
Proceedings of the Royal Society of Edinburgh, page 1 of 14

DOI:10.1017/prm.2022.46

Uniqueness for a high order ill posed problem
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Departamento de Matemática Aplicada I, Universidade de Vigo Escola
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In this work, we study a high order derivative in time problem. First, we show that
there exists a sequence of elements of the spectrum which tends to infinity and
therefore, it is ill posed. Then, we prove the uniqueness of solutions for this problem
by adapting the logarithmic arguments to this situation. Finally, the results are
applied to the backward in time problem for the generalized linear Burgers’ fluid, a
couple of heat conduction problems and a viscoelastic model.
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1. Introduction

It is easy to find equations and systems which lead to ill-posed problems (in the sense
of Hadamard) when different models arisen in the applied mathematics are studied.
Maybe the simplest way to find this problem is when we consider the backward in
time heat equation, or the system of elasto-dynamics when the elasticity tensor
is not positive definite. The spectra of these problems contain sequences whose
elements have a real part which tends to infinity. Therefore, we cannot obtain the
continuous dependence with respect to the initial data and, moreover, a certain
norm of some solutions can blow up at finite time. So, it is important to know if,
at least, we can ensure the uniqueness of solutions.

There are several techniques to study this kind of problems. We can cite the
books of Ames and Straughan [1] or Flavin and Rionero [5], where the authors
recall different techniques to analyse them. They also study a series of problems
arisen in applied mathematics. We can find in these books a huge quantity of
references where qualitative properties of ill-posed problems are studied. One of
the most used arguments in these works is the so-called logarithmic convexity.
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We can also recall the works of Knops and Payne [7], where they obtained
results of uniqueness and instability for elasto-dynamic problems (see also [6]), and
which were extended by other authors to consider different thermoelastic theories
[15, 18]. In the book of Ames and Straughan [1] we can find a full description of
this method for the backward in time heat equation.

In the last years, a huge interest has been developed in the study of equations
involving high order derivative in time. These appear in a natural way when we
want to study different problems in the applied mathematics. Usually, parabolic
and hyperbolic equations have been considered, leading to well-posed problems,
and some results have been obtained [2, 11, 13]. However, few attention has been
devoted to ill-posed problems associated to high order equations [4]. In this work,
we aim to study one problem of this type. That is, we consider a kind of problem
which is ill-posed and associated to high order equations. We think that this is the
first contribution in this line.

Here, we consider an ill-posed problem (see equation (2.1) below) and we want
to obtain a result concerning the uniqueness of solutions. Our argument is based on
the method of logarithmic convexity. We have found two main difficulties to prove
the main result. The first one is that it was not clear the function which we had
to use. The second difficulty was that we had to bound different terms which must
be controlled. In this work, we have overcome these difficulties with the help of a
combination of integrals with respect to the time.

The plan for this paper is the following: in the next section we propose the
problem to be studied and we state some few properties to be used later. In section
three we prove the uniqueness result and, in section four, we recall three different
situations where the above result can be applied. In the last section we propose
further comments which allow to extend the results of the third section.

2. Preliminaries

Let us assume that B represents a bounded domain in R
d, for d = 1, 2, 3.

In this work, we are going to study uniqueness issues for the problem determined
by the equation

a1u̇ + a2ü + . . . + anu(n) + u(n+1) = −k(b1Δu + . . . + bnΔu(n−1) + Δu(n)), (2.1)

where ai and bi are real numbers, n is a natural number greater than zero1 and
k > 0, with the boundary condition

u = 0 on ∂B, (2.2)

and the initial conditions, for a.e. x ∈ B,

u(x, 0) = u0(x), u̇(x, 0) = u1(x), . . . , u(n)(x, 0) = un(x). (2.3)

1The case n = 0 corresponds to the backward in time version of the usual heat equation based
on the Fourier law. It is well known that it corresponds to an ill posed problem in the sense of
Hadamard. The uniqueness of solution in this case is well known (see[1]).
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Uniqueness for a high order ill posed problem 3

First, we must observe that this problem is not well posed in the sense of Hadamard.
In particular, we will see that there exists a sequence of real numbers ξn which tend
to +∞ and belong to the point spectrum of this problem.

