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Virtual reality applications depend on multiple factors, for
example, quality of rendering, responsiveness, and interfaces.
In order to evaluate the relative contributions of different
factors to quality of experience, post-exposure questionnaires
are typically used. Questionnaires are problematic as the
questions can frame how participants think about their
experience and cannot easily take account of non-additivity
among the various factors. Traditional experimental design
can incorporate non-additivity but with a large factorial
design table beyond two factors. Here, we extend a previous
method by introducing a reinforcement learning (RL) agent
that proposes possible changes to factor levels during the
exposure and requires the participant to either accept these
or not. Eventually, the RL converges on a policy where no
further proposed changes are accepted. An experiment was
carried out with 20 participants where four binary factors
were considered. A consistent configuration of factors
emerged where participants preferred to use a teleportation
technique for navigation (compared to walking-in-place), a
full-body representation (rather than hands only), the
responsiveness of virtual human characters (compared to
being ignored) and realistic compared to cartoon rendering.
We propose this new method to evaluate participant choices
and discuss various extensions.

1. Introduction
The construction of virtual reality (VR) applications is a complex
task involving the choice of appropriate hardware and
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affordances provided by the software and remains so after three decades of research and deployment of

applications in this field. Typically, a VR application requires motion capture of actors, scanning
of environments, a team of designers, artists and so on. Moreover, VR is rapidly moving towards
becoming a major consumer product, with high-quality head-mounted display (HMD) systems available
at costs cheaper than many smartphones and with millions of sales throughout the world. Application
designers face a number of trade-offs—for example, should the environment look as photorealistic as
possible, or be more cartoon-like? The virtual space in which people can move will typically be much
larger than the physical space in which they operate, so an interface method is required to enable
movement around the virtual space. Should this interface method stress realism or efficiency? Moreover,
choices among these and many other aspects of the final application will have implications for the
quality of experience of participants. Although one choice may be, from an engineering or monetary
point of view, more expensive than another, it may considerably enhance the quality of experience.
Moreover, these individual factors are unlikely to operate in isolation from one another but taken
together will contribute to an overall quality of experience that is more than just the sum of the
individual components. However, how should the quality of experience of participants in a VR be
specified and measured? This is normally accomplished through questionnaires, especially around the
concept of ‘presence’, that is, the sense of ‘being there’ in the place depicted by the computer displays.

The concept of presence has a long history going back to the notion of telepresence introduced by
Minsky [1]. When a human operator perceives and acts through a remote teleoperator system, they
typically have a sensation of being at the remote location. Following the first burst of interest in VR
that started in the late 1980s, this same concept was used to portray the sense of being in the place
depicted by the virtual environment [2,3]. Interest focussed on those factors that might contribute to
that feeling [4–6], and a number of specific experimental studies to try to elicit these were carried
out—e.g. display update rate [7], type of interaction and display parameters [8,9], pictorial realism
[10], the influence of psychological factors such as field dominance [11], the role of self-representation
with a virtual body [12,13], the influence of body movement [14] or the influence of illumination
realism such as dynamic shadows [15]. This type of research continued through the 1990s, in spite of
the problem that presence was ill-defined and measured through questionnaires.

Meehan et al. [16] operationalized the idea that if presence occurred then people should respond
physiologically to the threat. For example, when participants stand close to a precipice in VR their
heart rates typically increase. This method was later used to study how variations in end-to-end
system latency influence presence (as operationalized through heart rate changes), showing that lower
latency systems produce a greater average increase in heart rate in response to the precipice than
higher latency systems [17]. This work on presence is substantially reviewed in [18] where it was
argued that operationally presence is indicated when participants can be observed to respond
realistically to events and situations in the virtual environment. An illustration would be, for example,
that when talking to a virtual audience, people with a fear of public speaking should display anxiety,
and this does happen—e.g. [19,20]—even though all participants know that there is no actual
audience there. In fact one of the greatest uses of VR, exploiting this presence-inducing property, has
been in the field of clinical psychology—a huge amount of work on anxiety disorders [21], post-
traumatic stress disorders [22] and even on psychosis, including paranoia—e.g. [23–25]. However, the
problem of measurement of presence has remained outstanding. Reliance solely on questionnaires is
unconvincing—see [26].

To some extent, the measurement of presence is analogous to measurement in colour perception. The
VR system provides technical capabilities (essentially the physics, that which is actually supported using
the system) and presence is a subjective correlate. Similarly, an object reflects or emits light at different
wavelengths (the physics) and the human perceptual system interprets the result as colour (the
subjective response). In [27], we exploited this analogy by introducing a methodology for the
measurement of presence based on colour matching theory, which did not require questionnaires at
all. In this method, participants were introduced to a number of factors in the VR that they could
modify during the course of their exposure—field of view, whether or not they had a virtual body
that moved synchronously with their own movements, whether they saw the virtual environment
from a first- or third-person perspective, and quality of visual rendering. The factor levels were
ordered from ‘low’ to ‘high’—for example, the field-of-view could be the actual field-of-view of the
HMD used (high), or 60% of that (low); there might be no virtual body representing the participant
(low), a static one (medium) or one that moved in synchrony with the participant movements (high).
They were first exposed to a virtual environment with all factors at the highest level possible. Half of
the participants were asked to pay attention to place illusion (PI; the illusion of being in the space)
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and the other half to plausibility (Psi; the illusion that the virtual events were really occurring) [28]. Thus,

participants were asked to concentrate on one of these two sensations, which we refer to as the ‘target’.
They were then trained on each of the factors that they could modify, and after this training, they were
exposed to a virtual environment with all factors at a low level. At various moments during the exposure,
they were asked if they wanted to enhance any one of the factors by one level. They were told that they
should stop changing the factor levels whenever they felt that they had matched their earlier target
sensation of presence (either PI or Psi). The number of changes they made was subject to an economic
constraint.

