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Abstract: This paper presents a model-free methodology for the placement of pressure sensors in water
distribution networks (WDNs) with the aim of performing leak detection/localization tasks. The approach
is based on a custom genetic algorithm (GA) optimization scheme, which considers a population whose
individuals are binary vectors encoding the network nodes with/without sensors. The optimization process
pursues the minimization of a distance-based metric, computed considering the pipe distance from the
possible sensors to the complete set of nodes of the network, hence removing the necessity of a hydraulic
model of the WDN. The methodology is completed by means of an iterative clustering technique that
seeks the enhancement of incoming individuals. The proposed methodology is tested over a well-known
case study, L-TOWN from the BattLeDIM2020 challenge, in order to assess its performance.
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1. INTRODUCTION

The appearance of leaks in water distribution networks (WDNs)
involves an important water loss, around 126 billion cubic
meters per year worldwide (expressed as non-revenue water),
according to Liemberger and Wyatt (2019). This fact justifies
the interest of water utilities in the development of leak
management strategies, considering the associated economic
and environmental costs.

Nowadays, leak management is performed through software-
based methods that require hydraulic information of the WDN
status, gathered by means of a set of sensors (typically measuring
pressure due to their reduced cost and easier installation),
to operate. The most common leak detection/localization ap-
proaches are model-based, i.e., they require a hydraulic model
of the WDN. This model computes every possible leak scenario,
generating a fault sensitivity matrix (FSM) that stores the effect
of each leak on every pressure measurement. Thus, several state-
of-the-art pressure sensor placement solutions seek the per-
formance maximization in these FSM-based leak management
strategies by means of optimization-based schemes. Genetic
algorithms (GAs) are typically used due to the possibility of
encoding the sensor distribution over the network nodes as
binary vectors: Pérez et al. (2009) presents this kind of sensor
placement solution for leak detection task, Casillas et al. (2013)
proposes a similar placement strategy but focusing on leak
localization, and Quiñones-Grueiro et al. (2019) combines both
approaches to consider detection and localization simultane-
ously. In Blesa et al. (2015), the FSM-based solution proposes
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a multi-objective exhaustive search scheme, together with a
clustering method for search-space reduction.

An alternative to FSM-based methods lies in the use of
information and entropy theory. GAs are also used in Khorshidi
et al. (2020) to place sensors using Value of Information and
Transinformation Entropy methods. Another information theory
based method is proposed by Santos-Ruiz et al. (2022), ranking
candidate nodes using a heuristic algorithm with a quadratic
computational cost. Machine learning is also used in recent
methods like Peng et al. (2022): the network is split into
monitoring areas via graph neural network clustering, to then
select the sensor through a leak localization analysis.

This paper presents a model-free sensor placement methodology
seeking the minimization of a user-defined metric based on
topological distance, by means of a customized implementation
of GAs. Additionally, an iterative clustering strategy is proposed
to help in the minimization of this metric. Thus, the main
contribution of the method is its independence of the hydraulic
model of the WDN, which is not required because the method
only considers structural information. Despite the convenience
of using a hydraulic model for sensor placement, motivated
by the possibility of optimizing leak localization performance
explicitly in an off-line process, it is also true that many water
utilities do not have reliable hydraulic models and may not
prioritize investments in periodic re-calibrations.

2. METHODOLOGY

The proposed sensor placement method pursues the minimiza-
tion of a user-defined metric by means of a GA scheme: consider-
ing an initial population, individuals are selected depending on
their score, combined and mutated with intent to generate new



individuals with a better score than their predecessors. Unlike
most of the state-of-the-art methodologies, this work considers
an evaluation function that removes the need for a hydraulic
model. Moreover, an iterative clustering strategy based on the
proximity of the sensors to the network nodes (henceforth
denoted as nearest-sensor iterative clustering, NS-IC) is applied
at several key steps to improve incoming individuals’ score. A
diagram of the complete methodology is provided in Fig. 1,
involving some key steps, namely:

(1) Before proceeding with the operation, the required input
parameters must be configured.