In fact, if we consider solutions of the form

u(x, t) = eωtΦn(x) for a.e. x ∈ B, (2.4)

where the function Φn(x) is the solution to the problem

ΔΦn + λnΦn = 0 in B, Φn = 0 on ∂B, (2.5)

then we find that the following relation

a1ω + a2ω
2 + . . . + anωn + ωn+1 = k(b1λn + b2ωλn + . . . + bnωn−1λn + ωnλn)

holds.
That is, ω satisfies the equation:

xn+1 + (an − kλk)xn + (an−1 − kbnλk)xn−1 + . . . + (a1 − kb2λk) − kb1λk = 0.

Our aim is to see that, when λn tends to infinity, there exists a sequence of real
numbers which are solutions to this equation ξn satisfying the condition λ

1/2
n �

ξn < ∞ such that ξn → ∞ when λn → ∞.
First, we fix the value of λn. Clearly, the function

Pk(x) = xn+1 + (an − kλk)xn + . . . + (a1 − kb2λk) − kb1λk

tends to +∞ when x → ∞.
On the other hand, we can take the value of Pk(x) for x = λ

1/2
k and so, we have

Pk(λ1/2
k ) = λ

n+1
2

k + (an − kλk)λn/2
k + . . . + (a1 − kb2λk)λ1/2

k − kb1λk.

It is obvious that the term of highest order of the above polynomial is −kλ
n+2

2
k .

Therefore, if λk is large enough, we find that Pk(λ1/2
k ) < 0 and so, every Pr(λ

1/2
r ),

for r � k, are all negative. Now, applying mean value theorem we conclude that
there exists ξk, λ

1/2
k � ξk < ∞, such that Pk(ξk) = 0.

Clearly, for each large value of λk we can choose ξk and, since λ
1/2
k tends to

infinity, we may conclude that ξk also tends to infinity. Therefore, we have proved
that problem (2.1)–(2.3) is ill-posed in the sense of Hadamard.

Remark 1. This analysis also applies if we consider the equation

a1u̇ + a2ü + . . . + anu(n) + u(n+1) = k(b1Au + . . . + bnAu(n−1) + Au(n)),

in a Hilbert space H, where A is a symmetric and positive definite operator such
that there exists an infinite sequence of eigenvalues λn → ∞.
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Now, since we have shown that the problem is not well-posed, we can ask ourselves
about the uniqueness of solutions. Hence, it will be enough to prove that the unique
solution when we consider the initial conditions

u(x, 0) = 0, u̇(x, 0) = 0, . . . , u(n)(x, 0) = 0 for a.e. x ∈ B (2.6)

is the null solution.
Thus, our aim in the next section will be to prove that, under some assumptions,

the unique solution to problems (2.1), (2.2) and (2.6) is the null solution. Therefore,
it will be useful to recall some properties.

First, we recall the Poincaré-like inequality which states that the following
estimate ∫ t

0

u2(ξ) dξ � 4t2

π2

∫ t

0

|u̇(ξ)|2 dξ (2.7)

holds, whenever u(0) = 0.
It will be also convenient to remark that

u(n+1)u(n−k) =
d
dt

[
u(n)u(n−k)

]
− u(n)u(n−k+1)

=
d2

dt2

[
u(n−1)u(n−k)

]
− u(n−1)u(n−k+1) − u(n)u(n−k+1)

= . . .

=
1
2

dk+1

dtk+1

[
|u(n−k)|2

]
− Wn−k(u(n), u(n−1), . . . , u(n−k+1)), (2.8)

for 1 � k < n, where Wn−k is a quadratic function in its arguments.
The relations (2.7) and (2.8) will be a key point in our study. From them, by

using Hölder inequality we can conclude that∣∣∣∣
∫ t

0

∇u(i)∇u(j) ds

∣∣∣∣ � C∗t
∫ t

0

|∇u(n)|2 ds, (2.9)

whenever 0 � i, j � n, i + j < 2n and (2.6) holds, where C∗ is a computable
constant.

