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Abstract—Analog In-Memory Computing (AIMC) is emerging
as a disruptive paradigm for heterogeneous computing, poten-
tially delivering orders of magnitude better peak performance
and efficiency over traditional digital signal processing archi-
tectures on Matrix-Vector multiplication. However, to sustain
this throughput in real-world applications, AIMC tiles must be
supplied with data at very high bandwidth and low latency; this
poses an unprecedented pressure on the on-chip communication
infrastructure, which becomes the system’s performance and effi-
ciency bottleneck. In this context, the performance and plasticity
of emerging on-chip wireless communication paradigms provide
the required breakthrough to up-scale on-chip communication in
large AIMC devices. This work presents a many-tile AIMC ar-
chitecture with inter-tile wireless communication that integrates
multiple heterogeneous computing clusters, embedding a mix of
parallel RISC-V cores and AIMC tiles. We perform an extensive
design space exploration of the proposed architecture and dis-
cuss the benefits of exploiting emerging on-chip communication
technologies such as wireless transceivers in the millimeter-wave
and terahertz bands.

Index Terms—In-Memory Computing, Heterogeneous Systems,
Network-on-Chip, Wireless-based Communications

I. INTRODUCTION

Nowadays, Artificial Intelligence (AI) applications demand
more and more computational resources. The recent advances
in the Analog In-Memory Computing (AIMC) research area
promise orders of magnitude better peak performance and
efficiency over traditional digital signal processing architec-
tures on Matrix-Vector multiplications [1], the predominant
operations of Convolutional Neural Networks (CNN).

AIMC poses unprecedented pressure on the on-chip com-
munication infrastructure, which becomes the system’s per-
formance and efficiency bottleneck [2]. A fundamental limit
of AIMC is technological: the crossbar can not be arbitrarily
large (e.g. typically less than 1024×1024 elements); otherwise,
the bitlines and the wordlines would become longer and
excessively slow and noisy [3]. The current limitation on
achievable physical dimensions demands a complex mappings
strategy to store all the parameters of real-life CNNs, limiting
the supported workloads to simple network topologies [4].
Many works like [5] have analyzed computational kernels
performance of a limited sequence of layers without focusing
on system issues. Researchers have investigated different so-
lutions to meet the requirements of current complex networks
[6]–[8], but without detailing how in such complex systems
and architectures, interconnections can sustain the many-
AIMC throughput [9]. Novel approaches tackle this problem
by proposing innovative technologies that can complement
the wired interconnects with on-chip wireless communication

channels [10]–[12], exploiting the higher bandwidth, versatil-
ity, plasticity, and energy efficiency to scale up the number of
AIMC devices that can be integrated with sufficient on-chip
bandwidth.

In this context, we propose a configurable heterogeneous
cluster-based architecture, including programmable RISC-V
cores and AIMC accelerators that share a Level 1 (L1)
Tightly-Coupled Data Memory (TCDM) at the cluster level
and a Level 2 (L2) memory at the system level, combining
wired and wireless interconnect technologies. We evaluate the
performance and bottlenecks of the proposed system using
benchmarks based on convolution layers. To map the workload
on the clusters, we analyze the two main workload distribution
approaches: pipelining and data parallelization [13]. We ana-
lyze the benefits of two key wireless communications features,
i.e., broadcasting and flexibility, and we estimate up to 5.8
TMAC/s of peak performance (at 350 MHz) and up to 8.2×
of speed-up when we exploit wireless features using a data
parallelization workload distribution approach.

II. BACKGROUND

This section describes the main technologies we combine
and integrate in this work.

a) AIMC: In-Memory Computing (IMC) is an emerg-
ing computing paradigm exploiting memory arrays delivering
orders of magnitude better performance and efficiency than
traditional Von Neuman architectures. A computational mem-
ory unit is typically organized as a 2-D array, which is referred
to as a crossbar, with horizontal (wordlines) and vertical (bit-
lines) wires. The crossbar supports programmable resistors at
the cross points of the crossbar, typically featuring a maximum
matrix size of 1024 in each of the two dimensions. Many
technologies can be used to implement the programmable
resistors; in this work, we assume the AIMC core implemented
with an array of Phase Change Memory (PCMs) cells [1]. At
the end of each bitline, an analog-to-digital converter (ADC)
samples the bitline current and converts it into a digital value.

