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Abstract—Industry 4.0 demands interconnected production
lines that consist of modular assets. Recent advances of wireless
communication technologies allow a large connectivity of devices
and approach the performance of wireline communication,
specifically regarding throughput, latency and reliability. As
a result, more and more time critical connections can be
performed wirelessly. Both attributes foster the emergence of
edge computing, a concept that can efficiently utilize distributed
computational resources. This is particularly beneficial for
modular assets that have limited energy supply and capacity
of computation hardware. Autonomous mobile robots offer high
potential for object transportation, inspection and manipulation
in shared workspaces with human operators. With edge
computing, heavy computations can then be offloaded to
more powerful computers or edge data centers to speed up
the decision-making process and increase the productivity.
For an efficient orchestration strategy of computation and
communication resources, various task requirements in terms of
latency, bandwidth, cost and energy must be considered. To this
end, we aim at evaluating the requirements in autonomous and
collaborative assembly lines, a use case that comprises diverse
tasks including latency-sensitive ones in dynamic, uncertain,
multi-agent environments. This work focuses on discussing
latency requirements on the basis of a collaborative safety mode
and autonomous robotic insertion.

Index Terms—edge computing, collaborative robotics, 5G,
Wi-Fi 6, Industry 4.0, automation, manipulation planning

I. INTRODUCTION

Conventional industrial robots are most suitable when
performing repetitive tasks of high volumes in a workspace
separated from human workers by safety barriers. However,
customized products and short product life cycles [1] demand
more adaptability of the manufacturing system to avoid an
increase of costly downtimes for reprogramming the robots
and reconfiguring the production line [2]. Replacing wired
connections by wireless communication networks represents
a major opportunity to increase flexibility. Figure 1 illustrates
a collaborative assembly line where mobile robot, cameras
and edge server communicate wirelessly via a router. This
concept of edge computing is enabled by developments in
wireless technologies that keep narrowing the performance
gap compared to wireline communication. The International
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Fig. 1. Edge computing in a collaborative assembly line: External cameras
observe the collaborative workspace. Expensive computations, e.g. for
tracking the operator and performing manipulation planning, is performed
on the edge server via wireless communication networks.

Telecommunications Union (ITU-R) defined three categories
of communication services for 5G cellular networks to
address the requirements for Industry 4.0: ultra-reliable
low-latency communication (URLLC), enhanced mobile
broadband (eMBB) and massive machine-type communication
(mMTC) [3]. Similarly, the Wi-Fi Alliance is working
on increasing throughput and decreasing latency, also for
“mission critical” [4] operations. This evolution is particularly
important for autonomous mobile robots (AMRs). The market
for AMRs is expected to increase from $1.61 billion in
2021 to $22.15 billion in 2030 [5] which could be explained
by their flexible application in transport, inspection and
manipulation tasks. However, these operations require the
quick and proper reaction to uncertain and dynamic changes
which pose significant challenges to current autonomous
systems. Approaches that utilize deep learning promise to
improve their “adaptability and resilience” [1] in such complex
settings. On the other hand, acting reliably in uncertain and
dynamic environments is a major strength of humans. To
this end, collaborative robotics aims at combining the human
adaptability and intuition with the robot repeatability and
precision to increase delivery rate and product quality [6].

This work analyzes promising applications for edge
computing in collaborative assembly lines requiring powerful
wireless communication. Recent advances in manipulation
planning and human tracking utilize deep learning approaches



to handle the uncertainty of contact-rich interactions and
variations in human appearance and poses [7]–[10]. However,
they do not consider a limited availability of resources. For
AMRs, however, high computational resources are costly
and energy-demanding. Hence, an edge computing solution
could present a desirable alternative. To this end, section
II discusses related work that utilize edge computing for
robotic applications. Section III compares this concept to the
alternatives, cloud and device computing. Section IV analyzes
the resource requirements for a collaborative safety mode and
robotic assembly tasks on the basis of state-of-the-art work
arguing that these applications demand edge computing in
combination with 5G or Wi-Fi 6. Further progress of this
work (Sec. V) will assess the theoretical expectations by
experimentally evaluating the performance variations to enable
the most suitable allocation of operations for edge, cloud and
device computing, and orchestration of cellular and WLAN
network resources.

II. RELATED WORK

Robotics is mentioned as an application area for powerful
communication technologies like 5G [11], [12]. However,
there is a lack of real-world experiments [13]. The targets
of communication development to reduce latency, increase
connectivity and throughput aligns well to the concept of
edge computing. Voigtländer et al. [12] perform closed-loop
control for a balancing task using an eight-DoF mobile
robot. The balance controller and the inverse kinematics are
offloaded to an external computer using a 5G prototype. In
a subsequent work [14], the authors explore the capabilities
of 5G communication in an industrial demonstrator platform,
specifically considering safety requirements and heterogeneous
data transmissions of a mobile robot for transportation and
inspection tasks. The 3rd Generation Partnership Project
(3GPP), that developed a 5G standard, also outlines a number
of use cases [11]. The authors of [14] refer to the use case
“mobile control panels with safety functions”. Raunholt et
al. [15] show that the navigation planning and docking control
of an AMR can be reliably performed using 5G-based edge
computing. Even low-level control can be performed on an
edge server in a navigation task using 5G [16] and a custom-
build AMR. The authors justify the offloading of such small
computations with the “ease of maintenance” and “improved
resiliency to software and hardware failures”.

