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Abstract: This paper deals with the LPV control of a three-axis gimbal including fault-tolerant
capabilities. First, the derivation of an analytical model for the considered system based on the
robotics Serial-Link (SL) theory is derived. Then, a series of simplifications that allow obtaining a
quasi-LPV model for the considered gimbal is proposed. Gain scheduling LPV controllers with PID
structure are designed using pole placement by means of linear matrix inequalities (LMIs). Moreover,
exploiting the sensor redundancy available in the gimbal, a virtual-sensor-based fault tolerant control
(FTC) strategy is proposed. This virtual sensor uses a Recursive Least Square (RLS) estimation
algorithm and an LPV observer for fault detection and estimation. Finally, the proposed LPV control
scheme including the virtual sensor strategy is tested in simulation in several scenarios.
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1. Introduction

Gimbals are precision devices used for orientation control of a second device in a
3D space. They can be utilized with mounted cameras to maintain horizontal orientation
while being hand-held or even mounted on a helicopter or planes. They are also widely
employed for hardware-in-the-loop tests for sensor technology, from testing smartphone
gyroscopes and accelerometers to even test mission-critical navigation devices for future
spacecraft. Despite their importance, industry still relies on the use of the classical PID
controllers for the positioning control of the gimbal axes.

1.1. Related Literature

In the literature, PID-based controller solutions have also been proposed for gimbal
systems. In [1], the authors propose a disturbance observer in conjunction with a classical
PID cascade scheme for angular position tracking of the gimbal axes to enhance the low
accuracy and bad disturbance rejection that affect PID controllers. A different approach
to PID control of gimbal systems is applied in [2]. In this work, the authors compare the
performance of PIDs tuned by using evolutionary algorithms, such as Particle Swarm
Optimization and Genetic Algorithms, with traditional tuning methods, such as Ziegler–
Nichols, showing an improvement of the evolutionary methods over the more traditional
ways of tuning the PID controller parameters. In addition to PID controllers, some works
for the control of gimbal systems have also focused on the use of nonlinear controller design.
In [3], the use of a sliding mode controller is proposed for a two-axis gimbal system to deal
with the high nonlinearites of such a system and the lack of model accuracy. This gimbal
system is applied to a planar antenna in which both yaw and pitch angles are required
to be controlled. On the other hand, Ref. [4] proposes using an adaptive control law that
guarantees stability using the Lyapunov theory, with positive results both in simulation
of a full three-axis system and experimental tests of a single-axis in the case of three-axis
motion simulator used for test and calibration of spacecraft instrumentation. The same
authors enhance their previous work in [5] by adding a reference model in the adaptive
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control law to improve the transient tracking performance. Thus, their controller falls
within the category of model-reference adaptive control (MRAC), and additionally, they
implemented nonlinear observers to estimate the accelerations of the gimbal axes and
derivatives of the actuator motor currents which are required in their developed adaptive
control law. Another approach for the control of such systems is the use of optimal control.
In [6], the authors implement a linear quadratic regulator (LQR) control law for a three-axis
motion simulator. They achieved this by linearizing the nonlinear model of the system
using Taylor linear expansions at each time step and computing the varying optimal state
feedback controller gain Ko(t) that minimizes a given cost function. In [7], the authors
use an optimization based MPC which uses a nonlinear third order Hammerstein model
obtained from input–output data of a three-axis camera gimbal system mounted on a
UAV drone. A comparison is also given of the proposed MPC with a PID controller tuned
using the Ziegler–Nichols method proving the superiority of the former. Another line of
control theory that has been proven to be successful when applied to real experimental
situations is the Linear Varying Parameter (LPV) control theory [8]. It has been applied
to the control of robotic manipulators, which are robotic systems quite similar to gimbal
systems when only three axes are considered. In the case of [9], the authors embed the
nonlinearities of the robotic manipulator in a quasi-LPV model and are able to use the most
efficient Quadratic Programming approach to solve a quasi-LPV MPC problem instead
of the most computationally intensive Nonlinear MPC one, allowing highly nonlinear
systems to benefit from fast MPC approaches. Additionally, in [10], the authors use the
polytopic LPV approach to compute a gain-scheduled state feedback controller using Linear
Matrix Inequalities (LMI) methods to synthesise the controller using H∞ theory as well as
D-stability for pseudo pole-placement for nonlinear systems. This allows extrapolating
very powerful and well known controller synthesis strategies from Linear Time Invariant
(LTI) systems to the nonlinear control. However, to the best of the authors’ knowledge, no
LPV formalism has been applied to the control of three-axis gimbal systems.

1.2. Paper Contribution and Structure

The benefits of the LPV control theory for nonlinear systems and the ease of imple-
mentation of the final control law for the case of the polytopic LPV approach are the main
motivations of this paper in order to apply them to the case of a three-axis gimbal system.
In this paper, a systematic approach to develop control systems for gimbal setups based
on nonlinear techniques is presented. The mathematical model of the three-axis gimbal
is obtained following the well-known Serial-Link (SL) object theory from the robotic arm
manipulators field using the Lagrange formulation. The controllers are based on LPV
approaches for the design of robust PID controllers against the nonlinearities of the me-
chanical gimbal system model equations and disturbances that are expected to appear
as non-considered Coulomb frictions or changes to the gimbal system due to the mounted
external device. In fact, three alternative ways in which to design PID LPV controllers
are presented, all of which take full advantage of the information of the nonlinear model
in contrast to classical PID controller design where linearization is required. The efficiency
and correctness of the developed control systems are tested using simulation results.

As a reference for this paper, the three-axis gimbal shown in Figure 1, which is used as
a camera mount to achieve accurate orientation of the images being recorded, is utilized.
To accomplish this, this device presents three moving components that provide it with a
full degree of freedom for angular positioning in the 3D space. Each independent moving
part is driven by an AC servo actuator electric motor which includes an internal incremen-
tal encoder. In addition, in each joint of the gimbal, it counts with an absolute encoder.
The incremental encoder allows a direct calculation of the angular speed of the gimbal
links while the absolute encoder allows for the direct measurement of the angular position.
Both encoders interface with a servodrive which takes care of the electric motor power
management. So, the controller system design in this paper only considers the mechanical
aspect of the three-axis gimbal control.
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Figure 1. Photo of the three-axis gimbal.

