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ABSTRACT

Is it possible to predict the future? How accurate is the prediction for the future? These ques-
tions are fascinating and intriguing ones in particular for young generations who look at their
future with curiosity. For a long time, many have tried to quantitatively predict future behavior of
systems more accurately with techniques such as time series analysis and derived dynamical
models based on observed data. The paper proposes a lecture structure in which elements of
chaos, which greatly impacts the predictive capabilities of dynamical models, are introduced
through two classical examples of nonlinear dynamical systems, namely Lorenz attractor and
Lotka-Volterra equations. In a possible lecture, these two structures are introduced in a ba-
sic and intuitive way, followed by equilibria analyses and Lyapunov control approaches. The
paper intends to give a possible structure of an interdisciplinary lecture in chaotic systems,
for all students in general and non-engineering students in particular, to kindle students’ inter-
est in challenging ideas and models. By presenting an intuitive learning-based approach and
the results of the implementation, the paper contributes to the discourse on interdisciplinary
education. The lecture is a part of a course within a Complementary Study at Leuphana Un-
versity of Lüneburg. The material which inspired the proposed lecture structure is taken from
the scripts of the Master Complementary Course titled Modelling and Control of Dynamical
Systems using Linear and Nonlinear Differential Equations held at Leuphana University of
Lüneburg.

1 INTRODUCTION

The presented lecture can be used in different contexts: in Bachelors courses for engineers
as well as for Masters courses dedicated to non-engineers (non-engineering minor programs,
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complementary study). In this way, the paper provides important insights into how to teach the
first and only control course in non-control engineering programs. In fact, an important point
of the complementary study at Leuphana University in Lüneburg, Germany, is a holistic vision
of the culture in which also non-engineers can profit from knowledge which typically is just for
engineers. Therefore, such liberal education demands and encourages the intellectual and
personal development of each and every specific student profile, in which new ideas to teach
and to connect naturally or technically with human sciences represent a prerequisite.

In this paper, a modified Lotka-Volterra model with fixed initial condition has been employed
to examine whether there is a pattern in chaos situations and where equilibrium points are that
do not change over time, see [1]. It is important that the course starts recalling basic knowl-
edge of differential equations and, before starting with a lecture dedicated to sliding mode
control, the course should introduce elements of nonlinear differential equations considering
the fundamental direct method of Lyapunov [2] related to the stability of a solution of a differ-
ential equation.

Fundamentals of
Differential Equations

Elements of Lyapunov
Therory

Applications

Leuphana Approach in
Sliding Mode Control 

Lyapunov Interpretation

Fig. 1. Structure of the proposed course

Figure 1 shows the structure of the proposed course of this lecture in which the control of
chaotic systems using Lyapunov control is proposed as an application. There are theoretical
backgrounds about Lorenz’s chaos theory and Lotka-Volterra model along with the explanation
of forced Lotka-Volterra equations in Section 2. In Section 3, differential equations of Lorenz
attractor of chaos theory as well as forced Lotka-Volterra equations in chaos scenarios with
Jacobian matrix are computed manually in order to find equilibrium points and then they are
followed by manual computation of Lyapunov equation for controllers. In Section 4, the simula-
tions in Matlab/Simulink regarding Section 3 has been described. Later, conclusion and some
remarks are devoted in Section 5.

2 MODELLING

Several kinds of dynamical systems from nature, and also synthetic ones, can be chaotic in
their solutions. Two important ones are Lorenz attractors and forced Lotka-Volterra models.

2.1 Lorenz attractor

In the context of meteorology and fluid dynamics, Edward Lorenz came up with the simplest
equation to explain the observed chaotic phenomena in the Earth atmosphere [3]. The result
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are three nonlinear differential equations ẋ, ẏ and ż,

dx(t)

dt
= σ (y(t)− x(t)) , (1)

dy(t)

dt
= px(t)− y(t)− x(t)z(t), (2)

dz(t)

dt
= x(t)y(t)− βz(t), (3)

where x is the rate of convective motion, for instance how fast the rolls are rotating, y is the
temperature difference between the ascending and descending currents, and z is the distortion
(from linearity) of the vertical temperature profile, see [3] for details on the practical interpreta-
tion of the parameters and variables of this example system. Parameters σ, p, and β depend
on condition of the fluid, the heat input, etc., but they are assumed to be constant through-
out experiments. So, in the simulations from Lorenz, σ = 10, p = 28, and β = 8

3
, see [4].