(2) Then, an initial random population of individuals is
generated. The NS-IC process is used to improve the
random individuals, and then they are evaluated to obtain
a score that represents their suitability as solutions.

(3) In this moment, the iterative phase (formed by an ex-
ternal loop and an internal loop) starts, conducting the
computation of the different steps of the GA: selection,
combination, mutation and evaluation again.

(4) The internal loop is exited if the population gets stuck,
leading to a preliminary convergence that triggers differ-
ent countermeasures to renew the population: NS-IC is
applied, and if the population’s score is not improved, then
a population diversity increase policy (PDI-P) is used.

(5) Finally, if the conditions for the final convergence are met,
the algorithm stops and the solution is achieved.

The following subsections describe the details of these steps and
specifies their underlying algorithms.
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Fig. 1. Block diagram of the operation of the methodology.

2.1 Parameterization

Several parameters or input settings must be provided by the
user, i.e., the water utility operator:

• Number of sensors (𝑛𝑠): amount of pressure sensors that
are considered to be located throughout the WDN.
• Number of individuals in the population (𝑛𝑖): amount of

individuals that compose the population of the GA. A
larger value would imply a larger diversity of individuals,
but it would also increase the computation time.
• Mutation probability (𝑝): probability between 0 and 1 for

the mutation process to be activated.
• Preliminary convergence counter thresholds (𝑡ℎ𝑟1 and
𝑡ℎ𝑟2): these parameters trigger certain processes, depend-
ing on the value of the preliminary convergence counter
𝑐𝑛𝑡𝑝 , with the aim of: (a) applying NS-IC, for the case
of 𝑡ℎ𝑟1; (b) increasing the population diversity once it is
insufficient using PDI-P, for the case of 𝑡ℎ𝑟2.
• Additionally, the methodology is prepared to let the user

provide sensor locations that must be mandatorily selected
and maintained during the sensor placement operation.
Henceforth, let us refer the set of user-defined sensors
locations as 𝒮𝑢𝑑 . Note that |𝒮𝑢𝑑 | < 𝑛𝑠 for the sensor
placement problem to not be trivial.

2.2 Population generation

The design of a GA-based strategy entails the conceiving of its
population, i.e., its individuals and the information they encode.

As noted by several state-of-the-art works considering GAs for
sensor placement over WDNs, the problem naturally leads to
the use of binary vectors as individuals, encoding the sensor
location information as follows:

𝑷 = [ 𝒑1 𝒑2 . . . 𝒑𝑛𝑖 ] ∈ R𝑛×𝑛𝑖 ;
with 𝒑𝑖 = [𝑝𝑖1, 𝑝𝑖2, ..., 𝑝𝑖𝑛]

(1)

where 𝑷 is the population of individuals (denoted as 𝒑𝑖 ∈ R𝑛,
with 𝑖 = 1, 2, ..., 𝑛𝑖), 𝑛 is the number of nodes of the WDN, and:

𝑝𝑖 𝑗 =

{
1, if node j is sensorized
0, otherwise

(2)

Besides, note that the following requirements must be fulfilled:

𝑛∑︁
𝑗=1

𝑝𝑖 𝑗 = 𝑛𝑠 ∀𝑖 = 1, 2, . . . , 𝑛𝑖 (3)

𝑝𝑖𝑘 = 1,∀𝑘 ∈ 𝒮𝑢𝑑 (4)

Thus, the population is generated by computing 𝑛𝑖 random
binary vectors which accomplish the requirements in Eq. (3-
4). Note that if 𝒮𝑢𝑑 ≠ ∅, the number of sensors to allocate by
the method is reduced to 𝑛𝑠 − |𝒮𝑢𝑑 |.

