

0

Calibratge, caracterització i aplicació d’un Sistema de

mesura ambulatory de la temperatura de la pell i

l’activitat física

A Master's Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Nagore Castro Fornaguera

In partial fulfilment

of the requirements for the degree of

MASTER IN TELECOMMUNICATIONS ENGINEERING

 1

Advisor:

Garcia Gonzalez, Miquel Angel

Ramos Castro, Juan Jose

Barcelona, May 2022

 2

Title of the thesis: Calibratge, Caracterització i Aplicació d’un Sistema de mesura

ambulatoria de la temperatura de la pell i l’activitat física

Author: Nagore Castro Fornaguera

Advisor: Garcia Gonzalez, Miquel Angel

 Ramos Castro, Juan Jose

Abstract

The project focuses on the design and development of a portable peripheral temperature

measurement device to study the sleep cycle that is closely linked. The distal skin

temperature increases around the first hours of the night, reaching the maximum when the

user is completely slept, where it remains constant until the awakening begins. This is the

continuation of a previous project where improvements have been made. Changes have

been made in the interconnection of the sensors and the user interface. Moreover, a

calibration procedure to correct the error due to the ambient temperature drifts on the skin

temperature has been made to obtain an accurate system that correctly acquires the

temperature of the distal skin. Some statistics applied to the measurements allow to detect

when a user has a good quality sleep. Physical activity, another function added in the

project, has been seen to be related with changes in temperature obtained at night.

 3

Acknowledgements

Different people have participated in the work carried out during this project, to whom I

want to express my gratitude for the help and time invested. The project tutors, Miquel

Ángel García González and Juan José Ramos Castro, for guiding me along the way and

being available at any time to answer questions. To Alfonso Méndez Moya, laboratory

technician, for helping me weld the newly designed prototype. Finally, to my family for being

by my side supporting me during the project.

 4

Revision history and approval record

Revision Date Purpose

0 01/04/2022 Document creation

1 28/04/2022 Document first revision

2 04/05/2022 Document second revision

3 09/04/2022 Document last revision

Written by: Reviewed and approved by:

Date 13/05/2022 Date 13/05/2022

Name Nagore Castro Fornaguera Name Garcia Gonzalez, Miquel Angel

Ramos Castro, Juan Jose

Position Project Author Position Project Supervisor

 5

Table of contents

Abstract ... 2

Acknowledgements .. 3

Revision history and approval record... 4

Table of contents .. 5

List of Figures ... 7

List of Tables .. 10

1 Introduction.. 11

1.1 Objective .. 11

1.2 Requirements... 11

2 State of the art ... 13

2.1 Circadian Rhythm .. 13

2.2 Technology review ... 15

3 Device Improvements ... 17

3.1 Hardware ... 18

3.2 Software ... 27

3.3 Calibration .. 33

3.3.1 Measurement at constant reference temperature 36

3.3.2 Measurement at constant ambient temperature .. 37

3.3.2.1 Calibration equations .. 38

3.3.3 Implementation of the measurement system ... 38

4 Sleep cycle measurements and characterization ... 41

4.1 Sleep cycle results ... 41

4.2 Characterization of the sleep cycle ... 44

4.2.1 Standard deviation ... 45

4.2.2 Skewness ... 45

4.2.3 Kurtosis ... 46

 6

4.2.4 Characterization results.. 46

5 Budget ... 54

6 Conclusions and future development ... 56

Bibliography .. 59

Appendix ... 60

1 Arduino Code .. 60

2 Code to get proceed from E4 .. 78

3 Code to characterize the data ... 79

4 Code to analyse temperature changes vs. acceleration .. 83

5 Questionnaire .. 85

 7

List of Figures

Fig. 1 Regulation of Circadian Rhythms .. 14

Fig. 2 Nocturnal variation of the core/distal skin temperature ... 15

Fig. 3 Final box design ... 18

Fig. 4 Exploded view final box design .. 18

Fig. 5 Smartwatch strap ... 18

Fig. 6 Block diagram ... 19

Fig. 7 Previous schematic version ... 21

Fig. 8 Front side PCB previous version ... 22

Fig. 9 Back side PCB previous version .. 22

Fig. 10 PCBs components previous version .. 22

Fig. 11 Back side .. 23

Fig. 12 Original connection system with skin TMP117 .. 23

Fig. 13 Width equation ... 24

Fig. 14 Connector selected .. 24

Fig. 15 Zoom of the lower right part of the new schematic version 24

Fig. 16 New schematic version .. 25

Fig. 17 New front side PCB version ... 26

Fig. 18 New back side PCB version... 26

Fig. 19 New PCBs components version .. 26

Fig. 20 Previous flowchart .. 27

Fig. 21 Distribution of bytes on a page .. 28

Fig. 22 Reading previous data format. In blue the first block of the page and in green the

remaining blocks... 29

Fig. 23 Main menu of the system ... 29

Fig. 24 Reading data format ... 30

Fig. 25 Current flowchart .. 31

file://///Users/eric/Dropbox/Mi%20Mac%20(MacBook-Pro-de-Eric.local)/Downloads/tfm.docx%23_Toc103353169

 8

Fig. 26 Date/Time printed state .. 32

Fig. 27 Temperature printed state .. 32

Fig. 28 Set Date/Time state ... 33

Fig. 29 Calibration system .. 33

Fig. 30 Scheme of the arrangement of the sensors in the aluminium block 34

Fig. 31 Block diagram of calibration system .. 34

Fig. 32 Calibration system scheme .. 35

Fig. 33 Tamb vs. TSkinTMP117 at constant reference temperature 36

Fig. 34 Tamb vs. TAmbientTMP117 at constant reference temperature 36

Fig. 35 Tref vs. TSkinTMP117 at constant ambient temperature...................................... 37

Fig. 36 Tref vs. TAmbientTMP117 at constant ambient temperature 37

Fig. 37 TSkin obtained from the TMP117 with the calibration applied 39

Fig. 38 TAmbient obtained from TMP117 with the calibration applied 39

Fig. 39 Sleep cycle measured with E4 wristband of Empatica .. 41

Fig. 40 Sleep Cycle measured by the E4 wristband of Empatica 42

Fig. 41 Sleep Cycle acquired with the system designed ... 42

Fig. 42 Sleep Cycle with the calibration applied .. 43

Fig. 43 Simultaneous display of temperature changes and acceleration.......................... 44

Fig. 44 Types of Skewness .. 45

Fig. 45 Types of Kurtosis ... 46

Fig. 46 Histograms of the original temperature curve ... 47

Fig. 47 Output signal after 10 min moving average applied to compute skewness and

kurtosis ... 48

Fig. 48 . Output signal after 90 min moving average applied to compute standard deviation

 .. 48

Fig. 49 Difference between original signal and processed signal with 90min moving

average ... 49

Fig. 50 Raw temperature reported by the E4... 51

 9

Fig. 51 Standard Deviation (ºC) vs. Mean of Acceleration (m/s2) 52

 10

List of Tables

Table 1 Technical requirements of the project .. 12

Table 2 Statistics values of the measurements done .. 50

Table 3 Main questions of the questionnaire perform to the subjects 53

Table 4. Comparison of the values obtained from the questionnaire and the standard

deviation of the detrended temperature ... 53

Table 5 Components summary .. 54

Table 6 Personal salaries summary... 55

 11

1 Introduction

The project is a continuation of the design and development of a portable peripheral

temperature measurement device to study the sleep/wake cycle which shows a close

relationship with circadian changes in body temperature: core temperature decreases

when an individual falls asleep, and the end of the sleep period coincides with the rising

phase of the core temperature curve. However, recent evidence suggests that sleepiness,

the variable to be studied at the project, may be more closely linked to increased peripheral

skin temperature than to a core temperature drop, and that distal skin temperature seems

to be correlated with core body temperature (CBT), suggesting that heat loss from the

extremities may drive the circadian rhythm of CBT.

The previous project focused on the development of the hardware and software of the

system, finding the components that meet the requirements, and position them in the most

efficient way possible to get the system running smoothly. Regarding the software, a code

was developed to obtain the desired temperature data, but the user testing or calibration

was not carried out.

This project will allow to finish the implementation of the wearable device by improving

some practical issues and to gain insight on the peripheral skin temperature dynamics

during sleep cycles in field experiments in volunteers.

1.1 Objective

The aim of the project is to improve the design of the previously developed device to obtain

the peripheral temperature of the wrist and add the function of measuring physical activity

through an accelerometer to correlate the information obtained from the temperature

sensors. Some of the required improvement include connection issues with the sensor

attached to the skin, operability of the software for configuration of the device and data

acquisition and a calibration to improve the accuracy of the measuring system against

temperature changes.

On the other hand, the second main objective is to characterize the data obtained in

measurements made to different users while looking for an indicator that correlates with

the sleep quality of the subject as assessed by the level of activity experienced during a

sleep cycle.

1.2 Requirements

The device is designed to be bracelet type, located on the wrist to record and store the

peripheral and ambient temperatures through two temperature sensors. The sensors have

 12

to present enough resolution to detect the variation of temperature over the measurement

time. It will also be important to ensure a correct thermal attachment of the device to the

wrist which guarantees a good contact with the skin sensor to get an accurate result.

In addition, related to the hardware, the fact of including the accelerometer it does not have

to significantly increase the consumption of the battery since a low-power consumption it

is required since the device have to work for a period of time longer than 24 hours to

analyse an entire circadian cycle without the need of recharging. The technical

requirements are listed in Table 1.

Body temperature measurement range 25ºC - 50ºC

Ambient temperature measurement range -20ºC - 65ºC

Measurement resolution Better than 0.05ºC

Battery life > 24h

Data storage > 24h

Table 1 Technical requirements of the project

Related to the software, it has to be user-friendly to be able to be used by any user.

Besides, it is required to visualize the data on the serial monitor to observe if the device is

obtaining the data correctly, together with the possibility to stop the acquisition without the

necessity of restart the system which is a disadvantage observed in the previous project.

 13

2 State of the art

The sleep/wake cycle shows a relationship with the circadian rhythm that affects the

temperature changes. An individual normally falls asleep when the core temperature is

decreasing, and the end of the sleep period coincides with the rising phase of the

temperature circadian curve [1]. Nevertheless, the sleeping cycle has a tighter temporal

relationship with the distal skin temperature than with the minimum core body temperature

(CBT), suggesting that sleepiness may be closely linked to distal skin temperature.

Next, the physiological mechanism that regulate skin and core body temperature are

explained and a short review on temperature sensors is included.

2.1 Circadian Rhythm

A circadian rhythm is a natural, internal process that regulates physiological functions such

as the sleep-wake cycle, physical activity, alertness, hormone levels, body temperature,

immune function, and digestive activity. The rhythms are driven by a circadian clock which

is a biochemical oscillator that cycles with a stable phase and is synchronized with solar

time. The circadian pacemaker is the suprachiasmatic nucleus (SCN) of the hypothalamus

[2]. It coordinates the circadian rhythms across the entire body, influenced by a combination

of internal and external cues. The intrinsic period of the cycle is approximately 24 hours

[1], although it can vary slightly between individuals, so, to adjust to the exact 24-hour cycle,

the SCN uses external signals, Zeitgebers, to synchronize. A Zeitgeber is any external or

environmental cue that entrains or synchronizes an organism’s biological rhythms inducing

changes in the concentration of the molecular components of the clock to levels consistent

with the appropriate stage in the 24-hour cycle. Light is the strongest synchronizing

Zeitgeber for the circadian system and therefore keeps most biological and psychological

rhythms internally synchronized, which is important for optimum function. Light resets the

oscillations in the SCN through a mechanism involving melaniosin-containing retinal

ganglion cells which project directly to the SCN via the retino-hypathalamic tract [2].

Through an indirect pathway, circadian information reaches the pineal gland where the

hormone melatonin is produced. Together with neural information from retinal ganglion

cells can also directly act on the sleep-wake system.

 14

Fig. 1 Regulation of Circadian Rhythms

Some circadian rhythms are used as biological clocks, such as the work/rest cycle, salivary

melatonin cortisone levels, heart rate, blood pressure, and core body temperature.

Although its measurement is simple, a specialized laboratory is needed to have controlled

conditions, which prevent monitoring of a real cycle. An example is the core body

temperature (CBT) characterized by heat loss at night due to vasodilation in peripheral

areas of the skin. The gold standard measurement used to estimate core body temperature

is using a catheter. Since catheters are highly invasive, there are acceptable alternatives

such as rectal measurements or ear thermometers. [1] Markers that can be measured on

an outpatient basis, with non-invasive and comfortable devices for the subject, are gaining

prominence as they allow long-term monitoring in real activity conditions. For that reason,

different lines of research have been followed. Recent evidence suggests that sleepiness

may be more closely linked to increased peripheral skin temperature than to a core

temperature drop which seems to be correlated and phase-advanced with respect to CBT,

suggesting that heat loss from the extremities may drive the circadian CBT rhythm. [1] The

advantage is the possibility of monitoring with a non-invasive technique using thermal

sensors located in peripheral areas of the skin. For that reason, the project follows the

research line of monitoring the wrist temperature (WT) which is approximately 1 hour ahead

of the CBT rhythm, being able to predict changes in core temperature from peripheral

temperature data. Figure 2 shows how the CBT falls during the night hours and increases

during daylight hours. Meanwhile, the distal skin temperature begins to increase around

the early hours of the night, reaching the maximum when the user is fully asleep, where it

remains constant until initiates to wake up, and going down to its minimum value during

the day.