When the aspect of movement is transferred to the coordinate planes of the x, y, and z axes,
a ’strange butterfly’ shape can be seen. It is also called Lorenz’s Butterfly Attractor because
its shape resembles a butterfly. Here, the characteristic of chaos shows that it is sensitive to
initial conditions but at the same time it is still possible to find the underlying pattern. Another,
structurally simpler class of dynamical systems that can exhibit chaotic behavior under certain
conditions is the dynamics of predator and prey populations in nature.

2.2 Lotka-Volterra models and their control

When there are preys, there are predators. It can also be applied to the other way around.
When there are predators, there are preys. From this phenomenon, one can see that there
must be a pattern or trend of prey and predator population over time. This pattern has been
formed into equations by Alfred J. Lotka in 1910, analyzing prey-predator interactions as known
as Lotka-Volterra model and predicting the population rate of change over time, see [5]. So
the original Lotka-Volterra model is described by the following pair of equations, see [1]:

dN1(t)

dt
= α1N1(t)− β1N1(t)N2(t), (4)

dN2(t)

dt
= −α2N2(t) + β2N1(t)N2(t), (5)

where N1(t) and N2(t) are the population of prey and predator respectively, α1 is the growth
rate of prey and α2 is the die out rate of predator. The term - β1N1(t)N2(t) represents the
loss rate of prey due to collisions with predator and β2N1(t)N2(t) represents the growth rate
of the population of predator due to collisions with prey. The equations have periodic solutions
under the assumptions that none of parameters α1, α2, β1, β2 are negative, see [1]. From
the model, the population of predator seemingly follow the pattern of the population of prey
putting both populations into loop of increase and decrease. In this paper, the modified Lotka-
Volterra (forced Lotka-Volterra) model which has been introduced by Gause, see [6], has been
employed in order to obtain chaotic behaviour

dN1(t)

dt
= α1N1(t)− β1

√
N1(t)N2(t)− γ1(N1(t))

2, (6)

dN2(t)

dt
= −α2N2(t) + β2

√
N1(t)N2(t), (7)

where γ1(N1(t))
2 is a logistic term and also a penalty due to lack of room for prey as its number

grows and the terms - β1

√
N1(t)N2(t) and β2

√
N1(t)N2(t) are now not proportional to N1(t)
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but to
√

N1(t). In other words, the original Lotka-Volterras collision terms are proportional
to N1(t) while Gauses collision is obtained when it is proportional to

√
N1(t) of the prey

community which contributes to collision and provides saturation effect for the collision. The
saturation effect causes a population explosion of prey when the logistic term is disregarded,
see [6]. In this paper, time-variance will be considered since recovery of grass causes a
periodic oscillation of the grass-eating prey’s population. Then the growth rate of prey turns
out to be as following, which according to [1] yields chaotic behavior:

α1(t) = 2 [a− b cos(ωt)] (8)

where a is the positive constant and b and ω are the amplitude and angular frequency of the
oscillating part of the growth rate respectively. Furthermore, these two forced Lotka-Volterra
equation will be extended again using control inputs which are µ1(t) and µ2(t). It is possible
to control the population of both species by intervening in their interaction. In other words,
population dynamics can be affected by controlling amount of food provided, or controlling the
population of species by introducing or withdrawing individuals from the habitat.

dN1(t)

dt
= α1N1(t)− β1

√
N1(t)N2(t)− γ1N1(t)

2 + µ1(t), (9)

dN2(t)

dt
= −α2N2(t) + β2

√
N1(t)N2(t) + µ2(t). (10)

Here, µ1,2(t) will be regarded as controlling the population of two species by introducing or
withdrawing individuals since time-variance for the amount of food has been already consid-
ered in form of α1(t). Even in the presence of chaotic behavior in the populations, a controller
can help to stabilize the populations from the outside at an arbitrary level.

3 SYSTEM ANALYSIS AND CONTROL

3.1 Equilibrium points of Lorenz attractor

With Lorenz equations (1-3), equilibrium points fulfil the conditions ẋ = 0, ẏ = 0, ż = 0

0 = σ (y(t)− x(t)) , (11)

0 = px(t)− y(t)− x(t)z(t), (12)

0 = x(t)y(t)− βz(t), (13)

Since parameters σ, p, β are given as constants, the solutions are x = 0 or x = ±
√

β(p− 1),
y = x, and z = p− 1. Therefore, the equilibrium points of x, y, z including the origin are [4]

C± = (±
√
β(p− 1),±

√
β(p− 1), p− 1). (14)

Using parameters σ = 10, p = 28, and β = 8
3

as fixed by Lorenz, computing equilibrium points
by hand results in C+ = (8.5, 8.5, 27), C− = (−8.5,−8.5, 27), which corresponds with Fig. 2.

