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Abstract. Finite-volume strategies in fluid-structure interaction problems would be of crucial
importance in many engineering applications such as in the analysis of reed valves in reciprocat-
ing compressors. The efficient implementation of this strategy passes from the formulation of
reliable high-order schemes on 3D unstructured meshes. The development of high-order models
is essential in bending-dominant problems, where the phenomenon of shear blocking appears. In
order to solve this problem, it is possible to either increase the number of elements or increase
the interpolation order of the main variable. Increasing the number of elements does not always
yield good results and implies a very high computational cost that, in real problems, is inadmis-
sible. Using unstructured meshes is also vital because they are necessary for real problems where
the geometries are complex and depart from canonical rectangular or regular shapes. This work
presents a series of tests to demonstrate the feasibility of a high-order model using finite volumes
for linear elasticity on unstructured and structured meshes. The high-order interpolation will be
performed using two different schemes such as the Moving Least Squares (MLS) and the Local
Regression Estimators (LRE). The reliability of the method for solving 2D and 3D problems will
be verified by solving some known test cases with an analytical solution such as a thin beam or
problems where stress concentrations appear.

1 INTRODUCTION

Since its most original formulations, the Finite Volume Method (FVM) is usually associated
with fluid and heat transfer problems. One of the main advantages of the FVM consists in
its capability to enforce the conservation of quantities at a discretized level (forces between
adjacent control volumes are directly balanced). The adoption of FVM strategies for the reso-
lution of governing equations in both solid and fluid would lead to highly efficient couplings in
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fluid–structure interaction (FSI) problems. However, the procedures used to solve the solid and
fluid problems must be compatible in some aspects such as the structure of the mesh, the method
to discretize the equations spatially, and the exchange of information in the fluid-structure in-
terface [1]. As a result, adopting the obtained finite-volume strategy in FSI problems would be
of crucial importance in many engineering applications such as the resolution of reed valves in
reciprocating compressors. Those strategies currently employ different numerical methods for
the resolution of the fluid flow and the solid movement, e.g. in Tofique et al. [2] LES models
are used to solve the fluid flow while a 2D mode superposition method together with an impact
penalty method is employed to represent the valve. Pressure fields then need to be exported to
obtain valve internal stresses using a solid dynamic strategy, e.g. in Castrillo et al. [3] a finite
element method together with a dynamic impact modelization is employed.

In [4, 5, 6] high-order interpolation schemes on unstructured meshes are used for problems in
fluid mechanics and aeroacoustics. However, a general lack of material regarding high-order finite
volume schemes for solid dynamic problems has been highlighted in previous bibliographic stud-
ies [7]. Among the works that deserve to be mentioned, [8] proposed a FVM with a high-order
interpolation scheme for the main variable in structured two-dimensional Cartesian meshes, while
Cardiff et al. [9] proposed a linear interpolation coupled Finite Volume Method for unstructured
meshes.

The current work is distributed as follows. Section 2.1 presents the equations that govern
the linear elasticity problem. Then, in Section 2.2, the discretization using finite volumes with a
high-order interpolation method presented in [10] is highlighted. In Section 3 different tests are
performed to demonstrate the extensibility of the model towards the resolution of the reed valve
problem mentioned above. The latter is characterized by an unstructured mesh, distributed
loads, and three-dimensional geometry.

2 NUMERICAL METHODOLOGY

2.1 Governing equations

In this work, some hypotheses have been considered: (1) Homogeneous and isotropic material;
(2) linear elastic material behavior; (3) geometric nonlinearity effects are not considered; and
(4) static problem. Taking into account the previous hypotheses, the equilibrium equation is:

∇ · σ(x) + b (x) = 0 ∀ x ∈ Ω , (1)

where Ω is the reference configuration, b is the body force, and σ is the Cauchy stress tensor.
Stresses and displacements are related with the constitutive equation:

σ = µ∇u+ µ∇Tu+ λ tr (∇u) I , (2)

where u is the displacement field, µ and λ are the Lamé parameters, and I is the identity tensor.

