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ABSTRACT Robotic manipulation in semi-structured and changing environments requires systems with:
a) perception and reasoning capabilities able to capture and understand the state of the environment;
b) planning and replanning capabilities at both symbolic and geometric levels; c) automatic and robust
execution capabilities. To cope with these issues, this paper presents a framework with the following features.
First, it uses perception and ontology-based reasoning procedures to obtain the Planning Description Domain
Language files that describe the manipulation problem at task level. This is used in the planning stage as well
as during task execution in order to adapt to new situations, if required. Second, the proposed framework
is able to plan at both task and motion levels, intertwining them by incorporating geometric reasoning
modules to determine some of the symbolic predicates needed to describe the states. Finally, the framework
automatically generates the behavior trees required to execute the task. The proposal takes advantage of
the ability of behavior trees to be edited during run time, allowing adaptation of the action plan or of the
trajectories according to changes in the state of the environment. The approach allows for robot manipulation
tasks to be automatically planned and robustly executed, contributing to achieve fully functional service
robots.

INDEX TERMS Adaptation, behaviour tree, knowledge-based reasoning, manipulation planning.

I. INTRODUCTION
Many efforts in industrial and service robotics pursue
making mobile manipulators able to act autonomously in
semi-structured human environments. The final aim is to
actually make them able to be robot co-workers at the factory
floor or robot helpers at home. This poses different chal-
lenges at the perception, planning and action levels. At the
perception level, there is the need to capture the state of
the environment, which requires not only the detection of
the objects but also the understanding of the situation. For
this, deep-learning-based approaches can be used to perceive
different sets of objects and to detect their poses from 2D
and 3D images, and ontological-based reasoning procedures
can be used to interpret the situations. At the planning level
the simultaneously combination of task and motion levels is
required to actually obtain geometrically feasible sequences
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of actions to perform a manipulation task. At the execu-
tion level, in order to successfully perform manipulation
tasks, robust strategies for grasping and motion execution
are required, as well as adaptive strategies to comply to
sensed changes, or reactive behaviors able to recover from
unforeseen situations by reasoning on failures.

Many advances have been already done in all these
lines, although great efforts are still needed to make robots
fully autonomous. In this direction, the paper contributes
with the proposal of a reasoning-based robotic manipulation
framework with robust and adaptive planning and execution
capabilities.

A. PREVIOUS WORKS
Task and motion planning (TAMP) is a discipline devoted to
find, for a given task, a complete sequence of actions along
with feasible paths that allows to fulfill it. For robotic manip-
ulation, this may be challenging since the actions required
to perform the task may be subject to strong geometric
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constraints from the environment (lack of space for placing
objects, occlusions) and the robot (reachability of objects,
kinematic constraints of the manipulators). One of the ways
of combining planning levels is to rely on classic task plan-
ning approaches, like the HTAMP [1] approach that is based
on the heuristic-based Fast Forward task planner (FF, [2]),
which has been modified so that its heuristic function takes
geometric constraints into account through various geomet-
ric reasoning procedures. The HTAMP approach will be
used in this work through ROS services (Robotic Operation
System, [3]).

Classical task planning approaches, that assume known ini-
tial values of variables, deterministic actions and a set of goals
defined over the variables [4], are usually modeled using
the Planning Domain Definition Language (PDDL, [5]),
which is an action-centered language that uses pre- and
post-conditions to describe, respectively, the applicability of
actions and their effects. Planning tasks specified in PDDL
are separated into two files, a domain file for predicates and
actions, and a problem file for objects, initial state and goal
specification. The closed-world assumption is intrinsically
present for classical task planning approaches modeled with
PDDL. To handle PDDL this work will use the Universal
PDDL Parser [6], which is a package for parsing planning
problems in PDDL format.

When executing the planning tasks, difficulties may arise if
the states encountered differ from the ones expected. To deal
with this, a recent work [7] interleaves the symbolic and
geometric search processes by calling a motion planner at
every step of the symbolic search and by tentatively assigning
geometric parameters to the current symbolic state before
advancing to the next action. The resulting plan remains
valid even if the objects are moving and can be executed by
reactive controllers that adapt to the environmental changes.
Nevertheless, this adaptation is done at the action execution
level (i.e., controller adaptation), not at a plan generation level
(i.e., adding actions to the plan). The adaptation at a plan
generation level requires of a reasoning mechanism to infer
the actions to be added to recover from the current unexpected
situation. In this line, this work will introduce a methodology
towards automating adaptive behaviors, demonstrating its
ability to adapt to changing environments both in simulation
and real experiments.

