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Resum 

L'ús del Automated Fiber Placement està estenent-se en la indústria aeroespacial. La 

necessitat de fabricar components estructurals compostos grans i complexes, fa que l'ús 

d'aquesta tecnologia sigui molt més eficient que la fabricació convencional amb 

col·locació manual. No obstant això, aquests components encara s'estan inspeccionant 

manualment i es calcula l'efecte dels defectes trobats amb software de simulació. 

L'abast d'aquesta tesi és crear un model de Machine Lerning que sigui capaç de calcular 

l'efecte en la rigidesa efectiva per diferents configuracions de defectes. Aquest model 

d'aprenentatge automàtic hauria de rebre les característiques geomètriques dels defectes 

en el laminat i de ser capaç de predir, amb un alt nivell de precisió, la rigidesa efectiva 

del laminat. Entrenar aquest model amb una gran quantitat de configuracions de defectes 

diferents genera la necessitat de crear un model FE parametritzat d'una laminació 

composta en el nivell de cupó. 

Els resultats mostren que una arquitectura de Multilayer Perceptron amb dues hidden 

layers. La primera amb 281 nodes i la segona amb 76 nodes, és capaç de predir la rigidesa 

efectiva d'un laminat defectuós amb una precisió de 0,1 GPa. 
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Resumen 

El uso del Automated Fiber Placement se está expandiendo en la industria aeroespacial. 

La necesidad de fabricar grandes y complejos componentes estructurales de materiales 

compuestos, hace que el uso de esta tecnología sea mucho más eficiente que la fabricación 

manual convencional. Sin embargo, estos componentes siguen siendo inspeccionados 

manualmente y se calcula el efecto de los defectos encontrados con un software de 

simulación. 

El objetivo de esta tesis es crear un modelo de Machine Learning que sea capaz de 

calcular el efecto sobre la rigidez efectiva para diferentes configuraciones de defectos. A 

este modelo de aprendizaje automático se le deben proporcionar las características 

geométricas del defecto en el laminado y tiene que ser capaz de predecir, con un alto nivel 

de precisión, la rigidez efectiva del laminado. El entrenamiento de este modelo se debe 

de realizar con una gran cantidad de configuraciones de defectos diferentes. Este hecho 

genera la necesidad de crear un modelo de elementos finitos parametrizado de un 

laminado a nivel de cupón. 

Los resultados muestran que una arquitectura Multilayer Perceptron con dos hidden 

layers. La primera con 281 nodos y la segunda con 76 nodos que es capaz de predecir la 

rigidez efectiva de un coupon laminado defectuoso con una precisión de 0,1 GPa. 
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Abstract 

The use of Automated Fiber Placement is being widespread in the aerospace industry. 

The need of manufacturing large and complex structural composite components, it makes 

the use of this technology much more efficient than the conventional hand lay-up 

manufacturing. However, these components are still being manually inspected and the 

effect of the defects found is calculated with a simulation software. 

The scope of this thesis is to create a Machine Learning model that is able to calculate the 

effect on the effective stiffness for different defect configuration. This Machine Learning 

model should be provided with the geometrical defect characteristics in the laminate and 

it has to be able to predict, with a high level of accuracy, the effective stiffness of the 

laminate. Training this model with a big amount of different configuration defects 

generates the need to create a parametrized FE model of a composite laminate on the 

coupon level. 

The results show that a Multi Layer Perceptron architecture with two hidden layers. The 

first one with 281 nodes and the second one with 76 nodes which is able to predict the 

effective stiffness of a defective laminate coupon with an accuracy of 0,1 GPa. 
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Nomenclature 

Formelzeichen Units Description 

𝑨 [𝒎𝒎²] Cross section 

[𝑨] [𝑵/𝒎𝒎] Extensional stiffness matrix 

𝒃 [−] Bias term in the ANN 

𝑬𝟏𝟏 [𝑴𝑷𝒂] Stiffness in longitudinal direction 

𝑬𝟐𝟐 [𝑴𝑷𝒂] Stiffness in transversal direction 

𝑮𝟏𝟐 [𝑴𝑷𝒂] Shear modulus 

𝒉𝒎𝒊𝒅𝒅𝒍𝒆−𝒃𝒐𝒕𝒕𝒐𝒎 [𝒎𝒎] Distance between the middle and bottom shells 

𝒉𝒕𝒐𝒑−𝒎𝒊𝒅𝒅𝒍𝒆 [𝒎𝒎] Distance between the top and middle shells 

𝒍 [𝒎𝒎] Length of the laminate 

[𝑸] [𝑴𝑷𝒂] Reduced stiffness matrix 

𝑹𝑭𝟏 [𝑵] Reaction force in longitudinal direction 

𝒕 [𝒎𝒎] Ply thickness 

𝒕𝒅𝒆𝒇𝒆𝒄𝒕 [𝒎𝒎] Thickness of the defective ply 

𝒗𝟏𝟐 [−] Poisson‘s ratio 

𝒘𝒊 [−] Weights of the ANN 

𝝈𝒆𝒇𝒇,𝟏𝟏 [𝑴𝑷𝒂] Effective stress in longitudinal direction 
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Abbreviations 

Abreviation Description 

AFP Automatic fiber placement 

AI Artificial Intelligence 

ANN Artificial neural network 

CFRP Carbon fibre reinforced plastic 

CLT Clasic laminate theorie 

FEA Finite element analysis 

FEM Finite element method 

ML Machine Learning 

MLP Multi Layer Perceptron 

ReLU Rectified Linear Unit 

RMSE Root mean squared error 

RVE Representative volume element 
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1 Introduction and motivation 

Nowadays the use of carbon fiber reinforced plastic (CFRP) in the manufacturing of 

structural components has become more prominent. An example of this extended use can 

be found in the structure of commercial airplanes which consists at least of 50% CFRP 

[2]. Therefore, traditional materials like wood, aluminum or steel are losing their use in 

favor of composite materials that have better specific strength and modulus. In this 

context, the Automated Fiber Placement (AFP) method is developed in order to 

manufacture carbon fiber structural components. The use of this method is widespread in 

the aerospace industry, where large and complex components make hand lay-up 

manufacturing very time consuming or impractical [3]. The process consists in computer-

controlled placement of pre-impregnated fiber tapes (prepreg) on the surface of a mold. 

During the placement process some defects may occur, such as an empty space (gaps) or 

superposition (overlap) between consecutive prepreg tapes. These defects led to fiber 

waviness in the composite layup and consequently to a reduction of its mechanical 

properties and load carrying capacity which can be critical in the component stability and 

compromise the safety requirements [4].  

Since mechanical testing of the defective lay-ups, taking into account all the possible 

defect configurations is impossible, Finite Element (FE) models can be created in order 

to decrease this effort on mechanical testing. The problem is that the preparation and 

computation of the model is still very time consuming. In this context, the present project 

objective is to create a machine learning model that is using all the data from Finite 

Element Analysis in order to approximate the effect of a certain defect on the laminate 

mechanical properties. This can facilitate the evaluation of the defects effect in the 

laminate without using an FEA model, which it will save a lot of computational time. 

The machine learning model has to be trained with data that will be generated via 

ABAQUS with Finite Element Analysis (FEA). For this purpose, a FE model consisting 

in a tensile of a composite laminate coupon is created in the laminate, a defect is 



2    Introduction and motivation 

 

 

introduced in one of the plies and the longitudinal stiffness is calculated. In order to do 

that it is required a parametrized Finite Element Model, this model has to be simple 

enough to avoid excessive long computational times to generate each one of the samples, 

but accurate enough to capture the effects of the defective plies in the laminate. Instead 

of using solid 3D elements like Daniel Del Rossi in [4], a shell model will be created in 

order to simplify the geometry and reduce the number of nodes, only one defect in the 

laminate will be considered. These simplifications will reduce drastically the 

computational time, which will make the data generation more efficient. The model has 

to be verified comparing the mechanical properties of the Finite Element Model with the 

real values obtained via analytical calculations or experimental results. Once the model 

is verified, the parametrized model will be added in a loop where the input parameters 

will be changed, and the output calculated at each iteration. 

Before generating the data, the number of generated samples has to be chosen. Since the 

amount of data needed to train the model depends on the model used, an initial guess of 

samples will be set. Then using the learning curves (accuracy vs number of samples) the 

need to generate more data will be evaluated. After the data is generated, the data will be 

split into two sets: one for training and the other for test. A pre-processing of the data will 

be needed in order to obtain an enhanced performance of the machine learning algorithms. 

With the processed data, some machine learning algorithms will be trained, and its 

performance optimized by selecting the adequate value of the parameters for each of 

them. Feature selection may be also required to avoid overfitting. Once all the models are 

trained its performance will be tested using the test dataset. The model with the best 

performance has to be chosen. It is also important to understand and evaluate the model 

in order to predict the knock-down-factor of a laminate with a certain defect. 
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2 Fundamentals 

2.1 Composite materials 

Composite materials are described as a material that is made with the combination of two 

or more materials, which are physically and chemically differentiable and mechanically 

separable. The resultant material has better mechanical properties than the simple sum of 

the properties of its components. In almost every cases the composite materials are made 

of fibers, which confer the strength to the laminate and resin, as well as holding all the 

fibers together. Since the fibers are just able to carry loads in one direction, the load 

carrying capacity of a ply depends on the fiber orientation. A composite part consists of 

a stacking of layers (plies) with different fiber orientations which are consolidated 

together in one piece during manufacturing [4]. 

In order to validate the results obtained with the finite element simulation the classic 

laminate theory (CLT) will be used as an analytical approach. CLT is a method used to 

calculate the stress and strain distribution in the laminate depending on its material 

properties and stacking sequence [5].  This theory is used prior to more advanced 

mathematical models to get an approximation of the strength, stiffness, and thickness of 

the laminate [5]. To calculate the effective stiffness of the laminate, the reduced stiffness 

matrix 𝑄𝑖𝑗 for each material used in the laminate need has to be calculated following the 

equations (2-2) and (2-3). With this matrix, the elastic behaviour of the ply in plane 

loading is described.  

 𝑄𝑖𝑗 = [
𝑄11 𝑄12 0
𝑄21 𝑄22 0

0 0 𝑄66

] (2-1) 
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 𝑄11 =
𝐸11

2

(𝐸11 − 𝑣12 ∙ 𝐸22)
 ;  𝑄12 =

𝑣12 ∙ 𝐸11 ∙ 𝐸22

(𝐸11 − 𝑣12
2 ∙ 𝐸22)

 (2-2) 

 𝑄12 =
𝐸11 ∙ 𝐸22

(𝐸11 − 𝑣12
2 ∙ 𝐸22)

 ;  𝑄66 = 𝐺12 (2-3) 

Then the transformed reduced stiffness matrix has to be calculated, taking into account 

the fiber orientation, as it can be seen in equation (2-3). 

 [𝑄]𝑓𝑜 = [𝑇]−1 ∙ [𝑄] ; 𝑤ℎ𝑒𝑟𝑒 [𝑇] = [
𝑐2 𝑠2 2𝑠𝑐
𝑠2 𝑐2 −2𝑠𝑐

−𝑠𝑐 𝑠𝑐 𝑐2 − 𝑠2

]  (2-4) 

The terms c and s refer to the sine and cosine of the fiber orientation angle. After 

calculating the transformed reduced stiffness matrix, the A matrix can be calculated using 

equation (2-5). 

 𝐴𝑖𝑗 = ∑[𝑄]𝑓𝑜,𝑘 ∙ (𝑧𝑘 − 𝑧𝑘−1)

𝑛

𝑘=1

 (2-5) 

The 𝑧𝑘 terms are the distance of the upper and lower ply surface to the half plane in the 

laminate thickness, as it is shown in Fig 2-1. 