The search for the robustness of the controlled system serves as the motivation to
exploit the sensor redundancy present in the three-axis gimbal and present a fault tolerant
control (FTC) strategy to prevent malfunctions in the control system in case of a partial
sensor failure. This method is based on the real-time estimation of possible faults parame-
ters affecting the sensors by using LPV state observers and Recursive Least Squares (RLS)
estimation methods in order to build a virtual sensor.

The main contributions of this work are then:

• To develop a quasi-LPV modelling approach for three-axis gimbals based on a de-
tailed physical model obtained as a sequence of rigid bodies (links) interconnected by
articulations (joints).

• To propose an LMI-based control design methodology that allows for quasi-LPV
Gain-scheduling PID controllers for three-axis gimbals.

• To apply a virtual sensor strategy in a three-axis gimbals systems that provides fault-
tolerant capabilities in case of partial sensor faults.

The paper is organized as follows. Sections 2 and 3 are, respectively, concerned with
the derivation of an analytical model for the gimbal in a systematic approach and the
simplification of such models to obtain polytopic qLPV models for subsequent controller
synthesis. The procedure to compute the controller gains is shown in Section 4, with em-
phasis on the model augmentation that allows obtaining gain-scheduled PID controllers
and the LMIs tools that allow achieving pole-placement type of specification for nonlinear
systems in a very formal and methodical way. Finally, Section 5 presents a Virtual Sensor
algorithm that exploits the sensor redundancy, which exists in the used reference gimbal
and in many industrial robotic manipulators, in order to provide robustness against partial
sensor faults.

2. Modelling of the Gimbal

To obtain the mathematical representation of the three-axis gimbal dynamics, the well
developed theory from the robotic manipulators field was used. Modelling the gimbal as
a serial-link manipulator [11] offers a straightforward methodology to achieve a highly
detailed model of the system as a sequence of rigid bodies (links) interconnected by means
of articulations (joints). The first step in modelling a system as a serial-link object is to
obtain an adequate set of reference frames (joint coordinate frame) with respect to each of
the moving bodies and then compute the parameters that allow relating all the consecutive
pairs of links that form the manipulator. The problems just described are part of the Direct
Kinematics (DK) problem, which in the serial-link objects theory is solved by following the
steps from the Denavit–Hartenberg (DH) Convention.

Figure 2 shows the reference frames chosen for the reference gimbal as a result of
following the DH Convention. Notice that all reference frames share a common origin; this
has been performed to exploit a unique design feature of gimbals, which is that all three
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axis of rotations intersect at one point. By selecting the intersection point as the origin for all
references frames, we simplify the DK by neglecting the translations of the links and solely
focusing on the joints rotation. With that selection of reference frames and knowledge of
the gimbal physical construction, a series of parameters, known as the DH parameters, can
be computed. The list of specific DH parameters for the reference three-axis gimbal can be
seen in Table A1. The DH parameters are used to obtain the Homogeneous Transformation
matrix (1) which relates link i− 1 with respect to link i. Finally, by the concatenation of the
Homogeneous Transformation matrices, as in Equation (2), the DK of the gimbal T3

0 (q) is
derived, which for a given joint angles vector q = [q1, q2, q3]

T allows us to know the 3D
pose of the system in world coordinates. This 3D pose is obtained as a rotation matrix R3

0(q)
which can be extracted from the Homogeneous Transformation of the DK. Equation (3)
shows the structure of the DK for gimbals using a common origin for all reference frames
as previously proposed.

Figure 2. Axes of the joint coordinate frame.

Ai
i−1 =


cos θi − sin θi cos αi sin θi sin αi ai cos θi
sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di
0 0 0 1

 (1)

T3
0 (q) = A1

0(q1)A2
1(q2)A3

2(q3) (2)

T3
0 (q) =

[
R3

0(q) 0
0 1

]
(3)

The opposite problem to the DK is the Inverse Kinematics (IK) problem, which deals
with obtaining the gimbal joint angles qi that allow achieving a specific 3D pose orientation.
The IK problem is of interest in the case where a reference path is given in world coordinates,
and as a result, it needs to be translated to joint coordinates for use as reference in the
control system. First, note from Figure 2 that axis z0, in solidarity with Link 1 is pointing
downwards. This decision in motivated to have the reference axis coincide with the
positive axis of rotation of the AC servo motor actuator for that link. As the motivation
of the modelling phase is to obtain a model suitable to a control-oriented model, it is best
practice to select axes positive with our actuators so that no adjustment needs to be made
to the control signal computed from the controllers. For translating from the 3D world
coordinates to the joint space coordinates, however, it is more natural to work with the base
reference frame of Figure 3. This base frame is fixed to the three-axis gimbal base; as such,
it does not have any degree of freedom. The DH parameters relating the base frame with
the reference frame for Link 1 are given in Table A2. To compute the joint angles q that
would allow them to point the gimbal to any world coordinate given in the base frame is a
problem closely related to the the spherical transformation, as shown in Figure 4.
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Figure 3. Base reference frame fixed to the three-axis gimbal base.

Figure 4. Azimuth and elevation angles definition.

Then, the solution for the inverse kinematics problem for q1 and q2 is

q1 = −Azimuth = −atan2(y, x) (4)

q2 = −Elevation = −atan2(z,
√

x2 + y2) (5)

The angle of rotation for Link 3 (for the reference gimbal) is only used to control the
angle of rotation of the mounted camera with respect to the ground horizontal plane. So,
its IK can be given simply by:

q3 = −Tilt (6)

With the Direct Kinematics of the gimbal derived, the following step is to derive the
equations of motion of the three-axis gimbal. The dynamic model follows the classical
Newton’s Law of motion, represented in Equation (7) in the joint coordinate frame rather
than the Cartesian frame, as the former is more naturally related to the control problem.

