that the

amount of different combinations to form phrases is immense. The complex-

ity of the problem arises from the many contextual nuances of natural lan-

guage. Many words have different meanings according to their context, and

the wording of sentences can change the message of the speech.

When comparing the complexity these cases to the classification problem of

this project the differences are many. First of all, the database only contains 21

data columns (not counting ICAO code), as seen on table 3.1. Moreover, many of

the data columns are discrete in nature, meaning that their range of values is quite

limited. For example, the onground column is either 0 or 1, the prcp and snow

columns are 0 most of the times. The nature of the database used in the previous

project is more thoroughly discussed in the previous chapter.

Most importantly, it is difficult to observe the need for complex layers or the pres-

ence of hidden patterns between the different variables. Let us use an example to

illustrate this point. In image recognition if a single pixel is of a certain colour, this in

itself does not communicate any sort of information. However, the presence of this

pixel in a set of pixels of the same colour creates a certain shape, and the dispo-

sition of different shapes creates a whole image. In the case of image recognition,

there are complex layers of information hidden in each data point. This can not be

said the same for the problem of this project. For example, precipitation may cor-

relate with a higher chance of defect, and other variables may increase this value.

Maybe high precipitation with high temperatures almost guarantees the detection of

a defect by the end of the flight. However, it seems ludicrous to suggest that there

are multiple hidden and complex layers that relate the different variables and the
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class of the data points. For such degree of complexity, many more columns are

to be expected. For example, this could be the case if dozens of sensor all around

the aircraft measured the structure vibrations. Some pattern could be unveiled that

related some kind of vibrations with a higher risk of suffering a defect.

From the perspective of deep learning, the classification problem of this project

is not complex enough. It is too simple, and there is little reason to think that there

are really complex patterns in the data for the deep learning algorithm to discover.

5.2.2 Available data

The database used to train, validate and test the deep learning algorithm was ob-

tained from 18 different aircraft which suffered 893 defects, creating over 700.000

data points, each related to a minute of flight, which corresponds to approximately

12.000 flight hours. Due to the way the data was collected, it is difficult to obtain

the total number of flights. By estimating an average flight time of 2 hours, the to-

tal number of flights can be estimated to 6.000 more or less. This way, it can be

reasoned that the classification problem of this project consists of 6.000 different

data points and two classes, one with roughly 1000 points (flights that resulted in a

defect) and the other with roughly 5000 (flights that did not result in a defect).

A question that should have been asked is if this sample size is enough to

obtain good results using deep learning. This was not considered at all in the

previous work. Instead, the limiting factor was not how big the sample size should

be, but what was the maximum that could be done with the available resources. To

download all the data, a total of 40 hours of computational time was spend, with 20h

allocated to the flight database and the other 20h to the meteorological database.

Since this process had to be closely monitored and it was impractical to achieve

a high degree of automation, it was totally impractical to obtain a larger amount of

data.

When pressed for answers, many data scientists quote that, as a rule of thumb,

to start getting results with a deep learning algorithm a sample size of at the very

least 1000 for each category is required [13]. However, this is a lower end estimate

that is more based on experience than on an actual calculation. A higher end es-

timate can be obtained using a worst-case calculation method [14]. For a simple

network structure, this method yields a sample size of 4000 for each class. There-

fore, it could be understood that to obtain results with a deep learning algorithm,

the aim should be to obtain a between 1000 and 4000 samples for each class.

Going back to the database used in this project, the two classes have different

sample sizes, which should not be a big problem on itself. The flights that did not

result in a defect consist of 5000, more than the required range required obtain
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results with deep learning. However, the flights that resulted in a defect consist

of only 1000 samples. As such, no definitive conclusion can be reached in this

aspect. Although a sample size of a 1000 is within the range of values needed to

obtain results, it’s on the lower end. It could be possible that deep learning is unable

to produce good results due to the low sample size of the database. However, it is

also feasible that some results could be obtained. In any case, a bigger sample size

should be recommended in any case, either to start getting results or to improve

the classification of the algorithm. The sample size seems to be the bare minimum,

and maybe less than that.

5.2.3 Available resources

One of the main drawbacks of deep learning is that algorithms are extremely re-

source expensive to train. This is due to the complex data models inherent to deep

learning. Powerful computational resources need to be available in order to pro-

duce results within a sensible time frame.

To give an idea of what this entails, let us illustrate this problem with real data.

In the previous project, the computer used to run the code would take around 100

minutes. For this project, in order to better run the deep learning algorithm train-

ing code, two different computers where used. The first one was a medium scale

laptop, more than capable of using all the typical office programs and with decent

hardware that could hold its own with some resource intensive applications. Run-

ning the code to train the algorithm from beginning to end would take around 60

minutes. The other computer used was a large desktop, with a great graphics card

and expensive hardware. It would take around 10 minutes to run the code. Al-

though it was close to 6 times faster than the other, the desktop was not as readily

available as the laptop, as it had other taking its time.

This values seem to be very low at a first glance. If the deep learning code

had be run only once, they would prove no issue at all. However, having to spend

this amount of time on every run of the code ends up hampering the development

of the deep learning tool. If the code is to be changed or adjusted in anyway, the

computer takes the aforementioned amount of time to generate the results. As

such, if an other faster classification tool had been used, better results could have

been expected. Not because of the tool in itself, but because the developers of

the tool could have spent more time tuning and changing the code. In the end, the

execution time of the code can severely limit the number of changes to the training

algorithm and the database. New things could have been tried, more options could

have been explored, other ways to do the same thing could have been looked into.

In conclusion, although there were enough computational resources to run the
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deep learning algorithm, the results could have been hampered by their amount. In

order to reduce the computational strain, either the number of resources should be

increased or another classification method could have been used.

5.2.4 Algorithm insight

With the correct framework, deep learning can be very good at solving classification

problems with a high degree of complexity. However, there is always one issue

where deep learning is severely lacking. This aspect is the interpretability and

explainability of the algorithm. In a certain way, deep learning acts as a sort of

black box. The input and output data are know and easily accessed. There is

little problem to interpret the data that enters and exits the algorithm. However, the

processes that happen in-between prove to be much harder to interact with.

When using deep learning to solve a classification problem, the trade-off be-

tween higher accuracy in the results and lower interpretability of the decision-

making process has to be considered. In the case of this project, algorithm insight

seems to be considerably important. Understanding the causes of the defect can

prove to be more important than an increase in the classification accuracy. For in-

stance, if the chance for a defect was highly increased when flying at high speeds

on rainy days, this information would be very helpful for the user of said aircraft.

Having a more accurate classification of the defects would lead to better outcomes

and a better predictive maintenance process. However, it could be argued that it is

more important for the final costumer to be able to learn the the different aspects

that influence the appearance of a defect, to understand what tends to increase

and what tends to decrease the probability of failure, and to obtain the necessary

data in order to find the possible ways to reduce malfunction risk.

5.2.5 Decision assessment

According to what has been exposed to this point, the choice of using deep learning

seems to not have been well substantiated:

• The classification problem that is to be solved does not appear to be complex

enough for deep learning.

• The available data gathered up to this stage may be not enough to correctly

train the algorithm.

• There increase in required processing power has proven to be a strain in the

project.
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Final Master’s Degree Project

• The trade-off between lower interpetability and higher result accuracy does

not seem to be justifiable.

As such, it can be concluded that in the case of the classification problem of this

project, the advantages of deep learning do not seem to justify its inconveniences.

It can be argued that another classification method better suited for the character-

istics of this project should have been chosen. However, the decision to use deep

learning as the classification method was taken before the start of the project. It

can be argued that the previous project did not have much choice in this matter.

