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Fig. 1. The discretization of the flamelet lookup table can be visualized
on the p-dimensional unit hypercube, where p is the number of controlling
variables. If there are N discretization points of each controlling variable, the
total number of floating point numbers stored in the lookup table is SNp

where S is the number of state variables, or arguments to the function being
retrieved.
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I. EXTENDED ABSTRACT

One of the fundamental questions in combustion simulation
is how to account for detailed chemistry effects, while control-
ling both the error of the chemical scheme and the computa-
tional cost. Combustion chemistry is important for resolving
processes such as flame propagation and pollutant formation,
which are non-linear processes that can be computationally
expensive. The direct solution of the governing equations of
turbulent reacting flows can be prohibitively expensive as
the chemical integration is often stiff. Tabulated chemistry
methods with flamelet modelling emerge as an alternative to
perform direct integration of the chemical source terms and
has been extended to a wide range of conditions [1].

In flamelet methods, the chemical time scale is assumed
smaller than the time scales of the turbulence, so the flame
structure is not affected by the turbulence. In flamelet methods,
the thermochemical states of the flame are computed in a pre-
processing step, and these values are retrieved from a lookup
table loaded into memory at the beginning of the simulation.
The flame structure can be recovered through the use of
controlling variables, which represent dimensions along the
multidimensional space of the flame manifold.

A restriction of the tabulated chemistry method is that it is
bound by memory. Increasing the number of dimensions, the
number of tabulated values per dimension, and the number
of discretization points on the flamelet manifold as desired

Fig. 2. An example of block structuring applied to a small 2D lookup
table, with controlling variables labelled X1 and X2. Numbers 1-81 give the
ordering of entries as they appear in memory before and after applying the
block structure. Here, the table size is 9× 9 and the block size is 3× 3. The
blocks are labelled T1 to T9.

are not possible given the way that tabulated chemistry is
currently implemented in combustion codes [2]. In particular,
the entirety of the lookup table is stored on each core on
distributed-memory machines. Modern supercomputers typi-
cally have about 2GB of memory on each core, and tables
quickly outgrow this limit as they increase in dimension (see
Figure 1).

Since combustion simulations are typically run in paral-
lel across many compute cores, the memory-boundedness of
the current implementation may be addressed by storing the
lookup table in a distributed manner, as opposed to keeping a
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DT (DR = 50) 1 2 5 10 20 25 50 100 250 500
Wall Time (s) 1.3858 1.2581 1.2532 1.2344 1.1940 1.2697 1.2209 1.1985 1.2733 1.2264
Speedup 1.0000 1.1014 1.1057 1.1227 1.1606 1.0914 1.1350 1.1563 1.0884 1.1299
DT (DR = 100) 1 2 5 10 20 25 50 100 250 500
Wall Time (s) 1.8338 1.6665 1.4573 1.9551 1.6779 1.4743 1.6022 1.4384 1.4908 1.6966
Speedup 1.0000 1.1004 1.2584 0.9380 1.0929 1.2439 1.1445 1.2749 1.2301 1.0808

TABLE I. WALL TIME (IN SECONDS) AND SPEEDUP FOR 108 RANDOM ACCESSES TO THE TABLE, FOR ACCESS RANGES DR = 50, 100 AS BLOCK SIZE,
GIVEN BY DT, VARIES.

copy of the entire table in memory at each core. We refer to
this method as distributed tabulation. The goal of our project
is to develop, implement, and test distributed tabulation in the
multiphysics code Alya [3].

A. Methodology

The most naive approach to distributed tabulation is as
follows. Consider a lookup table that contains NE total entries,
used in a simulation run on NR total compute cores. Then,
at the beginning of runtime, we load NE /NR table entries
into memory onto the each core (assume for simplicity NE is
divisible by NR). Then, using MPI 3’s remote memory access
capabilities [4], we open a memory window on each rank’s
table entries to permit one-sided access during the solve phase
of the simulation. If a sub-domain needs an entry which is
stored on another sub-domain, it will retrieve that entry using
a MPI Get call. This technique alone will solve the problem
of memory-boundedness given enough parallel resources, but
in the worst case it will incur a significant cost in overhead
due to communication.

To reduce communication, we exploit a pattern of locality
which tends to occur in flamelet table lookups. When a
sub-domain requires a lookup table entry, successive entries
requested by that sub-domain will tend to be spatially near
previous entries in the flamelet manifold. To exploit this,
we organize the table in a block structure and keep recent
remotely-retrieved entries in a small local pile.

The block structure is a partitioning over the unit hyper-
cube. Table entries which are spatially collocated on the unit
hypercube are rearranged to be contiguous in memory. An
example of block-structure reorganization on a table with 2
controlling variables is illustrated in Figure 2.

Then, when a sub-domain requests a non-local entry, it will
use MPI remote memory access to retrieve all entries on its
block and store the block locally on a pile. When a sub-domain
needs a non-local entry, it looks first in the local pile to see
if the entry is available there. The local pile is restrained by a
maximum number of stored blocks. When a block is added to
the pile or used locally, it is moved to the front. As a result,
blocks that are not used for some time are removed from local
memory.

B. Test on locality optimization

Distributed tabulation reorganizes lookup tables such that
entries of the tables which are spatially co-located on small
subsets of the unit hypercube, called blocks, are stored contigu-
ously in memory. Combustion simulations tend to successively
request lookup table values which are close to one another in

space, but current lookup table strategies do not necessarily
store spatially close values near one another in memory. While
block structuring of lookup tables was devised with message
passing in mind, it may also increase CPU cache efficiency
and decrease the total time needed to retrieve local lookup
table values. To test this effect, we run the following test on
a single MPI rank.

Using a three-dimensional lookup table of size
1000×1000×1000, we choose a range R on the table with
dimensions DR×DR×DR, for DR = {50, 100}, in which we
access 108 randomly chosen elements. For each size of DR, the
size of the blocks T on the cube are chosen as DT ×DT ×DT ,
for DT = {1, 2, 5, 10, 20, 25, 50, 100, 250, 500}. Table I
shows the wall-time (in seconds) and speedup comparing 108

accesses on R for DR = 50 and DR = 100, as the block size
T defined by DT varies. This demonstrates that the block
structure can yield modest sequential speedup for repeated
access of spatially close entries on the table, a side-effect of
a functionality intended for point-to-point communication.
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