 

Fig 2-1 Schematic represtantation of the half plane distances [6] 

Once the A matrix is calculated, following the guidelines of [6] the effective stiffness on 

the longitudinal direction of the laminate can be calculated using equation (2-6). 
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 𝐸11,   𝑒𝑓𝑓 =
1

ℎ
(𝐴11 −

𝐴12
2

𝐴22
) (2-6) 

Where h is the laminate thickness. 

2.2 Automatic fiber placement (AFP) 

In its beginnings, the manufacture of carbon fiber elements was done using partially cured 

epoxy resin prepreg material sheets that were placed on a large table. The prepreg sheet 

pieces were then cut out and placed on top of each other in a mold to make a laminate. 

The current rates of demand have generated that carbon fiber part manufacturing has had 

to move away from its more artisanal side to start finding efficient and reliable ways of 

automation. AFP technology is a process that uses computer-guided robotics to place one 

or more layers of resin-impregnated continuous fiber tape over a mold to create a part or 

structure. This technology reduces the cycle time cost for large parts, the manufacturing 

of flat or curved parts and one-off structures can be easily done and as a result it increases 

accuracy, repeatability and quality. 

There are several manufacturing techniques for composite parts, all of them start with 

either dry fibers or with pre-impregnated fibers. With dry fibers the resin is introduced 

after all the plies are placed on the mold, while pre-impregnated fibers are already coated 

with resin and are placed ply by ply on the mold. After all plies are placed a curing process 

consolidates all the layers in one solid. If the placing of the fibers is done by hand, then 

it’s called hand layup. This can also be done with a machine, which is the case of 

automated fiber placement (AFP).  

 The AFP machine is divided in three parts: 

- Motion components, which allow the motion of the machine 

- Machine head, which handles the layup process  
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- Tool support, which is the support of the part mold 

The AFP process is essentially based on a mechanical-chemical bonding reaction. It 

consists in the automated placing of narrow stripes of prepreg material (tows) in such a 

way that a surface is covered by multiple layers of CFRP material. First of all, the tape 

feed unit, which is composed of directional rollers, delivers the tows at the top of the fiber 

placement head with tension. Since the placement head Fig 2-2 can just place a limited 

number of tows, the layer has to be laid up step by step. Then the cutting unit ensures the 

cut of the tows at the right time to obtain the needed layup. Before the tow is placed on 

the mold surface or on the previous ply the heating source ensures that the temperature of 

the tow surface is high enough to guarantee a correct adherence. After that, the 

compaction roller presses the tow onto the surface of the previous ply, this process ensures 

the elimination of the trapped air and inner gaps and the quick adherence of the tow [2]. 

The correct placement of the tow depends on the process parameters speed, temperature 

and roller pressure. If these parameters are not well adjusted during the placement process 

of the tows multiple defects may occur. This is the case of gaps and overlaps, which take 

place between two consecutive tows or when multiple tows are placed at a time between 

courses. On the one side, if the tows are superposed which is the case of an overlap and 

on the other side, if an empty space between the tows is left which is the case of a gap, as 

it can be seen in Fig 2-3. These defects can weaken the structure and can compromise the 

component stability. To quantify the effect on the mechanical strength of the defects 

mechanical tests can be done [4]. 

 

 

Fig 2-2: Automated fiber placement head. [1] 



Fundamentals 7 

 

 

 

Fig 2-3: Schematic representation of gaps an overlaps. [1] 

2.3 Finite Element Method (FEM) 

When classifying structures, they are usually divided into discrete or reticular structures 

and continuous structures. The first ones are those which are made up of an assembly of 

elements clearly differentiated from each other and joined at specific points. The 

fundamental characteristic of discrete structures is that their deformation can be defined 

exactly by means of a finite number of parameters, such as the deformations of the 

junction points of some elements and others. In this way the equilibrium of the whole 

structure can be represented by the equations of equilibrium in the directions of these 

deformations [7]. 

On the other hand, in continuous systems it is not possible to separate, a priori, the system 

into a finite number of discrete structural elements. If any part of the system is taken, the 

number of junction points between that part and the rest of the structure is infinite, and it 

is therefore impossible to use the same method as in discrete systems [7].  

A continuous medium has infinitely many possible ways of deforming, independent of 

each other, since each point can be displaced while keeping any finite number of the 

remaining points fixed. That’s the reason why it is only possible to obtain analytical 

solutions for systems with very simple geometry and/or simple boundary conditions. 

To solve this problem, the Finite Element Method is used, which is based on [8]: 

• Transforming a body of continuous nature in an approximate discrete model, this 

transformation is called element discretization of the model.  
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• Approximating the variables of the problem in each element by combinations of 

functions defined in the nodes (junction points between adjacent elements), thus 

reducing the variables to a determined and finite number of points. This is known 

as mathematical discretization. 

To perform this operations FE software can be used, which have the following framework 

[7]: 

• Pre-processing: Includes geometry definition, material selection, mesh generation 

and application of loads and model boundary conditions. 

• Calculator: This is the part of the program that performs the entire FEM 

calculation and generates the solutions. 

• Post-processing: provides a visual representation of the results and allows a 

simple interpretation of the results. 

In creating a FEM model, one must strive for accuracy and computational efficiency. In 

most cases, the use of a complex model is likely to generate greater computational 

accuracy at the expense of an unnecessary increase in processing time. For this reason, 

the understanding of the system behaviour it’s crucial during the pre-processing, since 

the model is discretized into a finite amount of elements. The element shape, dimensions 

and the quantity will define the accuracy of the FEA. 

The elements used in the model discretization depend on its geometrical complexity. This 

elements can be classified in three groups [9], see in Fig 2-4:  

• Linear (1-D) elements: These elements are characterized by having one dimension 

much larger than the other two. The length is defined with the junction of 2 nodes 

with a line, while the other dimensions are defined by assigning a cross section to 

the line. Linear elements may be subjected to transverse loads and/or bending 

moments in addition to tension and compression. Since there is just one element 

across the cross section there is a significant reduction of meshing effort and 

computational time compared with 2-D and 3-D elements [9], [10]. 

• Shell (2-D) elements: These elements are characterized by having two dimensions 

much larger than the third one. The first two dimensions are defined with a surface 

(which can be triangular or quadrilateral), while the third dimension is defined by 

assigning the thickness to it. Shell elements may be suitable for models subjected 
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to plane stress and plane deformation. It has advantages like 1-D elements in terms 

of less modeling efforts and faster simulation compared to 3D Elements, but it has 

some limitations when the model has irregular surfaces with different features on 

two sides [10]. 

• Solid (3-D) elements: All the dimensions are comparable. They can be used to 

model three-dimensional structures. They can provide information about the 

three-dimensional variation of the stresses and strains of the element [10]. 

 

Fig 2-4: 1-D, 2-D and 3-D element representation [11] 

2.4 Machine learning 

2.4.1 Introduction 

Machine Learning is a field of Artificial Intelligence (AI) that enables the computer to 

learn and improve its performance without being explicitly programmed. The term 

Machine Learning (ML) refers to the automated detection of meaningful patterns in data. 

In the last few years, the use of ML to extract information from large data sets it has 

become one of the most popular tools. Nowadays, machine learning based technology 

can be found everywhere: search engines learn how to bring us the best results, e-

commerce and entertainment companies to recommend the most suitable products, anti-

spam software learns to filter our email messages. Face detection in digital cameras and 

speech recognition which allows intelligent personal assistance applications on smart-
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phones to follow voice instructions. Cars are equipped with accident prevention systems 

that are built using machine learning algorithms. Machine learning is also widely used in 

scientific applications such as disease diagnosis in medical science and telescope image 

clearing in astronomy [12]. 

2.4.2 Methods 

Machine Learning methods are divided in two categories depending on whether the 

output values are required to be present in the training data or not: 

Unsupervised learning techniques require only the input feature values in the training data 

and the learning algorithm discovers hidden patterns or data groupings in the training data 

based on its implicitness. Unsupervised learning models are used for three main tasks: 

clustering, association and dimensionality reduction. Clustering techniques try to 

partition the data into coherent groups based on the similarities or differences, it can be 

used for categorization of articles according to their topics. Association is a rule-based 

method that finds relationships between variables in the dataset, these are frequently used 

for market basket analysis. Dimensionality reduction is a technique used when the number 

of features, or dimensions, of the dataset is too high. It reduces the number of data inputs 

to a manageable size trying to preserve the integrity of the dataset as much as possible 

[13]. 

Supervised learning methods require knowing the value of the output variable for each 

training sample. That’s why, each training sample has to be represented in the form of a 

pair of input and output values. The algorithm then trains a model adjusting its parameters 

and predicts the value of the output variables from the input variables. If the output 

variables have a continuous value, then the predictive model is called a regression 

function. For instance, predicting the price of a house given house features is a regression 

problem. If the output variable is a discrete then the predictive model is called a classifier. 

A typical classification problem is automated medical diagnosis for which a patient’s data 

needs to be classified as having a certain disease or not [13]. 
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2.4.3 Regression models 

The following are some of the most commonly used regression ML models: 

Multilinear Least squares regression: is a linear regression model with one dependent 

variable and more than one independent variables [14]. With the form: 

 𝑦 = 𝛽0 + 𝛽1 ∙ 𝑥1 + 𝛽2 ∙ 𝑥2 + ⋯ + 𝛽𝑛 ∙ 𝑥𝑛 (2-7) 

Where y is the dependent variable, 𝛽0, 𝛽1,…, 𝛽𝑛 are the regression coefficients and 𝑥1, 

𝑥2,…, 𝑥𝑛 are the independent variables. The algorithm fits the linear model with 

coefficients 𝛽 = 𝛽0, 𝛽1,…, 𝛽𝑛 to minimize the residual sum of squares between the 

observed targets in the dataset, and the targets predicted by the linear approximation [15]. 

 

Fig 2-5: Graphical representation of Least squares method. [16] 

Random Forest Regression: This model is a supervised learning algorithm that uses the 

ensemble learning method for regression, see architecture in Fig 2-6. As a short 

description, ensemble learning is a technique that averages the predictions of multiple 

machine learning algorithms to make a more accurate prediction than a single model. 

Thus, this approach works by creating and training several decision trees, predicting the 

output values of each decision tree in the model. The final output consists of the average 

of the different predicted values of all the decision trees. These decision trees are 

developed in parallel, avoiding any influence between them and using different parts of 

the training data set for each tree. The number of trees generated and its depth have to be 

well chosen in order to obtain good results [17]. 
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Fig 2-6 Random forest regression architecture [17] 

Artificial Neural Networks (ANNs): are computational models that consist of several 

processing elements that receive inputs and deliver outputs based on their predefined 

activation functions [18]. 

There are two main categories of network architecture depending on the type of the 

connections between the neurons. If there is no feedback from the outputs of the neurons 

towards the inputs throughout the network, the information is propagated in one direction. 

Then it is referred to a Feed Forward Neural Network (FFNN). Otherwise, when this 

feedback exists, the network is called a Recurrent Neural Network (RNN) [19]. 

 

Fig 2-7: Feed-forward and Recurrent neural networks representation. Source [20] 

One of the architectures of FFNN is the Multilayer Perceptron (MLP). MLP uses the work 

principle of the biological neurons, which are activated by electrical impulses from linked 

neurons and can transmit this activation state to further neurons [21]. The concept of an 

artificial neuron, at least consists on: 

• One or more inputs 
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• The neuron itself 

• An output 

Each entry is multiplied by a learnable weight parameter and after adding the bias 

parameter, a no-linear operation is performed by applying an activation function see in 

Fig 2-8. This leads to the following equation for the output y.  