Also, knowledge plays a significant role in enhancing the
capabilities of the robots and make them able to comply with
the actual situations encountered, like e.g. the hierarchical
representation composed of geometric and symbolic scene
graphs used in [8] as a structured, object-centric abstraction
of manipulation scenes that can be quickly processed by
graph neural networks to plan the task. However, in order to
structure knowledge for reasoning purposes, ontologies arise
as hierarchical structures expressing the universe of discourse
based on relations, such as is-a and has-a, between concepts
and instances of classes, being these concepts, instances,
and relations expressed in formal languages. Many studies
have investigated the use of knowledge in planning using

ontologies [9], like KnowRob [10] or PMK [11]. This work
will extend the PMK ontology to reason on the required
actions to solve a task, thus breaking the closed-world
assumption by flexibly configuring the task planning PDDL
domain and problem files.

A TAMP framework was proposed in [12] that used FF
and The Kautham Project (TKP, [13]), a motion planning
tool based on the Open Motion Planning Library suite of
sampling-based motion planners (OMPL, [14]) that offers
motion planning and geometric reasoning ROS services. The
framework basically defines an interface layer as an XMLfile
where to include the geometric description of each symbolic
action, and implements a TAMP manager as a ROS client
that calls the task and motion planning services. This TAMP
framework has been updated with the use of HTAMP instead
of FF, allowing to always obtain sequences of actions that are
feasible (although for simple manipulation tasks where the
task and motion planning levels are not very tightly coupled,
the use of FF may be enough).

Looking for the real execution of the sequence of
motions required to fulfill a manipulation task, a prelimi-
nary work [15] introduced the idea of extending this TAMP
framework by making the TAMP manager to automatically
write an output XML file that represents the Behavior Tree
(BT, [16]) that may allow to execute the task with a real robot
using a BT executor. Behavior Trees are a good alternative
to Finite State Machines (FSMs, [17]), or to more ad hoc
methods like the automatic generation and parameterization
of skill primitives for maintenance automation tasks [18].
Since BTs can be represented in an XML format, to execute
the TAMP problems in a real robot, the framework simply
needs to generate the behavior tree XML file once the TAMP
problem is solved and prior to the real execution. Moreover,
the ability of BTs to be edited during run time and the fact that
one can design reactive systemswith BTs, makes BT executor
a robust execution manager.

Other studies have also investigated the use of BTs
with an adaptive perspective at different levels, like a
semi-autonomous BT framework for the automation of
sorting-based industrial applications [19], a reactive mobile
manipulation system [20] where the adaptability comes from
a proposed robust and reactive motion controller allowing
the robots to achieve a desired end-effector pose taking into
account several constraints, or as an efficient general reactive
planning tool to adapt to dynamic environments [21]. Also,
with the aim of further increasing the adaptability, a recent
approach [22] proposed the combination of planning and
learning techniques to generate BTs. In a similar direction,
the combination of planning with AI techniques is proposed
here, using reasoning instead of learning.

B. PROBLEM STATEMENT AND SOLUTION OVERVIEW
Let us consider a working scenario with: a) one or more
robots able to perform some predefined (possibly big) set
of manipulation actions like Move, Pick, Place, Stack or
Unstack; b) a set of objects to be manipulated with known
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FIGURE 1. Schema of the proposed TAMP framework. The Reasoning is described in Section II, and the BT
Generation and Execution in Section.III.

geometric models and grasping transforms; c) a set of loca-
tions (defined by some geometry and symbolic name) where
robots or objects can be placed; d) a perception system able to
identify and locate the pose of the objects and their locations.
Then, given a final state of the environment determined by
the user, a robotic system must be able to plan and execute a
manipulation task to change the state of the environment from
the initial to the final desired one, despite possible changes in
the state of the environment encountered while executing the
task.