2.2 Finite volume discretization

In order to apply the FVM it is necessary to discretize the body Ω in Nv finite volumes
(internal volumes and boundary faces) where Eq. 1 has to be satisfied for each one of them.
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Integrating Eq. (1) over the finite volume Ωv and using Gauss’s theorem of divergence, it is
obtained that: ∫

∂Ωv

σ ndA+

∫
Ωv

bdV = 0 , (3)

where n is the outward unit normal of surface ∂Ωv. Using numerical quadrature [11, 12], Eq. (3)
gives:

f=Nf∑
f=1

g=Ng∑
g=1

αg σ(xf,g)nf

+

m=Nm∑
m=1

βm b (xm) = 0 , (4)

where Nf is the number of faces of the discretized finite volume Ωv, Ng is the number of
quadrature points used to approximate the integral on the face Σf , αg are the quadrature weights
(including Jacobian terms), Nm and βm are the number of quadrature points and weights to
approximate the body force, respectively. Replacing Eq. (2) into Eq. (4):

f=Nf∑
f=1

g=Ng∑
g=1

αg

[
µ∇u(xf,g) + µ∇Tu(xf,g) + λ tr (∇u(xf,g)) I

]
nf

+

m=Nm∑
m=1

βm bm = 0 . (5)

In the next section, the high-order method is presented, where a high-order expression is
sought for the ∇u as a function of the nodal values of u (here, nodal values represent the values
at the centroids of the finite volumes).

2.2.1 High-order interpolation

For the interpolation, coefficients that allow expressing the displacement field and its deriva-
tives as a function of nodal values are needed:

u(x̃) =

n=Nn∑
n=1

cn(x̃)un,
∂u

∂x
(x̃) =

n=Nn∑
n=1

cx,n(x̃)un , (6)

where Nn is the number of surrounding points used for the interpolation [10]. For the derivatives
respect to y and z others coefficients, cy,n and cz,n respectively, are obtained. These coefficients
are obtained with a high-order interpolation method, making a high-order interpolation of u
and its derivatives (gradient of u). In this work, two methods are used to obtain the coefficients:
the Moving Least Squares (MLS) [13] and the Local Regression Estimators (LRE) [14, 15].

MLS and LRE methods minimize a weighted sum of squares to obtain the coefficients cn
for the interpolation of u. This minimization ends in solving a system of equations, which
is generally poorly conditioned. The coefficients cn are the same for both interpolations; the
difference lies in the coefficients for the interpolation of the derivatives:

• In MLS it is necessary to solve more systems of badly conditioned equations.

• In LRE the coefficients are obtained from the first system.
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A more detailed description of the methods and how to deal with the bad-conditioned systems
could be found in [10].

In order to apply the high-order methodology to Eq. 5 it is necessary to obtain the interpo-
lation coefficients for each gauss point of each face of the finite volume discretization, obtaining:

f=Nf∑
f=1

g=Ng∑
g=1

αg

(
µ

n=Nn∑
n=1

(cx,n · nf ) I un + µ

n=Nn∑
n=1

(
cx,nn

T
f

)
un + λ

n=Nn∑
n=1

(
nf c

T
x,n

)
un

)
+

m=Nm∑
m=1

bm βm = 0 , (7)

where cTx,n(xf,g) = [cx,n(xf,g) cy,n(xf,g) cz,n(xf,g)] are the interpolation coefficients of the deriva-
tives. In [10] a detailed description on how to obtain the coefficients is presented, furthermore
in [10] it is possible to find out precisely how to incorporate the boundary conditions: Dirichlet,
Neumann or Symmetry conditions.

3 NUMERICAL RESULTS

In this section, numerical results obtained with the proposed method are presented. In
Section 3.1 two examples for two-dimensional problems are presented; more examples and an
extended analysis for two-dimensional problems could be found in [10]. Then, in Section 3.2,
examples for three-dimensional problems are presented and analyzed for structured meshes.

In what follows pi represents the interpolation order, e.g. interpolation p1 is linear. The
software FreeFEM [16] with linear (p1) or quadratic (p2) interpolation (FF p1 and FF p2 in
figures and tables) and the 2nd-order method developed by Cardiff [9] are used to compare with
the proposed method.