In contrast to the related work, we are particularly interested
in comparing the performance with different communication
technologies and computational resources. To this end,
we aim at exploiting the recent advancements in deep
learning for high-DoF, high-frequency and closed-loop robotic
manipulation and collaborative robotics which regards the
3GPP use case of a “flexible, modular assembly area” [11].

III. COMPARISON OF COMPUTING SOLUTIONS

Cloud, device and edge computing mainly differ in terms of
the available size of computational resources and their distance
to the location where the data is generated. One computing

Fig. 2. Schematic expectations of computation and communication latency
using cloud and edge computing. In comparison, the device that senses or acts
can have fixed limited resources and has the lowest communication latency.

solution could be more suitable than others depending on
the use case requirements, especially latency, bandwidth,
cost and energy [17]. In this work, we concentrate on the
latency requirements which accumulate from communication
and computations. Figure 2 illustrates a schematic overview of
the considered computing solutions. The bottom of the figure
represents the edge devices that have the least computational
power, and therefore, are expected to require the largest
computation times. Such devices have the largest deployment
scale [18] which makes the communication paths more likely
to be short resulting in smaller communication latencies.

a) Cloud computing: Cloud computing offers “on-
demand access to a shared pool of computing resources” [18]
located at large data centers. This solution provides the most
computational resources and the easiest scalability. However,
large distances to the data centers and passing several networks
increase the communication delay [19].

b) Device computing: We refer to device computing as
the solution that utilizes the limited computational resources
on-board the edge device, e.g. the AMR or the cameras,
without requiring any communication with other devices or
external computing sources.

c) Edge computing: Edge computing utilizes distributed
computational resources between centralized data centers
and the devices to improve “the performance, operating
cost and reliability of applications and services” [18]. The
computational resources vary in size and can be provided
by other edge devices or edge data centers that are usually
located in “close proximity to the last mile network” [18]
and therefore, reduce “the latency and bandwidth constraints
of today’s internet” [18]. In combination with powerful
wireless communication like 5G or Wi-Fi 6 that enables
data transmission in a few milliseconds [15], [20], edge
computing can provide resource-constrained mobile devices
the computational performance of small data centers at the
cost of minor communication latency.

IV. TOWARDS EDGE-NATIVE APPLICATIONS

Small computations, such as low-level control of robots,
might be most efficiently performed on the device, when
the time gain from more computational resources does not
compensate the communication latency. On the other hand, for
tasks that require expensive computations, such as sampling-
based motion planning, the increased communication latency
with cloud computing might not be significant. Both of these



examples can be explored in a collaborative assembly line,
however, this use case is characterized by a highly uncertain
and dynamic environment due to contact-rich interactions and
human presence which demand proper reactions at low latency.
Edge-native applications are built to “leverage edge computing
capabilities” [18] such as resource and latency constraints [18]
and to dynamically allocate “application logic to other edge
locations depending on environmental conditions” [21]. In the
following, the need and potential of edge computing solutions
utilizing powerful wireless communication is illustrated on
the basis of collaborative robotics and autonomous robotic
assembly.

A. Speed and separation monitoring in collaborative robotics

Human safety in a collaborative environment is of utmost
importance. The ISO/TS 15066 defines four safety modes for
collaborative robotics [22]. Currently, the power and force
limiting (PFL) mode is mostly considered for autonomous
robots in collaborative environments [23]. However, in this
mode the robot speed is limited. To allow faster motion,
the speed and separation monitoring (SSM) mode is required
which is suitable for parallel assembly lines [6], as illustrated
in Fig. 1. To ensure human safety, a “protective separation
distance” S between a robot and a human operator is
continuously calculated. Assuming constant speed for the
robot vR and the human vH towards each other, the equation
can be simplified as

S = TR(vH + vR) + TSvH +B + U, (1)

where TR is the reaction time of the system, TS and B
the stopping time and distance, respectively. The term U
accounts for the system’s measurement uncertainty. The reader
is referred to [23] for more details about the implementation
of the SSM mode. The reaction time TR consists of the
communication and computation latency of the system and can
have significant effect on the usability of the SSM mode in a
collaborative setting. For instance, in [23], the authors assume
maximum velocities vH = 2 m/s, vR = 1.6 m/s and measure
TR = 0.113 s. Hence, 0.4 m of the required separation distance
is attributed to the latency alone. The authors in [24] use
vH = 1.6 m/s and TR = 0.21 to reduce the robot speed
from a maximum of vR = 5 m/s while approaching the robot
linearly with a human dummy. In this case, the reaction time
contributes 1.6 m of the separation distance at full speed.
This work utilizes laser scanner to track the human position
in 2D. More sophisticated pose tracking can be performed
with RGB-D cameras, e.g. with the Azure Kinect Body
Tracking SDK, which can run at 15 Hz [10]. In the context of
edge computing, we will consider cameras that also provide
computational resources which could allow data preprocessing
to reduce the transmission rate. In any case, observing
collaborative workspaces will require prioritized access to
significant computational and communication resources. With
edge computing, the availability of these resources can be
ensured by migrating less critical operations to less powerful
edge hardware or to centralized clouds.