To cope with this problem the paper proposes a planning
and execution framework with (see Fig. 1): a) a perception
module able to detect the poses of the objects using fidu-
cial markers and to determine their locations, generating a
list of objects in the environment with geometric and sym-
bolic information; b) geometric and symbolic ontology-based
reasoning modules able to reason on the locations of the
objects and on the actions required to solve a manipulation
task according to the current and desired goal states and
the available robots, filling up the required information and,
hence, generating the PDDLdomain and problemfiles aswell
as the motion planning problem file; c) a TAMP generator
which combines the symbolic and geometric information and
configures the planning problem in a TAMP configuration
file; d) a task planner server able to find a sequence of
actions to solve a task, assuming a PDDL task description;
e) a motion planning server able to find collision-free paths
and to solve geometric queries, using geometric models of the
objects and the robots; f) a TAMPmanager able to coordinate
the planning levels using the TAMP configuration file to
link symbolic and geometric information of the actions, and
able to write a behavior tree XML file; g) a behavior tree

executor able to execute a task in a flexible way, and to adapt
to changes at different levels, replanning at motion or task
level as required, or even reasoning on the required actions
to recover from an unexpected state. The recovery process
entails calling the perception module to observe changes
in the environment, calling the reasoning module to make
changes in the problem files, calling the TAMP generator
to reproduce the TAMP configuration file accordingly and,
finally, querying the TAMP manager to produce a favorable
BT XML file which the BT executor adapts to.

The contributions of the paper are:
• A smart manipulation system able to perceive and under-
stand the current state of the environment, and to reason
on the actions required to solve the task, modeling the
task with the appropriate PDDL domain and problem
files.

• A robust execution mechanism that can automatically
generate and update BTs, giving rise to a behavior reac-
tive to changes at geometric and symbolic levels.

After this introduction, Sec. II presents the reasoning mod-
ule and Sec. III the behavior tree structure and its automatic
generation and update. Then, Sec. IV shows some demonstra-
tion examples and, finally, Sec. V presents the conclusions
and future works.

II. REASONING FOR TASK PLANNING
This section describes a reasoning module conceived to help
increasing the robot autonomy by automatically generating
the PDDL domain and problem files needed to solve a task.
Assuming the availability of a perception module able to
detect the objects and agents in the environment, the follow-
ing two challenges need to be addressed: 1) the interpretation
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of the perceived environment through a reasoning framework
to understand the current scene; 2) the generation of the
task specific PDDL files, based on the current state of the
environment and assuming known all the possible actions that
can be executed in the domain and provided by a given global
domain PDDL file. This paper suggests the overall schema
shown in Fig. 2 to cope with the above mentioned challenges.

FIGURE 2. Flowchart of the overall symbolic reasoning operation.

A. ONTOLOGY-BASED REASONING FOR ROBOT
MANIPULATION
Robotic manipulation involves the planning at task level
(determining which is the sequence of actions to be
done to perform a given task) and at motion level (find-
ing the sequence of collision-free motions that allow to
safely move the robot from one configuration to another).
In this scope, a standardized ontological-based reasoning
framework, called Perception and Manipulation Knowledge
(PMK), was introduced in [11] as a tool to help task and
motion planning systems (TAMP) in terms of reasoning.
PMK provides:
a) Reasoning for perception related to sensors and algo-

rithms, e.g. to determine which is the sensor to be used
in a given situation.

b) Reasoning about the objects features, e.g. to determine
if an object is pickable or not.

c) Reasoning for situation analysis to spatially evaluate the
objects relations between each other, e.g. to determine if
an object is behind another.

d) Reasoning for planning to reason about the precondi-
tions of actions, action constraints and geometric rea-
soning related to the robot and to the environment, e.g.
to determine if a grasping pose is reachable or to select
a feasible placement region.

PMK is extended here by including the knowledge about
the actions the available robots can perform, and by broad-
ening the object features related to those actions. Also rea-
soning predicates from PMK are extended to help in the
selection of the actions required to solve a given task and
to automatically set the PDDL domain and problem files.
These predicates allow robot-centered and state-centered
reasoning:

1) ROBOT-CENTERED REASONING
It includes the following predicates: a) find_robot
(Region, Robot) to return the available robots within
the environment and the regions they are located at; b)
find_robot_capability (Robot, Capability)
to return the actions a given robot can do;
c) find_robot_reach (Robot, Region) to check
if a given robot can reach a given region using its capabilities.