3.1 Two-dimensional examples

In [17, 18] it is possible to find many examples of linear elasticity with analytical solution,
which are generally approximated. The example presented in Section 3.1.1 is a beam under
a distributed load, in which case the shear-locking effect appears. Then in Section 3.1.2 it is
presented an example where unstructured meshes are needed due to its geometry.

To solve these examples the MLS and LRE methods are used. Four interpolations are used:
p1 (linear), p2 (quadratic), p3 (cubic) and p4 (quartic). The numerical parameters used to solve
these examples are those presented in [10].

3.1.1 Cantilever beam with a uniformly distributed load

This example is a cantilever beam with a uniform load applied on the top surface, as is shown
in Figure 1. In this example, the shear-locking effect is present, so it is expected that a precise
solution will not be obtained using linear interpolation. In this case it is used E = 30000, ν = 0.3,
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Lx = 50, Ly = 2 and q = 0.1. In [18] it is possible to find an approximate analytical solution
for the stress and displacement field which is more accurate when Lx ≫ Ly. The displacement
at the free end and the stress at (Lx/2, Ly/4) are

uy(Lx, 0) = − 3

24

q L4
x

E I
, σx(Lx/2, Ly/4) =

1

960

(
7L2

y + 30L2
x

) q Ly

I
, (8)

where I = L3
y/12 is the inertia.

x

y
q

0

Lx

Ly

Figure 1: Geometry of the cantilever beam with a uniformly distributed load.

The solution of uy(Lx, 0) using LRE and MLS methods is shown in Table 1. For linear
interpolation, it is possible to see that the exact value is not achieved in all cases as expected
due to the shear-locking effect. Nevertheless, with p1 and LRE, the solution obtained has an
error of 0.30%, which is not too large.

Table 1: Solution of uy(Lx, 0) using LRE and MLS where the analytical solution is uy(Lx, 0) = −3.9063.

LRE

# Elems Cardiff [9] p1 p2 p3 p4 FF p1 FF p2
206 -3.1697 -5.1113 -3.9604 -3.9154 -3.9149 -2.3667 -3.9060

1278 -3.7414 -3.9990 -3.9099 -3.9126 -3.9125 -3.5566 -3.9090
3358 -3.8293 -3.9615 -3.9109 -3.9114 -3.9114 -3.7657 -3.9095
7616 -3.8753 -3.9180 -3.9107 -3.9109 -3.9108 -3.8444 -3.9097

MLS

# Elems Cardiff [9] p1 p2 p3 p4 FF p1 FF p2
206 -3.1697 -4.0308 -3.8865 -3.9159 -3.9149 -2.3667 -3.9060

1278 -3.7414 -3.8047 -3.9013 -3.9114 -3.9121 -3.5566 -3.9090
3358 -3.8293 -3.9983 -3.9112 -3.8283 -3.9115 -3.7657 -3.9095
7616 -3.8753 -4.1010 -3.9100 -3.9113 -3.9107 -3.8444 -3.9097

In Table 2 the solution of σx(Lx/2, Ly/4) using LRE and MLS is presented. In the case of
the 2nd-order method [9], it is possible to see the differences between using MLS or LRE to
interpolate the derivatives, being the LRE more accurate.
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Table 2: Solution of σx(Lx/2, Ly/4) using LRE and MLS where the analytical solution is
σx(Lx/2, Ly/4) = 23.45.

LRE

# Elems Cardiff [9] p1 p2 p3 p4 FF p1 FF p2
206 12.20 32.73 23.47 23.44 23.44 12.65 23.72
1278 22.22 16.90 23.39 23.44 23.45 26.11 23.46
3358 23.66 23.39 23.44 23.45 23.45 23.13 23.45
7616 22.86 23.30 23.44 23.45 23.45 23.83 23.45

MLS

# Elems Cardiff [9] p1 p2 p3 p4 FF p1 FF p2
206 15.97 18.52 22.14 23.44 23.44 12.65 23.72
1278 22.29 20.20 23.38 23.44 23.45 26.11 23.46
3358 23.87 24.03 23.46 23.43 23.45 23.13 23.45
7616 22.35 22.55 23.46 23.44 23.45 23.83 23.45

3.1.2 Infinite plane containing a stress-free elliptical hole

This example is an infinite plane containing a stress-free elliptical hole and the problem is
loaded with a uniform stress at infinity, as shown in the left image of Figure 2. This problem
is modeled as shown in the right image of Figure 2: left and bottom boundaries have symmetry
conditions while on the rest of the surfaces Neumann conditions are imposed. In this case it is
used E = 1, ν = 0.3, a = 1, b = 2, Lx = Ly = 30 and σ∞

x = 1. In [17] it is possible to find an
analytical expression for the stress σy(0, b) = σ∞

x (1 + 2b/a).