 15

Fig. 2 Nocturnal variation of the core/distal skin temperature

However, the rhythm could be affected by exogenous factors such as ambient temperature

or an irregular sleep cycle. Therefore, if the user presents an alteration of the sleep cycle,

the temperature monitoring will depict peaks that will be related to that disturbance. These

factors that influence both CBT and WT are physical activity, body position, light exposure,

ambient temperature, etc.

2.2 Technology review

There are different commercial devices on the market for monitoring one or more vital signs

such as body temperature, heart rate or blood oxygen saturation level. In this project, the

different devices have been analysed, but first, a review of the types of existing temperature

sensors has been carried out to understand why the selected sensor is adequate for the

objective of this project.

A temperature sensor is a device, usually, a thermocouple or resistance temperature

detector which provides temperature measurement in a readable form through an electrical

signal. The most common types are the following:

o Resistance Temperature Detectors (RTD). It consists of a length of fine wire

wrapped around a ceramic or glass core. RTD changes the resistance of the

element by the temperature changes. They are used because offer a near linear

response to temperature changes, are stable and accurate which provides accurate

and repeatable responses and have a wide temperature range. However, they have

disadvantages as they are slower, require an excitation current, and require signal

conditioning.

 16

o Thermocouples are the most commonly used type of temperature sensor.

Thermocouples are self-powered, require no excitation, can operate over a wide

temperature range, and have quick response times. They are made by joining two

dissimilar metal wires together, hence based on the Seebeck Effect which is a

phenomenon that a temperature difference of two dissimilar conductors produces

a voltage difference between the two metals. The voltage difference is measured

and used to calculate the temperature. The disadvantages of thermocouples

include the fact that measuring temperature can be challenging because of their

small output voltage, which requires precise amplification, susceptibility to external

noise over long wires, and correction of the temperature of the cold junction.

o Thermistors are similar to RTDs in that temperature changes cause measurable

resistance changes. They are normally made from a polymer or ceramic material.

Thermistors are cheaper but less accurate than RTDs. The Negative Temperature

Coefficient (NTC) are the most commonly used thermistor for temperature

measurement application which its resistance decrease as the temperature

increases.

o Semiconductor based ICs are classified in two different types: local temperature

sensor, which measure their own die temperature by using the physical properties

of a transistor and remote digital temperature sensor, which measures the

temperature of an external transistor. Local temperature sensors can use either

analog or digital outputs. Analog outputs can be either voltage or current while

digital can be seen in several formats such as I2C, SMBus, 1-Wire, and Serial

Peripheral Interface (SPI).

o Integrated Circuit (IC) sensors are mostly composed by two identical transistors

which operate at different but constant collector current densities, and the difference

in their base-emitter voltage is proportional to the absolute temperature of the

transistor. The voltage difference is then converted to a single ended voltage or a

current. The package is small with a low thermal mass and a fast response time.

The most common temperature range is -55 to 150ºC, and the output can be analog

or digital. The analog IC solid state sensor provides an output as a voltage or current

that is proportional with temperature without additional circuitry. The digital IC

sensor provides an output that has been processed through an integral A-D

converter on an IC chip and is ready for input into digital control and monitoring

systems. The IC sensor does not require linearization or other circuitry.

 For the project, it was decided to use, for simplicity, a master-slave data bus (I2C) that

allows controlling all the sensors with only two cables: SDA (Serial Data), a line where the

 17

data is transferred, and SCL (Serial Clock), a line that helps all devices to be synchronized

with a clock signal. Therefore, electronic sensors compatible with the standard were

needed. Finally, considering all the specifications and for simplicity, an integrated circuit

sensor with digital output and serial communication was chosen for the designed system.

Once the temperature sensors have been described, a search for commercial wearables

devices that measure wrist temperature have been done. One commercial device is the E4

Wristband (Empatica) [4] that it has been also used for measuring in the project. The device

is a medical-grade wearable device that offers real-time physiological data acquisition. The

E4 is equipped with sensors to gather high-quality data and enable the measurement of

blood volume pulse (BVP) from which heart rate variability can be derived, the

measurement of the constantly fluctuating changes in certain electrical properties of the

skin, captures motion-based activity, reads peripheral skin temperature and let the user the

possibility to tag events during the measurement. The E4 uses as a temperature sensor an

infrared thermopile which samples the temperature at 4Hz with an accuracy of 0.2ºC within

36ºC and 39ºC. It has a resolution of 0.02ºC. The price of the E4 wristband is around 1700$.

On the other hand, there are others devices which measures the peripheral skin

temperature such as the Celsium [5] a clinically validated and CE marked wearable sensor

which samples the body temperature every four seconds to get any small change, and

VisiMobile (Sotera) [6], and ambulant vital signs monitor, created to replace punctual

checks of vital signs and offer a continuous record of them, for a better monitoring of the

patient’s condition.

Although it is possible to find a variety of portable devices that continuously measure skin

temperature, this project has been based on the design of a new device that allows the

simultaneous measurement of temperature and physical activity to find out if there is a

relationship between both variables, together with other advantages such as ambient

temperature changes cancellation and long autonomy life, with a lower cost than the

devices currently on the market.

3 Device Improvements

The section describes the methodology followed to make a usable prototype to accurately

measure skin temperature. The development has been divided in three parallel parts,

hardware, software and calibration parts. Each part presents a research line which their

specific objectives.

 18

3.1 Hardware

For the hardware part, it has been started with a previous design and tried to improve it.

For the design, a study on the last project has been done to know the ergonomic

requirements to develop an accurate wearable product. The aim of the design was to

guarantee a precise contact sensor-skin with the user. The design consists of two main

parts: the case, in which the associated electronics will be located, and the strap, which

will secure the case to the user’s wrist. The case is composed by the main body where the

PCB with all the electronics, the ambient temperature sensor and the strap anchors are

located; and the lid, to which a metallic conductive piece is added to transmit the heat from

the user’s skin to the peripheral temperature sensor.

Fig. 3 Final box design

Fig. 4 Exploded view final box design

The final design, shown in Figure 3, consists of a case with dimension 36.8 mm x 47.82

mm x 13.33 mm which provides a comfortable design for the user. The box allows the PCB

to be connected via micro-USB to the computer from a slot centred on one of the side faces.

The USB connector is used to upload the code, download the recorded data and charge

the internal battery. Besides, it presents two holes on the upper face, one to allow the

passage of light from an LED indicating the status of the device, and another that allows

the ambient temperature sensor to capture the outside temperature more precisely. In

addition, internal structures were added to help fix the different electronic components in

place, so that it would not move freely inside the box.

The design of the strap anchor is suitable for the commercial

standard 20 mm wide watch straps that are fixed by a pin as

shown in Figure 5. The box was printed in 3D using PLA. The

lower cover has a projection that allows it to be attached to the

box by pressure, and includes an aluminium conductive disk

which facilitates the transfer of heat from the user’s skin to the

temperature sensor
Fig. 5 Smartwatch strap

 19

The electronics used to achieve the goal of the project was the designed in a previous

project as it is mentioned before. Here is a short summary of the electronic component’s

interplay. The block diagram of the hardware electronics is represented in Figure 6.

Fig. 6 Block diagram

The components needed to perform the measurement of the temperature are two high-

precision digital temperature sensors (TMP117), to measure skin and ambient temperature,

a real-time clock (DS323MZ) to measure the time when obtaining data, an accelerometer

(MMA8652FCR1) to measure the user activity, an EEPROM (M24M02-DRMN6TP) to save

the data obtained from the temperature sensors and accelerometer and a low-power

microcontroller (ATSAMD21E) which controls each component to perform its function. On

the other hand, it is needed a USB port for communication between the hardware, the

computer and the power supply. As the system is needed to work autonomously, an

external battery and charger are required. Finally, to guarantee a continuous voltage to the

components a low-dropout linear regulator (AP2112) is included.

The selection of each component has been arranged using the datasheets offered by each

manufacturer and the needs of the system which are explained below:

o TMP117 is a high-accuracy temperature sensor with low power consumption which

minimizes the impact of self-heating. It provides a 16-bit temperature result with a

resolution of 0.0078ºC and an accuracy up to +/-0.1ºC across the temperature

range of -20ºC to 50ºC with no calibration. It operates from 1.7V to 5.5V and

typically drains up to 3.5µA with I2C interface compatibility.

 20

o MMA8652FCR1 is an intelligent, low power, three axes accelerometer with 12 bits

of resolution. It has +/-2g, +/-4g and +/8g dynamically selectable full-scale ranges

with output data rates (ODR) from 1-56Hz to 800Hz. It has a supply voltage from

1.95V to 3.6V and I2C interface supply of 1.62V to 3.6V.

o DS323MZ is a low power consumption I2C real-time clock (RTC) with 236 bytes of

battery-backed SRAM. It provides an accuracy of +/-0.432 second/day from -40ºC

to +85ºC. The device incorporates a battery input and maintains accurate

timekeeping when the power supply is interrupted.

o M24M02-DRMN6TP is a 2Mbit I2C-compatible EEPROM (Electrically Erasable

PROgrammable Memory) organized as 256K x 8 bits. It can operate with a supply

voltage from 1.8V to 5.5V, over an ambient temperature range of -40ºC to +85ºC.

The previous schematic version of the electronics is shown in Figure 7. At the top are

located the components related to the communication between the microcontroller, the

computer and the power supply section. At the bottom right there are the components for

data collection, the two temperature sensors, the accelerometer and RTC. At the bottom

left there are the microcontroller and MEM.

21

Fig. 7 Previous schematic version

22

The PCB, shown below, was designed to guarantee a correct connection between the
components.

Fig. 8 Front side PCB previous version

Fig. 9 Back side PCB previous version

Fig. 10 PCBs components previous version

 23

As can be seen in the Figure 10, the skin temperature sensor (U7) is located independently.

This part of the PCB is cut to place the skin temperature sensor on the back of the case

where a plate of aluminium, Figure 11, is placed to get a good thermal contact and therefore

a good reading. Consequently, some wires must connect the temperature sensor with the

microcontroller. In the previous project the wiring system used was a copper wire where

each of the sensor terminals were soldered to the specific traces of the PCB.

Fig. 11 Back side

Fig. 12 Original connection system with skin TMP117

The previous wiring system had mechanical problems since the welds were weak and

easily breakable due to their lack of flexibility. Therefore, in this project a solution is

proposed to replace the wiring with a reliable connector. To solve the problem a premo-

flex flat flexible (FFC) cable jumpers has been selected. It has characteristics such as being

extra flexible, rated up to +105ºC and has a simple assembly process which makes it

perfect for electrical connection between PCB’s. The FFC needs specific connectors called

FFCs and FPCs to make the connection between both ends. The two options found for

FFC connectors were either a vertical mounting angle or a right angle. As the box had a

specific height, the connector with a right angle was chosen since it offered more freedom

when locating all the components inside the box.

The number of connection lines needed to create the communication between the

temperature sensor and the microcontroller is four: the SDA, the SCL, power and ground.

Therefore, a 4-position connector is required. Due to stock problems, the specific connector

with four position was not available. The width for the 4-position connector selected was

5.20 mm following the rules on Figure 13. since the pitch was 1 mm. Therefore, a connector

with a higher number of positions had to be found that would not exceed the width of the

4-position connector. A 6-position connector was found that had a pitch of 0.5 mm, so that,

with the proposed formula at Figure 13, the width was 4.7 mm. By respecting the

dimensions proposed from the beginning, a Molex connector with reference 538-503480-

0600 was selected. It is shown in Figure 14.

 24

Fig. 13 Width equation

Fig. 14 Connector selected

As a 6-position connector with a 0.5mm pitch was finally selected, a cable with the same

characteristics (reference 15020-0051) had to be chosen in order to make the connection

correctly.

The change of the connection system caused a modification both in the schematic (see

Figure 16) with the addition of the two connectors and in the PCB (see Figure 17) which

can be seen in the two figures below.

If zoom is done in on the lower right part of Figure 15, it can be seen the addition of the two

connectors: J4 connected directly to the temperature skin sensor (U7) and J3 connected

to the corresponding connection lines.

Fig. 15 Zoom of the lower right part of the new schematic version

25

Fig. 16 New schematic version

26

Fig. 17 New front side PCB version

Fig. 18 New back side PCB version

Fig. 19 New PCBs components version

Figure 19 shows at the right side the addition of the two connectors, one on the main PCB

(J3) connected to the connection lines and the other (J4) at the secondary PCB connected

to the skin temperature sensor (U7).

 27

3.2 Software

The system aims to perform peripheral temperature measurements in volunteers for

subsequent processing and analysis of the data obtained. In the same way, as hardware,

the software section was not started from scratch but was based on the program made in

a previous project. To better understand the program, the flowchart of the preceding project

is attached below in Figure 20.

Fig. 20 Previous flowchart

The process begins when the user plugs the device into the computer, where the standby

mode is activated. The monitor of the selected serial port shows the menu to choose the

action it is wanted to be performed. The software allows three kinds of actions: acquire and

store the data, read data and reset the device. In the improved version of this project,

functions have been added offering advantages to the user, which will be explained later.

The start action allows the acquisition of the temperature as well as the acceleration every

ten seconds, which are sent directly to the memory until it is full, where it returns to standby

mode. The measurement can also be interrupted when the battery of the device runs out.

