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Abstract 

In the last few years, approximate computing has been one of the most popular 
topics in fields like image recognition, image analysis, language processing, self-
driving, etc. Many scientists have been studying how to make use of approximate 
arithmetic units to improve the efficiency, reduce the power consumption and 
delays of neural networks implementation.  

In this thesis, we proposed three approximate multipliers for the mantissas 
multiplication, the first one is designed to reduce the number of calculations by 
putting one segment of the result to ‘1’ s. The second one is the Mitchell logarithmic 
multiplier and the third one is the logarithmic multiplier with a set-one adder to 
compensate for the negative error which is brought by the Mitchell multiplier. 

In order to evaluate these three multipliers, we are going to use YOLOv3, based on 
the open-source neural network framework which is called Darknet. This framework 
is dedicated to doing object recognition of images and we obtain the results after 
each execution.  
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Resum 

En els últims anys, computació aproximada ha estat un dels temes més populars 
en camps com el reconeixement d'imatges, l'anàlisi d'imatges, el processament 
del llenguatge. Molts científics han estat estudiant com aprofitar l’ús d’unitats 
aritmètiques aproximades per millorar l'eficiència, reduir el consum d'energia i els 
retards en implementacions de xarxes neuronals.  

En aquesta tesi proposem tres multiplicadors aproximats per la multiplicació de 
les mantisses. El primer està dissenyat per reduir el nombre de càlculs posant 
una part del resultat a un valor constant determinat. El segon és el multiplicador 
logarítmic de Mitchell i el tercer és el multiplicador logarítmic amb un carry per 
compensar l'error negatiu que provoca el multiplicador logarítmic. 

Per a avaluar aquests tres multiplicadors, utilitzarem la xarxa neuronal YOLOv3, 
basada en el framework de xarxa neuronal de codi obert que s'anomena Darknet. 
Aquest framework està dedicat a fer reconeixement d'objectes d'imatges. 
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1. Introduction 

1.1. Motivation 

Nowadays, a wide variety of applications of neural networks are using floating point 
numbers for arithmetic operations such as multiplication, since virtually all modern 
processors have embedded floating point units. However, the floating point standard IEEE-
754  requires high power consumption and incur in significant delay, while numerous neural 
networks applications are inherently error-tolerant for computations. Therefore, in the case 
of designing specific processors,, implementing the approximate floating-point multiplier for 
these applications reduces power consumption and improves energy efficiency and time. 

The context of this project is the DRAC project (Designing RISC-V-based Accelerators for 
next generation Computers)[14], in which the UPC participates, that has as its goal the 
design of specific processors for different applications, among them, neural networks for 
image identification in automotive applications. In this context, it is worth exploring efficient 
ways to do the required calculations exploiting approximate arithmetic. 

 

1.2. Goals 

This work will contribute the evaluation of the impact which generated by using three 

approximate multiplier on a neural network to identify objects in images. This thesis aims 

to study three different approximate floating point multipliers in terms of accuracy.  

1.3. Thesis outline 

In the first chapter, a brief introduction, motivation, and goals of the thesis. In Chapter 2 it 

is reviewed the current state of the art in the field of approximate operation.  

Chapter 3 describes the methodology that is followed to develop the approximate multiplier. 

And their results are represented in Chapter 4. 

Chapter 5 describes the budget of the thesis. 

Finally, the last chapter contains the conclusion of the results obtained and future 

development that could be contributed to the project. 

1.4. Gannt diagram 
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2. State of the art 

2.1. IEEE-754 

The IEEE-754 is a standard for floating-point numbers which was published in 1985 by the 
Institute of Electrical and Electronics Engineers(IEEE).   

This standard represents the floating-point number in three components: sign, exponent, 
and mantissa.  

The sign represents the sign of the number. 0 represents a positive floating-point number 
and 1 represents a negative number. 

The exponent represents positive or negative numbers for the exponent of the floating-
point number with a base of 2 or 10.  