0

y

x

σ∞
xσ∞

x

x

Ly

Lx

σ∞
x

y

0

b

a

Figure 2: Geometry of the stressed infinite plane with an elliptical hole problem.

In Figure 3 one of the mesh used to solve the problem is presented; it is possible to see that
the non unstructured mesh it is needed for this example. In Table 3 the solution of σx(0, b)
using LRE and MLS is presented and it can be seen that both methods work properly.
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Figure 3: Mesh to solve the infinite plane with an elliptical hole problem.

Table 3: Solution of σx(0, b) using LRE and MLS where the analytical solution is σx(0, b) = 5.

LRE

# Elems Cardiff [9] p1 p2 p3 p4 FF p1 FF p2
1178 4.921 4.825 5.044 5.062 5.037 4.861 5.041
3454 5.051 4.933 5.092 5.138 5.253 4.974 5.043
6207 5.002 4.953 5.027 5.017 5.004 4.895 5.042

MLS

# Elems Cardiff [9] p1 p2 p3 p4 FF p1 FF p2
1178 4.919 4.770 5.022 5.057 5.479 4.861 5.041
3454 5.040 4.973 5.073 5.125 5.243 4.974 5.043
6207 4.998 4.965 5.022 5.034 5.001 4.895 5.042

3.2 Three-dimensional examples

To solve these examples three interpolations are used: p1 (linear), p2 (quadratic) and p3
(cubic). The high number of points necessary to build the stencil and consequently the high
computational cost needed to employ p4 in 3D cases has influenced the fact of limiting the
analysis to p3. As it was shown in [10], LRE gives much better results than MLS. Additionally,
MLS is computationally more expensive because it has to solve a greater number of systems,
and this counter-back acquires more importance for the 3D case. Due to these reasons in the
first example of Section 3.2.1 only the LRE is used to analyze the parameters of the method for
3D structured meshes. Nevertheless, both methods are used in Section 3.2.2, which is a clamped
beam where the shear-locking effect appears.

3.2.1 Analytical example

This example analyzes the error and order of convergence of the LRE and MLS schemes
for different parameters of the proposed method in a three-dimensional example using struc-
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tured meshes. A known displacement field u is imposed on the boundary of the domain,
and the corresponding volume force b is imposed in the interior. The domain is a cube
Ω = (x, y, z) : x, y, z ∈ [0, 1] and the displacement field imposed on the boundary is u =
uxex + uyey + uzez, where

ux = log(x+ 3) y (z + 1) + exp(z), uy = sin(y z) + 3 y, uz = exp(x z) y − 4 cos(z). (9)

In this example the material properties are E = 1 and ν = 0.3. The relative errors in the
displacement field REu and in the stress field REσ are computed in order to observe the influence
of the parameters of the method on the results

REu =

√∫
Ω ∥u− unum∥2dV∫

Ω ∥u∥2dV
100% and REσ =

√∫
Ω ∥σ − σnum∥2dV∫

Ω ∥σ∥2dV
100% , (10)

and the absolute errors in the displacement field AEu and in the stress field AEσ are considered
in order to test the convergence order of the method

AEu =

√∫
Ω ∥u− unum∥2dV∫

Ω dV
and AEσ =

√∫
Ω ∥σ − σnum∥2dV∫

Ω dV
. (11)

Figure 4: Meshes for the 3D analytical example.