This method does not require the use of questionnaires, it only relies on a ‘match’ between sensations,
much like in colorimetry, where participants are never asked, for example, ‘Howmuch do you experience
this colour as red?’ but are only asked about their sensation of a match between a target patch of colour
and a projected patch of colour that they manipulate themselves through red, green and blue projectors.
Of course, the two major differences between the colorimetry method and the presence method are that
the matches are between sensations at two different times (rather than comparing two colours
simultaneously) and the comparison of subjective presence is more complex than comparison of
colours. However, the method did produce different results depending on whether participants had
been asked to pay attention to their sensation of PI or their sensation of Psi, and the results were
theoretically sensible.

This method has been used now several times in other research. In [29], the method was closely
followed and augmented with EEG measures of engagement, and in [30], it was applied to the
evaluation of auditory environments. In [31], it was used to evaluate participant Psi responses to four
different factors influencing the portrayal of a string quartet performance in VR, and in [32] to
evaluate the influence of virtual human character behaviour on Psi. In [33], the method was used to
assess the believability of a virtual environment that simulated rock climbing. In [34], the method was
used to assess factors that contributed towards the sense of embodiment of humans in avatars. In
[35], the method was used to evaluate an avatar giving a TED-style talk to a participant. In this case,
the stopping rule was not presence, believability or the sense of embodiment, but rather just
participant preference. The matching criterion was that the participant had reached a configuration of
factors where they did not require more changes in order to be satisfied, irrespective of their reason
for this. In this case, they did not have to experience a first exposure where all factors were set at a
maximum level, and then later compare their current sensation to that earlier exposure.

A common feature of all previous uses of this method is that participants were presented with
moments when they could choose to make a change to their current configuration and thereby make
a transition. The transitions chosen were up to them, under various constraints depending on the
particular application.

In this paper, we present a new approach whereby there is an underlying reinforcement learning (RL)
agent that presents binary options for a change on one particular factor at a time to participants at regular
time intervals. Instead of focussing on presence, following [35], the participant was asked to select
changes to factor levels based solely on their preference, although, here they were only required to
accept or reject a change proposed by the RL agent. The sequence of possible changes was initially
chosen by the RL at random. Based on the acceptances and rejections of the changes offered, the RL
agent learned which of the options that it could offer would be most likely to be accepted. In other
words, the RL agent formed a ‘policy’: given the state of its environment (the current configuration of
factors), it estimated the probability of a certain outcome associated with each of the possible options
it could offer. Its goal was to maximize its ‘reward’, which in this case was based on whether the
participant accepted the change it proposed. Convergence of the RL was indicated when the
participant continued to reject all changes.

Hence there are, therefore, two important differences with previous work. The first is that we do not
impose the criteria of presence on participants, they are free to select changes to the factors in accordance
with their preferences, for whatever reason. The second, and most important difference, is that proposals
for change of factor levels are chosen by the RL, which therefore introduces a clear stopping rule—when
no more changes are accepted by the participant—indicating convergence of the RL, in the sense that
additional changes would not improve participant preference.

We demonstrate this method in an experiment involving four binary factors. Although the choice of
factors was motivated by previous results in the presence literature, it is important to note that presence
(whether PI or Psi) was never mentioned to participants as a criterion for selection between alternate
choices offered by the RL—this was strictly based on participant preference. In a traditional factorial
experiment, four binary factors would require a 24 factorial design in order to fully test all
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Figure 1. The scenario (a) the scene outside of the building showing the crowd with realistic rendering. (b) Inside the theatre
building, notice one of the characters is looking towards the participant, and with realistic rendering. (c) In the theatre going
down the steps, with cartoon rendering. (d ) The concert itself but seeing the stage from the viewpoint of the participant with
the audience around and cartoon rendering and the nearby character is not looking towards the participant.
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combinations of the influence of these factors. For a within-group study, this implies requiring each
participant to do a task in VR and then answer a post-experimental questionnaire for each
combination of experimental factors, i.e. 16 times. In a between-group study, each participant would
experience one combination of factor levels, but a much larger sample size would be needed in
comparison to within-groups. Here, we show the RL-based method can work with only 20
participants, in this particular study. The RL-based method uses a straightforward technique (Q-
learning) because the experimental design involved a set of factors that does not require masses of
data. Contemporary deep RL algorithms such as proximal optimal policy algorithms [36] or the soft-
actor-critic [37] can converge for more complex experimental designs, at the price of needing
significantly larger samples.

The task of participants was to make their way in VR from a street scene to inside a concert hall and
then find their way into the theatre to observe part of a concert. This was motived by the overall project of
which this research is a part, which is concerned with attendance at concerts in VR, for example [38].

