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Dynamics of a massive superfluid vortex in rk confining potentials
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We study the motion of a superfluid vortex in condensates having different background density profiles,
ranging from parabolic to uniform. The resulting effective point-vortex model for a generic power-law po-
tential ∝rk can be experimentally realized with recent advances in optical-trapping techniques. Our analysis
encompasses both empty-core and filled-core vortices. In the latter case, the vortex acquires a mass due to the
presence of distinguishable atoms located in its core. The axisymmetry allows us to reduce the coupled dynamical
equations of motion to a single radial equation with an effective potential Veff . In many cases, Veff has a single
minimum, where the vortex precesses uniformly. The dynamics of the vortex and the localized massive core
arises from the dependence of the energy on the radial position of the vortex and from the rk trap potential. We
find that a positive vortex with small mass orbits in the positive direction, but the sense of precession can reverse
as the core mass increases. Early experiments and theoretical studies on two-component vortices found some
qualitatively similar behavior.
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I. INTRODUCTION

Superfluid vortices have been of great interest ever since
Feynman’s seminal article in 1955 [1]. The creation of ul-
tracold atomic Bose-Einstein condensates (BECs) in 1995
[2,3] broadened the original focus on liquid 4He to include
many new possibilities. The first BEC vortex was in a two-
component condensate with two trapped hyperfine states of
87Rb [4,5], although most subsequent experiments [6–10]
studied simpler one-component BECs.

In these mixtures, each component had its own resonant
frequency and could be imaged separately, allowing nonde-
structive visualization of the large filled core, whose radius
was larger than the optical resolution of the imaging sys-
tem. Consequently, it was feasible to study the precession
of two-component vortices in real time [5]. In contrast, the
empty core of a one-component vortex typically has a ra-
dius smaller than the wavelength of the imaging light and
is observable only after free expansion by turning off the
trap. Various methods subsequently allowed direct real-time
observation of precession of a one-component vortex, the
most direct visualizing the dynamics through expansion of
successive small fractions of the condensate [11,12]. Colli-
sions between vortices have also been studied in great detail
[13,14]. Soon after the first experiments, theoretical studies
used a time-dependent variational Lagrangian to study the
precession of one-component and two-component vortices
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[15,16], although little detailed comparison was made with
the experiments.

Various theoretical works have studied the dynamics of
massive vortices over the last few years [17–21]. In these
systems, the vortex in component a surrounds a localized
massive core in component b, assuming interaction constants
that would strongly favor phase separation of the two com-
ponents in a uniform system. Our previous works focused on
motion in a two-dimensional flat trap with a circular boundary
[17,19]. Here we extend our model to include a trap with
a power-law potential rk . For simplicity, we study a single
vortex in a Thomas-Fermi condensate a. This model allows
us to interpolate between the usual harmonic trap with k = 2
and the flat trap [22,23] in the limit k → ∞.

The precession of an off-center vortex around the axis of
a harmonic trap requires a nontrivial theoretical description
(see Ref. [24] and references therein) due to the spatially vary-
ing condensate’s density profile. Several works over the past
20 years considered models which included different features,
like image vortices and core sizes that depend on the local
density [15,16,25–34]. Our model incorporates both features.
For small k (especially the harmonic trap with k = 2), we find
that the vortex precession rate can decrease and even reverse
direction as the localized core mass increases. It is notable
that earlier experimental and theoretical studies [5,16] each
found evidence of such a reversal of precession, even though
these studies were near the onset of bulk phase separation.
In our previous study of a single vortex in a flat potential
with a circular boundary (see Sec. II A of Ref. [19]), the
Lagrangian for a vortex with a massive localized core had
a term linear in the vortex velocity along with the usual
kinetic energy that is quadratic in the vortex velocity. This
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linear term is familiar from the Lagrangian of a massive
point particle in an external electromagnetic field. For this
system in a flat trap, there is an effective uniform magnetic
field B = −2πnah̄ẑ, where na is the two-dimensional number
density of the background component. Our present analysis
includes a nonuniform rk trapping potential, and the effective
magnetic field also becomes nonuniform. More importantly,
the corresponding effective vector potential A now appears
in the Hamiltonian as a synthetic gauge field that depends
explicitly on the choice of trap potential. This formulation
generalizes the familiar Hamiltonian for massless vortices
(see, for example, Sec. 157 of Ref. [35]).