From (2.7) and (2.9) we note that∫ t

0

∫ sn

0

· · ·
∫ s1

0

∫
B

(
∇G1∇G2 − |∇u(n)|2

)
dvdτds1 . . . dsn

� C1t

∫ t

0

∫ sn

0

· · ·
∫ s1

0

∫
B

|∇u(n)|2 dvdτds1 . . . dsn,

(2.10)

where

G1 = a1u + a2u̇ + . . . + anu(n−1) + u(n),

G2 = b1u + b2u̇ + . . . + bnu(n−1) + u(n),
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C1 is a positive calculable constant, and we have made a systematic use of the
inequality (2.9), and for every constants ai and bi.

Finally, it is worth noting that if u(0) = 0 then

u2(t) = 2
∫ t

0

uu̇ ds � 2
(∫ t

0

u2 ds

)1/2(∫ t

0

|u̇|2 ds

)1/2

� 4t

π

∫ t

0

|u̇|2 ds.

In general, if we assume that conditions (2.6) are fulfilled, we can see that

∫ t

0

∫ sn

0

. . .

∫ sj+3

0

|u(n−j)|2 dsj+2 . . . dsn

� 4t

π

∫ t

0

∫ sn

0

. . .

∫ sj+2

0

|u(n−j+1)|2 dsj+1 . . . dsn

(2.11)

for 2 � j � n.

3. Uniqueness of solutions

The objective of this section is to obtain an uniqueness result to problem (2.1)–(2.3).
In order to simplify the notation, we can rewrite equation (2.1) in the form:

˙̃u = −kΔû,

where ũ = a1u + a2u̇ + . . . + anu(n−1) + u(n) and û = b1u + b2u̇ + . . . + bnu(n−1) +
u(n).

The main idea to prove the result will be to use the function

F (t) =
1
2

∫ t

0

∫ sn

0

∫ sn−1

0

. . .

∫ s1

0

∫
B

|ũ|2 dvdτds1ds2 . . . dsn

+
ω

2

∫ t

0

∫ sn

0

∫ sn−1

0

. . .

∫ s1

0

∫
B

|∇u(n−1)|2 dvdτds1ds2 . . . dsn,

(3.1)

where ω is a positive constant which will be chosen later.
We have

Ḟ (t) =
∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

ũ ˙̃u dvdτds1ds2 . . . dsn

+
ω

2

∫ t

0

∫ sn

0

. . .

∫ s2

0

∫
B

|∇u(n−1)|2 dvdτds2 . . . dsn

=
∫ t

0

∫ sn

0

∫ sn−1

0

. . .

∫ s1

0

∫
B

ũ ˙̃u dvdτds1 . . . dsn

+ ω

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

∇u(n)∇u(n−1) dvdτds1 . . . dsn
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= −
∫ t

0

∫ sn

0

∫ sn−1

0

. . .

∫ s1

0

∫
B

kũΔû dvdτds1 . . . dsn

+ ω

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

∇u(n)∇u(n−1) dvdτds1 . . . dsn

= k

∫ t

0

∫ sn

0

∫ sn−1

0

. . .

∫ s1

0

∫
B

∇ũ∇û dvdτds1 . . . dsn

+ ω

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

∇u(n)∇u(n−1) dvdτds1 . . . dsn

� k(1 − C∗
1 t)
∫ t

0

∫ sn

0

∫ sn−1

0

. . .

∫ s1

0

∫
B

|∇u(n)|2 dvdτds1 . . . dsn,

where we recall that C∗
1 is a positive calculable constant, and we have made a

systematic use of the inequality (2.9).
We note that we can choose T small enough to guarantee that

Ḟ (t) � k

2

∫ t

0

∫ sn

0

∫ sn−1

0

. . .