Participants on entering the scene were in a street by a concert hall building, among a crowd of virtual
people. The rendering and some interactive aspects of the scene were determined by four factors, and for
each we cite previous work where this factor or similar has been studied with respect to presence: (i) the
navigation method (walking-in-place (WiP)) where participants mimicked real walking but stayed
physically in the same spot, or a point-and-click method [39]; (ii) body representation—whether
participants had a full first-person perspective virtual body or just saw virtual hands [27]; (iii) social
feedback—whether other crowd members would acknowledge them or not [32]; and (iv) rendering
type—whether the environment was rendered more realistically or more cartoon-like [40]. Figure 1
shows the scenario, and it is also shown in the electronic supplementary material, video S1.

After a period of training where participants learned about these four factors, they made their way to
the concert, and every so often the RL proposed a binary choice to either change the level of one of the
four factors or leave the current configuration unchanged.
2. Material and methods
2.1. Materials
The main equipment used was an HTC VIVE PRO wide field-of-view head-tracked stereo HMD. This
displays a three-dimensional scene in stereo with an approximately 110° field of view with a
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resolution of 2880 × 1600 pixels per eye displayed at 90 Hz, together with the VIVEwireless adapter so that

the HMDwas untethered. The tracking was done with the lighthouse trackers provided by the HTC VIVE
Pro,1 with a resolution of a millimetre and a refresh rate of at least 120 Hz.2 In addition to the two hand
wands provided with the HTC VIVE PRO, three trackers from VIVE were attached to the participants’
waist and feet to support real-time whole-body tracking. The computer used for the experiment was an
Intel Core i7-8700 K@3.7 GHz, GeForce RTX 2070 8GB GDDR6 and 16GB of RAM DDR4.

The virtual environment was implemented using UNITY3D, v. 2018.2.20 and Unity’s OPENVR
(Desktop) package v. 1.0.5. The three-dimensional assets of the street scene were from POLYPIXEL, the
concert hall and the trees in the tutorial phase were a combination of assets from the Unity Asset
Store3 and custom-built. The crowd was generated using three-dimensional characters made with
Adobe’s FUSE. The concert itself was incorporated from a previous study [31].

To simulate the movement of the crowd through the environment, the Unity navigation mesh was
used for high-level planning and the RVO2 library [41] (http://gamma.cs.unc.edu/RVO2/) for local
steering and collision avoidance.

To model the behaviour of virtual human characters, we customized scripts implementing specific
rules for the requirements. For example, in the case of the concert, characters without a ticket needed
to buy one, so they would go to the ticket queue, wait for their turn and buy one. Once they had a
ticket, or if they already had one, they entered the theatre. To define these tasks, we used goal points,
which are reached by navigating through the environment.

Animation of the characters in the crowd was carried out with Unity’s animation system MECANIM.
For specific and eventual tasks, attached to a behavioural decision (for example, reacting to the
beginning of a concert), a corresponding animation was simply triggered, with some randomness
added to provoke a variety of behaviour. For the navigation, and particularly the steering, we used
blend trees to blend between several existing animations.

2.2. The factors and configurations
There were four binary experimental factors, the levels of which are coded as 0 or 1.

2.2.1. Navigation

In order to move through the virtual world, the participant could navigate using a WiP (1) locomotion
technique [39,42–44] or a teleportation (0) technique using a hand-held controller. WiP, originally described
in [44], requires the participant to make walking movements (lifting each leg in turn) while nevertheless
staying in the same physical place. The computer program moves participants forward in the VR in the
direction normal to the plane of their hips while these movements are detected. WiP uses information
from three sensors (hips, left foot and right foot), averaging over the motion of the last five frames.

The alternative was teleportation, where participants used their hand-held controller to point towards
a spot on the virtual ground while holding a button on the controller that then displayed a ray from their
pointing hand towards the spot. When the button was released they would instantaneously teleport to
that position. WiP has been associated with a greater illusion of walking and higher presence, whereas
teleportation is more efficient and takes less effort but can be disorienting [39].

2.2.2. Body representation

When participants wearing the HMD looked towards their own body, they would see a virtual body
coincident with the real body that moved in synchrony and correspondence with their real movements.
In this case, participants had a choice between seeing a full-body representation (1) or only seeing virtual
hands (0). In both cases, the movement always matched the participant’s movements, in real-time.

2.2.3. Social feedback

Participants were surrounded by a crowd of virtual people who were also making their way to the
concert. Social feedback refers to how the virtual crowd members responded to the presence of the
1https://www.vive.com/mx/product/vive-pro/.
2http://doc-ok.org/?p=1478.
3Particularly, https://assetstore.unity.com/packages/3d/environments/urban/urban-city-pack-34832.
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participant. Responsiveness of the virtual environment to the presence of the participant has been

argued to be an important contributor to Psi [28]. In this case, virtual characters responded or not
to the participant. When participants looked towards a virtual human character, the character looked
back at them and provided subtle social feedback (1) including a head nod or hand waving.
Alternatively, virtual characters ignored (0) participants and did not respond when the participant
gazed at them.