This paper is structured as follows: Sec. II relies on the
Thomas-Fermi model in a power-law trap to find the conden-
sate density for a single-component BEC. This result allows
us to obtain a time-dependent variational Lagrangian based
on a trial function describing a single quantized vortex in
a power-law potential, along with its opposite-sign image
outside the condensate. The Lagrangian characterizes the dy-
namics of a single vortex, which here yields uniform circular
precession. Section III adds the massive localized core to
obtain the Lagrangian for a massive point vortex. In addition
to the usual kinetic energy of the core mass, it also has a term
linear in the vortex velocity. We discuss the analogy with the
electromagnetic Lagrangian for a charged particle and find the
associated synthetic vector potential and synthetic magnetic
field. The dynamics of a single massive point vortex typi-
cally involves uniform circular precession along with small
stable oscillations around the local minimum in the effective
potential. In some cases, however, this minimum disappears,
and the vortex moves to the outer boundary. Positive mass-
less vortices precess in the positive direction around the trap
center, but we find that as their mass increases the precession
frequency can reverse sign. We end with conclusions and
outlook in Sec. IV.

II. THOMAS-FERMI MODEL
FOR SINGLE-COMPONENT BEC

A single-component BEC is described, at the mean-field
level, by the familiar Gross-Pitaevskii (GP) model

ih̄
∂�a

∂t
=

(
− h̄2∇2

2ma
+ Vtr + gaa|�a|2

)
�a, (1)

where gaa = 2
√

2π h̄2aaa/(madz ) represents the effective in-
teraction in the quasi-two-dimensional (quasi-2D) system,
with aaa being the component-a s-wave scattering length, ma

being its atomic mass, and dz being the harmonic-oscillator
length along the z direction [36]. Our analysis thus focuses
on an effective 2D system (lying on the xy plane), as the
possible degrees of freedom along the z axis are assumed to
be frozen due to the strong confinement along that direction.
In the strongly interacting Thomas-Fermi (TF) regime, for any
axisymmetric potential Vtr (r), the TF condensate density na(r)
satisfies

μa = Vtr (r) + gaana(r). (2)

Here μa = gaan0 is the chemical potential of the a component,
and n0 = na(0) is the density at the center of the trap. If

na(r) vanishes at the TF radius R, then Eq. (2) implies that
gaan0 = Vtr (R). For a power-law potential ∝rk with k > 1, the
trap potential can be rewritten as

Vtr (r) = gaan0(r/R)k. (3)

By construction, the TF density na(r) = n0[1 − (r/R)k] van-
ishes at the TF radius. The total number of particles is Na =∫

d2r na(r), with the resulting k-dependent central density

n0 = k + 2

k

Na

πR2
, (4)

where the numerical factor (k + 2)/k varies smoothly in going
from a harmonic trap (k = 2) to a flat trap (k → ∞).

A. Time-dependent variational Lagrangian

To study the dynamics of a vortex in a power-law trap, we
rely on the time-dependent variational Lagrangian, which has
proved valuable in many aspects of BEC physics [37], instead
of the more complete GP equation (1). In this approach,
we take a trial wave function �a(r, ρ) for the a component
that depends on the vortex position ρ as a time-dependent
parameter, where we use r = (r, θ ) as a general coordinate
and ρ = (ρ, φ) for the position of the vortex. We use the trial
function �a to evaluate the Lagrangian La = Ta − Ea for the
a component, where

Ta[�a] = ih̄

2

∫
d2r

(
�∗

a

∂�a

∂t
− ∂�∗

a

∂t
�a

)
(5)

and

Ea[�a] =
∫

d2r

(
h̄2

2ma
|∇�a|2 + Vtr|�a|2 + gaa

2
|�a|4

)
(6)

depend on the coordinate of the vortex ρ through �a.
We use the TF model, with

√
na(r) being the amplitude

of the trial function �a. We assume a single vortex at ρ with
dimensionless charge q = ±1 and an opposite-charge image
vortex at ρ′ = ρ̂R2/ρ outside the condensate. This image is
necessary for a flat trap, and it facilitates the comparison for
general values of k. Let S(r, ρ) be the angle between the vector
r − ρ and the x̂ axis. We choose the trial function

�a(r) =
√

na(r) eiq[S(r,ρ)−S(r,ρ′ )], (7)

which includes the phase of the vortex and its image. Unless
otherwise specified, we will assume that q = +1 in the fol-
lowing. We remark that the assumed density profile na(r) does
not include spatial density variations arising from the presence
of the vortex. This is justified because vortex cores in atomic
BECs have a radius of the order of the component-a healing
length ξa = h̄/