B(q)q̈ + C(q, q̇)q̇ + Fv q̇ + G(q) = τ (7)

where q ∈ R3 represents the vector of joint angles q = [q1, q2, q3]
T , being qi the joint angle of

the i link. B(q) ∈ R3×3 is the global inertia tensor of the gimbal and is a symmetrical matrix,
C(q, q̇) ∈ R3×3 is the Coriolis effect matrix, Fv ∈ R3×3 is a diagonal matrix containing
the constants for the viscous friction that affects each link, G(q) ∈ R3 is the vector of
external torques caused by the influence of gravity, and τ ∈ R3 represent the vector of
external torques caused by the AC Servos acting on the joints and serve as the considered
control input.

The mathematical representation for most of these terms can be obtained by following
the Lagrangian formulation for serial-link objects, which is quite systematic and gives
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closed form equations for systems that could be modeled as robotic manipulators, as is the
case of the gimbal. The equation to compute the inertia tensor matrix B(q) is

B(q) =
3

∑
i=1

(mli J(li)
t

P J(li)P + J(li)
t

O Ri
0 Ii

li R
it
0 J(li)O ) (8)

The elements J(li)P and J(li)O are the translational Jacobian of the center of mass and
rotational Jacobian for the i link given by

J(li)P =
[

J(li)P1
. . . J(li)Pi

0 . . . 0
]

(9)

J(li)O =
[

J(li)O1
. . . J(li)Oi

0 . . . 0
]

(10)

The columns for the translational Jacobian can be computed as:

J(li)Pj
= zj−1 × pli (11)

where
zj−1 = Rj−1

0 z0 (12)

z0 =
[

0 0 1
]T (13)

pli = Ri
0Ri (14)

Notice that Ri
0 represents the concatenation of rotational matrices from Link 1 to

Link i, analog to (2), and Ri are the Cartesian coordinates of the center of mass of Link i
with respect to its own reference frame. The columns for the rotational Jacobian can be
computed as:

J(li)Oj
= zj−1 (15)

With the global inertia tensor matrix B(q) of the gimbal derived, then obtaining the cij
elements of the Coriolis matrix C(q, q̇) is quite straightforward

cij =
3

∑
i=1

cijk q̇k (16)

cijk =
1
2
(

∂bij

∂qk
+

∂bik
∂qj

+
∂bjk

∂qi
) (17)

Note that bij are the elements from the global inertia tensor matrix B(q). The last ele-
ment that the Lagrange formulation provides for serial-link objects is the vector of external
torques in the manipulator joints due to the effect of gravity G(q) = [g1(q), g2(q), g3(q)],
where the individual torques gi(q) can be computed as

gi(q) =
3

∑
j=1
−mlj

g0 J
lj
Pi

(18)

g0 =
[

0 0 g
]T (19)

Note that g0 must be defined with respect to the Link 1 reference frame, which as
can be seen in Figure 2 for the reference gimbal is pointing downwards, thus the gravity
acceleration is positive in this particular coordinate frame.

In order to make the Simulation Oriented Model (SOM) more realistic, the equations
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of motion of the gimbal have been modified as in Equation (20) to include the effects of the
static and kinetic Coulomb frictions in the model [12]

B(q)q̈ + C(q, q̇)q̇ + Fv q̇ + G(q) + Fc = τ (20)

where

Fc =

{
Fext if q̇ = 0 and Fext ≤ Fs

µkFs · sign(q̇) if q̇ 6= 0
(21)

and the vector of external forces is the result of the effects of the actuators and the torque
due to gravity

Fext = τ − G(q) (22)

3. Control-Oriented Model

The model equations obtained by following the Lagrangian method for serial-link
objects are quite complete and close to the real system dynamics, especially with the
addition of the Coulomb frictions. Thus, it is a very good SOM model. However, for con-
troller synthesis, its equations are too complex and cumbersome to work with. In addition,
the hard nonlinearities dependent on the link velocity introduced by the Coulomb friction
make that model of the system behave as a hybrid nonlinear system rather than a simpler
standard nonlinear system. For this reason, the Control Oriented Model (COM) to be
developed is based on the representation given by (7), leaving the Coulomb frictions as
unknown disturbances.

In spite of leaving the effect of the Coulomb frictions as disturbances, the model
obtained from the Lagrangian method is still too complex for controller synthesis, so a
series of simplifications are required. To gain insight into the system dynamics and attempt
to understand which simplifications could be applied, a series of open-loop simulations
have been carried to the full Lagrangian model without the Coulomb frictions effect.

From these simulation results, some important insights can be gathered. From classical
control theory, it is known that the output response of linear systems to sinusoidal inputs
is another sinusoidal input as well, but with different amplitude gain and angular phase.
Analysing Figure 5, it can be seen that in the presence of an open-loop sinusoidal torque
input, the angular velocity response of Links 1 and 3 is also pretty sinusoidal. That output
response to sinusoidal inputs demonstrates that for those links, despite their dynamics
being given by complex nonlinear equations, their dynamics are actually dominated by
linear phenomena. The response for Link 2, on the other hand, clearly shows nonlinear
behaviour in comparison. This nonlinearity can also be observed in the results from
Figure 6. In the presence of a constant torque input, the angular velocity of Link 2 presents
an oscillatory response caused by the effect of gravity in relation to the link’s angular
position. In the other two links, which are not affected that much by gravity, the angular
velocity is constant and with not much disturbance caused due to the erratic oscillations
of Link 2.
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Figure 5. Angular velocity q̇ of the links in the presence of a sinusoidal torque input.

Figure 6. Angular velocity q̇ of the links in the presence of a constant torque input.

