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Abstract—Graph Neural Networks (GNNs) have garnered
a lot of recent interest because of their success in learning
representations from graph-structured data across several critical
applications in cloud and HPC. Owing to their unique compute
and memory characteristics that come from an interplay between
dense and sparse phases of computations, the emergence of recon-
figurable dataflow (aka spatial) accelerators offers promise for
acceleration by mapping optimized dataflows (i.e., computation
order and parallelism) for both phases. The goal of this work is to
characterize and understand the design-space of dataflow choices
for running GNNs on spatial accelerators in order for mappers or
design-space exploration tools to optimize the dataflow based on
the workload. Specifically, we propose a taxonomy to describe all
possible choices for mapping the dense and sparse phases of GNN
inference, spatially and temporally over a spatial accelerator,
capturing both the intra-phase dataflow and the inter-phase
(pipelined) dataflow. Using this taxonomy, we do deep-dives into
the cost and benefits of several dataflows and perform case studies
on implications of hardware parameters for dataflows and value
of flexibility to support pipelined execution.

Index Terms—Graph Neural Networks, Spatial Accelerators,
Dataflows, Pipelined Parallelism

I. INTRODUCTION

Recently, there has been an emergence of several general-
purpose programmable spatial accelerators (aka reconfigurable
or flexible dataflow accelerators [1]) targeting machine learn-
ing and HPC. Commercial examples include Cerebras [2],
Graphcore [3], and SambaNova [4], and academic proto-
types include Plasticine [5] and MAERI [6]. While low-
level microarchitectural details vary, at a high-level these
accelerators are comprised of a “spatial” array of processing
elements (PEs), a private register file (RF) in each PE, a
programmable scratchpad-based memory hierarchy, and spe-
cialized networks-on-chip (NoC) for operand distribution and
output collection to/from the PEs. Fig. 1 shows an example.

A key distinguishing feature of spatial accelerators from
conventional CPUs and GPUs is the ability to support dataflow
execution [5]. In the spatial accelerator domain, the term
dataflow is used to refer to the loop transformations supported
by the accelerators to stage the computation across space (i.e.,
parallelism) and time (i.e., loop order) [7], [8]. A “good”
dataflow is the one that can maintain a high utilization via
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efficient parallelization, and minimize data movement through
the memory hierarchy via data reuse. The dataflow along with
tile sizes is known as a mapping [8]. While fixed dataflow
accelerators [7], [8] encode the dataflow into hardware FSMs,
programmable/flexible accelerators support diverse mappings
which can be statically configured by a compiler.

The space of dataflows for executing dense DNN layers
sequentially has been explored heavily [7]–[10]. These works
have proposed taxonomies to describe the design-space of
DNN dataflows, which have helped the architecture and com-
piler researchers by providing understanding of reuse [8], [7]
and formalizing the design-space of the dataflows for mapping
optimization [11], [12]. However, as Fig. 2 shows, these prior
dataflow taxonomies target only a single layer at a time.
Moreover, these works only target dense DNNs.

Several ML and HPC kernels (e.g. GCNs [13], DLRMs [14],
BiCGStab [2] etc.) employ multiple phases of sparse-dense
computations offering opportunities for pipelining and reuse
across phases. The focus of this work is to characterize
and understand the dataflow choices for such multiphase
sparse-dense kernels, thus expanding the design-space of the
dataflows as Fig. 2 shows. The design-space of these dataflows
is non-trivial due to the interdependence of two phases.
Moreover, sparsity makes the reuse and compute utilization
data-dependent. In the given scope of the paper, this work
focuses on understanding the dataflow choices for Graph
Neural Networks (GNNs) inference, though our analysis can
also extend to other multiphase computations as well.

GNNs are becoming increasingly popular because of
their ability to accurately learn representations from graph-
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of that of prior works on DNN dataflow studies - MAESTRO [8],
Eyeriss [7], Timeloop [9] and Interstellar [10].

structured data to solve graph/node classification, graph gener-
ation, and link prediction problems [15]. Example applications
include item recommendation [16], molecular feature extrac-
tion [17] and natural language processing [18]. GNN inference
runtime is dominated by two phases: (1) Aggregation and (2)
Combination [19]. Aggregation is an SpMM computation with
irregular, workload dependent accesses of data. Combination
computations can be cast as GEMMs, similar to dense DNNs.

Several recent works on GNN acceleration [19]–[24] have
demonstrated the challenges with getting high performance for
GNNs from commodity CPUs, GPUs, and DNN accelerators.
These challenges arise from (i) extremely high amounts of
sparsity in the Aggregation phase (over 99% as compared to
70-80% in modern DNNs), and (ii) diverse data reuse opportu-
nities within and across these phases. These works have also
demonstrated that GNNs offer opportunities for acceleration
by crafting specialized dataflows for extracting reuse both
within and across the phases. Unfortunately, most of these
prior works propose building specialized GNN accelerator
ASICs with heavy co-design of a specific GNN dataflow and
its hardware microarchitecture, which limits their applicability
as graph datasets and GNN algorithms evolve. In contrast, this
is the first work, to the best of our knowledge, that provides
a qualitative and quantitative analysis of the design-space of
various inter-phase and intra-phase dataflow strategies for
mapping GNNs over flexible spatial accelerators.

This work makes the following contributions:
(i) Taxonomy: We propose a succinct taxonomy to classify

various inter-phase and intra-phase dataflows to describe the
possible pipelining strategies employed by GNN accelera-
tors. This taxonomy expresses: (1) Aggregation intra-phase
dataflow, (2) Combination intra-phase dataflow, (3) Inter-
phase strategy, and (4) phase ordering. Rather than targetting
a specific GNN accelerator where the dataflow choices might
be limited due to its microarchitecture [19]–[21], or directly
compare two different GNN accelerators where it would
become hard to tease apart the performance difference due
to dataflow versus microarchitecture, we target a templated
flexible spatial accelerator substrate [5], [6] over which any
dense/sparse dataflow that our taxonomy describes can be run.

(ii) Qualitative Analysis and Analytical Framework: Using
the taxonomy, we explore various factors that affect the
runtime and the energy of these dataflow strategies such as
spatial/temporal mapping choices of various dimensions in the
intra-phase, the pipelining granularity in the inter-phase, and
tile sizes. We encode these into a framework called OMEGA.