In both cases, the device has to be restarted to read the data stored in the memory. After

the acquisition of the data ends, the device has to be connected to the computer again to

select the read action to obtain the data. The data was stored in pages of 255 bytes

separated in blocks of 12 bytes the first and 8 bytes the remaining blocks. At the first block

the byte 0 is assigned to the day, byte 1 to the month, bytes 2-3 to the year, byte 4 to the

hour, byte 5 to the minute, byte 6 to the seconds, and the next five bytes to the acquisition

of temperature and acceleration: Bytes 7-8 are reserved for ambient temperature, bytes 9-

Standby

Stop Test
mode?

Start “A” press

Send “E” press

Reset “N” press

“R” press Read

Stop

“A” press

“N” press

“R” press

Start Send

Full memory?

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

Read

Reset

No

Yes

Yes

Yes

Yes

Yes

 28

10 for skin temperature and 11 for physical activity since internally the code performed a

calculation based on the accelerometer axes and stored a 1 or 0 in memory depending on

whether there was movement or not, respectively. The other blocks do not save the date

of the acquisition to save space: the byte 0 corresponds to the hour, byte 1 to the minute,

byte 2 to the seconds, bytes 3-4 for ambient temperature, bytes 5-6 for skin temperature

and byte 7 it is for the activity. Figure 21 shows the distribution of the bytes explained

previously.

Fig. 21 Distribution of bytes on a page

The read process shows the information acquired from the serial monitor of Arduino. The

data is printed in the same format as it is stored in the memory, shown in Figure 22, so it

is not possible to directly read the real values of temperature or date and time of acquisition.

Post-processing of the data with Matlab is necessary, which creates an excel file where the

data is written correctly in units of time and temperature. Once the memory dump is

complete, is the moment to reset the system to start a new measurement.

2

…

…

…

30

31

1

1

…

10

11

0

1

…

6

7

0

31 Blocks/page

 12 Bytes/block

PAGE 1

PAGE 1024

12
B

8B 8B 8B …

1
0
2
4
 p

a
g
e
s

255 Bytes/page

 8 Bytes/block

 29

Fig. 22 Reading previous data format. In blue the first block of the page and in green the remaining blocks

The disadvantages found in the previous code were the need to restart the system to

change the function, the impossibility of visualizing the data that is being acquired in real

time, and the necessary post-processing for the correct reading of the data obtained. Apart

from the resolution of these problems, more functions have been added to the system such

as the reading of the current date or temperature value.

The process followed in the new version, can be seen in Appendix 1, is the same as in the

previous one but improvements are added, that is, to begin with, it is necessary to connect

the device to the computer to configure it before placing it on the user’s wrist. However,

now the number of actions offered by the program is seven: data acquisition and storage,

data reading and system reset as before, the acquisition of the current time, the acquisition

of the current temperature and acceleration and the possibility of setting the date and time

of the system have been added in this project as it shown in Figure 23.

Fig. 23 Main menu of the system

21 6 7 229 13 37 45 9 104 0 0 0 13 37 56 9 104 0 0 0 13 38 7 9 105 0 0 0 13

38 18 9 105 0 0 0 13 38 29 9 106 0 0 0 13 38 40 9 106 0 0 0 13 38 52 9 105 0

0 0 13 39 3 9 103 0 0 0 13 39 14 9 100 0 0 0 13 39 25 9 99 0 0 0 13 39 36 9

97 0 0 0 13 39 47 9 96 0 0 0 13 39 59 9 95 0 0 0 13 40 10 9 95 0 0 0 13 40 21

9 93 0 0 0 13 40 32 9 94 0 0 0 13 40 43 9 93 0 0 0 13 40 54 9 94 0 0 0 13 41

6 9 94 0 0 0 13 41 17 9 93 0 0 0 13 41 28 9 94 0 0 0 13 41 39 9 92 0 0 0 13

41 50 9 92 0 0 0 13 42 2 9 92 0 0 0 13 42 13 9 92 0 0 0 13 42 24 9 91 0 0 0

13 42 35 9 91 0 0 0 13 42 46 9 91 0 0 0 13 42 57 9 90 0 0 0 13 43 9 9 90 0 0

0 13 43 20 9 88 0 0 0

 30

The start state acts in the same way as the previous version, but it acquires the temperature

and acceleration data every 10 seconds allowing a more exhaustive and quicker access to

the data. Besides, it has been added that while the data is being acquired, if the watch is

connected to the computer, the data acquired can be shown on the serial monitor at the

current moment, offering the possibility of confirming that the device is acquiring the

temperature values correctly. Once it is decided to finish the measurement, it is not

necessary to restart the system as previously: there is the possibility to stop the

measurement by pressing the 'S' button on the keyboard. As far as reading the data is

concerned, it is recived on the serial monitor so that post-processing of the information is

not required since the processing has been added to the Arduino code. Therefore, once

the data is printed it can be copied to a notepad or excel directly. The new data reading

format is shown in Figure 24: first is the date, followed by the acquisition time and then the

acquired temperature and acceleration values. As can be seen, the new version offers the

three axes of acceleration on the results since it has been considered more convenient for

the calculation of the statistics.

The acquired samples of acceleration correspond to the instantaneous values of the axes

every 10 seconds. In this way, if the data acquired in 10 seconds are equal to those

previously acquired, it implies that the user has not moved, so, no physical activity is

detected.

Fig. 24 Reading data format

 31

The new flowchart with the three new states added is shown below in Figure 25.

Fig. 25 Current flowchart

The ‘A’ key corresponds to the StartAcquisition function which allows the system to start

acquiring the data. The ‘R’ key is used to Read the data acquired. The ’N’ key clears the

memory of the system to delete the saved information. The keys added are: the ‘D’ key

which corresponds to the Date/Time state that shows the current date and time of the

system on the serial monitor as shown in Figure 26, indicating to the user if it is correctly

configured. If it was not, there is the ’T’ key which allows setting both the date and time of

the system, it is possible to observe the configuration format in Figure 27. Finally, the last

key added is the Monitor state (‘M’) which let the system present the current values of

temperature and acceleration as in Figure 28. The main difference between the old

flowchart and the new version is the ease of ending an action by pressing the 'S' key without

the need to reboot the system. The Arduino code is listed in Appendix 1.

Ends or “S” press

Ends or “S” press

Ends or “S” press

Ends or “S” press

Ends or “S” press

STOP

“A” press

“R” press

“N” press

“D” press

“M” press

“T” press

Start

Read

Reset

Send

No

Yes

Date/Time

Monitor

Set Date/Time

Full
Memory?

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

 32

Fig. 26 Date/Time printed state

Fig. 27 Temperature printed state

 33

Fig. 28 Set Date/Time state

3.3 Calibration

The calibration system employed, Figure 29, use a controlled power supply which is

configured to heat an aluminium plate at the desired temperature. In Figure 30 a plot of the

arrangement of the sensors is shown.

Fig. 29 Calibration system

 34

Fig. 30 Scheme of the arrangement of the sensors in the aluminium block

The control of the system has been carried out through a LabView program that allows the

user to set the aluminium block at the desired temperature and once the measurement

process has started, it accurately acquires the temperature of the aluminium plate and the

ambient temperature in periods of 10 seconds using a sensor located outside the block.

On the other hand, the designed watch acquires the temperature of the TSkinTMP117 and

TAmbientTMP117 sensors with the developed Arduino code. During the measurement

process it is possible to visualize how the temperature is evolving both in the LabView

program, reference and ambient temperature, and in the Arduino Serial Monitor,

TSkinTMP117 and TMPAmbientTMP117. Figure 31 shows the block diagram of the

calibration system.

Fig. 31 Block diagram of calibration system

Isothermal Al Block

T° Reference

Thermal paste

Al disk

Sensor PCB
T° Skin TMP117

T° Ambient TMP117
Box

T° Ambient

START

Power

supply

configuration

Create the

file to save

the data

Set

reference

temperature

LabView

Measurement

process

 35

The model to make the calibration that is based on the arrangement of the sensors in the

aluminium block is shown in Figure 32.

Fig. 32 Calibration system scheme

The diagram shows the thermal model that the calibration procedure intends to estimate.

R1 is the thermal resistance between the aluminium plate and the sensor for the skin

temperature using the TMP117. R3 is the thermal resistance between the ambient

temperature and the ambient temperature sensor of the system designed for the project.

Both R1 and R3 are intended to be low. Moreover, R2 is the thermal resistance between

skin and ambient temperature sensors of the system designed. Ideally, it should be infinite

but a change in ambient temperature could affect the skin temperature measurement

through R2 which is measured by TAmbientTMP117.

𝑇𝑆𝑘𝑖𝑛𝑇𝑀𝑃117 = 𝑇𝑟𝑒𝑓
𝑅2 + 𝑅3

𝑅1 + 𝑅2 + 𝑅3
+ 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡

𝑅1

𝑅1 + 𝑅2 + 𝑅3

𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡𝑇𝑀𝑃117 = 𝑇𝑟𝑒𝑓
𝑅3

𝑅1 + 𝑅2 + 𝑅3
+ 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡

𝑅1 + 𝑅2

𝑅1 + 𝑅2 + 𝑅3

The calibration has been done with two measurements. In the first measurement, a

constant reference temperature (Tref) of 37ºC was used to observe how changes in

ambient temperature affected the SkinTMP and AmbientTMP sensors. Therefore, the slope

of the graph Ambient Tº vs. TºAmbientTMP corresponded to
𝑅1+𝑅2

𝑅1+𝑅2+𝑅3
 and the slope of the

TºAmbient vs. T°SkinTMP corresponded to
𝑅1

𝑅1+𝑅2+𝑅3
 . For the second measurement, a

constant ambient temperature of around 28ºC was used and it was studied how variations

in the reference temperature affected the SkinTMP and AmbientTMP sensors. In this case,

in periods of half an hour, the reference temperature was forced to 38ºC, 39ºC and 40ºC.

R1 R2 R3

Tº Reference

Tº Skin TMP117 Tº Ambient TMP117

Tº Ambient

 36

The slope of the graph TºReference vs. TºAmbientTMP corresponded to
𝑅3

𝑅1+𝑅2+𝑅3
 and the

slope of TºReference vs. T°SkinTMP corresponded to
𝑅2+𝑅3

𝑅1+𝑅2+𝑅3
.

3.3.1 Measurement at constant reference temperature

Fig. 33 Tamb vs. TSkinTMP117 at constant reference temperature

0.0423 =
𝑅1

𝑅1 + 𝑅2 + 𝑅3

Fig. 34 Tamb vs. TAmbientTMP117 at constant reference temperature

0.500 =
𝑅1 + 𝑅2

𝑅1 + 𝑅2 + 𝑅3

Tamb vs. TSkinTMP117

Tamb vs. TAmbientTMP117

 37

3.3.2 Measurement at constant ambient temperature

Fig. 35 Tref vs. TSkinTMP117 at constant ambient temperature

0.964 =
𝑅2 + 𝑅3

𝑅1 + 𝑅2 + 𝑅3

Fig. 36 Tref vs. TAmbientTMP117 at constant ambient temperature

0.575 =
𝑅3

𝑅1 + 𝑅2 + 𝑅3

Tref vs. TAmbientTMP117

Tref vs. TSkinTMP117

 38

3.3.2.1 Calibration equations

Once all the slopes of the graphs are obtained, these values must be substituted in the

main equations to obtain a final equation where, from SkinTMP and AmbientTMP,

TReference can be calculated, a value that refers to the real skin temperature value (Tref).

𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡𝑇𝑀𝑃117 = 𝑇𝑟𝑒𝑓
𝑅3

𝑅1 + 𝑅2 + 𝑅3
+ 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡

𝑅1 + 𝑅2

𝑅1 + 𝑅2 + 𝑅3

 𝑇𝑆𝑘𝑖𝑛𝑇𝑀𝑃117 = 𝑇𝑟𝑒𝑓
𝑅2+𝑅3

𝑅1+𝑅2+𝑅3
+ 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡

𝑅1

𝑅1+𝑅2+𝑅3

0.500 =
𝑅1+𝑅2

𝑅1+𝑅2+𝑅3
 0.042 =

𝑅1

𝑅1+𝑅2+𝑅3

0.575 =
𝑅3

𝑅1+𝑅2+𝑅3
 0.964 =

𝑅2+𝑅3

𝑅1+𝑅2+𝑅3

𝑇𝑆𝑘𝑖𝑛𝑇𝑀𝑃117 = 𝑇𝑟𝑒𝑓0.964 + 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡0.0423

𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡𝑇𝑀𝑃117 = 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡0.500 + 𝑇𝑟𝑒𝑓0.575

The equations are solved for Tref and TAmbient to provide the two calibration equations

that depend on the reading of the TMP117 sensors.

𝑇𝑟𝑒𝑓 =
𝑇𝑆𝑘𝑖𝑛𝑇𝑀𝑃117 − 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡𝑇𝑀𝑃117

0.042
0.500

(0.964 −
0.575 ∗ 0.042

0.500
)

From this equation it is possible to obtain the value of the calibrated skin temperature taking

into account the factors mentioned above. The same steps have been applied to get the

equation to calculate the ambient temperature calibrated.

𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 =
𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡𝑇𝑀𝑃1170.964 − 𝑇𝑆𝑘𝑖𝑛𝑇𝑀𝑃1170.575

0.500 ∗ 0.964 − 0.042 ∗ 0.575

3.3.3 Implementation of the measurement system

Both equations developed above were applied to the data obtained with the TMP117

sensors during the temperature measurement generated by the power supply controlled at

37 ºC during a period where the ambient temperature presented variations. The following

graphs show the actual temperature acquired by the controlled system in orange and the

temperature acquired by the TMP117 sensors with the calibration applied in blue. The first

graph corresponds to the skin temperature, which presents a small deviation of 0.25 ºC

with respect to the real value due to delay in the time response of both sensors generated

by a low pass filter. On the other hand, the second graph corresponds to the ambient

 39

temperature, which presents a greater error since the sensor is inside the box where the

components are, which are heated during the process.

Fig. 37 TSkin obtained from the TMP117 with the calibration applied

Fig. 38 TAmbient obtained from TMP117 with the calibration applied

The previous results confirm the correct functioning of the developed system. However, to

confirm the correct operation of the hardware, software and calibration, a sleep cycle

measurement has been carried out to observe the evolution of the temperature and how it

is corrected with the calibration system.

 40

The calibration equations have been included in the Arduino code explained above to get

the results directly on the serial monitor and avoid the need for post-processing. Therefore,

the value stored in the EEPROM is the already calibrated temperature value. But first, to

observe the efficiency of the calibration system during a sleep cycle, it had been applied

by post-processing. The results are explained in the next section.

 41

4 Sleep cycle measurements and characterization

The first measurements have been made with the Empatica E4 bracelet while the project

was being developed, in order to advance in the characterization of the temperature while

some components were stalled due to their pandemic shortage. For the design of the

system, a completely new prototype was developed where the connector mentioned in the

previous section was added. Initially, the addition of the connectors increased the

dimension of the PCB, and since the box from the previous project was wanted to be used,

the connection lines around the connector were repositioned to avoid expanding the

dimension of the new PCB prototype.

4.1 Sleep cycle results

The recording using the E4 wristband were made with 10 different subjects to confirm the

behaviour of the temperature, explained in the State of Art section, during a sleep cycle. A

questionnaire, added to the Annexes, was passed to all the participants to see if there was

a relationship between how the subjects felt how they had slept and how it was shown in

the temperature and acceleration graphs. The most relevant are related to the subject's

ease of sleeping, whether they woke up during the night, and how they felt the next morning

when they woke up.

Fig. 39 Sleep cycle measured with E4 wristband of Empatica

As seen in Figure 39, the temperature of the distal skin begins to increase around the first

hours of the night, reaching a maximum when the user is fully asleep, where it remains

constant until initiates to wake up, and falling to its minimum value during the day. The

observable variations of temperature during the sleep cycle in Figure 35 have a value of

less than 0.5ºC, so it can be said that the user of this measure has a high sleep quality

 42

cycle. On the other hand, Figure 40 shows a sleep cycle of a user who has not slept

properly and since the temperature has fluctuated up to 2ºC. The skin temperature begins

to increase in the early hours of the night, reaching the maximum value when the user is

completely asleep, but in this case the temperature does not remain constant. High

temperature changes are related to exogenous factors such as waking up during the night,

excessive movements, stress...

Fig. 40 Sleep Cycle measured by the E4 wristband of Empatica

Once the project system was designed and calibrated, the same measurements were

made as with E4 wristband of Empatica, to confirm its correct operation. Figure 41 shows

a sleep cycle measured with the designed system. It is observed the same temperature

curve, the temperature starts to increase when night begins, reaching the maximum value

when the user is completely asleep. The temperature decreases at the wake up of the user.

Fig. 41 Sleep Cycle acquired with the system designed

 43

The measured sleep cycle presents temperature changes of around 2ºC. To rule out

dependence on ambient temperature, the calibration performed has been applied to the

measurement. The specific sleep cycle, from the user is fully asleep to wake up, has been

selected from which a constant skin temperature is expected, and the calibration equations

have been applied. However, the peaks observed during the sleep cycle are maintained

after removing the dependence on ambient temperature. Therefore, temperature changes

are due to external factors such as movement, user awakening, stress instead of changes

in the temperature of the system. Figure 42 shows the commented variations due to

external factors.

Fig. 42 Sleep Cycle with the calibration applied

As it was concluded that the temperature changes are due to movements, user awakening

or stress, the acceleration analysis has been carried out to correlate the information. The

acceleration offers information on whether the user moves during the night, which could

imply an awakening of the subject. Therefore, if a movement is perceived in the

acceleration data and the temperature changes at the same time, it could be concluded

that the user woke up or was not sleeping soundly.

 44

Fig. 43 Simultaneous display of temperature changes and acceleration

A constant value in the acceleration data means that the subject remains still, which results

in a good sleep. If an oscillation is observed, it is when the subject begins to move and if a

change in temperature is also observed it can be explained by the change in activity. At In

figure 43 it can be seen how when a change in slope in temperature is perceived, there is

a greater oscillation in acceleration. The displayed acceleration corresponds to the z

coordinate. On the other hand, when the temperature remains constant, the acceleration

also has a constant value. Therefore, it can be concluded that both variables present some

relationship between them.

Although the system offers correct results, due to the project timing the characterization

system has been made from the values obtained using E4 wristband of Empatica which is

a medical-grade wearable device that offers the acquisition of physiological data in real-

time.

4.2 Characterization of the sleep cycle

As it is mentioned on chapter 2: State of Art, if the user sleeps adequately, the curve of

temperature must be symmetric since the temperature remains high and stable during

sleep. However, if the rhythm is affected by exogenous factors and the sleep cycle presents

disturbances, the curve temperature will be asymmetric since it is unstable.

 45

Some statistics have been used to characterize the temperature variations during the sleep

cycle. Here is a description of them:

4.2.1 Standard deviation

The standard deviation is a measure of the amount of variation or dispersion of a set of

values. A high standard deviation indicates that the values are spread out over a wider

range, while a low standard deviation indicates that the values tend to be close to the mean

of the set.

Therefore, if the user is fully asleep, the temperature will be constant. As a result, the

standard deviation will be low since the set of values will be near the mean. On the other

hand, if the sleep cycle presents alteration, the values will be out over a wider range,

consequently, the standard deviation will be high.

4.2.2 Skewness

Skewness is the measure of the asymmetry of the probability distribution of a real-valued

random variable about its means. The skewness value can be positive, zero, negative, or

undefined. A negative skew indicates that the longer tail is on the left side of the distribution

shown in Figure 44; the mass of the distribution is concentrated on the right of the figure.

While a positive skew indicates that the longer tail is on the right; the mass of the distribution

is concentrated on the left of the figure.

Fig. 44 Types of Skewness

A zero value means that the tails on both sides of the mean balance out overall: the case

for symmetric distribution. But can also be correct for an asymmetric distribution where one

tail is long and thin, and the other is short but fat.

As is mentioned above, if the user gets a good sleep the curve of temperature must be

symmetric. As a result, the skewness value has to be near zero. However, if the sleep cycle

is affected by alterations the curve could present peaks in some part of the sleep cycle. In

consequence, the value of skewness will depart from zero.

 46

4.2.3 Kurtosis

Kurtosis is a statistical measure used to describe the shape of probability distribution, which

measures whether the data are heavy-tailed or light-tailed relative to a normal distribution.

A large kurtosis implies a great concentration of values of the variable close to the mean

of the distribution, peak, and far from it, tail, while there is a relatively lower frequency of

intermediate values.

The kurtosis of any univariate normal distribution is 3, mesokurtic, common value to

compare the kurtosis of a distribution. If the value is less than 3 it is platykurtic, the

distribution produces fewer and less extreme outliers than does the normal distribution.

The shape is more pointed and with thicker tails than normal. Distribution with kurtosis

greater than 3 are leptokurtic, produces more outliers than the normal distribution. The

shape is less pointed and with tails less thick than normal. The three types of kurtosis are

shown in Figure 45.

Fig. 45 Types of Kurtosis

The temperature curve presents a different shape when the user sleeps correctly compared

to when has an unstable sleep, that is, disturbances can be observed during the sleep

cycle. Therefore, it is expected that the value of kurtosis for a correct sleep cycle is different

from that of a disturbed sleep cycle.

4.2.4 Characterization results

Below, Figure 46, it can be observed the histogram of the measurements. The histogram

allows to analyse whether the temperature has been constant or shows variations. If the

data is concentrated around a specific temperature, it means a constant temperature during

sleep that reflects good sleep. On the other hand, if the data is spread over a large number

of temperature values, it means large temperature variations resulting in disturbances in

the sleep cycle.

Leptokurtic

Mesokurtic

Platykurtic

 47

Fig. 46 Histograms of the original temperature curve

In each case, the value of the three statistics has been calculated. Previously to skewness

and kurtosis computation, the temperature time series was smoothed using a moving

average filter with a sliding window of 10 minutes. The temperature recording for the 10

subjects after smoothing are shown in Figure 47. This averaging aims to reduce the impact

of the noise.

 48

Fig. 47 Output signal after 10 min moving average applied to compute skewness and kurtosis

For the computation of standard deviation, because is in the short sleep interruptions, the

temperature time series was detrended by subtracting to the original signal the output of

the same signal after a moving average filter with 90 minutes. The subtracted trend for the

10 subjects is shown in Figure 48.

Fig. 48 . Output signal after 90 min moving average applied to compute standard deviation

 49

Fig. 49 Difference between original signal and processed signal with 90min moving average

In Figure 49 it can be seen the difference between the original signal and the processed

signal with 90 minutes moving average. To implement the moving average filter the

MATLAB function output=filtfilt(ones(size((1:fs*60*L)))/(fs*60*L), 1,

input) has been employed, where L is the averaging time in minutes, fs is the sampling

frequency of the temperature measuring system and 60 converts the minutes to seconds.

The expected values for a good sleep cycle are skewness close to zero, kurtosis less than

three, and low standard deviation. If there is any disturbance (peak) in the sleep cycle, any

of the three statistics could be altered.

Table 2 presents the values of statistics obtained. If the values of the standard deviation

are compared to the histogram of each measurement, it can be observed that the

measurement with a broad set of values presents a larger value of standard deviation. An

example could be the recording ’09-12-2021’ where the temperatures values are spread

from 31ºC to 36ºC which has a value of 0,37ºC. On the other hand, the recording ’10-12-

2021’ where most values are around 36,5ºC presents a standard deviation of 0.07ºC.

Another case with a great standard deviation is recording ’16-12-2021’ where the

temperature presents a smaller range of values than in the recording '09-12-2021' but the

amount of data in each temperature is higher, which translates into more marked peaks.

 50

Date Skewness Kurtosis SD Acceleration

25/11/2021 0,72 2,22 0,23 0,15

29/11/2021 -0,81 3,10 0,24 0,14

30/11/2021 -0,56 2,08 0,39 0,18

09/12/2021 0,76 2,62 0,37 0,09

10/12/2021 -0,18 2,49 0,07 0,12

16/12/2021 0,48 2,13 0,47 0,16

27/12/2021 -1,20 3,44 0,29 0,16

28/12/2021 -1,06 2,84 0,31 0,19

10/01/2022 1,00 3,32 0,35 0,16

11/01/2022 0,54 2,30 0,20 0,19

Table 2 Statistics values of the measurements done

Moreover, the skewness and kurtosis value can be reflected on Figure 49 where the peaks

and variations of temperature can be observed easily. An example could be the

recording ’10-01-2022’ which presents a peak at the end of the measurement. The peak

generates a tail on the left side as a result the skewness is positive, and the kurtosis as the

peak provokes a high variation of temperature has a value higher than three. On the other

hand, the recording ’28-12-2021’ as presents a peak at the beginning, the tail is on the right

side so the skewness is negative, and as the peak generates a small variation of one

degree the kurtosis is less than three.

 51

Fig. 50 Raw temperature reported by the E4

Figure 50 corresponds to the raw temperature provided by the E4 wristband. Comparing

the histograms seen on Figure 46 with the original signals, those histograms that have

fewer bars in them are those that have temperatures with smaller changes, therefore, more

constant over time.

Another factor to analyse as an indicator of the sleep quality of the subject is acceleration.

Acceleration implies movement that reflects user discomfort resulting in a disturbed sleep

cycle. To calculate the acceleration, the three axes acceleration signals provided by the E4

wristband have been obtained during the sleep of the subject. Then, the square root of the

quadratic sum of the three axes was calculated to obtain the magnitude of acceleration in

m/s2. After this, the average of the acceleration magnitude has been computed for each

sleep cycle. The acceleration code to calculate the correlation with the temperature

together with the characterization of temperature code can be found in Appendix 2 and 3.

The relationship between the standard deviation and the average acceleration is studied.

It is expected that for a small standard deviation value, resulting from a good sleep cycle,

the mean acceleration value is also small. Figure 51 shows the relationship between

standard deviation and acceleration. The measures with correct sleep cycles are located

at the bottom left, low standard deviation and low value of acceleration. As an example,

the signal 10-12-2021 which shows a low standard deviation along with a low acceleration.

 52

With the information of the other users, it is observed that as the standard deviation

increases, the average acceleration also increases. There are small deviations, for

example, between users 11-25-2021 and 11-29-2021, but the variation in values is not

significant, which could be the result of a user turning during the sleep cycle that does not

imply an alteration of sleep that is, it is not due to stress or discomfort.