5.3 Correlation and causation

The ultimate goal of this project is to create a predictive maintenance tool capable

of detecting if any given flight would result in a defect on any part of the aircraft. As

the name implies, PdM is based on predicting faults in advance. In other words, the

algorithm should be able to discern if there is a high chance for a defect before the

take off of the aircraft. Therefore, from a certain point of view, the main objective of

this project is to indirectly study the causes of aircraft defects.

However, deep learning (and the rest of classification methods) is only focused

on correctly classifying the input data. As such, it tries to find the correlation be-

tween the variables of the data point and its label. This means that the algorithm

is totally incapable of discerning correlation from the real objective of the project,

causation. In order to successfully create a predictive maintenance tool, under-

standing the causes of the defects is key, while the results of the defects are of little

importance.

5.3.1 The importance of causation over correlation

In the typical classification problems of deep learning (speech recognition, image

categorization and natural language processing), there is no problem of finding

causation versus correlation. Each data point has a set of data that has to be

correlated with its label. Finding the correlation is the only objective, and this is

because an accurate classification does not need anything else. Besides, in these

kinds of problems, the very same concept of causation bears little significance. An

image of a car can be categorized in many ways, and the same can be said of voice

recording of a single word. There is no causation here, only correlation between

variables and labels.

In the classification problem of this project, finding causation versus correlation

presents an important challenge. Understanding the causation of the defects can
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be used to predict when the aircraft has a higher chance of failure and act before it

is too late. However, if the algorithm only looks at correlation, it may end up being

useless at predicting failures. This is because in order to correctly classify if a flight

would result in a defect, better results in accuracy could be obtained by scanning

and looking for the results of defects, instead of looking at the causes. As such, the

algorithm would be of no use to aircraft operators because it would be impossible

to obtain the required data to predict a defect.

Let us illustrate this with an example. Imagine an aircraft that each day goes

from point A to point B, except when a failure is detected. In that case, the air-

craft would land at point C in order to be repaired. If the deep learning algorithm

presented in the previous project was given this theoretical case, it would easily

achieve a high degree of accuracy. On any given flight, the algorithm would look at

where did the aircraft landed, and classify the flight as a defect if it was on point C

or as a no defect if on point B. However, this would be totally useless to the aircraft

operator, because all flights were scheduled to land at point B. Relying on data

that is unknown before the flight results on the algorithm being totally useless for

predictive maintenance.

Obviously, such an extreme case as explained above is very unlikely to be found

in the real world. But the idea presented here can be reproduced in many ways.

For example, having a fault in the engine could result in a lower aircraft speed, and

having a fault in the ailerons could result in wider turns. However, these results

would be of no use to make engine or aileron defect predictions. Instead, the

algorithm should look at the possible causes of the defects. For example, it could

be possible that, before the flight, having flown at high speeds or having conducted

tight turns were correlated with a high chance for defect. This would be useful

for the operator, since this could enable them to perform some kind of predictive

maintenance.

5.3.2 Causation in Machine Learning

The problem of finding causation is inherent to Machine Learning (ML), and as

such, it is also an issue in deep learning. Since machine learning finds the cor-

relation relationships in the database, the goal would be to find a method to go

from correlation to causation. The issue is that causation always entails corre-

lation, but correlation does not necessary entails causation. In other words, if a

variable change causes another to change, then the first is correlated with the sec-

ond. However, if a variable is correlated with another, it does not necessary mean

that a change in the first variable will provoke a change in the second.

This happens because of confounders, which refers to variables that influence
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other variables and the categorization of the data point at the same time. For ex-

ample, a correlation could be found between the number of ice creams sold and

the number of people that report having suffered a sunburn. It would be difficult to

argue that buying ice cream increases the chance of suffering a sunburn, or vice

versa, that suffering a sunburn increases the chance of buying an ice cream. In-

stead, the level of solar radiance could be the cause behind both variables. A higher

solar radiance could be causing both an increase in the number of ice cream sales

and the number of sunburns. In this case, solar radiance would be considered a

confounder variable.

There are numerous real world examples where discerning correlation from

causation has proven to be a problem for the ML methods.For instance, an Amer-

ican algorithm used to predict the re-offending probability turned up to be racially

biased against blacks [15]. Even if there existed some correlation between race

and re-offending, it is totally ridiculous to even suggest that the race of a person,

when the same other background factors are equal, could influence the re-offending

probability of said person.

In conclusion, although the problem of correlation versus causation is inherent

to machine learning, this has to be considered. Said aspect has to be discussed

and its consequences analyzed if this project aims to be successful.

5.3.3 Correlation without insight

As explained before, the causation is more important than correlation when trying

to make predictions. However, correlation on its own, that is, without any kind of

regard for causation, is not entirely worthless. Obtaining the correlation between

some aspects of the problem can prove to be very useful data for the operator, even

if there is no causation between them. For example, learning that after occurring a

defect during flight the aircraft tends to arrive later than expected (because the pilot

flies more carefully, or the aircraft performance is impaired, or whatever reason),

could be very interesting for the operator, even if it does not help in predicting the

occurrence of failures.

However, as explained on section 5.2.4, using deep learning has the inconve-

nience of diminishing the interpretability of the results. As such, due to the choice

of this classification method, it is more difficult to take advantage of the correlations

found by the algorithm.
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5.4 Usefulness of defect prediction

Even after all the problems and different issues that have been outlined to this point,

let us imagine that, somehow, the deep learning algorithm is a total success. A

new algorithm is developed that is capable of predicting aircraft failures with a high

degree of accuracy based on the required input data. It would be expected that

this PdM tool had a high degree of usefulness for all aircraft operators. However,

even with this near ideal results, the usefulness of the tool could be considerably

impaired due to a number of reasons.

5.4.1 Lack of probability

Even with the best possible conditions, in the real world there is always a random-

ness factor. As such, when a classification method predicts a class for a given data

point, this should not be understood as a pure prediction but as the most probable

class. In other words, based on the data, the classification method calculates the

probability of that point belonging to each class, and as such, it predicts that said

point belongs to the class with the higher probability. It is impossible to get a total

assurance that a point belongs to a certain class, as in the real world there always

exists some randomness that has to be accounted for.

However, the algorithm developed for this project only predicts if a certain data

point would result in an aircraft defect, or not. In other words, the output is totally

binary, it’s either a 0 for a no defect, or a 1 for a defect, with no in-between. This

means that the operator would always lack a key part of the data, which is the

chance of the occurrence of a defect. The degree of certainty of the prediction

should be communicated in some way to the user, because the algorithm always

has some doubt, it can’t ever be totally sure.

This is important if the operator is to make the correct decision. For example,

imagine that on a certain instant, the collected data points to a 5% chance of a de-

fect occurring on the single engine of the aircraft. Using the algorithm as it is now,

the tool would communicate that there would be no defect on the next flight, since

there is a 95% chance that there is no defect. But if the operator knew that there

is a 5% chance of loosing the single engine, and as such, suffer a very danger-

ous failure, they would probably perform some kind of maintenance on the engine

before attempting to fly.

Although it might seem minor, knowing the degree of certainty of the failure

prediction of the aircraft is important. Communicating the result of the prediction on

its own is missing the degree of certainty.
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5.4.2 Lack of defective part

In the current state of affairs in the aviation industry, when a defect of a component

is detected (reactive maintenance) or when the expiry date of a part is passed

(preventive maintenance) the operator of the aircraft performs the replacement of

the affected part. Usually, the operator has a considerable stock of spare parts,

ready to be used as need be. The defective component can be replaced in a

very quick and easy manner, with little need for machinery or tools. Most of the

times, only a simple check is performed on the part before sending it back to the

manufacturer, who will repair the part as required and return it. Thanks to this

process, the down-time of the aircraft is minimized.