 𝑦 = 𝜎 (∑ 𝑥𝑖𝑤𝑖 + 𝑏

𝑛

𝑖=1

) (2-8) 

With σ as the activation function, 𝑤𝑖 the weight parameters, 𝑥𝑖 as the input data, and 𝑏 as 

the bias. The activation function is chosen considering the type of the output, some 

examples can be Hyperbolic Tangent function, Rectified linear unit (ReLU) or Sigmoid 

function [16]. By choosing an activation function, its hyperparameter would have to be 

tuned in order to obtain the best possible accuracy on the predictions. The weights and 

biases, on the other hand, are optimized during the training process [22].  

 

Fig 2-8: Neuron representation [23] 

As an example of FFNN, Multilayer Perceptron (MLP) is an architecture, which consists 

in set of neurons organized in layers and connected to each other see in Fig 2-9. Three 

types of layers can be distinguished in MLPs:  
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• Input layer: Takes the data from the network. The number of nodes equals the 

number of inputs 

• Hidden layer/s: Receive the inputs or the outputs from previous hidden layers, and 

processes them. It is where the learning process will take place. The number of 

nodes of the hidden layer has to be adjusted in order to obtain the best predictions. 

• Output layer: will also process the information from the hidden layer and give the 

output. It can have one more nodes depending on how many parameters the model 

is predicting. 

 

Fig 2-9: Artificial neural network schematic representation 

On the one hand ANNs are particularly characterized by high accuracy with short 

inference time, also ANNs are insensitive to noise and have a good generalization. On the 

other hand, the long training time, a learning process that is difficult to interpret and the 

high number of hyperparameters, such as number of hidden layers and number of neurons 

in each one, are disadvantages [22]. 

2.4.4 Data pre-processing 

Machine learning has great potential to develop data-driven systems. Nevertheless, a 

great model doesn’t ensure good performance when data quality is not good enough. 

Polyzotis in [24] defined the main challenges of data management: Data understanding, 

data validation, data cleaning and data enrichment 
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- Data understanding: This process involves generating and visualizing salient 

features about the data, identifying any anomalies or outliers that exist in the data 

and recognizing implicit and explicit data dependencies. It is also important to 

encode the data into features that can be processed by the model.  

- Data validation: It has a crucial influence on the quality of the generated model. 

The notion of validity has several facets, including: ensuring that training data 

have the expected features, these features have the expected values, features are 

correlated as expected and serving data does not deviate from training data. 

- Data cleaning: Once a validation error is detected, the next logical step is to clean 

the data. This task can be split into three sequential subtasks: understanding where 

the error occurred, understanding the impact of the errors and fixing them. 

- Data Enrichment: it refers to the augmentation of the training data with new 

features in order to improve the quality of the generated model. A common form 

of enrichment is to join in a new data source in order to augment the existing 

features with new signals. Another form is using the same signals with different 

transformations, e.g., using a new embedding for text data. 

2.4.5 Training 

Once the data is preprocessed, the model has to be trained, there is a vast quantity of 

machine learning algorithms that can do the same task. The challenge is to find the model 

that adjusts the training data the best. To quantify this measure of the best the so-called 

loss function can be used, which it can be minimized with some optimization method. 

The loss function measures the accuracy of a model based on the training dataset, so the 

best model that it can be obtained is the model with the minimum loss. In regression 

problems, the most used loss functions are: 

- Mean squared loss (MSE or L2): is the mean of the squared difference between 

the predicted and the real value. Since the loss is squared, this loss function 

penalizes the model for large differences between the predicted and the real value. 

This means that the MSE error function is not robust against outliers, but its 

solution can be obtained analytically.  
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 𝑀𝑆𝐸 =
1

𝑁
∙ ∑(𝑦𝑖 𝑝𝑟𝑒𝑑 − 𝑦𝑖 𝑡𝑟𝑢𝑒)

2
𝑁

𝑖=1

 (2-9) 

- Mean absolute loss (MAE or L1): is the mean of the absolute value of difference 

between the predicted and the real value. This loss function is more robust against 

outliers than MSE, but its analytical solution can not be obtained and it is not 

differentiable at the origin. 

 𝑀𝐴𝐸 =
1

𝑁
∙ ∑|𝑦𝑖 𝑝𝑟𝑒𝑑 − 𝑦𝑖 𝑡𝑟𝑢𝑒|

𝑁

𝑖=1

 (2-10) 

- Huber Loss: Combines the strengths and weaknesses of L1 and L2 loss functions. 

It is defined as a combination of L1, for loss values larger that a predefined 

hyperparameter δ, and L2 loss function for loss values lower than δ. The resultant 

loss function is robust against the outliers and differentiable at the origin, but has 

more hyperparameters and its solution can not be analytically obtained. 

 𝐿 =
1

𝑁
∙ ∑ {

0.5 ∙ (𝑦𝑖 𝑝𝑟𝑒𝑑 − 𝑦𝑖 𝑡𝑟𝑢𝑒)
2

, 𝑓𝑜𝑟 |𝑦𝑖 𝑝𝑟𝑒𝑑 − 𝑦𝑖 𝑡𝑟𝑢𝑒| ≤ 𝛿

𝛿 ∙ |𝑦𝑖 𝑝𝑟𝑒𝑑 − 𝑦𝑖 𝑡𝑟𝑢𝑒| − 0.5 ∙ 𝛿2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁

𝑖=1

 (2-11) 

The training of machine learning model refers to the optimization of the parameters, 

which have to lead to a minimization of the error function [16]. So the goal of the training 

is to find the set of parameters 𝜃∗ = [𝑤1, 𝑤2, … 𝑤𝑛] for which the loss function is minimal. 

In order to achieve this goal an iterative method is used, that given an initial guess of the 

parameters generates a sequence such as:  

 𝜃𝑖+1 = 𝜃𝑖 + 𝛼 ∙ 𝑝𝑖 (2-12) 

The vector 𝑝𝑖 is the update direction, while the scalar parameter 𝛼 is the learning rate. 

One of the most used optimization method is the Gradient Descent. This method assumes 

that the update direction that minimizes the most the error is equal to the negative gradient 

direction [16]. The update rule has the following form: 
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 𝜃𝑖+1 = 𝜃𝑖 − 𝛼 ∙ ∇𝐸(𝜃𝑖) (2-13) 

The learning rate value 𝛼 has to be set small enough to not have a slow convergence and 

not too large to avoid oscillations on the parameters. 

This method is especially efficient for convex error functions, but in the case of neural 

networks, the error is generally far from being convex. In this context some optimization 

methods are developed to overcome the problems of the gradient descent method and 

make optimization more efficient: 

• Gradient descent with momentum: Uses the past gradients as well as the current 

ones to define the update direction as the sum of exponentially weighted past 

gradients, giving more relevance to more recent gradients [16]. 

• RMSProp: extends the gradient descent with momentum method by adding a 

scaling factor of the learning rate, which makes that each component have a 

different effective learning rate [16]. 

• Adam: Combines the heuristics of RMSProp and gradient descent with 

momentum method [16]. 

To compute the gradients of the error function and update the parameters of the NN the 

backpropagation method is used. The backpropagation algorithm works by computing 

the gradient of the loss function with respect to each weight by the chain rule, computing 

the gradient one layer at a time, iterating backward from the last layer to avoid redundant 

calculations of intermediate terms in the chain rule [25]. 

2.4.6 Validation 

In order to choose the most suitable model, it is mandatory that the model after the training 

stage is able to give good predictions for unseen inputs, then it can be said that the model 

generalizes well. In the figure Fig 2-10 it can be seen a regression machine learning model 

with three different polynomial function. After the training the left model is not flexible 

enough to capture the relevant relations between the input and the output, which is the so 

called underfitting. On the right side there is a case of overfitting, where the algorithm is 
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trying to model the random noise, irrelevant features become too important and there is a 

failure of generalization between data points. 

 

Fig 2-10: Examples of over- and underfitting. [16] 

Since it is difficult to judge overfitting in high dimensional spaces, a standard method is 

to separate the data into training and test data. This will allow to calculate the test data 

loss which can help to judge overfitting, as it can be seen in the figure below. 

 

Fig 2-11: Variation of the test and training error depending on the model 
complexity. [16] 

In case of having a small dataset, it can be possible that by removing a part of the training 

data, the model can not be trained sufficiently well. In this situation k-Fold Cross-

Validation can be used, this technique consists in splitting the data in k subsets “folds” of 

roughly equal size. Use k-1 subsets as training data and compute the expected loss with 

the remaining one as test data. By repeating the process k times an average error can be 

calculated and the variance of the estimation error is an indicator for model stability. 
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Fig 2-12: K-fold cross validation schematic [16] 

Other metrics to evaluate the accuracy of the model can be the MAE explained in page 

15, the Root mean squared error (RMSE), and R2 score. 

• RMSE: It shows how far predictions are from measured true values using 

Euclidean distance. 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∙ ∑(𝑦𝑖 𝑝𝑟𝑒𝑑 − 𝑦𝑖 𝑡𝑟𝑢𝑒)

2
𝑁

𝑖=1

 (2-14) 

• R2 score: It shows the proportion of the variation in the dependent variable that 

can be predicted from the independent variable(s) [26]. 

 𝑅2 = 1 −
∑ (𝑦𝑖 𝑝𝑟𝑒𝑑 − 𝑦𝑖 𝑡𝑟𝑢𝑒)

2𝑁
𝑖=1

∑ (𝑦𝑖 𝑡𝑟𝑢𝑒 − 𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑢𝑒)
2𝑁

𝑖=1

 (2-15) 

Also, machine learning models can be used as a substitute of time-consuming and 

expensive finite element analysis. Once trained, the machine learning model is able to 

predict the output of the process without relying into the finite element analysis. This 

characteristic allows to run the calculations much faster, but one of the main problems is 

data acquisition and the amount of that required to train the model, which can take a lot 

of simulation time. 
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3 State of art 

3.1 FEM models for AFP defects 

Although the mechanical properties, like Young modulus, are obtained through 

mechanical testing, not every defect configuration can be tested. That’s why the creation 

of a finite element model, which can simulate laminates with gaps and overlaps, it’s 

beneficial. FEA can reduce the costs of iterating in these defective laminates FE models 

before prototyping and testing, but its results are approximated.  Li et. al.  carried out a 

study where the effects of gaps and overlaps are studied [1]. The study consists of a 3D 

finite element model with an adaptive mesh, which reflects the change of thickness that 

the defect generates into the laminate.  

 

Fig 3-1: Mesh adaptation to the change of thickness. [1] 

To investigate the features of gaps and overlaps, trial specimens using IM7/8552 pre-preg 

with layup [45, 90, -45, 0]3s, each of the plies is 0.25 mm thick. Two-millimeter gaps and 

overlaps were introduced in the innermost 45-degree plies. It is found that overlapping 

plies merged at the overlap zone, and plies at gaps have a tendency to flow into and fill 

the gaps, for this reason the model takes into account the fiber waviness that is generated 

because of the defects. It is also stated that the defects have a minor effect on the shear, 

transverse and through-thickness modulus of the plies, so the only relevant effect of the 

defects occurs just in the fiber direction. A model of 30 mm x 70 mm is created, using 

constant stress solid elements with one integration point and local orthotropic material 

axes, which are determined in correspondence with the waviness of the fiber. For the 

simulation, a mesh size no larger than the design parameters of the defects is selected in 

order to capture sufficiently the features of the defects. Four millimeters is set as the 
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maximum defect size, since it is considered the maximum that can possibly occur in 

production by the project industrial partner. Defects were located in 90 or 45/-45 degrees 

plies with or without stagger. Using the Weibull statistical failure criterion and as load 

case compression or tension tests were simulated. The simulation was run in a high-

performance computer. After nine hours of computation, the simulation shows good 

results in correlation with the experimental tests. The following conclusions are obtained:  

• Defects in the 45° or -45° plies have a larger effect on the failure than defects in 

the 90° plies.  