2.3 Evaluation function

The aim of the GA is the improvement, generation after genera-
tion, of the sensor location solution encoded by the individuals.
Thus, a function that evaluates the individuals, giving them a
score, is required. In this work, the suitability of the individuals



is not assessed in terms of hydraulic measurements but in
terms of distance-based metrics. Specifically, the proposed
evaluation function rewards individuals whose encoded sensors
are scattered throughout the WDN.

First, the pipe-distance matrix 𝑫 of the WDN must be generated
from its structural properties. Let us model the network as
a weighted graph G = (V, E), defined by the node set V
representing the junctions/reservoirs of the network, and edge
set E that models the pipes of the network. The weights of
G would be defined by the pipe lengths, which can be easily
provided by the water utility. Note that extra information could
be considered during their, e.g., diameters, roughness, etc. Thus,
𝑫 can be generated from G as:

𝑑𝑖 𝑗 = f(G,𝓋𝑖 ,𝓋 𝑗 ) (5)

where f(G,𝓋𝑖 ,𝓋 𝑗 ) corresponds to a function that computes the
shortest path from node 𝓋𝑖 to node 𝓋 𝑗 across the weighted graph
G (see Festa (2006) for a review of shortest-path algorithms).

Then, the evaluation function can be implemented to obtain
the scores of the individuals of a population 𝑷, as indicated
by Algorithm 1. Note that 𝑫 (:, 𝒑𝑖) is obtained by selecting
the columns of 𝑫 indicated by the individuals encoded in 𝒑𝑖 .
Besides, mincol (·) is a function that computes the minimum
value at each row of an input matrix, yielding a column
vector of minimum values (in particular, mincol (𝑫𝑠) provides
𝒅𝑚𝑖𝑛
𝑠 ). Function g(·) implements the user-defined function that

calculates the individual’s score by means of 𝒅𝑚𝑖𝑛
𝑠 .

Algorithm 1: Evaluation function
Data: 𝑷 ∈ R𝑛×𝑛𝑖 , 𝑫 ∈ R𝑛×𝑛
Result: 𝒗 ∈ R𝑛𝑖
for 𝑖 ← 1 to 𝑛𝑖 do

𝑫𝑠 ← 𝑫 (:, 𝒑𝑖);
𝒅𝑚𝑖𝑛
𝑠 ← mincol (𝑫𝒔);

𝑣𝑖 ← g(𝒅𝑚𝑖𝑛
𝑠 );

end

In this work, g(𝒅𝑚𝑖𝑛
𝑠 ) is defined as follows:

g(𝒅𝑚𝑖𝑛
𝑠 ) = 2𝒅𝑚𝑖𝑛

𝑠 +max(𝒅𝑚𝑖𝑛
𝑠 ) (6)

where 𝒅𝑚𝑖𝑛
𝑠 is the mean value of 𝒅𝑚𝑖𝑛

𝑠 . Thus, the GA would
seek to generate an individual that minimizes the maximum
distance from any node to its closest sensor in the network,
while also considering the mean of closest distances to avoid
outliers. This selection has been found suitable for localization
in WDNs, where the effect of a leak is generally more apparent
at the nodes closest to the leak.

2.4 Selection of individuals

The GA requires selecting a couple of individuals from the
population in order to combine them, pursuing the generation
of a high-scoring descendant. Thus, the selection process design
is a vital step during the development of the GA. The selection
procedure for this work is described by Algorithm 2.

The main idea behind Algorithm 2 is to use the individuals
evaluation score to derive probabilities of selection, so that
the lower the score (and hence, the minimized distance metric