b) Heterogeneous PULP Cluster: We use as reference
the PULP architecture, an open-source RISC-V based com-
puting platform optimized for embedded parallel and low-
power applications. The PULP Cluster (CL), depicted in
Fig. 1(b), embeds a configurable number of identical RISC-
V cores, which share a multi-banked SRAM memory (i.e.
L1) accessible from a low-latency logarithmic interconnect.
An efficient multi-channel DMA autonomously moves the
data from/to L1 to/from L2; a dedicated hardware module,
called event unit, handles barriers and other synchronization
primitives. L2 resides in a different domain called SoC,
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Fig. 1. A high-level view of the proposed architecture. (a) Entire system. A
set of clusters shares a global L2 memory. (b) Every cluster has its local L1
memory, shared between cores and IMC tile, a DMA, and an event unit.

connected to the CL through an AXI crossbar. A 256 × 256
analog In-Memory Computing Accelerator (IMA) completes
the CL as done in [5]. The IMA streams from and to L1,
8-bit input and output data, and the PCM cells store one’s
complement 4-bit matrix parameters. The IMA has 16 4-
bytes ports (IMAports), directly connected with L1 through
the CL logarithmic interconnect. Data coming from L1 feeds
the data path buffers of the accelerator during the stream-
in phase. Once the input data are ready to be computed,
the controller starts the evaluation phase, where the output
results are converted from digital-to-analog converters (DACs),
computed, and then reconverted from ADCs. The stream-out
phase stores back in L1 the output data from output ports at
the end of the IMA computation.

c) Wireless: Recent researches envision wireless net-
working in the context of heterogeneous multi-chip architec-
tures, based on the integration of antennas and transceivers
along with the computing elements of the system and the
use of the computing package as the wireless propagation
medium [12]. By not requiring to lay down wires between
source and destination, the wireless approach bypasses wire
routing constraints and offers benefits such as system-wide
low latency and scalable broadcast capabilities. Moreover,
computing packages are compatible with multiple wideband
channels in frequency bands beyond 60 GHz, leading to
hypothetical bandwidths in the order of tens or hundreds of
Gb/s [14]. Finally, such an interconnect provides system-level
versatility as bandwidth can be shared dynamically among the
antennas adapting to the architecture requirements [10].

III. SYSTEM ARCHITECTURE

The proposed architecture is depicted in Fig. 1(a). It is based
on a configurable number of CLs (Ncl), each with a wireless
transceiver, an IMA, L1 memory, and a set of RISC-V cores
with supporting of DMA and synchronization unit, building a
heterogeneous multi-tile system.

On the CL side, the DMA sub-system allows different
read/write transfers simultaneously to L1 from L2. It can
be programmed by the RISC-V cores of the CL, allowing
several outstanding transactions. The cores can offload a task
to the IMA sub-system that autonomously fetches and stores
data from L1 and computes the output results, as depicted
in Fig. 2(c) and described in [5]. We can exploit the DMA
to tile input data from L2, getting the best performance for
the available hardware. Tiling strategy is crucial to consider
a real-life application that requires more than a limited L1
memory space to store inputs and outputs (i.e. 64 kb). For
this reason, we propose a tiling mechanism based on the
characteristics of the layers described in Fig. 2(a) and (b)

Fig. 2. (a) Tiling from and to L2 along W in and W out dimensions for input
and output data respectively (b) L1 input/output tiles buffers arrangement. (c)
IMA stream-in, eval and stream-out of a portion of C in and C out size
of the whole input and output tiles. (d) Cluster resources management and
synchronization.

and an efficient software-based scheduling to control all the
resources of the CL as described in Fig. 2(d). In particular, in
Fig. 2(d), we can see how the time to create a new context for
the accelerator (i.e. prog block in green after the yellow one
in the core’s waves diagram) is translated into IMA idleness
(i.e. throughput reduction), increasing the pipeline time and
dropping the overall system performance. Moreover, waiting
for the events might be longer due to L1 contentions between
DMAs and IMA, partially overlapping DMA active phases
with IMA stream-in/stream-out ones.

The event unit module efficiently handles the synchroniza-
tion between CL’s resources and among CLs. It receives
hardware events when the DMA, IMA, and cores complete
their task. Moreover, the event unit receives software events,
adequately programmed by the cores of one CL waiting for
the data feed from another CL. The former events synchronize
the in-cluster pipeline (i.e., DMA reads, IMA computation,
and DMA writes). In contrast, the latter synchronizes the
CLs during the multi-CL execution. The cumulative overhead
for synchronization, IMA programming and L1 conflicts is
curtailed thanks to the short latency of events managed by the
event unit. Sec. VI provides a quantitative assessment.