Fig. 3. System configuration in [7] that performs low-level control on a CPU
and high-level control on a GPU for a robotic insertion task. In an edge
computing scenario, the high-level control could be offloaded to the edge
cloud.

B. Robotic insertion based on visual and haptic feedback

Insertion represents the most prevalent operation in an
assembly task [2]. Small control offsets and inaccuracies can
lead to collisions and jamming that potentially harms the
robot and its environment. Force and torque (F/T) sensors can
be used to avoid harmful motion. Additionally, they enable
informed decision-making during contact. Oikawa et al. [7]
propose such a solution for two high-precision insertions
by combining reinforcement learning (RL) and engineered
stiffness matrices for admittance control. They design a set
of stiffness matrices each perturbing a linear trajectory in a
different direction. A RL policy is then trained to select one
matrix based on the F/T input and the current tip position.
The use of haptic information requires an initial overlap of
the peg and the hole. The F/T sensor returns a small six-
dimensional vector that small neural networks can handle
which is beneficial for training and inference times. The
selection process is performed at 50 Hz on a NVIDIA GTX
1080 GPU, the admittance control runs on a Intel i7 CPU
and updates the robot torques at 1000 Hz. This control loop is
depicted in Fig. 3. The authors do not explain their choice and
allocation of computational resources, hence, it is unknown
if this is the most efficient setup. With edge computing,
the resources can be allocated flexibly depending on the
requirement of each operation within a task.

More resources are required for tasks that utilize more
sensor data. Visual input can complement the haptic feedback
particularly when there is no contact or overlap between the
matching parts [9]. Lee et al. [8] utilize a fixed RGB-D camera
(with image size of 128 × 128 × 4), a wrist-mounted F/T
sensor and proprioceptive data to generate a multi-modal input
representation. A RL agent is trained with that representation
to output 4D Cartesian displacements of the end-effector at
20 Hz which are subsequently interpolated to generate joint
torques at 500 Hz. Vecerik et al. [25] take visual feedback
from a wrist-mounted RGB camera (with image size of
128×128×3), and joint positions, velocities and torques to run
their RL policy at 5 Hz to generate 7D joint velocities which
are “passed through an admittance layer” at 100 Hz. Due to the
large size of images, more computational effort is required for
data processing. At the same time, the communication latency
may increase with the larger packet size. Both applications,
the collaborative SSM mode and the robotic assembly, appear



to benefit from minimal latency. However, to allow efficient
resource planning and allocation, a more detailed analysis
is required that compares the experimental performance of
varying settings.

V. ONGOING WORK

We aim at implementing edge-native applications that
utilize most recent wireless technologies to increase the
robot productivity and human safety in autonomous and
collaborative assembly lines. At the same time, we want to
compare the performance of robotic manipulation tasks and
workspace observation systems given varying computation
and communication resources to enable cost-efficient resource
orchestration. Since the applications consist of multiple
operations with varying requirements we expect to find
the most suitable configuration and best alternatives to
define general criteria for prioritizing and allocating available
resources dynamically. In a first step, we consider a visual
servoing task where the robot manipulator follows an unknown
trajectory based on visual input. Comparing the computation
times of an object detector, image processing and inverse
kinematics on a CPU versus a GPU, and introducing
communication delays of diverse communication technologies
based on [20] the precision of the trajectory can be assessed
and recommendations for real-world requirements inferred. In
the next steps, we consider reproducing insertion tasks based
on haptic and visual feedback to investigate the impact of
the reaction time on the insertion accuracy. To cope with
unavoidable latency, the reaction time could be “negated” [23]
by anticipating future motion.

VI. CONCLUSION

This work in progress presents a promising robotics use
case that has the potential to fully leverage the benefits
of edge computing and 5G or Wi-Fi 6 communication.
Elaborate algorithms for human tracking and contact-rich
interaction demand large computational resources that are
limited on mobile assets such as AMRs. However, the lowest
possible latency is desired to maximize productivity, e.g.
by decreasing the minimal distance between humans and
robots and increasing the robot motion speed. To this end,
edge computing allows an efficient allocation of the required
computational resources in close proximity to the edge device,
and the required bandwidth of 5G or Wi-Fi 6 networks to
wirelessly transmit the data with minimal communication
latency.
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