Algorithm 2: Selection of individuals
Data: 𝒗 ∈ R𝑛𝑖 , 𝑘𝑠 ∈ R
Result: 𝒋𝑠𝑒𝑙 ∈ R2

𝒗̂ ← 𝒗/max(𝒗);
{𝒚, 𝒐} ←sort(𝒗̂);
𝒚 ← 𝒚 − 1𝑛𝑖 (𝑦1 + 𝑘𝑠);
𝑚 ← 0;
while 𝑚 < 2 do

for 𝑖 ← 1 to 𝑛𝑖 do
𝑟 ← rand();
if 𝑦𝑖𝑛𝑣

𝑖
≤ 𝑟 and 𝑚 < 2 then

𝑗 𝑠𝑒𝑙𝑚 ← 𝑜𝑖;
𝑚 ← 𝑚 + 1;

end
end

end

at Eq. (6)), the higher the selection probability. To this end,
the score vector 𝒗 is normalized to fit the range of the rand(·)
function, i.e., 𝑣𝑖 ∈ [0, 1]. It is then sorted in ascending order by
the sort(·) function (it provides two outputs: the sorted vector,
𝒚, and the indices of the original one that perform this specific
sorting, 𝒐). Vector 𝒚𝑖𝑛𝑣 , which is the result of 1𝑛𝑖 − 𝒚 (where
1𝑛𝑖 ∈ R𝑛𝑖 is a vector whose components are all one), would be a
vector whose values are lower when the probability of selection
is higher, and the best individual would always be selected, as
its value in 𝒚𝑖𝑛𝑣 is 0 (an offset parameter 𝑘𝑠 can be defined by
the user to avoid this). The selection process is embedded into
a loop that checks if two individuals have already been selected
once the population has been completely considered.

2.5 Combination of individuals

Once two individuals are selected, they can be combined to
obtain a descendant. The combination strategy must consider the
characteristics of sensor placement problem and the distance-
based metric to minimize. In this work, the combination
operation has been designed as illustrated by Algorithm 3.

The operation starts by extracting the two selected individuals
(with indices 𝒋𝑠𝑒𝑙) from the population 𝑷, achieving 𝑷 𝒋𝑠𝑒𝑙 ∈
R𝑛×2. This matrix is converted from its binary form to a node-
index matrix form using the function b2v(·), generating a new
matrix 𝑿𝑠𝑒𝑙 ∈ R𝑛𝑠×2 whose columns store the indices of
the 1-valued elements of the corresponding columns of 𝑷 𝒋𝑠𝑒𝑙 .
Matrix 𝑿𝑠𝑒𝑙 would be used to keep track of the sensors in
the predecessor individuals that have not yet being considered
during the combination process.

The first stage of the combination process checks if there
are common sensors to both individuals, which must be kept
considering that they help the individuals obtain a high score.
Thus, the elements of the descendant vector corresponding to
those sensors are provided a value of 1. Besides, the considered
sensors are removed from 𝑿𝑠𝑒𝑙 by the dellist(·,·) function, so that
they are not used during the next stage.

The second phase consists of an iterative process that generates
a new sensor location from two current locations, one from
each predecessor individual, repeating this process until the
new individual has 𝑛𝑠 sensors (note that the numel (·) returns the
number of elements in the case of vectors and the length in the
case of matrices). First, one of the predecessors is randomly



Algorithm 3: Combination of individuals
Data: 𝒋𝑠𝑒𝑙 ∈ R2, 𝑷 ∈ R𝑛×𝑛𝑖 , G = (V, E)
Result: 𝒑𝑛𝑒𝑤 ∈ R𝑛
𝑿𝑠𝑒𝑙 ← b2v(𝑷 𝒋𝑠𝑒𝑙 );
for 𝑖 ← 1 to 𝑛 do

if 𝑝𝑖 𝑗𝑠𝑒𝑙1
= 1 and 𝑝𝑖 𝑗𝑠𝑒𝑙2

= 1 then
𝑝𝑛𝑒𝑤
𝑖
← 1;

𝑿𝑠𝑒𝑙 ←dellist (𝑿𝑠𝑒𝑙 ,𝓋𝑖);
end

end
while numel

(
b2v( 𝒑𝑛𝑒𝑤)

)
< 𝑛𝑠 do

𝑟𝑟𝑜𝑤 ← randi
(
numel (𝑿𝑠𝑒𝑙)