(iii) Quantitative Analysis: Using OMEGA, we study the
impact of graph properties (such as number of vertices, edges,
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Fig. 3. (a) Example graph, (b) CSR representation of the adjacency
matrix, (c) computations. Note: V* can be represented as neigh-
bors(N) if it is represented in CSR format. Also, figure assumes
computation order Aggregarion to Combination ((AX0)W). For Com-
bination to Aggregation (A(X0W)), intermediate matrix is V×G.

features) on dataflow choices. We also analyze the impact of
hardware parameters, for example, low distribution and reduc-
tion bandwidth, and issues of load balancing in pipelining.

(iv) Architectural Insights: We demonstrate the benefits
of reconfigurable dataflow accelerators for multiphase com-
putation as opposed to GNN accelerator ASICs given the
interdependence of dataflows.

This work explores the design-space of pipelined dataflows
with both sparse and dense phases, and proposes the OMEGA
framework to model the cost of these dataflows. The insights
from this work can extend to other ML and HPC work-
loads with multiphase kernels [2], [14]. We envision that
the taxonomy will formalize the design-space of multiphase
dataflows which will enable better mapping optimizers for ML
and HPC workloads. Moreover, the future mapping optimizer
can use OMEGA framework as a cost-model for multiphase
dataflows. The insights from this work would also help the
architects make informed design decisions, thus enabling a
richer HW/SW co-design for future ML and HPC accelerators.

II. BACKGROUND AND RELATED WORK

A. GNN Computation

An input graph is represented by G(V, E) with V vertices
and E edges. A graph can also be represented as an adjacency
matrix which represents the connectivity of the graph. Matrix
representations are common, since dense/sparse matrix multi-
plication has been the prime target of spatial accelerators.

Recent works show that the main computation bottlenecks
of various GNN algorithms like GCN [13], GraphSage [25],
GINConv [26] can be broken down into two phases: Aggre-
gation and Combination [19]. GCNs allow either phase to
precede the other while some algorithms like GraphSAGE
perform Aggregation before Combination. The Aggregation
phase involves the addition of the feature vectors of the
neighboring nodes in the graph. This leads to irregular accesses
of data due to the irregular degree distribution in the graphs of
interest and, as a result, irregularity in the neighbor locations
of a particular vertex in a given dataset. The Aggregation phase
can be mapped as sparse matrix×dense matrix multiplication
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for(int v=0;v<V;v+=T_V)
 for(int g=0;g<G;g+=T_G)
  for(int f=0;f<F;f+=T_F)
   parfor(int v1=0;v1<T_V;v1++)  //parallel
    parfor(int g1=0;g1<T_G;g1++) //parallel
     parfor(int f1=0;f1<T_F;f1++) //parallel
      X1[v+v1][g+g1]+=I[v+v1][f+f1]*W[f+f1][g+g1];

Loop order - VGF 
(V→ G→ F )

Tile size determines spatial or temporal.

s⇒ Spatial⇒ T_Dim>1 and 
t⇒ Temporal⇒ T_Dim=1 
Example: T_V=2, T_G=2, T_F=1
V and G have spatial parallelism (s) and F 
is temporal (t)

Example: VsGsFt

F

Tile

Intermediate 
matrix

W X1

Fig. 4. Example showing compact notation for the loop-nest for Combination phase dataflow and an example tiling strategy for that dataflow.
See Fig 3 for dimension and matrix notations. Similar loop ordering and tiling notation applies to Aggregation.

(SpMM) with the highly sparse adjacency matrix being the
main source of irregular accesses. The Combination phase is
a feature reduction phase. This phase is dense with regular
GEMM computation.

Fig. 3a) shows an example graph with five vertices and
eleven edges, including self loops and Fig. 3c) shows the
adjacency matrix representation of the graph. Fig. 3b) is the
Compressed Sparse Row (CSR) representation of the graph’s
adjacency matrix. For CSR representation, the neighbors of a
particular vertex are stored back-to-back. Because most graphs
are extremely sparse (> 99% sparsity) [27], CSR is often
used as the graph representation [19], [20], and is what we
assume in this work. As labeled in Fig. 3c), A represents
the adjacency matrix, X represents the feature matrix, and W
represents the weight matrix. Any computation with A is a
part of the Aggregation phase, and any computation with W
is a part of the Combination phase. Other variables include:
V (# vertices), F (# input features), G (# output features), and
N (# of neighbors of a vertex).

B. GNN Accelerators
Several GNN accelerator ASICs have been proposed [19]–

[24], [28]–[30], each implementing a specific dataflow
which is heavily co-designed with the microarchitecture. The
dataflows from these accelerators form a subset of the design-
space that we explore. GCNAX [29] proposes a flexible GCN
accelerator with the ability to choose between some dataflows
to optimize for energy. However, GCNAX primarily targets
off-chip dataflows with a small global buffer and 16 PEs,
while our work focuses on on-chip dataflow strategies for
large programmable spatial accelerators with high parallelism
opportunities.

C. Dataflow Analysis
There have been several efforts to understand and classify

dataflows for DNNs such as Timeloop [9], Interstellar [10],
and MAESTRO [8]. However, as Fig. 2 shows, these works
focus only on dataflows for single dense layers, forming a
subset of dataflows that we study in this work (which includes
pipelining and multi-phase sparse-dense dataflows).

III. GNN DATAFLOW TAXONOMY

In this section, we discuss the GEMM/SpMM dataflows
within an individual phase (Intra-phase dataflows) and the
overall dataflow with both phases (Inter-phase dataflows).

TABLE I
EXAMPLE 2D GEMM DATAFLOW CHOICES FOR COMBINATION AND THEIR

HARDWARE IMPLICATIONS. THE SUBSCRIPT s ON TWO DIMENSIONS
REPRESENTS SPATIAL MAPPING (I.E., UNROLLING) OF THOSE

DIMENSIONS ACROSS THE ROWS AND COLUMNS OF THE ACCELERATOR
(IN A TILED MANNER), WHILE t REPRESENTS TEMPORAL MAPPING.
"STATIONARY" MEANS THAT THE MATRIX IS INSIDE THE PES WHILE
"STREAMING MEANS" THAT THE MATRIX IS STREAMED FROM GB.