When using the algorithm to detect if the next flight of an aircraft would result

in a defect, the resulting output does not state what part or system will be in fault.

Airplanes are complex machines with many separate systems and thousands of

different parts. Knowing that a part of the aircraft will fail but not knowing which

one in particular will render defect prediction totally useless for the operator. If the

part that is about to be defective had to be found, the operator would have to strip

down the entire aircraft and all of its components. The search for the defective part

would be arduous and time-consuming. When it comes to maintenance, aircraft

operators are interested in reducing costs and minimizing down-time. This mainte-

nance operation would be very expensive and would render the aircraft essentially

inoperative for a long span of time.

On top of that, the maintenance operation needed to replace the defective part

would be even more difficult when taking into account that the part that is to be

replaced has not failed yet. It may be difficult to find a broken blade, an oxidized

valve or a faulty actuator when the operator has no idea what to look for. However,

it is nearly impossible to find a component that has not failed yet. It has to be

admitted that some components show signs of wear, become rusty or lower their

performance before failing completely. But the ultimate truth is that it is impossible

to distinguish components that will fail in the next flight from those that will not.

Moreover, there are components that even after failing look completely normal, and

only through testing can be verified as being defective.

Furthermore, not knowing what part or system is about to fail also presents a

problem when analyzing the severity of the defect. For example, it is obvious that

if the toilet is defective it could be a little inconvenient for the passengers, but if the

aircraft loses an engine, the effects from that would be much more severe. From

the operator’s point of view, the information of what part is on the verge of defect

is key to make the right decision. And it is even more crucial if the aircraft is to be

maintained with a reasonable amount of time and resources.
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5.4.3 Lack of input data

When talking about the usefulness of a predictive maintenance tool, a certain bal-

ance has to be reached between the required input data and the accuracy of the

prediction. Usually, the more data the classification algorithm is provided, the more

accurate predictions is able to make. However, if the amount of data needed to be

inputted into the algorithm is too large or the process of collecting and processing

the data is too long and complex, the aircraft operator might be unable to effectively

integrate the tool into their maintenance process.

With this in mind, the current algorithm is structured in a way that makes it even

more difficult to use effectively. The deep learning algorithm has been trained to

detect the failures in aircraft flights from the flight parameters and meteorological

data of said flight. Therefore, in order to predict the upcoming failure in a flight,

the algorithm needs to be inputted the data of the flight. This presents a problem

because this data will not been recorded or measured until the flight has already

ended. In other words, in order to effectively use the predictive maintenance tool,

the aircraft operator would need to collect some data that does not exist yet.

As explained on section 3.2, the algorithm database is composed of the flight

data and the meteorological data. Taking into account the type of data, it has to be

admitted that these parameters could be estimated before the flight:

• The flight plans provided by the pilot before departure could be used to es-

timate the flight parameters (speed, attitude, location, and others) at the re-

quired points during the flight. However, this would not take into consideration

path deviations or missions without a meticulously detailed plan (training ex-

ercises, military sorties).

• The meteorological data (temperature, wind speed and direction, amount

of rain) could be estimated by using weather previsions. The main issue

would be that weather previsions are more accurate the closer they are to

the present time. As such, the operator could be forced to conduct predictive

maintenance very close to the departure.

In the end, even if the required parameters can be estimated, this presents a big

problem. First, some kind of tool would have to be developed in order to estimate

the required data. But more importantly, the accuracy of the defect prediction would

become reliant on the accuracy of the data prediction. In other words, this would

become a prediction based on a prediction of some data. It could be perfectly

possible that, even if the deep learning algorithm is somehow made to work on a
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theoretical environment, it would totally under-perform when put in practice in the

real world.

5.5 Database capabilities

A question that should have been asked when designing and building the database

is whether the data that was being gathered could ever be capable of fulfilling its

intended goal. For example, a database containing all kinds of weather data could

be used to predict the chance of precipitation. Maybe in the end the training is

ineffective, but it seems feasible that by using weather data an algorithm could

predict the presence rain. However, the very same database would be incapable

to predict the day of the week (Monday, Tuesday, Friday). It would seem totally

unfeasible that an algorithm could predict (with a reasonable degree of accuracy)

which day of the week is currently in by just looking at the weather.

In order to correctly analyze the capability of the project database to accomplish

its intended objective, the cause and indications of defects have to be understood.

In the end, the goal that has to be reached is discerning whether the database can

possibly provide data causing or indicating an upcoming failure in the aircraft.

5.5.1 Malfunction patterns

Under the guidance of the FAA, United Airlines conducted a study on source of

failures in aviation. As it stands now, six different failure patterns are used to explain

the defects in equipment. These are shown in figure 5.3, where the Y axis shows

the operational time of the equipment and the X axis shows the chance of failure.

Figure 5.3: Previous confusion matrix [6]

The patterns A, B and C are age related, meaning that as the age of the part

increases so it does its chance of failure. Calculating the expected time of failure

of this parts is considerably easy thanks to their malfunction patterns. However,
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most parts (up to 89% of all equipment) do not fall under any of this patterns,

but on patterns D, E and F, where the age of the equipment does not significantly

affect its chance of failure. In these cases, the failures are explained as being

essentially random in nature. The ultimate goal of this project is to find a pattern in

this randomness in order to predict equipment failures.

5.5.2 The causes of malfunctions

Usually, when an aircraft part is found to be defective the manufacturer of said

parts conducts an investigation into the causes of the failure, as explained on sec-

tion 2.1.2. By looking into the reports of these investigations, a series of repeated

causes of equipment failure can be found, which are shown as follows. This list is

not comprehensive and all encompassing. It should also be taken into considera-

tion that only the causes related to equipment itself are displayed, and that those

related to external factors (human error, bird-strike, hail, wrong maintenance, for-

eign object damage, and many others) are not shown.

• Age deterioration.

• Wear and tear.

• Software glitch.

• Mechanical dis-adjustment.

• Leakage.

• Fatigue failure.

• Degradation and corrosion.

• Contact failure.

• Short-circuit.

• Chaffing.

• Database corruption.

• Others.

The different aspects of malfunctions vary among the different systems of the

aircraft. Analyzing the behaviour of defects in each and every system would be

too long, since aircraft are really complex machines with many different systems.

Instead of doing this, the electrical failures have been further studied to give an idea

of what is to be expected.
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5.5.3 Aircraft electrical failures

A study conducted to evaluate the causes of aircraft electrical failures [16] provides

some very interesting data that can be used to understand the nature of electrical

defects.

The study report provides a summary of electrical failures in aircraft. Connector

failures account for the most defects, followed by parts and connections on printed

wiring boards (PWBs). Connectors and PWBs are identified as the main contribu-

tors to electrical failure. The data can be seen as follows.

• 40% Connectors

• 30% Parts on PWBs

• 20% Connections on PWBs

• 10% Other

The main problem in the failure of connectors was identified as the formation of

surface films, which caused the connectors to be non-conductive. By studying the

defective PWBs in more detail, the study was able to rank the PWB components

based on their replacement frequency, which is showed below.

• 27% ICs

• 14% Transistors

• 12% Hybrid circuits

• 12% Capacitors

• 12% Resistors

• 10% Diodes

• 3% Soldered joints

• 10% Others

Admittedly, the replacement frequency is not the same as the failure rate of the

component, but it can be used as an estimation since they are closely related. In

the end, that investigation was able to conclude the following.

• The majority of electrical failures in aviation are caused by interconnection

problems, which are primarily due to wiring and connector failures.
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• The dominant failure mechanism appears to be chafing, which results in elec-

trical arcing of wiring and corrosion.