)
;

𝑟𝑐𝑜𝑙 ← randi(2);
𝓋𝑜 ← 𝑥𝑠𝑒𝑙𝑟𝑟𝑜𝑤𝑟𝑐𝑜𝑙

;
𝑗 ← setdif ({1, 2}, 𝑟𝑐𝑜𝑙);
for 𝑖 ← 1 to numel (𝑿𝑠𝑒𝑙) do

𝑑
𝑠𝑝

𝑖
← f (G,𝓋𝑜,𝓋𝑥𝑠𝑒𝑙

𝑖 𝑗
);

end
𝑖∗ ← argmin(𝒅𝑠𝑝);
𝒄 ← argf (G,𝓋𝑜,𝓋𝑥𝑠𝑒𝑙

𝑖∗ 𝑗
);

𝓋
𝑛𝑒𝑤 ← 𝑐round

(
numel (𝒄)/2

) ;
if 𝑝𝑛𝑒𝑤

𝓋𝑛𝑒𝑤 = 0 then
𝑝𝑛𝑒𝑤
𝓋𝑛𝑒𝑤 ← 1;

𝑿𝑠𝑒𝑙 ←dellist (𝑿𝑠𝑒𝑙 , {𝓋𝑜,𝓋𝑥𝑠𝑒𝑙
𝑖∗ 𝑗
});

end
end

selected, to then randomly choose a sensorized node from
the corresponding column of 𝑿𝑠𝑒𝑙 , achieving 𝓋𝑜 (the random
indices, i.e., 𝑟𝑟𝑜𝑤 and 𝑟𝑐𝑜𝑙 are achieved by means of the randi(·)
function, which generates a random natural number from 1 to the
input). The shortest-path distance from 𝓋𝑜 to the stored nodes
at the remaining column (denoted as 𝑗 and obtained using the
setdif (·, ·) function, which returns the values of the first entry
that are not present on the second one) are computed using
the function f(·, ·, ·) at Eq. (5). Then, the path from 𝓋𝑜 to the
closest node of the other column of 𝑿𝑠𝑒𝑙 , i.e., 𝓋𝑥𝑠𝑒𝑙

𝑖∗ 𝑗
(𝑥𝑠𝑒𝑙

𝑖∗ 𝑗 is

the component of 𝑋𝑠𝑒𝑙 from row 𝑖∗ and column 𝑗), is obtained.
Note that argmin(·) returns the index of the minimum value
of the input vector, and argf(·,·,·) provides the shortest path
corresponding to the shortest-path distance computed by f(·,·,·).
The new sensor location 𝓋𝑛𝑒𝑤 would be selected as the middle
node of the obtained path. However, 𝓋𝑛𝑒𝑤 is accepted, and thus
its corresponding origin nodes are deleted from 𝑿𝑠𝑒𝑙 , if and
only if 𝓋𝑛𝑒𝑤 was not already included in the new individual, to
avoid that 𝒑𝑛𝑒𝑤 ends up with less than 𝑛𝑠 sensors.

2.6 Mutation of individuals

The final operation that can be performed over a new individual
is the mutation. Again, this process must be adapted to meet the
requirements of the sensor placement problem. The mutation
function used in this work is represented in Algorithm 4.

Basically, a random sensorized node is deselected, and another
random not-metered node is selected as sensor location. Ad-
ditionally, the existence of user-defined sensors is considered,
preventing their deselection.