However, there are users who do not have a good relationship between standard deviation

and acceleration, such as 09-12-2021, 11-01-2021 and 16-12-2021. The disagreement

observed can be caused by other not controlled causes such as variations in the

temperature sensor not related to physiological events, such as sleeping during a period

with the wrist exposed to room temperature or with the wrist covered by the blankets. For

these cases, it would be necessary to analyse other factor, such as heart rate (HR) or

electrodermal activity (EDA).

Fig. 51 Standard Deviation (ºC) vs. Mean of Acceleration (m/s2)

As it is mentioned early, a questionnaire was carried out to see if there was a relationship

between how the subjects felt that they had slept and how it was shown in the temperature

and acceleration graphs. The questionnaire can be found in Appendix 4. Table 3 shows

the main questions where the study was focused on.

 53

Question 1: I fell asleep last night...

Easily After a while With difficulty

0 1 2

Question 2: I woke up during the night?

No Yes

0 1

Question 3: When I woke up, I felt...

Fresh A little tired Tired

0 1 2

Table 3 Main questions of the questionnaire perform to the subjects

The square root of the quadratic sum of the three values obtained from the main questions

has been performed to obtain a final value between 0 and 3, meaning a correct or bad

sleep cycle, respectively. The value obtained has been compared with the standard

deviation to analyse whether both values are correlated. The results of the main questions

of the questionnaire and the final value are presented in Table 4 together with the standard

deviation.

Date Question 1 Question 2 Question 3 Result SD

09/12/2021 1 1 2 2,45 0,37

28/12/2021 1 1 2 2,45 0,31

29/11/2021 1 1 1 1,73 0,24

27/12/2021 1 1 1 1,73 0,29

16/12/2021 1 0 1 1,41 0,47

11/01/2022 1 1 0 1,41 0,20

10/12/2021 0 1 0 1,00 0,07

10/01/2022 0 1 0 1,00 0,35

25/11/2021 0 0 0 0,00 0,23

30/11/2021 0 0 0 0,00 0,39

Table 4. Comparison of the values obtained from the questionnaire and the standard deviation of the

detrended temperature

It has been seen, from the results, that the values obtained with the questionnaire are not

related to the standard deviation. It can be concluded that the perception of the quality of

sleep can differ greatly from how truly the user slept. Therefore, it is difficult to correlate the

temperature and acceleration information obtained by the system through a questionnaire.

 54

5 Budget

The development of the system requires the design of a prototype with the components

commented in ‘Section 3: Device Improvements’. The software used to design the PCB

and program the microcontroller is open source with exception of Matlab which can access

for free due to the student status.

Table 5 shows the components list as well as their unitary price. It is necessary to add the

price of the prototype PCB which was 24.50€. The price of the used box has not been

added since the one designed in the previous project has been reused as commented in

the ‘Sleep cycle measurements and characterization’ section.

Component Description
Commercial

price (€)
Quantity Subtotal (€)

TMP117

High-Precision

Digital

Temperature

Sensor

4.64 2 9.28

DS323MZ RTC 6.57 1 6.57

M24M02-DRMN6TP EEPROM 2.88 1 2.88

MMA8652FCR1
MEMS

Accelerometer
2.40 1 2.40

ATSAMD21E18A-A Microcontroller 3.82 1 3.82

AP2112 LDO 0.34 1 0.34

MAX1555 Charger 2.25 1 2.25

BAT54C Battery 0.16 1 0.16

503480-0600
Connector

FFC/FPC
0.69 2 1.38

15020-0051
FFC/FPC

Jumper cable
3.46 1 3.46

B3FS-1000
Tactile

switches
0.61 1 0.61

105017-0001 Conector USB 0.84 1 0.84

YOBLP422339PACK
Rechargeable

battery
18.41 1 18.41

Total 52.41

Table 5 Components summary

 55

Regarding personnel, the project consists of a main operator and extra help from a

laboratory technician. The main worker is listed as a junior engineer and the average salary

for one is approximately €10/h. A laboratory technician is considered a Senior Engineer

and has a salary of approximately €35/h. The hours used by the main operator are 20

weeks with a total of 20h/week, equivalent to 400h. As far as the laboratory technician is

concerned, a total of 20 hours has been recorded.

Worker
Salary/hour

(€/h)
Hours (h)

Salary (€)

without taxes

Junior Engineer 10 400 4000

Laboratory

Technician
35 20 700

Total 4700

Table 6 Personal salaries summary

Table 6 shows the salary for the people involved in the project. Considering the two totals,

the project has had a total cost of 4776.91€.

 56

6 Conclusions and future development

Distal skin temperature is an accurate biological signal modulated by the sleep-wake cycle.

The system developed in the project allows to correctly measure the temperature changes

experienced during the night hours as well as the physical activity of the user.

The improvements added to the design have created an efficient version of the system.

The connector selected to make the connection from the general PCB board to the skin

temperature sensor, TMP117, has made the system more robust and therefore, it is more

difficult to disconnect it due to user movements during measurement. The improvement

has allowed to have a correct sensor-skin contact which allows the precise acquisition of

the skin temperature values. It has been observed in various measurements that the

system is capable of detecting changes in temperature both in the skin and in the

environment during the night, which allows a subsequent analysis of sleep. If the values

obtained with the Empatica E4 wristband used to characterize the system are compared,

the correct functioning of the developed system can be confirmed, where the increase in

temperature is observed, reaching the maximum value when the user is completely asleep,

where it remains constant until the user awakening.

On the other hand, once the correct operation has been achieved, the calibration performed

on the system was applied to the final design. The aim of the calibration was to eliminate

changes in skin temperature due to changes in ambient temperature.

Related to the software, the previous code did not facilitate the user the task of interacting

with the system, since the results obtained required post-processing to be able to correctly

display the temperature values. For this reason, it was also proposed as an objective to

improve the wristband-pc connection. The code developed for the new version has added

various functions to configure the system before the measurement starts such as set the

date/time or visualize the current temperature. However, the main added function is the

acquisition of the acceleration that it shows in periods of 10 seconds, as the temperature,

the values of the three axes of the accelerometer. The function allows to correlate the

information acquired of the temperature since it is related to user movement at night. As

has been shown in the project, when the user is more physically active, meaning that has

moved more during the night, the sleep quality can be considered worse than when the

user remains still. The device acquires three axes of acceleration every 10 seconds as

mentioned above, so consequently there are movements that are not acquired within 10

seconds between each sample. An improvement to be made in the next version of the

system is to change the mode of operation of the accelerometer to acquire data from the

 57

accelerometer every time a movement is detected. In this way, the accelerometer will

always be active, and the data acquired will be more accurate.

The characterization of the system has made it possible to detect when the user has a

standard sleep cycle, using statistics as features for changes in temperature. The three

selected statistics to perform the characterization were: standard deviation that measures

the amount of variation of a set of values; skewness, which measures the asymmetry of

the histogram, and kurtosis, which measures whether the data has heavy or light tails

respect to a normal distribution. The temperature of the distal skin during the night begins

to increase in the first hours seeking the maximum value when the user is completely

asleep and remains constant until waking up. For that, a standard sleep cycle has to

present a constant temperature from when the user falls asleep until he/she wakes up. The

values of statistic in function of the expected curve of temperature should be skewness

close to zero, kurtosis less than three and low standard deviation. If there is any disturbance

(peak) in the sleep cycle, any of the three statistics could be altered. To demonstrate that

the statistics offered adequate results, they have been compared with the histogram of

each of the measurements since it allows an easy visualization of when the temperature

remains constant or extends in a large number of values, which would result in changes in

temperature. If the values of the statistics correlate with the histogram, it can be said that

they offer good results and are capable of detecting a bad sleep cycle.

The statistic that gives the best results is the standard deviation. Nevertheless, for the sake

of reproducibility of results, an algorithm for automatically detect the start and the end of

the sleep period could be a future improvement. These statistics are based on the

distribution of the values, therefore it is necessary to obtain the complete cycle of the skin

temperature from the time it starts to increase when the user goes to sleep until it decreases

completely to the temperature value during the day. In this way, by having the complete

cycle, the result will be more precise.

Finally, the last change to be performed on the next version is to substitute the wristband

of the watch. The sensor used to detect skin temperature is a contact sensor which requires

to be perfectly in physical contact with the skin to monitor correctly the changes in

temperature. The strap used has the most common buckle closure, similar to a belt closure,

which means that the user must ensure that it is closed properly to present good skin-

sensor contact. An option for improvement would be a completely elastic rubber strap

without closure that will automatically adapt to the user's wrist, thus always ensuring correct

contact.

 58

 59

Bibliography

[1] J. A. Sarabia, M. A. Rol, P. Mendiola, and J. A. Madrid, “Circadian rhythm of wrist

temperature in normal-living subjects. A candidate of new index of the circadian system,”

Physiol. Behav., vol. 95, no. 4, pp. 570–580, 2008, doi: 10.1016/j.physbeh.2008.08.005.

[2] A. M. Vosko, C. S. Colwell, and A. Y. Avidan, “Jet lag syndrome: Circadian organization,

pathophysiology, and management strategies,” Nat. Sci. Sleep, vol. 2, no. June 2014, pp.

187–198, 2010, doi: 10.2147/NSS.S6683.

[3] Texas Instruments, “TMP117 high-accuracy , low-power , digital temperature sensor

with SMBus TM - and I2C-compatible interface,” no. June 2018, pp. 1–46, 2019.

[4] Empatica, “E4 wristband | Real-time physiological signals | Wearable PPG, EDA,

Temperature, Motion sensors,” Empatica, 2020. https://www.empatica.com/en-

eu/research/e4/ (accessed Apr. 26, 2022).

[5] “Celsium Body Temperature | Body Temperature Monitoring.” https://www.celsium.com/

(accessed Apr. 26, 2022).

[6] “Home - Sotera Wireless.” https://www.soterawireless.com/ (accessed Apr. 26, 2022).

 60

Appendix

1 Arduino Code

//Useful Libraries

#include "ArduinoLowPower.h"

#include <Wire.h> //Library to use the I2C

#include "RTClib.h" //Library to use DS3231

#include <RTCZero.h> // Library to use internal RTC

#include <Adafruit_SleepyDog.h>//Library to use intern Watchdog timer

#include <SparkFun_TMP117.h> // Used to send and receieve specific information from our sensor

#include <MMA8653.h>

//States of the program and commands to send

#define STOP 0 //S

#define START 1 //A

#define SEND 2 //E

#define RESET 3 //N

#define READ 4 //R

#define DATE 5 //D

#define MONITOR 6 //M

#define TIME 7 //T

//Microcontroller pin assigments

const int LED = 13; //Help you to know if the Arduino bootloader is correctly programmed

//Useful variables

byte State = 0; //Solve the actual state

//Temperature Sensor definitions

TMP117 sensor; // Initalize sensor

TMP117 sensor_SKIN; // Initalize sensor

//Internal RTC definitions

RTCZero intRTC;

RTC_DS3231 extRTC;

boolean TEST = false; //Variable for controling acquisition or send data (in acquisition mode goes to sleep

TEST=0)

// Set how often alarm goes off here

 61

const byte alarmSeconds = 10;

const byte alarmMinutes = 0;

const byte alarmHours = 0;

volatile bool alarmFlag = true; // Start awake

const char daysOfTheWeek [7][12]={"Sunday","Monday","Tuesday","Wednesday", "Thursday", "Friday",

"Saturday"};

//Accelerometer definitions

MMA8653 accel = MMA8653();

int16_t x,y,z;

int Vbat = 0;

//EEPROM MEMORY

//EEPROM has I2C addresses 0x50, 0x51, 0x52 and 0x53 (0x50 | 0x00, 0x50 | 0x01,0x50 | 0x02 and 0x50 |

0x03)

#define EEPROM_DATA_ADD 0x50 // Address of the first 1024 page M24M02DRC EEPROM data buffer,

2048 bits (256 8-bit bytes) per page

#define EEPROM_IDPAGE_ADD 0x58 // Address of the single M24M02DRC lockable ID page of the

EEPROM

#define length_Fblock 14

#define length_Sblock 10

#define L_MSmax 256 //Maximum of pages per block and maximum data per page

#define maxBlocks 25 //Maximum number of blocks can be sended per page

#define Bmax 3

uint8_t Badd = 0, MSadd = 0, LSadd = 0; //Badd=Block address (0-3) ; MSadd=MSB(page 0-255) ;

LSadd=LSB(0-255)

bool EEPROM_empty = true;

int currentBlocks, sendedBlocks=31744; //(==31744 if you want read memory)

//Obtained data

struct data{ //Struct with all the variables that we will need

 byte day;

 byte month;

 int year;

 byte hour;

 byte min;

 byte sec;

 float int_temp;

 62

 float pat_temp;

 short x;

 short y;

 short z;

};

typedef struct data Data;

Data ReadData; //data to print

Data ObtData; //Obtanined data to storage

uint8_t clearData[256]; //Variable to reset the EEPROM memory

uint8_t receiveData[L_MSmax]; //Variable to receive byte to byte from EEPROM memory

//Useful variables

byte prevHour;

byte prevMin;

int tt1=0, tt2=0;

int countdownMS;

void setup() {

 Wire.begin();

 while (!Serial) ;

 Serial.begin(115200); //opens serial port, sets data rate to 115200 bps

 Serial.println("Setup");

 pinMode(LED,OUTPUT);

 //External RTC initialize

 if (! extRTC.begin()) {

 Serial.println("Couldn't find RTC");