• At the printed wiring board level, the components primarily responsible for

failure are connectors and semiconductors.

5.5.4 The indications of malfunctions

In the previous sections, the causes of malfunctions have been looked into. But it is

important to remark that there is another aspect of malfunctions that can be of use

when trying to predict them. And this is the possible indications of an upcoming

malfunction.

In order to predict if a failure is incoming, one can look at the causes of said

failure to determine if the chance of those causes braking a component. However,

another way to predict failures is to look for indications that a malfunction is incom-

ing. For example, if a component is about to fail, maybe it sees its performance

reduced, it starts making some noise or it does not respond as quick as it used

too. These aspects on their own are not the causes of the defect, but they may be

indications that a failure is on the making.

In other words, when dealing with the prediction of defects one has to take into

account that there are some aspects that may indicate the future presence of a

failure even if they are not their direct cause. This field is not as studied as the

causes of malfunctions, and as such not much is known yet.

5.5.5 Usefulness of flight data

After understanding more about the causes and indications of malfunctions, the

goal of this section is to analyze the capabilities of the flight data to detect upcoming

failures in aircraft. As it can be seen on section 3.3, the part of the database formed

by the flight data contains the following variables.

• Latitude and longitude: On its own, the location of an aircraft during the

flight does not seem to either be the cause or indicate the presence of fail-

ure in any way. At best, if the database was filled with enough flights from

all around the world (which is not the case), the algorithm might identify the

zones in the globe where aircraft are more prone to failure. However, it is dif-

ficult to argue that the aircraft location during flight is the cause of or indicates

any kind of failure in the equipment.

• Altitude from barometer and GNSS: Similarly to the location on the globe,

the altitude of the aircraft seems improbable to be the cause or indication of
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many defects. Maybe some components are more prone to failure at certain

altitudes, or to sudden changes in altitude, but this is unlikely and the scope

of parts somewhat reduced.

• Aircraft velocity: Obviously, high speeds above a certain threshold are

bound to cause numerous defects in the aircraft. However, this does not

happen in normal operation of the aircraft. In this case, the aircraft velocity

is unlikely to indicate any kind of failure (if the aircraft speed is reduced, the

defect has already happened) or be the cause of many failures (maybe some

very specific defects in the airplane surfaces or engine).

• Direction of movement: It is very unlikely that the direction of the aircraft has

any kind of effect on the appearance of defects. The pointing of the aircraft

does not convey any kind of interesting information. However, it is true that

the integration of the aircraft direction could cause some sort of minor defects

(tighter turns could cause problems in the control surfaces for example), but

the scope would be small.

• Vertical speed: It is possible that the vertical speed of the aircraft has some

influence on the appearance of defects in the wings of the airplane or in the

landing gear, but it has to be noted that on normal operation aircraft fly at

speeds set within limits set by the manufacturer.

In conclusion, it is unlikely that the flight data can be used to predict many

failures on aircraft flights. It is possible that these variables are the cause behind

some very specific defects on the exterior of the plane or the engines. But this is

both unlikely and reduced in scope.

5.5.6 Usefulness of meteorological data

After analyzing the flight data, the goal of this section is to study the capabilities

of the meteorological data in a similar fashion. As it can be seen on section 3.3,

the part of the database formed by the meteorological data contains the following

variables.

• Current temperature: It is possible that extreme temperatures influence the

chance of failure of external components, the engines or the anti-icing system.

However, on most operation, the temperature tends to fall within a comfortable

range.

• Relative humidity: Maybe some external components are more likely to be

oxidized when exposed to certain humidity conditions.
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• Dew point temperature: This variable can be calculated from the tempera-

ture and humidity of the air. On top of that, it seems very unlikely that this

obscure magnitude can be used to detect any kind of failure.

• Precipitation: Maybe some external components are more likely to be oxi-

dized when exposed to rain.

• Snow depth: Maybe some external components are more likely to be oxi-

dized when exposed to snow.

• Wind direction: On its own, the direction of the wind is very unlikely to be

the cause behind any kind of defect. However, it could be interesting to cross

this variable with the direction and velocity of the aircraft in order to obtain the

wind direction from the point of view of the aircraft.

• Wind speed: It seems reasonable to think that extreme wind speeds could

cause some sort of damage to exterior components, but this is a rare occur-

rence.

• Peak wind gust: This obscure variable seems very unlikely to be useful in

any kind of way. Besides, the database already has the wind speed, so there

is little reason to store the peak wind gust.

• Sea-level pressure: Maybe the pressure around the aircraft somewhat influ-

ences the appearance of defects in external components, and it is reasonable

to think that sea-level pressure combined the altitude of the airplane can be

correlated with the pressure around the aircraft.

• Total sunshine: It is highly unlikely that the sunshine exposure of the aircraft

meaningfully affects the appearance of defects.

• Weather condition: Probably rainy weather increases the chance of corro-

sion and oxidation on the exterior components. However, it has to be noted

that usually these parts are protected with some paint or varnish to expres-

sively avoid this.

In conclusion, it is unlikely that the weather data can be used to identify a size-

able number of defects. Reasonably, maybe some defects on the exterior of the

aircraft could be predicted, but this is very reduced in scope.

5.5.7 Usefulness assessment

In the end, after studying the defects in aircraft and the capabilities of the database,

one conclusion has to be reached. This is that the database intended to be used to
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train the algorithm appears to be totally incapable of predicting the majority defects.

Trying to find any kind of useful correlation between variables and defect labels

seems to be incredibly difficult if not impossible just because of the nature of the

database.

One can not expect to meaningfully detect failures in an aircraft by just looking

at its flight path and the environmental conditions. At best, only a minor part of all

defects could be expected to be predicted.

5.6 Validation of correlation

According to the previous project report [1], one of the main aims of the study was

to “show that there is a clear correlation between failures and the conditions that

the aircraft endures in its life cycle”. This would be done to capture the attention of

potential customers, since it was implied that if it was possible to find a correlation

between the defects and recorded data for this project, it would be possible to find

a correlation between the defects and the data of new clients.

However, this is not necessarily true. This statement, which was taken as a

fact, is not based on any kind of concrete evidence. This is because if one is able

to find a correlation within a database, this does not in any way entail that a similar

correlation could be found on an entirely separate database. In other words, finding

a correlation between the defects and the recorded variables in the dataset of this

project would not prove that the very same could be repeated with the dataset of a

potential client, which would obviously be totally different from the present dataset.

It has to be admitted that finding a correlation within one dataset (which has not

happened in this project) proves that one is well versed in the field of data analysis.

But in the end, this would not prove that one can find a correlation in the database

of a potential client, or even that there is one correlation present there waiting to be

found. It is entirely possible that a new database is totally uncorrelated and there is

no way to create a good classification model.

In any way, it is expected that one should be careful with their words and not

make deceitful statements that could end up deceiving potential clients.

5.7 Summary of the critique

As a summary of this chapter, many issues and problems have been found in the

work and results of the previous project. These are briefly shown in the list below.

• It has been impossible to recreate the results shown in the report of the pre-

vious project using the very same code and data.
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• The decision of choosing deep learning as the classification algorithm seems

questionable. Probably another method could have been chosen if possible.

• The problem of correlation versus causation in the database is a complex

problem that has not been solved yet.

• Even if the predictive tool was made to work, it would have several important

issues. Predictive maintenance would be very difficult with the current inputs

and outputs.

• The database created in the previous project is arguably incapable of predict-

ing the majority of aircraft defects.

• Even if correlation was found in the database, this would not prove that it could

be repeated on a different database.

As a final note, one thing has to be made clear. Many things were done correctly

by the previous project. And this work has been very useful for the current project.