Algorithm 4: Mutation of an individual
Data: 𝒑𝑛𝑒𝑤 ∈ R𝑛, 𝒮𝑢𝑑

Result: 𝒑𝑛𝑒𝑤 ∈ R𝑛
𝒙𝑛𝑒𝑤 ← b2v( 𝒑𝑛𝑒𝑤);
𝒙𝑑𝑖 𝑓 ← setdif ({1, 2, ..., 𝑛}, 𝒙𝑛𝑒𝑤);
𝑟 ← randi(𝑛𝑠);
𝑟𝑑 ← randi

(
numel (𝒙𝑑𝑖 𝑓 )

)
;

while 𝑥𝑛𝑒𝑤𝑟 ∈ 𝒮𝑢𝑑 do
𝑟 ← randi(𝑛𝑠);

end
𝑝𝑛𝑒𝑤
𝑥𝑛𝑒𝑤𝑟
← 0;

𝑝𝑛𝑒𝑤
𝑥
𝑑𝑖 𝑓
𝑟𝑑

← 1;

2.7 Preliminary convergence

The preliminary convergence is achieved once one of the
following two events has occurred:

(1) All the individuals of the population are equal, and the
solution is a local optimal.

(2) The individuals are different, but they have remained the
same for a defined number of iterations.

These events would raise the mutation probability 𝑝, thus
increasing the probability of generation of new individuals (the
preliminary conv. counter 𝑐𝑛𝑡𝑝 is also incremented). If the
preliminary convergence gets disrupted, both 𝑝 and 𝑐𝑛𝑡𝑝 are
set to their initial values. However, if this state holds, there are
two thresholds that trigger extra measures depending on 𝑐𝑛𝑡𝑝:

i. First, if 𝑐𝑛𝑡𝑝 = 𝑡ℎ𝑟1, NS-IC is applied to the population
to rapidly generate a better set of individuals, if possible.
This measure is especially useful for the second case
of preliminary convergence (the most common), as each
individual could produce a different outcome.

ii. Second, if the counter reaches 𝑡ℎ𝑟2, the PDI-P is used.
This aggressive measure maintains the best individual and
substitutes the rest of individuals of the population by new
random individuals (NS-IC is again executed).

2.8 Final convergence

The use of GAs does not guarantee to achieve a globally optimal
solution. Thus, a mechanism to stop the operation, after some
conditions are met, is necessary. In this work, two stopping
criteria have been selected:

(1) The 𝑐𝑛𝑡𝑝 counter surpasses 𝑡ℎ𝑟2 a certain number of times.
(2) The amount of GA iterations exceeds an user-defined limit.

Nevertheless, different criteria may be defined by the user
depending on their requirements or implementations.

2.9 NS-IC

An iterative clustering scheme has been devised to complement
the GA-based approach by enhancing incoming individuals,
considering the proximity from the their encoded sensors to the
network nodes. The NS-IC method is described in Algorithm 5.

At each iteration, NS-IC starts computing the score of the
input/current individual by means of the evaluation function,
i.e., evalfunc (·) (described in Section 2.4, and considering the
distance metric in Eq. 6); to then calculate the closest sensor to



Algorithm 5: NS-IC
Data: 𝒑𝑖𝑛 ∈ R𝑛,𝑫 ∈ R𝑛×𝑛,𝒮𝑢𝑑

Result: 𝒑𝑜𝑢𝑡 ∈ R𝑛
𝒏𝑖𝑛 ← b2v( 𝒑𝑖𝑛);
𝑓 𝑐𝑜𝑛𝑣 ← 0;
while 𝑓 𝑐𝑜𝑛𝑣 = 0 do

𝑣𝑖𝑛 ← evalfunc ( 𝒑𝑖𝑛, 𝑫);
𝒔𝑛𝑒𝑎𝑟 ← argmincol (𝑫 (:, 𝒑𝑖𝑛));
for 𝑖 ← 1 to 𝑛𝑠 do

if 𝑛𝑖𝑛
𝑖

∉ 𝒮𝑢𝑑 then
𝒞

𝑖 ← { 𝑗 ∈ N|𝑠𝑛𝑒𝑎𝑟
𝑗

= 𝑖};
𝑗𝑐𝑒𝑛𝑡 ← argminorig

(
maxcol (𝑫𝒞𝑖 )

)
;