√
2magaan0, and the latter is generally much

smaller than the TF radius R [2,3].
The evaluation of Ta and Ea follows as in Ref. [28]. With

our trial function (7), we find

Ta = h̄q ρ̇ × ẑ ·
∫

d2r na(r)
r − ρ

|r − ρ|2 (8)
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plus a similar term for the image vortex at ρ′. The integral in
(8) is a vector that must lie along ρ̂ by symmetry, so that

Ta = h̄q ρ̇ × ẑ · ρ̂

∫
d2r na(r)

r cos θ ′ − ρ

r2 − 2rρ cos θ ′ + ρ2
,

where θ ′ = θ − φ. The angular integral gives −(2π/ρ)	(ρ −
r), where 	 is a unit step function that vanishes for r > ρ. A
straightforward calculation gives

Ta(ρ, φ̇) = −qh̄πn0R2 φ̇ τ (ρ̃ ), (9)

where ρ̃ = ρ/R is the dimensionless scaled radial vortex po-
sition and

τ (ρ) = 2
∫ ρ

0
rdr (1 − rk ) = ρ2 − 2ρk+2

k + 2
(10)

is a dimensionless function of ρ. We now drop the tilde
and treat ρ as dimensionless. By construction, note that 0 �
τ (ρ) < 1 and

τ ′(ρ)

ρ
= 2na(ρ)

n0
= 2(1 − ρk ). (11)

A similar analysis for the contribution of the image vortex
gives φ̇ multiplied by a constant because the image vortex
lies outside the condensate. Since this contribution is a perfect
time derivative, we can ignore it and retain only Eq. (9).

The remaining term is the incremental energy of the vortex
in Eq. (6). With our TF trial function, Ea is the kinetic-energy
density of the vortex and its image integrated over the conden-
sate density

Ea = 1

2

∫
d2r mana(r)|v(r − ρ) − v(r − ρ′)|2, (12)

where

v(r − ρ) = ẑ × r − ρ

|r − ρ|2 = ẑ × ∇ ln |r − ρ| (13)

is the dimensionless flow velocity of a vortex at ρ and v(r −
ρ′) is the corresponding flow velocity of the image vortex
at ρ′. Here, the last form uses the alternative representation
involving the stream function χ (r − ρ) = ln |r − ρ|.

The stream function gives the total flow velocity as v(r) =
(h̄/ma) ẑ × [∇χ (r − ρ) − ∇χ (r − ρ′)]. We follow [28] and
find

Ea(ρ) = h̄2πn0

ma
ε(ρ), (14)

where

ε(ρ) = ln

(
1 − ρ2

δ(ρ)

)
+ ρk

2
ln

(
δ(ρ)2

2ρ2

)

+ ρk

2

{
Hk/2 + H−k−2 + (−1)k[B̂−1 − B̂−1/ρ]

+ Bρ (−k − 1, 0) + 2ρ2

k + 2
[2F̂ (ρ2) − ρ2F̂ (ρ4)]

}

+ 1

2ρk

{
B̂ρ2 − B̂ρ + (−1)k

[
B̂−ρ − B̂−ρ2

]}
, (15)

FIG. 1. Dimensionless function ε(ρ ) defined in Eq. (15) for dif-
ferent values of k (given by the numbers next to the lines).

with ρ again being dimensionless. Here Hn denotes the har-
monic number, Bρ (k, α) is the incomplete beta function [and
we often use the shorthand notation B̂ρ ≡ Bρ (k + 2, 0)], and

F̂ (ρ) = 2F1

(
1,

k

2
+ 1,

k

2
+ 1

2
; ρ

)

is a hypergeometric function.
Here we use a density-dependent cutoff at the vortex

core δ(ρ) = δ0
√

n0/na(ρ), with δ0 being a constant of order
ξ0/R ≈ 0.01. Such a cutoff ensures the convergence of the
integral (12), as it effectively excludes a neighborhood of
radius δ centered at ρ where the background TF density na

is finite and the quantity |v(r − ρ) − v(r − ρ′)|2 features a
nonintegrable singularity [28]. In the spirit of Ref. [16], the
specific functional dependence assumed for δ(ρ) mimics that
of the condensate healing length ξ . This dependence incorpo-
rates the radial dependence of the vortex characteristic width
into the variational model and has a nontrivial impact on the
ensuing massless vortex dynamics.