This chapter, and all that has been exposed, should be taken as constructive criti-

cism aimed at trying to identify and solve the issues that have been detected.
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Chapter 6: Data analysis and processing

An important part of the effort for this project has been devoted to performing an

analysis of the data, with the intention of better understanding the database created

by the previous project and to obtain better results. From this first database, a

new database was created based on the findings of the analysis, and the results

from the two datasets were compared. This chapter explains the process of data

analysis, the reasoning behind each decision taken during said process, and the

results obtained from all of this.

6.1 Data exploration

The first part of any kind of data analysis is the exploration of the data, which is a

first step in the data preprocessing. Although some data exploration was conducted

in the previous project, it has to be considered insufficient and too much superfi-

cial. A good exploratory analysis is usually key to visualize the data structure, the

different values that said data can take, and the type of the variables. This section

presents the new exploratory analysis process and its results.

6.1.1 ICAO field

After the most basic initial exploration of the data, a first issue was noted with the

“icao” field, which is a categorical variable containing the ID (ICAO code) of each

aircraft. Since the goal of the project was to create an algorithm that works for most

aircrafts (and not a single specific aircraft), it is unwise to feed the algorithm training

an aircraft identifier, as the algorithm could end up relating the target variable with

individual airplanes.

Therefore, it was decided to use some information that lies behind the ICAO

code but in a way that is less specific to individual aircraft. The “icao” field was

transformed to the “borndate” field, which contains the born year of the aircraft.

This variable is more generic and less specific, and, on the surface, it seems that it

could be used by the algorithm to predict failures in aircraft. For example, it could

be possible that an aircraft with more active years is more prone to failure than an

aircraft that has just entered its operative cycle.
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6.1.2 Defects over time

In order to visualize the occurrence of defects over time, a plot was created in

which the X-axis displayed the time and the Y-axis displayed the defects (1 for

defects, 0 for no-defects). This was repeated for each separate aircraft present on

the database, and can be seen on figure 6.1 below.

Figure 6.1: Defect occurrence over time

The previous figure 6.1 already displays some bits of very interesting data. First

of all, there are big gaps on the data, meaning that there were long periods of time

when the aircraft were not flying. Secondly, the database ranges from 2016 to 2021,

and the total number of aircraft is 8. As explained in section 3.2, the first part of this

statement agrees with what is said in the report of the previous project. However,

the second part of this statement contradicts the report of the past project, since in

that case it was stated that the total number of aircraft was 18.

6.2 Variables distribution and processing

The next step in the analysis of the data was the investigation of each variable in

particular, separate from the others. The goal of this section was to study the distri-

bution of each field and, based on that data, transform the database if necessary.

6.2.1 Born year

As explained in the section before, the variable “born year” was created from the

“icao” variable. The distribution of this field can be seen on figure 6.2. As it can

be seen, this is a categorical variable, where each year is a different category. Not
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much can be said from this distribution except that in the fleet that composed the

database, the aircraft born on 2014 accumulated the most flying time.

Figure 6.2: Histogram and box-plot of born year

6.2.2 Days since new

The variable of “days since new” is a new variable that was created by combining

the “time” and the “born year” variables. The variable “time”, which this new variable

is intended to be a replace of, only displayed the time of the data point. The ex-

act time at which the data was recorded does not convey any valuable information

to the algorithm. Instead, this data should be related in some way to the aircraft.

Therefore, by subtracting the born year of the aircraft from the time of the recording,

the new variable “days since new” has been created. This could be useful because

the age of the aircraft could influence the appearance of defects. From the distri-

bution plot shown in figure 6.3, it can be seen that this variable follows a Gaussian

distribution with some outliers.

Figure 6.3: Histogram and box-plot of days since new
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6.2.3 Latitude and longitude

The variables of “latitude” and “longitude” are two fields that should not be ob-

served separately, since they are two numbers that are used together to describe

the position of the aircraft. The figures 6.4 and 6.5 display the distribution of the

latitude and longitude respectively. From this plots, the only information that can

be extracted is that these two variables are highly concentrated and that there is

a significant number of outliers. However, as explained above, they should not be

studied independently.

Figure 6.4: Histogram and box-plot of latitude

Figure 6.5: Histogram and box-plot of longitude

In order to learn more about the latitude and longitude variables, they have

been plotted on a white canvas versus the locations of meteorological stations all

over the world. This can be seen on figure 6.6, where each red dot represents

a meteorological station and each blue dot represents the location of a recording

in the database. From this plot it can be inferred that the vast majority of flights

recorded in the database were conducted in the mainland of the United States of

America and southern Canada, with some flights in England and Switzerland.
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Figure 6.6: Trajectory of flights and station locations

6.2.4 On ground

As explained section 3.2, the variable “on ground” should indicate if the aircraft is on

ground “1” or flying “0”. However, as it can be seen on the figure 6.7 displaying the

distribution of “on ground”, this field contains zeros for the vast majority of instances.

Out of the more than half a million entries, just 1300 points contain anything other

than a “0”. The reason for this could be that when the database was being created

only the recordings taken during flight were saved in order to reduce the size of the

dataset. In the end, it has to be concluded that “on ground” cannot be used by the

algorithm to predict defects and is removed from the dataset altogether.

Figure 6.7: Histogram and box-plot of on ground
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6.2.5 Barometric and GNSS Altitudes

On the one hand, the variable “baroaltitude” shows the altitude of the aircraft mea-

sured by the barometer. On the other hand, the variable “geoaltitude” shows the

altitude of the aircraft provided by the GNSS. Which is to say that these two fields

are measuring the same thing. As on could expect, the variable distributions shown

in figures 6.8 and 6.9 are totally similar, with only some minor difference between

the two fields. Observing the different values of the database in detail, one thing be-

comes clear: in the vast majority of cases, there is only a small gap between the two

variables tends to stay pretty much constant. Since the two variables have a high

degree of correlation, it’s not worth to have two separate fields in the database. It

has been considered that the altitude provided by the GNSS would be more precise

than that provided by the barometer. For this reason, only the “geoaltitude” variable

is used as an input for the algorithm, and the “baroaltitude” variable is discarded.

Figure 6.8: Histogram and box-plot of barometric altitude

Figure 6.9: Histogram and box-plot of GNSS altitude

It has to be noted that most altitude values shown in the previous distributions

seem to be consistent with what should be expected. Most values are located in

the range of 18,000 f t (5,000m) and 30,000 f t (9,000m), which consist of the altitudes
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Final Master’s Degree Project

at which turboprop aircraft are the most efficient. It has to be admitted that there

is a significant number of outliers with altitude values that are simply not possible

to accomplish. However, their number is very small, close to insignificant when

compared to the total number of entries.

6.2.6 Velocity

Simply put, the “velocity” variable displays the total aircraft speed. The distribution

of this field, which is shown in figure 6.10, is clearly Gaussian with very small vari-

ance. Most values are within the range of 50m/s and 200m/s, which is as expected

since these are the typical velocities of a turboprop aircraft. The outliers with lower

values can be explained as aircraft velocities recorded during take off or landing.

However, there are some outliers with ridiculous speeds that are simply unachiev-

able with a turboprop airplane. But again, these are very few in number, close to

insignificant.

Figure 6.10: Histogram and box-plot of velocity

6.2.7 Heading

The “heading” variable represents the direction of the aircraft in the compass, being

0 degrees the north direction and 180 degrees the south direction. As it can be seen

in the distribution of this field, shown in figure 6.11, the “heading” variable is very

uniform all around the compass. There are two peaks that roughly correspond to a

north-east and a south-west trajectories. Since this variable is very uniform and it

was reasoned that the simple heading of an aircraft seems to be unlikely to affect

the appearance of defects, it was decided to discard this field from the database.
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Figure 6.11: Histogram and box-plot of heading

6.2.8 Vertical speed

As its name indicates, the variable “vertical speed” represents the vertical velocity of

the aircraft, with a positive value when ascending and negative when descending.