From this quick analysis, two conclusions can be reached that justify model simplifi-
cations that can be applied to most three-axis gimbal systems. First, the dynamics of the
links behave quite independently of each other, so there is a low level of coupling in the
overall system. Second, the system showed to have an important linear behaviour, so the
dynamics are not too dependent on the gimbal pose and changes in the links configuration
for the most part. Then, two important simplifications can be made to the model: Firstly, we
decouple the inertial tensor matrix B(q) and the Coriolis effect matrix C(q, q̇) so that only
the diagonal elements of each matrix are considered in the new B̃(q) and C̃(q, q̇) matrices.
Secondly, since the variation of the inertial configuration does not have a great impact
on the system dynamics, we consider only the mean value for each of the elements of
the diagonal of the B̃(q) matrix so that the decoupled inertia tensor matrix is a constant
diagonal matrix B. After these simplifications, the COM equations can be easily rearranged
as shown in (23), which is an appropriate representation of the LPV modelling approach

q̈ = B−1
[τ − C̃(q, q̇)q̇− Fv q̇− g(q)] (23)

For the synthesis of the controllers, polytopic quasi-LPV models will be used for
each gimbal link. The LPV methodology has several advantages with respect to other
nonlinear control methods. Mainly, it allows representing the model as a pseudo-linear
system, and as result it allows powerful and well studied techniques from the classical
linear control design to be applied to our nonlinear COM. For the polytopic quasi-LPV
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modelling, two steps are required [13]: the nonlinear embedding followed by the polytopic
representation [14].

The objective of the nonlinear embedding is to represent the COM of (23) as a pseudo-
linear state space model, as in (24). Note that this system representation is independent for
each i link. Exploiting the low coupling shown by the gimbal model, three independent
models are derived, one per each link. Also note that the A matrix from the state space
model is not constant as it depends on the angular link position and the angular velocity of
the link. This pseudo-linear representation for each of the three links of the gimbal have as
a generic representation the one shown in (26)

ẋi = Ai(q, q̇)xi + Biτi (24)

where

xi =

[
qi
q̇i

]
(25)[

q̇i
q̈i

]
=

[
0 1

θj(q, q̇) θj+1(q, q̇)

][
qi
q̇i

]
+

[
0
bi

]
τi (26)

To understand the nonlinear embedding process, let us focus on the representation for
Link 2. The COM simplified equation of movement for this link is given by

q̈2 = 52.5τ2 − 52.5q̇2 − 49.3 cos q2 − 5.28 sin q2 − 0.016q̇2q̇3 sin 2q3 (27)

The extraction of the nonlinear embedded parameters then leads to:

θ2(q) =
−49.30495 cos q2 − 5.27769 sin q2

q2
(28)

θ3(q, q̇) = −52.5− 0.015876q̇3 sin(2q3) (29)

rendering the equation of movement as:

q̈2 = 52.5τ2 + θ2(q)q2 + θ3(q, q̇)q̇ (30)

Note than in order to perform the embedding for the θ2 parameter, a new division term
has to be added. This is performed so that if (28) and (29) are substituted into (30), then
we are back to the original nonlinear equation from (27). Thus, with (30), a pseudo-linear
model is obtained that captures the full dynamics of the nonlinear models without losing
information or generality as is the case when using linearization techniques.

For Link 1, the nonlinear embedding process leads to the following pseudo-linear
representation: [

q̇1
q̈1

]
=

[
0 1
0 θ1(q, q̇)

][
q1
q̇1

]
+

[
0

10.75

]
τ1 (31)

where the nonlinear embedded parameters have the following complex and long expression
given by:

θ1(q, q̇) =− 10.75 + 0.081625q̇2 sin(2q2) + 0.003251q̇2 sin(2q2) cos(q3)
2

− 0.0013887q̇2 cos(q2)
2 + 0.00694q̇2

+ 0.003251q̇3 sin(2q3) cos(q2)
2

(32)

At this point, the second part of the LPV modelling comes into place, the polytopic
representation of the system. The objective is to describe the new linear system on the
varying parameters θj(q, q̇) as a combination of linear systems, where each of these linear
systems is the result of evaluating the new pseudo-linear systems (26) at the extreme values
of the varying parameters θj(q, q̇) = {θj, θj}. The combination of linear models, with p = 2n
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vertexes, then forms the convex polytopic space description of the q-LPV (33) models for
each i link of the gimbal. (

Ai(θ) Bi
Ci 0

)
=

p

∑
k=1

hk

(
Aik Bi
Ci 0

)
(33)

where
p

∑
k=1

hk = 1 (34)

For the case of Link 1, whose LPV model is shown in (31), there is only one embedded
parameter, so its polytopic space has two polytopic vertexes, shown in Table 1 and obtained
by means of optimization using (32) as the objective function to be both minimized and
maximized. By substituting those two values into the LPV representation, we obtain two
state space linear systems that represent the polytopic vertexes of the qLPV model.

Table 1. Link embedded parameter max. and min. value.

Parameter Value

θ1 −11.2847
θ1 −10.2153

To obtain the polytopic model for Link 2, the analogue procedure is followed by
finding the minimum and maximum values of each of the two embedded parameters.
However, special care must be taken with the nonlinear embedded parameter θ2(q), shown
in (28), as it presents a discontinuity when the angular position becomes q2 = 0 rad.
To solve this problem, the solution is to divide the polytopic space for positive and negative
values of the angular position. Thus, a hybrid controller will be required, which shows the
versatility of the LPV approach. With this in mind, the extreme values of the embedded
parameters which form the polytopic vertexes of the LPV model for Link 2 are shown in
Table 2.

Table 2. Link 2 embedded parameters max. and min. value.

Parameter Value

θ2 (q2 negative) −17.3492
θ2 (q2 negative) 485.3176
θ2 (q2 positive) −495.8560
θ2 (q2 positive) 16.0752

θ3 ≈−52.5

For Link 3, the LPV modelling is not required as after the COM simplifications its
equations of movement are already linear.[

q̇3
q̈3

]
=

[
0 1
0 −536.25

][
q3
q̇3

]
+

[
0

536.25

]
τ3 (35)

4. Control Design Methodology

As previously mentioned, exploiting the low coupling interaction between the gimbal’s
links, each link will have its own LPV model and as a result its own independent controller.
In addition, since the objective of the three-axis gimbals is to fulfill a desired angular
orientation, the reference variable for the control system is the angular position qr of each
link. Meanwhile, the controlled variable will be the torque commands τi sent to each of the
link’s servomotors. For the controller topology itself, given the system representation as
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seen in (26) and the reference variable, this problem presents a very good fit to the use of
the PID LPV controllers [15]. The LPV bounding box method for LPV controller synthesis,
based on assuring that all the vertexes of the qLPV polytope are considered during the
synthesis step, will guarantee robustness against the nonlinearites of the system model,
while the integrator action will guarantee the rejection of low frequencies disturbances and
uncertainties that may affect the system. The PID architecture itself is an I-PD controller
and takes advantages of the fact that all states are being measured with direct feedback from
both the angular position and the angular velocity sensors, which is especially useful as it
allows eliminating the use of a software derivative and with this, all the implementation
issues that it has. The control architecture for each link can be seen in Figure 7 and the
implemented structure of the PID in Figure 8.