2.2.4. Rendering

The rendering type was either a cartoon-style rendering (1) or a realistic rendering (0) method. In the
cartoon method, we used a cel shading effect on the fragment shader, based on an online tutorial.4

Outlines were added on postprocessing, after rendering the scene. This gives the appearance that the
scene has been drawn by hand, as if it were a cartoon or a comic book. In the realistic method, we
use Unity’s standard render pipeline and physically based shading for the lighting computation. In
both cases, light baking and ambient occlusion were used in order to improve the visual quality of
the scene (figure 1a,b).

2.2.5. Configurations

In total, there were 16 possible configurations of factors as shown in table 1.

2.3. Participants
The experiment was advertised to members of a database who had requested to be informed of new
studies, and it was also advertised through the campus. A total of 20 people, with mean ± s.d. age
34 ± 8.7, including 13 women and seven men, participated in the study. The electronic supplementary
material, table S1 gives the demographic characteristics of the sample.

Upon arrival to the laboratory, participants were assigned an identifier (ID) number. All subsequent
data gathered was stored with respect to this ID, and no document except the informed consent
contained both the participant’s ID number and their name. Then, after signing the consent form, they
completed the three main phases of the experiment. Each participant received 10 euros in the form of
a gift voucher as compensation after completion of the third stage.

2.4. Procedures
There were three phases of the experiment: tutorial, main and confirmation. We describe each in turn.

2.4.1. Tutorial phase

In the tutorial phase, participants were equipped with the trackers and the HMD, given instructions, and
then the VR experience began. Participants were located in a simple scene which contained only some
trees. They did not have any particular goal, except free exploration.

In this phase, each experimental factor was introduced successively, illustrating its two options.
Participants had to explore both options and press a confirmatory button when they understood both
options. For this, they had a virtual panel, somewhat like a large digital watch, attached to the
location of their left hand where they were able to choose to switch between the two levels of a factor.
For example, with respect to body representation, they could switch between two buttons to portray
the hands only representation or the full-body representation. On selection of one of the two buttons,
the display would change accordingly so that participants could switch between the two alternatives
and explore their meanings. At the end of the trial period for each factor, they could select the button
‘I understand both options’ (figure 2a).5 They would then move to the next factor. The order of factors
presented was body representation, rendering, social feedback and navigation. Participants could
obtain clarification from the experimenter at any time.
4https://www.gamasutra.com/blogs/DavidLeon/20170519/298374/NextGen_Cel_Shading_in_Unity_56.php.
5All the information was presented in Spanish, we show here the translated version to facilitate understanding.

https://www.gamasutra.com/blogs/DavidLeon/20170519/298374/NextGen_Cel_Shading_in_Unity_56.php
https://www.gamasutra.com/blogs/DavidLeon/20170519/298374/NextGen_Cel_Shading_in_Unity_56.php
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Figure 2. The panels were used to select the participant preferences. (a) During the training phase, the participant confirms
understanding of both having a full body or having only hands. (b) During the experiment, the participant confirms selection
of the hands only option. (c) During the experiment, the participant confirms the full body option. (d ) During the experiment
the participant confirms the teleportation option.

Table 1. The 16 configurations and their codes.

no. configuration navigation body rep. social rendering

0 teleportation - hands - ignored - realistic 0 0 0 0

1 teleportation - hands - ignored - cartoon 0 0 0 1

2 teleportation - hands - feedback - realistic 0 0 1 0

3 teleportation - hands - feedback - cartoon 0 0 1 1

4 teleportation - body - ignored - realistic 0 1 0 0

5 teleportation - body - ignored - cartoon 0 1 0 1

6 teleportation - body - feedback - realistic 0 1 1 0

7 teleportation - body - feedback - cartoon 0 1 1 1

8 WiP - hands - ignored - realistic 1 0 0 0

9 WiP - hands - ignored - cartoon 1 0 0 1

10 WiP - hands - feedback - realistic 1 0 1 0

11 WiP - hands - feedback - cartoon 1 0 1 1

12 WiP - body - ignored - realistic 1 1 0 0

13 WiP - body - ignored - cartoon 1 1 0 1

14 WiP - body - feedback - realistic 1 1 1 0

15 WiP - body - feedback - cartoon 1 1 1 1
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2.4.2. The main phase

Once the tutorial was completed, participants were transferred to a virtual street, where over 80 animated
virtual human characters were walking towards a concert hall. The participant’s task was to go into the
concert building, and then find their way into the theatre. Once in the theatre, they had to go down some
stairs and stand in front of the stage with over 120 virtual human characters. Then, the concert started
which consisted of a quartet playing. After 20 s of the concert, the environment faded to black, leaving the
participant back in the street again, and the same task had to be repeated: go and attend the concert.



question: which you prefer ...
 ... the world painted in a realistic way or cartoon-like?

 ... the configuration with more passive characters or more active?

 ... the configuration without a body or with a body?

 ... navigation with tele-transport or imitating real walking?

score 0 score 10

realistic cartoon

activepassive

no body

teletransport walking

with body

Figure 3. The post-experience questionnaire used the same icons to illustrate the choices as during the VR exposure. Participants
were required to score their response to each question on a scale of 0 to 10.
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During this task, the interface presented choices to the participants using the method presented during
the tutorial, except that the button ‘I understand both options’ (figure 2a) was replaced by ‘I prefer the
selected option’ (figure 2b). The factor to display was selected by the RL agent (see additional details
below). Participants could choose to leave the configuration unchanged or accept the change proposed
by the RL agent. Before making their choice participants could freely explore the two options presented
by switching between the configuration buttons and finally had to confirm that the option currently
selected was their preferred one (figure 2c,d ). Once the preferred option was confirmed the panel
disappeared. Eight seconds after closing, the panel would open again with a new change proposed. The
whole process was repeated until participants had been offered a total of 24 opportunities tomake a choice.