To calculate this part, it has to sum all the bits by natural binary and subtracts the bias 

which is 2𝑛−1 − 1.  The mathematical representation is  

• 2𝑛−1 + 2𝑛−2+. . +20 − 𝑏𝑖𝑎𝑠                                                                                                (1) 

For example, if we considering a floating point number of 16 bits with a base of 2 and the 
exponent width will be 5 bits. His bias will be 15 or ‘01111’ in binary, and his range will be 
between -14(‘00001’) to 15 (‘11110’).  

The mantissa represents the significand or fractional part of the floating-point number. 
However, we have to consider that mantissa has one bit implicit which is not stored o 
presented. The mathematical representation is  

• 1 + (2−1 + 2−2+. . +2𝑛)                                                                                                              (2)                                                                                             

For example, if the mantissa is ‘0111100000’, the real mantissa will be ‘101111000000’. 
This red ‘1’ is an implicit bit which has to be considered when doing the computation.  

The following equation is the numeric representation of a floating point number.  

• 𝑂1 = (−1)𝑠1 ∗ 1. 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎1 ∗ 2𝑒1−𝑏𝑖𝑎𝑠                 (3) 

Figure 1 presents a format of floating point numbers and a numeric example. 

 

 

Figure 1.IEEE-754 Floating-point number format 
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According to the format, the standard IEEE-754 has defined several types of precision. The 

most popular are single-precision(32 bits) and double-precision(64 bits). Table 1 

represents the different types of floating-point. 

 

Types Size Sign Exponent Mantissa 

Half-precision 16bits Bit[15] Bit[14…10] Bit[9...0] 

Single-precision 32bits Bit[31] Bit[30…23] Bit[22...0] 

Double-precision 64bits Bit[63] Bit[62…52] Bit[51...0] 

Quadruple-precision 128bits Bit[127] Bit[126…112] Bit[111...0] 

Table 1. Different types of standard IEEE-754 

 

 

The standard also includes arithmetic formats which are: 

-Signed zeros(±0), +0 is ‘0 00000 0000000000’ and  −0 is ‘1 00000 0000000000’. 

-Signed infinite(±∞), +∞ is ‘0 11111 0000000000’ and −∞ is ‘1 11111 0000000000’. 

-Subnormal numbers. A non-zero number smaller than smallest-number                                       

(‘0 00001 0000000000’ in case of half-precision). 

-NaN(not a numbers). A number which all bits of exponent  are 1’s. For example,                               

‘x 11111 xxxxxxxxxx’ is a NaN in case of half-precision.  

 

2.2. Multiplication 

The standard IEEE-754 defines the floating-point multiplication in 3 parts: calculation of 
sign bit, exponent and the product of mantissa. The sign bit is calculated by an XOR 
operation of two operands and the exponent part is calculated by the addition of two 
exponents and the subtraction of bias. The product of mantissa is calculated by the 
multiplication algorithms. After the operation, it is needed to normalise the mantissa and 
exponent. The normalisation is based on: if the first bit of mantissa is 1, the exponent part 
will add 1 and the final mantissa part is the following bits of the first one. In the case of 0, 
the exponent part and mantissa part will be the same. 

To summarise,  the multiplication operands are : 

• 𝑂1 = (−1)𝑠1 ∗ 1. 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎1 ∗ 2𝑒1−𝑏𝑖𝑎𝑠                                                                     (4) 

• 𝑂2 = (−1)𝑠2 ∗ 1. 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎2 ∗ 2𝑒2−𝑏𝑖𝑎𝑠                                                                     (5) 

And the result is: 

• 𝑅 = (−1)𝑠1⊕𝑠2 ∗ (1. 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎1 ∗ 1. 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎2) ∗ 2𝑒1+𝑒2−𝑏𝑖𝑎𝑠                                    (6) 
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Figure 2 shows the diagram block of multiplication. 