• Defects in 45° and -45° plies have a similar effect on the failure. In 45° and -45° 

plies, gaps cause a larger knock-down than overlaps in both tension and 

compression. On the contrary, in 90° plies, overlaps cause a larger knock-down 

than gaps in both tension and compression  

Even though the results are very accurate, nine hours of computation is unacceptable in 

the present project. The goal of the finite element model is to generate as much data as 

possible, ideally around one sample every five minutes. But some of the conclusions 

obtained about the effect of the defects on the material properties can be useful to 

approximate them. The effects of the defects on the knock-down factor will be also 

interesting to check the results of the created model. 

The creation of a model with a solid element representing each ply will lead to a complex 

model, which will take a long time to complete simulations. For this reason, in 2019 an 

experimental work was carried out by Daniel Del Rossi, where the author tested the effect 

of half gaps and overlaps via finite element analysis and experimental work [4]. In the 

study a simplified FE model was created, where the adjacent plies with no defects were 

grouped together in one part. This would reduce the number of interactions between parts 

and therefore the computational time. The laminate used was [45, 45, 0, -45, 90, 45, 0, -

45, 90]s, with a number of defects between 4 and 10.  
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Fig 3-2: Schematic representation of a gap. [4] 

As it is shown in Fig 3-2, for the FE model, the defect length is fixed at 2,5’’ = 63,5 mm 

and width is varied between 0.05’’ = 1,27 mm and 0,1’’= 2,54 mm. Resin properties were 

assigned to the gap defects. For overlap defects prepreg material, with some modifications 

to reflect the change in the fiber volume fraction, was assigned. Both defects are modeled 

with a trapezoidal shape, to simplify the model fiber steering is not considered. 

Continuum shell elements SC8R with second order accuracy were used for the whole 

model. A simple uniform rectangular grid was chosen for the plies with no defects. For 

the defective plies, in the defect zone, hexahedral continuum shell elements were used 

allowing easier node generation around the thin defects, outside the defect zone a uniform 

rectangular mesh is still used. 

The boundary conditions are chosen to be as similar as possible to the experimental tests: 

one end of the coupon has x-displacement fixed while the other has an x-displacement 

prescribed to induce the loading. Then in order to prevent the coupon from translating or 

rotating a few points on either end were fixed in the z or the y directions. Once the 

boundary conditions are applied and using the Hashin Failure Criterion, the following 

results are obtained: 

 

Tab 3-1: Difference between experimental and simulation results. [4] 

As it can be seen in the Tab 3-1, the tests performed showed that the results of the 

simulation were matching the experimental results with a difference lower than a 5%, 
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except for the coupons with high number of defects. This study can have an application 

in this project, even though the computational time is mentioned to be a few hours. 

Probably further simplification of the model will be necessary to reduce the 

computational time. 

3.2 ML application for FEM replacement 

In 2021 Mahziyar Darvishi et. al. carried out a study where the proper cellular structure 

for the internal mechanical characteristics was predicted [27], by implementing machine 

learning algorithms based on finite element analysis results of cellular structures. To do 

that a simplified ABAQUS model, using B31 beam element instead of solid 3D elements, 

is created and 200 data points were created, consisting of 3 inputs (relative density, elastic 

modulus and relative yield stresses) and 1 output (cellular structure). Once the data is 

generated, the following algorithms were trained and analyzed: 

• Simple Naïve Bayesian classification model: assumes that the presence of a 

particular feature in a class is unrelated to the presence of any other feature [15]. 

• Random Forest: Model based on decision trees, creates multiples trees and 

averages the results to improve the predictive accuracy and control over-fitting 

[15]. 

• K-Nearest Neighbors: the algorithm finds and labels K equal to the input 

parameter from the nearest neighbors of the data observed in the training phase. 

Then, it finds the most repeated label number using the entire data set and 

examining the K neighbor’s labels [15]. 

• XG Boost: is an ML algorithm based on the decision tree but uses the Gradient 

Boosting framework. This algorithm optimizes the gradient boosting algorithm 

using parallel processing, tree pruning, handling missing values, and 

regularization to prevent overfitting or bias. 

• Artificial Neural Network (ANN): A fully connected feed forward NN is used 

with one hidden layer, the number of neurons in the hidden layer is determined 

via iterative methods and the one with better performance is selected. 
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Fig 3-3: Accuracy of the trained models [27] 

As it can be seen on the graph, the ANN is the most accurate among the implemented 

algorithms. The random forests method has also a great accuracy greater than 70%, while 

the accuracy of K-nearest neighbors and Bayes classification are below 65%. In this study 

the use of finite element analysis data is successfully used to create a classification 

machine learning model able to predict the proper cellular structure, it is also possible 

that in the current project a regression machine learning is required. It is also interesting 

the simplification of a 3D element to a 1D-beam element to reduce the computational 

time. 

Along these lines, Qi Zhenchao performed a study where the mechanical properties of a 

fiber monofilament could be predicted with a machine learning model given the 

mechanical properties of the laminate and the resin [28]. A parametrized finite element 

model is created to generate 500 samples to train and validate the machine learning model. 

The dataset consists of 5 inputs and 4 outputs, as it can be seen in the table. 

 

Tab 3-2: Input / Output parameter definition [28]  

In the study feature selection as a data processing method is used, in order to obtain the 

features with the greatest relevance from all feature sets and reduce overfitting. The 

property prediction is based on a decision tree regression algorithm. The tree depth 

represents the complexity of the model; thus, selecting the optimal model selects the 
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optimal tree depth. Deeper trees produce models that can more precisely describe the 

details of the training set. However, a tree that is too deep will cause over-fitting. 

Therefore, in order to obtain an appropriate model, experiments are carried out on model 

trees with multiple depths. By calculating the root mean squared error and the error rate, 

the comparison between the value of the model and the true value of the test set can be 

done. With the correct depth, the model is able to predict sufficiently accurately the 

properties of the carbon fiber monofilament. It is important to note that performing feature 

selection methods on models with a reduced number of samples will avoid overfitting. 

Further study in this area is performed in 2019 by Sang Ye [29], where a Deep Neural 

Network (DNN) is proposed to predict the mechanical properties of composites with 

complex microstructures. The goal of this DNN is to substitute the usually used FEM, 

which calculates the mechanical properties by defining a representative volume element 

(RVE). The RVE is the minimal representation of the basic microstructure of the 

composite. Because of the complexity of the microstructures studied, the FEM calculation 

is usually tedious and highly time-consuming. 

Ye [29] generates a large number of RVEs with various types of complex structures. The 

microstructural images of composites, and the mechanical properties of the constituent 

materials as well, are stored in the database. Using simulation their effective mechanical 

properties are obtained. With this method multiple data sets are generated, consisting in 

pairs of images describing the microstructures, the properties of constituents, and the 

mechanical properties of the composites. With these data sets, a DNN model is trained to 

predict the mechanical properties of a composite from its microstructural image. 20.000 

samples are created, which are randomly divided into training, validation, and test parts 

in the ratio of 3:1:1. 

The DNN architecture consists of a sequence of computationally nonlinear layers, which 

are able to gradually extract representations of images with higher-level abstractions. It 

has five convolutional layers connected by four fully connected layers. The gray image 

corresponding to the microstructure of a composite is input at the beginning of the 

ConvNet, and then the corresponding mechanical properties (Young’s modulus and 

Poisson’s ratio) are derived at the output layer of the DNN. Different activations functions 

are used for the output layer: 
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• For Young’s modulus, the rectified linear unit (ReLU) function is chosen 

• For Poisson’s ratio, a variant form of Sigmoid function is used 

Batch normalization method is also used to avoid exploding and vanishing gradients. This 

method consist in normalizing the output of a hidden layer so the subsequent layer will 

learn better [16]. To quantify the difference between the effective mechanical properties 

of the DNN‘s prediction and the real value and then adjust the parameters, mean square 

error (MSE) is used since predicting the mechanical properties is a regression problem. 

After the training phase the model is able to predict the Young’s modulus with a relative 

error of 12%, but almost all samples have a relative error lower than 4%. The predicted 

Poisson’s ratio is also sufficiently accurate, with the relative errors smaller than 3% 

It is demonstrated that this DNN model can accurately and efficiently predict the 

mechanical properties of composites with various complex microstructures. 
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4 Data generation 

The following chapter aims to develop a method that will be capable of generating data 

extracted from the tensile testing simulation of a defective composite laminate coupon. 

This data will be used as input of a machine learning algorithm in order to predict the 

effects of the defects on the effective longitudinal stiffness of a composite laminate. To 

create such methodology, the approach will be divided in two main parts: 

• The need of having proper data as an input for the ML algorithm, creates the 

necessity of developing a FE model in ABAQUS that can simulate the effects of 

the defects in a coupon. It is also required understanding in composite materials 

and FEA in order to interpret the results of the simulation and extract effective 

stiffness. 

•  Once the FE model is created and validated, it will be parametrized in order to 

represent every possible defect configuration. Then it will be inserted into a loop 

to generate random samples of the FEA. 

4.1 FEM model 

This chapter includes the description of the coupon geometry as well as its lay-up, how 

to characterize a defect and the defect configurations that will be studied. It will also be 

defined the applied boundary conditions for tensile testing, and the suitable mesh at each 

study case. Finally, a detailed description of the calculation of the effective stiffness of 

the laminate will be given. 

4.1.1 Geometry and material properties 

Multiple specimen geometries can be used to create a FEM for tensile testing. Haug [30] 

performed a study where the mechanical properties of a defective composite coupon were 
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calculated via mechanical testing. For better comparability the same laminate as Haug 

[30] is used. This consists in a quasi-isotropic and symmetric laminate with 0,125 mm 

ply thickness and 16 plies: [452, -452, 02, 902]s, see in Fig 4-2. In this research the tensile 

testing is set up according to DIN EN ISO 527-1 [31], where the geometric dimensions 

testing specimen are 200 x 25 x 2 mm, as shown in Fig 4-1.  

 

Fig 4-1 Coupon geometry 

 

Fig 4-2 Ply stacking sequence 

For reasons of comparability, the coupon geometry and the ply stacking sequence used 

will be the same as in [30]. The prepreg material used will be IM7/8552 [32], its properties 

can be seen in Tab 4-1and in Tab 4-2. 
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Tab 4-1 IM7/8552 prepreg ply properties [32] 

E11  

(GPa) 

E22=E33 

(GPa) 

G12=G13 

(GPa) 

G23  

(GPa) 
µ12= µ13 µ23 

161 11,4 5,17 3,98 0,32 0,435 

 

Tab 4-2 Resin material properties [32] 

E (GPa) µ Material Type 

3,7 0,4 Isotropic 

4.1.2 Defect properties 

To characterize the defects the guidelines of Li et. al. in [1], were followed. For the 

defective gap regions resin material properties were used. For the overlap defects Li 

concluded that the overlaps defects have a minor influence on the shear and transverse-

to-thickness moduli and can be neglected. The changes in the material properties are 

reflected in the equations (4-1), (4-2), (4-3) and (4-4). The overlap resultant material 

properties are listed in Tab 4-3. 