Figure 5 shows a combination of parameters in which the relative error of the displacement
field is less than 0.1% for p2 and p3 interpolations. The same happens with the stress field,
although it can also be seen that the stresses have a more significant error than the displace-
ments, which is expected. From these images, it is possible to conclude that using a parameter
k = 6 for three-dimensional structured meshes, as in the 2D problem, is an appropriate choice,
see [10]. No significant differences are observed when the number of Gauss points varies, but in
order to avoid errors in the validation, it is decided to use 49 points in what follows. For the
number of stencil points, it is decided to use 14 for p1, 30 for p2 and 60 for p3, which avoids bad
conditioning problems obtaining the interpolation coefficients.
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Figure 5: REu [%] (left column) and REσ [%] (right column) using p1 (top images), p2 (middle images)
and p3 (bottom images) for different parameters using LRE method and the mesh shown in the left image
of Figure 4.

Figure 6 shows the absolute error obtained for different meshes using the above-mentioned
parameters. In this image, it is possible to observe the Order of Convergence (OC) for each
interpolation, verifying that the expected order (or higher) is obtained. However, as mentioned
in [10], the expected OC for the displacement field using p2, which is 3, is not adequately
obtained. In any case, it is observed that for all cases, the error with p2 is less than the error
using linear interpolation.
3.2.2 Cantilever beam

In this example a three-dimensional cantilever beam subjected to a vertical force at the free
end is considered as shown in left image of Figure 7. For this example E = 30000.0, ν = 0.3,
Lx = 50, Ly = Lz = 2 and P = 4. An analytical solution from [17] is used to compare the
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Figure 6: AEu (left image) and AEσ (right image).

numerical results. The right image of Figure 7 shows one of the meshes used to solve this
example.

P

z

y

x
Ly

Lx

Lz

Figure 7: Geometry of three dimension clamped beam.

Tables 4 and 5 show the displacement at the free end and the stress at point (Lx/2, 0, Lz/4),
respectively. It can be seen how the results obtained with the LRE are again more accurate than
MLS. Results obtained with p3 are very closed to the analytical solution even for the coarsest
meshes, both in terms of displacement and internal stresses. One the other side, in general, p2
only give good results for the finest mesh, while p1 shows bad results, being probably strongly
affected by the shear locking effect.

Table 4: Solution of uz(Lx, 0, 0) using LRE and MLS which analytical solution is uz(Lx, 0, 0) = −4.1667.

# Elems Cardiff [9]
LRE MLS

p1 p2 p3 p1 p2 p3
100 -2.1330 -2.1330 -2.4198 -4.1773 -4.7964 -1.1113 -4.1732
152 -3.1057 -3.1057 -3.9249 -4.1778 -6.8041 -2.1358 -4.1721
200 -3.6570 -3.6570 -4.8549 -4.1786 -6.7136 -3.5345 -4.1719
567 -3.7378 -3.7378 -4.1888 -4.1442 -5.3082 -3.3301 -4.1410

4 CONCLUSIONS

This work presents a high-order interpolation method using the Finite Volume Method to
solve the linear elasticity problem. Several examples have been presented in two and three
dimensions to validate the method, obtaining acceptable results in all the cases. The high-order
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Table 5: Solution of σx(Lx/2, 0, Lz/4) using LRE and MLS where the analytical solution is
σx(Lx/2, 0, Lz/4) = 37.50.

# Elems
LRE MLS

Cardiff [9] p1 p2 p3 Cardiff [9] p1 p2 p3
100 17.47 23.26 24.97 37.50 17.50 36.10 10.50 37.50
152 25.83 40.38 34.52 37.50 25.89 -7.92 19.59 37.50
200 30.52 47.79 39.63 37.50 30.60 262.39 32.06 37.50
567 33.43 50.54 37.13 37.32 33.38 63.12 30.22 37.33

interpolation provides accurate results in the examples where the shear locking effect appears.
In the extension to a 3D framework of the 2D method presented in [10], it has been shown that
there is a suitable combination of parameters that provide accurate results. The LRE method
generally shows higher robustness in 3D problems than MLS. Moreover, the computational cost
experienced in simulations suggests employing interpolation orders not higher than p3. The
different examples proposed show the capability of the current method to provides accurate
results on 2D unstructured and 3D structured meshes subjected to distributed loads. Those
fundamental properties are needed to solve the fluid-structure problem of the compressor reed
valve, demonstrating the suitability of the method to be included within a three-dimensional
software that uses the Finite Volume Method.
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