 

Figure 2.Floating-point multiplication diagram block 

2.3. Related work 

In the last decade, approximate computing was one of the popular fields that many 

researchers were exploring.  The works in [1] and [2] show how Karatsuba Algorithm affects 

to single-precision floating-point multiplier in terms of power consumption and delays. The 

work in [3] proposed a Vedic multiplier which improved 21,7% of delays compared to a 

traditional multiplier. Moreover, the work in [4] presents a comparison between three 

different multipliers(Booth, Karatsuba and Vedic). 

On the other hand, the logarithmic multiplier(Mitchell’s multiplier) [5] is another solution for 

approximate computing. This paper demonstrates the maximum possible multiplication 

error will be 11,1% and the division error will be 12,5%. In addition, the works in [6],[7],[8] 

and [9] present different improved logarithmic multipliers based on Mitchell’s multiplier to 

achieve better reduction in term of power and delays. 
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3. Methodology / project development:  

In this chapter, we will present all relevant methods that were used in the development of 
the thesis. In section 3.1, we will be introducing three approximate multipliers which we 
have explored. Explaining each multiplier works with numeric examples and the 
distribution of numbers for simulation by using C and studying the errors generated by 
each multiplier. These approximate multipliers will be applied in the multiplication of 
mantissa, which means we will not modify the exponent part and sign part of the floating-
point number. In section 3.2, we will be using these multipliers in YOLOv3 and study how 
the results are affected each multiplier in different images compared to the exact 
multiplier of mantissa.  

 

3.1. Approximate multipliers 

3.1.1. Carry-in prediction multiplier 

This multiplier is inspired by this paper [10] which is consist to separate the multiplication 

into three parts, the high significant bits part (H), the low significant bits part (L) and mid-

low significant part (ML). This multiplier will do the accurate multiplication on the high 

significant bits part and low significant bits part. The inaccurate multiplication will be applied 

in the mid-low bits part. The approximation is based on putting the results by 1’s and 

bringing a carry to the left column.  

As the complexity of the partial product is increased by number of bits. Which means if the 

operand has more bits, the total number of partial product will be more. For example, the 

multiplication of two operand of 4 bits will have 4 partial product. And in case of 8 bits, the 

partial product will be 8.  

So, the advantage of this multiplier is that we can reduce the computation complexity of 

the partial product. For instance, if we use a Wallace tree to compute the partial product, 

using this method will reduce number of computation stage, number of  full-adders and 

improves the latency. In the paper [10], in case of a 8 x 8 partial product evaluation, author 

demonstrates that the number of computation stage has reduced by 1 unit, from 4 to 3. 

Furthermore, the numbers of full-adders is from 15 to 9.  

Figure 3 is a numeric example of this multiplier. These partial products are separated in 3 

parts: yellow columns are low significant bits part, blue columns are mid-low significant bits 

part and red columns are high significant bits part. The blue columns are computed 

approximately. This means their result has been forced to 1’s and brought a carry(C) to the 

left column. In this example, the exact result is 39 ∗ 50 = 1950 and the approximate result 

is 1982 which has a relative error 1,64%.  
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Figure 3. Numeric example of carry-in prediction multiplier 

3.1.2. Mitchell’s multiplier 

This multiplier is known as the logarithmic multiplier by Mitchell [5]. The main idea is to 

simplify the multiplication and division only using shifts and additions.  

So, Mitchell defines 4 steps to compute the multiplication and division: leading one 

detection, binary-logarithm converter, addition or subtraction, and logarithm-binary 

converter.  

Step 1-Leading one detection. Shift a number left until finds the first ‘1’ bit and we note 

this counter as characteristic. As mantissa always starts with ‘1’, this step can be simplified. 

Which means, the characteristic will be a number of bit of the mantissa. For example, in 

half-precision, the characteristic always is 10 or ‘1010’ in binary. 

Step2-Binary-logarithm converter.  The bits which are after the first ‘1’  bit will be 

maintained. These bits are also called the fractional part. In case of floating numbers, these 

bits are bits of the mantissa without the hidden ‘1’. Finally, the combination of these two 

numbers will form a logarithm number. 