B. Dynamical motion of a massless vortex

It is now convenient to introduce dimensionless variables,
with R being the length scale, maR2/h̄ being the timescale, and
h̄2πn0/ma being the energy scale. In this way we have the very
simple dimensionless Lagrangian for the pure a-component
vortex

La(ρ, φ̇) = −qτ (ρ)φ̇ − ε(ρ). (16)

This Lagrangian conserves the angular momentum l =
∂La/∂φ̇ = −qτ (ρ), so that the vortex precesses at fixed ρ.
Note that by construction a massless positive vortex always
has l < 0. The precession rate φ̇ follows from ∂La/∂ρ =
−qτ ′(ρ)φ̇ − ε′(ρ) = 0 with the dimensionless angular speed

� = φ̇ = − ε′(ρ)

2qρ(1 − ρk )
. (17)

The quantity ε′(ρ) is always negative (see Fig. 1), while ρ(1 −
ρk ) is positive. As such, a massless vortex precesses in the
same sense as its circulation q.
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FIG. 2. Dimensionless precession frequency �/�0 [where �0 =
h̄/(maR2)] for a vortex located at distance ρ from the center of a
single-component BEC in a power-law rk trap. Solid lines are the
analytic predictions of Eq. (17), while dots show results from the full
time-dependent GP equation. The numbers next to the lines denote
the corresponding value of k.

For a flat potential (k → ∞), we have ε∞ = ln(1 − ρ2),
reproducing the usual result [17,19]

�∞ = h̄ q

maR2

1

1 − ρ2
, (18)

now rewritten in conventional units. For the harmonic poten-
tial with k = 2, we have

ε2 = (1 − ρ2)

[
(1 + ρ2) ln(1 − ρ2)

2ρ2
− ln δ(ρ)

]
, (19)

where the vortex-core cutoff δ(ρ) depends on the condensate
density and is scaled with R.

Figure 2 shows the precession rate of a vortex in a single-
component BEC for selected integer values of k as a function
of the vortex position ρ. The solid curves show Eq. (17)
for the massive-point-vortex model studied here. The dots
show the results from the time-dependent Gross-Pitaevskii
equation (solved using variants of algorithms we employed in
Ref. [19]). The close overlap between lines and dots confirms
the accuracy of the time-dependent variational Lagrangian
formalism.

For comparison with the study of the dynamics of a mas-
sive point vortex, which will be discussed in Sec. III, it is
valuable to rewrite Eq. (16) in vector form,

La = q
τ (ρ)

ρ
ρ̇ × ρ̂ · ẑ − ε(ρ). (20)

The corresponding canonical momentum

pa = ∂La

∂ρ̇
= q

τ (ρ)

ρ
ρ̂ × ẑ = −q

τ (ρ)

ρ
φ̂ (21)

is in the azimuthal direction, as expected for uniform circular
motion. Note that the angular momentum is l = ρ × pa =
−qτ (ρ)ẑ, as found earlier.

The dynamics for this massless vortex follows from ṗa =
∂La/∂ρ, which gives

ṗa = q

(
τ (ρ)

ρ2
− τ ′(ρ)

ρ

)
(ρ̇ · φ̂) ρ̂ − ε′(ρ)ρ̂. (22)

For uniform circular motion at fixed ρ, we note that dφ̂/dt =
−φ̇ ρ̂ and a combination with Eq. (21) gives

ṗa = q
τ (ρ)

ρ
φ̇ ρ̂ = q

τ (ρ)

ρ2
(ρ̇ · φ̂)ρ̂, (23)

so that some terms cancel. As a result, we find

0 = [−2q(1 − ρk )(ρ̇ × ẑ · ρ̂) − ε′(ρ)]ρ̂. (24)

The last term is the “force” arising from the negative gradient
of the energy ε(ρ). In this picture, the vortex moves to ensure
that the total force vanishes, which is precisely the “Magnus”
effect. The resulting precession frequency reproduces the re-
sult given in Eq. (17), which follows more directly from the
Lagrangian dynamics.

III. MASSIVE-POINT-VORTEX MODEL

In the presence of a second component b, the binary con-
densate obeys two coupled GP equations:

ih̄
∂�i

∂t
=

⎛
⎝− h̄2∇2

2mi
+ Vtr +

∑
j=a,b

gi j |� j |2
⎞
⎠�i, i = a, b,

(25)
where gi j = √

2π h̄2ai j/(mi jdz ) represents the effective inter-
actions in the quasi-2D system, with ai j being the intra- and
intercomponent s-wave scattering lengths and mi j = (m−1

i +
m−1

j )−1 being the reduced atomic masses [36]. In the im-
miscible regime gab >

√
gaagbb, the coupled equations (25)

admit solutions where vortices are present in component a,
and wave packets of b particles are trapped within the vortices’
cores. The dynamics of these composite objects (which we
term “massive vortices”) can be conveniently described with
an effective particlelike model [17,19] which allows one to
bypass the numerical solution of the GP equations (25).