The distribution of this field, which is shown in figure 6.12, is very concentrated on

the value “0”, which is understandable since most of the times aircraft tend to fly on

a level plane. In order to improve the performance of the algorithm when reading

this variable it was decided to transform this field from numerical to categorical.

With this change, when the aircraft is flying steady a “0” appears on the vertical

speed field, if it’s ascending a “1” and a “-1” when descending.

Figure 6.12: Histogram and box-plot of vertical speed

6.2.9 Temperature

As obviously as it seems, the variable “temperature” displays the current air tem-

perature. The distribution of this field is shown on figure 6.13. Not much can be

extracted from this plot, and the values that are displayed seem to be believable

and consistent.
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Figure 6.13: Histogram and box-plot of temperature

6.2.10 Dew point temperature

The variable “dew point temperature” measures the temperature at which point the

air would become saturated with water considering a constant pressure and water

volume. When observing the distribution of this variable, shown in figure 6.14,

one thing becomes clear: this field is extremely correlated with the “temperature”

variable. Because of this reason, and because it seams unreasonable to think that

the dew point temperature of air can affect in any way the appearance of defects, it

was decided to discard this variable from the database.

Figure 6.14: Histogram and box-plot of dew point temperature

6.2.11 Relative humidity

The distribution of the variable “relative humidity”, which has a self-explanatory

name, is shown on figure 6.15. Not much can be deduced from this and as such,

no action has been deemed necessary for this field.
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Figure 6.15: Histogram and box-plot of relative humidity

6.2.12 Precipitation

The variable “precipitation” presents a very unique distribution (fig 6.16), where

there is a huge concentration of points with a value of “0”. This can be understood

since most of the time there is no rain. The number of outliers, that is, instances

where the precipitation is greater than none, is very small, totally insignificant. For

this reason, this variable has been discarded from the database.

Figure 6.16: Histogram and box-plot of precipitation

6.2.13 Snow

It could be expected that this field has a very similar distribution to the “precipition”

variable. However, the figure 6.17 shows that this field only contains zeros, with

no outliers whatsoever. For this reason, this variable has been discarded from the

database. Since this field contains no data, it can not train the algorithm.
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Final Master’s Degree Project

Figure 6.17: Histogram and box-plot of snow

6.2.14 Wind direction

Similarly to the field “heading”, the variable “wind direction” displays the direction of

the wind on the compass. It could be expected that this field follows a very uniform

distribution. However, the distribution of this field (fig 6.18) is Gaussian, and cen-

tered on a southwest direction. In order to validate the believability of these results,

a study could be conducted on the wind patterns in north America. Ultimately, it

was decided to discard this variable for the same reason that the variable “heading”

was discarded. It is unreasonable to think that the direction of the wind has any

kind of effect on the appearance of defects in the aircraft.

Figure 6.18: Histogram and box-plot of wind direction

6.2.15 Wind speed

The “wind speed” field distribution (fig 6.19) seems to be consistent. The distribu-

tions looks to be Gaussian with a lower variability and a concentration in the values

close to zero, which could be explained as most days having a calm weather. Ad-

mittedly, there is a number of outliers with ridiculous high wind speed values, only

obtainable if flying inside a typhoon or hurricane. Similarly to the aircraft velocity
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field, the number of extreme outliers is very low and should not hamper excessively

the training of the algorithm.

Figure 6.19: Histogram and box-plot of wind speed

6.2.16 Wind peak gust

The distribution of the variable “wind peak gust” is very similar to that of the “pre-

cipitation” field. The vast majority of values contain zeros, and only a very small

number of outliers contain anything other than a zero. For this reason, it was de-

cided to discard this column from the database.

Figure 6.20: Histogram and box-plot of wind peak gust

6.2.17 Sea-level pressure

At first glance, it might seem that air pressure can have some influence on the ap-

pearance of defects in the aircraft. However, it has to be taken into account that

this field tracks the pressure at sea altitude, and not where the airplane is flying.

However, the main issue with this variable is the inconsistent range of values. As

seen on the distribution of this variable (fig 6.21), the majority of values are con-

centrated around the expected 1000hPa. However, an important number of entries
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contain a sea-level pressure that makes no sense whatsoever. To put things into

perspective, the lowest sea level pressure ever recorded was 870hPa. It is therefore

impossible that such an amount of data lies below that number. Because of this

important inconsistency, it was decided to discard this column from the database.

Figure 6.21: Histogram and box-plot of sea-level pressure

6.2.18 Total sunshine

This variable should contain the total number of sunshine minutes within each hour.

So one could expect this variable to be filled with values from “0” (totally cloudy)

to “60” (totally sunny). However, as seen in the distribution of this variable (fig

6.22), the vast majority of the field only contains zeros. There is a large number of

outliers, but overall the data does not make any sense and for this reason, the “total

sunshine” field was discarded from the database.

Figure 6.22: Histogram and box-plot of total sunshine

6.2.19 Weather condition code

This variable provides a categorical value that indicates the current weather con-

dition. Each number can range from “1” to “25” and indicates a different type of
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weather. The distribution of this field can be seen on figure 6.23. At first glance,

the distribution of the weather condition seems to be consistent since lower code

values are associated with calmer conditions, which should be more widespread

than bad weather.

Figure 6.23: Histogram and box-plot of weather condition code

It was reasoned that the number of different categories, a total of 25, was a bit

excessive. Many conditions were very similar from one another, and in order to

help the algorithm training, it was decided to reduce the number of categories to a

more manageable total of 7. This can be seen on the table 6.1. Instead of having a

very specific label for each and every kind of weather, the new field contained one

of seven different generic weather conditions.

COCO Weather condition Reduction

1 Clear Fair

2 Fair Fair

3 Cloudy Cloudy

4 Overcast Cloudy

5 Fog Fog

6 Freezing Fog Fog

7 Light Rain Rain

8 Rain Rain

9 Heavy Rain Rain

10 Freezing Rain Rain

11 Heavy Freezing Rain Rain

12 Sleet Sleet/Hail

13 Heavy Sleet Sleet/Hail

COCO Weather condition Reduction

14 Light Snowfall Snow

15 Snowfall Snow

16 Heavy Snowfall Snow

17 Rain Shower Rain

18 Heavy Rain Shower Rain

19 Sleet Shower Sleet/Hail

20 Heavy Sleet Shower Sleet/Hail

21 Snow Shower Snow

22 Heavy Snow Shower Snow

23 Lightning Storm

24 Hail Sleet/Hail

25 Thunderstorm Storm

Table 6.1: COCO weather condition reduction

It has to be noted that during the exploration of the data it was found that almost

all values of this field recorded on the database were not integers but decimals.
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Final Master’s Degree Project

This made little sense, since a categorical variable should only contain the specific

set of possible values. Moreover, it should be totally prohibited to make any kind of

average between values of a categorical variable that is not ordered. For example,

the average of a clear sky and heavy rain would be a foggy weather, which is

obviously senseless.

6.2.20 Flight hours

The distribution of the field “flight hours”, which can be seen on figure 6.24, seems

to be adequate. It approximately follows a normal distribution with a very reduced

number of outliers. Therefore, this field has remained unaltered in any kind of way.

Figure 6.24: Histogram and box-plot of flight hours

6.2.21 Defect

The last variable to look at is arguably the most important one, the target variable.