2) STATE-CENTERED REASONING
State-centered reasoning is required to reason on the ini-
tial and goal state of the world. Even though the percep-
tion module provides the poses of the detected objects
and agents, it does not provide the symbolic regions
where they are located, nor the spatial relation infor-
mation between the detected objects (i.e. in, on, left,
right). For this purpose, spatial evaluation predicates from
PMK, which convert raw perceived environment informa-
tion into spatial locations and relations, are used to reason
on the state of the environment based on the perceived
objects, e.g. retrieve_symbolic_region_init
(objPose, symbolicRgn) predicate returns the sym-
bolic region of an object given its pose, and on (obj1,
obj2) predicate evaluates to true if object obj1 is on
top of obj2. These calculations are based on comparing
perceived coordinates of the objects with specific values
depending on the spatial relation definition. For instance,
to infer the on relation between two objects, the x and y
coordinates should be similar for the two objects, meanwhile
the z coordinates should be apart within a certain threshold.

In addition to finding object locations and the spa-
tial relations between the objects, the initial and goal
states can be retrieved with the following predicates inher-
ited from PMK: 1) retrieve_symb_init (Task);
2) retrieve_symb_goal (Task), which gather all
the state predicates that evaluate to true in the initial and goal
state, respectively.

The overall reasoning process through the above-mentioned
predicates queried over knowledge is presented in
Section II-C. In order to reason over the knowledge, an inter-
mediate layer between the knowledge and the user program
is required to organize the sequence of the predicates to
be queried with the relevant information coming from the
perception module. For this purpose, in this paper, the overall
knowledge management schema in Figure 3 is implemented
through a ROS interface.

B. PDDL PARSER
In order to deal with the challenge to generate task spe-
cific PDDL files, the PDDL parser and writer tool called
Universal-PDDL-parser [6] is used. With the help of this
package, a global PDDL domain file with all the possible
actions that can be done with the robots available is first
parsed into its elements (e.g. the actions and the predicates
defining their preconditions and effects) and the contents is
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FIGURE 3. Knowledge management schema.

stored using the classes within the package (with the help
of this hierarchical class structure, the links between the
elements in the global file are also preserved).

After reading and storing the global domain file, the
task specific PDDL files for the given task is automatically
generated by using the same parser tool to write into a
new PDDL file including only the actions that are relevant
for the task. The decision of this relevance is made by
the reasoner. In order to rewrite the task specific domain
file, the feasible actions list determined by the reason-
ing framework is forwarded into print(std::ostream& os,
std::vector<std::string> actionList) function in the parser
package where os input is the new task specific PDDL file
to be generated and the actionList input is the feasible action
set coming from the reasoner.

C. AUTOMATIC PDDL GENERATION
PDDL files are automatically generated with the help of
the aforementioned perception module, reasoning predicates,
and PDDL parser. The reasoning process requires the com-
bination of the robot and state-centered reasoning predicates
discussed above to answer the query: Which are the actions
to be included in the PDDL files to solve this problem?.
Particularly, for a given task and situation, the following
information is obtained from the predicates introduced in
Sections II-A1 and II-A2:

• Spatial relations between the objects.
• Initial and goal states.
• Available robots and their capabilities.

Finally, based on this information: a) The robot assigned to
the task is selected; b) The PDDL problem file is written with
the actual initial state; c) The PDDL domain file is written
by the PDDL parser with the required actions to solve the
given task. The required reasoning predicates can be extended
according to the complexity of the task.

As an example, imagine that in a table-top manipulation
task to be done by a fixed robot, one of the objects is in
another counter out of the robot reach. In this case, the
reasoning module should determine that the Move action is
required, as well as a robot with navigation capabilities able
to perform that action.