Figure 7. Control architecture for each Link i.

Figure 8. I-PD structure as implemented.

The parameters of the PID will be computed using the polytopic gain-scheduling LPV
approach. In order to achieve this, it is required to augment the second order system (26)
that models each link by adding a new state qe, which corresponds to the integral of the
angular position error. The new augmented system can be seen in (36). As can be seen
in (37), the parameters of the PID controller are obtained from the coefficients of a state
feedback controller, computed based on the new augmented state space representation of
the system. However, using the LPV approach, we will not have a fixed PID controller but
a family of controllers for each gimbal link

ẋe =

 0 1 0
θj(q, q̇) θj+1(q, q̇) 0

1 0 0

xe +

 0
0
−1

qr +

 0
bi
0

τi (36)

u = Kxe = [−kp − kd − ki]xe (37)

where
xe = [q q̇

∫
(q− qr)dt]T (38)

Remember that the LPV polytopic representation allows modeling the system as a
finite set of linear systems. By combining the polytopic representation with controller
synthesis techniques based on Linear Matrix Inequalities (LMIs) [16], we can obtain a set
of controllers, one for each vertex of our polytopic LPV model. This will ensure that the
system will meet its design specifications, not only on the polytopic vertexes but within
the whole polytopic space considered. This is what makes the LPV approach so powerful,
as it allows for the use of well-known techniques from the linear control theory based
on the Lyapunov theory of stability and LMIs optimization to be applied to nonlinear
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systems. This allows for a systematic approach for the design of nonlinear control systems
that achieve tight design specifications, something which can only be achieved with other
nonlinear control techniques after a long trial and error tuning process of the controller.

The LMIs are used as means to express the design objectives that we want our closed
loop system to achieve. Examples of design objectives are the minimization of performance
criteria as the H2 and H∞ norms, and as in the case of this paper, it is also possible to
impose pole placement as the goal for the control objective. What is powerful about this
approach is the possibility to stack multiple LMIs to impose simultaneous performance
objectives, or what is most interesting for the LPV approach, the possibility to include
all of the polytopic vertexes. In this way, solving the LMI problem as a multi-objective
optimization problem and including all the polytopic vertexes of the LPV model bounding
box approach, the closed-loop system will achieve quadratic stability and the desired
performance for the whole polytopic region [17] as long as a feasible solution P = PT to
the following LMI problem exists:

P > 0 (39)

AiP + PAT
i + BWi + WT

i B + 2αP < 0 (40)

M⊗ (AiP) + MT ⊗ (PAT
i ) + M⊗ (BWi) + MT ⊗ (WT

i BT) < 0 (41)

Notice that ⊗ denotes the Kronecker product and

M =

[
sin ϑ cos ϑ
− cos ϑ sin ϑ

]
(42)

The LMIs used for the controller synthesis are collected in (39)–(41). The Lyapunov
matrix P and the auxiliary control matrix Wi serve as the decision variables. Equation (39)
is used in order to guarantee stability according to the Lyapunov theory, which establishes
that the Lyapunov matrix P must be positive defined. LMIs (40) and (41) are used as the
design objectives to force the pole placement of the closed-loop system. Figure 9 shows
how the parameters α and ϑ define the regions where the poles should be placed. With α, it
is possible to control the rise time response and with ϑ the magnitude of the oscillations.
The areas of intersection are where the poles will be placed if a solution to the LMI problem
is feasible. In addition, notice that these equation present a sub-index i, meaning that for
each one of the polytopic vertexes, a different pair of these two LMIs is required, thus
covering the whole LPV polytopic space. The LMI problem can be formulated using the
YALMIP [18] and solved by using the SeDuMi solver [19]. After a feasible solution is found,
then the controller is computed as

Ki = WiP−1. (43)

Note here the use of the sub-index i means that for each polytopic vertex a different
controller is computed. Then, in order to compute the controller to be implemented in
real-time, the LPV gain-scheduling technique is used. The first step is to compute the
scheduling function, which since for the three-axis gimbal case all of the polytopic regions
have only two polytopic vertexes, it is quite straightforward and consists of a simple linear
interpolation function

h =
θ(q)− θ

θ − θ
(44)

Finally, the controller to be applied in real-time is computed according to

K = K(1− h) + Kh (45)

Since the PID coefficients are extracted from the state feedback controller, it can be seen
how the PID will adapt its coefficients with respect to the configuration of the gimbal link.
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A second approach is to modify LMIs (40) and (41) so that instead of considering a
unique auxiliary control matrix Wi for each polytopic vertex we will have a global W matrix
for all of the Ai of the LPV model

AiP + PAT
i + BW + WT B + 2αP < 0 (46)

M⊗ (AiP) + MT ⊗ (PAT
i ) + M⊗ (BW) + MT ⊗ (WT BT) < 0 (47)

By doing this, we will be computing just one controller that must guarantee that all
design objectives are fulfilled within the whole polytopic space. This approach is more
conservative, but it is especially useful for Link 1, as can be seen from (32). Its embedded
parameter has a long and complex expression. However, as can be seen from Table 1,
the difference between the minimum and maximum value for its embedded parameter is
small. This is a clear example for when it is a best decision to use a so-called polytopic LPV
robust controller instead of the gain-scheduling LPV approach.

Figure 9. LMI regions in the pole space.

5. Virtual Sensor Fault Tolerant Control Methodology

In order to improve the robustness of the control system, the sensor redundancy
present within each of the gimbal axes can be exploited. Remember that the reference
gimbal has a dedicated sensor for measuring the angular position and a second one for
measuring the angular velocity although both sensors could be used for measuring both
variables. However, with a configuration in which each sensor works independently,
a failure of one of them will cause the failure of the whole control system. In order to
prevent the loss of control performance in the case of a sensor fault and thanks to the
given sensor redundancy, a good fault tolerant control (FTC) strategy is to use a virtual
sensor [20].