 𝐸11_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 2 ∗ 𝐸11_𝑝𝑟𝑒𝑝𝑟𝑒𝑔 (4-1) 

 𝐸22_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝐸22_𝑝𝑟𝑒𝑝𝑟𝑒𝑔 ;  𝐸33_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝐸33_𝑝𝑟𝑒𝑝𝑟𝑒𝑔 (4-2) 

 𝐺12_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝐺12_𝑝𝑟𝑒𝑝𝑟𝑒𝑔 ;  𝐺13_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝐺13_𝑝𝑟𝑒𝑝𝑟𝑒𝑔  (4-3) 

 𝐺23_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝐺23_𝑝𝑟𝑒𝑝𝑟𝑒𝑔  (4-4) 
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Tab 4-3 Overlap material properties 

E11 E22=E33 G12=G13 G23 v12=v13 v23 

322 11,4 5,17 3,98 0,32 0,435 

4.1.3 Part and assembly generation 

Once the geometry and the material properties are defined, the model has to be generated 

in ABAQUS. The approach of Rossi in [4], which validates a FEM where all the 

consecutive plies without defects can be grouped together in one part, will be used. One 

of the main problems of this approach was the large computational time, to reduce it, shell 

elements instead of solid elements will be used. With regard to the number of defects, the 

following situations will be studied: 

• No defective plies, pristine condition coupon 

• One defective ply in laminate 

• Two defective plies, just if the plies are consecutive and have the same fiber 

orientation. The defect of the second ply is exactly the same as in the first one 

For the plies with no defects a rectangular shell with dimensions 200 x 25 x 2 mm will be 

generated. For the modelling of the defective plies part, the defect section will be added 

according to the following guidelines. For 90, 45 and -45 degrees fiber orientation plies, 

see at Fig 4-3: 

• The defect position inside the coupon will be the distance between the right edge 

of the coupon and the right top corner of the defect. 

• The defect width will be set with the distance between the right top corner and the 

left top corner of the defect. 

 

Fig 4-3 Defect characterization for the 45 degree ply 

For the 0 degrees ply, see in Fig 4-4: 
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• The defect position inside the coupon will be the distance between the top edge 

of the coupon and the top left corner of the defect. 

• The defect width will be set with the distance between the top left corner and the 

bottom left corner of the defect. 

 

Fig 4-4 Defect characterization for the 0 degree ply 

In the pristine condition case two FE models will be generated. On the first one the whole 

laminate will be modelled as one shell, where the laminate properties will be assigned. 

The second pristine coupon FE model will be a three-shell model, where the middle shell 

will just contain ply 8 and the top and bottom shell the remaining plies. 

In the defective condition, the shell model of the defective plies is created. Depending on 

the ply where the defect is located two possible assemblies will be generated: 

• When the defective ply is not at the top or bottom ply, a three-shell assembly will 

be created. The middle shell will contain the defective ply, while the top shell and 

bottom shell will contain the remaining non defective plies. The top, bottom and 

middle shells will be assigned as top, bottom and middle surface respectively. By 

assigning this properties ABAQUS will generate the laminate according to Fig 

4-5. The top shell will be located in the assembly at top surface of the laminate, 2 

mm above the bottom surface, while the middle shell will located following 

equations (4-4) and (4-5). A tie constraint between the shells is applied to keep 

the shells attached to each other during the simulation. 

 ℎ𝑚𝑖𝑑𝑑𝑙𝑒−𝑏𝑜𝑡𝑡𝑜𝑚 = (16 − 𝑝𝑙𝑦_𝑛) ∗ 𝑡 +
𝑡𝑑𝑒𝑓𝑒𝑐𝑡

2
 (4-5) 

 ℎ𝑡𝑜𝑝−𝑚𝑖𝑑𝑑𝑙𝑒 = (𝑝𝑙𝑦_𝑛) ∗ 𝑡 +
𝑡𝑑𝑒𝑓𝑒𝑐𝑡

2
 (4-6) 
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Where, 𝑝𝑙𝑦_𝑛 is the number of ply where the defect occurs, 𝑡 is the thickness of the ply 

and 𝑡𝑑𝑒𝑓𝑒𝑐𝑡 is the thickness of the defective ply, which is equal to 𝑡 in case of single defect 

or 2 ∗ 𝑡 when the defect is double. 

 

Fig 4-5 Three-shell assembly model 

• When the defective ply is at the top or bottom ply, a two-shell assembly will be 

created. The top shell will contain the defective ply, while the bottom shell will 

contain the remaining non defective plies, as it is shown in Fig 4-6. The top and 

bottom shells will be assigned as top, bottom surface respectively. The distance 

between the shells in the assembly is set as the laminate thickness, 2 mm, and a 

tie constraint between the shells is applied to keep the shells attached to each other 

during the simulation. 
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Fig 4-6 Two shell assembly model with double defect 

4.1.4 Boundary conditions and loading 

Once the assembly is set up, the boundary conditions and the loads will be applied. Once 

the constraints between the shells are created, the encastre boundary condition is applied 

at the left edge of all the shells, as it is shown in Fig 4-7. Since the tensile test is performed, 

following the indications of [4], the load is set up as a displacement of 1 mm in the x-

direction on the right edge of the coupon. All other displacements and rotations of the 

right edge are fixed to 0. The boundary conditions and the load are shown in Fig 4-7. 

 

Fig 4-7 Boundary conditions and load 

4.1.5 Mesh 

In this section a convergence study of the mesh is performed for each shell configuration, 

a S4R element is selected during this procedure and the applied defect is a gap. Since the 
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effective stiffness is predicted with a precision of 2 decimal positions, when the deviation 

of the output with the reference value is lower than 0,01 it will : 

• Pristine coupon: In this model the whole laminate is defined with one shell. By 

augmenting the number of elements on the shell width, an optimal mesh size of 

4,17 mm = 6 elements, see in Fig 4-8 and Fig 4-9. 

 

Fig 4-8 Convergence study 1-shell model in pristine condition 

 

Fig 4-9 Deviation of the output: 1-shell model in pristine condition 

• Pristine coupon: To validate the shell model, a three shell model in pristine 

condition is also studied. The mesh size is decreased by adding elements in the 

width of the shell and the change of the output is monitored. As it can be seen in 

Fig 4-10 and Fig 4-12, the output value converges at 5 elements in the width of 

the shell, which correspond to a mesh size of 5 mm. 
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Fig 4-10 Convergence study 3-shell model pristine condition 

• 90 degree defective plies: A defect of 5 mm in ply 8 was introduced. A first study 

is performed decreasing the global mesh size for the whole shell. As it can be seen 

in the Fig 4-11 and Fig 4-12, the output value converges at 5 elements in the width 

of the shell, which correspond to a mesh size of 5 mm. 
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Fig 4-11 Global mesh convergence study of 90 degree 5 mm defect in ply 8 

 

Fig 4-12 Deviation of the of the output, 5 mm defect in ply 8 

• 90 degree defective plies: A second study is performed: maintaining global mesh 

size of 5 mm on the shell, but applying a finer mesh is on the defective region, as 

it can be seen in Fig 4-13. The mesh sizes is decreased by adding elements at the 

defect width. As it can be seen in Fig 4-14 and Fig 4-15, the finer mesh doesn’t 

have an influence on the output. The mesh size for 90 degrees defects is set at 5 

mm. 

 

Fig 4-13 Finer mesh on the defective region 
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Fig 4-14 Finer mesh convergence of 90 degree 5 mm defect in ply 8 

 

Fig 4-15 Deviation of the of the output, 5 mm defect in ply 8 

• -45 degree defective plies: A defect of 5 mm in ply 4 was introduced. A first study 

is performed decreasing the global mesh size for the whole shell. As it is shown 

in Fig 4-16 and Fig 4-17, the output value converges at 7 elements in the shell 

width, which corresponds to a mesh size of 3,5 mm. But as it can be seen in Fig 

4-18, the quadrangular mesh elements are deformed around the inclined defective 

region.  

• -45 degree defective plies: A second study is performed with triangular elements 

which are less susceptible to this deformation. The results in Fig 4-16 and Fig 

4-17, show that the results of the triangular mesh have almost no difference 

compared to the quadrangular elements. Since a low computational time is 

important for the present project, the quadrangular mesh element with a mesh size 

of 3,5 mm is selected. 
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Fig 4-16 Mesh convergence study of 5 mm defect in ply 4 

 

Fig 4-17 Deviation of the of the output, 5 mm defect in ply 4 

 

Fig 4-18 Quadrangular mesh deformation 

• 45 degree defective plies: Since this case is similar to the -45 degree defective ply, 

just the quadrangular meh will be studied. A defect of 5 mm in ply 2 is introduced. 

The study is performed decreasing the global mesh size for the whole shell. As it 

is shown in Fig 4-16 and Fig 4-17, the output value converges at 7 elements in the 

shell width, which corresponds to a mesh size of 3,5 mm. But as it can be seen in 

Fig 4-18, the quadrangular mesh elements are deformed around the inclined 

defective region.  
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Fig 4-19 Global mesh convergence study of 5 mm defect in ply 2 

 

Fig 4-20 Deviation of the output of 5 mm defect in ply 2 

• 0 degree defective plies: A 2 mm width defect at ply 6 is introduced. The study is 

performed to decrease the global mesh size for the whole shell. As it can be seen 

in the Fig 4-21 and Fig 4-22, the convergence is achieved at 4 elements in the 

shell width, which corresponds to a mesh size of 6,25 mm.  



40    Data generation 

 

 

 

Fig 4-21 Mesh convergence study of 2 mm defect in ply 6 

 

Fig 4-22 Deviation of the output, 2 mm defect in ply 6 

On the following table a summary of the mesh size used in each case. Each study case 

will have its own mesh depending on the ply fiber orientation where the defect occurs and 

the ply location in the layup. 

Shell/Defect No defect 90 degree 45/-45 degree 0 degree 

Top 5 / 3,5 / 

Middle 5 5 3,5 6,25 

Bottom 5 / 3,5 / 
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4.1.6 Results 

Once the mesh is applied to each shell, the simulation can be run. Since the objective of 

the project is to predict the effects of the defects on the laminate, the longitudinal effective 

stiffness (𝐸11,𝑒𝑓𝑓 ) of the laminate will be calculated following the equation (4-3).  

 𝐸11,𝑒𝑓𝑓 =
𝜎11,𝑒𝑓𝑓

𝜀11
 (4-7) 

Where 𝜎11,𝑒𝑓𝑓 and 𝜀11 are the stress and the strain in longitudinal direction. To calculate 

𝜎11,𝑒𝑓𝑓, the reaction force in longitudinal direction (𝑅𝐹1) at the loaded edge will be 

extracted as the output of the simulation. Using the equation (4-4) and (4-5),  𝜎11,𝑒𝑓𝑓 and 

𝜀11 can be respectively calculated. 

 𝜎11,𝑒𝑓𝑓 =
𝑅𝐹1

𝐴
 (4-8) 

 𝜖 =
∆𝑙

𝑙0
 (4-9) 

Where A is the area of the cross section of the laminate, ∆𝑙 is the variation of length of 

the laminate after applying the load and 𝑙0 is the initial length of the laminate. 

In order to validate the ABAQUS shell model created the effective longitudinal stiffness 

of the laminate in the pristine condition will be compared with the analytical and 

experimental values. The analytical values are calculated using the CLT ,see in chapter 

2.1, and the experimental results are extracted from the Haug’s study in [30]. As it can be 

seen in Fig 4-23, between the 1-Shell and 3-Shell FE models there is almost no difference, 

then it can be concluded that the 3-Shell model is a good substitute for the 1-Shell model. 

Using FE models, the results obtained are closer to the CLT than to the mean of the 

experimental testing as expected, since in experimental testing human errors during 

testing or laminate preparation are introduced. With this comparison the 3-Shell FE model 

is validated. 
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Fig 4-23 Comparison between calculations methods 

4.2  FEM Parametrization 

Once the shell model is validated, a parametrization of the FE model it has been done. In 

this chapter the input parameters of the parametrization will be defined and its limits set. 

Also, a sensitivity analysis will be performed to determine the dominant parameters. Via 

this parametrization the dataset that will be used to train a machine learning model will 

be created. 