In our model for a massive point vortex, the total La-
grangian is the previous La for the a component augmented
by the Lagrangian Lb for the b component. We remark that
the presence of Nb � Na atoms within the vortex core does
not significantly change its shape and width (see Ref. [17] for
the case of a 23Na-39K mixture and Ref. [14] for the case of a
87Rb-41K mixture), so that Eq. (7) remains valid. As discussed
in detail in Ref. [19], Lb is proportional to Nb, with a kinetic
term 1

2 Nbmbρ̇
2. The new feature here is the trap potential, so

that Lb = 1
2 Nbmbρ̇

2 − NbVtr (ρ). With our dimensionless vari-
ables, Lb is

Lb = 1
2mρ̇2 − νρk = 1

2m(ρ̇2 + ρ2φ̇2) − νρk, (26)

where m = Mb/Ma = Nbmb/(Nama) is the ratio of the total b
mass to the total a mass and ν = Nbgaama/(h̄2π ). Note that ν

is proportional to the product Nbgaa and independent of n0.
Our massive-point-vortex model is expected to describe

correctly the dynamics of a single massive vortex (and also
a few massive vortices) as long as the component-b atoms
remain localized in the component-a vortex cores and as long
as the b atoms do not significantly alter the typical core size
of component-a bare vortices so that their cores remain much
smaller than the TF radius R. The assumed immiscibility of
the two components ensures the first condition, and the second
one holds provided that gaaNa is substantially larger than both
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gabNb and gbbNb. Note that the ratio gbb/gaa does not enter the
effective pointlike model explicitly.

A. Total Lagrangian for massive point vortex

In this way the Lagrangian L for a single massive point
vortex becomes

L = 1
2m(ρ̇2 + ρ2φ̇2) − qτ (ρ)φ̇ − ε(ρ) − νρk, (27)

here written in coordinate form. It is helpful also to rewrite L
in vector form as

L = 1
2mρ̇2 + qA(ρ) · ρ̇ − ε(ρ) − νρk, (28)

where

A(ρ) = −τ (ρ)

ρ
φ̂. (29)

The Lagrangian has an unusual structure with a term linear in
the velocity ρ̇ in addition to the usual quadratic term propor-
tional to the inertial mass.

Such a Lagrangian is reminiscent of the Lagrangian Lem for
a charged particle at ρ in an external electromagnetic field,

Lem = 1
2mρ̇2 + qρ̇ · A − q �, (30)

where q is the charge, A is the vector potential, and � is the
scalar potential. The first two terms of Eqs. (28) and (30) are
the same. The third term of Eq. (28) arises from the energy
(12) of the vortex and its image. It is quadratic in the vortex
charge and hence proportional to q2, which here is simply 1.
The last term in (28) is the trap potential and hence indepen-
dent of q.

Equation (28) gives the canonical momentum

p = ∂L

∂ρ̇
= mρ̇ + qA. (31)

The corresponding Hamiltonian

H = (p − qA)2

2m
+ ε + νρk (32)

is independent of t , so that H is constant (here it is the energy,
expressed in Hamiltonian variables p and ρ).

Equation (32) identifies A in (29) as a synthetic (or arti-
ficial) gauge field acting on the massive vortex. Note that τ

appearing in A involves an integral over the TF density na(ρ).
Although we here study a power-law trap, other more general
cylindrically symmetric TF densities could, in principle, be
generated [23], leading to different forms for τ (ρ) and hence
for A.

The corresponding synthetic magnetic field is

B(ρ) = ∇ × A(ρ) = −2π h̄na(ρ)ẑ, (33)

here expressed in conventional units.1 It is nonuniform ex-
cept for a flat trap (k → ∞), but the total flux obtained as∫

d2ρ Beff (ρ) = −2π h̄Na is independent of k.

1To help understand the negative sign, consider a long solenoid
with a uniform internal axial magnetic field along ẑ, surrounding
a uniformly charged dielectric cylindrical core with outward radial
electric field. The vector product E × B is along −φ̂, and the subse-
quent vector product with r is along −ẑ.