III. BEHAVIOR TREE-BASED EXECUTION
Behavior Trees (BTs) is a useful mechanism to implement
an execution manager for a robotic system, which provides
modularity and re-usability features. The building blocks

of BTs are known as BT-nodes, which may be either Exe-
cution Nodes or Control Nodes. The Execution Nodes are
leaf nodes, i.e. they do not have child nodes, and are used
to query the robotic system hardware, either to get a feed-
back from the sensors or to perform a robot action. They
can be Action Nodes that return SUCCESS, FAILURE or
RUNNING and that can be preempted, or Condition Nodes
that return just SUCCESS or FAILURE and that cannot
be preempted. Control Nodes, on the other hand, are used
to control the execution flow by regulating a periodic signal,
called tick, amongst its multiple child nodes, one child node
at a time, in a given sequence. They can be Sequence Nodes
that return SUCCESS only if all of the child nodes return
SUCCESS, or Fallback Nodes that return SUCCESS as
soon as one of the child nodes returns SUCCESS. A highly
reactive behavior can be achieved by the variants of these
nodes, calledReactive SequenceNodes andReactive Fallback
Nodes, which while a given current node is RUNNING, the
previous nodes in the sequence or fallback are continuously
ticked so as to monitor a change in their state that shall abort
the execution of the running node.

Mathematically, BTs can be represented as directed acyclic
graphs and hence easily be described in an XML file. More-
over, each node in a behavior tree can have input and out-
put data ports which provides flexibility in the exchange of
data between nodes and between different behavior trees.
To implement BTs for task and motion planning problems,
the behaviorTree.ROS [23] library can be used, which provide
classes to initialize BT nodes as ROS nodes, allowing them
to act as clients to ROS Action Servers and Service Servers
(Fig. 4). As the BT action nodes can be preempted, they are
implemented as clients to ROS Action Servers, while BT
condition nodes are implemented as clients to ROS Service
Servers. The exchange of information from a BT client to
a ROS server is done via input-output ports of BTs, using
a variable storage system called Blackboard which can be
accessed using a key/value system.

FIGURE 4. Schema of the Behavior Tree ROS implementation.

This section proposes a BTs structure to execute the
sequence of actions of a manipulation task generated by
the TAMP framework described above, and how to auto-
matically generate the XML files that describe them. The
proposal seeks to achieve robustness in the task execution
and, with this aim, the main BT is defined as shown in
Fig. 5, where a Reactive Fallback node is used which,

VOLUME 10, 2022 123493



O. Ruiz-Celada et al.: Automating Adaptive Execution Behaviors for Robot Manipulation

FIGURE 5. The main Behavior Tree.

FIGURE 6. (left) a TaskPlanBT with 3 generic actions; (right) the ActionBT general sequence structure for the actions, where a symbolic
check and a geometric check are done before the actual execution of the action.

while the TaskPlanBT responsible of the task execution
is RUNNING (meaning it is performing the different actions
in the plan), a node called SymbolicStateCheck keeps
monitoring those variables of the state which are always
observable (e.g., an object being held by the gripper), so as
to interrupt the execution of the TaskPlanBT and launch
a ReplanTaskMotion process if an erroneous state is
detected in order to replan the task from the current state.
Those state variables which are not always observable (e.g.,
the pose of an object may be occluded by the robot while it is
moving) will be monitored just before the execution of each
robot action, as shown in the next section.

A. TASK-LEVEL BEHAVIOR
The TaskPlanBT is a simple BT sequence, as that shown
in Fig. 6(left), which will execute the actions of the task plan,
as provided by the task planner. The actions ( Pick, Move,
Place, etc.) are BT subtrees named after the actions name plus
a task index (e.g., MOVE1, PICK2, MOVE3, PLACE4,. . . ),
and all have the same general sequence structure shown in
Fig. 6(right), that includes:

• First, a symbolic check: the preconditions of the actions
are checked and if there is a mismatch between the
expected and observed state variables, a full replan is
triggered (details on the state module monitoring can be
found in [24]).

• Second, a geometric check: the relevant poses of the
objects involved in the action are checked, so as to verify
whether they are equal to those that have been used to
plan the motions (within a given tolerance), e.g. a Pick
action will look that the object to be picked at position
x=0.3 m, y=0.3 m and z=0 m is actually at that pose or,
otherwise, will replan a motion to comply to the actual
pose. This is different to the symbolic check because as
long as the predicates remain the same, this only has

an effect on the motion to be executed, not the task
plan. The objective is to fix small deviations from the
expected object poses, like for instance in the case a
Place action leaves the object slightly moved of where
it was supposed to be left, the next Pick will need a
correction.