Step3-Addition or subtraction. The case of multiplication, the sum will be applied. In 

contrast, the subtraction will be applied. 

Step4-logarithm-binary converter. After step 3, we will have 2 results, one is the 

characteristic and one is the fractional part. To convert to binary, in the first place we have 

to check if the result of fractional part is greater or equal than 2𝑛. The case of affirmative, 

the characteristic will be incremented by 1. In contrast, the characteristic will be the same. 

In the second place, we have to convert characteristic to decimal and assign one ‘1’ to this 

position. For example, if the characteristic is ‘101’ in binary, we have to put one ‘1’ in the 

position 5 of the final result. Then, the fractional part will be concatenated after the 

characteristic and other positions will be ‘0’.  

Figure 4 is a numeric example without carry of this multiplier, we consider 𝑘𝑖  is the 

characteristic(red) and 𝑥𝑖 is the fractional part(green). In this case, both number have the 

same leading one bit in position 5. So, their characteristics is ‘101’. The fractional part is 

‘00111’ and ‘10010’ respectively. Finally, the result of the characteristic is ‘1010’ and we 

have to put ‘1’ to position 10 and concatenate the fractional part. 

Figure 3.Numeric example of carry-in prediction multiplier 
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Figure 4.Numeric example 1 of Mitchell’s multiplier. 

 

 

Figure 5 is a numeric example with a carry. We can see that the fractional part is bigger 

than 25  or ‘100000’ and it has to bring a carry to the characteristic. So, we have to 

increment the characteristic by 1 and put ‘1’ to the position 11(1011) and concatenate the 

fractional part exclude the first bit. 
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Figure 5.Numeric example 2 of Mitchell’s multiplier. 

 

3.1.3. Logarithmic multiplier with set-one adder 

As Mitchell’s multiplier always underestimates the results which is important in neuronal 

network application. Because this application will do a million or more multiplication to 

obtain a result. This accumulated negative errors will affect the decision made by the 

application. So, for this reason, the authors of the work [8] designed three method to correct 

this inherent error, but in this project we will use only the method set-one adder (SOA). This 

multiplier is based on Mitchell’s multiplier, the main idea is computing the high significant 

bit part exactly and forcing the lower significant bit to ‘1’. It also bring a carry bit in a mid-

high significant part to correct the negative error. The position of carry bit is flexible, we can 

put this bit where we prefer. But in this project we have chosen the position 6 and the 

reason is explained in the section 4.2.1.  
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An example of this multiplier is given in Figure 6. In this example, we consider six 
bits(yyyyyyy) will be computed inexactly by forcing to 1.  And the carry bit is located in 
position 6 or ‘001000000’ in binary.  So, the approximate result is 491008 and the exact 
result is 499200. This means the relative error is 1,64%. 

 

 

Figure 6.Numeric example of third multiplier 
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3.1.4. Distribution of numbers  

As mentioned in section 3 each multiplier will be simulated in one million of 

multiplications. So, we had created random numbers between 0 and 1023 to do this 

simulation. Figure 7 shows the distribution of these numbers and we can observe that it is 

a uniform distribution.  

 

Figure 7.Distribution of numbers 

 

 

3.2. Darknet 

Darknet [11] is an open source neural network framework written in C and CUDA by Joseph 
Redmon. It supports CPU and GPU computation and the source code is shared on the 
author’s Github [12].  

This framework has implemented many applications, such as Object detection, ImageNet 
classification, Text generation, and GAN Nightmare. But in this project, we will focus on 
Object detection to observe the behaviour of  these multipliers in image recognition. 