The only criterion given to the participants about whether they would accept a proposed change or
not was their preference. This was emphasized by the wording in the interface, as mentioned, ‘I prefer the
selected option’.
2.4.3. The confirmation phase

After the VR exposure ended participants were asked to remove the HMD, and the confirmation phase
started. First, they were asked to complete a demographics questionnaire. This obtained information
on age, sex, knowledge of computing, experience with VR and computer games.

After completing this, they were requested to put on the HMD again to re-enter the environment, but
for free exploration of the same scenario rather than for any specific task. They were verbally asked which
configuration they wanted to have. This was asked one factor at a time: do you prefer to have a body or
only hands? Do you prefer realistic or cartoon rendering? Do you prefer more interactive or more passive
characters? Do you prefer to teleport or to walk in place? This was carried out as a check for consistency
with the configuration they had chosen during the main exposure. After a period of free exploration of
approximately 5 min, they removed the HMD.

Then, they completed a post-experimental questionnaire as a further consistency check. It was
presented as an online form to check for each experimental factor, which option they preferred, on a
scale between 0 and 10. For example, it asked What do you prefer, the world painted in a realistic way, or
cartoon-like? Near to the 0 grade the icon for realistic rendering would appear, and near the 10 grade
the icon associated with cartoon rendering. After each question, the online form would ask Why?, and
the participant could provide a free written response. Figure 3 shows the icons used for each question.
Notice again that the only criterion offered to the participants was their preference.

Overall, the entire procedure lasted between 40 and 50 min, with the VR exposure lasting approximately
15 min. The exact total duration changed among participants because they spent most of the time exploring
the VR environment and the options among which to choose, and therefore, there was a variable delay
between when a new choice was presented to the participants, and when they completed the choice.
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2.5. Design

One aspect that was crucial for a successful assessment of participant preferences within a large
variety of configurations was to design a task that appeared simple enough to the participants.
In this case, there were three decisions that were adopted to facilitate the task from the participant’s
perspective.

First, the proposal of a configuration change always showed the options available in the same format
and location. In this experiment, the current configuration was always on the left, and the change
proposed was always on the right side of the panel. To actually explore the configuration change
proposed, the participants had to explicitly select the appropriate icon. The configuration only
changed when the participant actively selected the configuration change proposed.

Second, before giving a response, the participants were free to explore the current configuration at
their own pace, as well as the new configuration, to go back and forth as many times as wanted, and
explore the environment with either option activated. Pilot studies showed that this was crucial for
the participants to feel comfortable with the task and to carefully explore the options when their
preference was not clear to themselves. To facilitate the association of a button with an experimental
factor, we designed a small set of icons, which were used throughout, including for the questionnaire,
as shown in figure 3.

Finally, to avoid confusion, the configuration in which the participant started the main experiment
followed on from the configuration resulting from the trials performed during the tutorial phase.
Therefore, when starting the experiment, they were already aware of the current configuration—
including the active navigation technique, so that they were immediately able to do the task. This
also meant that each participant started with a different configuration, and this configuration was
not chosen randomly but was the result of their actions during the tutorial phase. This method
was adopted as a result of extensive piloting, where we learned that there was disorientation if,
after the training period, the configuration were reset to another one than the one that they happened
to be experiencing at that time. Nevertheless, participants then went on to make multiple
configuration changes.
2.5.1. Reinforcement learning

Each experimental configuration (table 1) corresponds to a state of the RL algorithm. In particular, we
used Q-learning (introduced in [45] summarized in [46] and in [47], chapter 6), adapting an example
available online (https://github.com/Unity-Technologies/Q-GridWorld). In RL, the algorithm
attempts to maximize the long-term reward to the agent through appropriate choices of actions a, in
the context of a state s. The specificity of Q-learning is that it uses a table called Q-table, which
contains an estimated value of each action a, for a given state s. To update the values of the Q-table,
for s as the current state and a the action of the agent, the formula used is

Q[s, a] ¼ l(rþ g�max(Q(sp)))þ (1� l)Q[s, a]: ð2:1Þ

In equation (2.1), in addition to an action a and a state s, we normally consider:

— a reward value r, which is a value, generally bounded between −1 and +1, that the agent receives in
response to the action taken;

— max(Q(sp)) is the maximum value of the row in the Q-table corresponding to the proposed state. It is
here used as an estimate of future long-term rewards;

— a discount factor γ which represents the weight given to (estimated) possible future rewards. For
stability reasons, it must always be smaller than 1; and

— a learning rate l which represents the speed at which the estimated values update. It is a number
smaller than 1 and usually close to 0.