∫ s1

0

∫
B

|∇u(n)|2 dvdτds1 . . . dsn, (3.2)

for every t � T .
Now, we analyse the second derivative of the function F . It follows that2

F̈ (t) = k

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

(
∇ ˙̃u∇û + ∇ũ∇ ˙̂u

)
dvdτds1 . . . dsn

+
ω

2

∫ t

0

∫ sn

0

. . .

∫ s3

0

∫
B

|∇u(n−1)|2 dvdτds3 . . . dsn.

We can easily find that

k

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

∇ ˙̃u∇û dvdτds1 . . . dsn

= −k

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

˙̃uΔû dvdτds1 . . . dsn

=
∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

| ˙̃u|2 dvdτds1 . . . dsn.

However, the second summand of the first integral in F̈ is more difficult to handle.
We obtain that

k

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

∇ũ∇ ˙̂u dvdτds1 . . . dsn

= k

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

∇(ũ − û + û)∇( ˙̂u − ˙̃u + ˙̃u) dvdτds1 . . . dsn

= I1 + I2 + I3,

(3.3)

2When n = 1 the second integral on the right-hand side is
∫

B |∇u|2 dv.
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Uniqueness for a high order ill posed problem 7

where

I1 = k

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

∇û∇ ˙̃u dvdτds1 . . . dsn,

I2 = k

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

∇(ũ − û)∇ ˙̃u dvdτds1 . . . dsn,

I3 = k

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

∇ũ∇( ˙̂u − ˙̃u) dvdτds1 . . . dsn.

(3.4)

We find that

I1 =
∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

| ˙̃u|2 dvdτds1 . . . dsn (3.5)

as we have seen previously.
On the other hand, we also have

I2 = k

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

∇(ũ − û)∇ ˙̃u dvdτds1 . . . dsn

= k

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

∇F1∇F2 dvdτds1 . . . dsn,

where

F1 = (a1 − b1)u + (a2 − b2)u̇ + . . . + (an − bn)u(n−1),

F2 = a1u̇ + a2ü + . . . + anu(n) + u(n+1).

We can bound the integrals of the form

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

(ai − bi)∇u(i−1)aj∇u(j) dvdτds1 . . . dsn, i, j = 1, . . . , n,

by the integral

Kt

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

|∇u(n)|2 dvdτds1 . . . dsn,

where K is a computable constant, after a repetitive use of the inequality (2.9).
The terms more difficult to bound are those of the form

k

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

(ai − bi)∇u(i−1)∇u(n+1) dvdτds1 . . . dsn for i = 1, . . . , n.

If we take into account that, for j = 1, . . . , n − 1,

∇u(j)∇u(n+1) =
1
2

d(n−j+1)

dtn−j+1

[
|∇u(j)|2

]
− Wj(∇u(n), . . . ,∇u(j+1)),
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then we obtain

k

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

∇F1∇u(n+1) dvdτds1 . . . dsn

+
ω

2

∫ t

0

∫ sn

0

. . .

∫ s3

0

∫
B

|∇u(n−1)|2dvdτds3 . . . dsn

=
k

2

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

G(τ) dvdτds1 . . . dsn

+
ω

2

∫ t

0

∫ sn

0

. . .

∫ s3

0

∫
B

|∇u(n−1)|2dvdτds3 . . . dsn

− k

n−1∑
i=0

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

(ai+1 − bi+1)

× Wi(∇u(n), . . . ,∇u(i+1)) dvdτds1 . . . dsn, (3.6)

where

G(t) =
n−1∑
i=0

(ai+1 − bi+1)
dn−i+1

dτn−i+1
|∇u(i)|2

and Wi is a quadratic expression of its arguments.
In view of the estimate (2.11) we see that the addition of the first and second

terms on the right-hand side of (3.6) is positive whenever t � T and T sufficiently
small, and ω large enough. Moreover, the third term on the right-hand side of (3.6)
will be greater or equal to

−(C2 + C∗
2 t)
∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

|∇u(n)|2 dvdτds1 . . . dsn,

where constants C2 and C∗
2 can be easily calculated. Therefore, we find that

I2 +
ω

2

∫ t

0

∫ sn

0

. . .