 Serial.flush();

 abort();

 }

 if (extRTC.lostPower()) {

 Serial.println("RTC lost power, let's set the time!");

 // When time needs to be set on a new device, or after a power loss, the

 // following line sets the RTC to the date & time this sketch was compiled

 extRTC.adjust(DateTime(F(__DATE__), F(__TIME__)));

 // This line sets the RTC with an explicit date & time, for example to set

 // January 21, 2014 at 3am you would call:

 63

 // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));

 }else{

 extRTC.adjust(DateTime(F(__DATE__), F(__TIME__)));

 }

 //Internal RTC initialize if TEST=FALSE

 if(TEST==false){

 intRTC.begin(); // Set up clocks and such

 resetAlarm(); // Set alarm

 intRTC.attachInterrupt(alarmMatch); // Set up a handler for the alarm

 digitalWrite(LED,LOW);

 Serial.println("DORMIREMOS");

 delay(1000);

 LowPower.attachInterruptWakeup(RTC_ALARM_WAKEUP, onWakeup, CHANGE);

 State=STOP;

 }else{

 digitalWrite(LED,HIGH);

 }

 // Configure TMP117

 Serial.println("Configure TMP117 Sensors");

 if (sensor.begin(0x48) == true) // Function to check if the sensor will correctly self-identify with the proper

Device ID/Address

 {

 Serial.println("Begin TMP117 Ambient");

 }

 else

 {

 Serial.println("Device failed to setup - Freezing code (ambient)");

 while (1); // Runs forever

 }

 if (sensor_SKIN.begin(0x49) == true) // Function to check if the sensor will correctly self-identify with the

proper Device ID/Address

 {

 Serial.println("Begin TMP117 Skin");

 }

 else

 {

 64

 Serial.println("Device failed to setup- Freezing code (skin)");

 while (1); // Runs forever

 }

 //Configure accelerometer

 accel.init(MMA8653_2G_RANGE,MMA8653_10BIT_RES,MMA8653_ODR_50);

 accel.setMODS(MMA8653_MODS_HIGH_RES);

 //Put accelerometer in active mode

 accel.begin();

}

void loop() {

 byte command;

 switch (State){

 case STOP:{

 if(Serial.available()>0){

 command=Serial.read();

 switch (command){

 case 'S':{

 Serial.println("STOPPING");

 State= STOP;

 delay(100);

 break;

 }

 case 'A':{

 Serial.println("CHANGING TO ACQUISITION MODE");

 State=START;

 delay(100);

 break;

 }

 case 'N':{

 Serial.println("RESETTING THE MEMORY");

 State=RESET;

 break;

 }

 case 'R':{

 Serial.println("READING THE MEMORY");

 65

 State=READ;

 break;

 }

 case 'D':{

 Serial.println("CURRENT DATE/TIME");

 State = DATE;

 break;

 }

 case 'M':{

 Serial.println("CURRENT TEMPERATURE/ACCELERATION");

 State = MONITOR;

 break;

 }

 case 'T':{

 Serial.println("SET DATE/TIME");

 State = TIME;

 break;

 }

 }

 // Plot menu

 Serial.println(" ");

 Serial.println(" ");

 Serial.println("S Stop Acquisition");

 Serial.println("A Start Acquisition, goes to sleep");

 Serial.println("N Reset memory (acquired data)");

 Serial.println("R Read data acquired");

 Serial.println("D Date/time printed");

 Serial.println("M Temperature/Acceleration printed");

 Serial.println("T Sets date/time");

 Serial.println(" ");

 Serial.println(" ");

 }

 break;

 }//case:STOP

 case START:{

 if(Badd>=4){ //Exceed the number of blocks

 EEPROM_empty=false;

 66

 Serial.println("Full memory, STOP acquisition");

 Serial.print("Blocks sended: ");

 Serial.println(sendedBlocks);

 State=STOP;

 break;

 }

 if (TEST==false){ //False implies that the watch is ready to read the sensors

 readSensors(); //Read temperature values

 State = SEND;//Send automatically the temperature values read

 Serial.print("LSadd: ");

 Serial.print(LSadd);

 delay(10000);

 command = Serial.read();

 if(command=='S'){

 State = STOP;

 break;

 }

 }else{

 readMemory();

 //readSensors();

 testReadSensors();

 State=SEND;

 delay(10000);

 command=Serial.read();

 if(command=='S'){

 State=STOP;

 break;

 }

 }

 break;

 }//case:START

 case SEND:{

 if(LSadd==0){

 M24M02DRCwriteBytes(EEPROM_DATA_ADD | Badd, MSadd, LSadd, true, ObtData);

 delay(10);// It takes a maximum of 10 ms for a read or write operation; the EEPROM won't respond until

the operation is done

 LSadd = LSadd + length_Fblock; //increasing the number of bytes written to the page

 67

 currentBlocks++;

 sendedBlocks++;

 Serial.print("Current block: ");

 Serial.println(currentBlocks);

 }else{

 M24M02DRCwriteBytes(EEPROM_DATA_ADD | Badd, MSadd, LSadd, false, ObtData);

 delay(10);

 LSadd= LSadd+length_Sblock;

 currentBlocks++;

 sendedBlocks++;

 Serial.print("Current block: ");

 Serial.println(currentBlocks);

 if(currentBlocks == maxBlocks){

 LSadd=0;

 MSadd++;

 currentBlocks=0;

 if(MSadd == 0){

 Badd++;

 Serial.println(" BLOQUE ACTUALIZADO ");

 delay(500);

 }

 }

 }

 if(TEST==false){

 State=START;

 break;

 }else{

 State=STOP;

 break;

 }

 }//case:SEND

 case RESET:{

 //RESET EEPROM MEMORY

 for(uint8_t B=0; B < 4; B++){ //fixing block

 for(uint8_t M=0; M < (L_MSmax-1); M++){ //fixing MSB

 M24M02DRCclear(EEPROM_DATA_ADD | B, M, 0,clearData);

 delay(10);

 68

 }

 M24M02DRCclear(EEPROM_DATA_ADD | B, 255, 0,clearData);

 delay(10);

 }

 Serial.println("Memory reset");

 EEPROM_empty=true;

 LSadd = 0;

 State=STOP;//once the memory is reset, the program goes to stop state

 break;

 }//case:RESET

 case READ:{ //read the bytes saved on the eeprom

 int s=0;

 uint8_t B=0;

 while(B<=Bmax){

 for(uint8_t M = 0; M < (L_MSmax-1) ; M++){ //&& s<=sendedBlocks

 M24M02DRCreadBytes(EEPROM_DATA_ADD | B, M, 0);

 delay(10);

 s+=25;

 printData();

 }

 M24M02DRCreadBytes(EEPROM_DATA_ADD | B, 255, 0);

 delay(10);

 s+=25;

 printData();

 B++;

 }

 State=STOP;

 break;

 }//case:READ

 case TIME:{//set the time of the RTC

 serial_flush();

 int s_year = ask_for_number("Year");

 int s_month = ask_for_number("Month");

 int s_day = ask_for_number("Day");

 int s_hour = ask_for_number("Hour");

 int s_min = ask_for_number("Minutes");

 int s_sec = ask_for_number("Seconds");

 69

 extRTC.adjust(DateTime(s_year,s_month,s_day,s_hour,s_min,s_sec));

 print_datetime();

 State = STOP;

 break;

 }//case:TIME

 case DATE:{

 print_datetime();

 State = STOP;

 break;

 } //case:DATE

 case MONITOR:{

 Serial.print("Skin temperature (ºC): ");

 Serial.println(sensor_SKIN.readTempC());

 Serial.print("System temperature (ºC): ");

 Serial.println(sensor.readTempC());

 Vbat = analogRead(A4);

 Serial.print("Battery voltage: ");

 Serial.println(Vbat);

 State = STOP;

 break;

 }//case: MONITOR

 }//switch

}//loop

/////////////////////

//USEFUL FUNCTIONS//

///////////////////

//Set date/time

void print_datetime()

{

 DateTime now2 = extRTC.now();

 Serial.print(now2.year(),DEC);

 Serial.print('/');

 Serial.print(now2.month(),DEC);

 Serial.print('/');

 Serial.print(now2.day(),DEC);

 70

 Serial.print(' ');

 Serial.print(now2.hour(),DEC);

 Serial.print(':');

 Serial.print(now2.minute(),DEC);

 Serial.print(':');

 Serial.print(now2.second(),DEC);

 Serial.println();

}

//Reset Internal RTC ALARM

void resetAlarm(void){

 intRTC.setTime(00,00,00);

 intRTC.setDate(1,1,1);

 //Set alarm time select previously

 intRTC.setAlarmTime(alarmHours, alarmMinutes, alarmSeconds);

 //intRTC.setAlarmTime(now.hour()+alarmHours, now.minute()+alarmMinutes,

now.second()+alarmSeconds);

 intRTC.enableAlarm(intRTC.MATCH_HHMMSS);

}

void alarmMatch(){ //REVISAR

 digitalWrite(LED, HIGH);

 alarmFlag = true; // Set flag

}

//Get current Time

DateTime current_Time(){

 return extRTC.now();

}

//Send bytes to EEPROM it's an adaptation of the function in github repository (it's thinking to have two

different devices in the same design)

void M24M02DRCwriteBytes(uint8_t device_address, uint8_t page_address, uint8_t data_address, bool first,

Data dest){

 int int_int =(int)(dest.int_temp*100);

 int int_skin=(int)(dest.pat_temp*100);

 //int int_int =(int)(dest.int_temp);

 71

 //int int_skin=(int)(dest.pat_temp);

 if(first == true) {

 Wire.beginTransmission(device_address); // Initialize the Tx buffer

 Wire.write(page_address); // Put slave register address in Tx buffer

 Wire.write(data_address); // Put slave register address in Tx buffer

 Wire.write(dest.day);

 Wire.write(dest.month);

 Wire.write(dest.year >> 8);

 Wire.write(dest.year);

 Wire.write(dest.hour);

 Wire.write(dest.min);

 Wire.write(dest.sec);

 Wire.write(int_int >> 8); //Sensor returns a float which we multiply*100 and we do a cast to int to be able to

send via I2C

 Wire.write(int_int);

 Wire.write(int_skin >> 8);

 Wire.write(int_skin);

 Wire.write(x);

 Wire.write(y);

 Wire.write(z);

 Wire.endTransmission(); // Send the Tx buffer

 } else{

 Wire.beginTransmission(device_address); // Initialize the Tx buffer

 Wire.write(page_address); // Put slave register address in Tx buffer

 Wire.write(data_address); // Put slave register address in Tx buffer

 Wire.write(dest.hour);

 Wire.write(dest.min);

 Wire.write(dest.sec);

 Wire.write(int_int >> 8);

 Wire.write(int_int);

 Wire.write(int_skin >> 8);

 Wire.write(int_skin);

 Wire.write(x);

 Wire.write(y);

 Wire.write(z);

 72

 Wire.endTransmission(); // Send the Tx buffer

 //Serial.println(dest.hour);

 }

}

//Clear the EEPROM memory fully (own function, it's an adaptation of the writing function

void M24M02DRCclear(uint8_t device_address, uint8_t page_address, uint8_t data_address, uint8_t *dest){

 Wire.beginTransmission(device_address); // Initialize the Tx buffer

 Wire.write(page_address); // Put slave register address in Tx buffer

 Wire.write(data_address); // Put slave register address in Tx buffer

 for(uint16_t i=0; i < (L_MSmax-1) ; i++) {

 Wire.write(dest[i]); // Put data in Tx buffer

 }

 Wire.endTransmission(); // Send the Tx buffer

}

//Read bytes from EEPROM it's and adaptation of the function in github repository (it's thinking to have two

different devices in the same design)

void M24M02DRCreadBytes(uint8_t device_address, uint8_t page_address, uint8_t data_address){

 Wire.beginTransmission(device_address); // Initialize the Tx buffer

 Wire.write(page_address); // Put slave register address in Tx buffer

 Wire.write(data_address); // Put slave register address in Tx buffer

 Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive

 Wire.requestFrom(device_address,(L_MSmax-2)); // Read bytes from slave register address

 uint8_t i = 0;

 while(Wire.available()){

 receiveData[i] = Wire.read();

 i++;

 }

}

//Function to read all the Sensors

void readSensors(){

 //Read RTC (obtain the date/time)

 DateTime fecha = current_Time();

 73

 ObtData.day=fecha.day();

 ObtData.month=fecha.month();

 ObtData.year=fecha.year();

 ObtData.hour=fecha.hour();

 ObtData.min=fecha.minute();

 ObtData.sec=fecha.second();

 //Read Temperature

 if (sensor_SKIN.dataReady() == true) //Function to make sure that there is data ready to be printed, only

prints temperature values when data is ready

 {

 float tempC_SKIN = sensor_SKIN.readTempC();

 ObtData.pat_temp = tempC_SKIN;

 }

 if (sensor.dataReady() == true)

 {

 float tempC = sensor.readTempC();

 ObtData.int_temp = tempC;

 }

 //Read Accelerometer

 accel.readSensor(&x,&y,&z);

 ObtData.x = x;

 ObtData.y = y;

 ObtData.z = z;

 Serial.print(ObtData.hour,DEC);

 Serial.print(':');

 Serial.print(ObtData.min,DEC);

 Serial.print(':');

 Serial.print(ObtData.sec,DEC);