Dataflow Implication of
Loop Order

Implication of
Spatial Dimensions

VsGsFt

Output (VG) stationary,
Intermediate matrix (VF)
and Weights (FG) stream
every cycle

Spatial multicast of VF and
FG every cycle. Temporal
reduction of partial sums
within each PE.

GsFsVt

Weight (FG) stationary,
Intermediate matrix (VF)
streams every cycle

Spatial multicast of VF
every cycle. Spatial reduction
of partial sums across PEs

VsFsGt

Intermediate matrix (VF)
stationary, Weight (FG)
streams every cycle

Spatial multicast of FG
every cycle. Spatial reduction
of partial sums across PEs

Notation. We use the notations from Fig. 3 for the matrices
and the dimensions for the rest of the paper. Fig. 4 presents
the succinct notations we use for describing the dataflow of a
single phase, without writing out its full loop-nest. It describes
the loop order (i.e., order of temporal loops) and the spatial
parallelism choices which are determined by the tile sizes. In
this paper, tile size (T_Dim) represents spatial loop tiling and
it refers to the number of elements of a dimension mapped
in parallel across PEs. For instance, T_F is the number of
input features (F) processed in parallel across PEs. Here s
and t in the subscript represent whether a dimension Dim
is spatial (which means T_Dim>1) or temporal (T_Dim=1).
Also, V and F dimensions are used in both the phases so
we use T_VCMB to describe T_V in Combination phase and
T_VAGG for Aggregation.

Table I discusses the implication of the loop order and the
spatial parallelism of the dimensions on data movement for
three popular 2D GEMM dataflows. Next, we describe various
dataflow choices and the taxonomy to describe the intra-phase
and the inter-phase dataflows.

A. Intra-phase Dataflow

1) Combination Dataflow: Fig. 5a) and b) show examples
of Combination dataflows. In Fig. 5a), V×F matrix (h[v][f ])
and F×G matrix (w[f ][g]) stream from the buffer into the PEs.
The input features vary each cycle, and thus the dimension
is temporally mapped and their T_FCMB=1 due to no spatial
parallelism. The other dimensions are spatial since they have
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Fig. 5. Examples of different intra-phase dataflows. a) Combination dataflow: VsGsFt, b) Combination dataflow: VtFsGt c) Aggregation
dataflow: VtFsNt. See Fig. 3 for matrix and dimension notations. Input feature indices x0[n = 1, 2..][f = a, b...], Weight indices: w[f =
a, b..][g = A,B..], Intermediate indices: h[v = 1, 2...][f = a, b..], Output feature indices: x1[v = 1, 2][g = A,B].

Time

Space
(PEs)

PPSEQ SP

Aggregation phase
Combination phase

Height of the rectangle represents the 
intermediate data storage and its color 
represents corresponding access energy 
according to the scale on the left

Fig. 6. Space-Time representation of Inter-phase dataflows along with
Intermediate data movement. If the intermediate data exceeds the
storage capacity of the on-chip buffers, it needs to move back and
forth between memory which adds energy costs.

parallelism. The tile sizes T_VCMB and T_G are 2, since two
vertices ‘1’ and ‘2’ and two output features ‘A’ and ‘B’ are
parallelized. Also, ‘w’ and ‘h’ are spatially multicasted in this
example. This results in VsGsFt. The reduction is temporal
which can be achieved by the accumulators inside the MACs.
As another example, Fig. 5b) shows a Combination dataflow
in which different features are mapped in parallel. V×F matrix
is present in the RF. F×G matrix is streamed from the buffer
into the PEs. Different partial sums resulting from different
features “a-d” are reduced spatially which can be done through
a linear chain or adder tree [8]. This results in VtFsGt with
T_VCMB=T_G=1 and T_FCMB=4.

2) Aggregation Dataflow: Fig. 5c) illustrates an example
of an Aggregation dataflow. Sparsity gets encoded as N in
taxonomy. As Fig. 3b shows, N can be encoded in CSR,
in which all of the neighbors are stored back-to-back. The
example shows V as the outermost loop, and is temporal.
The next loop contains F which has spatial parallelism (s).
In the innermost loop, N is temporal, thus temporal reduction
is required. This results in VtFsNt.

B. Inter-phase Dataflow

Although each phase can use any intra-phase dataflow, as
described above, the dataflow choice for one can affect the
other. This opens up a design-space for inter-phase dataflow.
This part of the dataflow is important as it determines the

number of memory accesses required to move data from one
phase to the next. Fig. 6 presents the types described below.

1) Sequential (Seq): Seq is the simplest inter-phase
dataflow where the two phases are run sequentially. All the
outputs of the first phase are stored in the global buffer (and
moved to DRAM if the size of the global buffer is insufficient)
and then loaded back to the PEs for the next phase.

2) Sequential Pipeline (SP): SP is similar to Seq but it
splits the computation of Aggregation and Combination phases
into small steps, which are then interleaved over time on the
accelerator’s PEs. As Fig. 6 shows, it is possible to reduce the
data movement between Aggregation and Combination phases
depending on the intra-phase dataflows. Specifically, the output
data generated by one step can be kept stationary within PEs’
local registers rather than going into a global buffer or DRAM.
Fig. 7b) shows an example of this. The Aggregation dataflow is
same as the dataflow in Fig. 5c) and the Combination dataflow
is same as the dataflow in Fig. 5b) (T_F in both phases is 8).
In each pipeline step: (a) a part of the intermediate matrix is
computed by the Aggregation phase and is stored within the
RF of a PE. (b) Weights are streamed over that part of the
intermediate matrix to produce a part of the output matrix.