 

3.2.1. YOLO 

“You only look once” (YOLO) [13] is a real-time object detection system implemented by 
Darknet. To do the detection, this network divides the images into regions and in each 
region, predicts the bounding boxes and probabilities.  If the probability is greater than 
0,5, the network will print the object and save the image with detected objects.  This 

model has advantages over other detectors in terms of accuracy improvement and time 
saving. Figure 8 which is taken from work [13] presents a comparison between YOLO 
and other detectors. We can observe that YOLO is extremely faster than the RetinaNET 
and has a similar result in mAP(mean average precision). 
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Figure 8.Comparison between YOLO and other detectors. Figure extracted from[13] 

In addition, Figure 9 is an example of YOLO that the objects detected has been marked 

by bounding boxes. In this case, YOLO detects 3 objects and they are dog, bicycle and 

truck. 

 

Figure 9.Example of YOLO 

3.2.2. Code implementation 

To obtain the results of each multiplier, we changed the code of the exact multiplier to 
each one of the three approximate multipliers considered in this project. The source code 
could be download on GitHub[12]. And we only replace the line where the mantissa 
multiplications are performed. The line which we have changed is named uint_32 
_uint32_mul(uint_32_t x, uint_32_t y) and is located in the function uint_16 
half_mul(uint_16_t x, uint_16_t y) of class half.c[15].  
 
Figure 10 shows the code implementation of the first approximate multipliers. As 
explained in the section 3.1.1, we will separate the partial products in 3 parts. The first 
‘for’ is used to compute all the partial product. The second ‘for’ is used to calculate the 
exact result in low significant bits part. And the third ‘for’ is for the exact result in high 
significant bits part. Finally, we have to force the mid-low significant part to ‘1’ and sum 
the carry, where we do it using OR gate with ‘2016’. To sum the carry, we just using the 
operand ‘+’ with ‘2048’. 
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Figure 10.Code implementation of multiplier 1 

Figure 11 shows the code implementation of the second approximate multipliers. As we 

mentioned in the section 3.1.2, the step 1 can be simplified because of the mantissa‘s 

feature. So, we only need to do a sum of fractional part and check if this result is greater 

or equal than 210 to see if the normalisation is needed. 

 

Figure 11.Code implementation of multiplier 2 
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Figure 12 shows the code implementation of the third approximate multipliers. The 

procedure is the same as the Mitchell multiplier. The unique change is when doing the 

sum, we will sum only 4 first bits(AND gate with 960). Furthermore, the carry and the bits 

which are forced to ‘1’ is done by ‘+127’ or ‘1111111’ in binary.  

 

Figure 12.Code implementation of multiplier 3 
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4. Results 

In this chapter, we present the results obtained from applying the methodology of Chapter 
3. This chapter is divided into two sections, the first is the simulation of one million 
multiplications in C for the three multipliers considered. We will display the trend-line 
between exact result and approximate result, and evaluate the errors introduced by each 
multiplier. In the second section we will evaluate the results obtained from applying an 
inexact multiplier in Darknet. In this section, we consider 25 images with different fields to 
observe the effect of each multiplier in a real application. 

4.1. Simulation results 

In this section, we will present a trend line of three multipliers on Figure 13, 14 and 15. We 

can observe that the first multiplier is introducing a little error because his trend line is 

extremely straight shown in Figure13. In the second place, Mitchell multiplier has 

introduced more errors, but these errors are negatives. That means this multiplier tends to 

underestimate the result, we can see this characteristic on Figure 14. In the Figure 14, we 

can observe that all points are under the orange diagonal. Finally, the last multiplier, due 

to a set-one adder, some approximate results are greater than the real results. The points 

are situated in the left-hand of the orange diagonal show this effect. In addition, this 

multiplier also limited the total number of results, because we forced 6 low significant bits 

to ‘1’ and the result will be a combination of 4 bits. So, in Figure 15 we can see the trend 

line behaves like a ladder(horizontal lines).  

 

Figure 13.Trend line of multiplier 1. 
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Figure 14.Trend line of multiplier 2. 

 

Figure 15.Trend line of multiplier 3. 

 

In addition, we will use the relative error to evaluate the errors of multipliers considered. 