 Serial.print(' ');

 Serial.print(ObtData.pat_temp);

 Serial.print(' ');

 Serial.print(ObtData.int_temp);

 Serial.print(' ');

 74

 Serial.print(ObtData.x);

 Serial.print(' ');

 Serial.print(ObtData.y);

 Serial.print(' ');

 Serial.println(ObtData.z);

}

//Function to check the sensors

void testReadSensors(){

 //LEER TEMPERATURAS

 Serial.print(" Skin Temperature: ");

 Serial.print(ObtData.pat_temp);

 delay(100);

 Serial.print(" Ambient Temperature: ");

 Serial.println(ObtData.int_temp);

 delay(100);

 //Read Accelerometer

 accel.readSensor(&x,&y,&z);

 ObtData.x = x;

 ObtData.y = y;

 ObtData.z = z;

 //LEER RTC EXTERNO

 //Leer fecha

 Serial.print("Fecha: ");

 Serial.print(ObtData.day,DEC);

 Serial.print("/");

 Serial.print(ObtData.month,DEC);

 Serial.print("/");

 Serial.print(ObtData.year,DEC);

 Serial.print(" at ");

 Serial.print(ObtData.hour,DEC);

 Serial.print(":");

 Serial.print(ObtData.min,DEC);

 Serial.print(":");

 Serial.println(ObtData.sec,DEC);

 delay(100);

 75

}

//Fucntion to printData in EEPROM memory

void printData(){

 uint8_t c = 0;

 uint8_t O = length_Fblock;

 while(c<(L_MSmax-2)){ //L_MSmax 256 so c < 255

 ReadData.day = receiveData[c];

 Serial.print(ReadData.day,DEC);

 Serial.print('/');

 ReadData.month = receiveData[c+1];

 Serial.print(ReadData.month,DEC);

 Serial.print('/');

 ReadData.year = (receiveData[c+2]*256.0)+receiveData[c+3];

 Serial.print(ReadData.year,DEC);

 Serial.print(' ');

 ReadData.hour = receiveData[c+4];

 Serial.print(ReadData.hour,DEC);

 Serial.print(':');

 ReadData.min = receiveData[c+5];

 Serial.print(ReadData.min,DEC);

 Serial.print(':');

 ReadData.sec = receiveData[c+6];

 Serial.print(ReadData.sec,DEC);

 Serial.print(' ');

 ReadData.int_temp = (receiveData[c+7]*256.0 + receiveData[c+8])/100.0;

 Serial.print(ReadData.int_temp);

 Serial.print(' ');

 ReadData.pat_temp = (receiveData[c+9]*256.0 + receiveData[c+10])/100.0;

 Serial.print(ReadData.pat_temp);

 Serial.print(' ');

 ReadData.x = receiveData[c+11];

 Serial.print(ReadData.x,DEC);

 Serial.print(' ');

 ReadData.y = receiveData[c+12];

 Serial.print(ReadData.y,DEC);

 Serial.print(' ');

 ReadData.z = receiveData[c+13];

 Serial.print(ReadData.z,DEC);

 76

 Serial.println(' ');

 while (O<(L_MSmax-2)){

 Serial.print(ReadData.day,DEC);

 Serial.print('/');

 Serial.print(ReadData.month,DEC);

 Serial.print('/');

 Serial.print(ReadData.year,DEC);

 Serial.print(' ');

 ReadData.hour = receiveData[O];

 Serial.print(ReadData.hour,DEC);

 Serial.print(':');

 ReadData.min = receiveData[O+1];

 Serial.print(ReadData.min,DEC);

 Serial.print(':');

 ReadData.sec = receiveData[O+2];

 Serial.print(ReadData.sec,DEC);

 Serial.print(' ');

 ReadData.int_temp = (receiveData[O+3]*256.0 + receiveData[O+4])/100.0;

 Serial.print(ReadData.int_temp);

 Serial.print(' ');

 ReadData.pat_temp = (receiveData[O+5]*256.0 + receiveData[O+6])/100.0;

 Serial.print(ReadData.pat_temp);

 Serial.print(' ');

 ReadData.x = receiveData[O+7];

 Serial.print(ReadData.x,DEC);

 Serial.print(' ');

 ReadData.y = receiveData[O+8];

 Serial.print(ReadData.y,DEC);

 Serial.print(' ');

 ReadData.z = receiveData[O+9];

 Serial.print(ReadData.z,DEC);

 Serial.println(' ');

 O = O + length_Sblock; //10

 }

 c = (L_MSmax-2);

 }

 Serial.println("");

}

 77

void readMemory(){

 //Read RTC

 DateTime fecha = current_Time();

 ObtData.day=fecha.day();

 ObtData.month=fecha.month();

 ObtData.year=fecha.year();

 ObtData.hour=fecha.hour();

 ObtData.min=fecha.minute();

 ObtData.sec=fecha.second();

 if (sensor_SKIN.dataReady() == true) //Function to make sure that there is data ready to be printed, only

prints temperature values when data is ready

 {

 float tempC_SKIN = sensor_SKIN.readTempC();

 ObtData.pat_temp = tempC_SKIN;

 }

 if (sensor.dataReady() == true)

 {

 float tempC = sensor.readTempC();

 ObtData.int_temp = tempC;

 Serial.print(" Ambient Temperature: ");

 Serial.println(ObtData.int_temp);

 }

}

void serial_flush(void){

 while(Serial.available()) Serial.read();

}

int ask_for_number(String msg){

 Serial.print(msg);Serial.println('?');

 serial_flush();

 while (Serial.available() == 0) {}

 int number = Serial.parseInt();

 if (Serial.read() == '\n')

 {

 Serial.print(msg);

 Serial.print(' ');

 78

 Serial.println(number);

 }

 return number;

}

void onWakeup() {

 digitalWrite(LED, HIGH);

}

2 Code to get proceed from E4

%% TEMPERATURE %%

load('TEMP.csv'); %Load temperature file

temperature = TEMP(3:end,:); %Delete the three firsts rows (information)

start_time = datetime(TEMP(1,1),'ConvertFrom','posixtime'); %Select initial time

(first row)

frequency = TEMP(2,1); %Select frequency (second row --> sample rate in Hz)

%Calculate vector of time/temperature

final_time =

datetime(1/frequency*length(temperature)+TEMP(1,1),'ConvertFrom','posixtime');

a_time_temp = TEMP(1,1):1/frequency:1/frequency*length(temperature)+TEMP(1,1);

b_time_temp = datetime(a_time_temp,'ConvertFrom','posixtime');

time = b_time_temp(1,1:length(temperature))';

values = 1:TEMP(2,1):length(temperature);

temperature_values = temperature(values);

time_values = time(values);

save('temp_25_11_2021.mat','temperature_values','time_values')

%% ACCELEROMETER %%

load('ACC.csv'); %Load accelerometer values

acc = ACC(3:end,:); %Delete the three firsts rows

sample_rate = ACC(2,1);%Calculate the sample rate with the second row

start_time = datetime(ACC(1,1),'ConvertFrom','posixtime');%Calculate the start

time with the first row

%calulate the time vector

final_time =

datetime(1/sample_rate*length(acc)+ACC(1,1),'ConvertFrom','posixtime');

a_time_ac = ACC(1,1):1/sample_rate:1/sample_rate*length(acc)+ACC(1,1);

b_time_ac = datetime(a_time_ac(1:length(acc)),'ConvertFrom','posixtime');

accx = acc(:,1)./64*9.81;

accy = acc(:,2)./64*9.81;

accz = acc(:,3)./64*9.81;

accelerometer = sqrt(accx.^2+accy.^2+accz.^2);

save('acceleration.mat',accelerometer)

 79

3 Code to characterize the data

clear all;

clc;

%Load the measurements

load('temp_25_11_2021.mat');

load('temp_29_11_2021.mat');

load('temp_30_11_2021.mat');

load('temp_09_12_2021.mat');

load('temp_10_12_2021.mat');

load('temp_16_12_2021.mat');

load('temp_27_12_2021.mat');

load('temp_28_12_2021.mat');

load('temp_10_01_2022.mat');

load('temp_11_01_2022.mat');

%% TEMPERATURE %%

%Plot the raw temperature reported by the E4

figure(1)

subplot(5,2,1);plot(time_25_11,temperature_25_11);title('25-11-2021');

subplot(5,2,2);plot(time_29_11,temperature_29_11);title('29-11-2021');

subplot(5,2,3);plot(time_30_11,temperature_30_11);title('30-11-2021');

subplot(5,2,4);plot(time_09_12,temperature_09_12);title('09-12-2021');

subplot(5,2,5);plot(time_10_12,temperature_10_12);title('10-12-2021');

subplot(5,2,6);plot(time_16_12,temperature_16_12);title('16-12-2021');

subplot(5,2,7);plot(time_27_12,temperature_27_12);title('27-12-2021');

subplot(5,2,8);plot(time_28_12,temperature_28_12);title('28-12-2021');

subplot(5,2,9);plot(time_10_01,temperature_10_01);title('10-01-2022');

subplot(5,2,10);plot(time_11_01,temperature_11_01);title('11-01-2022');

%Plot the histogram of the temperature

figure(2)

subplot(5,2,1);histogram(temperature_25_11);title('25-11-2021');

subplot(5,2,2);histogram(temperature_29_11);title('29-11-2021');

subplot(5,2,3);histogram(temperature_30_11);title('30-11-2021');

subplot(5,2,4);histogram(temperature_09_12);title('09-12-2021');

subplot(5,2,5);histogram(temperature_10_12);title('10-12-2021');

subplot(5,2,6);histogram(temperature_16_12);title('16-12-2021');

subplot(5,2,7);histogram(temperature_27_12);title('27-12-2021');

subplot(5,2,8);histogram(temperature_28_12);title('28-12-2021');

subplot(5,2,9);histogram(temperature_10_01);title('10-01-2022');

subplot(5,2,10);histogram(temperature_11_01);title('11-01-2022');

%Smooth of the temperature signal using a moving average filter with a

%sliding window of 10min

tm_25_11 = filtfilt(ones(size((1:4*60*10)))/(4*60*10),1,temperature_25_11);

tm_29_11 = filtfilt(ones(size((1:4*60*10)))/(4*60*10),1,temperature_29_11);

tm_30_11 = filtfilt(ones(size((1:4*60*10)))/(4*60*10),1,temperature_30_11);

tm_09_12 = filtfilt(ones(size((1:4*60*10)))/(4*60*10),1,temperature_09_12);

tm_10_12 = filtfilt(ones(size((1:4*60*10)))/(4*60*10),1,temperature_10_12);

tm_16_12 = filtfilt(ones(size((1:4*60*10)))/(4*60*10),1,temperature_16_12);

tm_27_12 = filtfilt(ones(size((1:4*60*10)))/(4*60*10),1,temperature_27_12);

tm_28_12 = filtfilt(ones(size((1:4*60*10)))/(4*60*10),1,temperature_28_12);

tm_10_01 = filtfilt(ones(size((1:4*60*10)))/(4*60*10),1,temperature_10_01);

tm_11_01 = filtfilt(ones(size((1:4*60*10)))/(4*60*10),1,temperature_11_01);

figure(3) %Plot output signal after 10min moving average

 80

subplot(5,2,1);plot(time_25_11,tm_25_11);title('25-11-2021');

subplot(5,2,2);plot(time_29_11,tm_29_11);title('29-11-2021');

subplot(5,2,3);plot(time_30_11,tm_30_11);title('30-11-2021');

subplot(5,2,4);plot(time_09_12,tm_09_12);title('09-12-2021');

subplot(5,2,5);plot(time_10_12,tm_10_12);title('10-12-2021');

subplot(5,2,6);plot(time_16_12,tm_16_12);title('16-12-2021');

subplot(5,2,7);plot(time_27_12,tm_27_12);title('27-12-2021');

subplot(5,2,8);plot(time_28_12,tm_28_12);title('28-12-2021');

subplot(5,2,9);plot(time_10_01,tm_10_01);title('10-01-2022');

subplot(5,2,10);plot(time_11_01,tm_11_01);title('11-01-2022');

%Calculation of the value of Skewness and Kurtosis from the output signal

%after 10min moving average

skewness_25_11 = skewness(tm_25_11);

kurtosis_25_11 = kurtosis(tm_25_11);

skewness_29_11 = skewness(tm_29_11);

kurtosis_29_11 = kurtosis(tm_29_11);

skewness_30_11 = skewness(tm_30_11);

kurtosis_30_11 = kurtosis(tm_30_11);

skewness_09_12 = skewness(tm_09_12);

kurtosis_09_12 = kurtosis(tm_09_12);

skewness_10_12 = skewness(tm_10_12);

kurtosis_10_12 = kurtosis(tm_10_12);

skewness_16_12 = skewness(tm_16_12);

kurtosis_16_12 = kurtosis(tm_16_12);

skewness_27_12 = skewness(tm_27_12);

kurtosis_27_12 = kurtosis(tm_27_12);

skewness_28_12 = skewness(tm_28_12);

kurtosis_28_12 = kurtosis(tm_28_12);

skewness_10_01 = skewness(tm_10_01);

kurtosis_10_01 = kurtosis(tm_10_01);

skewness_11_01 = skewness(tm_11_01);

kurtosis_11_01 = kurtosis(tm_11_01);