In this particular case, the goal of the algorithm was to find the changes in the configuration of the VR
that a participant was most likely to accept, among a set of possible options. Therefore, the state s
corresponded to the current experimental configuration of the VR, the action a corresponded to a
change in experimental configuration that the RL algorithm proposed, and the reward r was
determined by whether the participant accepted the change proposed by the RL algorithm or not (+1
or −1, respectively). When the reward was received, the position of the Q-table corresponding to state
s and action a was updated according to equation (2.1).

https://github.com/Unity-Technologies/Q-GridWorld
https://github.com/Unity-Technologies/Q-GridWorld
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In addition, because it was likely that different participants might have different preferences, we

chose to run the RL algorithm separately for each participant.
Overall, since the experiment was quite short for RL standards, and therefore the system had little

time to estimate long-term rewards, we chose a rather small discount factor and a moderate learning
rate. These parameters took the following values: l = 0.2, for the learning rate; γ = 0.15, as the discount
factor. All values in the Q-table were initialized to 0.

In order to summarize the preference estimation performed by the RL algorithm, we used the values
in the Q-tables, averaging across participants. We were interested in determining the configurations in
which participants most liked to stay, i.e. the configurations in which they were most likely to reject
transitions to another configuration. Because we had a separate Q-table for each participant, we
required a measure to combine these results. We therefore derived a score to summarize these data.
Let Qp[s, a] be the Q-table for the pth participant, where s is the configuration and a is a proposed
change in configuration. Then, we define

RLscore(s) ¼
X

p

X

a
Qp[s, a]: ð2:2Þ

This is the sum of all values over all actions and participants and gives us a value associatedwith each RL
state (s). The lower this value, the higher the tendency for participants to reject changes when in that
configuration. Therefore, the more participants are inclined to stay in s the lower the value of RLscore(s).

As complementary measures, to better understand the RLscore, we also use the number of visits, i.e.
the number of times participants landed in one configuration (over a total of 24 choices × 20 participants
= 480 visits), and the stay ratio, i.e. the frequency at which participants decided to stay in a given
configuration, given the chance to change.
3. Results
3.1. Comparison of configurations
Table 2 shows the experimental configurations sorted by RLscore showing that by far the preferred
configuration was 0110 (navigation by teleportation, body representation with the full body, social
with feedback and rendering as realistic). The number of visits is also a clear indicator of the options
explicitly preferred by the participants: the most visited configuration was the one participants most
often chose as their preferred option when offered to return to the environment for free exploration
after the main part of the experiment (13 out of 20). The five most preferred configurations were also
the ones with most visits, and the ranking configurations according to reported preferences fit with
the ranking of configurations according to the number of visits. The configuration 0110 was also the
one with the highest staying ratio (86%). The staying ratio was also higher for the five configurations
preferred by participants, although the order is not preserved. A graphical representation of these
results is available as the electronic supplementary material, figure S1.

3.2. Statistical analysis
It is possible, though unlikely given the results of table 2, that participants accepted or rejected proposals
for changes randomly rather than actually according to their preferences. Each participant made 24
choices distributed into the 16 configurations shown in table 1. Let pj≥ 0, j = 0, 1,… , 15 be the
probability of being in configuration j after a proposal by the RL. Then,

P15
j¼0 pj ¼ 1 and the situation

corresponds to a multinomial distribution with N = 24. We have n = 20 observations on the random
vector ri = (ri0, ri1,… , ri,15), i = 1, 2,… , n corresponding to the number of times the ith participant was
in each of the configurations, i.e. rij is the number of times that participant i was in configuration j
after a proposal. These correspond to ‘no. of visits’ in table 2.

We let the prior probability distribution of the pj be jointly uniform, which corresponds to a Dirichlet
distribution with all parameters 1. The likelihood is the multinomial distribution as described above. We
used the Stan system (https://mc-stan.org) [48,49] to derive the posterior distributions of the pj. This
was carried out with 2000 iterations and four chains and achieved convergence without problem. All
Rhat = 1 indicating the results of the four independent simulation chains converged and mixed.

The posterior distributions, created using the Bayesplot [50] library, are shown in figure 4. The posterior
distribution of configuration 6, 0110 (teleportation, body, feedback and realistic) stands out as having the

https://mc-stan.org
https://mc-stan.org


Table 2. The different configurations sorted by RLscore. (visits is the number of visits across subjects (from a total of 24 × 20
= 480). stay ratio is the proportion of configuration changes proposed and rejected when in that configuration. RLscore estimates
the value that the RL algorithm associates with leaving that configuration (the lower the more likely it was that people stayed
in that configuration). post. pref. indicates the post-experimental preference, i.e. the number of participants out of 20 that
selected that configuration as their preferred configuration during the confirmation phase. last visit shows the number of
participants whose last visit corresponded to the given configuration. The configurations are shown in table 1.)

no. configuration no of visits stay ratio RLscore post. pref. last visit

6 0110 168 0.82 −9.54 13 9

14 1110 72 0.75 −3.00 2 2

2 0010 53 0.72 −2.37 2 2

4 0100 49 0.67 −2.12 2 5

0 0000 42 0.81 −1.85 1 0

5 0101 14 0.71 −0.55 0 0

10 1010 14 0.64 −0.33 0 1

13 1101 7 0.57 −0.11 0 0

3 0011 9 0.56 −0.09 0 0

8 1000 14 0.5 −0.02 0 0

9 1001 4 0.25 0.00 0 1

1 0001 2 0.5 0.00 0 0

11 1011 3 0.33 0.10 0 0

15 1111 10 0.4 0.19 0 0

7 0111 6 0.33 0.20 0 0

12 1100 13 0.38 0.25 0 0

Table 3. Summaries of the posterior distributions of the factor level probabilities showing the mean, standard deviation and
95% credible interval for each.