IV. WORKLOAD DISTRIBUTION APPROACHES

We propose two different workload distribution approaches
to map the CNN workloads on the multi-CL architecture:
pipelining and data parallelization, motivated by the example
of Fig. 3, where a ResNet50 DNN is mapped on a tiled AIMC-
based and requires 322 256×256 AIMC tiles to store the
33 direct layers parameters. In particular, in Fig. 3(a), every
colour represents the mapping of a single layer. Subsequent
layers can be performed as a pipeline (i.e. first four layers
from the top-right of Fig. 3(a)). Moreover, many layers must
be mapped on different CLs, as, for instance, layer 0 from
the top-right of the figure (in teal in Fig. 3(a), (b) and (c)) is
mapped on four different AIMC tiles. Therefore, AIMC tiles
dedicated to the same layer can run in parallel. In the rest of
the section, we detail the workload distribution approaches.

a) pipelining: The pipelining workload distribution ap-
proach is widely used in AIMC-based architectures [15],
where each layer (or part of a layer) is mapped on an IMA,



Fig. 3. (a) Example of a possible mapping of 33 direct layers of ResNet50.
(b) inter-layer pipelining. (c) intra-layer parallelization. (d) Layers running on
the same AIMC tile have to be executed sequentially, one after each other,
as, for example, the last layers which fit just one AIMC tile.

as shown in Fig. 3(b). The number of pipeline stages is
determined by the number of available CLs as well as by the
number of layers in the DNN. Every CL computes its output
batch using the in-cluster pipeline described in Sec. III. The
first CL fetches the input data from L2, and the last one stores
the output results there. The others move data only among L1
memories, as described in Fig. 3(b). Synchronization between
consecutive CLs in the pipeline is performed using a software
event that notifies the end of the transaction, awaking the
following CL when the compute job is completed. One of the
drawbacks of this model is the well-known pipeline unbalance.
In a pipeline, the throughput is determined by its slower stage.
This situation gets worse when multiple layers have to be
mapped to the same tile, requiring serialization, as shown in
Fig. 3(d), and imposing a trade-off between performance and
under-utilization of resources (i.e. IMA).

b) data parallelization: This workload distribution ap-
proach is widely used in many digital architectures such as
GPGPUs thanks to its simplicity, well-matched to program-
ming models such as OpenCL and CUDA. On the other hand,
non-volatile AIMC-based architectures struggle to exploit this
model extensively due to their weight stationary nature. As
shown in Fig. 3(c), this model can be exploited when a single
layer cannot fit within an IMA. In this case, it can be fully
parallelized on multiple IMA. According to this model, a per-
fect in-cluster pipeline is repeated over Ncl. Every CL fetches
the input data from L2 and computes a portion of output
results that are then stored back as described in Fig. 3(c).
One of the drawbacks of this approach is the high pressure on
the communication hierarchy, potentially forming a bottleneck
at L2, especially when the computational capabilities of the
system are significant, as in the case of AIMC tiles.

V. SIMULATION METHODOLOGY

We model the many-tile system architecture extending the
GVSoC [16] platform, an accurate timing simulator, enabling
support for multiple (up to 16) CLs, and extending the
interconnect to model conflicts between multiple CLs. As
such, in a scenario where pipelining among CLs is exploited,
only a few conflicts are present because communication is
primarily point-to-point among CLs in the pipeline. Hence,
conflicts on on-chip interconnect links can easily be minimized

by consecutive mapping layers to directly linked CLs. On the
other hand, when a data parallelization workload distribution
approach is exploited, we expect more conflicts since all
the CLs need to communicate with L2. Since we want to
focus on communication effects, we model the L2 memory
as a multi-banked scratchpad memory able to sustain the
whole bandwidth generated by the system. Only simultaneous
addressing of the same memory bank can introduce conflicts
within the memory target.

To quantify the limitations of the current state-of-the-
art wired interconnects, we propose two interconnection be-
haviours for every architecture: i) wired and ii) wireless. In par-
ticular, we examine three aggregated interconnect bandwidths
between CLs and L2 as wired: 22.4, 44.8, and 89.6 Gbit/s
at fclock = 350 MHz, which corresponds to an interconnect
bandwidth of 64, 128, and 256 bit/cycle, respectively. In this
way, we span a wide range of available wired interconnect
resources that can be instantiated in this kind of system
[17]. Moreover, we assume a very optimistic latency of 9
cycles between CL and L2. In the wireless, we configured
the interconnect bandwidth to 89.6 Gbit/s and reduced the
latency to 1 cycle. In this way, we emulate the behaviour of
current wireless technology [18], which is likely to be further
improved by novel approaches [12]. A distinctive characteristic
of the wireless interconnect is the seamless support for mul-
ticast and broadcast (in our case, from L2 to multiple CLs).
In practice, wireless technologies might suffer from packet
collisions and losses, which imply re-transmissions, causing
a decrease in the effective bandwidth. As detailed above,
we model these effects by setting the wireless bandwidth
conservatively.