𝑝𝑜𝑢𝑡
𝑗𝑐𝑒𝑛𝑡
← 1;

else
𝑝𝑜𝑢𝑡
𝑛𝑖𝑛
𝑖

← 1;
end

end
𝒗𝑜𝑢𝑡 ← evalfunc ( 𝒑𝑜𝑢𝑡 , 𝑫);
if 𝒑𝑜𝑢𝑡 = 𝒑𝑖𝑛 or 𝒗𝑜𝑢𝑡 > 𝒗𝑖𝑛 then

𝑓 𝑐𝑜𝑛𝑣 ← 1;
else

𝒑𝑖𝑛 ← 𝒑𝑜𝑢𝑡 ;
end

end

every node of the network (note that argmincol (·) is analogue
to mincol (·) from Section 2.4, but returning the index of the
minimum value). Thus, for each sensor 𝑖, the nodes whose
nearest sensor is 𝑖 are grouped into a cluster (set of nodes).
Then, the node whose maximum distance to any other node
of the cluster is minimum is calculated, setting this node as
the new sensor associated to the cluster (note that argminorig (·)
operates like argmin(·), explained in Section 2.5, but returning
the index in terms of the original set of nodes, i.e., the complete
set of nodes of the network). The computation must consider
user-defined sensors to maintain them. In this way, the output
individual is generated, the output score is computed and the
convergence is evaluated, considering two stopping criteria:
input and output individuals are equal, or the score is not
improved.

3. CASE STUDY

In this work, the L-TOWN benchmark has been considered as a
case study to assess the performance of the methodology, due to
its open-access availability and its use by several research groups
in the BattLeDIM2020 (Vrachimis et al., 2020) competition. A
diagram of the complete network can be found in Figure 2.

The network is divided into three zones depending on the
elevation of the nodes: Area B for nodes below 16 meters, Area
A for nodes between 16 and 48 meters and Area C for nodes
above 48 meters. Besides, there are two reservoirs feeding the
network with water through Area A, as well as a tank that stores
incoming water and supplies it to Area C (Areas A and B are
separated by a pressure regulation valve - PRV).

In order to assess the suitability of the proposed method, the
set of sensors obtained from its application in L-TOWN is
compared to the original set of sensors from BattLeDIM2020,
placed by the organizers by means of a method that maximized
the collective sensitivity of the sensors to any possible leak.

Fig. 2. Schematic representation of L-TOWN.

However, the comparison of performance is hindered by the
differences in hydraulic behaviour among the different Areas
(due to the tank and PRV operation) and the minimal number of
pressure sensors at Areas B (1) and C (3). Thus, the comparison
is considered for Area A, where 29 original sensors are placed.

The set of original sensors, 𝒮𝑜𝑟𝑖𝑔, as well as the set of GA-
generated sensors, 𝒮𝐺𝐴, are located over Area A in Fig. 3.
The GA-generated sensors are obtained with 𝑛𝑠 = 29, 𝑛𝑖 = 5
individuals, 𝑝 = 0.1, 𝑡ℎ𝑟1 = 70 and 𝑡ℎ𝑟2 = 100.

Fig. 3. Sensor locations over Area A.

4. RESULTS

The comparison between𝒮𝑜𝑟𝑖𝑔 and𝒮𝐺𝐴 is performed by means
of an assessment of the leak localization results yielded by both
sensor configurations, considering a common leak localization
method. In this work, the data-driven approach explained in
Romero et al. (2021) is selected to perform this task.