3.2 Limited equilibrium of Forced Lotka Volterra using Jacobian Matrix

Using the forced Lotka-Volterra model in Section 2.2, limited equilibrium points can be reached
Solving these two conditions,

0 = α1N1(t)− β1

√
N1(t)N2(t)− γ1(N1(t))

2, (15)

0 = −α2N2(t) + β2

√
N1(t)N2(t), (16)
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apart from the trivial solution N1,2(t) = 0 yields the following two equilibria:

N1(t) =
α1

γ1
, N2(t) = 0 or N1(t) =

α2
2

β2
2

, N2(t) =
α1α2β

2
2 − α3

2γ1
β1β3

2

. (17)

For sake of brevity, we will consider just the first two equilibrium points in terms of local sta-
bility using the Lyaponov criterium which concerns the local stability. We can see that these
two equilibrium points are locally unstable. Point 1 gives trivial solution because when there
is no prey (N1(t) = 0), there will be no predator as well (N2(t) = 0). In other words, when
one species will go extinct, the existence of the other species will also be endangered. When
it comes to determining whether equilibrium points in both Point 1 and 2 are stable, the eigen-
values of the Jacobian Matrix J should be examined. Assuming that f1(t) = dN1(t)

dt
and

f2(t) =
dN2(t)

dt
, Jacobian matrix of forced Lotka-Volterra can be described as following.

J =

[
∂f1(t)
∂N1(t)

∂f1(t)
∂N2(t)

,
∂f2(t)
∂N1(t)

∂f2(t)
∂N2(t)

]
=


α1 − 2γ1N1(t)− β1N2(t)

2
√

N1(t)
−β1

√
N1(t)

β2N2(t)

2
√

N1(t)
−α2 + β2

√
N1(t)


 . (18)

In order to analyze the equilibria stability, Lyapunov stability theory for time-variant systems
states that the eigenvalues of JT

p + Jp must have a negative real part [7]. Two points are
investigated. First, when point 1 is used,

Jp1 =

[
α1 0
0 −α2

]
, (19)

where we have two eigenvalues λ1: 2α1 and −2α2.

det(λ1I − JT
p1
− Jp1) = 0 ⇒ det

[
λ1 − 2α1 0

0 λ1 + 2α2

]
= 0. (20)

The determinant formula shows that λ1 equals 2α1 which has a positive value, thus making
the system locally unstable around this equilibrium point. On the other hand when using point
2, the result is as follows

Jp2 =


−α1 −β1

√
α1

γ1

0 −α2 + β2

√
α1

γ1


 , (21)

and so

JT
p2
+ Jp2 =


 −2α1 −β1

√
α1

γ1

−β1

√
α1

γ1
−2α2 + 2β2

√
α1

γ1


 , (22)

where we have two values for λ2:

det(λ2I − JT
p2
− Jp2) = 0 ⇒ det


λ2 + 2α1 β1

√
α1

γ1

β1

√
α1

γ1
λ2 + 2α2 − 2β2

√
α1

γ1


 = 0. (23)

The two solutions for λ2 are complicated, with the same real (and non-zero imaginary) part

Re(λ2) = −α1 − α2 + β2

√
α1

γ1
, (24)

so in order to investigate stability, it is enough to consider the real part of the two solutions of
λ2 and the stability condition (depending on the system model parameters) becomes:

− α1 − α2 + β2

√
α1

γ1
< 0. (25)
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3.3 Controllers using Lyapunov equation

With controllers µ1,2(t) which allows for convergence to an arbitrary level, a Lyapunov equa-
tion is used to make sure that the arbitrarily desired population size combination is stable.
According to the Lyapunov theory, it can be described as

v(N1(t), N2(t)) =
1

2
[(N1(t)−N1d(t))

2 + (N2(t)−N2d(t))
2], (26)

where N1d(t) is desired population of prey and N2d(t) is desired population of predator. In this
paper, the desired population of prey and predator have been set for 200 and 300 respectively.
Assuming that (N1(t)−N1d(t)) is S1(t) and (N2(t)−N2d(t)) is S2(t), the result of computing
v̇(N1(t), N2(t)) is as following.