3) Parallel Pipeline (PP): PP is when both phases are
allocated onto parallel units (i.e., group of PEs) within an
accelerator at the same time. The size of these parallel units
can be fixed (e.g., HyGCN [19]) or flexible (e.g., AWB-
GCN [20]), depending on the flexibility within the accelerator
substrate. For PP, it is critical to balance the production and
consumption rate to reduce stalls. An intermediate ping-pong
buffer and NoC. are needed to send data from one phase to the
next. This is similar to the typical workflow for a more general
accelerator such as GraphCore [3]. Fig. 7a) shows an example
of PP dataflow. In this example, the Aggregation dataflow is
same as the dataflow in Fig. 5c) and the Combination dataflow
is same as the dataflow in Fig. 5a). In each pipeline step ‘n’,
the left half performs Aggregation and the right half parallelly
performs Combination on the part of the intermediate matrix
which was produced by Aggregation in the previous step ‘n-1’.
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Fig. 7. Step-by-step execution of inter-phase dataflows. a) PPAC(VtFsNt, VsGsFt) b) SPAC(VtFsNt, VtFsGtt). Here, “step” refers to
duration in which producer writes a part of the intermediate matrix and consumer reads a part of the intermediate matrix. We show the
allocation of PEs to the phases and the parts of the matrices computed in each step. See Fig. 3 for matrix and dimension notations. Dataflow
notation is described in Section III-C. The intra-phase dataflows are shown in detail in Fig. 5.

TABLE II
CHARACTERIZING THE DESIGN-SPACE OF GNN DATAFLOWS. NOTE THAT ANY DIRECTION WILL AFFECT THE AGGREGATION AND COMBINATION

DIMENSION VARIABLES, BUT SIMILAR CONCEPTS APPLY. SUBSCRIPTS s, t, x MEAN SPATIAL, TEMPORAL, EITHER SPATIAL OR TEMPORAL RESPECTIVELY.

Row Inter Phase Order - Aggregation,
Combination

Intermediate
Global Buffer

NoC/PE
support

Example &
Order Remarks

1 Sequential
(Seq) ANY-All pairs 3 Intra-phase

TPU [31]
Eyeriss [7]
(any direction)

Similar to running one DNN layer at a time.
The outputs of one phase get stored in the
memory and rescheduled back onto the PEs.

2
Sequential
Pipeline
(SP)

AC - VxFxNt, VxFxGt
AC - FxVxNt, FxVxGt
CA - NxFxVt, VxGxFt
CA - FxNxVt, GxVxFt

7

Local buffer
inside PEs
to accumulate
data

EnGN [21]
(any direction)

SP-Optimized: Avoids GB accesses, as output
data of one phase is stationary in the PE RF,
and can be used as input for the next phase.
For agg->cmb, T_VAGG=T_VCMB and T_FAGG
=T_FCMB and reduction is temporal as the
data is always inside in-place buffers.

3 Same as rows 4-9 3
Intermediate outputs
stored in GB. (any direction)

SP-Generic: There will be a buffer/ setup delay
between aggregation and combination phases
to remap the output data to a new location.

4
Parallel
Pipeline
(PP)

AC - VxFxNx, VxFxGx
AC - FxVxNx, FxVxGx

3
NoC connecting Agg
and Cmb units to
intermediate buffer.

(agg ->cmb)
Element(s) wise granularity: Element(s) of the
intermediate matrix indexed by V,F can be
pipelined.

5
AC - VxFxNx, VxGxFx
AC - VxNxFx, VxGxFx
AC - VxNxFx, VxFxGx

3
NoC connecting Agg
and Cmb units to
intermediate buffer.

HyGCN [19]
Auten et al. [24]
(agg ->cmb)

Row(s) wise granularity:Row(s) of the intermediate
matrix indexed by V can be pipelined. HyGCN
allocates a fixed number of PEs, which may lead
to stalls. (combination engine idle waiting).
HyGCN dataflow-PPAC(VxFsNt, VsGsFt)

6
AC - FxVxNx, FxGxVx
AC - FxNxVx, FxGxVx
AC - FxNxVx, FxVxGx

3
NoC connecting Agg
and Cmb units to
intermediate buffer.

(agg ->cmb)
Column(s) wise granularity: Column(s) of the
intermediate matrix indexed by F can be
pipelined.

7 CA - NxFxVt, VxGxFt
CA - FxNxVt, GxVxFt

3
NoC connecting Agg
and Cmb units to
intermediate buffer.

(cmb ->agg)
Element(s) wise granularity: The order should
be (NFV, VGF) or (FNV, GVF). V×G matrix
after Cmb becomes N × F for Agg.

8
CA - NxVxFx, VxGxFx
CA - NxVxFx, VxFxGx
CA - NxFxVx, VxFxGx

3
NoC connecting Agg
and Cmb units to
intermediate buffer.

(cmb ->agg) Row(s) wise granularity

9
CA - FxVxNx, GxVxFx
CA - FxVxNx, GxFxVx
CA - FxNxVx, GxFxVx

3
NoC connecting Agg
and Cmb units to
intermediate buffer.

AWB-GCN [20]
(cmb ->agg)

Column(s) wise granularity: AWB-GCN enables
a flexible allocation of PEs for different phases
to match production and consumption rates.
AWB-GCN dataflow- PPCA(FsNtVs, GtFtVs)

C. Complete Description of GNN Dataflow

Given the dataflow types described above, we use the
following template to describe a complete dataflow:

<Inter><order>(<AggIntra>, <CmbIntra>)
<Inter> represents the inter-phase dataflow, <order> rep-

resents the computation order (Aggregation to Combination
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is AC, Combination to Aggregation is CA). <AggIntra>
represents the Aggregation phase intra-phase dataflow, and
<CmbIntra> represents the Combination phase intra-phase
dataflow.

Table II uses our taxonomy to enumerate and characterize
the space of dataflow choices for mapping the Aggregation and
Combination loops, including the hardware structures required
for supporting that dataflow. To keep the table compact, we
add a subscript x to indicate that the dimension could be
spatial or temporal. This leads to a total of 6,656 choices
purely from the product of all feasible loop orders, parallelism
choices, and phase order across the three inter-phase choices.
Note that for each dataflow choice, the tile sizes (T_Dim) are
also parameters which can put the actual number of possible
mappings in the trillions [9]. We observe in Table II and
Section IV that the loop orders and the tile-sizes of two phases
are interdependent for SP and PP dataflows. Thus we formalize
the non-trivial space of multiphase GNN dataflows.