The Figure 16 is a histogram of relative error, the first observation is that the error of 

Carry-in prediction multiplier is very small, these errors are always under than 1%. The 

second observation is that the errors of Mitchell multiplier are negatives, this 

characteristic proves this multiplier always underestimates the result. The third 
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observation is that the third multiplier has reduced the error. In this multiplier, most of 

errors are under of 8% compare to the 11% of Mitchell multiplier. 

 

Figure 16.Histogram of relative error. 

4.2. Darknet result 

In this section, we will explain the results obtained by Darknet in a set of 25 images. The 

main idea is to make a comparison between the exact multiplier and approximate 

multipliers in general aspects and special cases.  

Figure 17 presents a percentage of detected objects (199 objects in total) of each multiplier. 

There are two interesting points, the first point is that the exact floating point of 16 bits is 

better than the exact floating point of 32 bits. The images which demonstrate this point is 

shown in Figure 18. In this case, we can observe that the multiplier of 16 bits detected one 

more house in the first image and one more teddy bear in the second image. The second 

point is that the carry-in prediction multiplier has detected more objects than the exact of 

16 bits in this set of images.  

 

Figure 17.Percentage of detected objects 
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Figure 18.Darknet example 1 

In addition, Mitchell’s multiplier has a very bad result, this multiplier only detected 49,7% 
of objects. In contrast, the third multiplier due to the set-one adder has improved a 18,1% 
of accuracy. We can observe this effect on Figure 19 which contains some example of 
this improvement.  

 
Figure 19.Darknet example 2 
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On the other hand, the total number of objects that can be identified in the 25 images are 

30 objects which are: person, bicycle, car, bus, bird, horse, cow, backpack, etc. From all 

of them, we have chosen 9 objects that have appeared more than 1 time in different 

pictures  and they are person, horse, cow, bottle, cup, wine glass, orange, dinning table 

and teddy bear. Figure 20, 21, 22 and 23 present a percentage of these objects of 

different multiplier, we can observe that the carry-in prediction multiplier has detected the 

same or more objects than the exact of 16 bits. Considering this set of images, we can 

conclude that the carry-in prediction multiplier is the best of these four multipliers in 

general aspect, because it has detected more objects than others. 

 

Figure 20.Percentage of different detected objects of multiplier exact 

 

 

Figure 21.Percentage of different detected objects of multiplier 1 
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Figure 22.Percentage of different detected objects of multiplier 2 

 

 

Figure 23.Percentage of different detected objects of multiplier 3 

 

 

Another interesting study we have performed is to count how many images which 

all the objects have been perfectly detected. Figure 24 presents the number of 

times of perfect detection of each multiplier. The carry-in prediction multiplier 

continues to be the best detector in this case. This multiplier has 2 perfect 

detections more than the other multipliers.  
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Figure 24.Perfect detection 

 

On the other hand, we will present some special cases that we found in the Darknet 

results. Figure 25 presents pictures that have many multiple equal item at the same 

time. In this situation, we can observe that Mitchell’s multiplier(Log1) behaves very 

poorly. For example, in the picture of oranges, this multiplier only detected 3 

oranges, and in the picture of teddy bears also is missing many teddy bears and 

chairs. So, we conclude that Mitchell’s multiplier is inadequate for application that 

needs to distinguish the multiple equal item in the same image. 

 

Figure 25.Darknet example 3 

 

Figure 26 is an example where all the multipliers have detected incorrectly in the same 

object,  4 multipliers have detected the bag as a cake. So, as YOLO do the detection by 

separating the regions into bounding boxes and if the object border is quite confused like 

this situation, the application will detected incorrectly.  
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Figure 26.Darknet example 4 

4.2.1. Comparison of different position of carry bit 

As the work [8] had put the carry bit in a position of mid-high significant part, in this section 

we want to use the Darknet to find the best position for the carry bit. Considering the best 

position is the position which detects more objects possible and less incorrectly detection 

possible. So, we tried the carry bit in position 7, 6 and 5 and Figure 27 is a numeric example 

how to put the carry bit in different position. In the Figure 26, these blue bits correspond 

the carry bit and the position of carry bit also affect the number of bits of the fractional part 

will compute exactly. For example, if the carry bit is on position 7, the fractional part (green 

bits) will only have 2 bits exactly and in case of position 6, will have 3 bits exactly.  