VI. RESULTS

We analyze two synthetic benchmarks consisting of only
multiply-and-accumulate (MAC) operations, leveraging the
maximum throughput of the IMA accelerator. In particular, we
consider a sequence of identical 1×1 3D convolutions of 256
input and 256 output channels for the inter-layer pipelining,
while, regarding the intra-layer data parallelization, a single
1×1 3D convolution of 256 input channels and 256*Ncl output
channels. In both cases, these fit the 256×256 IMA crossbar
entirely on each CL, exploiting the maximum throughput
available. We then analyze the results considering several
CLs configurations, mappings, and bandwidths. For all the
assessments, we use a computation efficiency metric η based
on the theoretical limit on the obtainable GMAC/s by the Ncl

available IMAs with Teval = 130 ns of analog eval time each.
We call it baseline. It corresponds to

baseline =
10−9 ∗Ncl ∗ Cin ∗ Cout

Teval + Tstream-in + Tstream-out
[GMAC/s]

where Tstream-in(out) =
1

fclock
∗ Cin(out)

IMAports∗4 [s]. We report how
efficient the total execution in every scenario, extracted from
GVSoC simulation (i.e. tot exec cycles) is with respect to
the baseline (i.e. η), corresponding to

η =
10−9 ∗ fclock ∗ Ncl∗Cin∗Cout

tot exec cycles ∗ 100
baseline

[%]

Fig. 4(a) shows the comparison between two workload
distribution approaches in both scenarios, wired and wireless,
when we increment Ncl and the wired bandwidth. This can



Fig. 4. (a) Computation efficiency η of both mappings, increasing the
number of CLs and comparing wired and wireless configurations. (b) The
peak of performance in data parallelization workload distribution comparing
bandwidths and technologies.

only be achieved in the case of wired communication with
complex and area-expansive topologies such as mesh NoCs,
which are well known not to scale with the number of CLs.
We can see how two workload distribution approaches reach
a very high level (e.g. 80%) of computational efficiency in
a single-CL execution. The gap between this result and the
ideal case (i.e. 100% efficiency) is due to the contentions in
L1 between IMA and DMA and the software programming
overheads.

Moving to the more realistic case of multi-CL execution,
starting from the inter-layer pipelining model, we see a con-
stant trend in the computation efficiency due to our scalable
runtime. Here, the benefits of having higher bandwidth for
the computation efficiency are irrelevant since data transfers
are overlapped with IMA computation, and communication is
never the bottleneck for performance. Still, the lower latency
of the wireless links reduces the time one CL needs to wait
for input data by 2%.

On the other hand, the intra-layer data parallelization model
has completely different behaviour. In the wired curves, we can
see how computation efficiency struggles with the conflicts
of large multi-CL systems contending the same communi-
cation resources even if pushing the aggregated interconnect
bandwidth to the same of the wireless. This happens because
every CL simultaneously tries to fetch the same input data
of the other CLs from L2 and then writes back the output
results. In the wireless scenario, instead, the broadcasting
features can be exploited, reducing to zero the conflicts on
the communication channel. For this reason, the computation
efficiency is improved up to 8.2×, 4.1× and 2.1× respectively
for 22.4, 44.8, and 89.6 Gbit/s.

In Fig. 4(b), we evaluate the effective performance of
our system by analyzing the interconnect bandwidths of
wired architecture with respect to the wireless communication
methodology that we propose, and we can see a linear trend
up-scaling the AIMC tiles and up to 5.8 TMAC/s using the
wireless.

VII. CONCLUSION

We presented an AIMC-based multi-tile heterogeneous ar-
chitecture, analyzing the performance peaks when computing
typical CNN workloads and providing insights about the
limitations caused by the limited bandwidth of classical com-
munication channels, their rigidity, and the physical size of the

analog devices. In this context, the performance and plasticity
of emerging on-chip wireless communication paradigms can
provide a solid solution in terms of computation performance,
especially considering real-life applications with the need
of splitting the computation along different AIMC. Open
challenges are still balancing the different layers workloads,
parallelizing the slowest layers to reduce the pipeline time (i.e.
critical path).
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