For the purposes of analysis, in Table II we explic-
itly list sets of interesting dataflows (some of which ex-
isting accelerators have leveraged) with the remarks high-
lighting their key characteristics. As an example, the
HyGCN [19] accelerator’s dataflow can be succinctly de-
scribed as: PPAC(VxFsNt, VsGsFt) In fact, the dataflow
shown in Fig. 7a) is the same as that used by HyGCN [19].
However, note that HyGCN microarchitecture employs sep-
arate dedicated SIMD and Systolic engines respectively for
Aggregation and Combination, along with a dedicated buffer
between them for intermediate values. The dataflow is tied to
the microarchitecture; in contrast, Fig. 7a) runs the HyGCN
dataflow on a programmable spatial accelerator by configuring
different sets of PEs to run the Aggregation and Combination
dataflows described earlier in Section III-A and staging the
intermediate values through the flexible partitions in the pro-
grammable scratchpads.

Hardware support for dataflows. We note that each
dataflow may require different levels of support from the
hardware. For the intra-phase dataflows, support for multicasts
and reductions (either spatially via a store-and-forward or
temporally via a read-modify-write register within PEs) may
be needed [8]. For the inter-phase dataflows, Table II lists the
NoC and PE support needed for each dataflow. We discuss the
implications of hardware parameters in detail in Section V-C.

IV. QUALITATIVE AND ANALYTICAL ANALYSIS

In this section, we present a qualitative analysis of the
trade-offs of various inter-phase choices and their runtime and
storage implications. Table III summarizes the runtime and
intermediate buffering requirements for inter-phase dataflows
that we derive here. We also focus on the intra-phase dataflow
implications on inter-phase dataflows where both the phases
are interdependent. Thus multiphase dataflow space is non-
trivial. For the analysis in this section, we focus on AC
computation order, but the same concepts apply to CA.

A. Sequential Dataflow

Recall that in sequential dataflow, the phases simply run
one after the other using any intra-phase dataflow. The overall
latency is the sum of latencies of individual phases. The entire
intermediate matrix is first written to the memory by the first
phase and then read from the memory by the second phase.
Hence, as Fig. 8a) shows, the intermediate matrix occupancy in
the memory is simply the number of elements of Intermediate
matrix which is V×F. Such amount of data cannot be stored
on-chip for large graphs, as Fig. 6 shows, and would incur
higher energy than the other inter-phase dataflows.

B. Sequential Pipeline (SP)

In the Sequential pipeline dataflow, a few elements of the
first phase are computed and the second phase is applied
and this is repeated in an interleaved manner over time. As
Fig. 6 shows, this reduces the intermediate matrix footprint
and naturally gives an energy advantage over Seq by avoiding
expensive memory accesses down in the memory hierarchy
(including DRAM).

SP-Generic. This can be considered a naïve implementation
for the SP dataflow. As Fig. 8b) shows, for SP-Generic
dataflow, the intermediate data produced in the Aggregation
phase is written by the PEs to the global buffer, and then
read from there for computing the Combination phase. Thus,
the intermediate storage required is equal to the number of
elements pipelined which we define as Pel. The intermediate
data is broken down into granularities which we describe in
detail in Section IV-D. The feasible loop orders are shown in
row 3 of Table II, which is equivalent to the PP loop orders
shown in rows 4-9. The total runtime of SP-generic is similar
to the sequential dataflow, although the energy would be lower
by avoiding the transfer of the Aggregation outputs to memory.

SP-Optimized. In order to save both energy and latency, we
can select a subset of intra-phase dataflows for Aggregation
and Combination such that the outputs generated by Aggre-
gation can stay local within the PEs’ registers and be reused
directly by the Combination phase. This avoids writing this
intermediate data up the memory hierarchy to the buffer and
reading it again. These dataflows are SPAC(VxFxNt,VxFxGt)
and SPAC(FxVxNt,FxVxGt) for Aggregation to Combination
order and are shown in Row 2 of Table II. In this dataflow,
the requirement is that the loop order pair for Aggregation and
Combination phases should be (VFN, VFG) or (FVN, FVG).
After the first iteration of temporal loop-nest of V,F is finished
with all neighbors reduced, the accumulated data remains in
the MAC units and then dimension G is streamed over it.
Moreover, corresponding T_Dimensions for both Aggregation
and Combination would be same (ie T_VAGG=T_VCMB and
T_FAGG=T_FCMB) since the same intermediate data stored in
the PEs by the first phase is processed by the second phase.
Also, since the data should be available for consumption
locally in the processing elements, the reduction must be
temporal (T_N=1). The advantage of SP-optimized is reduced
buffer accesses and reduced buffer requirement, since the
data to be used in the second phase is directly used inside
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Fig. 8. Intermediate buffering in Inter-Phase dataflows – AC computation order is assumed.
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Fig. 9. PP strategies with different granularities: a) Element(s) wise a) Row(s) wise and a) Column(s) wise for the phase order AC.

the PEs, as also shown in Fig. 8c). Moreover, it saves the
latency and memory read overhead of loading the data into
PEs. An instance of SP-Optimized is used by the EnGN [21]
accelerator.

C. Parallel Pipeline (PP)

Parallel pipeline dataflow divides the accelerator into two
engines, with one engine feeding the other engine spatially.
As Fig. 8d) shows, the intermediate data is broken down into
small granularities and the data is processed in a pipelined
manner. For example, if granularity is a single row of the
intermediate matrix, then the Aggregation phase computes
and writes the data corresponding to the nth row and in
parallel, the Combination phase reads and processes data
corresponding to the (n-1)th row. To facilitate this, intermediate
ping-pong buffers are required. As Fig. 8d) shows, the amount
of intermediate buffering required is twice the number of
elements of the intermediate matrix pipelined. We refer to
the number of elements being pipelined as Pel. Thus the
amount of intermediate storage used is 2 × Pel, Pel for
each phase. The runtime of one pipeline step is equal to
the runtime of the slower phase for producing Pel elements.
The total runtime is the sum of runtimes of individual steps
sum(max(tAGG, tCMB)Pel).

D. Granularities for SP-Generic and PP

We discuss three types of granularities at which the inter-
mediate matrix can be broken into pipeline steps for PP and
SP-Generic dataflows. Rows 4-9 in Table II show all feasible
loop orders for all possible granularities and phase orders.