 

Figure 27.Numeric example of different position of the carry bit 
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In addition, to decide which position is the best, we are going to evaluate the percentage 

of total detected object.  Figure 28 presents a percentage of these 3 positions. We found 

that the carry bit in position 6 has detected more objects than other positions.  

 

Figure 28.Percentage of detected objects for different position 

One interesting finding is that the position 7 detects less objects(15 objects) than other 

positions except the situation when image has multiple equal item at same time. Then, the 

position 7 is better than the other position. Figure 29 shows an example of this special case, 

in both pictures of position 7 has detected more objects than others positions. So, if the 

application needs to distinguish the similar things, the position 7 will be a good solution for 

this situation.  

 

Figure 29.Darknet example 5 

 

In addition, the reason that we do not choose the position 7 as the best position is 

demonstrated in the Figure 30. This position will generate many pictures with incorrect 

detection, 5 pictures of 25. The other multiplier only generate 1 image with incorrect 



 

 30 

detection. For example, in the picture 1), the fork is the wrong detection. In the pictures 2) 

and 4), Darknet has detected banana in each picture. And in the picture 3), there are 2 

objects(dinning table and apple) are wrong detection. So, the position 7 increases the 

probability of incorrect detection and this is a big problem in the application like self-driving.   

 

Figure 30.Darknet example 6 
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5. Budget 

In this section, we are going to estimate the cost of the project. As mentioned in the 
introduction, this project will use a framework to determine the results. So, the 
implementation is only needs a computer with high computational capacity. In this 
case, we use our personal computer and get access to the remote server which is 
provided by UPC. 

 

The main cost of the project is the salary of the researchers are involved in this 
work. This project has two roles, junior researcher and three senior researchers. 
The junior researcher will have an hourly wage of 10€/hour and the senior 
researcher will have an hourly wage of 20€/hours.  

 

Considering this project was completed in 25 weeks. The table 2 summarises the 
budget of the project. 

 

 

 

 

 
 

Item Amount Cost Dedication Total cost 

Computer 1 800€  800€ 

Junior researcher 1 10€/hour 20h/week 5000€ 

Senior researcher 3 20€/hour 2h/week 3000€ 

Total    8800€ 
Table 2. Budget of the project 
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6. Conclusions and future development:  

The main goal of this project was to implement different approximate multipliers which are 
inspired by works [5], [8] and [10] to perform the multiplication more efficiently. To evaluate 
the result, we will apply these multipliers in a neural network application (YOLOv3) to do 
an object detection, we obtained interesting results about these multiplier utilisation.  

The evaluation results of a set of 25 images in the section 4,2 demonstrate the following 
conclusions: the first is that the floating-point of 16 bits is better than the 32 bits in general 
aspect because the multiplier of 16 bits has detected more objects than 32 bits. The second 
conclusion is that if we force the low significand bit part to ‘1’, the result is better than the 
exact. This conclusion is improved in the first multiplier and the third multiplier, the first 
multiplier has detected 3 more objects than the exact multiplier of 16 bits, and the third 
multiplier has increased 18,1% of accuracy compare to the Mitchell’s multiplier.  

In conclusion, these three multipliers reduced the complexity of computation. The first one 
reduced 6 columns of partial product. And the last two converted the multiplication to a 
single sum. In addition, the result of the first and the third multiplier was great because 
these two multipliers maintained a good level of accuracy, the former is even better than 
the exact; the latter reduced only 5,6% of accuracy.  

As future work, there are different approaches that could be investigated. For example, 
implement this multiplier in a FPGA application in order to study the improvements in terms 
of area, power consumption, and delays. The second approach could be to simulate this 
multiplier in a particular field, i.e, self-driving.  
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