∫ s3

0

|∇u(n−1)|2 dvdτds3 . . . dsn

� −C3

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

|∇u(n)|2 dvdτds1 . . . dsn,

where C3 is a computable constant for every t � T and T is small enough.
Thus, we have proved that

I2 +
ω

2

∫ t

0

∫ sn

0

. . .

∫ s3

0

|∇u(n−1)|2 dvdτds3 . . . dsn � −2C3

k
Ḟ (t).

We bound now the integral I3. Proceeding in an analogous way, we also have

I3 � −C4

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

|∇u(n)|2 dvdτds1 . . . dsn � −2C4

k
Ḟ (t), (3.7)

where C4 is again a computable constant for every t � T , where T is sufficiently
small.
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Combining all these estimates, we conclude that, for every t � T ,

F̈ (t) � 2
∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

| ˙̃u|2 dvdτds1 . . . dsn

− C5

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

|∇u(n)|2 dvdτds1 . . . dsn

� 2
∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

| ˙̃u|2 dvdτds1 . . . dsn − 2C5

k
Ḟ (t).

Therefore, if we assume that t � T is small enough then we find that

FF̈ − (Ḟ )2 �
[

1
2

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

(|ũ|2 + ω|∇u(n−1)|2) dvdτds1 . . . dsn

]
[
2
∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

| ˙̃u|2 dvdτds1 . . . dsn

− l1

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

|∇u(n)|2 dvdτds1 . . . dsn

]

−
(∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

(ũ ˙̃u + ω∇u(n)∇u(n−1)) dvdτds1 . . . dsn

)2

=

[
1
2

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

(|ũ|2 + ω|∇u(n−1)|2) dvdτds1 . . . dsn

]

×
[
2
∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

(| ˙̃u|2 + ω|∇u(n)|2) dvdτds1 . . . dsn

− l∗
∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

|∇u(n)|2 dvdτds1 . . . dsn

]

−
(∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

(ũ ˙̃u + ω∇u(n)∇u(n−1)) dvdτds1 . . . dsn

)2

� −lF Ḟ ,

(3.8)

where l1, l and l∗ are computable constants.
The inequality (3.8) is well-known in the study of the qualitative properties of

the solutions to ill-posed problems. We find that (see [1, 5])

F (t) � F (0)
σ−σ2
1−σ2 F (T )

1−σ
1−σ2 for a.e. t ∈ [0, T ],

where σ = e−lt and σ2 = e−lT . If we assume that the initial conditions are zero,
then we obtain that F (0) = 0 and so, F (t) = 0 for a.e. t ∈ [0, T ]. This implies that
u(t) = 0 for a.e. t ∈ [0, T ].
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This process can be repeated successively in the interval [T, 2T ] and so on.
Therefore, we obtain that problem (2.1)–(2.3) has a unique solution.

Remark 2. Our analysis could be adapted to the problem proposed in remark 1.
An elemental example could be

a1u̇ + a2ü + . . . + anu(n) + u(n+1) = kΔ2(b1u + . . . + bnu(n−1) + u(n)),

with the boundary conditions:

u = Δu = 0 on ∂B.

Another interesting example could be again the problem proposed in remark 1 when
Au = (bij(x)u,i),j , where bij(x) is a symmetric positive definite tensor.

4. Applications to some special problems

In this section, we focus on the application of the result given in the previous
section, related to the uniqueness of solution, to the generalized Burgers’ fluid, a
couple of heat conduction problems and a viscoelastic problem. In particular, we
aim to prove that, under certain conditions, it is not possible that the solutions to
these three problems are localized in time. It means that, if the solution vanishes
after a finite time t0 � 0, then this solution is null. It is convenient to note that
this property is equivalent to show that the backward in time problem has a unique
solution.