Element. Element(s)-wise granularity involves tiles of a
few elements being processed in a pipelined manner rather
than the whole dimensions. Fig. 9a) shows an example of
element(s)-wise granularity PPAC(VxFxNx, VxFxGx). For each
element(s) which is (are) indexed by V and F, the inner-
most loop (N) of Aggregation reduces all the neighbors for
a given tile of vertices and features to be reduced and, in
parallel, the innermost loop of Combination computes G for
the previous tile of vertices and features. The amount of
buffering is 2×Pel for PP datalow and Pel for SP-Generic.
Pel = T_Vmax×T_Fmax

1.
Row. In row(s)-wise granularity, the whole row(s) of the

intermediate matrix is (are) considered instead of a few
elements in a row. The number of rows that are pipelined is
T_Vmax. So Pel = T_Vmax×F. Fig. 9b) shows an example loop
order (VFN, VGF) for row(s) wise granularity for PP dataflow

1If tile size of a dimension (T_Dim) is imbalanced, ie (T_DimAGG
6=T_DimCMB), then the T_Dim corresponding to Pel would be the LCM.
In this work, we only consider mappings where higher tile size is multiple of
the lower, which is equivalent to T_Dimmax, otherwise LCM can be large.
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TABLE III
RUNTIME AND BUFFERING REQUIREMENTS FOR DATAFLOWS

Inter-phase dataflow Intermediate Buffering Runtime
Seq V×F tAGG+tCMB
SP-Generic Pel tAGG+tCMB
SP-Optimized 0 tAGG+tCMB-tload
PP-Element 2×T_Vmax×T_Fmax sum(max(tAGG,tCMB)Pel)
PP-Row 2×T_Vmax×F sum(max(tAGG,tCMB)Pel)
PP-Column 2×V×T_Fmax sum(max(tAGG,tCMB)Pel)
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Fig. 10. OMEGA framework toolflow.

for phase order Aggregation to Combination. For each set of
rows indexed by V, the inner two loops F and N compute
Aggregation, and in parallel, the two innermost loops G and
F compute Combination for the previous row(s). An instance
of this dataflow is used in HyGCN [19].

Column. In column(s)-wise granularity, the whole col-
umn(s) of the intermediate matrix is (are) considered instead
of a few elements in a column. The number of columns
that are pipelined is T_Fmax. So Pel = T_Fmax×V. Fig. 9c)
shows an example loop order (FVN, FGV) for column(s) wise
granularity for PP dataflow for phase order Aggregation to
Combination. Each column of the aggregated matrix is indexed
by F while the inner two loops compute the computations
corresponding to columns in a pipelined manner.

Table III summarizes the runtime and buffering require-
ments for the different inter-phase dataflows discussed before.

V. QUANTITATIVE ANALYSIS AND CASE STUDIES

In this section, we do a deep dive into the performance
and energy of different GNN dataflows. We also perform case
studies on hardware implications.

A. Experimental Methodology

1) Cycle-Accurate Simulation Framework: In order to
carry out a detailed evaluation of various dataflows, we
built a cycle accurate simulation framework called OMEGA2

(Observing Mapping Efficiency over GNN Accelerators)
around STONNE simulator [32]. Fig. 10 shows the overview
of the OMEGA framework. STONNE simulator models the
flexible accelerators MAERI [6] and SIGMA [33], and the
hardware models have been extensively validated against
their RTLs. It consists of reconfigurable networks-on-chip for
operands (e.g., inputs, partial sums and weights) distribution,
operands multiplication, and output reduction (e.g., addition)
allowing us to study different tile sizes. The simulator uses a
single-cycle distribution network used in the MAERI accelera-
tor. The STONNE framework also supports CSR decoding and
indexing logic to run SpMM in addition to GEMM to compute

2OMEGA codebase - https://github.com/stonne-simulator/omega.

both phases. To implement inter-phase dataflows, we built an
inter-phase cost model that analytically computes the runtime,
buffering, and energy statistics of inter-phase dataflows using
statistics from individual phases. The inter-phase cost model
uses an analytical model to compute results for inter-phase
dataflows from intra-phase dataflows based on the analysis
in Section IV. Some of the example equations are shown in
Table III. Some dataflows like PP require timestamps for the
portions of outputs computed for both the phases, which are
collected at the granularity of Pel.

2) Datasets: We evaluate the GNN dataflows for the target
datasets described in Table IV. These are standard datasets rep-
resenting workloads from multiple domains like biochemistry,
citation networks, and social networks [27], [34]. We evaluate
one batch of 64 graphs for graph classification workloads
(batch of 32 graphs for RedditBIN) and we evaluate node
classification datasets Citeseer and Cora. The large graph sets
are generally sliced to fit on-chip [19], [21]. Large graph
classification datasets can be batched such that the graphs fit
on-chip. For this work, there is sufficient on-chip buffering
for a batch of graph classification datasets and for node
classification datasets. We characterize on-chip data movement
and runtime of the GNN dataflows since our aim is to study the
behavior of these dataflows on spatial accelerators. Based on
the matrix dimensions and sparsity, we divide the workloads
into 3 categories: high number of edges/vertices and rela-
tively low features/vertices (HE), high features/vertices and
relatively lower edges/vertices (HF), and low edges/vertices
and low number of features/vertices (LEF).

3) Evaluation Parameters: Unless specified otherwise, we
assume the number of PEs to be 512 with 64B banked RF in
each PE. We also assume sufficient distribution and reduction
bandwidth to ensure that the data is received from (or sent to)
all the PEs without any stalls. The tile sizes are chosen such
that they satisfy the dataflow description in Table V and the
static utilization3 is nearly 100% of the PEs. For PP dataflow,
unless otherwise mentioned, half the PEs perform Aggregation
phase and half the PEs perform Combination phase.

TABLE IV
DATASETS INFORMATION. FIRST PART FOR GRAPH CLASSIFICATION,

BOTTOM PART FOR NODE CLASSIFICATION – ‘*’ MEANS THAT INDICATOR
VECTORS WERE USED IN PLACE OF FEATURES.