factor level (1) mean s.d. lower quartile upper quartile 1 - mean factor level (0)

WiP 0.29 0.02 0.25 0.33 0.71 teleportation

body 0.70 0.02 0.66 0.74 0.30 hands

feedback 0.69 0.02 0.65 0.73 0.31 ignore

cartoon 0.13 0.02 0.10 0.16 0.87 realistic
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greatest probability by far, followed by 14, 1110 (WiP, body, feedback and realistic). In fact, the posterior
probability that p6 is greater simultaneously than all of the other configuration probabilities is 1.

In addition to deriving the posterior probabilities for the pj we can find the marginal distributions
over each factor separately. For example, the posterior probability for the factor level corresponding to
WiP is the sum of the pj over all configurations corresponding to WiP (i.e. the first element in the
configuration is 1). These are shown in table 3 and figure 5. From the means of the distributions in
table 3 we can see that considered individually the highest probability factor level corresponds to
realistic rendering, followed by teleportation, body and social feedback, with cartoon rendering the
lowest. Considering the credible intervals, there is considerable overlap between body and feedback.
WiP has probability less than those two and cartoon clearly has the lowest probability. This is also
clear from figure 5.
3.3. Post-experience questionnaire
The results of the post-experience questionnaire are shown in figure 6. The results conform to the choices
made during the VR exposure. The participants were also asked ‘In general, do you think that your
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choices within the experiment are consistent with the preferences you have indicated in this
questionnaire?’ with possible yes/no answers. All 20 participants answered ‘yes’.

Participants were also asked to comment about their reasons for their questionnaire responses. With
respect to the choice between teletransportation or WiP the most common reason for choosing
teletransportation was that it was easier and more comfortable than WiP. The common reason for
choosing the full body rather than only hands was that the body resulted in greater realism.
Regarding the responsiveness or not of the crowd, the responsive crowd was preferred because this
was considered to be more realistic. Again realism was given for the choice of more realistic
compared to cartoon rendering.
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3.4. Sample size
The results above are based on a sample size of 20 participants. Here, we consider the sensitivity of the
results to this sample size. We considered what might have happened had the sample size been 15. We
selected 15 of the 20 at random 10 000 times and recomputed the RLscores in each case, finally obtaining
a 10 000 × 16 matrix, where each column was a particular configuration and the rows were the results of
the 10 000 samples. For each row, we found the minimum RLscore value, and the corresponding
configuration. In each case, the minimum RLscore corresponded to the configuration 6 in table 1
(teleportation, body, feedback and realistic).

In addition, in the electronic supplementary material, table S2, we show the configurations sorted by
RL score when we consider half of the configuration visits for all 20 subjects. Four of the five top
configurations in table 2 also appear in the top 5.
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4. Discussion

We have introduced a new method for assessing which factors contribute to participants’ acceptance
of a VR scenario. A RL agent offers choices for changing a factor level periodically during the experience
and learns over time which changes are likely to be rejected or accepted by the participant. Eventually,
the RL converges on a policy, indicated by the participant accepting no further changes, having reached
their optimal configuration. These optimal configurations were consistent across 20 participants.

In contrast with the vast majority of studies of how different factors influence the sense of
presence (whether Pi or Psi) in virtual environments, we have used simply participant preference,
following [35]. The advantage of this is that the results are solely dependent on participant
actions during the course of their experience, rather than post hoc evaluations based on a questionnaire
that may raise issues (such as their sense of ‘being there’) which might not have occurred to
participants at all during their exposure. In this way, we avoid imposing our conceptual framework
on participants. Hence, the method allows the assessment of participant preferences without needing
post-experimental questionnaires. It is known that questionnaires alone are not satisfactory as these
can lead participants to reinterpret the experience in terms consistent with the framing provided by
the questionnaire (see [26]). Here, we require participants to make binary choices within the
experiment, but this does not frame their choice in any other way than their experience and
preferences during the time of the exposure itself. In this particular study, we only used
questionnaires as a way to test for consistency between configurations during the experience and
final judgements.

The disadvantage is that we do not know the reasons for participant preferences, only the
combination of factor levels that they preferred. Although this is beyond the purpose of this particular
study, we can gain some insight into how this might be possible through post-exposure interviews.
We found that participants tended to quote ‘realism’ and also ‘comfort’ to justify their choices. We
propose that subsequent use of this method should employ a systematic post-exposure interview,
where participants would be asked to explain the reasons for their choices, and then sentiment
analysis [51,52] used to rigorously code their responses as in [38].

The example we employed included four binary factors, and the RL method converged, moreover
with results that are mainly consistent with previous findings. With respect to the body
representation, it has been shown several times that having a body results in higher levels of presence
than not having one—for example [27,53]. The illusion of body ownership that can result from having
a virtual body has been shown to have a profound influence on various aspects of participant
responses, even including the response to pain [54]. Realistic rendering is more likely to result
in greater levels of Psi [27,40]. Social feedback is critical in the maintenance of Psi [55]. The anomaly
is navigation, where previous research has shown that WiP leads to greater presence than point-
and-click methods [39,44]. In interviews with participants after their experience, they reported that
WiP resulted in cybersickness most especially when they had to go down the steps in the theatre
towards the stage. Hence, participants were more likely to prefer teleportation than WiP. It was
considered the easier and more comfortable method to use. However, the particular factors used in
this study are not important to the method itself. Any set of factors could have been employed,
and the ones we chose were of interest to us in the context of the wider project of which this study is
a part.