The BattLeDIM2020 challenge provided hydraulic measure-
ments datasets containing several leaks. However, they can not
be used for the comparison because the pressure measurements
are only supplied for 𝒮𝑜𝑟𝑖𝑔. Thus, a subset of leaks from the
2019 dataset is selected to be scattered throughout Area A
and replicated by EPANET (Rossman, 2000) simulations to



retrieve the pressure at all the nodes. Their location over Area
A is represented in Fig. 3. Note that several factors have been
considered during the dataset generation:

• The peak leak sizes are kept from the original dataset,
but the leaks are considered to be constant. Each leak is
simulated for 24 hours, with a time-step of 5 minutes.
• A 5% uncertainty is applied over pipe diameters and

roughness, whereas a 1% is applied to the demand patterns.
Moreover, the sensors precision is limited to ±0.01 m,
which is also considered in the original dataset.
• The leak localization method selects nodes as potential

leak origins, so the generated dataset locates each leak at
one of the connected nodes by the corresponding leaky
pipe from the original dataset.

Leak localization results for both sensor placement solutions are
presented in Table 1, using the following metrics:

• Lorig and Lgen: they respectively encode the pipe where the
leak appeared in the original dataset and the selected node
to represent that leak on the generated EPANET dataset.
• 𝑑𝑖𝑠𝑡𝑙𝑒𝑎𝑘 : it corresponds to the pipe distance in meters from

the leak to the best candidate (shortest-path).
• 𝑛𝑛𝑜𝑑𝑒𝑠𝑙𝑒𝑎𝑘 : it shows the pipe distance in number of nodes

between the leak to the best candidate (shortest-path).

Table 1. Leak localization performance results

Lorig Lgen
𝑑𝑖𝑠𝑡𝑙𝑒𝑎𝑘 𝑛𝑛𝑜𝑑𝑒𝑠𝑙𝑒𝑎𝑘

𝒮𝑜𝑟𝑖𝑔 𝒮𝐺𝐴 𝒮𝑜𝑟𝑖𝑔 𝒮𝐺𝐴

p123 n155 159.55 177.21 2 3
p586 n165 220.35 285.27 3 6
p142 n192 440.45 140.22 8 3
p193 n326 483.06 85.64 10 1
p331 n398 418.01 202.34 7 3
p514 n517 233.09 415.97 3 8
p523 n523 107.57 413.75 1 7
p653 n608 368.99 415.29 7 8
p710 n648 222.31 205.41 3 3
p721 n655 312.75 255.00 5 5
p762 n683 268.52 295.73 6 6
p800 n708 94.45 114.32 1 2
p827 n731 152.48 292.61 2 5

Mean 267.81 253.75 4.46 4.61
Max 483.06 415.97 10 8
Min 94.45 85.64 1 1

Several upshots can be extracted from the presented results:

i. Both𝒮𝐺𝐴 and𝒮𝑜𝑟𝑖𝑔 produce similar results (a difference of
14.06 meters/0.15 nodes) considering the average values.
However, the maximum and minimum values are lower for
𝒮𝐺𝐴. Thus, the usage of the proposed sensor placement
methodology would improve the localization, with the
additional advantage of being model-free.

ii. Focusing on each specific result, and considering the
leak map at Fig. 3, it can be appreciated how the worst
localization indices for each sensor configuration come
from leaks at distant nodes to the corresponding set of
sensors. This justifies the proposal of a distance-based
metric in the evaluation function.

5. CONCLUSIONS

This article presents a model-free sensor placement method-
ology for WDNs based on an GA-optimization scheme. The
individuals are binary vectors encoding the sensor locations, and

the processes of the GA-scheme are customized for the sensor
placement problem. The algorithm pursues the minimization
of a distance-based metric. An iterative clustering technique,
NS-IC, is devised to rapidly enhance incoming individuals.

The approach is applied over a well-known case study, L-TOWN
from the BattLeDIM2020 challenge, comparing the sensor
placement from the competition with a sensors set generated
using the proposed method. The comparison is carried out by
means of the leak localization performance of a selected method
using each corresponding sensor configuration. The results show
that the generated sensors set slightly improves the performance
of the original set, with the advantage of its model-free origin.

Thus, the method is highly interesting for water utilities due
to their growing interest on data-driven leak management
approaches. Moreover, the evaluation function allows the user
to define the aim to be sought by the sensor placement process,
allowing to customize the solution to the needs of the user.
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