• Then, after the preconditions are checked, the action
itself is executed following a BT subtree according to
the type of action (see next section).

• Finally, once the task has been performed, the expected
state is updated in order to be used in the next action
symbolic check.

B. ACTION-LEVEL BEHAVIORS
Each action of a task sequence is modeled with a BT com-
posed of different action nodes to control the robot motions.
For instance, a Pick task is carried out with a sequence
composed of: a) a MoveTraj action node responsible to
move the robot along a trajectory towards the grasp position
next to the object; b) a Gripper action node to close the
gripper; and c) another MoveTraj action node to go back to
the safe home position.

C. REPLANNING BEHAVIORS
To do a replan at task and motion levels, the following files
need to be updated: a) the PDDL problem file required by
the task planner needs to be updated with the initial state
according to the new observed predicates; b) the motion
planning problem file required by the motion planner and
the TAMP configuration file required by the TAMP manager
need to be updated with the new poses of the objects. This
is done following the ReplanTaskMotionBT shown in
Fig. 7. After its execution, a new BT results and, once the
BT executor is aware of it, it switches the BT to the new one
to be executed. On the other hand, if there are no symbolic
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FIGURE 7. ReplanTaskMotionBT: the sequence of actions to be
performed to replan the whole task from the current state, i.e. to plan the
sequence of actions and their motions.

mismatches but only geometric differences, a behavior called
ReplanMotionBT is triggered which changes the geo-
metric files and calls the motion planner with the updated
information.

D. AUTOMATIC GENERATION OF BEHAVIOR TREES
The BTs are automatically generated by the TAMP manager.
First, the main BT is generated and, once the task planner
service is called, the manager writes the XML file for the
TaskPlanBT with the particular task plan, hence complet-
ing the first instance of Task-Level Behavior.

Then, the TAMP manager manages each of the actions in
the plan using the information of the TAMP configuration
file and calling the motion planning service when necessary.
For each action, it writes the XML file corresponding to
the Action-Level Behavior tree of the action. This includes
the coding of the trajectory generated by the motion plan as
required by the ROS Action Service of the robot. Once all
the actions have been managed, the first instance of all the
Action-Level Behaviors is complete.

The generated BT XML files are passed to the BT executor
which is responsible for initializing the tree, ticking the nodes
of the BT and monitoring the state of the Task-level and
Action-level behaviors. If a change in state is observed, the
tree is re-initialized or partially rewritten according to the
change being symbolic or only geometric, hence executing
the task and motion planning problem in a robust manner.

IV. VALIDATION
In this section three examples in two different scenarios
have been designed to illustrate the ability of the proposed
framework to automatically generate the code to robustly exe-
cute a manipulation task, recovering from different situations
as required. The examples will illustrate the capability of
the proposed framework to adapt to changes at geometric,
symbolic or ontological level. No performance measures are
reported since the single purpose is the validation of the
adaptation capabilities provided.

The first scenario, used by the first two examples, is a
table-top manipulation problem performed by the dual-arm
Yumi robot. The table is divided into three regions, namely
ZONEL, ZONER and ZONELR which are reachable by the
left arm, the right arm or both of them, respectively. The task
consists in moving objects (square prisms) from one zone to
another (see Fig. 8).

FIGURE 8. Table top manipulation task: the three colored objects must be
moved between regions.

FIGURE 9. Scenario 1 example 1: Goal (left) and init (right) configurations.

FIGURE 10. Scenario 1 example 2: Goal (left) and init (right)
configurations.

FIGURE 11. Human operator changing the object poses to force the need
of replanning.

The perception in the first scenario is done with a Kinect
Camera and the use of ArUco fiducial markers attached to the
objects which allow detection of their poses.