Figure 10 shows how the closed-loop control system looks when the virtual sensor
strategy is incorporated. As can be seen, the inputs to the virtual sensor are the sensor
readings, which may be faulty, and the outputs are the corrected sensors readings that are
used as the feedback signal to the controller. When compared with active fault tolerant
control, the benefit of the virtual sensor strategy resides in the fact that the sensor fault
tolerance is achieved without requiring modification to the nominal controller itself. Hence,
the virtual sensor guarantees that the original controller will continue to perform normally
in the sensor fault scenario.
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Figure 10. Closed-loop control system for the three-axis gimbal with virtual sensor incorporated.

When considering sensor faults for LPV systems [21], the model can be expressed in
the following way:

ẋ = A(θ)x + B(θ)u

y f = C(θ, γ)x + fy
(48)

where the C matrix may be a function of the embedded varying parameters θ and the
multiplicative faults γ

C(θ, γ) = diag(γ1, γ2, . . . , γn)C(θ) (49)

Additionally, the sensor output equation may be affected by a vector of additive
reading faults fy. For the case of the reference three-axis gimbal model, both B and C
matrices are parameter independent. Furthermore, since both model states can be measured
with dedicated sensors, the C matrix is 2× 2 identity matrix. Its output sensor equation
when considering sensors faults is:[

qy f (k)
q̇y f (k)

]
=

[
γ1(k) 0

0 γ2(k)

][
1 0
0 1

][
q̂(k)
ˆ̇q(k)

]
+

[
fy1(k)
fy2(k)

]
(50)

From the modified sensor output equation to the case of sensor faults (50), it can be
seen that in the nominal situation the multiplicative fault parameter should have a value
γ(k) = 1, while the additive fault parameter should have a value fy(k) = 0. Notice also that
both states from the state vector present a hat symbol, representing that the real fault-free
states are assumed to be known.

To build the virtual sensor for LPV systems, its structure will depend on the follow-
ing condition

rank(C(θ, γ)) = rank(C(θ)) 6= 0 (51)

which for the gimbal system will depend only on the value of the additive fault γ. So,
for the cases where only partial sensor faults are occurring γ 6= 0, no total signal loss
from the sensor condition (51) will be satisfied. In this case, the structure of the virtual
sensor for LPV systems is given by the following static gain corresponding to the model
matching reconfiguration

yv = C(θ)C(θ, γ)−1(y f − fy) (52)

For the gimbal system, and focusing only on the sensor reading for the angular position
for the sake of simplicity, the static gain that defines the virtual sensor equation according
to (52) is defined by

qv(k) =
qy f (k)− fy1(k)

γ1(k)
(53)
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In the case where condition (51) is not satisfied, total loss of a sensor signal or more,
then the virtual sensor would consist of a state observer of the system using the remaining
healthy sensors. However, only partial sensor faults are considered in this paper.

The virtual sensor (53) is just a static gain. However, it assumes the online knowledge
of the multiplicative and additive fault coefficients. Then, these values should be obtained
by means of a real-time estimation for both values γ(k) and fy(k). In order to solve the
estimation problem in an efficient form for real-time implementation of the virtual sensor,
the Recursive Least Square (RLS) estimation method can be used. To use the RLS algorithm,
the estimation variables relation should be formulated in the parameter identification
regressor form

y(k) = ϕT(k)Θ(k) + e(k) (54)

Then, according to the regressor Equation (54), the output sensor Equation (50) for the
individual angular position sensor can be rearranged as:

qy f (k) =
[
q̂(k) 1

][γ(k)
fy(k)

]
(55)

where the output of the regressor is the faulty measurement from the sensor y(k) = qy f (k),
the regressor vector consisting of known values is ϕT(k) = [q̂(k) 1], and the vector of
estimated variables is Θ(k) = [γ(k) fy(k)]T . The term, e(k) is the identification error and
is expected to be zero. The identification error can be computed based on the parameter
estimation from the previous sample:

e(k) = y(k) = ϕT(k)Θ(k− 1) (56)

Then, in order to update the parameters estimation, the RLS gain vector should be
updated according to:

K(k) =
P(k− 1)ϕ(k)

λ + ϕT(k)P(k)ϕ(k)
(57)

and the covariance matrix according to:

P(k) =
1
λ
[P(k− 1)− P(k− 1)ϕ(k)ϕT(k)P(k− 1)

λ + ϕT(k)P(k)ϕ(k)
] (58)

Then, the parameter estimation should be updated as

Θ(k) = Θ(k− 1) + K(k)e(k) (59)

The parameter λ is known as the forgetting factor and is a design parameter used to
allow the parameter estimation to track changes in the parameter values by controlling
the effect that old data has on the estimation that may not be relevant anymore. Usual
values for λ are in the range [0.9,1], and its choices affect the batch of N = 2

1−λ data used in
the estimation.

Algorithm 1 summarises the online fault estimation using the RLS method.

Algorithm 1: Recursive Least Square Algorithm
Input: q(k),q̂(k)
Output: λ(k), fy(k)
Compute the identification error by using (56).
Update the gain vector with (57) and the covariance matrix with (58).
Update the estimated parameters by applying (59).

It should be noted that the results shown in the following section were obtained using
the RLS block from the Simulink library with a forgetting factor of λ = 0.9. The use of this
block has the advantage that it supports automatic code generation in C/C++ for practical
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implementations of the virtual sensor FTC algorithm.
From the description on (55), note that the fault-free state is assumed to be a known

variable. In order to obtain its value, an LPV observer is used; hence the use of the hat
symbol. It is well-known that in a state–feedback design a controller–observer duality exists,
in which applying the following transformations during the controller gain K synthesis

A =⇒ AT = Ã (60)

B =⇒ CT = B̃ (61)

leads to obtaining an observer gain L by applying the final transformation

L = KT (62)

Exploiting this duality, LPV observers can be designed by substituting the transfor-
mations (60) and (61) in the set of design LMIs (39)–(41) as the new A and B variables. So,
by solving the new convex LMIs optimization problem with Ã and B̃, a set of observers
gains L can be computed for each of the gimbal links. Exactly as in the case of the controller
design, the observer gain reconstruction is performed via linear interpolation using (44)
and (45). Finally, the LPV observer is implemented as a classic Luenberger observer

˙̂x = A(θ)x̂ + Bτ − L(θ)(y− Cx̂) (63)

In the observer Equation (63), A(θ) could be computed either as a linear interpolation
by using the same procedure as (44) and (45) or by direct substitution of the varying
parameters θ in the LPV model (26).