As expected, the distribution (fig 6.25) of the defect variable is entirely concentrated

in two points, “0” (no defect) and “1” (defect). The distribution also shows that there

is quite an imbalance in the data (90% to 10%), with a lot more cases of no defects

than cases with defects.
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Figure 6.25: Histogram and box-plot of defect

6.2.22 Conclusion of variable analysis

After analyzing each and every variable individually, the correspondent database

transformations have been performed and a new database has been obtained. This

new database, created entirely from the previous database, is intended to perform

better with the algorithm training.

6.3 Creation of extra variables

After the analysis explained before were performed, some further iterations on the

dataset were performed in order to improve the overall performance. In the end,

two more fields were added to the final database. These two newest variables

really improved the output obtained from the training with the dataset.

6.3.1 AC pressure

As explained before, it was considered that the variables of sea-level pressure and

altitude of the airplane were not meaningful enough, and as such they were dis-

carded. However, by combining these two fields, a new variable is created called

“Aircraft pressure”. Basically, by using the following equation the two fields were

transformed into a new one.

It is reasonable to think that the value of the pressure at the altitude that the

aircraft is flying in could somehow influence the appearance of defects. It is possible

that there are some exterior components in the aircraft that are more prone to failure
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when the air pressure is higher or lower than normal, or maybe some part can be

broken when there are sudden changes in pressure.

6.3.2 Airspeed angle

In a similar way as the previous field, it was considered that the variables of “head-

ing” and “wind direction” were not meaningful enough, and as such were discarded.

However, if these two variables are combined, and also using the speed of the air-

craft and of the wind, one can obtain a new field called “airspeed angle”, which

corresponds to the angle of wind seen by the aircraft. This is better illustrated in the

figure below.

It is reasonable to think that the angle of the incident wind on the aircraft could

influence the appearance of defects. Maybe there are some surfaces of the plane

that are sensitive to winds coming from the sides or rear of the aircraft. In order to

better help the algorithm training, it was decided to transform this field from numer-

ical to categorical, with each category representing a different side from where the

wind was coming from, using the perspective of the aircraft.

6.4 Variables correlation

Up to this point, each variable has been studied independently without looking at its

behaviour with the other variables. The goal of this section is to study the correlation

between variables and transform the database if deemed necessary.

Two different types of plots are shown in the following pages. First is the scatter

plot, or simply scattering. And secondly is the correlation plot. This is done for the

flight data, the meteorological data and finally for all the data together.
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6.4.1 Data scatter plot

The flight data scatter plot (fig 6.26) shows only the variables related to the flight

data. By looking at this figure it seems that there is little correlation between all

these variables, with a notable exception. It looks like the variables “days since

new” and “flight hours” are highly correlated. This makes sense, since if an aircraft

is used in a regular basis, the values of these two fields should increase at a similar

rate.

Figure 6.26: Flight data scatter plot

The meteorological data scatter plot (fig 6.27) shows only the variables related

to the meteorological data. It is interesting to note that the variables that were

discarded such as “snow” and “total sunshine” appear full of zeros in this figure

too. This plot also shows that the dew point temperature and the air temperature

are highly correlated, as expected. The rest of variables seem to be uncorrelated

between one another.
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Figure 6.27: Meteorological data scatter plot

The last scatter plot (fig 6.28) displays the scattering of all the variables. This is

done because, although it is very unlikely, it could be that some field from the flight

data could have some kind of correlation with another field from the meteorologi-

cal data. As seen in the figure, this is not the case. All the different fields seem

uncorrelated enough.
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Figure 6.28: All data scatter plot

6.4.2 Data correlation plot

The flight data correlation plot (fig 6.29) basically corroborates the conclusions ob-

tained from the scatter plot shown before, mainly that the variables “days since new”

and “flight hours” present a high degree of correlation. On top of that, this figure also

presents some additional information that was not detected in the scattering. The

aforementioned two variables are inversely correlated to the variable “bornyear”,

which seams reasonable. There is also some small correlation between longitude

and latitude, and other smaller correlation between variables so small that can be

considered not meaningful.

The meteorological data correlation plot (fig 6.30) corroborates the observations

obtained from the scatter plot, mainly that the fields of “temperature” and “dew point

temperature” are highly correlated. Not much can be said from the other variables,

since the correlation values shown in the matrix are not big enough to be deemed
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Figure 6.29: Flight data correlation plot

meaningful.

Similarly to what was explained before, a correlation plot with the entire dataset

is also shown. Not much can be said that wasn’t already known before. This plot

shows no surprises, since there seems to be no meaningful correlation between

variables from the flight data or the meteorological data.

All in all, after better analyzing the correlation between all the various fields of

the dataset, it has to be concluded that the different decisions taken to create the

new dataset seem to be correctly solid and reasonable. It does not look like there

will be problems of variable correlation in the new dataset.
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Figure 6.30: Meteorological data correlation plot
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Final Master’s Degree Project

Figure 6.31: All data correlation plot
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6.5 Data analysis conclusion

From the original database created during the course of the previous project, a new

and improved database has been created by transforming the different fields and

discarding useless variables. To do this, a more exhaustive analysis of the data

has been performed. Now, it remains to be seen if this new database will produce

better results than the old one.
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Chapter 7: Data training and modeling

Creating a new dataset based on the previous one was the first action taken to

improve the results obtained when predicting aircraft failures. The second action

taken to improve the prediction performance was the creation of a new neural net-

work, which was to be used to train a new model using the new database. This

chapter presents the process of creating the new ANN and all the results obtained

during said process.

7.1 Initial baseline

First of all, the baseline of the project has to be established. In other words, what

are the results that should serve as a reference for the output of the algorithm.

This is useful to assess how good are the results and whether the project can be

considered successful or not.

At first glance, one could assert that the baseline of this project should be the

results shown in the report of the previous project, since the goal of this project was

to improve the performance of the predictive maintenance tool developed before.

However, as explained on section 5.1, the results shown on the report were unable

to be reproduced using the very same code and database. As such, instead of us-

ing those values, the baseline for this project will be the results that were recreated

using the code and database from the previous project. These are shown again

below.

Performance Indicators Test (%)

Accuracy 30.450

Precision 50.214

Recall 51.482

F-score 50.840

Table 7.1: Replicated ANN performance

To reiterate, it was decided the results shown in the previous report were not

to be used as the baseline of the project because they were un-replicable using

the very same code and data. As such, since they can not be replicated, it was

considered that they were superseded by the results obtained using the database

and algorithm from the project.
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Figure 7.1: Replicated confusion matrix

It is also worth noting that, as explained on chapter 5, the results that one could

expect should be much more conservative than those shown in the previous project.

The report showed a trained model with excellent levels of precision and accuracy.

It is not reasonable to expect a similar outcome due to the nature of the data. This

is because the algorithm can only be expected to predict a small fraction of all the

different defects, mainly those that occur on the exterior of the aircraft or on very

sensitive components.

7.2 Previous ANN - new dataset

After obtaining the new dataset, the first thing that was tried was to input this new

dataset into the code of the previous ANN. The performance indicators are shown

on table 7.2 and the confusion matrix is shown on figure 7.2.
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Performance Indicators Test (%)

Accuracy 54.054

Precision 56.604

Recall 51.724

F-score 54.054

Table 7.2: confusion 1

Figure 7.2: confusion 1

These results show a slight improvement in the performance of the defect pre-

dictions. Compared to the baseline, the precision and F-score have been slightly

improved, while the recall value difference can be considered totally marginal. The

accuracy of this model is slightly above 50%. Overall, it can be considered that

slightly better results were obtained using the ANN of the previous project and the

dataset created in this project.

90 Bernat Garreta Piñol
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7.3 Creation of the new ANN

The goal of this section is to explain in a general manner the process of creating a

new ANN. Basically, what where the decisions made and the reasons behind them.