Regarding experimental configurations, both the visit counts and the scores derived from the Q-table
in the RL algorithm accurately reflect participants’ questionnaire-based preferences: the five options most
preferred by the participants in the confirmation phase were shown by these two measures, as well as
their order in ranking, demonstrating internal consistency.

An advantage of the method is that, unlike previous work [27,32,33], the set-up does not imply an
a priori ordering among the factor levels (e.g. it does not start out with the assumption that having a
body is preferable to having only hands). The method proposes options among which the participant
can choose, without any implication that one is superior to another—they are just different. This has
the benefit of allowing participants to select between levels of an experimental factor which have no
implied ordering, for example, navigation methods that are radically different from one another. This
is in contrast with [27] where participants were required to select the level of a factor in order, with
the implication that each successive level was superior to the previous one.

It would be straightforward to extend the proposed method to continuous variables, as long as the
continuous variables considered can be converted to an array of discrete samples. This would only
require adapting the interface panels (figure 2) in such a way as to propose choices among the
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sampled values, or replace the RL method used, Q-learning, with one adapted to continuous states, such

as gradient-based methods [47].
Finally, an advantage is that the method obtains its result through a probabilistic search through the

space of factor levels, rather than requiring a 24 factorial design. Hence the method would be extendable
to more than four factors, although the relationship between the number of factor levels and sample size
needed to obtain a convergent and consistent result needs to be explored. In addition, although this
particular study was limited to binary factors, there is no special reason for this limitation. With
multiple levels per factor, however, the RL would almost certainly require more time to converge
because the space of exploration would be much greater. This remains a question for further work.
Moreover, any method such as this cannot guarantee a ‘global maximum’ only that a local maximum
has been reached. However, this is mitigated by the fact of having many participants engage in the
procedure, each starting from a different initial configuration.

We have addressed some limitations of the study above. Each individual made choices according to
their preference, but there is an overall consistency between the individual results. However, we do not
have much insight into the reasons for their choices. This method has to be combined with post-exposure
interviews, but where suggestions are not put into the minds of participants through a questionnaire,
rather where interviewer and interviewee can together explore the reasons for their choices. It might
be very interesting to discover whether the view of researchers that presence is the primary illusion in
virtual environments responsible for the overall quality of experience of participants is actually
supported by participants themselves. If a questionnaire specifically asks about presence then
participants will give a post hoc answer irrespective of how important this had actually been.
However, if participants are asked why they made a particular choice, the answer might be quite
different. In our study, participants often quoted ‘realism’ as the reason for their choices. However,
this is still rather vague, and a post-exposure interview would help to throw light on this. Second, we
have suggested that choices might be on continuous scales and be multi-level rather than binary, and
that more than four factors could be accommodated. While this is the case, at this time we have no
evidence about the practical implications. How long would convergence take (if any) for each
participant and how many participants would be needed? How many participants would be needed
to validate inter-subject consistency? These are questions for subsequent research into this method.

To study this method in the future, we wish to consider alternate measures derived from the task. In
particular, we would like to explore whether time-based measures, i.e. how long participants stayed in
the configurations, can reliably predict participant preferences. The reliability of visit counts already
points towards this direction. It is possible that the time participants spent in a given configuration,
even taking into account the time spent exploring the different choices, is a more reliable indicator
than the visit counts. Time measures become particularly relevant in the context of deep RL methods,
as no explicit value-table is available to compute easily a RL score such as the one used in this method.

A further refinement could also take into account the cost of the various factor levels. For example,
the probability of an option being displayed could be set initially to be inversely proportional to its cost
(e.g. the cost of programming or maintenance or the hardware requirement for efficient implementation).
In this way, if such a factor level actually rises to the forefront and becomes part of the RL policy, this
would be a strong indication of its importance and therefore may be worth the cost.

Finally, we would like to explore to what extent the method introduced can be used to assess
participant preferences using implicit measures, rather than explicit participant choices. By this we
refer to various indicators of participant state such as the interpersonal distances they maintain with
virtual characters, gaze or navigation patterns. Combining this method with implicit measures would
allow for far richer and more systematic preference evaluation, especially for experiences where the
introduction of panels and explicit tasks would not be a viable option. Here, we envisage the RL
operating in the background and choosing how to configure aspects of the virtual environment
depending on participant behaviour.

Overall we propose that the method introduced here is particularly well adapted to the evaluation of
preferences over factors that influence the quality of VR experiences. Given the growing adoption of VR,
this method and some of its possible extensions outlined could become the VR equivalent of A/B testing
[56], common today in the evaluation of web technologies.

Ethics. The experiment was approved by the Comissió de Bioètica de la Universitat de Barcelona (IRB00003099). Prior to
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written informed consent. Participants were informed both verbally and in writing that they were free to withdraw
from the experiment at any time without giving any reasons.
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