In this chapter the input parameters of the FE model will be defined. The parameters in 

Fig 4-24 will be studied: 
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Fig 4-24 Parameters of the FE model 

Type of defect: It represents the type of defect found between gaps and overlaps. It only 

changes the material properties of the defective region using the material properties in 

Tab 4-2 for gaps or using the material properties in Tab 4-3 for overlaps. A defect of 10 

mm is introduced on ply 8. As it can be seen in the Fig 4-25, the gap defects slightly lower 

the effective stiffness, around 0,1 MPa. In the overlap defect case, the effective stiffness 

is incremented around 0,5 MPa. In Haug’s [30] study a defect of width = 3,175 or 6,350 

mm is inserted in ply 8, the experimental results show that: 

o Gap, single defect: lead to an increment of the effective stiffness. 

o Gap, double defect: lead to a decrement of the effective stiffness. 

o Overlaps, single and double defects: lead to decrement of the effective 

stiffness. 

This difference between the simulation of the 3-Shell model and the experimental test can 

be explained because of the variability of the coupon fabrication, which is around ± 3 

MPa of the mean effective stiffness. With this variability the small variation that introduce 

the defects (around 0,1 – 1 GPa) turns to not be relevant in front of the manufacturing 

variability. 
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Fig 4-25 Effective stiffness for gap and overlap defects: 10 mm defect in ply 8 

• Double/Single defect: This parameter is represented in the parametrization as a 1 

in case of having a single defect or as a 2 in the case that the defect is double. A 

gap defect of 10 mm is introduced on ply 8. As it can be seen in the Fig 4-26, a 

double defect reduces even more the effective stiffness of the laminate, but not 

proportionally as it could be expected. The location of the defect may also have 

an influence on the effective stiffness. Haug in [30] also mentioned that the defects 

located in consecutive plies have a higher impact in the laminate stiffness. 
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Fig 4-26 Effective stiffness for single and double defects: 10 mm defect in ply 8 

• Defective ply: This ply is represented in the parametrization as a natural number 

between one and sixteen. This number indicates in which ply is the defect located, 

being one the ply number of the ply on bottom of the laminate and 16 the ply 

number of the ply at the top. A gap defect of 125,0 mm2 is introduced over all 

plies. As it can be seen in the Fig 4-27, the effective stiffness is slightly influenced 

for the location of the defect in the laminate. Being more relevant the effects 

produced of a defect located on the outer surfaces of the laminate, than in the 

middle. Also the 0 degrees defects have a higher influence on the effective 

strength for the same defect width. Because of the configuration of the 0 degree 

defects, see in Fig 4-4, the defects in these plies are much bigger than the other 

ones for the same width. For this reason the area of the defect will be studied as a 

parameter instead of the defect width. It is also relevant to mention that defects 

located on plies 1 and 16 produce an abnormal behaviour of the FE model, that’s 

why defects on both top and bottom shells will not be considered in the study. 
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Fig 4-27 Effective stiffness of a 125,0 mm2 gap at different plies 

• Defect area: This parameter is defined as the area of the defective region. In order 

to not have disturbances at obtaining the output results, the limits of the defects 

have to be set: The minimum distance between the left/right edge of the coupon 

and the left/right corner of the defect, will be equal to the size of the mesh element. 

A gap defect is introduced in ply 8 with variable area. In the Fig 4-28 it can be 

seen, that for increasing defective area, the effective strength of the laminate will 

decrease linearly. 

 

Fig 4-28 Effective stiffness for increasing defect area in ply 8 
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• Defect position: This parameter is defined as the distance between the right edge 

of the coupon and the right corner of the defect. A defect of 10 mm width is 

implemented at the ply 8 and its position inside the defect is arbitrarily changed. 

As it can be seen in Fig 4-29, the position has no influence on the output. This 

parameter is eliminated of the FEM parametrization. 

 

Fig 4-29 Effective stiffness for variation of the defect position: 10 mm defect in 
ply 8 

In the following table, Tab 4-4, an overview of the parameters with its available range it’s 

shown. 

Tab 4-4 FE model parameter overview 

Parameter Variable type Value range units 

Defect type Categorical [ Gap, Overlap] / 

Defet height Categorical [ Single, Double] / 

Defect Area Numerical [2, 38000] mm2 

Ply number Categorical [2,15] / 

Once the input parameters are defined, and its limits well described. Following the 

guidelines of [29], a loop is created to generate 25000 models and compute its effective 

stiffness. As a result of this loop a file with the following data will be generated: Defect 

type; Defect height; Defect area; Defect ply number; Eeff, 11. These 25000 data samples 

will be used to train the machine learning algorithms described in the following chapter.
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5 Implementation of Machine Learning 

Models 

This chapter aims to develop machine learning models that can predict the effects of the 

defects using the data extracted via simulation with ABAQUS. It consists of three 

sections. In the first section the dataset obtained with ABAQUS will be preprocessed. In 

the following sections the ML models are defined and finally the process for the 

hyperparameter tuning will be explained. 

5.1 Data pre-processing 

After the data generation process is completed, a pre-processing phase is needed to 

transform the input data into data that the ML algorithm could understand better and 

enhance its performance. 

Since ML algorithms don’t support categorical variables, they will be transformed to a 

numerical variable using one hot encoding technique. The categorical variables can be 

either nominal, for example the defect type variable, or ordinal, like the ply number. Ply 

number is clearly a categorical variable since its values represent categories that classify 

in which ply the defect has appeared. Using ordinal encoding can create an ordinal 

relationship in the data, which is not present on the original data [33]. 

To perform this pre-process of the data, Pandas library [34] in python is used. Because of 

the above mentioned processes, the initial variables will be transformed into the following 

ones:  

• Each ply will be now an input variable, which can have the value 1 when the 

defect is in the ply or 0, when there is no defect on the ply. 

• Defect type variable will have value 0 for gaps and 1 for overlaps. 

• Defect height variable will have value 0 for single defects and 1 for double defects. 
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In the case of the defect area a normalization is required since its range of values differs 

a lot from the range of the other variables. To obtain the defect area in the zero-one range, 

the min-max-normalization [15] will be used. These transformations will enhance the 

performance of the ML model. In the Tab 5-1 it can be seen an example of the pre-

processed input data. 

Input variables 

Def. 

Type 

Def. 

Height 

Def. 

Area 

Ply 

2 

Ply 

3 

Ply 

4 

Ply 

5 

Ply 

6 

Ply 

7 

Ply 

8 

Ply 

9 

Ply 

10 

Ply 

11 

Ply 

12 

Ply 

13 

Ply 

14 

Ply 

15 

0 1 0,32 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Tab 5-1 Pre-processed input data sample 

After pre-processing the dataset is split into training, test and validation. Following the 

guidelines of [29] the data is split in a proportion of 70% for training, 20% for test and 

10% for validation. The segmentation was performed by randomly splitting the data using 

sklearn python library [15]. The main objective was to obtain a well-distributed test 

dataset that could be representative enough of the simulations gathered, aiming to validate 

the different configurations extracted. By saving the training and test datasets, the 

different models used can be easily compared and evaluated.  

5.2 Model definition 

In this chapter the model implementation in pytorch will be described and the 

hyperparameters for each model will be defined. The following models will be studied: 

Multilinear model, Polynomial model, MLP with one hidden layer and MLP with two 

hidden layers. The first two will be studied in order to be sure that the relationship 

between the input variables and the output is or is not following this simple models. 

Afterwards the best model of [27], a MLP with one hidden layer is chosen for the study 

and finally the MLP with two hidden layers will also be considered. 

5.2.1 Multilinear model 

As explained in 2.4.5 the multilinear regression is defined with a set of parameters and 

the bias. To create the model, pytorch [35] framework will be used. The pytorch library 

has to be imported and the class MultiLinearRegression has to be created. This class is a 
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subclass of torch.nn.module, it will receive as input the dimension of the input. The class 

contains the parameters A and b, which refer to the set of weights and the bias 

respectively, at is shown in the Code 5-1. The forward pass is defined following the 

equation (5-1). 

from torch import nn 

class MultiLinearRegression(nn.Module): 

  def __init__(self,n): 

    super(MultiLinearRegression, self).__init__() 

    self.A = torch.randn((1, n), requires_grad=True) 

    self.b = torch.randn(1, requires_grad=True) 

    #Says to the optimizer that the parameters A and b are paramete

rs 

    self.A=torch.nn.Parameter(self.A) 

    self.b=torch.nn.Parameter(self.b) 

 

  def forward(self,x_input): 

    return self.A@x_input + self.b 

Code 5-1 Class initialization 

 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝐴 ∗ 𝑥 + 𝑏 (5-1) 

In the Tab 5-2 are listed the hyperparameters that will be optimized in order to obtain the 

best model. 

Tab 5-2 Multi linear regression hyperparameters 

Hyperparameter 

Optimizer Stochastic Gradient Descent, RMSProp, Adam 

Learning rate [0,1 - 0,0001] 

Batch_size [2 – 512] 

5.2.2 Polynomial model 

As an extension of the multilinear model, a regressor with a polynomial approximation 

will be defined. The pytorch library has to be imported and the class 

MultiPolynRegression has to be created. This class is a subclass of torch.nn.module, it 

will receive as input the dimension of the input and the polynomial degree. The class 

contains the parameters list “params”, where the sets of weights and the bias are saved, 

at is shown in the Code 5-2. The forward pass is defined following the equation (5-2). 
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class MultiPolyRegression(nn.Module): 

  def __init__(self,degree,n): 

    super(MultiPolyRegression, self).__init__() 

    self.params=[] 

    self.degree=degree 

    self.params.append(nn.Parameter(torch.randn(1, requires_grad=Tr

ue))) 

    for _ in range(1,degree+1): 

      self.params.append(nn.Parameter(torch.randn((1, n), requires_

grad=True))) 

    self.params=nn.ParameterList(self.params) 

 

  def forward(self,x_input): 

    poly=self.params[0] 

    for d in range(1,self.degree+1): 

      poly = poly+self.params[d]@x_input**d 

    return poly 

Code 5-2 Polynomial regressor class 

 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = ∑ 𝑤𝑖 ∗ 𝑥𝑖 + 𝑏

𝑖=𝑑𝑒𝑔𝑟𝑒𝑒

𝑖=2

 (5-2) 

In Tab 5-3 are listed the hyperparameters that will be optimized in order to obtain the best 

model. 

Tab 5-3 Polynomial regression hyperparameters 

Hyperparameter 

Optimizer Stochastic Gradient Descent, RMSProp, Adam 

Learning rate [0,1 – 0,0001] 

Batch size [2-512] 

Polynomial degree [1-500] 

5.2.3 MLP with 1 hidden layer 

A MLP model, explained in chapter 2.4.3,  is created with one hidden layer, as it is shown 

in the Code 5-3. Bircanoğlu et al. in [36] studied the performance of different activation 

functions in different ANN models. In the study it is found that the activation function 

with better performance for regression models is ReLU, which will be used for the present 
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project. Since ReLU is used as activation function, following the guidelines of [37], 

Kaiming He weight initialization [38] will be used. 

class NeuralNetwork(nn.Module): 

    def __init__(self, input_dim, hidden_dim1, output_dim): 

        super(NeuralNetwork, self).__init__() 

        self.layer_1 = nn.Linear(input_dim, hidden_dim1) 

        nn.init.kaiming_uniform_(self.layer_1.weight, nonlinearity=

"relu") 

        self.layer_2 = nn.Linear(hidden_dim1,output_dim) 

        nn.init.kaiming_uniform_(self.layer_2.weight, nonlinearity=

"relu") 

        

    def forward(self, x): 

        x = torch.nn.functional.relu(self.layer_1(x)) 

        x = torch.nn.functional.relu(self.layer_2(x)) 

        return x 

Code 5-3 MLP with one hidden layer class 

In the Tab 5-4 are listed the hyperparameters that will be optimized in order to obtain the 

best model. 