4.1. Generalized Burgers’ fluid

In the paper [14] the authors proposed in a natural form the system which
determines the evolution of the linearized form for the generalized Burgers’ fluid.
We recall that it is written as follows,

ρ(v̇ + λ1v̈ + λ2
...
v ) = −∇q + η1Δv + η2Δv̇ + η3Δv̈,

div v = 0.

In the previous system, v is the velocity and λ1, λ2, η1, η2, η3 are positive
constants. It is easy to rewrite this system as

1
λ2

v̇ +
λ1

λ2
v̈ + ...

v =
η3

λ2ρ

(
η1

η3
Δv +

η2

η3
Δv̇ + Δv̈

)
−∇q∗.

The backward in time problem is written in the following form:

−λ−1
2 v̇ + λ1λ

−1
2 v̈ − ...

v =
η3

λ2ρ

(
η1η

−1
3 Δv − η2η

−1
3 Δv̇ + Δv̈

)−∇q∗.

Therefore, it leads to the following system:

λ−1
2 v̇ − λ1λ

−1
2 v̈ + ...

v = − η3

λ2ρ

(
η1η

−1
3 Δv − η2η

−1
3 Δv̇ + Δv̈

)
+ ∇q∗.
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This system is of the form:

˙̃v = −kΔv̂ + ∇q∗, (4.1)

where k = η3
λ2ρ , a1 = λ−1

2 , a2 = −λ1λ
−1
2 , b1 = η1η

−1
3 and b2 = −η2η

−1
3 , and we

adjoin null boundary conditions. Since we assume that ρ, λ2 and η3 are positive,
then problem (4.1) is ill posed in the sense of Hadamard.

Thus, the arguments proposed previously can be adapted easily to this situation
and we can conclude the uniqueness of solutions to the backward in time problem.

4.2. Dual-phase-lag and three-phase-lag heat conduction

One of the theories proposed by Tzou [17] considers the heat conduction equation:

τ2
q

2
...
T + τqT̈ + Ṫ = k

(
τ2
T

2
ΔT̈ + τT ΔṪ + ΔT

)
,

where k > 0 and τq, τT are two positive relaxation parameters. The backward in
time version of this equation is

−τ2
q

2
...
T + τqT̈ − Ṫ = k

(
τ2
T

2
ΔT̈ − τT ΔṪ + ΔT

)
.

We can write

...
T − 2

τq
T̈ +

2
τ2
q

Ṫ = −k

(
τT

τq

)(
ΔT̈ − 2

τT
ΔṪ +

2
τ2
T

ΔT

)
.

In view of the arguments of the previous section we can guarantee the uniqueness
of solutions to this last equation with homogeneous Dirichlet boundary conditions.

In 2007, Roy Chouduri [3] proposed the heat equation:

τq

...
T + T̈ = k∗ΔT + τ∗

ν ΔṪ + kτT ΔT̈ ,

where k and k∗ are two positive parameters, τ∗
ν = k∗τν + k and τq, τν and τT are

three relaxation parameters. The backward in time version of this equation becomes

...
T − τ−1

q T̈ = −kτT

τq

(
ΔT̈ − τ∗

ν

kτT
ΔṪ +

k∗

kτT
T

)
.

Therefore, we can guarantee the uniqueness of solutions to the problem determined
by this equation with homogeneous Dirichlet boundary conditions.

4.3. Viscoelasticity

Lebedev and Gladwell [10] proposed a constitutive equation of the form:

C(∂/∂t)σij = A(∂/∂t)εkkδij + 2B(∂/∂t)εij ,

where A, B and C are polynomials, σij is the stress tensor, εij is the strain tensor
and δij is the Kronecker symbol.
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In the case that we consider anti-plane shear deformations and we assume that
degree(C) = degree(B) − 1, we can obtain an equation of the form:

u(n+1) + anu(n) + . . . + a2u
(2) = μ(b0Δu + . . . + bnΔu(n−1) + Δu(n)), (4.2)

where μ > 0. We can apply the results of the previous section to the backward in
time version of this equation to conclude the impossibility of localization for the
solutions to the equation (4.2). In fact, we could use the results for a more general
version of viscoelasticity.