A. GEOMETRIC-LEVEL ADAPTATION
The first example is used to illustrate adaptation capability
at geometric level. The task consists in moving OBJB from
ZONEL to ZONER (see Fig 9). The solution can be visu-
alized here: https://youtu.be/jDIdwYBZYVg. In a second
execution of the task, the object is purposely moved by an
operator (see Fig. 11 left), that slightly changes its pose

VOLUME 10, 2022 123495



O. Ruiz-Celada et al.: Automating Adaptive Execution Behaviors for Robot Manipulation

FIGURE 12. Yumi manipulation task.

while being in ZONELR. Since the object continues to be
in its expected location, no task replan is required but just
the second Pick action needs to adjust its motion by call-
ing the ReplanMotionBT, as shown in the second video
https://youtu.be/zeRMDqWBBXc.

B. TASK-LEVEL ADAPTATION
The second example is used to illustrate adaptation capability
at task level. In this task, objects OBJA, OBJB and OBJC are
moved, respectively, from regions ZONELR, ZONER and
ZONEL to regions ZONEL, ZONELR and ZONELR (see
Fig 10). The original plan execution is shown in this video:
https://youtu.be/zCy2hL7fELk. In a second execution of the
task, the object OBJB is purposely moved by an operator (see
Fig. 11 right), from ZONERwhere it is expected to be toward
ZONELwhere it will be observed. A task replan is required as
shown in the second video: https://youtu.be/CI1mGexu8o8.

In the second scenario, used in the third example, there are
two robots, the Yumi and the TIAGo, in a simulated environ-
ment. It is a manipulation task to be performed by the Yumi
robot to stack objects on its working table (Fig. 12-top). The
solution sequence of actions is: Unstack-Stack-Pick-Stack.

C. ONTOLOGY-LEVEL ADAPTATION
This example is used to illustrate adaptation capability at
reasoning level. Upon the start of the execution the initial
pose of the blue cylinder is changed to a location out of
the reach of the Yumi robot (Fig. 12-bottom). This requires
that the reasoning module to conclude that the TIAGo robot
is required because it is a mobile manipulator able to per-
form the Move action. The final solution sequence has
seven actions, the first three performed by the TIAGo and
the last four by Yumi: Pick-Move-Place-Unstack-Stack-
Pick-Stack. The video of the simulation is available at
https://youtu.be/MI7NOs1C_S0.

V. DISCUSSION AND CONCLUSION
Robotic manipulation requires task and motion planning
capabilities in order to find a feasible sequence of actions,

which is a challenging problem since the interaction
between both planning levels may be relevant. In this paper,
an heuristic-based task and motion planner is used that is able
to find such a feasible sequence of actions, but the focus of
the proposed approach is on how to actually execute it in a
robust manner, i.e. the work has focused on the development
of tools to provide robots with the capabilities to make them
autonomous enough to automatically execute manipulation
tasks, monitoring possible changes in the environment and
replanning as necessary to adapt to them.

The proposed approach has first dealt with the develop-
ment of reasoning capabilities to reason on the environment
(objects and available robots) and on the task goal to be
achieved in order to find out the required actions to solve
the task, and to assist the task planner with the automatic
generation of the PDDL files. Moreover, the proposal has
presented a behavior-trees (BT) execution framework that:
a) automatically generates the BTs required to execute the
task and b) automatically updates them in order to react to
possible changes at the geometric level (a new motion is
needed for a given action), at symbolic level (a new sequence
of actions is required to solve the task), or at the ontological
level (a new PDDL domain file is required with a different
set of actions in order to find the plan to solve the task). This
combination of planning and reasoningwithin a BT execution
framework increases the adaptability of the system, i.e. the
reasoning mechanism provides the missing information that
may be required while planning or executing the task, which
increases the adaptation performance. This is not the case in
similar approaches such as [22], that obtains a reactive and
flexible system by combining planning and learning within
a BT execution framework, but that requires having prior
complete knowledge to plan the task correctly and that may
fail when the necessary knowledge is missing. Moreover,
in our framework, we demonstrate the proposal in a real
scenario.

The adaptive task and motion planning capabilities of the
proposed framework is a step towards making robots more
aware, smarter and reactive. The paper has validated the
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viability of the approach. We are currently working in three
main directions: a) extending the actions that the robots can
do to quantitatively evaluate the performance of the proposal;
b) incorporating the human operator as an agent so as to
allow robots to play the co-worker role; c) improving the
monitoring mechanisms so as to be able to cope with failures
caused by perception and reasoning errors.
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