Tab 5-4 MLP with one hidden layer hyperparameters 

Hyperparameter 

Optimizer Stochastic Gradient Descent, RMSProp, Adam 

Learning rate [0,1 – 0,0001] 

Batch size [2-512] 

Nodes in hidden layer [1-500] 

 

5.2.4 MLP with 2 hidden layers 

A MLP model with two hidden layers is defined, as it is shown in the Code 5-4. Following 

the conclusions extracted in chapter 5.2.3, ReLU activation function and Kaiming He 

weight initialization will be used. 

class NeuralNetwork(nn.Module): 

    def __init__(self, input_dim, hidden_dim1, hidden_dim2, output_

dim): 

        super(NeuralNetwork, self).__init__() 

        self.layer_1 = nn.Linear(input_dim, hidden_dim1) 
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        nn.init.kaiming_uniform_(self.layer_1.weight, nonlinearity=

"relu") 

        self.layer_2 = nn.Linear(hidden_dim1,hidden_dim2) 

        nn.init.kaiming_uniform_(self.layer_2.weight, nonlinearity=

"relu") 

        self.layer_3 = nn.Linear(hidden_dim2,output_dim) 

        nn.init.kaiming_uniform_(self.layer_3.weight, nonlinearity=

"relu") 

        

    def forward(self, x): 

        x = torch.nn.functional.relu(self.layer_1(x)) 

        x = torch.nn.functional.relu(self.layer_2(x)) 

        x = torch.nn.functional.relu(self.layer_3(x)) 

        return x 

Code 5-4 MLP with two hidden layer class 

5.3 Model training 

To train the previously defined models, an object of this model is created, see in the Code 

5-5. After this, the optimizer and the error function are selected. Here, the mean squared 

error (MSE) as the error function is used following the guidelines of [39], the optimizer 

and the learning rate are set as hyperparameters. For the training of the final models, a 

learning rate decay is added in order to have a smoother convergence at the minima. 

# Setting the loss function 

loss = nn.MSELoss() 

#Initialize the model 

model = NeuralNetwork(input_dim, hidden_dim1, hidden_dim2, output_d

im) 

# Initialize optimizer 

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) 

scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=25

0, gamma=0.5) 

Code 5-5 Model, error function and optimizer initialization 

The data is split into train and test using sklearn library [15], 70% of the data is used to 

train the model, 20% as test and 10% is used for validation, as it is shown in Code 5-6. 

from sklearn.model_selection import train_test_split 

  #Split train/test 

train1, test = train_test_split(result, test_size=0.2, random_state

=42, shuffle=True) 
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train, val = train_test_split(train1, test_size=0.125, random_state

=42, shuffle=True) 

Code 5-6 Training-test data split 

Once the data is split, the training data is divided into batches, as it is shown in Code 5-7. 

The batch size it is selected as hyperparameter, following the guidelines of [40] a batch 

size between 2 and 512 will be considered. 

from torch.utils.data import DataLoader, TensorDataset 

#Batch size 

batch=DataLoader(TensorDataset(x_train,y_train), batch_size=batch_s

, shuffle=True) 

for id_batch, (x_batch, y_batch) in enumerate(batch): 

Code 5-7 Training data batch split 

The losses are set to 0 and the lists to save the loss value at each epoch are created. The 

number of epochs is incremented until the training loss converges. Initiate the training by 

resetting all the gradients to 0. Perform a forward pass by passing the training data and 

calculating the predicted value of the output. Following the guidelines of Schischka in 

[22], to avoid overfitting an L-2 regularization with a λ = 0,001 will be applied. After 

applying regularization compute the loss, perform the backpropagation and then, update 

the weights. Save the training loss value. See the steps in Code 5-8. 

  # Reset losses Current loss 

  current_loss = 0 

  current_test_loss=0 

 

  train_loss=[] 

  test_loss=[] 

 

  # Main optimization loop 

  for t in range(epoch): 

    batch_loss=[] 

    for id_batch, (x_batch, y_batch) in enumerate(batch): 

      x_batch = x_batch.to(device) 

      # Set the gradients to 0. 

      optimizer.zero_grad() 

      pred = model(x_batch) 

      l2_lambda = 0.001 

      l2_norm = sum(p.pow(2.0).sum() 

        for p in model.parameters()) 

      current_loss_no_reg=loss(pred.cpu(), y_batch.unsqueeze(-1)) 
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      current_loss = loss(pred.cpu(), y_batch.unsqueeze(-

1)) + l2_lambda*l2_norm 

      current_loss.backward() 

      optimizer.step() 

      scheduler.step() 

      batch_loss.append(current_loss_no_reg.detach().numpy()) 

    train_loss.append(sum(batch_loss)/len(batch)) 

Code 5-8 Model training 

Once the training is completed, the test data is used to test if for an unknown value of the 

inputs the model is able to generalize. The test loss is computed and its value saved, see 

in Code 5-9. 

    #Computing test loss 

    y_pred_test = model(x_test) 

    current_test_loss = loss(y_pred_test.cpu(), y_test.unsqueeze(-

1)) 

    test_loss.append(current_test_loss.detach().numpy()) 

Code 5-9 Model testing 

After the testing phase, both test loss and training loss over the epochs are plotted, in 

order to judge overfitting, see in Code 5-10. 

import matplotlib.pyplot as plt 

  plt.plot(x_values_train,train_loss,'-') 

  plt.plot(x_values_test,test_loss,'-') 

  plt.yscale('log') 

  plt.grid() 

  plt.xlabel('epoch') 

  plt.ylabel('losses') 

  plt.legend(['Train','Test']) 

  plt.title('Train vs Valid Losses') 

  plt.show() 

Code 5-10 Plotting test and training losses 

Finally, to evaluate the performance of the model, cross validation is performed, also the 

RMSE and the R2 score, described in chapter 2.4.6, are calculated, see in Code 5-11. 

!pip install torchmetrics 

from torchmetrics import R2Score 

from torchmetrics.functional import mean_squared_error 

import numpy as np 

from sklearn.model_selection import KFold 

### Cross Validation ### 
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# Configuration options 

k_folds = 5 

num_epochs = 1 

fold_result={} 

 

torch.manual_seed(42) 

 

# Define the K-fold Cross Validator 

kfold = KFold(n_splits=k_folds, shuffle=True) 

fold=0 

kf = KFold(n_splits = 5, shuffle = True, random_state = 2) 

 

for train_index, test_index in kf.split(result): 

 … 

 # Training loop 

 … 

  r2score = R2Score() 

metric=r2score(y_pred_val.cpu(), y_val.unsqueeze(-1) 

metric2=mean_squared_error(y_pred_val.cpu(), y_val.unsqueeze(-

1),squared=False) 

Code 5-11 Model validation metrics 

5.4 Hyperparameter tuning 

The hyperparameter tuning will be performed with Optuna [41], which is a python library 

that enables the automatic tuning of machine learning models. In Code 5-12. Optuna 

library is installed in windows cmd and then imported in python. 

!pip install optuna 

import optuna 

Code 5-12 Import Optuna library 

To perform the tuning an objective function, which will allow the comparison of the 

model performance, has to be defined. Since the main objective of the machine learning 

model is to predict the output value with the maximum precision, the test loss will be 

selected as the objective function. Then the search space will be defined. This consists in 

the hyperparameters that have to be tuned with its range of possible values. In the Code 

5-13, the hyperparameter tuning of the MLP with one hidden layer model can be seen. 

def objective(trial): 

  params = { 
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    'learning_rate': trial.suggest_int('learning_rate', 1, 4), 

    'optimizer': trial.suggest_categorical("optimizer", ["Adam", "R

MSprop", "SGD"]), 

    'hidden_dim1': trial.suggest_int("hidden_dim1", 270, 290), 

    'batch_s':trial.suggest_int('batch_s',1,9) 

    } 

     

  model = NeuralNetwork(input_dim, params, output_dim) 

 

  accuracy = train_and_evaluate(model,params) 

 

  return accuracy 

Code 5-13 Hyperparameter tuning on MLP with one hidden layer 

As it can be seen in Code 5-13 and due to restrictions in the definition of the 

hyperparameters, the following changes have to be done in the optimizer initialization, 

the batch size definition and the layer definition of the model, see in Code 5-14. 

  # Setting the optimizer 

  optimizer = getattr(optim, param['optimizer'])(model.parameters()

, lr = 1*10**(-param['learning_rate'])) 

  #Batch size 

  batch=DataLoader(TensorDataset(x_train,y_train), batch_size=2**pa

ram['batch_s'], shuffle=True) 

 

class NeuralNetwork(nn.Module): 

    def __init__(self, input_dim, params, output_dim): 

        super(NeuralNetwork, self).__init__() 

        self.layer_1 = nn.Linear(input_dim, params['hidden_dim1']) 

        nn.init.kaiming_uniform_(self.layer_1.weight, nonlinearity=

"relu") 

        self.layer_2 = nn.Linear(params['hidden_dim1'],output_dim) 

        nn.init.kaiming_uniform_(self.layer_2.weight, nonlinearity=

"relu") 

Code 5-14 Changes in the optimizer, batch size and model layer definition 

After defining the hyperparameters to tune and its range of values, the hyperparameter 

tuning session can start. An Optuna hyperparameter tuning session is called study. A 

study session is created by calling create_study method. The direction argument indicates 

weather the tuning is performed to maximize or minimize the objective function, as it is 

shown in Code 5-15, minimization of the objective function will be selected. The sampler 

argument indicates the optimization strategy, TPESampler() will be used. The 

optimization strategy starts off like random sampler, but it suggests the set of 
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hyperparameter values for the next trial based on the set with better objective values from 

past trials. The optimize method is called with the objective function and the number of 

trials as arguments. After each trial the hyperparameter selection, the value of the 

objective function and the best trial will be displayed. 

study = optuna.create_study(direction="minimize", sampler=optuna.sa

mplers.TPESampler()) 

study.optimize(objective, n_trials=150) 

 

best_trial = study.best_trial 

 

for key, value in best_trial.params.items(): 

    print("{}: {}".format(key, value)) 

Code 5-15 Optuna study creation 
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6 Results 

In this chapter the results of the tuned models are presented with its hyperparameter 

choice. The hyperparameter tuning has been performed with a smaller representative 

dataset of 1000 samples in order to speed up the tuning process. Then the bests models 

are selected and trained with the full dataset of 25000 samples. 

6.1 Multilinear regression 

The hyperparameters are tuned using Optuna, in the Tab 6-1it can be seen the range of 

values that are studied. 

Tab 6-1 Hyperparameter value range for Oputna tuning; Linear regression 

Hyperparameter 

Optimizer Stochastic Gradient Descent, RMSProp, Adam 

Learning rate [0,1 – 0,0001] 

Batch size [2-512] 

Once the study is performed, the best trial has the following hyperparameters: 

Tab 6-2 Hyperparameter choice for the linear regression 

Hyperparameter 

Optimizer Adam 

Learning rate 0,1 

Batch size 128 

The model with the before mentioned hyperparamenters is trained with 100 epochs. As it 

can be seen in Fig 6-1, the test/training curve shows that the model is training correctly 

and there is no overfitting. 

 



62    Results 

 

 

  

Fig 6-1 Train and test loss over the epochs; linear regression 

In the following graphs a comparison between the predicted values and real output values 

is shown for the different input values. As it can be seen in the Fig 6-2, the model is not 

able to predict the output. 