Viscoelastic fluids have deserved much attention in the last years. An interesting
class of them can be found in [12]. Linear and nonlinear versions have been studied
[8, 9, 16]. For some of them, the study we have developed can be used. For instance,
the ones called of Oldroyd can be written as

v̈i + γv̇i + p,i = μΔv̇i + (β + μγ)Δvi, vi,i = 0,

where the parameters μ, γ and β are positive. The backward in time version of this
equation can be written as

v̈i − γv̇i + p,i = −μ(Δv̇i − β + μγ

μ
Δvi), vi,i = 0.

Therefore, our results apply to this case. However, it is suitable to recognize that
our arguments cannot be used to study others viscoelastic fluids as the ones known
as Kelvin–Voigt type.

5. Further comments

In the previous sections, we have assumed that ai and bj are constants. The reason
was that we needed it to prove that problem (2.1)–(2.3) is ill posed in the sense of
Hadamard. However, in order to prove the uniqueness of solutions this assumption
is not required as we will see below.

In what follows, we point out the changes in the proof that we need in the case
that ai and bj can depend on the point; however, we still assume that k is a constant.
Anyway, we impose that ai and bj are C1 functions with respect to variable x.

It will be relevant to take into account an easy extension of the equality (2.8).
We also have

f (n+1)g(n−k) =
d
dt

(
f (n)g(n−k)

)
− f (n)g(n−k+1)

=
d2

dt2

(
f (n−1)g(n−k)

)
− f (n−1)g(n−k+1) − f (n)g(n−k+1)

= . . .

=
dk+1

dtk+1

(
f (n−k)g(n−k)

)
−
[
f (n−k) + f (n−k+1) + . . . + f (n)

]
g(n−k+1).

(5.1)
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Now, we develop the analysis. First, we note that the inequality (2.10) also holds
in our case. We can define the function F (t) as we have done in (3.1). Therefore,
estimate (3.2) also holds. The unique difference is that we need to apply the Poincaré
inequality at several points. We also have equality (3.3) where Ii are given in (3.4).
Moreover, the equality (3.5) is satisfied but, again, the most difficult point is to
estimate I2. We have:

∇F1∇F2 =
6∑

i=1

Mi,

where

M1 =
n∑

i,j=1

∇(ai − bi)u(i−1)aj∇u(j), M2 =
n∑

i,j=1

(ai − bi)∇u(i−1)∇aju
(j),

M3 =
n∑

i,j=1

∇(ai − bi)∇aju
(i−1)u(j), M4 =

n∑
i,j=1

(ai − bi)aj∇u(i−1)∇u(j),

M5 =
n∑

i=1

∇(ai − bi)u(i−1)∇u(n+1), M6 =
n∑

i=1

(ai − bi)∇u(i−1)∇u(n+1).

Again, integrals Mi, i = 1, . . . , 4, can be controlled by expressions of the form:

Kt

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

|∇u(n)|2 dvdτds1 . . . dsn.

To estimate integral M6 we can follow the same argument that in estimate (3.6) to
obtain

M6 +
ω1

2

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

|∇u(n−1)|2 dvdτds1 . . . dsn

� −(K1 + K∗
1 t)
∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

|∇u(n)|2 dvdτds1 . . . dsn,

where ω1 is large enough and K1 and K∗
1 are constants whenever t � T and T is

sufficiently small.
Using the equality (5.1) and the Poincaré inequality we can find that

M5 +
ω2

2

∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

|∇u(n−1)|2 dvdτds1 . . . dsn

� −(K2 + K∗
2 t)
∫ t

0

∫ sn

0

. . .

∫ s1

0

∫
B

|∇u(n)|2 dvdτds1 . . . dsn,

where, again, ω2 is large enough and K2 and K∗
2 are constants when t � T for T

sufficiently small.
Moreover, we can estimate I3 as in (3.7) after the use of the Poincaré inequality.
Therefore, we can obtain once again an inequality of the type of (3.8) and so, we

can conclude the uniqueness result proceeding as in § 3.
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