An important remark in the design of the LPV observer for this particular virtual
sensor application is that in order for the FTC block to have the expected performance, it is
required to decouple the state observer dynamics from the fault parameter estimation.

This remark is evident by inspecting the whole FTC block, Figure 11, now that all the
elements have been presented. It can be seen that there is an important coupling between
the elements that forms the virtual sensor. The inputs for the LPV state observer comes from
the virtual sensor Equation (53) that depends on the additive γ and multiplicative fy fault
parameters detected by the recursive least square online estimation, which in turn uses the
state prediction x̂ from the LPV observer as the regressor input. The virtual sensor equation
is a static expression. As a result, the coupling in the virtual sensor block comes from the
dynamics of the LPV observer and the RLS fault estimator. To achieve the decoupling, we
force one of them to have its dynamics be many orders of magnitude faster than the other.
As the focus of the virtual sensor is on fault tolerance and fault detection, the element with
the fastest dynamics corresponds with the RLS fault estimator. This is achieved by selecting
an aggressive forgetting factor of 0.9, as previously introduced, and by simultaneously
forcing the LPV observer to have slow convergence dynamics, which can be accomplished
by setting the decay rate α at the design LMI (40) to a low value.

Figure 11. Virtual sensor fault tolerant block scheme.

Forcing the observer dynamics to be slow can also have an intuitive interpretation as
if from the control designer point of view we want our observer to have a high level of
“inertia” so that in the presence of a sensor fault it will not converge immediately to the
new faulty sensor signal and instead remain in the “nominal state path”. This allows the
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RLS estimator to be much faster to detect the fault parameters, and then the virtual sensor
equation can reconstruct the non-faulty sensor signal.

6. Results
6.1. Simulation Scenarios

The resulting control system is tested for a given trajectory in a series of different
scenarios: first, in the nominal situation and then twice in a scenario where there are sensor
faults occurring in the angular position sensor. In the case where the angular position
sensor is faulty, the effects of the sensor fault in a control system without any FTC strategy
are first shown, and then a second simulation highlights the benefits of the virtual-sensor-
based fault tolerant strategy presented in this work. Note that for the sake of simplicity
and clarity, results from faults on the angular speed sensor and plots for Link 3 have been
avoided as they will not add any new insight into the results. For the case of Link 3, it was
also seen that its COM is a simple linear plant, so its control is not a great challenge anyway.
However, this could also be interpreted as if q3re f = 0, which is equivalent to saying that
we want the mounted camera to be parallel to the horizontal plane at all time, which is a
reasonable assumption.

In addition in order to make the simulations as realistic as possible, the tested SOM
is from (20) which introduces the effect of the Coulomb frictions neglected during the
controller synthesis. Additionally, the parameters for Link 3 have been modified in the
SOM to assume that there is a camera mounted as an end-effector of the three-axis Gimbal.
These modifications are covered in the Appendix A.

Figures 12–14 collect the results from testing the designed control system against
the SOM in the nominal situation, meaning no sensor fault but with the modified SOM
including the mounted camera. In Figures 15–17, the simulation results in the presence of
faulty sensors are collected when the original control scheme is considered without virtual
sensors. Finally, Figures 18–22 collects the results when the PID LPV controller plus the
virtual sensor fault tolerant strategy are used in conjunction.

In the faulty scenarios, the applied faults for Links 2 and 3 are given in the following
Tables 3 and 4:

Table 3. Sensor faults applied in q1 for the faulty scenarios.

0–9 9–18 18–27 27–36 36–45

γ 1 0.7 1 1 0.8
fy 0 0 0 0.3 0.2

Table 4. Sensor faults applied in q2 for the faulty scenarios.

0–9 9–18 18–27 27–36 36–45

γ 1 1 1 0.6 0.9
fy 0 0.2 0 0 0.15

6.2. Discussion on Results

The first scenario represents the nominal control of the three-axis gimbal according to
the control methodology presented in Section 4 in the absence of sensor faults. Figure 12
shows the reference trajectory decomposed in its qir elements and the tracking performance
of each individual link as well. It can be clearly seen that the designed LPV-PID controllers
are more than able to cope with the nonlinearities present in the three-axis gimbal system
and are also robust against low frequency uncertainties and disturbances, e.g., the mass
change of Link 3 of the SOM in comparison with the COM or the effects of the Coulomb
frictions. It can also be seen in Figure 14 that the control system is able to fulfill a pretty
good tracking performance while having a controller signal totally within the nominal
parameters of the servo actuators used in the reference gimbal. Finally, Figure 13 shows
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the combined trajectories of Links 1 and 2 in world space coordinates in the gimbal base
frame, simulating the path of a mounted camera and with the path normalized to a sphere
of radius 0.1 meters. The translation from link joint frame qi to world space coordinates is
performed using the IK algorithm introduced earlier. In this figure, the set-points from the
given world space Cartesian trajectory can also be seen, and it shows that the gimbal path
fulfills this requirement quite well.

Figure 12. Individual trajectories for qi of Links 1 and 2.

Figure 13. Combined trajectories of Links 1 and 2 to form the camera path inR3 Cartesian coordinates.
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Figure 14. Control inputs for the servo-actuators of Links 1 and 2.

Figure 15. Individual trajectories for qi of Links 1 and 2.