Name #Graphs #Nodes(av) #Edges(av) #Features Category

Mutag 188 17.93 19.79 28* LEF
Proteins 1113 39.06 72.82 29 (full) LEF
Imdb-bin 1000 19.77 96.53 136* HE
Collab 5000 74.49 2457.78 492* HE
Reddit-bin 2000 429.63 497.75 3782* HF
Citeseer 1 3327 9464 3703 HF
Cora 1 2708 10858 1433 HF

B. Comparison of Dataflows

We compare the performance and energy of the GNN
dataflows. We evaluate the representative dataflow configura-

3Static utilization is T_VAGG×T_FAGG×T_N for Aggregation phase
and T_VCMB × T_FCMB × T_G for Combination phase.
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Fig. 11. Runtimes of Dataflows normalized to Seq1 for GCN algorithm. PE Utilization is close to 100%. The values in the brackets are tile
sizes for each dimension, represented as (T_VAGG,T_N,T_FAGG,T_VCMB,T_G,T_FCMB).

Fig. 12. On-Chip buffer access energies of dataflows, GB is Global Buffer and RF is local (PE) register file. Size of the Intermediate
buffer for PP depends on the pipelining granularity. The values in the brackets are tile sizes for each dimension, represented as
(T_VAGG,T_N,T_FAGG,T_VCMB,T_G,T_FCMB).

Fig. 13. Global Buffer breakdown for Mutag and Citeseer, Adj-Adjacency matrix, Inp-Input matrix, Int-Intermediate matrix, Wt-weight
matrix and Op-output matrix, Psum-partial sum accesses. The values in the brackets are tile sizes for each dimension, represented as
(T_VAGG,T_N,T_FAGG,T_VCMB,T_G,T_FCMB).

TABLE V
DATAFLOW CONFIGURATIONS FOR EVALUATION.

Dataflow Configuration Name Distinguishing Property
SeqAC(VxFxNt,VxGxFx) Seq1 Temporal Aggregation (T_N=1)
SeqAC(VxFxNs,VxGxFx) Seq2 Spatial Aggregation (T_N>1)
SPAC(VxFsNt,VxFsGx) SP1 Temporal Aggregation & high T_F
SPAC(VsFxNt,VsFxGx) SP2 Temporal Aggregation & high T_V
SPAC(VsFxNt,VsFxGx) SPhighV SP dataflow; extremely high T_V
PPAC(VxFxNt,VxGxFx) PP1 Temporal Aggregation &

Granularity of lower rows
PPAC(VxFxNs,VxGxFx) PP2 Spatial Agg. & low granularity
PPAC(VxFxNt,VsGxFx) PP3 Temporal Agg. & high granularity
PPAC(VxFxNs,VsGxFx) PP4 Spatial Agg. & high granularity

tions shown in Table V.4

4The short names, for example PP4, in the ’Name’ column are used to refer
to the dataflows in the result charts. These configurations compare temporal vs
spatial Aggregation for Seq and PP dataflows, parallelizing V vs parallelizing
F for SP dataflow and granularities of pipelining for PP dataflows. We also
introduce SPhighV dataflow to highlight the problem of parallelizing sparse
dimensions for all datasets except Proteins and Mutag where T_V is already
high due to smaller T_F limited by F.

1) Performance: Fig. 11 shows the runtimes of various
dataflows. Our observations are as follows:

• SP2 (High T_V) performs well in most cases since par-
allelization of the vertices leads to reduced redistribution
overhead. However, for HF datasets, extremely high T_V
can lead to delays since the performance is limited by a
dense row (with large number of non-zeros) as demon-
strated in SPhighV dataflow. Such dense row is referred to
as "evil row" in AWB-GCN [20].

• For Collab and Imdb (HE category) spatial Aggregation,
in general performs much better than temporal, because
they are densely connected. For other datasets, since they
are sparse, optimal T_N is low.

• Mutag and Proteins have great performance despite ex-
tremely high T_V, since these don’t have evil rows.

• For the Collab dataset, PP performs worst due to poor load
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Fig. 14. Runtimes with different PE allocation to phases. Label represents the dataflow and the PE allocation ratio PEAGG-
PECMB. Runtimes are normalized to 50-50 low granularity. The values in the brackets are tile sizes for each dimension:
(T_VAGG,T_N,T_FAGG,T_VCMB,T_G,T_FCMB).

Fig. 15. Runtime for 2048 and 512 PEs. Runtimes are normalized to that of Seq1 in each case. The values in brackets are tile sizes-
(T_VAGG,T_N,T_FAGG,T_VCMB,T_G,T_FCMB).

Fig. 16. Runtime normalized to that of Seq1 for 512 elements. Legend
represents the number of elements that can be sent to or received
from global buffer in parallel. The values in brackets are tile sizes-
(T_VAGG,T_N,T_FAGG,T_VCMB,T_G,T_FCMB).

balancing between Aggregation and Combination.

2) Energy: Figure 12 shows the energy consumed by
various dataflows across workloads and Fig. 13 shows global
buffer accesses. The energy difference comes due to differ-
ences in the number of accesses across the memory hierarchy.
We assume the energy of a global buffer (GB) access to be
1.046pJ (1MB/bank) and the energy of a local PE register file
(RF) access to be 0.053pJ based on the energy model from
Dally et al. [35]. For PP dataflow, we assume that there is a
separate ping-pong buffer partition for intermediate data and
the its size depends on the capacity required based on Table III.
Our observations are as follows:

• Energy is dominated by GB reads followed by RF reads.
• In Collab (HE category), input GB accesses dominate, in

Cora (HF), weight GB accesses dominate. Mutag (LEF)
has best percentage of accesses reduced due to reuse.

• In PP dataflow, we observe lower energy compared to
Seq since the energy of memory accesses from smaller
intermediate buffer partition is less. SP has no intermediate
matrix accesses resulting in low energy.

• SP2 has low energy but SPhighV has higher energy due
to the partial sum accesses due to low T_F, especially for
HF datasets like Cora.