B. Dynamics of a massive point vortex

Equation (31) shows that the canonical momentum has an
extra term proportional to the synthetic gauge field A. An
important consequence is the presence of synthetic angular
momentum, even for a massless vortex in a flat potential with
a circular boundary, as noted in Sec. II A of [19]. In the present
case of a massive point vortex, we now show that its angular
momentum has the usual term proportional to the mass and
the angular velocity, but it also includes a second term aris-
ing from the synthetic gauge field. Similar contributions are
common in electromagnetism [38,39].

Since L is independent of φ, the angular momentum l =
∂L/∂φ̇ of the massive vortex is conserved, with

l = mρ2φ̇ − qτ (ρ). (34)

Unlike the massless case, the angular momentum of a massive
vortex can now have either sign. This unusual feature arises
from the synthetic gauge field A = −[τ (ρ)/ρ]φ̂. Here, the
synthetic contribution is negative for a positive vortex, so
that the total angular momentum can be negative for a vortex
precessing uniformly in the positive direction. In addition, the
angular momentum l can vanish even for a precessing vortex,
again owing to the synthetic contribution.

The associated radial motion follows directly as

mρ̈ = ∂L

∂ρ
= mρφ̇2 − qτ ′(ρ)φ̇ − ε′(ρ) − kνρk−1. (35)

Some manipulation gives the energy equation

1
2mρ̇2 + Veff (ρ) = const, (36)

with the effective potential

Veff (ρ) = [l + qτ (ρ)]2

2mρ2
+ ε(ρ) + νρk . (37)

Equation (36) expresses the conservation of energy in La-
grangian variables ρ̇ and ρ, which are generally more useful
than the Hamiltonian variables. In particular, the general ra-
dial dynamical equation becomes

mρ̈ = −V ′
eff (ρ), (38)

balancing the Newtonian acceleration mρ̈ and the force
−V ′

eff (ρ).
In many cases, Veff (ρ) has a single local minimum at a po-

sition ρ0 that depends on the parameters l , m, and ν. Figure 3
shows that the presence of the minimum depends sensitively
on k. For a given mass ratio m the flat trap (k → ∞) has a
local minimum, but the latter disappears when k decreases
beyond a critical value. The minimum also disappears as the
number Nb of atoms in the core increases, as shown in Fig. 4.

For small m � 1, we can ignore the last two terms of (37)
and focus on the first term. If l is also small, the minimum
occurs at small ρ0 ≈ √

l , confirming that there is always a
local minimum, as expected from the behavior for a pure a
condensate.

If the effective potential has a local minimum at ρ0, a
massive point vortex at this radial distance from the origin
precesses uniformly at a rate obtained by setting the right side
of Eq. (35) to zero. The resulting precession frequency � now
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FIG. 3. Plot of the effective potential (37) as a function of the
radial distance ρ, here shown for several values of k and fixed
l = m = 0.1 and ν = 1. The numbers next to the lines denote the
corresponding value of k.

satisfies the quadratic equation

mρ0�
2 − qτ ′(ρ0)� − ε′(ρ0) − kνρk−1

0 = 0. (39)

The first and last terms arise from the presence of the vortex
mass since both m and ν are proportional to Nb. In contrast, the
second and third terms are just those studied in the previous
section, including both the Magnus effect and the variational
energy ε(ρ). Thus, Eq. (39) includes all the physics inherent
in our combined Lagrangian L = La + Lb.

For small Nb, both m and ν are small, and the first and last
terms in (39) become negligible. In this limit, the single root
of Eq. (39) reproduces Eq. (17) for a massless vortex.

As Nb increases, however, Eq. (39) has two finite solutions;
a massive point vortex at a given radial distance ρ0 then
has two distinct modes with different precession frequencies.
With positive q, the larger root

�+ =
τ ′(ρ0) +

√
τ ′(ρ0)2 + 4mρ0

[
ε′(ρ0) + kνρk−1

0

]
2mρ0

(40)

diverges for small mass ratio m � 1.
In contrast, the smaller root �− is more physically signifi-

cant because it remains finite for small m,

�− = 2
[−ε′(ρ0) − kνρk−1

0

]
τ ′(ρ0) +

√
τ ′(ρ0)2 + 4mρ0

[
ε′(ρ0) + kνρk−1

0

] . (41)
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FIG. 4. Plot of the effective potential (37) as a function of the
radial distance ρ, here expressed for several values of Nb and fixed
k = 2, l = 0.1, m = 1.5 × 10−5Nb, and ν = 2.5 × 10−4Nb.