Afterwards, the results will be shown and analyzed.

The network of the project consisted of two layers. First, a LSTM (Long-Short

Term Memory) layer that was provided by the “pytorch” library. And second, a

MLP (Multi-Layered Perceptron) layer formed of two fully connected layers. The

first layer had ReLu as the activation function, while a Sigmoid was used as the

activation function for the second layer.

Long Short Term Memory refers to a special type of recursive neural network.

The thing that differentiates this type of network from other RNNs is the way it

transforms the data. Unlike regular Recurrent Networks, which only perform a con-

catenation of the previous state of the network and afterwards a set of non-linear

transformations, LSTM layers perform a total of five non-linear transformations to

the data at each state of the network.

The functioning of the LSTM layers deserve further explanation. Basically, the

network only performs a pointwise multiplication and a sum of vectors to an oth-

erwise unaltered flow of data. The first multiplication computes how much of the

information of the previous state is passed to the next state and how much of that

information is lost or forgotten. This is decided by a “Sigmoid” that elaborates an

output from zero to one. The addition of vectors computes how much new informa-

tion will be added to the previous cell state. This is done by passing the input values

through a “tanh” function and multiplying them by the values of another “Sigmoid”

function, which works similarly to the first one. In a similar way, this function pon-

derates how much information will be actually added or lost to the new state. The

result is a cell state that keeps changing subtly through time but keeps information

about previous states until a certain point which happens when all the information

from a previous state is lost.

Another recursion performed on the network occurs by keeping information of

previous hidden states to compute the new ones. A hidden state is obtained by

concatenating the previous hidden state with the input matrix, using a “Sigmoid”

function and performing pointwise multiplication with a “tanh” function. The result

is the hidden state, or the total output of the network if at the end of the recursion.

This contains either information about all previous states or as many states as the

cell state can store.

In the project, the network has been divided in two parts. The first one is the

LSTM network from the Pytorch library. the second one is a regular Multilayer Per-
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ceptron. Between these two parts a Dropout layer was added to prevent overfitting.

The input size is a batch of 64x27 values and the RNN size is a matrix of 64x1024.

Optimally, recursive part of the network should be as big as possible so it can store

as much information about the past as necessary and extract many features from

the data.

It was found that the length of the dataset too high. This meant that the dimen-

sion of the hidden layers was also too large. Since the intention was for the network

to keep track of the previous observations, it was decided to train the network with

fifty epochs. In total, this took 10 hours of computation. By observing some of the

raw results, it could be understood that the network showed signs of some minor

overfitting. Moreover, it was also observable some oscillation in the loss function.

To solve this, the different parameters of the code were tweaked. After numerous

iterations, the results obtained with the new ANN were considered acceptable.

7.4 New ANN - old dataset

After creating the new ANN, the next step that was taken was inputting the newly

created ANN with the previous dataset. The results obtained are shown below, with

the performance indicators being displayed on table 7.3 and the confusion matrix

on figure 7.3.

Performance Indicators Test (%)

Accuracy 52.553

Precision 53.642

Recall 47.929

F-score 50.625

Table 7.3: confusion 2

Compared to the baseline, it cannot be argued that this results present a mean-

ingful improvement of the performance of the algorithm. Although it is true that both

precision and accuracy have been somewhat increased from the reference values,

they barely surpass the 50% value, meaning that they are little better than a coin-

flip. However, the values of recall and F-score are lower than those shown in the

baseline. This difference is not very big but it is noticeable. For this reason, it has

to be concluded that the results obtained using the new ANN and the old dataset

do not demonstrate a meaningful improvement or worsening of the algorithm per-

formance.
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Figure 7.3: confusion 2

7.5 New ANN - new dataset

Finally, the last thing that was tried was using the new dataset and the new ANN

together. The performance indicators are shown on table 7.4 and the confusion

matrix is shown on figure 7.4.

The results obtained from the database and ANN created for this project are the

best among all the different combinations. Compared to the baseline, the perfor-

mance is considerably improved, with performance values that rise above 60% on

all values. It has to concluded that the model trained with the new ANN and with

the new dataset provides the best performance.
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Performance Indicators Test (%)

Accuracy 60.360

Precision 65.929

Recall 60.081

F-score 62.869

Table 7.4: confusion 3

Figure 7.4: confusion 3

7.6 Conclusions on modeling

After training and modeling, it has to be concluded that both the creation of the new

dataset and the creation of the new ANN have been successful. The performance

has been improved when compared to the baseline.

One might argue that the precision of these models seem very low, since the
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best results only barely surpass an accuracy of 60%. However, it has to be consid-

ered that, as explained before, with the data available to this project, only a small

fraction of the total number of defects is expected to be found by the algorithm.

In other words, the implementation of the new dataset and ANN have managed

to basically obtain more information usable to predict defects than before. It can be

argued that it is increasingly difficult to improve the performance of the modeling

with the available data. All the juice has been extracted from the database.

95 Bernat Garreta Piñol



Chapter 8: Conclusions

At the beginning, the intention of this project was pretty clear. Build upon the pre-

vious project, use what was already obtained and developed to increase the per-

formance of defect detection, implement a first working version of the interface and

obtain new and better data to improve the algorithm training.

First of all, the implementation of the predictive maintenance tool as a new mod-

ule in Robin can be considered successful. This was built with intend in mind to be

easily changed, so when a new deep learning algorithm is developed it can be eas-

ily ported to the interface. When the algorithm is finally ready to be commercialized,

it will be very simple and fast to transport it to the interface where the user will end

up using it. Although this part of the project took many hours of design and coding,

and is of huge importance for the company, it was decided to limit its size in the

report in order to focus on more relevant matters.

Secondly, it was tried on many different occasions to obtain more data to feed

the deep learning algorithm. The more data available to train the algorithm, the

better results. Many actions were taken with many different partners in order to

obtain real aircraft data from manufacturers and operators. However, it was impos-

sible to conclude an agreement with any client by the end date of the project (there

are clients who have already agreed to provide us with more data in the coming

months). It was decided to omit this part from the report even if many hours were

put towards this matter because in the end there is no result to show for.

Thirdly, at a mid-point in the project, many different issues started to arise from

the previous project. On the surface, the results obtained and shown in the report

were outstanding. However, there was no way to replicate the using the same code

and data. On closer inspection, the data collected and code developed for the

previous project were found to contain several important problems. From all of this,

it was concluded that the project was to be developed basically from the bottom up

if it was to be solid. If this project is to be built upon, its bases have to be rock solid.

In a certain kind of way, the previous project was found to be a huge structure that

had some very flimsy bases.

Fourthly, after closely analysing the database from the previous project, many

ways to improve the algorithm performance were found. By applying all these dif-

ferent improvements on the database, a new dataset was obtained by transforming

various fields and variables from the old dataset. In other words, the present on the

database was the same, however it was reorganized and rearranged so the deep
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learning algorithm would provide a better performance. The way variables are pre-

sented to the algorithm have proven to heavily influence the effectivity of training

and modelling.

Fifthly, a new deep learning was developed from scratch. This new training

algorithm was carefully created to optimize the performance in defect detection.

The results obtained from this new ANN and the new database were considerably

better than those obtained from the other sources. Although the precision of the

model was not perfect, it can be argued that it detected all the possible defects that

could be found with the data that was provided.

And finally, to sum up, the previous project displayed an excellent facade, with

some amazing results. However, this was created on top of flimsy foundations. By

basically re-starting the work from the ground up, this project was able to create

a strong base. Future work on this predictive maintenance tool will enjoy solid

foundations, which are crucial to build a project with the scale of this one.
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