  

Fig 6-2 Real vs predicted effective stiffness over the different parameters; linear 
regression 

To compare this model with the other ones the metrics listed in the Tab 6-3 are obtained: 
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Tab 6-3 Linear regression metrics 

Metrics 

R2 score 0,0345 

RMSE 6,9232 

K-fold mean test_loss 50,6413 

K-fold standard deviation 1,6835 

6.2 Polynomial regression 

The hyperparameter choice of batch size, optimizer and learning rate obtained in the 

multilinear regression will be used in this section to generate a first approximation of the 

polynomial degree. The test loss is monitored for degree steps of 100, as it can be seen in 

the Fig 6-3, the interval between [2,102] has the lower values of loss. Then this interval 

is studied with degrees steps of 20, obtaining the lower loss between degree 82 and 102. 

Finally an Optuna study with the hyperparameters listed in the Tab 6-4. 

 

Fig 6-3 Test loss over polynomial degree 
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Tab 6-4 Hyperparameter value range for Oputna tuning; Polynomial regression 

Hyperparameter 

Optimizer Stochastic Gradient Descent, RMSProp, Adam 

Learning rate [0,1 – 0,0001] 

Batch size [2-512] 

Polynomial degree [82-102] 

Once the study is performed, the best trial has the following hyperparameters: 

Tab 6-5 Hyperparameter choice for the polynomial regression 

Hyperparameter 

Optimizer Adam 

Learning rate 0,01 

Batch size 512 

Polynomial degree 89 

The tuned model is trained in 100 epochs. As it can be seen in Fig 6-4, the test/training 

curve shows that there is no overfitting 

  

Fig 6-4 Train and test loss over the epochs; polynomial regression 

In the following graphs a comparison between the predicted values and real output values 

is shown for the different input values. As it can be seen in the Fig 6-5 the model is not 

able to predict the output. 
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Fig 6-5 Real vs predicted effective stiffness over the different parameters; 
polynomial regression 

To compare this model with the other ones the metrics listed in the Tab 6-6 are obtained: 

Tab 6-6 Polynomial regression metrics 

Metrics 

R2 score 0.0103 

RMSE 7.1008 

K-fold mean test_loss 50,6292 

K-fold standard deviation 1,6638 

6.3 MLP with one hidden layer 

The hyperparameter choice of batch size, optimizer and learning rate obtained in the 

polynomial regression will be used in this section to generate a first approximation of the 

hidden layer dimension. The test loss is monitored for hidden layer nodes steps of 50, as 

it can be seen in the Fig 6-6, the interval between [200,300] has the lower values of loss. 

Then this interval is studied with degrees steps of 10, obtaining the lower loss between 

270 and 290 nodes in the hidden layer.  
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Fig 6-6 Test loss over hidden layer dimension; MLP model with 2 hidden layer 

Finally an Optuna study with the hyperparameters listed in the Tab 6-7.  

Tab 6-7 Hyperparameter value range for Oputna tuning; MLP model with 1 hidden 
layer 

Hyperparameter 

Optimizer Stochastic Gradient Descent, RMSProp, Adam 

Learning rate [0,1 – 0,0001] 

Batch size [2-512] 

Nodes in hidden layer [270-290] 

Once the study is finished the following hyperparameters are obtained 

Tab 6-8 Hyperparameter choice for the MLP model with 1 hidden layer 

Hyperparameter 

Optimizer Adam 

Learning rate 0,001 

Batch size 512 

Hidden layer dimension 281 

The model with the mentioned hyperpameter choice is trained with 1000 epochs. As it 

can be seen in Fig 6-7, the test/training curve the model is training correctly and there is 

no overfitting. 
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Fig 6-7 Train and test loss over the epochs; MLP with 1 hidden layers 

Using the described model, the longitudinal effective stiffness of the defective laminates 

could be calculated with high accuracy. Fig 6-8 shows the correct and the predicted 

modulus of elasticity of all test data. It can be seen that especially in the range of a middle-

lower effective stiffness, the predictions of the MLP with one hidden layer had a high 

accuracy. In the higher and lower range of values the model loses accuracy. 

  

Fig 6-8 Real vs predicted effective stiffness over the different parameters; MLP 
with one hidden layer 

To compare this model with the other ones the metrics listed in the Fig 6-10 are obtained: 
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Tab 6-9 MLP with one hidden layer metrics 

Metrics 

R2 score 0,9995 

RMSE 0,1564 

K-fold mean test_loss 0,0028 

K-fold standard deviation 0,0043 

6.4 MLP with two hidden layers 

The hyperparameter choice of dimension of hidden layer one, batch size, optimizer and 

learning rate obtained in the MLP with one hidden layer will be used in this section to 

generate a first approximation of the hidden layer two dimension. The test loss is 

monitored for hidden layer nodes steps of 50, as it can be seen in the Fig 6-9, the interval 

between [60,110] has the lower values of loss. Then this interval is studied with degrees 

steps of 10, obtaining the lower loss between 70 and 90 nodes in the hidden layer.  

 

Fig 6-9 Test loss over hidden layer dimension; MLP model with 2 hidden layer 

Finally an Optuna study with the hyperparameters listed in the Tab 6-10. 
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Tab 6-10 Hyperparameter value range for Oputna tuning MLP model with 2 
hidden layer 

Hyperparameter 

Optimizer Stochastic Gradient Descent, RMSProp, Adam 

Learning rate [0,1 – 0,0001] 

Batch size [2-512] 

Nodes in hidden layer one 281 

Nodes in hidden layer two [70-90] 

Once the study is finished the following hyperparameters are obtained: 

Tab 6-11 Hyperparameter choice for the MLP model with 1 hidden layer 

Hyperparameter 

Optimizer Adam 

Learning rate 0,001 

Batch size 512 

First hidden layer dimension 281 

First hidden layer dimension 76 

The tuned model is trained with 1500 epochs. As it can be seen in Fig 6-10, the 

test/training curve shows that there is no overfitting. 

 

Fig 6-10 Train and test loss over the epochs; MLP with 2 hidden layers 

Using the described in model, the longitudinal effective stiffness of the defective 

laminates could be calculated with high accuracy. Fig 6-11 shows the correct and the 

predicted modulus of elasticity of all test data. It can be seen that especially in the range 
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of a lower effective stiffness, the predictions of the MLP with two hidden layers had a 

high accuracy. In the range of 72-73 GPa the model a higher deviation on the predictions 

can be seen. Also for the higher and lower values of effective stiffness the model loses 

accuracy. 

 

Fig 6-11 Real vs predicted effective stiffness over the different parameters; MLP 
with two hidden layers 

To compare this model with the other ones the metrics listed in the Tab 6-12 are obtained: 

Tab 6-12 MLP with two hidden layers metrics 

Metrics 

R2 score 0,9998 

RMSE 0,1032 

K-fold mean test_loss 0,01773 

K-fold standard deviation 0,0032 

 



Economic study 71 

 

 

7 Economic study 

This economical study provides a detailed analysis of the costs associated with an 

engineering project. It includes direct costs such as labor, equipment and software, as well 

as indirect costs such as overhead expenses. Additionally, it takes into account an 

entrepreneurial margin to ensure profitability. The study serves as a valuable tool for 

project budgeting and decision making, providing insight into the financial feasibility of 

the project. 

Direct costs: Includes the working hours for the development of the project, its 

supervision, the software licenses used and informatic equipment: 

• Student salary: 675 worked hours at 36 €/h = 23.300 € 

• Supervisor salary: 100 worked hours at 60 €/h = 6.000 € 

• ABAQUS Software license = 9.500 € 

• Computer = 200 € 

Total Direct costs: 39.000 € 

Indirect costs: 

• 20% of indirect costs = 7.800 € 

Total Indirect costs: 7.800 € 

Total Direct costs + Indirect costs: 46,800 € 

Entrepreneurial margin: 

• 10% entrepreneurial margin = 4.680 € 

Total project cost: 51.480 € 

These calculations are based on the data provided and the assumption that the computer 

and software are necessary for the execution of the project, and that the amortization of 

the computer is done in five years and used 6 months. Additionally, the indirect costs and 

the entrepreneurial margin are estimates based on typical industry standards. 
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8 Environmental study 

Given the character of the project, focused on the field of machine learning and FE 

simulation research, this section does not apply beyond the basic criteria of rational use 

of energy and the use of recyclable material during the preparation of the simulations and 

drafting of the report final. 

9 Social and gender equality study 

The present project based on finite element simulation and machine learning is based on 

mathematical models and physical laws, not on subjective opinions or personal biases. 

The simulation results depend on the input data and assumptions, not on the gender of the 

engineer running the simulation. Therefore, there is no reason for gender bias in a finite 

element simulation and machine leaning project.
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10 Conclusions and outlook 

10.1  Conclusions 

In the present project, a parametrized ABAQUS FE model of a composite laminate on a 

coupon level has been successfully implemented. The FE model is created using 3-Shells, 

where just one of them contains the defective ply and the other two the rest of the 

laminate. This approach is validated by comparing the simulation results with the 

experimental ones. By applying multiple parameter variations at the model, a data set of 

25000 samples is generated. From the vast quantity of regression ML models, four models 

are selected and its hyperparameters tuned to obtain the best performance of each model. 

Once all the models are trained, they can be compared to each other with the metrics 

obtained. In the Fig 10-1, the R2 score of the different models is shown. As it can be seen, 

the multilinear and the polynomial model have a value near 0, this means that these two 

models are not able to capture the relationship between the inputs and the output value 

and therefore are not able to generalize. On the other side the MLP models have R2 score 

near 1, which means that these models are able to generalize well for unseen input values. 

Regarding the RMSE values of the models, the multilinear and the polynomial models 

have a high value, since they are not able to predict the output.  
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Fig 10-1 R2 score of the different models 

The MLP models have a lower RMSE value than the polynomial and multilinear models 

as it can be seen in the Fig 10-2. This was the expected result since these latter two are 

not able to predict the output for the given inputs.  

 

Fig 10-2 RMSE for the different studied models 

Both MLP models have similar results in the R2 score and RMSE. The model with two 

hidden layers performs slightly better in terms of these metrics, but also it has a higher 

training time due to the higher number of parameters that it has. Since the present project 

is aiming for accuracy before computational time the MLP model with two hidden layers 

is chosen as the best model that can predict the effects on the effective stiffness of the 

defects that occur during the manufacturing process in the AFP. Also comparing the 

robustness of the models, the cross validation results show that the MLP model with two 

hidden layers is less sensible at the change of the data at the different folds. It is also 
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important to remark that these high accuracy values are only achieved because the data is 

generated with a simulation software. With the use of experimental data, the maximum 

achievable accuracy will be lower. 

10.2 Outlook 

Using the ML model, the effect of a defect in a composite laminate at the effective 

stiffness can be calculated given the type of defect found, the ply where the defect is 

found, the area of the defect and if the defect comprises just one or two plies. 

As it is explained the model is able to interpret the relationships between the inputs and 

the output and is able to give high accurate predictions of it. However, the data used to 

train the ML model is extracted from a simple FE model that does not take into account 

some of the minor effects of these defects, also some of the defect cases were excluded 

of the study because of discordant results with the experimental results. For this reason, 

more investigation in the FE models that can calculate the effect of the defects with higher 

accuracy has to be done. 

In addition, by creating FE models that calculate other mechanical properties, the ML 

model can also be useful to predict these mechanical properties of the composite 

laminates and how they are affected by the defects.
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A USB-Data 

Die Daten-CD enthält die folgenden Ordner: 

• Schriftliche Ausarbeitung (obligatorisch, Arbeit als Word und PDF, Unterordner 

mit allen Abbildungen der Arbeit (Nummerierung der Bilder wie in der Arbeit 

z.B. Abb. 1-2), Citavi Ordner mit PDF-Dateien aller Literaturquellen) 

• CAD Modelle (falls zutreffend) 

• FE Simulationen (falls zutreffend) 

• ML models (Python code) 