FIG. 5. The precession frequency �− [see Eq. (41)] is positive
for small core masses, but it can vanish and become negative as
the number Nb of component-b core atoms increases. Here m =
3 × 10−6Nb, ν = 10−2Nb, and �0 = h̄/(maR2), which are typical
values for a vortex in a BEC composed of 6 × 105 23Na atoms
(pancake shaped, with R ∼ 50 µm and dz ∼ 1 µm), with the vortex
mass provided by Nb

39K atoms (see Ref. [40] for additional details
about the tunability of intra- and interspecies coupling strengths in
this specific Bose-Bose mixture). The numbers next to the lines
denote the corresponding value of k.

The denominator of Eq. (41) is generally positive (as dis-
cussed below, it can be complex, which implies instability).
In contrast, the numerator can have either sign, depending
on the vortex position ρ0 and the dimensionless parameter ν,
which depends linearly on Nb. The quantity −ε′(ρ0) is positive
(see Fig. 1), but −kνρk−1

0 is negative. For small Nb and ν,
the energy term with −ε′ dominates, and the positive massive
vortex precesses in the positive sense. For larger ν, however,
the derivative of the trap potential dominates, and a positive
vortex now precesses in the negative direction.

Figure 5 illustrates this situation for several integer values
of k. Ruban [20] independently found similar behavior for
k = 2 with a hydrodynamic model based on two coupled GP
equations. In our model of a massive point vortex, the effect
is most pronounced for the harmonic trap (k = 2; see Fig. 6)
and is absent for the flat trap (k → ∞), as found in Ref. [19].

It is notable that the Joint Institute for Laboratory
Astrophysics (JILA) two-component experiment with two

FIG. 6. The precession frequency �− [see Eq. (41)] for k = 2.
It is positive for small core masses, but it can vanish and become
negative as the number Nb of component-b core atoms increases.
We employ the same microscopic model parameters used in Fig. 5,
which yield m = 3 × 10−6Nb and ν = 10−2Nb. The normalization
frequency �0 reads �0 = h̄/(maR2).
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hyperfine states of 87Rb (see Fig. 2 of [5]) and the associated
theoretical analysis (see Fig. 4 of [16]) both found examples
with negative precession frequencies, although it is not clear
that they arose from the same mechanism. In the experiment,
the three interaction constants here are nearly equal, so these
results are definitely not in the regime of a well-localized core
state. It would be desirable to have additional experiments
with two different atoms, such as our proposed 23Na and 39K
mixture.

The connection between the two roots �± and the single
local minimum ρ0 may be understood by starting from param-
eters m, l , and ν that give a clear minimum, such as the upper
curve in Fig. 4. These values then yield �± from Eqs. (40)
and (41). We use these frequencies to find the corresponding
angular momenta l± from (34). One of the solutions is the
same as the input in finding the minimum of Veff (ρ0), but the
other solution gives a second distinct Veff (ρ0). Although both
effective potential curves have minima at the same ρ0, they
have different l± and therefore different detailed shapes.

Equation (39) has real coefficients, so its roots are either
real or complex conjugates, depending on the sign of the
discriminant

D = τ ′(ρ0)2 + 4mρ0
[
ε′(ρ0) + kνρk−1

0

]
. (42)

The quantity ε′(ρ0) is negative, and kνρk−1
0 is positive, so their

sum can have either sign. The two roots �± are usually real,
but depending on the assumed values for the parameter gaa

and the mass ratio m, they can become complex-conjugate
pairs, indicating that the vortex will not precess but instead
drift to the outer boundary. In Ref. [19] we found that D
in a flat trap was negative for 2m > 1 − ρ2

0 , and we here
generalize the discussion for general k.

C. Stability of uniform precession for a massive vortex

If Veff (ρ) has a local minimum at ρ0, then the stability
of the uniform precession follows by expanding around the
minimum, with ρ = ρ0 + δ. Since V ′

eff (ρ0) vanishes at a local
minimum, the leading terms from Eq. (38) become

mδ̈ + V ′′
eff (ρ0) δ = 0. (43)

This equation describes a simple harmonic oscillator with
squared frequency

ω2 = V ′′
eff (ρ0)

m
, (44)

where the local curvature V ′′
eff (ρ0) serves as an effective spring

constant.
An equivalent procedure is to expand the pair of Euler-

Lagrange equations for ρ and φ around the stable precessing
motion, with ρ = ρ0 + δρ and φ = �t + δφ. For example,
the linearized form of Eq. (34) gives

[2mρ0� − qτ ′(ρ0)]δρ + mρ2
0δφ̇ = 0. (45)

With harmonic time dependence ∝e−iωt , it is clear that the two
perturbations δρ and δφ are out of phase because of the rel-
ative factor i. A combination with the linearized form of the
other dynamical equation (35) readily gives the same oscilla-
tion frequency as in Eq. (44). Figure 7 shows typical perturbed
trajectories for both signs of the precession frequency �−.