%Smooth of the temperature signal using a moving average filter with a

%sliding window of 90min

tm_25_11_90=filtfilt(ones(size((1:4*60*90)))/(4*60*90),1,temperature_25_11);

tm_29_11_90=filtfilt(ones(size((1:4*60*90)))/(4*60*90),1,temperature_29_11);

tm_30_11_90=filtfilt(ones(size((1:4*60*90)))/(4*60*90),1,temperature_30_11);

tm_09_12_90=filtfilt(ones(size((1:4*60*80)))/(4*60*80),1,temperature_09_12);

tm_10_12_90=filtfilt(ones(size((1:4*60*90)))/(4*60*90),1,temperature_10_12);

tm_16_12_90=filtfilt(ones(size((1:4*60*90)))/(4*60*90),1,temperature_16_12);

tm_27_12_90=filtfilt(ones(size((1:4*60*90)))/(4*60*90),1,temperature_27_12);

tm_28_12_90=filtfilt(ones(size((1:4*60*90)))/(4*60*90),1,temperature_28_12);

tm_10_01_90=filtfilt(ones(size((1:4*60*90)))/(4*60*90),1,temperature_10_01);

tm_11_01_90=filtfilt(ones(size((1:4*60*90)))/(4*60*90),1,temperature_11_01);

%Plot the output signal after 90min moving average

figure(4)

subplot(5,2,1);plot(time_25_11,tm_25_11_90);title('25-11-2021');ylim([31,37]);

subplot(5,2,2);plot(time_29_11,tm_29_11_90);title('29-11-2021');ylim([31,37]);

subplot(5,2,3);plot(time_30_11,tm_30_11_90);title('30-11-2021');ylim([31,37]);

subplot(5,2,4);plot(time_09_12,tm_09_12_90);title('09-12-2021');ylim([31,37]);

subplot(5,2,5);plot(time_10_12,tm_10_12_90);title('10-12-2021');ylim([31,37]);

subplot(5,2,6);plot(time_16_12,tm_16_12_90);title('16-12-2021');ylim([31,37]);

subplot(5,2,7);plot(time_27_12,tm_27_12_90);title('27-12-2021');ylim([31,37]);

subplot(5,2,8);plot(time_28_12,tm_28_12_90);title('28-12-2021');ylim([31,37]);

subplot(5,2,9);plot(time_10_01,tm_10_01_90);title('10-01-2022');ylim([31,37]);

 81

subplot(5,2,10);plot(time_11_01,tm_11_01_90);title('11-01-2022');ylim([31,37]);

%Perfom the difference between original signal and processed signal with

%90min moving average

temp_25_11 = temperature_25_11-tm_25_11_90;

temp_29_11 = temperature_29_11-tm_29_11_90;

temp_30_11 = temperature_30_11-tm_30_11_90;

temp_09_12 = temperature_09_12-tm_09_12_90;

temp_10_12 = temperature_10_12-tm_10_12_90;

temp_16_12 = temperature_16_12-tm_16_12_90;

temp_27_12 = temperature_27_12-tm_27_12_90;

temp_28_12 = temperature_28_12-tm_28_12_90;

temp_10_01 = temperature_10_01-tm_10_01_90;

temp_11_01 = temperature_11_01-tm_11_01_90;

%Output plot of the difference between original signal and processed signal with

90min moving average

figure(5)

subplot(5,2,1);plot(time_25_11,temp_25_11);title('25-11-2021');ylim([-1.5,1.5]);

subplot(5,2,2);plot(time_29_11,temp_29_11);title('29-11-2021');ylim([-1.5,1.5]);

subplot(5,2,3);plot(time_30_11,temp_30_11);title('30-11-2021');ylim([-1.5,1.5]);

subplot(5,2,4);plot(time_09_12,temp_09_12);title('09-12-2021');ylim([-1.5,1.5]);

subplot(5,2,5);plot(time_10_12,temp_10_12);title('10-12-2021');ylim([-1.5,1.5]);

subplot(5,2,6);plot(time_16_12,temp_16_12);title('16-12-2021');ylim([-1.5,1.5]);

subplot(5,2,7);plot(time_27_12,temp_27_12);title('27-12-2021');ylim([-1.5,1.5]);

subplot(5,2,8);plot(time_28_12,temp_28_12);title('28-12-2021');ylim([-1.5,1.5]);

subplot(5,2,9);plot(time_10_01,temp_10_01);title('10-01-2022');ylim([-1.5,1.5]);

subplot(5,2,10);plot(time_11_01,temp_11_01);title('11-01-2022');ylim([-

1.5,1.5]);

%Calculate standard deviation

sd_25_11 = std(temp_25_11);

sd_29_11 = std(temp_29_11);

sd_30_11 = std(temp_30_11);

sd_09_12 = std(temp_09_12);

sd_10_12 = std(temp_10_12);

sd_16_12 = std(temp_16_12);

sd_27_12 = std(temp_27_12);

sd_28_12 = std(temp_28_12);

sd_10_01 = std(temp_10_01);

sd_11_01 = std(temp_11_01);

%% ACCELERATION %%

%Load the measurements

load('acceleration_25_11_2021.mat');

load('acceleration_29_11_2021.mat');

load('acceleration_30_11_2021.mat');

load('acceleration_09_12_2021.mat');

load('acceleration_10_12_2021.mat');

load('acceleration_16_12_2021.mat');

load('acceleration_27_12_2021.mat');

load('acceleration_28_12_2021.mat');

load('acceleration_10_01_2022.mat');

load('acceleration_11_01_2022.mat');

%Calculate mean acceleartion

mean_25_11 = mean(accelerometer_25_11);

 82

mean_29_11 = mean(accelerometer_29_11);

mean_30_11 = mean(accelerometer_30_11);

mean_09_12 = mean(accelerometer_09_12);

mean_10_12 = mean(accelerometer_10_12);

mean_16_12 = mean(accelerometer_16_12);

mean_27_12 = mean(accelerometer_27_12);

mean_28_12 = mean(accelerometer_28_12);

mean_10_01 = mean(accelerometer_10_01);

mean_11_01 = mean(accelerometer_11_01);

%Plot mean of acceleration vs. standard deviation

figure(6)

hold on

plot(sd_25_11,mean_25_11)

plot(sd_29_11,mean_29_11)

plot(sd_30_11,mean_30_11)

plot(sd_09_12,mean_09_12)

plot(sd_10_12,mean_10_12)

plot(sd_16_12,mean_16_12)

plot(sd_27_12,mean_27_12)

plot(sd_28_12,mean_28_12)

plot(sd_10_01,mean_10_01)

plot(sd_11_01,mean_11_01)

 83

4 Code to analyse temperature changes vs. acceleration

load('measurement204.mat') %Load the measurement wanted to be

proced

table_temperature = t(30:end,:); %Delete the first data (time when

the user put the wristband)

date = datetime(table_temperature{:,1}); %Vector of date

hour = table_temperature{:,2}; %Vector of time

plot_time = datetime(strcat(string(date)," ",string(hour)));

%Vector of datetime

%% TEMPERATURE %%

TA = table_temperature{:,3}; %Vector of ambient temperature

TS = table_temperature{:,4}; %Vector of skin temperature

Tref = (TS-(TA*(0.042/0.5)))/(0.964-((0.575*0.042)/0.50)); %Skin

temperature calibrated

%Plot of skin temperature with/without calibration

figure(1)

plot(plot_time,TS)

hold on

plot(plot_time,Tref)

%Sleep cycle from the user fully asleep to awake

skin = TS(sleep:wakeup); %Skin temperature of the sleep cycle

ambient = TA(sleep:wakeup); %Ambient temperature of the sleep

cycle

sleeptime = plot_time(1240:3800); %Datetime of the sleep cycle

Tskin = (skin-(ambient*(0.042/0.5)))/(0.964-((0.575*0.042)/0.50));

%Skin temperature calibrated of the sleep cycle

%Plot of the skin temperature with/without calibration of the

sleep cycle

figure(2)

plot(sleeptime,skin)

hold on

plot(sleeptime,Tskin)

%% ACCELERATION %%

x = table_temperature{:,5}; %X coordinate vector

y = table_temperature{:,6}; %Y coordinate vector

z = table_temperature{:,7}; %Z coordinate vector

acceleration = sqrt(x.^2+y.^2+z.^2)/360; %Total acceleration

%Plot of the temperature changes and acceleration

 84

subplot(2,1,1)

plot(plot_time, TS)

hold on

plot(plot_time,Tref)

xline(plot_time(sleep))

xline(plot_time(wakeup))

subplot(2,1,2)

plot(plot_time,acceleration)

xline(plot_time(sleep))

xline(plot_time(wakeup))

 85

5 Questionnaire

AUTOREGISTRE DE SON

1. Nom

2. Edat

3. Gènere
Marqueu només un oval

Home

Dona

Altres

4. Data de resposta

Exemple: 26 de Novembre de 2021

5. Dia de la setmana
Marqueu només un oval

Dilluns

 Dimarts

Dimecres

 Dijous

Divendres

 Dissabte

 Diumenge

6. Horari de resposta*
Marqueu només un oval

 Mati (al llevar-se) Ves a la pregunta 7

Nit (abans d’anar a dormir) Ves a la pregunta 6

Aurorregistre Matí

7. La passada nit vaig anar a dormir... (indicar hora d’anar al llit)

Exemple: 08:30am

8. Aquest matí m’he llevat... (indicar hora)

Exemple: 08:30am

 86

o

o

9. Ahir a la nit em vaig adormir...
Marqueu només un oval

Fàcilment

 Al cap d’una estona d’anar al llit

Amb dificultat

10. Durant la nit t’has despertat?
Marqueu només un oval

 Si

No Ves a la pregunta 12

11. Quin és el temps total (en minuts) que has estat despert/a durant la nit?

12. Aquesta nit he dormit un total de (indicar hores:minuts, per exemple: 07:30)

13. La meva son s’ha vist destorbada per... (indica breument factors disruptors com per

exemple: soroll, llum, mascotes, al·lèrgies, temperatura, malestar, estrès, etc.)

14. Al llevar-me aquest matí em sentia
Marqueu només un oval

Fresc/a (recuperat/da)

Una mica fresc/a (recuperat/da)

Fatigat/da

15. Si us plau, indica, si escau, algun altra factor que consideris que ha pogut afectar al

teu son (torns laborals, cicle menstrual en el cas de les dones, etc.)

 87

o

o

Autorregistre abans de dormir

16. Durant el dia d’avui, has consumit begudes amb cafeïna o estimulants (cafè, té,

refrescos amb cafeïna, taurina, etc.)
Marqueu només un oval

 Sí

No Ves a la pregunta 18

17. Si us plau, indica les racions* consumides per a cadascuna de les franges horàries que

s’indiquen
*1 ració = 1 tassa de cafè/té o 1 got de refresc

Marqueu només un oval per fila

 6-12h 12-16h 16-20h 20-6h

1 Ració

2 Racions

3 Racions

Més de 3 Racions

18. Avui he practica, al menys 20 minuts d’exercici físic d’intensitat moderada-vigorosa...

(selecciona la franja horària)
Marqueu només un oval

 6-12h

 12-16h

 16-20h

 20-6h

No n’he practicat

19. Has pres alguna medicació?
Marqueu només un oval

 Sí

No Ves a la pregunta 21

20. Quina medicació has pres?

21. Has fet migdiada?
Marqueu només un oval

 Sí

No Ves a la pregunta 23

 88

22. Quant de temps has dormit durant la migdiada (indicar els minuts)?

23. Durant el dia, amb quina probabilitat creus que podries adormir-te mentre feies les

activitats diàries?
Marqueu només un oval

Cap probabilitat

Probabilitat baixa

Probabilitat moderada

Alta probabilitat

24. Indica en la següent escala, en general, com ha estat el teu estat d’ànim durant el dia

d’avui

Marqueu només un oval

 1 2 3 4 5 6 7 8 9 10

Dolent/Pèssim

 Excel·lent

25. Aproximadament, en les 2-3 hores prèvies a anar-te al llit he consumit...

Seleccioneu totes les opcions que corresponguin

Alcohol

Àpats copiós

Cafeïna o estimulants

No he consumit cap dels anteriors

26. Una hora abans d’anar a dormir, la meva rutina pre-son ha consistit en... (indica

breument activitats com per exemple: llegir, utilitzar dispositius electrònics (TV,

ordinador, mòbil, tablet, etc.), dutxar-se o banyar-se, fer estiraments o exercicis de

relaxació i/o meditació, etc.):

	Abstract
	Acknowledgements
	Revision history and approval record
	Table of contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Objective
	1.2 Requirements

	2 State of the art
	2.1 Circadian Rhythm
	2.2 Technology review

	3 Device Improvements
	3.1 Hardware
	3.2 Software
	3.3 Calibration
	3.3.1 Measurement at constant reference temperature
	3.3.2 Measurement at constant ambient temperature
	3.3.2.1 Calibration equations

	3.3.3 Implementation of the measurement system

	4 Sleep cycle measurements and characterization
	4.1 Sleep cycle results
	4.2 Characterization of the sleep cycle
	4.2.1 Standard deviation
	4.2.2 Skewness
	4.2.3 Kurtosis
	4.2.4 Characterization results

	5 Budget
	6 Conclusions and future development
	Bibliography
	Appendix
	1 Arduino Code
	2 Code to get proceed from E4
	3 Code to characterize the data
	4 Code to analyse temperature changes vs. acceleration
	5 Questionnaire