C. Case Study: Hardware Parameter Implications

1) PP: Load balancing. In PP dataflow, the delay is decided
by the slower phase. Therefore load balancing is critical.
Fig. 14 shows the performance of different allocations of
PEs to the phases for different pipeline granularities. Collab
has higher density (HE category) hence slow Aggregation,
therefore 25-75 performs poorly. For Mutag (LEF category),
50-50 is the best allocation scheme amongst the three alloca-
tion schemes Since, Citeseer is sparse and has high number
of features (HF category), the Combination phase is slower,
therefore 75-25 allocation performs poorly.

2) Scalability of the performance across dataflows. Fig 15
shows the performance of the dataflows for an accelerator
with 512 and 2048 PEs for Mutag and Citeseer datasets. Tile
sizes are chosen to maximize the static utilization. We observe
that the runtimes normalized to the Seq1 dataflow are similar
in case of 512 and 2048 PEs, especially for dataflows with
low runtimes. Therefore, the relative performance of dataflows
generalizes for different scales of acceleration.

3) Implications of low bandwidth. For Section V-B, we as-
sumed sufficient on-chip distribution and reduction bandwidth
to ensure that the data is received/sent without stalls. However,
a low global buffer distribution bandwidth and a low reduction
bandwidth lead to stalls affecting the performance. Fig. 16
shows the performance implications of reducing the bandwidth
for different inter-phase dataflows. Runtime reduces with the
decrease in the bandwidth and PP dataflow suffers the most
since the bandwidth is shared between the two phases.

D. Architectural Insights: Flexibility for Efficient Pipelining

In this section, we show that flexible accelerators do not
only support multiple dataflows but also support efficient
pipelining given the interdependence of Aggregation and Com-
bination dataflows in SP and PP. We discuss flexibility features
needed in an accelerator to support efficient pipelining.
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SP-Optimized: In this dataflow, T_VAGG=T_VCMB and
T_FAGG=TCMB. Also, in order to retain the intermediate matrix
locally in PE, T_N=1 (temporal reduction in Aggregation).
For Combination, T_FCMB determines the spatial reduction. A
rigid architecture with only spatial reduction cannot map SP-
Optimized. A rigid architecture with only temporal reduction
can map only one instance with tile sizes T_F=T_N=1 which
implies that only V is distributed parallelly. This dataflow is
SPhighV. We observe from Fig. 11 and 12 that this dataflow
has a huge runtime due to performance being limited by
the sparse rows. It also has a huge energy value due to the
overhead of writing and reading partial sums. Therefore, con-
figurability of tile sizes is essential given the interdependence
of phases.

PP dataflow: We observed in Fig. 14, how critical load
balancing is, and that the optimal allocation to a phase
can change depending on workload sparsity and dimensions.
Using a rigid substrate with two distinct sub-accelerators like
HyGCN [19] causes load imbalance for certain workloads.
Load balancing also requires tile sizes such that stalls are
minimized due to the slower phase. Therefore flexible resource
allocation and configurability of tile sizes are essential for
mapping PP efficiently.

Flexibility features: Mapping SP and PP dataflows effi-
ciently requires configurable tile sizes and flexible resource
allocation. Moreover as Section V-B shows, flexibility to
choose from SP and PP according to the workload leads to an
optimal dataflow. These features add up to a programmable
spatial accelerator [2]–[6]. However, there is no additional
cost for a programmable spatial accelerator running pipelined
dataflows compared to running single phase dataflows. There-
fore flexibility provides more benefit per cost for mapping
multiphase kernels than independent kernels.

E. Summary of Key Results

Best Performance: For HF workloads, PP3 dataflow is the
best, while for other datasets SP2 performs the best, although
to achieve the best performance, T_V should neither be too
high, nor be too low (Fig. 11).

Best Energy: For HF workloads, PP3 and SP2 have the best
energies. For HE workloads, SP2 has the best energy. How-
ever, energy saving by pipelining is not significant (Fig. 12).
For LEF workloads, SP1 and PP1 have the best energies.

Cost of pipelining: SP-Optimized dataflow can lead to a
huge partial sum overhead specially for HF datasets (Sec-
tion V-B2). PP dataflow suffers from load balancing problems
and is highly sensitive to bandwidth changes (Section V-C).

Flexibility: Flexible accelerators enable choices in dataflow
and is also beneficial for efficient SP and PP execution.

VI. DISCUSSIONS AND FUTURE WORK

Scope of the Dataflow Taxonomy. The current taxon-
omy captures the intra-phase dataflows and the inter-phase
dataflows. However, our taxonomy does not capture the order
of nodes, graph partitioning and optimizations such as load

balancing [20], computation elimination via memoizing [23],
[36] and requires an extension to capture these.

Application of Taxonomy to Other Kernels beyond GNNs.
Though this work focuses on GNNs, the taxonomy and inter-
phase analysis proposed in Sections III and IV can be gen-
eralized to dataflows for multiphase computations (GEMM-
GEMM/GEMM-SpMM/SpMM-SPMM). One immediate ex-
ample is Deep Learning Recommendation Models [14] that is
built of an SpMM and a DenseGEMM in parallel followed by
concatenation followed by a DenseGEMM.

Mapping Optimizer. In this work, we performed case stud-
ies on select dataflows to demonstrate interesting insights.
A mapping optimizer can be built on top of the OMEGA
framework, which automatically searches the search space of
the dataflows. There are existing mapping optimizers for DNN
accelerators [10]–[12]. Since GNN dataflows add an additional
inter-phase optimizations knob, dataflow search is important.

VII. CONCLUSION

With the increasing popularity of multiphase workloads like
GNNs, dataflow strategies to map them on accelerators and
extract reuse both across and within the phases are crucial.
While there has been prior work on dataflow exploration for
dense DNNs, GNNs are a wider generalization of DNNs since
they consist of sparse and dense phases. We capture the design
space of GNN dataflows in a succinct taxonomy template.
Using this taxonomy, we contrast various GNN dataflows and
perform various case studies on the pipelined dataflows.

Rather than targeting a specific ASIC, we explore the
design-space of GNN dataflows on a programmable spatial
accelerator. We observe that the choice of the dataflow can be
influenced by the workload sparsity and dimensions. We also
observe various costs and benefits of pipelining. We demon-
strate that a flexible accelerator is a more efficient substrate
for pipelining due to the interdependence and sensitivity to
load balancing in the pipelined dataflows.
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