v̇(N1(t), N2(t)) = (N1(t)−N1d(t))
dN1(t)

dt
+ (N2(t)−N2d(t))

dN2(t)

dt
(27)

= S1(t)
dN1(t)

dt
+ S2(t)

dN2(t)

dt
. (28)

Substituting equations dN1(t)
dt

and dN2(t)
dt

with forced Lotka-Volterra equations, v̇(N1(t), N2(t))
can also be described as

v̇(N1(t), N2(t)) = S1(t)[α1N1(t)− β1

√
N1(t)N2(t)− γ1(N1(t))

2 + µ1(t)] (29)

+ S2(t)[−α2N2(t) + β2

√
N1(t)N2(t) + µ2(t)]

The input terms µ1(t) and µ2(t) which both consist of an equivalent and a corrective control
term, can then be derived considering requirement v̇ ≤ 0 of the sliding mode control approach

µ1(t) = µ1eq(t) + µ1corr(t), (30)

µ1eq(t) = −α1N1(t) + β1

√
N1(t)N2(t) + γ1(N1(t))

2, (31)

µ1corr(t) = −η1tanh(S1(t)), (32)

µ2(t) = µ2eq(t) + µ2corr(t), (33)

µ2eq(t) = α2N2(t)− β2

√
N1(t)N2(t), (34)

µ2corr(t) = −η2tanh(S2(t)). (35)

Here, η1,2 determines how strong the input term will affect the equation to which it is applied,
which means in this case, how strong it controls the population of prey and predator in order to
stabilize a population combination, where it naturally would not be possible. In simulation for
the convergence under the control, η1 and η2 have been set to 1 so that the desired population
of prey and predator can be reached. Furthermore, the corrective term contains the hyperbolic
tangent function as a substition of sign function sign(S1,2) for leading to a smoother graph with
less oscillations in the simulink model.

4 SIMULINK MODEL IN MATLAB

The simulation of Lorenz attractor has been implemented in Matlab/Simulink to check whether
it is possible to find pattern in chaotic situations. Instead plots of the considered Lorenz at-
tractor have been visualized to describe the state evolutions of variables x, y, and z with Fig.
2. The Simulink implementation to see how the population dynamics of prey and predator
converges using chaotic methods and controllers shows the following. Without connecting
controller parts, both of the population of prey and predator show chaotic, unpredictable pat-
terns in the respective scope blocks individually.
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Fig. 2. 2D visualization of the three states of the Lorenz attractor

(1).png

Fig. 3. Population evolution (left) of prey and predator without controllers and phase plot (right)

In Fig. 3, it can be observed that the population of prey (N1(t)) fluctuates between 0 and 12
over time and the population of predator (N2(t)) fluctuates between 0 and 4.5. Nevertheless,
the XY graph shows that the population of prey and predator still converges into the center
of the circle-like figure predicting that there will be approx. 4 preys (X axis) and 3 predators
(Y axis) as time goes. With the controller part, the results show that the population of prey
(X axis) and predator(Y axis) eventually reaches the desired population size which is 200 and
300, respectively, see Fig. 4.
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Fig. 4. Population evolution (left) of prey and predator with controllers and phase plot (right)

5 CONCLUSION

The real world is full of uncertain and chaotic phenomena. Therefore, employing simple lin-
ear prediction models with some assumptions is often not enough to enhance the accuracy
of model-based predictions. Lorenz attractor from chaos theory and the forced Lotka-Volterra
model are introduced as examples for systems that impede such predictions, due to extreme
sensitivity w.r.t. the initial conditions. In case the initial conditions (and the model) are known
with certainty, the chaotic behavior is deterministic and, hence, also predictable, with or with-
out controller, yet more difficult. The presence of multiple equilibrium points implies that it is
hard to predict real-life phenomena but thanks to simulation studies, it is still possible to make
analyze convergence of the states. Furthermore, it is possible to deal with chaotic phenomena
of fields other than meteorology using Lorenz attractor model and forced Lotka-Volterra equa-
tions. Promising applications can be found in economics (market shares of complementary
and substitute goods), immunology of infectious diseases (populations of infected COVID-19
patients and susceptibles, etc.) or electronic devices (Chua’s circuit). In execution of the
course, the students’ progress of learning was extensive.
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