The second scenario shows the performance of the original control structure in the
presence of sensor faults. As expected, without the presence of any FTC component,
the closed-loop performance is greatly affected by the presence of the faults in the angular
position sensors for Links 1 and 2. It should be noted that since only partial sensor faults
are considered, the system does not lose stability. However, the sudden changes of sensors
reading the LPV-PID experience produce controller signals that cause the saturation of the
actuators. Thus, this shows that sensor faults not only hinder the closed-loop performance
but also the integrity and the lifespan of the system.

The third scenario deals with the case where the presence of sensor faults is greatly
mitigated by the presence of the Virtual Sensor methodology introduced in Section 5. The
results show that the virtual sensor block performance is very good, as this combined
sensor fault case is the same as the nominal case regarding the closed-loop response and
tracking performance. Thus, the virtual sensor is fully capable of masking the sensor faults
to the nominal PID LPV controller, and the system is capable of robust performance against
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partial sensor malfunctions. Figures 21 and 22 show the multiplicative γ and additive fy
fault parameter estimation by the RLS regression estimator. It can be observed that the
estimation effectively converges to the applied faults shown in Tables 3 and 4.

Figure 16. Control inputs for the servo-actuators of Links 1 and 2.

Figure 17. Combined trajectories of Links 1 and 2 to form the camera path inR3 Cartesian coordinates.
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Figure 18. Individual trajectories for qi of Links 1 and 2.

Figure 19. Control inputs for the servo-actuators of Links 1 and 2.
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Figure 20. Combined trajectories of Links 1 and 2 to form the camera path inR3 Cartesian coordinates.

Figure 21. Multiplicative and additive sensor fault estimation by means of RLS for Link 1.
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Figure 22. Multiplicative and additive sensor fault estimation by means of RLS for Link 2.

7. Conclusions

In this paper, it was shown how to obtain accurate analytical models for three-axis
gimbal systems by using the Serial-Link theory from the robotics field. In addition, a
series of simplifications that can be applied to the complex analytical model by taking
advantage of the unique mechanical design on the construction of gimbal systems was
demonstrated via open-loop simulation. These simplifications allow us to obtain a new
model description which is suitable for translating the nonlinear equation of movement
of the gimbal into three decoupled polytopic qLPV models. The modelling procedure
was shown for a reference gimbal as an example. However, the modelling steps could be
easily extended to obtain LPV models for all kind of three-axis gimbal systems. Moreover,
the analytical model based on Lagrangian methods is very generic and can be applied with
little modification to other gimbal systems.

In addition, to provide a systematic approach for obtaining qLPV models for three-
axis gimbal systems, it was shown how a polytopic LPV model can be used to synthesize
feedback controllers was shown. Using well-established LMI methods based on Lyapunov
theory, pole placement specifications for a nonlinear system extending classic linear control
approaches were acquired. Given the links model structure and having angular position
tracking as the control objective, the LPV models were augmented to obtain PID LPV
controllers. The controllers proved to be adaptive to the nonlinearites in the whole configu-
ration range of the gimbal while giving robustness against low-frequency disturbances and
uncertainties that may be present in the system. Concretely, it was shown via simulation
that despite modifying the SOM to simulate a mounted camera, the control system was
capable of good tracking performance.

Finally, it was shown that in systems with sensor redundancy, as in the reference three-
axis gimbal, this sensor redundancy can be exploited by means of virtual sensors to obtain
robustness against partial sensor faults. The implemented fault tolerant strategy works by
decomposing the output sensor equation in such a way that multiplicative and additive
sensor faults are taken into consideration. As a result, these parameters can be estimated
by using online recursive regression. For the completion of the virtual sensor algorithm,
an LPV observer was synthesized by simply exploiting the well known controller–observer
duality for state-feedback control design. Given that the virtual sensor algorithm relies on
RLS and a LPV Luenberger observer, its practical implementation does not pose a challenge,
which is quite remarkable given the demonstrated performance.
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In future works, we expect to implement the LPV control solution and the virtual
sensor strategy presented here in a real three-axis gimbal system. Additionally, exploiting
the sensor redundancy information presented in the reference gimbal system, an interesting
research problem is to extend the fault tolerant capabilities presented here by also consider-
ing the possibility of incipient hardware faults [22] in the electric motors that operate each
of the gimbal axes. In particular, in addition to the position and speed sensors considered
in this work, available sensor information from the servomotors for voltage and current
measurement can be used for the detection of motor faults.
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Appendix A. Three-Axis Gimbal Parameters

Appendix A.1. Motor Parameters

Maximum torque 8.3 Nm, Allowable continuous current 3.5 A, Conversion torque
constant 1.3 Nm/A.

Appendix A.2. Direct Kinematics

Table A1. DH Parameters for the Three-Axis Gimbal.

Link θi ai di αi

1 q∗1 + π/2 0 0 π/2
2 q∗2 − π/2 0 0 −π/2
3 q∗3 0 0 0

* variable.

Table A2. DH Parameters relating the base frame to reference frame of Link 1.

Link θi ai di αi

Base π/2 0 0 π

Appendix A.3. Mechanical Properties of the Links

Link 1:
m1 = 2.492 kg, Center of Mass (CoM) = [−0.0906, 0, 0.1147] m, Inertia tensor elements
Ixx = 0.0144 Kg·m2 Iyy = 0.0294 Kg·m2 Izz = 0.0175 Kg·m2 Ixz = 0.0175 Kg·m2

Link 2:
m2 = 1.624 kg, CoM = [−0.0063, 0, −0.0734] m, Inertia tensor elements Ixx = 0.0090 Kg·m2

Iyy = 0.0085 Kg·m2 Izz = 0.0020 Kg·m2 Ixz = −0.0007 Kg·m2
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Link 3:
m3 = 0.756 kg, CoM = [0, 0, −0.0310] m, Inertia tensor elements Ixx = 0.0013 Kg·m2

Iyy = 0.0006 Kg·m2 Izz = 0.0019 Kg·m2

Modified Link 3 for the SOM:
m3 = 2.106 kg, CoM = [0, 0, −0.0530] m, Inertia tensor elements Ixx = 0.0033 Kg·m2

Iyy = 0.0027 Kg·m2 Izz = 0.0041 Kg·m2

Viscous Friction:
Fv = 1

Coulomb Friction:
µk = 0.8, Fs = 1.2 Nm
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