FIG. 7. Perturbed uniform circular orbits of a positive vortex for
k = ∞ (left panel) and k = 2 (right panel). Black dots correspond to
the initial positions. The precession frequency, given by Eq. (41), is
positive in the first case and negative in the second. The frequency
of small-amplitude radial oscillations is given by Eq. (44). Here we
used m = 0.03, ν = 10, and δ0 = 0.005.

Figures 3 and 4 indicate that the effective potential resem-
bles a cubic curve with a single local minimum and a single
local maximum. The local minimum (maximum) is stable (un-
stable) with positive (negative) curvature. As the parameters
vary, the two stationary points can merge and form a single
inflection point, which signals the onset of instability. Beyond
this point, the radial position obeys the simple Newtonian
dynamical equation mρ̈ = −V ′

eff (ρ). In this case, the vortex
will move to the outer boundary of the condensate.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we constructed a two-dimensional La-
grangian L = La + Lb for a massive point vortex in a
power-law trap potential ∝rk . Our model assumes a singly
quantized vortex in condensate a surrounding a localized
condensate b that provides an inertial mass. The power-law
potential allows an interpolation between the harmonic trap
(k = 2) and the flat trap with a rigid circular boundary (k →
∞). For an empty-core vortex in the pure a component, the
model Lagrangian La leads to first-order dynamical equa-
tions with uniform circular precession for all values of k.

To include the inertial effect of the core, we added the
Lagrangian Lb derived in [19], now generalized to the power-
law trap. The total Lagrangian for the vortex coordinate
ρ = (ρ, φ) is axisymmetric and therefore conserves the to-
tal angular momentum l . Unusually, l includes not only the
usual Newtonian inertial part ∝ρ × ρ̇ = ρ2φ̇ but also a con-
tribution from a synthetic gauge field associated with the
vortex. It is notable that synthetic gauge fields have served
to create massless vortices [41], whereas here we identify
a (density-dependent) synthetic gauge field that acts on a
massive point vortex. Digital micromirror devices [23] allow
experiments with almost arbitrary condensate shapes, includ-
ing time-periodic structures. The corresponding time-periodic
synthetic gauge fields could combine superfluid vortex dy-
namics with Floquet physics [42] and Thouless pumping [43].

Manipulation of the coupled dynamical equations for ρ and
φ leads to an effective potential Veff (ρ) and an explicit radial
dynamical equation mρ̈ = −V ′

eff (ρ), where m = Mb/Ma is the
mass ratio. For small enough values of m and l , Veff (ρ) has a
single local minimum, where stable uniform circular motion
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can occur. For larger m, however, the local minimum disap-
pears, and the vortex spirals outward to the trap edge.

We studied the precession of a massive vortex for various
values of the parameters in the Lagrangian such as the mass
ratio m = Mb/Ma, the coupling strength ν = Nbgaama/(h̄2π )
between the vortex and the trap, and the exponent k of the
trap potential. For a flat potential (k → ∞), a positive massive
vortex always precesses in the positive sense, independent of
the number Nb of b-component atoms which provide its mass.
For finite k, however, the precession can reverse direction
with increasing Nb. The effect is stronger for smaller k and
therefore should be most easily observable in the usual case
of harmonic trapping (k = 2).

As noted toward the end of Sec. III B, the early JILA
experiment [5] detected several two-component vortices that
precessed in the reverse direction. These experiments relied
on two hyperfine states of 87Rb, where the interaction con-
stants g jk are nearly identical. In contrast, our model assumes

different atomic species 23Na and 39K with the conditions
gaagbb � g2

ab to be deep in the phase-separated regime and
gaaNa  gabNb, gbbNb to ensure that the size of a vortex
in component a is barely modified by the b impurities in
its core. It would be very interesting to study vortices in
two-component systems with small core radii and perhaps
detect the reversal of precession as the minority component
increases.
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